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Gene duplication is a well-recognized mechanism by which organism s acquire novel traits and it 

has been shown to play an important role in species divergence. Recent genomics studies have 

highlighted the significant impact that gene duplication can have in the adaptive evolution of 

parasite species. Traits such as drug resistance, host immune evasion and disruption, virulence 

and host range selection have all been shown to be affected by gene duplication events. 

However, relatively little is known about the importance of gene duplication in the evolution of 

protozoan parasites. The goal of this study is to examine the scope and impact of gene 

duplication on the evolution of unique traits in the human parasite Toxoplasma gondii.  

To this end, we used comparative genomics approaches to perform a comprehensive 

comparative analysis of gene duplication between T. gondii and its close relatives Neospora 

caninum and Hammondia hammondi. We show that despite the high degree of synteny between 

these species, they differ significantly in their expanded gene profiles. Interestingly, we find that 

these expanded loci (EL) are under strong diversifying selection and that many exhibit copy-

number variations among different strains of the same species. Additionally, we have performed 

functional analyses on two expanded loci: we have identified EL4 to be responsible for host 

mitochondrial association, which is a trait unique to T. gondii, and also shown that EL3 may be 

involved in regulating parasite proliferation during bradyzoite differentiation. Our results suggest 

that gene duplication may represent an important underlying distinction that sets T. gondii apart 

from its less pathogenic relatives such as N. caninum and H. hammondi. 
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1.0  INTRODUCTION 

1.1 TOXOPLASMA GONDII: LIFE CYCLE 

Toxoplasma gondii is a protozoan obligate intracellular parasite belonging to the phylum 

Apicomplexa. This phylum also includes other major human and animal parasites such as 

Plasmodium (malaria), Cryptosporidium (cryptosporidiosis), Babesia (babesiosis) and Eimeria 

(coccidiosis) (Robben et al., 2004b). Like most of its relatives, T. gondii has a complex life cycle 

made up of two phases: the sexual phase which takes place exclusively in felines and the asexual 

phase which takes place in its wide variety of intermediate hosts (Boothroyd, 2009). Infection of 

intermediate hosts usually results from either ingestion of oocysts contaminants in food or water, 

or tissue cysts found in undercooked meat. Upon entering the host, the infective form initially 

differentiates into the fast growing form called tachyzoite. This developmental stage is highly 

immunogenic and elicits a strong immune response from the host. Under host immune pressure, 

tachyzoites differentiate into slow growing forms called bradyzoites, which eventually become 

encysted and remains buried in the tissues of the host for many years. Tissue cysts serve as a 

major transmission stage to other intermediate hosts as well as the definitive hosts. Within the 

definitive hosts, the parasite undergoes gametogenesis and fertilization. Eventually parasites are 

passed out as highly infectious and environmentally stable oocysts which may initiate infects 

when ingested by an intermediate host (Dubey, 2009). 
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1.2 TOXOPLASMA GONDII: TOXOPLASMOSIS 

T. gondii is unique among these parasites in its ability to infect a remarkably wide range of 

intermediate hosts including all warm blooded-animals (Sibley et al., 2008). Human infections 

usually result from ingestion of infective forms of the parasite in undercooked meat (tissue cysts) 

or food contaminated with cat feces (oocysts). Oocysts in particular are extremely 

environmentally stable and can survive several days outside of the host and still remain 

infectious (Lelu et al., 2012). Vertical transmission may also occur from mother to fetus during 

pregnancy (Jones et al., 2009).  

Primary T. gondii infection elicits a strong, usually effective, interferon-γ-driven immune 

response from the host and is therefore generally asymptomatic (Gazzinelli et al., 1994, Miller et 

al., 2009). However, under host immune pressure, a primary acute infection converts to a latent 

chronic form which may persist for the life of the host. Severe disease outcomes are associated 

with reactivation of chronic T. gondii infections under suboptimal host immune conditions. 

Toxoplasmic encephalitis resulting from reactivation of latent chronic infection in the brain is 

among the leading causes of CNS infections in immunocompromised HIV-AIDS patients 

(Richards et al., 1995). Reactivation in the eye may also lead to toxoplasmic chorioretinitis. 

Recent reports of severe acute infections in immunocompetent individuals (de Moura et al., 

2006) have alerted researchers to the shifting pattern of T. gondii infections and have highlighted 

the urgent need for the development of curative chemotherapeutics.  
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1.3 TOXOPLASMA GONDII: POPULATION STRUCTURE 

Toxoplasma has a rather simple population structure which belies its extensive global 

distribution. The populations of T. gondii in North America and in Europe are predominated by 

three highly clonal lineages with only about 1% or less genetic difference between them (Howe 

et al., 1995, Su et al., 2003, Sibley et al., 2008). These clonal lineages, referred to as Types I, II 

and III, have been shown to exhibit important and interesting phenotypic differences based on 

the few underlying genetic differences. It has been proposed that these lineages emerged from 

either one or two genetic recombination event(s) involving two divergent ancestral genetic pools 

followed by natural selection and stabilization of the three fittest progeny genotypes (Grigg et 

al., 2001a, Saeij et al., 2005a, Boyle et al., 2006).  

Two main reasons have been proposed to explain the maintenance of such a highly clonal 

population structure for an organism that has a clearly defined sexual cycle. Firstly, Toxoplasma 

has the ability to bypass its sexual host and cycle indefinitely among intermediate hosts. Within 

these intermediate hosts, the parasite undergoes asexual replication and produces infective forms, 

which can be transmitted up and down the food chain (Boothroyd, 2009). This life history trait 

significantly decreases the opportunity for recombination of genetic material from genetically 

distinct strains through sexual replication. In fact, the evolution of oral infectivity in T. gondii, 

which is a key adaptive feature for lateral transmission between intermediate hosts, seems to 

have occurred concurrently with the emergence of the clonal population structure ~10,000 years 

ago (Su et al., 2003). Secondly, during infection of the feline sexual host, Toxoplasma most 

commonly undergoes self-fertilization from gametocytes of the same parental strain to produce 

millions of highly clonal infective forms (Su et al., 2003). The combination of a very short 

window for gametogenesis and the rare occurrence of multi-strain natural infections in cats favor 
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self-fertilization, rather than out-crossing, as a mechanism for enhancing the transmission of 

recently emerged clonal recombinants and thus perpetuating the clonal population structure of T. 

gondii in Europe and North America (Boothroyd, 2009, Wendte et al., 2010).  

1.4 GENE EXPANSION AND TRAIT EVOLUTION 

The widespread existence of multi-gene families provides a clear indication that gene expansion 

has been centrally involved in evolution and acquisition of new traits in all life forms (Pays et 

al., 1981, Hurles, 2004, Sudmant et al., 2010, Lu et al., 2012, Fares et al., 2013). Several 

mechanisms can drive the initial gene duplication event, the most prominent of which is unequal 

crossing over between repetitive elements during meiosis (Hurles, 2004). After a duplication 

event has occurred, there is a narrow window of time where relaxed selective pressure on 

duplicate genes allows for adaptive changes through accumulation of non-synonymous mutations 

before selective pressure is reestablished as these genes begin to drift apart (Lynch et al., 2000, 

Bergthorsson et al., 2007). While this selective constraint ensures that a significantly large 

proportion of gene duplicates are eliminated from the population, a precious few may evolve 

new functions which may be evolutionarily advantageous and may become fixed in the 

population. The nature of the duplication event, i.e. small-scale duplications (SSD) or whole-

genome duplication (WGD) is believed to influence the fate of duplicated genes. In 

Saccharomyces cerevisiae, it has been suggested that SSD events were more likely to produce 

duplicate genes which would go on to evolve divergent functions (neo-functionalization) while 

WGD events would give birth to duplicate genes with shared ancestral functions (sub-

functionalization) notwithstanding the large amount of genetic raw material produced by this 
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type of duplication (Fares et al., 2013). Regardless of the mechanism or nature of gene 

duplication, it is considered as a vehicle which allows organisms to explore the evolutionary 

space for new and possibly advantageous traits without immediately compromising original gene 

function. 

There are several examples of evolution by gene duplication in protozoan parasites. The 

human parasite Trichomonas vaginalis has undergone perhaps the most extensive gene 

expansion of any protozoan parasite, with about 59 expanded gene families which average over 

600 copies per gene (Carlton et al., 2007). In this organism, there appears to have been selective 

expansion of genes which are important for its particular parasitic lifestyle. These include 

components of its membrane trafficking machinery which is important for secretion of 

pathogenic proteins into the host cell and exchange of other materials with the host environment 

through exo- and endocytosis (Carlton et al., 2007). This provides support for the notion that 

while gene duplication events may be random, fixation of duplicate genes is not (Tanaka et al., 

2009). 

The Trypanosoma brucei genome contains a vast pool of extensively expanded variant 

surface glycoprotein (VSG) genes, over 80% of which have been pseudogenized (Berriman et al., 

2005). Only a single VSG is expressed at any given time, and multiple rounds of antigen-

switching during infection in the same host leads to multiple waves of parasitemia. Antigenic 

variation allows the parasite to survive long enough to be passed on to a vector or another host. It 

also allows the parasite to superinfect hosts previously infected with parasites expressing 

different VSG paralogs and have developed paralog-specific immunity (Barry et al., 2005, 

Stockdale et al., 2008). These features are critical for the success of this species as a parasite and 

also for its ability to navigate a complex vector-dependent life cycle. The mechanism by which 
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T. brucei switches between VSG expressions highlights the relevance of gene duplication and 

gene conversion in the evolution of virulence. A silent VSG gene is first duplicated and 

subsequently recombined into an expression site where it replaces the currently expressed VSG 

gene (Palmer et al., 2007, Stockdale et al., 2008, Gjini et al., 2012). This new VSG then takes 

over as the dominant surface antigen. The starter population of progeny that switches their VSGs 

this way then escapes immune surveillance and seed a new cycle of infection. 

Antigenic variation as a mechanism for immune evasion is also a prominent feature of 

Plasmodium spp infections and gene duplication plays a crucial role here as well. The 

Plasmodium falciparum genome is rife with expanded gene families including the ~60-member 

var gene family (Templeton, 2009). This gene family encodes surface antigens exported to the 

red blood cell surface called erythrocyte membrane proteins (PfEMPs) and has been shown to be 

under strong diversifying selection (Freitas-Junior et al., 2000, Deitsch et al., 2001, Pasternak et 

al., 2009). PfEMPs have been extensively studied and characterized for their roles in infected red 

blood cell (iRBC) adhesion to vascular endothelial cells, iRBC rosette formation and antigenic 

variation (Scherf et al., 2008, Pasternak et al., 2009). These are all immune evasion strategies 

that are considered to be directly responsible for the pathogenicity of P. falciparum infection as 

well as the difficulty associated with malaria vaccine development (Pasternak et al., 2009). There 

are a few other multi-gene families in the Plasmodium genome such as stevor and Pfmc-2TM 

that are also involved in antigenic variation although to a lesser extent than the var family 

(Scherf et al., 2008). Other expanded gene families in Plasmodium spp. play various roles in 

important physiological processes such as metabolism (Bethke et al., 2006), drug resistance 

(Price et al., 2004, Witkowski et al., 2010) and receptor selection for host cell invasion (Tham et 

al., 2012). 
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1.5 GENE EXPANSION IN TOXOPLASMA GONDII 

Like the protozoan parasites cited above, T. gondii also possesses a clutch of expanded gene 

families which are progressively emerging to be very important in the adaptive evolution of the 

parasite. By far, the most extensively expanded of these gene families to be identified yet is the 

surface antigen 1 (SAG1)-related sequence (SRS) superfamily of surface antigens. The SRS gene 

family includes over 160 distinct genes encoding related proteins which are collectively 

implicated in host cell attachment and invasion (Mineo et al., 1994, Dzierszinski et al., 2000, 

Carruthers et al., 2007a). In fact the large number of SRS genes in T. gondii is believed to be 

associated with the expansive host range of the parasite (Jung et al., 2004). Some SRSs are 

immunogenic while others are not. It is clear from a number of studies that the canonical 

member of the SRS family, SAG1 (Kasper et al., 1983), now named SRS29B (Wasmuth et al., 

2012), is the immunodominant antigen on the surface of T. gondii tachyzoites (Kasper et al., 

1983) and is highly immunogenic in both humans (Rodriguez et al., 1985) and animals (Santoro 

et al., 1986). Recent studies have begun to shed more light on the function of SAG1 in T. gondii 

infection. Wild type parasites induce an acute and lethal form of ileitis in C57BL/6 mice while 

SAG1-knockout strains fail to induce such a response (Rachinel et al., 2004). Interestingly, while 

SRS29A and SRS29B drive the balance of infection towards higher virulence in mice, SRS29C, 

the third member of the three-gene tandemly duplicated locus, appears to negatively regulate 

virulence (Wasmuth et al., 2012). These findings support the notion that virulence in 

Toxoplasma is a function of various positive and negative interactions which ultimately establish 

an optimal equilibrium and ensures successful infection as well as transmission.  

Another interesting feature of the SRS family is that it is subjected to regulation with 

some family members exclusively expressed in specific developmental stages of the parasite. 
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SAG1 and SAG2A are exclusively expressed in tachyzoites while SRS9 and bradyzoite surface 

antigen 4 (BSR4) are up-regulated during tachyzoite-to-bradyzoite differentiation (Van et al., 

2007). SporoSAG is also exclusively expressed in the sporozoite stage (Radke et al., 2004). 

While it has been suggested that the SRS family has analogous impact on immune evasion as the 

var family in Plasmodium spp. and the VSG family in Trypanosoma spp., the mechanism 

involved is clearly different from the classical antigenic variation utilized by these genera (Jung 

et al., 2004, Boothroyd, 2009). By comparison, it seems that what the SRS family of surface 

antigens lacks in antigenic variation, it adequately makes up for in abundance, developmental 

regulation, allelic polymorphism and copy number variation (Jung et al., 2004, Boothroyd, 

2009). 

There are also examples of tandemly duplicated genes in T. gondii which encode proteins 

that directly challenge the host immune response after infection has been established. The most 

prominent example is the rhoptry protein 5 (ROP5) family of pseudokinases which has been 

shown by our laboratory and other groups to have a significant impact on virulence in mouse 

infections (Behnke et al., 2011, Reese et al., 2011b). The ROP5 locus contains about 4-10 

tandemly duplicated genes depending on the strain. It is not clear whether the expansion of this 

gene family is an adaptive response to more complex immune systems in certain mammalian 

hosts, but there is significant amount of evidence to suggest that the different members of the 

ROP5 family are under strong diversifying selection. For example, the ROP5 paralogs have 

evolved subtle variations in their contributions to the virulence phenotype associated with the 

locus. Intriguingly, the immunity-related GTPases (IRGs) pathway targeted for inactivation by 

ROP5 is present in mice but not in primates such as humans (Steinfeldt et al., 2010, Howard et 

al., 2011, Fleckenstein et al., 2012, Niedelman et al., 2012). Perhaps, the fact that mouse-to-cat 
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(intermediate-to-definitive host) transmission represents an important transition from asexual to 

sexual phase of the life cycle is an indication of the amount of adaptive pressure on this single 

locus. Additionally, ROP5 is localized to the host-parasite interface (surface of the 

parasitophorous vacuole) where they are amenable to the adaptive evolutionary pressure from 

interactions with different host environments. The specific example of ROP5 being a 

pseudokinase also suggests that mutations that lead to the loss of primary functions of duplicated 

genes may be a means of modifying and fine-tuning protein functions to suit a particular context 

of infection. This is particularly relevant for T. gondii which has such an extraordinarily wide 

host range. 

The ROP5 gene family belongs to a broader family of expanded genes referred to as the 

ROP2 superfamily. This includes an extensive array of polymorphic genes with clear homology 

to protein kinases, although the majority are predicted to be pseudokinases (Peixoto et al., 2010). 

Members of this superfamily are involved in various host parasite interactions: ROP18 localizes 

to the surface of the parasitophorous vacuole where it functions cooperatively with ROP5 to 

phosphorylate and inactivate host IRGs (Fleckenstein et al., 2012, Niedelman et al., 2012); 

ROP38 intercepts the host MAPK pathway with direct implications for host cell proliferation and 

apoptosis (Peixoto et al., 2010). Similar to ROP5, ROP38 has undergone further local/tandem 

duplication and has also been subjected to diversifying selection. Other members of the ROP2 

superfamily have maintained their single-copy status since diversifying after the original 

expansion but in many cases they have developed extensive allelic variations between strains 

(Boothroyd, 2013). All members of this superfamily are secreted and are considered to have 

various degrees of direct interaction with the host cell, again underscoring the importance of 

host-parasite interaction in T. gondii genome evolution.  
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1.6 COMPARATIVE ANALYSIS OF GENE DUPLICATION: DIVERGENT 

EVOLUTION OF HOST RANGE AND VIRULENCE BETWEEN CLOSELY RELATED 

SPECIES 

While our knowledge of the scope and impact of gene duplication and subsequent expansion in 

the evolution of T. gondii is relatively limited, the above examples clearly point to an important 

role for duplicated genes in shaping the evolution of the parasite. Moreover, it is becoming 

increasingly clear that host-parasite interaction is an important driver of adaptive evolution. A 

comparative analysis of the ROP5 locus among three closely related protozoan parasites, 

Toxoplasma gondii, Hammondia hammondi and N. caninum (Figure 1.1), shows that the initial 

duplication of this locus perhaps occurred prior to the divergence of N. caninum from the T. 

gondii/ H. hammondi clade about 28 million years ago; N. caninum contains 2 tandem copies of 

ROP5 while T. gondii and H. hammondi contain up to 10 copies (Reid et al., 2012, Walzer et al., 

2013). However, although it is unclear whether ROP5 orthologs in N. caninum are functional as 

virulence genes, available evidence shows that N. caninum lacks the ability to phosphorylate and 

inactivate IRGs, as has been shown to be the function of ROP5. This is consistent with findings 

from our work showing that N. caninum appears to easily succumb to innate immune pressure 

within the first 24 hours of mouse infection (Figure 1.2). ROP5 paralogs from H. hammondi, on 

the other hand, have been shown to be just as effective in mediating virulence, and likely through 

a similar mechanism, as their T. gondii orthologs (Walzer et al., 2013). Additionally, it is clear 

that the HhROP5 locus has also been under diversifying selection. A similar analysis in N. 

caninum will reveal whether or not immune disruption by way of IRG inactivation is a recently 

acquired function of the ROP5 gene family.  
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One of the most poorly understood questions in pathogen biology (and this is particularly 

true for parasitic protozoa) is how host range is determined on a molecular level. The above 

examples provide limited, but encouraging, support for a role for gene duplication, gene family 

expansion and diversification in the expansion of pathogens into new hosts. For instance, N. 

caninum contains a large repertoire of SRS genes, in fact, more than twice as many as can be 

found in T. gondii. However, comparative transcriptome analysis shows only a few SRS genes 

are actually expressed in N. caninum (Reid et al., 2012). Relatively, T. gondii expresses a lot 

more surface antigens and it is attractive to think that this has direct implications for host range. 

Is gene duplication a cause or consequence of host range expansion? What is the impact of gene 

duplication on adaptive evolution? What is the impact of gene duplication on the evolution of 

new traits, relative to single nucleotide changes in genes? Comprehensive comparative analyses 

of gene duplication among protozoan parasites will give a clearer picture of which genes are 

more susceptible to duplication and how such gene functions impact the parasite’s ability to 

survive different environmental conditions in different hosts. Local or tandem gene duplication is 

particularly informative since a tandem arrangement of paralogous genes in chromosomal region 

is indicative of a more recent duplication event (Friedman et al., 2003), and is more likely to 

provide clues of adaptive evolution of closely-related species. 

The work described in the following chapters collectively expands existing knowledge on 

the scope and impact of gene duplication on the evolution of T. gondii. The work presented in 

chapter 2 describes the first comprehensive comparative analyses of tandem gene duplication in 

the 3 closely related species, T. gondii, N. caninum and H. hammondi. We used read coverage 

analysis, which was subsequently validated by comparative genomic hybridization (CGH) and 

Southern blot analysis, to systematically identify and curate all tandemly duplicated gene loci in 
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these protozoan parasites. Our results show that gene expansion is quite pervasive in these 

genera, and that there is a significant lack of overlap among these closely related parasites with 

respect to expanded genes. We also show that the sets of expanded genes in both N. caninum and 

T. gondii, mostly uncharacterized in T. gondii, are significantly enriched for genes which encode 

secreted proteins. These findings provide support for the notion that host cell interactions are an 

important driver of gene expansion and by extension, parasite evolution. 

Chapter 3 describes the characterization of the tandemly duplicated gene cluster EL4. 

EL4 encodes a cluster of duplicated dense granule genes dubbed mitochondrial association factor 

1 (MAF1). MAF1 is expanded in T. gondii and H. hammondi but not in N. caninum. Through a 

collaboration with the laboratory of Dr. John Boothroyd at Stanford University, we identified 

MAF1 as the parasite factor which mediates the intimate association between host mitochondria 

and the parasitophorous vacuole which houses the parasite in the host cell. We show that 

different strains of T. gondii have varying copies of MAF1 and that this locus, much like ROP5, 

has been under strong diversifying selection which has resulted in multiple isoforms of the gene 

with varying effects on host mitochondrial association. We also propose a possible mechanism 

by which MAF1 mediates host mitochondrial association. 

In chapter 4, I describe preliminary results from the characterization of the expanded 

locus EL3. In the T. gondii reference genome, EL3 occurs on chromosome Ib and is predicted to 

contain the rhoptry genes ROP42, 43, 44 and ROP42L1 which clearly resulted from tandem 

duplication of an ancestral ROP42 gene. Our results indicate that this locus is also differentially 

expanded among T. gondii strains. Importantly, this gene cluster seems to have an impact on 

parasite proliferation and may contribute to regulating the proliferation rate of the parasite during 

tachyzoite-to-bradyzoite differentiation. To better study the roles of the ROP42 cluster in 
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differentiation, we have adapted a tetracycline-inducible expression system to be used for 

temporal regulation of expression of ROP42 paralogs.  
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Figure 1.1: Phylogenetic relationships among members of the Apicomplexan family Sarcocystidae. 

The subfamily Toxoplasmatinae containing the genera Toxoplasma, Hammondia, Neospora and Besnoitia has been 

circled. 

 

 

Adapted from Mugridge N B et al. Mol Biol Evol 2000 



 

 15 

 

 

Figure 1.2: Mouse infection profile of N. caninum compared with an avirulent strain of T. gondii.  

Initial increase in parasite burden indicates successful infection. However, N. caninum parasite 

burden drops after 20 hpi while T. gondii continues to proliferate. A) Quantitation of 

bioluminescence imaging (BLI) signal at 8 hour intervals post-infection. B) BLI images showing 

parasite burden.  
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2.0  DIFFERENTIAL LOCUS EXPANSION DISTINGUISHES 

TOXOPLASMATINAE SPECIES AND CLOSELY-RELATED STRAINS OF 

TOXOPLASMA GONDII 

Toxoplasma gondii is a zoonotic obligate intracellular parasite that has infected over 30% of the 

human population, and has a vast intermediate host range compared to its nearest relatives 

Neospora caninum and Hammondia hammondi. While these 3 species have highly syntenic 

genomes (80-99%), in this study we examined and compared species-specific structural 

variation, specifically at loci that have undergone local (i.e., tandem) duplication and expansion. 

To do so we used genomic sequence coverage analysis to identify and curate T. gondii and N. 

caninum loci which have undergone duplication and expansion (“expanded loci”; EL). The 53 T. 

gondii ELs are significantly enriched for genes with predicted signal sequences and single-exons 

genes, and genes that are developmentally regulated at the transcriptional level. We validated 24 

T. gondii ELs using comparative genomic hybridization and these data suggested significant 

copy-number variation at these loci. High-molecular weight Southern blotting for 3 T. gondii 

ELs revealed that copy-number varies across T. gondii lineages and also between members of the 

same clonal lineage. Using similar methods we identified 64 N. caninum ELs which were 

significantly enriched for genes belonging to the SAG-related surface (SRS) antigen family. 

Moreover, there is significantly less overlap (30%) between the expanded gene sets in T. gondii 

and N. caninum than would be predicted by overall overlap of orthologous genes (81%). 
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Consistent with this finding, only 59% of queried T. gondii ELs are similarly 

duplicated/expanded in H. hammondi despite sharing over 99% syntenic loci between them.  

2.1 INTRODUCTION 

Toxoplasma gondii is a category B biodefense pathogen that can be lethal in utero and in 

immunocompromised humans. This parasite is a candidate bioterrorism agent due to the extreme 

environmental stability of infective oocysts that could contaminate water or food supplies (de 

Moura et al., 2006, Lelu et al., 2012). While infections in healthy humans are often benign, the 

identification of distinct Toxoplasma genotypes that are lethal in healthy adults (Darde, 2008) 

has changed the view of the bioterrorism potential of this pathogen and added to the urgency for 

the development of new chemotherapeutics and vaccines. Toxoplasma is unique among 

Apicomplexans in its ability to infect, be transmitted by, and cause disease in all warm-blooded 

animals, a trait which has certainly contributed to its worldwide distribution (Dubey et al., 

2003a).  

With the advent of whole-genome tiling arrays and most importantly next-generation 

sequencing technologies it is now possible to more easily examine structural differences in 

whole genomes both within and between closely-related species. In humans locus expansion and 

diversification has been linked to psychiatric disorders like autism and schizophrenia (reviewed 

in (Malhotra et al., 2012)), and susceptibility to a variety of other diseases (reviewed in (Almal et 

al., 2012)). Locus expansion can also be beneficial. In mammals, expansion and diversification 

of killer-cell immunoglobulin-like receptor genes is important for recognition of diverse 

pathogens (Parham et al., 2011). Laboratory studies with bacteria show that adaptation to 
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selective conditions via gene expansion occurs much more frequently than via point mutation 

(Kugelberg et al., 2010), and in the field copy-number increases drive drug resistance in 

Drosophila (Schmidt et al., 2010). Phenotypic impact can be driven by gene-dosage, but gene 

duplication also allows the original copy to maintain its function while duplicated copies are free 

to change via mutation and selection (Bergthorsson et al., 2007).  

Expanded and diversified gene families play important roles in pathogen virulence. Gene 

family expansions have been linked to virulence in Candida spp. (Moran et al., 2011) and 

Rickettsia spp. (Ogata et al., 2005). The var family of genes is distributed throughout the P. 

falciparum genome and encodes erythrocyte membrane antigens (PfEMPs) that are under strong 

diversifying selection (Pasternak et al., 2009). Expanded genes have been linked to virulence, 

immune evasion (Pasternak et al., 2009), drug resistance (Rottmann et al., 2010) and host range 

(Hayton et al., 2008) in Plasmodium spp..  

Our recent work demonstrates a role for gene duplication and subsequent diversification 

in Toxoplasma host-pathogen interactions. The T. gondii ROP5 locus contains up to 10 copies 

depending on the strain, and this locus is essential for parasite virulence (Reese et al., 2011b). 

Importantly, distinct isoforms from the ROP5 locus can have synergistic effects on parasite 

lethality, indicating that individual copies of the ROP5 gene have evolved subtly distinct 

functions. The ROP5 locus also exhibits strain-specific copy number variation (Reese et al., 

2011b). The surface antigen-1 related (SRS) and rhoptry protein 2 (ROP2) superfamilies have 

duplicated multiple times and tandemly duplicated clusters of genes belonging to this family can 

be found throughout the genome (Boothroyd et al., 2008). The SRS family has been implicated 

in immune evasion (Kim et al., 2007), and the single-copy ROP2 superfamily member, ROP18, 

is a potent virulence factor in mice (Saeij et al., 2006, Taylor et al., 2006).  
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Less is known about copy-number variation (CNV) between species, although it was 

recently postulated that differentially duplicated genes and genomic structural variations could 

contribute to phenotypic differences between chimps and humans, and possibly have played a 

role in their speciation (Kehrer-Sawatzki et al., 2007). Some support for this hypothesis is found 

in plants, where species-specific CNV is known to contribute in certain cases to reproductive 

isolation (Rieseberg et al., 2010).  

In this study we used a genome-wide approach to compare the extent of locus expansion 

across the genomes of T. gondii, H. hammondi and N. caninum. These three species belong to the 

subfamily Toxoplasmatinae (Mugridge et al., 2000) and their genomes have been sequenced 

revealing a high level of synteny (Reid et al., 2012, Walzer et al., 2013). T. gondii and N. 

caninum have distinct intermediate host ranges and different definitive hosts (felines and 

canines, respectively), while T. gondii and H. hammondi share the same definitive host (Frenkel 

et al., 1975). While T. gondii has a vast host range that includes birds and is virulent in mice 

(Saeij et al., 2005a), H. hammondi and N. caninum cannot infect birds and are avirulent in mice 

(Dubey et al., 2003b, Collantes-Fernandez et al., 2012). For three T. gondii strains (GT1, 

ME49B7, VEG) and one N. caninum strain (NCLIV; (Reid et al., 2012)) we used a manual 

pipeline to identify and curate all potentially expanded loci, and to compare the degree of overlap 

between them. This was facilitated by the fact that these genomes have been annotated. The H. 

hammondi reference genome (GenBank Accession AVCM00000000) has not yet been fully 

assembled into chromosomes nor annotated (Walzer et al., 2013). However, for a subset of 

expanded loci we were able to determine if they were similarly expanded in H. hammondi. 

Overall, we find that in contrast to the high degree of synteny across these 3 species, there was a 



 

 20 

significant lack of overlap in their expanded loci.  This suggests an important role for gene 

expansion in the evolution of these species since their divergence from one another. 

2.2 RESULTS: 

2.2.1 Fifty-three loci have increased sequence coverage in T. gondii 

We used a manual identification and curation pipeline to identify putatively expanded loci using 

sequence read coverage in T. gondii (Figure 2.1) and identified 53 loci of high sequence 

complexity in the nuclear genome of T. gondii. Average sequence coverage across the entirety of 

the 3 currently available Sanger-sequenced genomes differed slightly (median 15X, 19X and 

14X for GT1, ME49 and VEG, respectively) due to different numbers of raw sequenced reads 

(Table 2.3), with 95 to 98% of the raw reads mapping to the ME49B7 genomic assembly using 

BLAT (Kent, 2002). Normalized sequence coverage across entire chromosomes from all three 

queried T. gondii strains was typically homogeneous, with sporadic patches of increased 

coverage at certain locations and telomeric sites (Figure 2.2A), indicating that gene 

duplication/expansion was relatively infrequent. We examined gene expansion at all loci across 

GT1, ME49 and VEG to estimate copy-number across the three strains (as in Figure 2.2B). Of 

the 53 expanded loci, only one (Expanded Locus 13, EL13; Figure 2.3 and Table 2.1) appeared 

to be entirely missing in one of the three T. gondii strains, in this case the Type I strain (GT1). 

Otherwise, the remaining 52 loci were conserved in their expanded state in all 3 queried T. 

gondii strains (Table 2.4). However, based on sequence coverage analysis, 22 loci exhibited 

CNV of ≥ 3 copies across the 3 queried T. gondii strains. This list included the ROP5 locus 
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(EL47, Figure 2.3, Table 2.1) which, based on sequence coverage, we estimate to have ~11 

copies in ME49B7 and 6, 4 copies in GT1 and VEG, respectively. This is similar to previously 

published analyses using high molecular weight Southern blotting of the ROP5 locus in T. gondii 

strains RH (Type I), ME49 (Type II) and CTG (Type III) (Reese et al., 2011b).  

2.2.2 Expanded T. gondii loci are enriched for secretory proteins with few exons 

Of the 53 expanded loci, 42 were predicted to contain protein-coding genes (www.toxodb.org). 

In addition, one locus (EL40) that did not have a predicted gene model within it does have 

evidence for being a coding sequence due to the presence of expressed sequence tags that map to 

this locus (Table 2.4). We anticipate that some of the expanded loci without an associated gene 

prediction will be transcribed to produce either coding or non-coding RNAs. It should be noted 

that with few exceptions the number of paralogs predicted in each of these three genome 

sequences greatly underestimated copy-number (Tables 2.1 and 2.4). This was most certainly 

due to collapsing of the assembly in regions containing tandemly duplicated clusters of genes 

that are similar in sequence as has been observed in other genomes (e.g., Homo sapiens 

(Sudmant et al., 2010), and Trichomonas vaginalis (Carlton et al., 2007)).  

We used existing annotations of the T. gondii genome to characterize the nature of the 42 

T. gondii loci containing predicted genes. We found a significant enrichment for genes predicted 

to contain N-terminal signal sequences (29 out of 42 compared to the entire predicted proteome; 

Hypergeometric distribution (HGD) P=5.1x10
-11

; Table 2.2). In addition, these 42 genes have 

fewer exons (mean 2.1; median 1) than the rest of the predicted genes in the genome (mean 5.2; 

median 4). Kolmogrov-Smirnov (KS) analysis revealed a significant (P=1.4x10
-7

) difference in 

the exon distribution between these two gene sets reflected by their cumulative distributions 

http://www.toxodb.org/
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(Figure 2.7). In fact, 26 of the 42 expanded gene-containing loci in T. gondii have only 1 exon (a 

significant enrichment compared to the genome as a whole; P=8.9x10
-7

; Table 2.2).  

2.2.3 Expanded T. gondii loci are dominated by genes of unknown function or 

localization, but also include predicted rhoptry proteins and surface antigens 

We examined the degree of annotation of the 42 putatively protein-coding expanded loci using 

ToxoDB and our own protein family searches. Of these, 29 were annotated only as hypothetical 

or conserved hypothetical proteins (Table 2.4) and showed little similarity to previously 

characterized proteins from T. gondii or other eukaryotic species based on domain and BLAST 

analyses available on ToxoDB. We screened all 42 loci for Pfam domains (both A and B), and 

found 27 with a PFAM-A hit with an expect value ≤ 1 (Table 2.5). There were also multiple loci 

in this group that encode proteins with unannotated PFAM-B matches. Of those with PFAM-B 

hits, there were 6 PFAM-B domains that matched to multiple expanded loci, suggesting that 

genes with similar protein architectures have expanded into multi-locus, multi-gene families 

(including EL17 and EL25 [PFAM-B 2112] and EL6 and EL50 [PFAM-B 3349]; Table 2.5). 

Regardless, the majority of expanded T. gondii genes have yet to be characterized in terms of 

their function or subcellular localization, and contain protein domains that have yet to be 

annotated and/or characterized.  

 Of those that were annotated, 5 were predicted rhoptry proteins, some of which have been 

previously characterized. These are EL1, 3, 16, 36 and 47 (ROP4/7, ROP42, ROP38, ROP2/8 

and ROP5; (Boothroyd et al., 2008); Table 2.1). Based on the HGD (Sokal et al., 2012) this was 

a significant enrichment in predicted rhoptry proteins over the current annotation of the genome 

(Table 2; P=7.3x10
-4

), further implicating the rhoptry proteome as a target for locus expansion 
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(Boothroyd et al., 2008). Four expanded loci were annotated as members of the SAG1-related 

family of surface antigens. These are EL13, 22, 37 and 51 (SRS22, SRS26, SRS48 and SRS59, 

respectively (Wasmuth et al., 2012)). One was annotated as a dense granule protein (EL12; 

GRA11), another as a microneme protein (EL23; MIC17) and 2 were previously characterized 

bradyzoite-specific NTPases that had been determined to be found in tandem in the genome 

(EL52, 53; NTPases II and I).  

2.2.4 Expanded T. gondii loci are enriched for developmentally regulated genes 

We used previously published microarray expression data for T. gondii strain M4 (Fritz et al., 

2012) to quantitatively assess gene expression across multiple T. gondii genes during parasite 

development, focusing on the oocyst to sporocyst and tachyzoite to bradyzoite transition. We 

found that 13 of the 42 expanded loci contained genes that were significantly up- or down-

regulated at the transcriptional level during the tachyzoite to bradyzoite transition in vitro and/or 

in vivo (Figure 2.4). Up-regulated genes included the rhoptry proteins ROP42 and ROP2/8, and 

down-regulated genes included NTPase I and a paralog belonging to the SRS22 family. This 

enrichment was significant (HGD P=0.0019; Table 2.2) compared to the entire predicted 

transcriptome assayed by the microarray. Ten of the 42 genes were developmentally regulated 

during the oocyst-sporozoite transition but this difference was not significant (HGD P=0.07; 

Table 2.2).  
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2.2.5 Multiple T. gondii expanded loci exhibit within-lineage copy-number variation 

Twenty-two of the 53 expanded loci in T. gondii showed differences in sampling frequencies 

between the 3 representative genome strains, suggestive of copy-number variation (as seen 

previously for T. gondii ROP5 (Reese et al., 2011b)). Consistent with this, using cnv-seq to 

statistically assess copy-number variation at all 53 loci (Figure 2.12) we identified 23 that 

significantly varied in copy number between GT1/VEG and ME49 (6 loci), GT1 and ME49 (12 

loci), and VEG and ME49 (5 loci). This list included the ROP5 locus, for which copy-number 

has been determined previously in multiple T. gondii strains using high-molecular weight 

Southern blotting (Reese et al., 2011b). We also conducted whole-genome comparative genomic 

hybridization (CGH) for two distinct members of each of the 3 major lineages of T. gondii. Of 

the 41 gene-coding expanded loci that could be surveyed by microarray, 24 had significantly 

higher hybridization intensity across the T. gondii strains queried (see Materials and Methods for 

statistical analyses). In addition to this we observed a general correlation between copy-number 

as estimated by sequence coverage analysis and our CGH data. For example, EL5 is predicted to 

have 4-5 copies in the Type I strain GT1, and only 1-2 copies in Type II strain ME49 and Type 

III strain VEG, and the CGH (Figure 2.8) and cnv-seq (Figure 2.12) analyses reflect this 

difference. A similar correlation can be found for EL16 (Figures S2 and S6). These data provide 

a secondary validation of locus expansion for 24 of the T. gondii loci as well as the variation in 

copy-number observed in the sequence coverage plots. Of the remaining loci, 18 had sufficient 

CGH data but did not show a significant increase in hybridization intensity (Figure 2.9).  

 We also identified some loci with CGH intensity profiles suggesting a difference in copy-

number between members of the same clonal lineage, most notably EL30, for which CGH 

intensity values were distinct between T. gondii strains ME49 and PRU (Figure 2.6B). To 
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address this further we performed high-molecular weight Southern blotting for EL30 as well as 

EL3 and EL45 across 6 T. gondii strains using restriction enzymes predicted to cut outside of the 

entire expanded locus. For all 3 loci we observed differences in estimated copy-number both 

between and within lineages. We observed intra-lineage variation in locus size for EL3 (ROP42) 

between GT1 and RH as well as between ME49 and PRU, and we estimated that GT1 and RH 

have 6 and 9 copies, respectively, and that ME49 and PRU have 8 and 6 copies, respectively. We 

estimated that VEG and CTG have 7 copies (Figure 2.6C). We detected intra-lineage variation 

for EL30 and EL45, where ME49 and PRU had different-sized loci (Figure 2.6C). Southern blot 

data for these three loci are generally consistent with the CGH-intensity values, although there 

are some exceptions. For example for locus EL3 strain GT1 has a higher CGH intensity than 

would be predicted based on the Southern blot. This could be due to as-yet unidentified cryptic 

restriction sites in the locus that are specific to strain GT1. In comparison, for the single-copy 

locus AMA1 we did not detect inter- or intra-lineage variation in sequence read coverage, CGH 

probe intensity, or locus size as estimated by Southern blot (Figure 2.11).  

2.2.6 Three T. gondii expanded loci are not essential for in vitro growth 

We successfully knocked out 3 expanded loci (EL3, ROP42; EL6, and EL23) in a virulent Type I 

background (RHΔku80:Δhxgprt; (Huynh et al., 2009)). Parasite lines with deletions at each of 

these loci (Figure 2.13) exhibited no obvious defects in in vitro growth, and neither 

RHΔku80:Δel3 or Δel23 parasite clones showed any defects in acute virulence as measured by 

survival time in mouse infections with 100 tachyzoites. We did not test RHΔku80:Δel6 in mouse 

virulence assays.  
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2.2.7 N. caninum has a markedly different set of expanded genes that is enriched for 

members of the SAG1-related surface antigen family 

In order to compare gene expansion between T. gondii and its close relative N. caninum, we first 

examined gene expansion in N. caninum using identical approaches as for T. gondii. We 

identified 65 expanded loci in N. caninum (Liverpool Strain; www.toxodb.org), 45 of which 

contained predicted protein-coding genes. These loci are listed in Table 2.6. The set of N. 

caninum expanded genes was also enriched for genes encoding proteins with signal peptides 

(34/45) and single-exon genes (31/45) compared to the genome as a whole (HGD P=2.6x10
-14

, 

4.7x10
-12

, respectively; Table 2.2). Remarkably, nearly half (22/45; 49%) were found to contain 

a SAG PFAM domain, suggesting that they belong to the SRS family, and this is a significant 

enrichment over the annotated genome (P=4.1x10
-12

; Table 2.2). Of the remaining 23 protein-

coding expanded N. caninum loci, 3 were previously annotated (ROP4/7, and NTPases I and II), 

17 had at least one recognized PFAM domain, and 4 were completely unannotated and had no 

recognizable PFAM domains. While the increased number of SRS-family genes in N. caninum 

has been reported previously (Reid et al., 2012), our data indicate that these loci have also been 

subject to multiple rounds of tandem (i.e., local) duplication.  

2.2.8 Distinct sets of genes are expanded in T. gondii and N. caninum  

To determine the degree of overlap between genes that are expanded in T. gondii and N. 

caninum, we used BLASTN to identify the syntenic location for each of the 53 T. gondii loci 

described above, and then examined that region of the genome for signatures of gene expansion 

in N. caninum. We found that only 16 of the 53 T. gondii loci also had evidence of expansion in 

http://www.toxodb.org/
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N. caninum (≥ 2-fold higher sequence coverage compared to background; Figure 2.6A). This 

lack of overlap between T. gondii and N. caninum at these loci is in contrast to the overall gene-

by-gene synteny between the T. gondii and N. caninum genomes, and this lack of overlap is 

significant (HGD 16/53 versus 6463/8103 for T. gondii: P=7x10
-15

; HGD 16/64 versus 

6463/7227 for N. caninum; Figure 2.6A). One of the shared expanded loci (Locus EL15; 

annotated in T. gondii as ROP38) had higher sequence coverage in N. caninum while the 

remaining 15 had higher sequence coverage in T. gondii. Of the 37 loci that were uniquely 

expanded in T. gondii, 19 had syntenic orthologs in N. caninum but these loci showed no 

evidence of expansion (sequence coverage was ~1X; e.g., EL3 and EL30, Figure 2.5A). The 

remaining 18 loci did not have a syntenic ortholog based on the current T. gondii annotation 

based on the clusters of orthologous groups database implemented in ToxoDB (Tatusov et al., 

2003). 

2.2.9 T. gondii and H. hammondi share 16 of 27 expanded loci 

The H. hammondi genome has not been annotated or assembled into chromosomes, preventing a 

de novo analysis of gene duplication and expansion. However we did use the recently published 

H. hammondi genome sequence and raw sequence reads (Walzer et al., 2013) to determine 

which T. gondii loci were similarly expanded in H. hammondi. Of the 42 protein-coding loci, 27 

had a perfect reciprocal-best-BLAST hit between the T. gondii and H. hammondi. Of these 27 

putative orthologous sequences, we estimated that 16 of these (59%) had more than 1 copy in H. 

hammondi, while data at the remaining 11 loci suggested that they were single-copy genes in H. 

hammondi (Figure 2.6C). 
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2.3 DISCUSSION 

Our previous work has demonstrated a clear and important role for gene duplication in the 

pathogenesis of Toxoplasma gondii (Reese et al., 2011b): we showed that the ROP5 locus was 

tandemly expanded in multiple T. gondii strains and that this expansion led to diversification of 

individual copies within the locus. We were therefore interested in identifying other T. gondii 

loci that were tandemly expanded to determine 1) what features were shared among expanded 

genes and 2) whether these loci were differentially expanded both within the T. gondii species 

and in comparison with its nearest sequenced relatives, N. caninum (Reid et al., 2012) and H. 

hammondi (Walzer et al., 2013). Stretches of increased copy number were relatively rare in these 

genomes, and based on the currently released genome assemblies all of the 42 protein-coding 

loci harbored multiple tandem duplications of the same gene.  

An important finding of this work was that expanded loci exhibit copy-number variation 

even between members of the same clonal lineage. In Europe and North America, T. gondii 

isolates are dominated by members of 3 main lineages (Types I, II and III) and isolates from 

within the same lineage appear to be clonal. However, based on Southern blot analysis we show 

that 3 loci exhibit CNV between members of the same clonal lineage, and other candidate loci 

with similar within-lineage variation can be identified from our CGH data. We do not assert that 

members of the same lineage are genetically identical, however based on whole genome 

comparisons “true” members of the same clonal lineage are more genetically similar to one 

another than to other strains. For example RH and GT1 strains have only 1,394 SNPs that 

distinguish them, representing a polymorphism rate of ~0.002% (Yang et al., 2013), compared to 

a polymorphism rate between lineages that ranges from 1-5% (Boyle et al., 2006). Therefore we 

find that differences in copy-number at these loci is in contrast to the overall genetic identity of 



 

 29 

the clonal strains, suggesting that these loci are changing more rapidly than the rest of the 

genome. However, we do not discount the impact of single-nucleotide polymorphisms in 

determining differences between members of the same strain type, which have been identified in 

RH and GT1 (Yang et al., 2013).  

We have shown previously that the raw number of copies does not necessarily track with 

impact on a particular phenotype (Reese et al., 2011b). ROP5 alleles from Types I and III T. 

gondii strains have a higher contribution to virulence than the Type II alleles, yet the Type II 

parental strain (ME49) has ~10 copies while Types I (RH) and III (CTG) are estimated to harbor 

6 and 4, respectively (Reese et al., 2011b). In this case, the sequence of an individual copy is 

more important, and therefore the presence or absence of even a single copy of a particular 

isoform at an expanded locus could have a phenotypic impact. While we cannot yet demonstrate 

conclusively that these changes are driven by selection, the fact that individual structural changes 

in the genome are much more rare than individual mutations (Malhotra et al., 2012) certainly 

points to the possibility that this may be a selection-driven process. Data emerging from the 

Toxoplasma gondii GSCID project (https://sites.google.com/site/Toxoplasmagondiigscidproject/) 

will allow us to rapidly identify other expanded loci that differ between members of the same 

clonal lineage since a number of these will be sequenced. We also do not know if within-lineage 

gene expansion occurs during asexual reproduction (which occurs in all intermediate hosts 

infected by T. gondii), sexual reproduction (which occurs only in felines), or both. In the wild T. 

gondii is capable of self-mating (Frenkel et al., 1970) and these expansions could occur during 

genetic recombination.  

 We also successfully knocked out three expanded loci (EL3, EL6 and EL23) in a highly 

virulent T. gondii strain (RHΔKu80; (Huynh et al., 2009)) and found no defects in their ability to 
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replicate in vitro or for 2 of these loci (EL3 and EL23) no defects in parasite virulence. To date a 

number of expanded loci encoding secretory proteins such as those encoded in these loci have 

been deleted, including ROP2/8 (Pernas et al., 2010) and ROP5 (Behnke et al., 2011, Reese et 

al., 2011b) without any consequences for in vitro tachyzoite growth. The fact that these parasite 

lines show no defects in vitro or in vivo is not surprising given that all three of these loci are 

upregulated during the tachyzoite-to-bradyzoite transition (Figure 2.4). Our data, however, show 

that these loci can indeed be deleted, facilitating future studies on their role during the chronic 

phase of infection where they are most highly-expressed.  

 There was a statistically significant lack of overlap between tandemly duplicated loci in 

T. gondii and N. caninum. While it is tempting to hypothesize that these differentially expanded 

gene clusters may be responsible for the phenotypic differences between these species (such as 

differences in virulence in mouse and the different definitive hosts), the data presented here 

cannot directly validate this claim. However, there is support for this hypothesis from other 

pathogenic species. In fungi, comparisons between species with different levels of pathogenesis 

in humans identified gene duplication and expansion as an important mechanism in the evolution 

of pathogenicity (reviewed in (Moran et al., 2011)). For example, genomic comparisons between 

Candida albicans and Candida dubliniensis found that these species were most highly 

distinguished by the presence of two highly expanded gene families in pathogenic C. albicans 

compared to non-pathogenic C. dubliniensis (Jackson et al., 2009), and these loci are under 

investigation as virulence factors. Findings from these studies also suggested that gene 

duplication and subsequent expansion may play a more important role than other mechanisms 

such as horizontal gene transfer, in the evolution of novel traits in eukaryotic pathogens (Moran 

et al., 2011). 
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 In both T. gondii and N. caninum, the expanded gene sets were statistically significantly 

enriched for genes predicted to encode secreted proteins with fewer exons compared to the 

genome as a whole. While secreted proteins make up the vast majority of T. gondii effectors, the 

significance of the increased propensity of genes with few exons to duplicate and expand is 

unknown. One possible explanation could be the fact that introns are free to mutate more freely 

and that while a single locus could be duplicated, subsequent distinct mutations in the introns of 

both copies may prevent further expansion of the locus during recombination or genome 

replication. The other, and not mutually exclusive, possibility is that genes with fewer exons are 

subjected to stronger selection, since all of the previously characterized Toxoplasma secretory 

proteins known to play roles in pathogenesis, including the single-exon effector genes ROP18 

(Saeij et al., 2006, Taylor et al., 2006), ROP5 (Behnke et al., 2011, Reese et al., 2011b), ROP16 

(Saeij et al., 2007) and GRA15 (Rosowski et al., 2011) have fewer exons relative to the rest of 

the genome. 

 The minimal overlap between the loci that have expanded in T. gondii and N. caninum, 

and a similar lack of overlap between genes expanded in T. gondii compared to H. hammondi, is 

consistent with what has been reported for other closely-related species with highly syntenic 

genomes (Carlton et al., 2007). To our knowledge, this is the first comparative analysis of gene 

expansions across multiple apicomplexan species. In T. gondii, the majority of the uniquely 

expanded loci are of no known function based on primary sequence, while in N. caninum the vast 

majority of the expanded loci are predicted to encode surface antigens belonging to the SRS 

superfamily. This was reported previously (Reid et al., 2012) although the phenotypic impact of 

this expansion is unknown.  
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Figure 2.1: Flow chart depicting the pipeline used to identify, curate and annotate expanded loci in 

Toxoplasma gondii, Neospora caninum and Hammondia hammondi.  

 

  

 

 

Figure 2.2: Chromosome Ib sequence coverage plot. 

 A) Normalized sequence coverage plot of chromosome Ib for three T. gondii strains (GT1, ME49B7 and VEG). 

Coverage data for each 500 bp window was normalized to the average coverage for the entire chromosome for each 

strain. The locations of EL2 and EL3 (the expanded loci identified on Chr. Ib) and the predicted right arm telomere 

are indicated. B) Detailed view of normalized sequence read coverage for EL2 for each of the three T. gondii strains, 

showing potential variation in copy number indicated by the read plot. Strains color-coded as in A).  
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Figure 2.3: Sequence coverage plot for 15 expanded loci in three strain types of T. gondii.  

Data are normalized to the read coverage in the leftmost 20 Kb flanking the expanded locus, and the grey line indicates normalized sequence coverage of 1. 

Black bars beneath each plot indicate the location of one of the predicted T. gondii isoforms. Information for each locus can be found in Table 2.1.  
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Figure 2.4: Expression profile for 13 expanded loci in tachyzoites and bradyzoites of T. gondii strain M4. 

Expression profile for 13 expanded loci in tachyzoites and bradyzoites of T. gondii strain M4 (GEO Database 

Accession: GSE32427) showing an increase or decrease of transcript abundance during the tachyzoite-to-bradyzoite 

transition in vitro and/or in vivo.  
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Figure 2.5: Sequence read, comparative genomic hybridization and Southern blot analysis for EL3, EL30 and 

EL45.  

 A) Sequence read analysis for three strains of T. gondii (top) and N. caninum Liverpool (bottom). Data for each 

strain and locus are normalized to the read coverage in the 20 Kb flanking the expanded locus to the left. B) 

Comparative genomic hybridization (CGH) across 6 T. gondii strains, 2 from each of the 3 canonical lineages. Only 

microarray probes with perfect matches in GT1, ME49 and VEG were used in the calculations. Boxes span the 1st 

and 3rd quartiles and contain the median value for all useful probes. P-values for significant differences in 

hybridization intensity compared to the single copy gene AMA1 (grey horizontal line) are at the top of the graph, 

and individual values are shown in the beeswarm plots. C) Southern blots for 6 T. gondii strains using DNA digested 

with restriction enzymes predicted to cut outside of the repeat locus. Restriction enzymes were BspEI, BglI and 

NotI, respectively. A similar blot for the single-copy gene AMA1 can be found in figure 2.11. 
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Figure 2.6: Comparison of gene duplication among T. gondii, N. caninum and H. hammondi. 

A) Overall genomic orthologs between T. gondii and N. caninum predicted genes. Top panel: all predicted genes, 

middle panel: all predicted genes with predicted signal peptides; bottom panel: expanded loci (53 for T. gondii and 

64 for N. caninum). The top 2 Venn diagrams are based on gene-by-gene synteny, while the bottom panel for 

expanded loci is based on whether the locus is expanded in both N. caninum and T. gondii (16 loci), or whether it is 

absent or present as a single copy in one species (37 and 48 for T. gondii and N. caninum, respectively). B) Presence 

and expanded state of all 53 T. gondii expanded loci compared to N. caninum. Eighteen of the 53 T. gondii loci do 

not have a syntenic ortholog in N. caninum, a significant enrichment compared to the entire genome. C) Comparison 

of the expanded state of T. gondii loci for which a clear ortholog was identified in H. hammondi HhCatGer041. Of 

the 27 loci, 11 are uniquely expanded in T. gondii compared to H. hammondi, while we estimated that H. hammondi 

has at least 2 predicted copies for the remaining 16 loci.  
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Figure 2.7: Cumulative distribution plots of all genes for T. gondii and N. caninum and expanded genes.  

Cumulative distribution plots of all genes (black line) for T. gondii (top) and N. caninum 

(bottom) and expanded genes (grey line) showing the enrichment for genes with fewer exons in 

the expanded gene sets for both species.      
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Figure 2.8: Loci with significantly higher CGH probe hybridization intensity compared to AMAI (multiple pages). 
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Figure 2.8 continued… 

 

 



 

 41 

Figure 2.8 continued… 
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Figure 2.8 continued… 
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Figure 2.8: Loci with significantly higher CGH probe hybridization intensity compared to AMAI. 

Sequence read plots for expanded loci containing predicted genes that were queried on the T. gondii microarray that had significantly higher (P≤0.05) CGH 

intensity compared to the single-copy gene AMA1. Plots are shown for three strains of T. gondii and one strain (NCLIV) of N. caninum (middle panel). Black 

bars beneath each plot indicate the location of one of the predicted isoforms. All read plot data were normalized for each strain/species to the average read 

coverage in the 20 Kb flanking the expanded locus to the left. In the CGH plots, boxplots indicate the 1st and 3rd quartiles and contain the median, and data for 

all useful probes for that gene are shown in the beeswarm overlay. Strains are color-coded as red, green and blue (GT1, ME49 and VEG) or black in the read and 

CGH plots.  
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Figure 2.9: Loci containing predicted genes without significantly higher CGH probe hybridization intensities compared to AMAI. 
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Figure 2.9 continued… 
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Figure 2.9 continued…  
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Figure 2.9: Loci containing predictied genes without significantly higher CGH probe hybridization intensities compared to AMAI.  

Sequence read plots for 18 loci containing predicted genes that were queried on the T. gondii microarray that did not have significantly higher (P≤0.05) CGH 

intensity compared to the single-copy gene AMA1. Plots are shown for three strains of T. gondii and one strain (NCLIV) of Neospora caninum (middle panel). 

Black bars beneath each plot indicate the location of one of the predicted isoforms. All read plot data were normalized for each strain/species to the average read 

coverage in the 20 Kb flanking the expanded locus to the left. In the CGH plots, boxplots indicate the 1st and 3rd quartiles and contain the median, and data for 

all useful probes for that gene are shown in the beeswarm overlay. Strains are color-coded as red, green and blue (GT1, ME49 and VEG) or black in the read and 

CGH plots.  
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Figure 2.10: Sequence read plots for 12 loci without CGH data. 
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Figure 2.10: Sequence read plots for 12 loci without CGH data.  

Sequence read plots for 12 loci without CGH data due to the lack of a predicted gene product in the genome annotation encompassed by the T. gondii Affymetrix 

microarray. Plots are shown for three strains of T. gondii and one strain (NCLIV) of Neospora caninum (middle panel). All read plot data were normalized for 

each strain/species to the average read coverage in the 20 Kb flanking the expanded locus to the left. Strains are color-coded as red, green and blue (GT1, ME49 

and VEG) or black in the read and CGH plots. Black bars in the N. caninum plots indicate the location of the syntenic region as identified by BLASTN. 
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Figure 2.11: Sequence coverage, CGH and Southern blot analysis of the single-copy AMA1 locus in T. gondii 

and N. caninum.     

A,B) Sequence coverage analysis in T. gondii (A) and N. caninum (B) for the AMA1 locus. C,D) Comparative 

genomic hybridization data for the AMA1 locus. Both raw (C) and mean-centered (D) hybridization intensity data 

are shown. E) Southern blot of genomic DNA from 6 T. gondii strains digested with ScaI, separated using Pulsed-

Field Gel Electrophoresis, and probed with AMA1-specific probes. 
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Figure 2.12: Copy-number variation CNV in T. gondii GT1 and VEG compared to ME49B7 as determined by 

cnv-seq.  

Loci with statistically-significant evidence for CNV based on sequence coverage analysis are shown. Arrows after 

each locus name indicate whether the locus had increased or decreased copy number compared to ME49B7. For the 

overlapping genes, the arrows indicate increased/decreased copy number for GT1 and VEG compared to ME49B7, 

respectively.  
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Figure 2.13: Deletion of expanded loci. 

A) Schematic depiction of primer locations to validate homologous recombination on both the left (a+a’) and right 

(b+b’) flanks of the locus, and to validate the deletion of the gene (c+c’). B-D) Validation of knockouts for EL3 (B), 

EL6 (C) and EL23 (D) by PCR   
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Table 2.1: Properties of 18 expanded loci in T. gondii, N. caninum and H. hammondi 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Determined using raw sequence read coverage.  Type I:  GT1; Type II: ME49; Type III: VEG. 
†
Gene IDs based on Toxoplasma gondii strain ME49 sequence, v7.0 (www.toxodb.org). 

‡
Determined using raw sequence read coverage for N. caninum Liverpool strain. 

§
Determined using raw sequence read coverage for H. hammondi CatGER041 strain. 

 
 
          

T.g. copy # by 
strain* 

Number of 
predicted T.g. 
orthologs by 

strain† 

N.c. ‡ H.h. § 

Locus Chr 
Pos 
(MB) 

Gene Annotation I II III I II III Chr 
Pos 
(MB) 

Copy # Copy # 

EL1 Ia 1.41 095110 ROP4/7 5 5 7 1 1 2 Ia 1.79 3 7-8 

EL3 Ib 1.61 009980 ROP42 13 13 13 2 1 2 Ib 1.54 1 ND 

EL6 III 0.36 052060 KRUF family 4 4 4 2 1 1 NA NA 0 1 

EL12 IV 2.48 012410 GRA11 1 1 2 0 2 1 IV 2.05 1 1 

EL13 VI 0.26 038520 SRS22G 0 6 11 4 1 1 VI 0.25 1 ND 

EL15 VI 1.68 041190 hypothetical 11 11 11 5 3 3 VI 1.47 2 1 

EL16 VI 1.88 042110 ROP38 2 3 8 3 2 1 VI 1.65 18 2 

EL22 VIIb 2.79 059410 SRS26A 1 2 1 3 1 3 VIIb 2.67 1 ND 

EL23 VIII 6.74 000240 MIC17 3 2 3 2 1 1 VIII 6.49 2 7-8 

EL25 IX 1.3 066350 hypothetical 6 4 6 1 1 1 NA NA 0 ND 

EL30 X 3.86 023250 hypothetical 9 6 4 0 1 1 X 3.69 1 ND 

EL36 X 7.09 015770 ROP2/8 6 6 6 1 1 2 NA NA 0 ND 

EL37 X 7.27 007010 SRS48 5 5 5 0 1 1 X 6.75 2 ND 

EL45 XI 6.57 098560 hypothetical 4 6 7 2 1 3 XI 6.08 8 6-7 

EL47 XII 0.54 108080 ROP5 3 14 4 1 1 1 XII 0.35 2 8-9 

EL51 XII 5.67 051960 SRS59K 3 3 7 1 1 1 XII 5.32 1 2-3 

EL52 XII 6.66 077270 NTPase II 3 3 4 0 1 1 XII 6.24 1 2-3 

EL53 XII 6.68 077240 NTPase I 2 2 2 1 1 1 XII 6.29 1 4-5 
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Table 2.2:  Bioinformatic properties of duplicated/expanded loci in Toxoplasma gondii and Neospora caninum 

*Based on version 8.2 annotation, toxodb.org;  
†
Based on analysis of complete life cycle transcriptional profile of T. gondii strain M4 (Fritz et al., 2012).  

‡
Hypergeometric distribution. 

 T. gondii N. caninum 

Property 

Duplicated genes All genes 
HGD‡  

P-value 

Duplicated genes All genes 
HGD‡ 

P-value With 
property 

Total 
With 

property 
Total 

With 
property 

Total 
With 

property 
Total 

           
Signal peptide* 29 42 1756 8103 5.1E-11 34 45 1596 7227 2.6E-14 

Single exon genes* 26 42 2121 8103 8.9E-07 31 45 1514 7227 4.7E-12 

Rhoptry proteins* 5 29 47 1756 7.3E-04 2 34 30 1596 0.11 

Sag-related surface 
antigens* 5 29 87 1756 0.010 22 34 218 1596 4.1E-12 

Developmentally 
Regulated:  

Tachyzoite/Bradyzoite† 
13 42 1093 8059 0.0020 

     

Developmentally 
Regulated:  

Oocyst/Sporozoite† 
10 42 1337 8059 0.070 
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Table 2.3:  Mapping statistics of raw reads for T. gondii and N. caninum 

 

    Sequence coverage 

Species/ Strain 
Total 

Reads 

Number of 
Mapping 
Reads 

Percent 
mapping 

Median 
Standard 
Deviation 

T. gondii GT1 707774 696748 98.4 15 171.8 

T. gondii ME49 980747 932597 95.1 19 91.0 

T. gondii VEG 676028 659342 97.5 14 147.0 

N. caninum LIV 551609 529936 96.1 21 665.0 
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3.0  THE EXPANDED GENE CLUSTER, MAF1, WHICH MEDIATES HOST 

MITOCHONDRIAL ASSOCIATION IN TOXOPLASMA GONDII, IS UNDER STRONG 

DIVERSIFYING SELECTION 

Although gene expansion has been established as a fundamental mechanism for trait evolution, it 

remains to be thoroughly explored in T. gondii and other members of the Apicomplexan phylum. 

Comparative analysis of gene expansion has revealed that ROP5, which is the most potent 

virulence factor known in T. gondii, is highly expanded in T. gondii relative to Neospora 

caninum. We therefore hypothesized that such differentially expanded genes will be key to 

explaining some of the physiological differences between T. gondii and its close relatives, and 

may play important roles in unique interactions between T. gondii and its host. We have 

identified one such differentially expanded locus, dubbed Mitochondrial Association Factor 1, 

(MAF1), as the parasite factor which mediates the close association between host mitochondria 

and the parasitophorous vacuole during host cell invasion. Host mitochondrial association 

(HMA) is indeed absent in N. caninum. In order to better understand the evolution of the MAF1 

locus, we have performed an extensive characterization of the locus and show that it exhibits 

significant inter- and intra-lineage copy-number variations among different strains of T. gondii. 

We find that the MAF1 locus contains 2 main isoforms which have diverged in their ability to 

mediate HMA. Additionally, we show that the secretion kinetics of MAF1 is consistent with 

observations that HMA is established at the very early stages of host cell invasion. These 
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findings, together with results of our analysis of the topology of MAF1 at the parasitophorous 

vacuole, point to a mechanism of HMA whereby MAF1 is secreted prior to host invasion and 

gets integrated into the nascent parasitophorous vacuolar membrane with its C-terminus exposed 

to the host cytosol, where it directly interacts with host mitochondria during invasion. 

3.1 INTRODUCTION 

Apicomplexan parasites are responsible for many diseases of significant economic importance in 

humans and animals. Toxoplasma gondii belongs to this group of organisms which also includes 

the malaria parasite, Plasmodium spp.. Extraordinary success as a parasite distinguishes T. gondii 

from even its closest relatives, Hammondia hammondi and Neospora caninum, both of which 

have comparatively restricted host ranges with little to no pathogenic effect in humans 

(Goodswen et al., 2013, Walzer et al., 2013). T. gondii has the unique ability to infect all 

nucleated cells in an extremely wide range of intermediate hosts (Sibley, 2003), making this 

parasite an interesting subject of the evolutionary biology of the apicomplexan phylum. The 

three predominant clonal lineages of T. gondii (Types I, II and III) found in North America and 

Europe have been shown to differ in many aspects of infection including modulation of host 

immune-related signaling (Araujo et al., 2003, Saeij et al., 2007, Ong et al., 2011, Rosowski et 

al., 2011) and virulence (Saeij et al., 2006, Reese et al., 2011b), with a few studies suggesting 

lineage-related differences in disease outcome (Howe et al., 1995, Grigg et al., 2001b, Khan et 

al., 2006, Yang et al., 2013). How the parasite’s interactions with its numerous host 

environments may have contributed to the evolution of such an adeptly versatile parasite remains 

unclear. However, it has been proposed that expansion and subsequent functional fine-tuning of 
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secreted effectors, such as ROP5 (and indeed the whole ROP2 superfamily) (Reese et al., 2012), 

allows the parasite to access the right combination of paralogs best suited for a particular “new” 

host environment it encounters (Boothroyd, 2009). This suggests that the genome structure of T. 

gondii allows it to interact with its hosts in ways that other parasites are not able to. 

The basic mode of host cell entry appears to be conserved among members of the 

Apicomplexan phylum with obligate intracellular life stages (Carruthers et al., 2007a). T. gondii 

enters host cells encased in a host plasma membrane-derived parasitophorous vacuole (PV) 

which insulates the intracellular parasite from host immune surveillance systems. During or 

immediately following host cell entry, a very intimate association is established between the PV 

and host cell organelles such as mitochondria and endoplasmic reticulum (Jones et al., 1972, de 

Melo et al., 1992, Sinai et al., 1997). While host mitochondrial association (HMA) is not unique 

to T. gondii, and has been extensively studied in other intracellular pathogens including 

Legionella pneumophila and Chlamydia psittaci (Horwitz, 1983, Matsumoto et al., 1991, 

Scanlon et al., 2004), its biological relevance in T. gondii and these other pathogens remains 

unclear partly due to the lack of understanding of the molecular mechanisms involved. In T. 

gondii, HMA has mainly been proposed as a crucial route by which the vacuole-isolated parasite 

acquires essential metabolites from the host cell (Nakaar et al., 2003, Crawford et al., 2006, 

Romano et al., 2013). However, recent findings that HMA is a strain-specific trait in T. gondii 

and absent altogether in the closely related N. caninum (Pernas et al., 2010) indicates that this 

trait is dispensable and that its proposed role in nutrient acquisition is not essential. The lack of 

definition of the nature of the molecular interactions involved in HMA has stalled our 

understanding of the full impact of this remarkable depiction of host-parasite interaction (Sinai et 

al., 2001, Pernas et al., 2010).  
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We recently reported the identification of a tandemly duplicated gene cluster, dubbed 

Mitochondrial Association Factor 1 (MAF1), as the parasite factor which mediates HMA in T. 

gondii (Pernas et al., in revision). The MAF1 locus was initially identified among the list of 

genomic loci that are uniquely expanded in T. gondii relative to N. caninum. MAF1 encodes a 

dense granule protein whose expression profile is consistent with the strain-specific nature of the 

HMA phenotype (no detectable protein in Type II strains). We showed that this gene was 

necessary and sufficient to induce HMA in a Type II strain, which is naturally devoid of this 

trait. Additionally, we observed that this interaction had a significant impact on host immune 

signaling, expanding the possible roles of HMA in T. gondii infection and thus opening up a new 

paradigm for thinking about how T. gondii has evolved to interact with its host cell.  

In the current study, we have undertaken a detailed characterization of the expanded 

MAF1 locus across the 3 T. gondii lineages and compared it with N. caninum, in order to better 

understand its evolution. We show that this locus exhibits copy-number variation (CNV) 

between lineages, as well as between strains of the same lineage, and contains paralogs which 

are under strong diversifying selection. Additionally, our results suggest a possible mechanism 

by which MAF1 mediates HMA during host cell invasion.  

3.2 RESULTS 

3.2.1 MAF1 shows intra- and inter-lineage copy-number variation 

We had previously used sequence read coverage analysis to show that the MAF1 locus (EL4) is 

uniquely expanded in T. gondii but not in N. caninum (Chapter 2). Additionally, we observed 
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differential expansion of the MAF1 locus between representative strains of the 3 predominant 

lineages of T. gondii. Read coverage analysis predicts gene expansion based on the relative 

abundance of sequence reads corresponding to a particular locus in the genome (Yoon et al., 

2009, Reese et al., 2011b). To experimentally confirm differential expansion of the MAF1 locus 

among T. gondii strains, we performed a high molecular weight Southern blot analysis 

comparing the size of the MAF1 locus in 6 Toxoplasma strains. These strains comprised 2 each 

from the Type I (GT1, RH), Type II (ME49, PRU) and Type III (VEG, CTG) lineages. Genomic 

DNA isolated from each strain was digested with the ScaI restriction enzyme, which cuts on 

either side of the entire locus but not within, allowing for a more accurate determination of copy 

number (Figure 3.1A;(Reese et al., 2011b)). Consistent with predictions from the read coverage 

analysis, we observed varying band sizes ranging from ~45 kb for GT1 to ~27 kb for CTG 

(Figure 3.1B). Our estimates put MAF1 copy-number at 7 in GT1 and 5 in all but CTG, which 

has the smallest locus size with an estimated 3 copies. Copy-numbers were determined based on 

an estimated repeat-unit size of ~4 kb (toxodb.org) while also accounting for intervening 

sequences between the ScaI sites and the limits of the repeat. Interestingly, we observed copy-

number variation between strains of the same lineage (GT1 vs RH and VEG vs CTG) as 

previously described for 3 other expanded loci (Chapter 2). No other bands were visible on the 

blot, indicating that the entire locus was intact for all strains. Moreover, the ScaI sites flanking 

the expanded locus were conserved in all 6 strains tested (Figure 3.1C), indicating these 

differences are not due to mutations within the flanking sequences. For comparison, we showed 

in chapter 2 that the highly conserved, single-copy AMA1 locus has equal size across all 6 strains 

tested for MAF1. 
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3.2.2 MAF1 is present in two major isoforms 

To better understand the structure of the MAF1 locus and to determine the nature of its paralogs, 

we sequenced 6 PCR-derived MAF1 clones from each of 3 representative strains from the Type I 

(RH), II (ME49) and III (CTG) lineages. As expected, we found that this locus encoded multiple 

diverse isoforms of the MAF1 gene. In addition to a predicted signal peptide, each isoform was 

predicted to encode a single transmembrane domain located in the N-terminal region (Figure 

3.2A). The major distinguishing feature between the 2 isoforms identified was the presence of a 

repetitive stretch of 4-7 prolines followed by a serine (P{4:7}S) in some paralogs. This motif 

was either completely missing or repeated up to 6 times depending on the isoform (Figure 3.2B). 

For RH, 5 of the 6 clones contained the P{4:7}S motif, while all 6 CTG clones had some form of 

the repeat motif. Interestingly, of the 6 clones sequenced from ME49, 3 had premature stop 

codons, and all 3 of these clones were predicted to encode MAF1 isoforms with the P{4:7}S 

motif. Additionally, 2 other clones which encoded isoforms containing P{4:7}S also contained a 

66bp insertion in their 5’ UTR. This may be due to a relatively stronger selective pressure to 

silence the P{4:7}S motif-containing isoforms (referred to hereafter as MAF1A) in the Type II 

strain. Incidentally, N. caninum contains a single divergent ortholog of MAF1 which also lacks 

any form of the repeat P{4:7}S motif (Figure 3.2B,C).  

In order to determine whether copy-number differences and sequence polymorphisms 

were reflected in protein expression, we performed western blot analysis comparing MAF1 

expression in the 6 strains examined in the southern blot analysis. We used a polyclonal anti-

MAF1 antibody raised against a canonical MAF1 paralog from GT1, TGGT1_053770 (Pernas et 

al., in revision). We observed MAF1 expression in all Type I and III strains tested but not in 

either of the Type II strains (Figure 3.3A). The Type I strains had similar levels of MAF1 
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expression between them as did the Type III strains. While this result was consistent with the 

strain-specificity of the HMA phenotype (Figure 3.4A), it did not reflect the general trend of 

copy-number variation at the locus. There were no detectable intra-lineage expression 

differences between the Type I and Type III strains. However, we observed approximately 2-fold 

higher expression in Type III strains relative to Type I strains (Figure 3.3B). This observation is 

interesting in light of earlier findings that Type I strains have about twice as much PVM surface 

area associated with host mitochondria as do Type III strains (Pernas et al., in revision). It is also 

interesting to note that MAF1 proteins from Type III strains appeared to have a slightly higher 

molecular weight compared to that of Type I strains. This is consistent with the observation that 

clones of MAF1A sequenced from the CTG strain contained the highest number of the P{4:7}S 

repeat motif (6 repeats, Figure 3.2B). The highest number of P{4:7}S repeat motifs in a MAF1A 

isoform from the Type I strain was 3. Overall, these results confirm a strong evolutionary 

selection on this locus which has led to differential expansion, sequence polymorphisms and 

strain-specific expression difference. 

3.2.3 MAF1A and B isoforms differ in their ability to mediate host mitochondrial 

association 

HMA is present as a strain-specific trait in T. gondii (lacking in Type II stains) and absent 

altogether in the closely related N. caninum (Figure 3.4,(Pernas et al., 2010). Our data indicate 

that the MAF1 locus, which is responsible for this phenotype, contains different isoforms which 

appear to have some significant sequence polymorphisms. In order to test the effect of such 

polymorphisms on the ability of MAF1 to mediate HMA, we generated HA-tagged clones of the 

2 major isoforms, MAF1A and MAF1B from a Type I strain (GT1), and expressed them in a 
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Type II strain (TgME49) and also in N. caninum. We found that MAF1A was sufficient to 

mediate HMA in TgME49 and, even more impressively, in N. caninum (Figure 3.5). MAF1B on 

the other hand was unable to mediate HMA in either TgME49 or N. caninum although its 

secretion and localization profiles were similar to that of MAF1A (Figure 3.5). These results 

indicate that the MAF1 isoforms have significantly diverged in their function upon expansion, as 

it relates to HMA. To further probe the relevance of the P{4:7}S repeats found exclusively in the 

MAF1A isoform, we generated MAF1A constructs where either all the prolines or the serines in 

the repeat region were replace with alanines. We found that substituting the repeat residues had 

no impact on the ability of MAF1A to mediate HMA (Figure 3.6) indicating that other amino 

acids or structural differences between the two isoforms may be more important for HMA.  

3.2.4 HMA in Type II strains has no detectable impact on in vivo proliferation and 

dissemination in mice  

We previously showed that MAF1-induced HMA in Type II strains is accompanied by a 

significant increase in expression of proinflammatory cytokines during in vitro MEFs infections. 

In order to directly examine the impact of MAF1 in an in vivo infection system, we infected 

BALB/C mice with TgME49 wild-type or a MAF1A-complemented line and measured their 

rates of proliferation and dissemination in vivo using bioluminescence imaging (Walzer et al., 

2013). We used a sub-lethal dose for a Type II strain (100 parasites) (Saeij et al., 2005b) to allow 

the mice to survive the full course of the infection and enable us to detect more subtle difference 

in infection. We observed marginally higher, but statistically insignificant, parasite burdens in 

infection with TgME49:MAF1A (Figure 3.7A). Results from these experiments showed that 
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there were no significant observable differences in parasite proliferation and dissemination 

between the two parasite lines over the course of infection (Figure 3.7B).  

We also examined cytokine induction during the course of mouse infection. For this 

experiment we infected mice with 10
5
 parasites in order to fully engage the host immune 

response and collected tail-blood from infected mice at 48-hour time-points to measure changes 

in cytokine levels. We sampled 26 cytokines ranging from early pro-inflammatory cytokines 

such as interleukin 12 (IL12) and interferon gamma (IFN-γ) to late anti-inflammatory cytokines 

including IL10 and transforming growth factor beta (TGF-β) (Miller et al., 2009, Pifer et al., 

2011). Results from these experiments collectively indicate that MAF1A, either through HMA or 

any other mechanism, does not significantly alter parasite proliferation and dissemination or 

cytokine induction in mice infections (Figure 3.8). This is in contrast to previous observations 

where loss of MAF1 in a Type I strain led to decreased levels of several pro-inflammatory 

cytokines in vivo (Pernas et al., in revision).  

3.2.5 MAF1 is secreted by extracellular parasites and integrates into the nascent PVM 

with its C-terminus exposed to the host cytosol 

The canonical model for secretion of dense granule proteins suggests that secretion generally 

occurs post-invasion (Carruthers et al., 1997). Since HMA has been shown to occur during or 

immediately after invasion (Sinai et al., 2001), it is important to reconcile the kinetics of host 

mitochondrial association with that of secretion of MAF1, a dense granule protein (Pernas et al., 

in revision), by determining whether MAF1 secretion begins before, during or after invasion. We 

therefore tested the hypothesis that MAF1 secretion begins prior to or during invasion. Treatment 

of extracellular parasites with Cytochalasin-D (CytoD) inactivates the actin/myosin motor 
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complex, which provides the motile force required to drive host cell penetration, and therefore 

prevents invasion (Ryning et al., 1978, Dobrowolski et al., 1996, Carruthers et al., 2007a). 

However, these parasites are still able to engage host cells in productive attachment characteristic 

of invasion. This attachment is associated with secretion of factors such as MICs (microneme 

proteins) and RONs and ROPs (rhoptry proteins) which are known to be required for the early 

stages of invasion (Carruthers et al., 2007a). To determine whether MAF1 is secreted by 

extracellular parasites prior to invasion, TgME49:HA-MAF1AI parasites were pretreated with 

Cyto-D and added to HFFs for 10 min (Dunn et al., 2008). To identify extracellular parasites, 

fixed cells were stained with anti-SAG1 before permeabilization for MAF1 staining. Anti-HA 

staining for MAF1 confirmed that indeed, secretion begins prior to invasion. MAF1 was detected 

in the host cell near the apical end of the extracellular parasite presumably at the point of 

attachment (Figure 3.9). 

MAF1 is predicted to contain a single-pass transmembrane domain covering amino acid 

97-116 (Figure 3.2A). In order to begin understanding the mechanism by which MAF1 mediates 

HMA we determined its topology at the PVM. Based on our observations that the addition of a 

C-terminal HA-tag inhibits the ability of MAF1 to mediate HMA even though PVM localization 

is not affected (data not shown), we predicted that the C-terminal domain is important for the 

interaction with host mitochondria and would be exposed to the host cell cytosol. To determine 

the topology of MAF1at the PVM, cells were infected with the TgME49:HA-MAF1AI parasite 

line expressing an N-terminally HA-tagged MAF1A, and grown for 24hrs followed by 

permeabilization with digitonin. Low concentrations of digitonin selectively permeabilize the 

host cell plasma membrane but not the PVM (Beckers et al., 1994, Dunn et al., 2008). Anti-

SAG1 staining was used to detect parasite surface and verify selective permeabilization. The 
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HA-tagged N-terminus of MAF1A was only detected on vacuoles that also stained for SAG1 

(Figure 3.10). Together, these results indicate that the N-terminus of MAF1 faces the vacuolar 

lumen and is only accessible to antibodies when the PVM is permeabilized, and suggest but do 

not prove, that the C-terminus is exposed to the host cell cytosol. 

3.3 DISCUSSION 

One of the many ways in which T. gondii interacts differently with host cells, compared to its 

immediate relatives such as Neospora caninum, is the close association formed between the 

PVM of Toxoplasma and the host cell mitochondria upon invasion. We recently identified a 

tandemly duplicated gene cluster, MAF1, as the parasite factor that mediates HMA and showed 

that this interaction represents an important means by which Toxoplasma gondii interfaces with 

the host immune system. We show here that MAF1 has undergone significant expansion and 

varies in copy-number as well as expression among the predominant T. gondii lineages. The 

importance of gene expansion in T. gondii is typified by the virulence factor ROP5 which is 

differentially expanded among the different T. gondii lineages and has isoforms which vary in 

sequence and contribute disproportionately to the virulence phenotype association with that locus 

(Behnke et al., 2011, Reese et al., 2011b). ROP38 is another example of a tandemly duplicated 

gene family encoding a secreted protein which also affects host cell function (Peixoto et al., 

2010). Much like the ROP5 and ROP38 loci, our data indicate that the 2 main isoforms of MAF1 

(A and B) identified here also differ in sequence and in function. While the importance of 

secreted parasite effectors in establishing a successful infection cannot be overemphasized, the 

selective duplication of genes encoding secreted proteins in Toxoplasma, (and perhaps other 
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intracellular parasites, (Chapter 2)) supports an attractive model of evolution where gene 

expansion provides the raw materials needed to develop a finely tuned set of host-parasite 

effectors with the versatility required to productively survive the wide variety of host 

environments encountered by the parasite (Boothroyd, 2009).  

The role of HMA in a vacuole-isolated intracellular organism is very easily predictable 

based on popular understanding of the functions of mitochondria as the hub of metabolism, and 

the inherent nutritional limitations of intracellular existence. In T. gondii however, such a direct 

reliance on host mitochondria for metabolic supplies is dispensable, at least in some strains 

(Pernas et al., in revision). Just like virulence and other immune related phenotypes, the strain-

specificity of HMA is yet another example of the flexibility of Toxoplasma in interacting with its 

host. Interestingly, N. caninum lacks HMA and carries only a single ortholog of MAF1 which 

would be considered a B isoform, suggesting that this trait was acquired later in the evolution of 

T. gondii and might have coincided with the surge in host range expansion. We did not observe 

any significant MAF1-dependent alteration in virulence either through proliferation and 

dissemination or through mortality. Moreover, although deletion of the MAF1 locus in a Type I 

strain abolished HMA, it did not alter virulence either (Pernas et al., in revision). This was not 

surprising as previous virulence quantitative trait loci (QTL) mapping analyses failed to identify 

a significant virulence QTL on chromosome II (Saeij et al., 2006, Taylor et al., 2006). What was 

surprising was the observation in the present study that in vivo cytokine induction was not altered 

in a MAF1-dependent manner. Previous in vivo experiments had demonstrated a link between 

MAF1 expression and production of diverse cytokines. However, those experiments were 

performed with a Δmaf1 Type I strain, and cytokine levels were measured in peritoneal exudate 

cells. With the notion that Type I strains generate a profoundly different immunological response 
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compared with Type II strains (Robben et al., 2004a, Kim et al., 2006), it is possible that HMA 

in the Type I background is important for altering host cytokine response while expressing 

MAF1 and inducing HMA in the Type II background does not have the same impact.  

Whether as a route for acquiring metabolites from host cells or as mechanism for 

modulating host immune signaling, it is conceivable that the vastly adept parasitic system of 

Toxoplasma contains built-in redundancies which allow the parasite to assemble manipulative 

strategies that are targeted to specific hosts. For example, the IRG pathway targeted for 

neutralization by ROP5 is missing in humans and other systems where Toxoplasma is equally 

capable of surviving (Niedelman et al., 2012). This suggests that in different host contexts, 

different sets of effectors will be required for analogous functions, and that ROP5 may be 

utilized in a different capacity in the different hosts. MAF1-mediated HMA may also follow a 

similar model. It may carry different degrees of relevance in different hosts and its impact on 

host cell function, and by extension the parasite’s ability to establish a successful infection may 

be as much a property of the host environment as it is the genotype of the parasite.  

Given the well-recognized temporal hierarchy of organelle discharge, and the fact that 

HMA occurs as early as 1 minute post-invasion, it was initially proposed that the expected 

kinetics of secretion of the parasite factor involved in this process matched the profile of a 

rhoptry protein (Carruthers et al., 1997, Sinai et al., 1997, Sinai et al., 2001). However, GRA7 

has recently been shown to be secreted into the host cell prior to invasion (Dunn et al., 2008) in a 

manner nearly identical to MAF1. This contradicts the canonical sequential model for T. gondii 

protein secretion which suggests that dense granule proteins are secreted post invasion. Our 

findings show that MAF1 is another exception to the rule. The kinetics of MAF1 secretion is 

consistent with its role as the mediator of HMA. These findings, together with results from 
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topological analysis of MAF1 relative to the PVM, support a model for MAF1-mediated HMA 

whereby MAF1 is secreted during invasion and is anchored on the PVM during the formation of 

the PV. With its C-terminus possibly exposed to the host cytosolic side of the nascent PVM, 

MAF1 directly interacts with and docks host mitochondria at the surface of the PV. Indeed 

preliminary results from video microscopy suggest that as the PV is formed at the host plasma 

membrane and migrates to the perinuclear region, it encounters the abundant host mitochondria 

which then become physically attached to the PVM, presumably through interaction with MAF1. 

While it appears that HMA is not an active recruitment process, further modification of MAF1 in 

the host cell is possible (Treeck et al., 2011) and may be important for association. Residues 

S394, S397 and S407 in the C-terminus are predicted phosphorylation sites which may be 

important for MAF1 function. It also remains possible that other PVM- resident parasite proteins 

play auxiliary roles to fortify this interaction.  
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Figure 3.1: The MAF1 locus is differentially expanded among different strains of T. gondii. 

 (A) Schematic representation of the MAF1 locus showing ScaI restrictions sites used to determine locus size. a, b, c 

and d represent primers used to verify location of the ScaI restriction sites. (B) ScaI-digested gDNA from each strain 

was resolved by PFGE and probed with MAF1-specific probes. The blot shows copy-number variation consistent 

with predictions from sequence coverage analysis (Pernas et al., in revision). Copy-number for each strain was 

determined based on the estimated repeat-unit size of ~4 kb. (C) PCR-based diagnostic digest was performed to 

confirm that the ScaI sites were present at the same predicted locations in all strains. 
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Figure 3.2: The T. gondii MAF1 locus harbors two distinct isoforms  

(A) Schematic representation of MAF1. Signal peptide (SP) was predicted by SignalP v4.0, transmembrane domain 

(TM) was predicted by TMHMM v2.0, TM-transmembrane. The proline-rich region (Pro-Rich) stretches from 

AA137-190. (B) ClustalΩ alignment of the polymorphic proline-rich region for MAF1 sequences from T. gondii, H. 

hammondi and N. caninum. GT1--A--2X_P{4:7}S (TGGT1_053770) and NCLIV_004730 were obtained from 

toxodb.org; all other sequences were obtained from randomly selected clones from PCR amplification of the MAF1 

locus in T. gondii and H. hammondi. The alignment shows two isoforms (A and B) mainly distinguished by repeats 

of 4 to 7 prolines followed by a serine, which are present in A isoforms but not in B isoforms. H. hammondi encodes 

an A isoform which contains a stretch of 23 prolines in this region, without serines. (C) Phylogram of the MAF1 

amino acid sequences from T. gondii, H. hammondi and N. caninum.        isoform A,       isoform B  
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Figure 3.3: T. gondii MAF1 expression differs between lineages. 

Levels of MAF1 protein were compared among 2 strains each from the 3 predominant lineages of T. gondii using 

polyclonal antibodies against C-terminus of TGGT1_053770. Expression polymorphism of MAF1 correlates with 

strain-specificity of the host mitochondrial association phenotype. SAG1 is used as a loading control. (B) 

Densitometric analysis of relative levels of MAF1 in the six strains examined. GT1 was set to 1. 
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Figure 3.4: Host Mitochondrial Association is a strain-specific phenotype in T. gondii and absent in N. 

caninum.  

(A) NRK-mitoRFP cells were infected with GFP-expressing T. gondii strains. Type II strains are HMA- while Type 

I and III strains are HMA+. (B) NRK-mitoRFP cells were infected with N. caninum strain NC-1. Wild-type N. 

caninum are HMA-. Cells were fixed and counter-stained with Hoechst stain (blue). Scale bar, 5 μm 
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Figure 3.5: MAF1A and B differ in their abilities to complement HMA in T. gondii or N. caninum.  

HFFs were labeled with MitoTracker and infected with parasites ectopically expressing HA-MAF1A or HA-

MAF1B cloned from the Type I T. gondii strain, GT1. MAF1A but not MAF1B is able to induce HMA in TgME49 

(A) and also in N. caninum (B). Scale bar, 5.0 μm.  
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Figure 3.6: Substitution mutations in the poly-proline motif of MAF1A do not affect ability to mediate HMA.  

Amino acids constituting the P{4:7}S motif in a MAF1A isoform (TGGT1_053770) were replaced with either 

alanines or glycines and examined for mitochondrial association. A) Substitution of the 12 prolines for alanines. B) 

Substitution of serine 171 for an alanine. 
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Figure 3.7: HMA has no detectable impact on virulence in vivo.  

Balb/C mice were infected with 100 tachyzoites of luciferase-expressing TgME49 complemented with MAF1A 

from Type I GT1 (TgME49-MAF1A, n=5) or empty vector (TgME49-WT, n=4). Infections were performed by 

intraperitoneal (IP) injections and parasite burden measured by bioluminescence imaging (BLI) at 24-hour time-

points. (A) Quantitation of parasite burden by BLI. (B) Representative images of parasite burdens in mice at days 6, 

8 and 10 post-infection.  
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Figure 3.8: HMA in a Type II strain does not impact cytokine response in vivo.  

Balb/C mice (n=4 per strain) were infected with 10
5
 tachyzoites of the Type II strain complemented with MAF1A 

(MAF1A) or the empty vector control (EV) via intraperitoneal injection. Serum from tail-blood collected at 48-hour 

intervals were frozen down and thawed immediately prior to measuring cytokine levels using the Luminex mouse 

26plex (Millipore, USA) assay. Error bars represent standard error of the mean of serum from 4 mice. 

 

 

 

 

 

 

Figure 3.9: MAF1 is secreted by extracellular parasites.  

Cytochalasin-D arrested TgME49:HA-MAF1A parasites were added to HFFs for 10 min and stained for MAF1. 

Extracellular parasites were identified by anti-SAG1 staining prior to permeabilization of the host cells. Scale bar, 5 

μm  
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Figure 3.10: The C-terminus of MAF1 is exposed to the host cytosolic side of PVM.  

Host cells infected with TgME49:HA-MAF1A parasites were treated with 0.002% Digitonin which selectively 

permeabiilizes host cell membranes leaving some PVMs intact. Intact vs permeabilized PVM were distinguished by 

staining the parasite surface protein SAG1. The N-terminal HA-tag of MAF1A was only detectable in vacuoles 

which also stained for SAG1 indicating those vacuoles were permeabilized. Intact vacuoles (filled arrowheads) did 

not stain for MAF1 although cytosolic vacuole staining of MAF1 were observed (open arrowheads) 
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4.0  CHARACTERIZATION OF A DEVELOPMENTALLY REGULATED, 

TANDEMLY DUPLICATED CLUSTER OF RHOPTRY PROTEINS 

Differentiation between the tachyzoite and bradyzoite stages is a major component of 

Toxoplasma gondii pathogenesis and understanding the molecular mechanisms involved is 

important for the development of effective therapies. While it has been widely demonstrated that 

bradyzoite differentiation is principally a stress-response mechanism of the parasite, the parasite 

factors which recognize and transmit these stress signals, as well as effectors which cause 

morphological and physiological changes associated with differentiation, remain largely 

unknown. Members of the ROP2 superfamily have been shown to play major roles in acute 

virulence and pathogenesis but very little is known about their impact on bradyzoite 

differentiation. In this section, I describe the characterization of a cluster of tandemly duplicated 

rhoptry proteins (EL3), which are induced during bradyzoite differentiation. These proteins 

belong to the ROP2 superfamily. We show that the ROP42 locus exhibits differential expansion 

among strains of different T. gondii lineages as well as between members of the same lineage. 

Overexpression of one member of this family in tachyzoites led to decreased parasite 

proliferation in both in vitro and in vivo infections, and we show this phenotype is a specific 

effect of ROP43 misregulation in tachyzoites. These results suggest a possible role for the 

ROP42 cluster in the control of proliferation during differentiation. 
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4.1 INTRODUCTION 

During Toxoplasma gondii infection, the initial fast growing tachyzoite stage elicits a strong 

interferon-γ-driven immune response from the host to which the parasite eventually succumbs, 

differentiating into the slow growing bradyzoite stage. Bradyzoites then become encysted and 

buried within cells of host tissues such as muscle and brain. Tissue cysts can also be found in 

visceral organs including kidney and liver (Ferreira da Silva Mda et al., 2008). The ability to 

undergo tachyzoite-to-bradyzoite differentiation is important for 2 main reasons: 1) Being 

undetectable by host immune surveillance, tissue cysts can persist for the life of their hosts and 

allow for lateral transmission between intermediate hosts. In fact, over 60% of all new T. gondii 

infections in European pregnant women can be attributed to ingestion of inadequately prepared 

meat containing tissue cysts (Cook et al., 2000). 2) While primary T. gondii infections are 

generally asymptomatic, some of the most severe disease outcomes associated with T. gondii 

result from reactivation of latent chronic infections (tissue cysts) in the absence of a competent 

host immune system. For example, toxoplasmic encephalitis, which emerged as a major 

opportunistic disease in HIV/AIDS patients in the 1990s, is mainly caused by reactivation of 

tissue cysts in the central nervous system (Hunter et al., 1994, Carruthers et al., 2007b). Also, 

toxoplasmic chorioretinitis may result from persistence or reactivation of infection in the eye 

(Furtado et al., 2013). Recrudescence of acute infections from latent tissue cysts leads to tissue 

damage which manifests as the lesions associated with the various toxoplasmic diseases. This 

knowledge notwithstanding, the development of therapies to completely eliminate T. gondii in 

human is constrained, to a large extent, by the dearth of knowledge of the molecular basis of the 

bradyzoite differentiation process. How the tissue cyst stage is induced, maintained and 

reactivated under permitting conditions is currently unknown. Furthermore, with some human 
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populations recording seropositive rates above 90% (Weiss et al., 2000, Montoya et al., 2004), it 

is becoming increasingly important that the molecular interactions involved in stage 

differentiation be understood in order to bolster efforts to develop targeted curative therapies.  

Through the efforts of many research groups, the morphologically distinct features of 

bradyzoites have been well documented (Dubey et al., 1998, Berens et al., 2004). It is also well 

understood, through comparative analyses of gene expression between developmental stages, 

that tachyzoite-to-bradyzoite differentiation is accompanied by major reprogramming of gene 

expression involving both transcriptional and post-transcriptional regulatory mechanisms (Singh 

et al., 2002, Sullivan Jr et al., 2009). Parasite genes whose expression is known to be upregulated 

during differentiation include those encoding surface antigens such as SRS9 and BAG1 

(Buchholz et al., 2011), metabolic enzymes such as ENO1 and LDH2 (Yang et al., 1997, Coppin 

et al., 2003) and cyst wall proteins such as BPK1 and MCP4 (Buchholz et al., 2011). Indeed, 

general protein expression is dramatically reduced at the onset of differentiation and this is 

believed to allow the parasite to shut down expression of tachyzoite-specific proteins in favor of 

bradyzoite-specific proteins (Sullivan Jr et al., 2009). Such dramatic changes in gene expression 

are consistent with the substantial morphological and physiological changes that mark 

differentiation. Importantly, several stress responsive genes are also induced during 

differentiation suggesting that extracellular or environmental stress is a key trigger for 

differentiation (Weiss et al., 1998, Echeverria et al., 2005). These exogenous stress factors may 

be in the form of pro-inflammatory cytokines, nutrient deprivation or high environmental pH and 

temperature. These findings form the bases for several stress-related bradyzoite induction assays 

employed in both in vitro and in vivo studies of differentiation (Ferreira da Silva Mda et al., 

2008).  
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The fact that bradyzoite differentiation is generally considered as a response to 

environmental stress suggests that sensors and transducers of these stress signals will be key to 

understanding stage differentiation at the molecular level. It also suggests that bradyzoite-

specific proteins that are secreted to the parasite surface or into the host cell may not only play 

important roles in relaying these signals to induce differentiation but may also be critical for 

maintaining the latent state of bradyzoites by acting as gate keepers and integrating changes in 

environmental conditions such as changes in host immune status.  

The work presented in this section describes the characterization of a tandemly duplicated 

cluster of developmentally regulated genes, TgME49_009980 (ROP42), _010090 (ROP43), 

_010110 (ROP44) and _121700 (ROP42L1) (www.toxodb.org). Together with EL4 described in 

chapter 3, this expanded locus (EL3) was initially identified among the list of genomic loci that 

were differentially expanded between T. gondii and N. caninum (Chapter 2). We examined locus 

structure, expression and subcellular localization, and impact on parasite proliferation in vitro as 

well as in vivo. Members of this ROP42 subfamily collectively belong to the ROP2 superfamily 

of rhoptry proteins which also include important virulence genes such as ROP18, ROP5 and 

ROP38 (Saeij et al., 2006, Peixoto et al., 2010, Reese et al., 2011b). We show that all members 

of this cluster encode developmentally regulated proteins which are secreted and localized to the 

parasitophorous vacuolar membrane (PVM). While deletion of the entire locus in the Type I 

background does not show any detectable phenotype, misregulation in tachyzoites appears to 

impact parasite proliferation in vitro as well as in vivo. We have subsequently developed a 

regulatable expression system to enables us to better study the function of this locus by way of 

inducible stage-specific expression.  
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4.2 RESULTS 

4.2.1 ROP42 and its paralogs encode putative pseudokinase homologs 

In chapter 2, we showed that EL3, much like EL4 (MAF1), exhibits differential expansion 

among lineages as well as between strains of the same lineage. Examination of EL3 in the T. 

gondii reference genome reveals 3 predicted open reading frames annotated as ROP42, ROP43, 

ROP44, and a fourth unannotated open reading frame which we refer to as ROP42-Like 1 

(ROP42L1). Based on Southern blot analysis we found that for each of 6 strains, EL3 had a 

higher copy-number than predicted in the reference genome. We estimated that the RH (Type I) 

strain contained the most copies (9 copies) and GT1 (Type I) contained the fewest copies (6 

copies) (Chapter 2). To examine the nature of the predicted paralogs within the locus, we cloned 

and sequenced both Type II and III alleles of 3 of the predicted genes (ROP42, 43, and 42L1). 

ClustalΩ alignment of these sequences showed that the predicted proteins shared over 98% 

percent identity in their C-terminal region which is predicted to constitute a kinase domain 

(Figure 4.1A) as do other members of the ROP2 superfamily of rhoptry kinases. The ROP2 

superfamily contains both active (ROP18) and inactive (ROP5) kinases. By comparison, the 

predicted kinase domains of the ROP42 paralogs contained a conserved ATP binding motif 

(VAIK) and a Mg
2+

 binding motif (DFG) but a mutated HRD catalysis motif (DK; Figure 

4.1A) that would therefore be considered catalytically inactive (Reese et al., 2011a). 

Phylogenetic analysis of the sequences showed that ROP42L1 was the most divergent between 

alleles while ROP42 is the least polymorphic (Figure 4.1B).   
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4.2.2 ROP42 and its paralogs are developmentally regulated and localize to the 

parasitophorous vacuolar membrane  

Expression data from the T. gondii genome shows that at least one member of the ROP42 cluster 

is upregulated during bradyzoite differentiation. Robust multi-array averages (RMA) values for 

transcripts from ROP42 show that its expression is developmentally regulated with peak 

expression observed in the sporozoite and bradyzoite stages (Figure 4.2A, www.toxodb.org). To 

characterize thisg this locus for structure and function, we first determined whether all paralogs 

were expressed in a similar developmentally regulated manner as the “archetypal” ROP42. We 

focused on tachyzoite-to-bradyzoite differentiation for its significance in pathogenesis as well as 

the fact that it is a more experimentally tractable process than sporozoite differentiation. A 

luciferase-based reporter assay was used to measure promoter activities during bradyzoite 

differentiation for the 3 paralogs sequenced above. Approximately 1 kb of the region 

immediately upstream of the ROP42, ROP43 and ROP42L1 coding sequence was cloned 

upstream of a firefly luciferase gene to generate constructs in which luciferase expression was 

driven by the promoter regions of these ROP42 paralogs (Figure 4.2B). Luciferase expression 

was then compared between tachyzoites and in vitro-induced bradyzoites (Behnke et al., 2008). 

All 3 promoters showed higher activity in bradyzoites than in tachyzoites, for both Type II 

(Figure 4.2C) and Type III (Figure 4.2D) alleles. This confirms that all paralogs have similar 

expression kinetics and that expression is upregulated for all paralogs during tachyzoite-to-

bradyzoite differentiation. There were some basal levels of expression in tachyzoites which was 

consistent with the available RMA expression values for ROP42 and may be an important 

starting point for the possible roles of these genes in bradyzoite differentiation. 



 

 87 

To investigate the possible functions of these genes, we first determined their subcellular 

localization. The coding sequence of ROP43 was cloned immediately downstream of the 

constitutively active GRA1 promoter, and in-frame with a C-terminal HA-tag present on the 

pGRA1–HA–HPT vector to generate the expression construct pGRA1-ROP43-HA (Figure 

4.3A). This vector contains a hypoxanthine phosphoribosyl transferase (HPT) gene which allows 

for selection of stable transfectants in an HPT-knockout background by growing transfected 

parasites in mycophenolic acid (MPA) and xanthine-supplemented media (Chapter 3). 

Expression of a ~70kDa protein in TgME49 transfected with pGRA-ROP43-HA (ME49:ROP43) 

was confirmed by anti-HA western blot analysis (Figure 4.3B). This was consistent with the 

predicted molecular weight for the 646 amino acid (including HA-tag) protein. In an 

immunofluorescence assay (IFA), ROP43 was detected in the anterior region of the parasite, as 

expect for a rhoptry protein (colocalizes with ROP7), as well as at the parasitophorous vacuolar 

membrane (PVM) (Figure 4.3C). This localization pattern indicates that ROP42 paralogs or at 

least ROP43, like other members of the ROP2 superfamily, is secreted outside of the parasites 

and gets associated with the parasitophorous vacuolar membrane.  

4.2.3 Misregulation of ROP43 in tachyzoites leads to decreased in vitro proliferation 

Having established the subcellular localization profile of ROP43, we proceeded to examine the 

effect of misregulation of ROP43 expression on in vitro growth properties of tachyzoites. Such 

temporal misregulation has been used previously to establish the role of the bradyzoite-specific 

antigen SRS9 in bradyzoite persistence (Kim et al., 2005). Growth rate was first examined using 

plaque assays. ME49:ROP43 and empty-vector control strains were inoculated onto HFFs at a 

limiting MOI such that clearly defined plaques representing areas of lysed host cells from an 



 

 88 

initial single parasite invasion could be identified after 7 days. We found that 2 independently 

generated clones of ME49:ROP43 had plaque sizes that were about half that of the control strain 

at day 7 post-infection (Figure 4.4A). In order to confirm that this slow growth phenotype is a 

specific effect of ROP43 misregulation, and neither the result of congested secretory channels 

due to overexpression of ROP43 nor a general artifact of expressing a bradyzoite-specific gene in 

tachyzoites, plaque sizes of a TgME49 strain expressing GRA1 promoter-driven bradyzoite 

rhoptry protein 1 (BRP1) were also examined. BRP1 has been reported to be a non-essential 

bradyzoite-specific rhoptry protein (Schwarz et al., 2005). This strain had a plaque size 

phenotype similar to that of the control strain (Figure 4.4A) confirming that the slow growth 

phenotype is a specific effect of ROP43 misregulation in tachyzoites.  

To distinguish between increased spontaneous bradyzoite differentiation and decreased 

replication rate as plausible explanations for the slow growth phenotype, we first compared the 

rate of differentiation between the ME49:ROP43 strain and the control strains when grown under 

in vitro bradyzoite-inducing conditions. Infected cells were incubated in bradyzoite-induction 

medium (Buchholz et al., 2011) for 24, 48, or 72 hours. At each time-point, cells were stained 

for the bradyzoite marker, bradyzoite antigen 1 (BAG1), and the percentage of vacuoles 

containing BAG1-positive parasites was determined. There was no significant difference in the 

rate of differentiation between ME49:ROP43 and control strains as measured by BAG1 

expression, suggesting that bradyzoite differentiation was not impacted by the misregulation of 

ROP43 (Figure 4.4B). Next, the rate of replication between the two strains was examined by 

comparing number of parasites per vacuole after 20 hours of in vitro infection. At this time-point 

the number of parasites per vacuole ranged from 2 to 32. The results of this assay showed that 

ME49:ROP43 clones replicated at a slower rate compared to wild type. At 20 hpi, only 40% of 
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ME49:ROP43 vacuoles contained 4 or more parasites versus >70% for the control strain (Figure 

4.4C). While there were a number of vacuoles for each strain containing 1 parasite, such 

vacuoles were eliminated from the analysis since we could not ascertain whether these parasites 

were dead or alive. Taken together, these results suggested that the slow growth phenotype of the 

ME49:ROP43 was a result of decreased replication rate with no detectable effect on bradyzoite 

differentiation.  

4.2.4 Misregulation of ROP43 in tachyzoites affects in vivo proliferation and 

dissemination 

We next wanted to determine whether the observed in vitro phenotype translated into defects in 

vivo. For this, we examined the effects of tachyzoite expression of ROP43 in mouse infections. 

The TgME49 parental strain used to generate the tachyzoite-expression clones had been 

engineered to stably express luciferase which allows us to measure parasite burden in vivo by 

non-invasive bioluminescence imaging (Saeij et al., 2005b). This method provides a real-time 

quantitative readout for the severity of the infection and also monitors the dynamics of parasite 

dissemination in vivo. Parasite-burden and host survival were compared between mouse groups 

infected with either ME49:ROP43 or empty-vector control strains. Three mice were infected per 

group. With similar starting parasite loads, we observed a marked decrease in proliferation and 

dissemination of ME49:ROP43 compared to the control strain (ME49*). Parasite burdens began 

to diverge from day 5 p.i. and continued until both infections were resolved (Figure 4.5A,B). 

Additionally, all mice in the ME49:ROP43 group survived the infection while 1 mouse from the 

control group died at day 12 post-infection (Figure 4.5C). These results together suggest that 

misregulation of ROP43 has a significant impact on in vivo proliferation and dissemination.  
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4.2.5 Deletion of the ROP42 locus has no effect on Type I virulence 

To further characterize the role of the ROP42 cluster in parasite physiology, we generated a 

ROP42 locus knock-out (KO) strain in which the entire ~38kb locus was deleted. For this 

purpose we designed a plasmid construct which included 1000-2000 bp of the 5’ and 3’ flanking 

regions of the ROP42 locus on either side of an HPT selectable maker which was then used to 

knock-out the ROP42 locus by double homologous recombination. Taking advantage of the 

Type I RHΔku80 strain, which has been specifically engineered to favor homologous 

recombination (Fox et al., 2009, Huynh et al., 2009), ROP42-cluster KO was generated in the 

Type I background and confirmed by diagnostic PCR (Figure 4.6A,B) as well as Southern blot 

analysis (Figure 4.6C). To determine the effect of loss of the ROP42 locus on in vivo virulence, 

Balb/C mice were infected with 100 tachyzoites each of either an empty-vector control strain 

(RHΔku80) or ROP42-KO strain (RHΔku80Δrop42) by IP injection and virulence measured by 

time of death. There were no apparent differences in virulence that could be attributed to the loss 

of ROP42 as both sets of mice survived for approximately the same length of time (Figure 4.6D).  

4.2.6 Regulatable ROP43 expression system 

The developmental regulation of ROP42 and its paralogs means that gene products are only 

available at specific developmental stages of the parasite. In order to better understand the 

functional implications of stage-specific expression of this cluster of genes, we designed a 

regulatable expression system which could be used to study the effect of selective expression in 

different developmental stages. The tetracycline-regulatable expression system has been used 

extensively to control gene expression in many systems and had been previously adapted and 
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optimized for use in T. gondii (Berens et al., 2004, van Poppel et al., 2006). This system consists 

of two modules. The first is the repressor module (YFP-TetR) for stable expression of a codon-

optimized tet repressor under the control of a constitutively active T. gondii promoter (Figure 

4.7A). In this case the tet repressor is fused to YFP for easy visualization. The second is the tet-

regulatable promoter module which was constructed by inserting 4 tet operator (tetO) elements 

in the highly active T. gondii ribosomal protein RPS13 promoter (pRPS13sub(IV)) (Figure 4.7B; 

(van Poppel et al., 2006)). This system has proven to establish a tight control of gene expression 

using an analogue of tetracycline, anhydrotetracyline (ATc) which is well tolerated by T. gondii 

(Meissner et al., 2001, van Poppel et al., 2006).  

The system was adapted for regulatable expression of ROP43 in the following manner. A 

stable expression strain for YFP-TetR (M:TR) was generated using ME49Δhpt:LUC (MΔ:Luc) 

as the parental strain with chloramphenicol selection for stable integration. MΔ:Luc is a Type II 

strain in which HPT has been deleted to allow for positive selection of transfectants using 

MPA/Xanthine, and also expresses a luciferase reporter gene for downstream applications. After 

confirming expression of YFP-TetR by visual inspection, a chlorophenol red-β-d-

galactopyranoside (CPRG) assay (Seeber et al., 1996) was used to confirm its functionality in the 

Type II background. The M:TR strain as well as the MΔ:Luc parental strain was transfected with 

the pRPS13(IV)-LacZ plasmid, in which the LacZ reporter gene is expressed in a tet-regulatable 

manner. Transfected parasites were grown in the presence or absence of ATc after which β-

galactosidase (β-gal) expression was determined (Figure 4.7D). MΔ:Luc had ~13% lower CPRG 

conversion when incubated with ATc than without. This difference, while not significant, 

indicates a possible minor effect of ATc on the parasites. Incubation of M:TR with ATc showed 

~10-fold induction over no ATc incubation. This represents about twice the observed increase in 
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ROP43 promoter activity during tachyzoite-to-bradyzoite differentiation (Figure 4.2C). 

Additionally, CPRG conversion in M:TR without ATc is almost as low as the background level 

in the no-LacZ control indicating that there is only a very minimal amount of leakiness 

associated with the system. Taken together, these results indicate that TetR is fully functional in 

the M:TR strain. 

Having confirmed the functionality of the M:TR strain, we generated the complementary 

regulatable ROP43 expression construct by replacing the GRA1 promoter driving ROP43 

expression on the pGRA1-ROP43-HA plasmid with the pRPS13(IV) regulatable promoter 

(Figure 4.7C). This construct was transfected into M:TR and stable transfectants (M:TR-R43i) 

isolated by MPA/Xanthine selection. ATc-inducible ROP43 expression was confirmed by anti-

HA western blot analysis (Figure 4.8A) as well as anti-HA immunofluorescence assay (Figure 

4.8B).  

In preliminary experiments to examine the impact of ATc-inducible ROP43 expression 

using the M:TR-R43i strain, we compared parasite proliferation in the presence and absence of 

ATc in both in vitro plaque assays and in vivo mouse infections. In vivo induction was performed 

by administering ATc to infected mice via drinking water as previously described (Meissner et 

al., 2002). Results from these experiments did not reproduce the previously described decreased 

proliferation phenotype. The proliferation profile of M:TR-R43i in in vitro plaque assays (data 

not shown) and in mouse infections did not change significantly with or with ATc treatment 

(Figure 4.C).  
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4.3 DISCUSSION 

In Chapter 2, we found a significant enrichment of developmentally regulated genes among the 

set of genes which were uniquely expanded in T. gondii relative to N. caninum. The ROP42 

cluster (EL3) was for further investigation based on a number of interesting properties of the 

locus: 1) it shows differential expansion among different T. gondii strains as predicted by read 

coverage analysis (Chapter 2), 2) ROP42 and its paralogs encode protein kinase homologues that 

are predicted to be secreted from the parasite into the host cell and 3) one member of the gene 

cluster is upregulated during tachyzoite-to-bradyzoite (i.e., cyst) differentiation (Buchholz et al., 

2011).  

While tandem duplication of EL3 has been previously reported (Peixoto et al., 2010), 

results from this work provide the first demonstration of differential expansion of this locus 

among T. gondii strains, and also show that this locus has a more complex structure than 

previously predicted. In the reference genome, EL3 is predicted to contain 3 paralogs, 

ROP42/43/44, but our results indicate this is an underestimation and that copy-number ranges 

from 6 to 9 depending on the strain. This is not surprising since such loci containing tandemly 

arranged repetitive sequences are known to often cause scaffold breaks in genome assembly 

which lead to loss of sequence information (Carlton et al., 2007). Nonetheless, intra-lineage 

copy-number variation at these tandemly duplicated loci represents an important distinction 

between closely related strains and provides another example of the genomic instability 

associated with tandemly duplicated loci (Bzymek et al., 2001, Dittwald et al., 2013). This locus 

is also an interesting example of gene conversion through unequal crossing over as ROP42L1 

and ROP44 appear to be prematurely truncated in Type II and Type III strains, respectively 

(www.toxodb.org).  
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From the sequence analysis, it appears that while the ROP42 paralogs, like other 

members of the ROP2 superfamily (Talevich et al., 2013), may retain a conserved kinase fold in 

their c-termini, they may be catalytically inactive. While this needs to be confirmed, it is possible 

that their pseudokinase status may make a significant contribution to their function as has been 

shown for ROP5 (Reese et al., 2011a) and several other pseudokinases (Reese et al., 2012). 

All three paralogs tested, and most likely all remaining paralogs, are upregulated during 

bradyzoite differentiation. Additionally, our results show that there is a basal background 

expression of these genes, which is consistent with available RMA values of transcript 

abundance (www.toxodb.org). It is presently not known whether this basal expression in 

tachyzoites has any physiological relevance but the possibility exists that this expression profile 

may support an early role in the differentiation process and perhaps may be involved in 

committing the parasite to the bradyzoite fate. Further experiments will be required to address 

this hypothesis, and deletion of the ROP42 cluster in the more bradyzoite-prone Type II and 

Type III backgrounds prove important. 

Bradyzoite differentiation is marked by a decrease in doubling time from ~6 hours in 

tachyzoites to about ~16 hours in early bradyzoite and to eventual growth arrest in mature 

bradyzoites (Jerome et al., 1998, Radke et al., 2001, Radke et al., 2003). With this notion in 

mind, the slow growth effect of ROP43 expression in tachyzoite provides an intriguing 

possibility of a role for the ROP42 cluster in indirectly controlling replication rate during 

differentiation. In fact, it has been suggested that effective bradyzoite-inducing conditions are 

those that are able to sufficiently slow down the rate of replication (Fox et al., 2002, Khan et al., 

2002). It will be interesting to examine possible functional interactions between the ROP42 

cluster and known cell cycle regulators such as TPK2 (Khan et al., 2002). 

http://www.toxodb.org/
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An interesting observation we made was that the ME49:ROP43 clones appeared to 

eventually recover from the slow growth phenotype and attain a relatively normal replication 

rate. This occurred after about 3-4 weeks of passages in vitro. We are currently characterizing 

this phenotype to determine the specific timelines associated with the recovery and also 

determine whether there are any changes in the dynamics of ROP43 expression at that stage. 

This will help us properly qualify the slow growth phenotype. 

We were able to delete the entire ROP42 locus in the hypervirulent Type I background. 

Although we did not observe any detectable effect on parasite proliferation, this was not entirely 

surprising as this parental RH strain is known to be a notoriously poor tissue cyst former (Jerome 

et al., 1998, Kirkman et al., 2001). Additionally, the bimodal readout of the mortality assay lacks 

the sensitivity to detect subtle defects that may be caused by loss of the ROP42 locus. The 

hypervirulent nature of the RH strain also could easily obscure such subtle effects. As mentioned 

above, it may be more informative to examine ROP42 cluster deletion in Type II and III strains 

since these are more competent bradyzoite formers.  

The tet-inducible expression system provides an excellent tool to investigate 

developmentally regulated genes by allowing for temporally-controlled expression (van Poppel 

et al., 2006). We have successfully utilized the tet-inducible system to induce ROP43 expression. 

Although tet-induction of ROP43 in tachyzoites did not pheno-copy the GRA1-promoter driven 

expression, we were able to demonstrate a tight regulation of ROP43 expression. While 

induction may be comparable to endogenous promoter activity, it will need to be compared with 

GRA1 promoter activity. 

In conclusion, we show that the tandemly duplicated locus, EL3, is not only differentially 

expanded between T. gondii and N. caninum, but also exhibits copy-number variation among 
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different strains of T. gondii. We also provide preliminary evidence for a possible role for 

ROP43 and its paralogs on bradyzoite differentiation. We have developed an inducible 

expression system to be used for gene expression in a controlled and regulatable manner. This 

system will be an excellent tool for further investigating stage-specific expression of ROP43 and 

its paralogs as it allows one to control the timing and amount of protein expression. This system 

can also easily be adapted to study other genes. 
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Figure 4.1: ROP42 and its paralogs encode putative pseudokinase homologs. 

A) ClustalΩ alignment of primary sequences of the Type III alleles of ROP42, ROP43 and ROP42L1. The predicted 

pseudokinase domain is indicated by the line. Residues predicted to comprise the 3 functional motifs are highlight in 

red. B) Phylogenetic analysis of ROP42, ROP43 and ROP42L1 from both Type II and III strains. The tree was 

generated from ClustalΩ alignment of the sequences using neighbor joining with percent identity. Type II ROP18 

and 2 Type II ROP5 paralogs were used as outgroups. 
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Figure 4.2: All ROP42 paralogs are developmentally regulated.  

A) Robust multi-array averages of ROP42 transcript abundance in oocysts (O), sporozoites (SZ), tachyzoites (TZ) 

and bradyzoites (BZ) based on data collected by Fritz et al. (Gajria et al., 2008, Buchholz et al., 2011, Fritz et al., 

2012). B) Schematic of luciferase reporter construct to test promoter activity of ROP42 paralogs. C, D) Promoter 

activity of ROP42 paralogs as determined in dual luciferase assay. C, Type II alleles tested in Type II background; 

D, Type III alleles tested in Type III background. 
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Figure 4.3: ROP43 is secreted and localizes to the parasitophorous vacuolar membrane.  

A) The coding sequence of the Type II allele of ROP43 was cloned downstream of a GRA1 promoter and in-frame 

with a C-terminal HA-tag using the pGRA1-HA-HPT vector. B) Anti-HA western blot analysis showing ROP43-

HA expression in the transfected Type II strain, ME49. The molecular weight is ~70kDa, which is consistent with 

predictions based on the length of the amino acid sequence. C) Anti-HA immunofluorescence assay showing 

subcellular localization of ROP43. The protein can be detected in the rhoptries (open arrowhead; colocalizes with 

ROP7) as well as on the parasitophorous vacuolar membrane (filled arrowhead). 
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Figure 4.4: Misregulation of ROP43 in tachyzoites lead to a decreased proliferation rate in vitro.  

A) Quantitation of day 7 plaque sizes in ME49* (empty vector control), ME49-BRP1 and 2 independent clones of 

ME49-ROP43. B) Rate of tachyzoite-to-bradyzoite differentiation compared between ME49* and ME49-ROP43. C) 

Number of parasites per vacuole compared between ME49* and ME49-ROP43 at 20 hpi.  
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Figure 4.5: Overexpression of ROP43 in tachyzoites leads to decreased in vivo proliferation and 

dissemination.  

BALB/C mice were infected with either ME49:ROP43 or ME49* (empty vector control) by IP injections at a dose 

of 100TZ. A) BLI images showing the proliferation and dissemination of the parasites over the course of the 

infection. B) Quantitation of photon emission representing parasite burden. Values represent an average of 3 mice 

per group. C) Survival curve showing mortality over the course of the infection.  
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Figure 4.6: Deletion of EL3 does not alter virulence in Type I RH strain. 

A) Schematic depiction of EL3 deletion by double homologous recombination. Deletion of EL3 was confirmed by 

B) diagnostic PCR and C) Southern blot analysis. D) Mice (n=3) were infected with 100 parasites each and survival 

time determined.  
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Figure 4.7: Tet-inducible expression system.  

The tet-inducible expression system is made up of two modules: A) a plasmid encoding a tet-

repressor under the control of a T. gondii promoter and B) a tet-operator element inserted into a 

different T. gondii promoter to generate a tet-regulatable T. gondii promoter. C) Tet-regulatable 

ROP43 construct was generated by cloning the regulatable promoter from B. into the pGRA1-

ROP43-HA plasmid (Figure 4.3A) to replace the GRA1 promoter. D) The M:TR strain was 

generated by stably expressing the pTub-YFP-TR-CAT plasmid in the Type II background. The 

functionality of YFP-TR was tested in a CPRG assay. 
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Figure 4.8: Tet-induced ROP43 expression does not significantly affect in vivo proliferation.  

A) Western blot analysis showing ROP43 induction with anhydro-tetracycline (ATc). B) IFA showing proper 

expression and localization of ATc-induced ROP43. C) Survival curve showing mortality upon infection with M:TR 

or MT:R-R43i, and with or without ATc treatment.  
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5.0  CONCLUSIONS AND FUTURE DIRECTIONS 

Gene duplication, ranging from small scale single gene duplications to large scale whole genome 

duplication events, has long been posited to be a major tool for differentiation and evolution 

(Ohno, 1970). However, its contribution to shaping the close evolutionary relationships between 

parasites and their hosts is yet to be fully assessed. Important lessons could be learnt about what 

factors, intrinsic and extrinsic, drive gene expansion and the overall impact of such genomic 

structural changes on host-parasite interactions. The focus of the work described here is to 

provide better understanding of the scope and impact of gene duplication on the evolution of the 

apicomplexan parasite T. gondii. Findings from this study expand existing knowledge on the 

nature and depth of tandem gene duplication as well as some specific roles performed by 

duplicated genes in T. gondii, as it relates to the parasite’s ability to successfully adapt to its host 

environments. 

In chapter 2, we used comparative genomics approaches to compare tandem gene 

duplication between the closely related coccidian parasite species, T. gondii, N. caninum and H. 

hammondi. Our focus on tandem gene duplication, as opposed to transpositive duplication, is 

informed by reports that tandemly arrayed genes tend to be products of more recent duplication 

events and may be more informative with respect to divergence of closely related species.  

Increasingly high depth and coverage achievable by next generation sequencing 

techniques make read coverage analysis one of the most sensitive methods for identifying 
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tandemly duplicated loci. We find that gene duplication in these species is more prevalent than 

previously thought and that there is very little overlap between their duplicated gene profiles. 

This is an intriguing finding considering the fact that these species share a high degree of synteny 

among them (Reid et al., 2012). Our results also indicate that the sets of tandemly duplicated 

genes in these species include a significantly large number of genes encoding secretory proteins 

which are presumably involved in direct or indirect interactions with the host. This observation 

evokes the underlying principles of adaptive evolution and points to an important role for the 

host environment in driving evolution by gene duplication. The kinds of genes that are uniquely 

expanded between T. gondii and N. caninum provide interesting hypotheses about the impact of 

duplicated genes on the evolution of virulence and host range. For example, uniquely expanded 

genes in T. gondii are enriched for developmentally regulated genes. While both species are able 

to undergo stage differentiation (Vonlaufen et al., 2004, Goodswen et al., 2013), it is not clear 

whether they are equally capable. It is conceivable that T. gondii would be more reliant on its 

differentiation abilities in establishing such a wide host range, and therefore would be more 

likely to build up or, when they occur randomly, retain genomic modifications which would 

impact its capacity to differentiate from the immunologically vulnerable tachyzoites stage into 

what would be considered to be its principal transmissible stage, the bradyzoite stage. Further 

analysis of the list of uniquely expanded genes between T. gondii and N. caninum will 

potentially provide insights into more of the morphological and physiological differences 

between the two species. 

A large number of the tandemly duplicated genes that were identified turned out to be 

uncharacterized. Characterizing candidate genes with interesting expression and localization 

features using similar approaches as those applied to the MAF1 and ROP42 loci will potentially 
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uncover more interesting functions performed by duplicated genes, and help paint a more 

complete picture of the relevance of gene duplication in the parasite’s evolution. It will also be 

interesting to incorporate host range analysis in order to directly test the hypothesis regarding 

gene duplication and host range evolution. 

In chapter 3, we characterized the expanded locus, EL4, for both structure and function. 

In a parallel study, we had identified locus EL4 to be associated with the host mitochondrial 

association (HMA) trait (Pernas et al., in revision). We confirmed the gene encoded by this locus 

as the parasite factor responsible for HMA and named it mitochondrial association factor 1 

(MAF1). We show that this locus contains two main isoforms of MAF1, and that these isoforms 

differ in their ability to mediate HMA. This locus has evolved differently not only between T. 

gondii and N. caninum, but also among different strains of T. gondii. Copy-number ranges from 

3 in a Type III stain to 7 in a Type I strain. In N. caninum however, only a single divergent copy 

can be identified. Interestingly, this difference extends to the HMA trait mediated by this locus: 

present in T. gondii, absent in N. caninum, and it appears that the presence or absence of HMA is 

not directly related to copy-number but rather to the nature of the isoforms present. It is not clear 

whether HMA was lost in N. caninum or gained in T. gondii, but clearly, the framework for this 

trait is conserved in both species as a single T. gondii MAF1A gene is sufficient to induce HMA 

in N. caninum.  

This work represents the first conclusive identification of the T. gondii gene involved in 

the phenomenon of host mitochondria association. To put in context, ROP2 was initially 

proposed as the parasite factor responsible for HMA but was later found to be dispensable for 

this trait (Pernas et al., 2010). The biological relevance of HMA is still an ongoing debate. A few 

lines of evidence have suggested that this may be a mechanism by which the parasite sequesters 
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essential metabolites from the host cell. Interesting results from our experiments also show that 

there may be an immune response component to the function of this trait. While the evidence 

implicating HMA in immune modulation is relatively new compared to nutrient acquisition, 

there is an increasing amount of evidence highlighting the important role of host mitochondria in 

innate response to infections (reviewed in (West et al., 2011)). Moreover, there is no evidence to 

suggest that these two proposed functions are mutually exclusive, or that either one is more 

predominant.  

Prospectively, a more detailed characterization of HMA in different T. gondii strains in 

different host systems will be required to better understand the full biological relevance of this 

trait. It will also be important to establish a detailed cellular mechanism of HMA in order to 

better understand the full biological impact of the trait. This will require the identification of host 

factors involved in this process. Moreover, it appears that HMA alters the morphology of the 

associating mitochondria and there are currently ongoing experiments in the lab to examine the 

effect of this interaction and the resultant morphological changes on membrane integrity and 

physiology of host mitochondria.  

Lastly, chapter 4 describes preliminary characterization of the expanded locus EL3. This 

locus contains a cluster of developmentally regulated rhoptry genes, three of which had been 

previously annotated in the T. gondii reference genome as ROP42, 43, 44. We identified an open 

reading frame encoding a fourth paralog which we referred to as ROP42L1. Our data indicate 

that there are more copies than the four predicted, and that copy-number varies among strains. 

Tandemly duplicated loci are notoriously difficult to assemble correctly by genome assembly 

programs and usually lead to scaffold breaks with loss of sequence data (Carlton et al., 2007, 
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Peixoto et al., 2010). This has been a recurring theme for most of the expanded loci we have 

identified and will need to be addressed in order to get a better picture of the genome structure. 

Results from our initial functional analysis of the ROP42 family suggest a role in 

regulating proliferation, perhaps during stage differentiation. First, it will be important to 

determine whether this is true for all paralogs since only ROP43 has been tested. Second, 

deletion of the ROP42 locus in a bradyzoite-prone Type II or III strain will be more useful for 

evaluating loss-of-function effects of the locus. Using an inducible expression system as has 

been described for ROP43 will allow for controlled expression in different developmental stages 

in order to better investigate the relevance of stage-specific expression. 

Taken together, this research shows that gene duplication is a major distinguishing 

feature between the highly successful parasite T. gondii and its close relatives such as N. 

caninum and H. hammondi. We present structural and functional characterization of two 

examples of duplicated gene loci that have evolved differentially between these species. With 

these examples, in addition to some previously reported tandemly duplicated loci with significant 

impact on parasite biology (Peixoto et al., 2010, Reese et al., 2011b), it is becoming apparent 

that duplicated genes may provide explanations for some of the important physiological 

differences between these species. This work raises the profile of gene duplication as a tool for 

differentiation and evolution and provides the basis for further analysis of the roles of duplicated 

genes in the evolution of T. gondii. 
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6.0  MATERIALS AND METHODS 

6.1 PARASITE STRAINS AND HOST CELLS MAINTENANCE 

All parasite strains used in this study were maintained by regular passage of tachyzoites from 

freshly lysed human foreskin fibroblast (HFF) onto new HFF monolayers and grown at 37
o
C in 

5% CO2. HFF and NRK-mitoRFP cells (a kind gift from Dr. Jennifer Lippincott-Schwartz, NIH, 

Bethesda, MD) (Mitra et al., 2010) were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% FCS, 2 mM glutamine, and 50 µg/mL each of penicillin and 

streptomycin 

6.2 SEQUENCE READ ALIGNMENTS 

Raw sequence reads for T. gondii strains GT-1, ME49 and VEG were downloaded from the 

NCBI trace archive in fasta format. T. gondii and N. caninum reads were aligned to reference 

genomes using BLAT with the following settings: -fastMap -minIdentity=95 -minScore=90 

(Kent, 2002). Following conversion of the BLAT output file (psl format) to SAM format using 

the psl2sam.pl script within the BlAT distribution, the SAM file was converted to a sorted BAM 

file using Samtools (Li et al., 2009). Sequence coverage was determined in each 500 bp window 

using coverageBed, distributed with BEDtools (Quinlan et al., 2010). Raw H. hammondi 
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sequence reads were aligned to the assembled contigs for H. hammondi strain HhCatGer041 

using bowtie2 (Langmead et al., 2012) and sequence coverage was determined in 500 bp 

windows across each contig using Samtools mpileup (Li et al., 2009) and a custom Perl script.  

 Output was uploaded in R statistical software as well as a locally-run genome browser to 

generate whole chromosome and locus-specific plots and to facilitate manual curation of the 

expanded loci. For locus-specific plots data for each strain were normalized to the local sequence 

coverage for that strain of the 20 Kb upstream of the putatively expanded locus. Reads for all 

three strains were aligned to the ME49 genomic assembly (version 7.0; ToxoDB).  

6.3 COVERAGE ANALYSIS, CURATION AND EXPRESSION ANALYSIS  

Genome coverage plots were generated using the data above to construct chromosome-specific 

files that linked directly to ToxoDB or our own in-house genome browser. For visual inspection, 

peaks of coverage that were at least 3-fold above background were curated as follows. We 

removed loci containing highly repetitive sequence (such as di- and tri-nucleotide repeats). To 

begin determining whether the locus was tandemly expanded or if the increased sequence 

coverage was due to the presence of an identical (or nearly identical) gene somewhere else in the 

genome, we parsed the BLAT output to identify sequence reads that mapped to different 

chromosomes or to a location on the same chromosome that was at least 25 kb away from the 

putatively expanded locus. For the remaining loci the chromosomal region was examined for the 

presence or absence of predicted genes using ToxoDB. For those regions containing predicted 

genes in T. gondii or N. caninum, we examined the current annotation of the locus in ToxoDB 

and our own genome browser and collected evidence for gene duplication based on the 
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occurrence of multiple predicted genes in the same locus with high identity. For the curated 

expanded gene sets we performed enrichment studies for a variety of features, including the 

number of predicted exons and the presence/absence of a predicted signal peptide. PFAM 

domain analyses on predicted proteins from each locus were run locally. 

6.4 COMPARATIVE GENOMIC HYBRIDIZATION 

For each of the 6 strains tested, parasites were grown in HFFs, released from host cells by needle 

passage, washed 1X by centrifugation at 800 x g, and filtered through 5.0 µm PVDF syringe 

filters (Millipore). Genomic DNA was harvested from purified parasites using DNAzol 

(Invitrogen) according to the manufacturer’s protocol and treated with RNase A to remove RNA 

contamination. After confirmation of purity by gel electrophoresis, genomic DNA was sheared 

as follows: 1 µg of gDNA was added to 750 µl of shearing buffer (TE pH 8.0 and 10% glycerol) 

and 1 µl of 20 µg/µl glycogen in a pre-chilled nebulizer (Invitrogen) on ice. Nebulization was 

performed at 40 psi for 3 min using pressurized nitrogen. The size range of the resultant gDNA 

fragments was confirmed to be 200-600bp by gel electrophoresis. DNA fragments were 

precipitated using 100% isopropanol. Biotin-labeling of DNA fragments was performed using 

the BioPrime Array CGH Genomic Labeling System (Invitrogen) according to the 

manufacturer’s protocol. The 10X dCTP nucleotide mix was used with Biotin-dCTP. 

Purification of labeled fragments was performed with the BioPrime purification module. For 

each strain, 2µg of labeled DNA was hybridized to the Affymetrix ToxoGeneChip.  
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6.5 COMPARATIVE GENOMIC HYBRIDIZATION DATA ANALYSIS 

Raw Affymetrix data files for each strain were analyzed in R statistical software using the “affy” 

module (cran.us.r-project.org). Individual probe-level data were normalized using the “constant” 

method and raw intensity values were exported using the expression chip definition file for the 

ToxoGeneChip (Bahl et al., 2010). For each probe sequence from the T. gondii Affymetrix 

GeneChip, the number of occurrences of that 24 bp sequence in the raw genomic sequence reads 

for T. gondii GT1, ME49B7 and VEG was calculated, and probes not present in a particular 

strain were not used in subsequent calculations. This resulted in some strains having no useful 

probes for a given expanded locus (e.g., EL48, Figure 2.9). To determine whether a locus 

showed significantly higher hybridization intensity, which is indicative of locus 

duplication/expansion, data from all 6 strains were pooled and compared to data from the single-

copy gene AMA1 using a Bonferroni-corrected Students’ T-test (Dunn, 1961). For display 

purposes and visual inspection of between- and within-lineage variation in CGH hybridization 

intensity, values for each probe were mean-centered.   

6.6 IDENTIFICATION OF LOCI WITH STRAIN-SPECIFIC COPY-NUMBER 

VARIATION USING CNV-SEQ 

We used CNV-seq (Xie et al., 2009) to compare sequence coverage at the 53 curated loci for all 

3 T. gondii strains. In addition to default settings we used the following parameters: --genome-

size=65000000 --minimum-windows-required=1. CNV-seq empirically calculated the minimum 

window size based on sequence coverage for each strain, which was 6158 bp for GT1 versus 
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ME49B7 and 6607 bp for VEG versus ME49B7. Copy-number variation was determined at 

significance threshold of P<0.0001.  

6.7 HIGH MOLECULAR WEIGHT SOUTHERN BLOTTING  

Genomic DNA was isolated from 6 T. gondii strains (2 representative strains from each of the 3 

clonal lineages: Types I, II and III). For each strain 20 µg of genomic DNA was digested 

overnight (EL3, BspEI; EL30, BglI; EL45, NotI; EL4, ScaI and AMA1, SacI) and resolved by 

Pulsed Field Gel Electrophoresis using the CHEF-DR III system (Bio-Rad; Run parameters: 6.0 

kV, 120°, 1.3 sec for 8 hrs, 2.7 sec for 7 hrs). Resolved fragments were transferred onto nylon 

membrane (BIO-RAD) and probed with DIG-labeled (Roche), locus-specific probes made from 

PCR-generated DNA fragments as per the manufacturer’s protocol. Primers used for generating 

locus-specific probes are listed in Table 6.1 

6.8 GENERATION OF EXPRESSION CONSTRUCTS AND TRANSGENIC 

PARASITES 

Chapter 3: For generation of an N-terminally hemagglutinin (HA) tagged MAF1 expression 

construct (pMAF1), the promoter (~1.5kb sequence upstream of start codon) was cloned into the 

pGra-HA_HPT vector (Coppens et al., 2006) at the HindIII and NsiI sites. For the reverse 

primer, HA-tag was fused immediately downstream of the region encoding the predicted signal 

peptide. The coding region downstream of the signal peptide of MAF1 up to the stop codon was 
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cloned into the NsiI and PacI sites. All primers used are listed in Table 6.1. . For pMAF1B, the 

coding sequence for MAF1B was amplified from GT1 cDNA and cloned downstream of the 

TGGT1_053770 promoter on the pMAF1A plasmid, replacing the MAF1A coding sequence. 

HA-tag was introduced immediately after the predicted signal peptide using the SOE-PCR 

technique (Heckman et al., 2007). Transgenic parasite lines were generated by transfecting 

TGME49Δhpt (MΔLuc) and NC-1Δhpt parental strains with 50 µg each of HindIII-linearized 

pMAF1A or pMAF1B. Stable-expression lines were isolated by selection in MPA/Xanthine 

followed by limiting dilution in 96-well plates.  

Chapter 4: For promoter luciferase constructs used in promoter-activity assays, ~1000bp 

of upstream sequences (i.e ~-1000 to +3) of individual paralogs were PCR-amplified from ME49 

and VEG genomic DNA and cloned into the pENTR/D-Topo vector (Invitrogen) and 

subsequently transferred into the pDest-firefly vector by LR cloning. ROP43 misregulation 

construct was generated by PCR-amplification of ROP43 coding region from genomic DNA 

followed by cut-and-paste cloning into the pGRA1-HA-HPT vector using the restriction 

enzymes Nsi I and Nco I. Parental strains were transfected with 50ug of the plasmid and selected 

in MPA/Xanthine medium followed by limiting dilution. Primers used for cloning are listed in 

Table 6.1. 

6.9 IMMUNOFLUORESCENCE ASSAYS AND CONFOCAL MICROSCOPY 

Host cells were seeded on 12mm coverslips in 24-well plates containing coverslips and grown to 

about 80% confluency. NRK-mitoRFP cells were infected with N. caninum or T. gondii strains 

expressing GFP and incubated for 8hrs. MitoTracker staining was performed as follows: growth 
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medium on HFF monolayer was replaced with DMEM containing MitoTracker (Red CMXRos -

Invitrogen) at a 30nM concentration and incubated for 30 min at 37
o
C. Cells were then washed 

with PBS, infected with parasites in prewarmed DMEM and incubated for 4hrs at 37
o
C. After 

incubation the infected cells were washed with PBS, fixed with 3% PFA in PBS for 15 min, and 

blocked in PBS containing 5% BSA and 0.2% Triton-X100 for permeabilization. For NRK-

mitoRFP infected cells, coverslips were fixed with 3% PFA and either mounted directly or 

Hoechst-stained prior to mounting followed by visualization. Selective permeabilization of host 

cell plasma membrane with digitonin was performed as described elsewhere (Beckers et al., 

1994). Infected cells were grown for 24hrs and the most consistent results were obtained with 

0.002% of digitonin. Immunostaining was performed using rat monoclonal anti-HA (3A10 clone, 

Roche) at 1:1000 for HA-tagged MAF1 and mouse monoclonal anti-SAG1 antibody at 1:2000 

for SAG1. Images were captured on the FV1000 Olympus confocal and processed with ImageJ. 

6.10 WESTERN BLOT ANALYSIS 

Parasites were filtered away from host cell debris and lysed in 1X SDS lysis buffer. Proteins 

were resolved by SDS-PAGE, transferred onto nitrocellulose membrane and blocked for 1 hour 

in 5% (w/v) milk in TBS-T. Primary antibody incubation was performed in blocking buffer for 

45min followed by 3 washes in TBS-T. Anti-HA and anti-MAF1 antibodies were used at 1:1000 

while anti-SAG1 was used at 1:2000. Secondary antibody incubation was performed with 

Horseradish peroxidase-conjugated secondary antibodies to the respective primary antibodies, in 

blocking buffer for 45min. Bands were visualized with SuperSignal West Pico chemiluminescent 

substrate (Thermo Scientific). Densitometric analysis was performed using ImageJ. 
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6.11 IN VIVO CYTOKINE INDUCTION ASSAY 

Tail-blood for Day 0 was collected immediately prior to infection. Four mice per group were 

infected with either empty-vector control (EV) or MAF1A-complemented ME49 (MAF1A) at a 

dose of 10
5
 parasites/mouse via intraperitoneal injection. At each subsequent sampling time-

point, parasite burden was measured in each mouse using bioluminescence imaging to confirm 

successful infection, after which mice were tail-bled to collect about 100 µl of whole blood. The 

blood was allowed to clot for 1 hour at 4
o
C followed by microcentrifugation at 10,000 rpm for 10 

min at 4
o
C. The supernatant (serum) was collected and stored at -80

o
C. Samples were thawed on 

ice immediately prior to measurement of cytokine levels on the Luminex mouse 26plex platform 

(Millipore, USA; service provided by the Luminex Core facility at the Hilman Cancer Center, 

University of Pittsburgh). 

6.12 DUAL LUCIFERASE ASSAY 

Promoter activities were tested by dual luciferase assay (Promega) as described elsewhere 

(Behnke et al., 2008). Briefly, intracellular parasites were syringe lysed and 2x10
7 

each 

transfected with a combination of 40µg of promoter-firefly-luciferase plasmid and 20µg of 

pTub-renilla-luciferase plasmid. After electroporation, each sample was split equally into 2 T25 
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flasks seeded with HFFs and incubated for about 8 hours to allow parasites to recover and 

invade. For each transfection, the medium in one flask was replaced with bradyzoite induction 

medium (Buchholz et al., 2011) while the medium on the other was replaced with regular growth 

medium. Flasks were then incubated at 37
o
C for 48 hours. After incubation, cells were scraped, 

pelleted and resuspended in 100µl of 1X lysis buffer. To measure luciferase activity, 100µl of 

dual luciferase reagent was added to 20µl of each sample and light readings taken on the Centro 

LB 960 Microplate Luminometer. Firefly luciferase activity was first measured followed by 

Renilla luciferase activity. Three reactions were setup for each extract. Firefly luciferase readings 

were normalized to Renilla luciferase readings to account for variability in transfection 

efficiencies and then compared between bradyzoite-induced samples and tachyzoite samples. 

6.13 IN VITRO GROWTH ASSAYS 

Plaque assays were performed in 12-well plates seeded with HFFs. Intracellular parasites were 

syringe-lysed and inoculated onto 1 week old HFF monolayers at 500 parasites per well. Infected 

plates were incubated at 37
o
C for 7 days undisturbed. Each infected well was washed with PBS, 

fixed with 100% ethanol for 5min and stained with crystal violet for another 5min. Wells were 

subsequently washed 3 times with PBS and air-dried. Plaques were visualized with an inverted 

microscope and images taken at 20X magnification. Plaques sizes (area of lysed host cells) were 

measured with ImageJ. To compare rates of bradyzoite differentiation, 12-mm coverslips were 

seeded with HFFs in 24-well plates and infected with freshly syringe-lysed parasites at a 

multiplicity of infection (MOI) of 0.5 and incubated at 37
o
C for 4 hours to allow parasites to 

invade. The media was then replaced with bradyzoite
 
induction media and incubated at 37

o
C for 
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24, 48 or 72 hours, after which the cells were fixed with 3% paraformaldehyde, permeabilized 

with 0.2% Triton-100X and stained for BAG1 expression. Mouse anti-BAG1 antibodies was 

donated by Dr. Peter Bradley, UCLA. The percentage of BAG1-positive vacuoles were 

determine for a total of 5 randomly selected fields per coverslip and 2 coverslips were analyzed 

per strain for each time point. To compare intracellular multiplication rates, 24-well plates 

containing 12-mm coverslips were seeded with HFFs and infected with freshly syringe-lysed 

parasites at an MOI of 2. After 20 hours of incubation, cells were fixed, permeabilized and 

stained for SAG1, which outlines individual parasites. For 10 randomly selected 40X fields, the 

number of vacuoles and the number of parasites per vacuole were counted. Two coverslips were 

analyzed per strain.  

6.14 TET-REGULATABLE EXPRESSION 

pTub-YFP-TR-CAT and pRPS13(IV)-LacZ plasmids were obtained from Dick Schaap (van 

Poppel et al., 2006). In order to generate the M:TR strain, 50ug of pTub-YFP-TR-CAT was 

linearized by NotI digest and transfected into ME49Δhpt:LUC (MΔ:Luc). Transfectants were 

selected by incubation in 20uM chloramphenicol in cDMEM for 4 passages followed by limiting 

dilution in a 96-well plate. Clones which were YFP-positive were selected and tested for TetR 

activity. To generate the pRPS13(IV)-ROP43 construct, the RPS13(IV) promoter was PCR-

amplified from the pRPS13(IV)-LacZ plasmid and cloned into the pGRA1-ROP43-HA plasmid 

in place of the GRA1 promoter. This places the RPS13(IV) promoter upstream of the ROP43-

HA coding sequence. The primers used for cloning are listed in Table 6.1.  
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6.15 CPRG ASSAY 

Ten million tachyzoites of either MΔ:Luc or M:TR were each transfected with 30ug of 

pRPS13(IV)-LacZ. Five million transfected parasites were inoculated onto HFF seeded in a 24-

well plate and incubated with or without 1ug/ml ATc in cDMEM for 24 hours. Wells were 

washed once with PBS and 300ul of CPRG assay buffer (100mM Hepes, 1mM MgSO4, 1% 

Triton 100-X, 5mM dithiothreitol) added. The plate was incubated at 50
o
C for 1 hr. Lysates were 

clarified by microcentrifugation at 10,000RPM for 5min. 50ul of clarified lysate from each 

sample was diluted to 200ul with CPRG substrate buffer (1mM CPRG in assay buffer) and 

incubated for 16hrs at 37
o
C for substrate conversion. Absorption at 562nm was measured using a 

microplate reader. 

6.16 ANIMAL EXPERIMENTS  

All mice experiments were performed with 4-8wk old BALB/C mice. All animal procedures in 

this study meet the standards of the American Veterinary Association and were approved locally 

under IACUC protocol #12010130. 
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Table 6.1: Primers used in this study 

Forward (5’-3’) Primer Reverse (5’-3’) Primer Purpose 

CCGgctagcCTACCAGTGAGAGGGCG

AAG 

CCCaagcttCACCTCTGGCTTGACTCTC

C 

Amplify left flank for 

EL3 knockout 

TTActgcagCGAAGTGATTCGAGTGA

CGA 

ATAgcggccgcCGTTGGGAAGAAGAGA

CGAG 

Amplify right flank for 

EL3 knockout  

TGTCTCTGTGGATCATCTATTCGT AAACGCACTACTAAAGCGAAACTT Query left flank for EL3 

knockout 

GTAGTCCGGGACGTCGTACGGGTA

GA 

GCAACCGTTTTGATAGATATAGGC Query right flank for 

EL3 knockout 

CCGatgcatATGA GGACGTCTGT 

TGCCCTGTT 

GTCCAATTTccatggAACTTGGGTTTCA

CCATTCCCTTGAACG 

Cloning/Tagging and 

Southern blot probe for 

EL3 

TCCAAGCTGCAAGCCATGACGTC AGGCTTCGCTCGGTGAGGTCGGCTT Verify BspEI site at left 

flank of EL3 

CTACACGCAGTTCTGTGTTAGACA

C 

TTGCGTGGCTGTTGCATGCGTG Verify BspEI site at 

right flank of EL3 

TATTGAACTCCTACGTCGTTGTGT TATCCGCTCACAATTCCACACCGTGC

AATCTTATGTGAAAATAG 

Amplify left flank for 

EL6 knockout 

CTATTTTCACATAAGATTGCACGGT

GTGGAATTGTGAGCGGATA 

GGGTAAATCGAGTGATCTAGGAGAC

CACCATCACCACGACTACA 

Amplify HPT cassette 

for EL6 knockout 

TGTAGTCGTGGTGATGGTGGTCTC

CTAGATCACTCGATTTACCC 

ATAAGAGGGGAGTTGCACAGTTAC Amplify Right flank for 

EL6 knockout 

AGTTGGCACATATTCTAGTGCTGA AAGGTTTCGTGCTGATCATAACTT Query left flank for EL6 

knockout  

GAACTACGGTGTTTGTTCCTTTCT ATGCCTTTGGTCTTGATCTAATGT Query right flank for 

EL6 knockout  

AAACGCTCTAGGACAGATGCTC TATCCGCTCACAATTCCACACGCTAT

CAAGAGACACGAACAG 

Amplify left flank for 

EL23 

CTGTTCGTGTCTCTTGATAGCGTGT

GGAATTGTGAGCGGATA 

GAAAATATGTGTGGCAGCTCTGCCA

CCATCACCACGACTACA 

Amplify HPT cassette 

for EL23 knockout 

TGTAGTCGTGGTGATGGTGGCAGA

GCTGCCACACATATTTTC 

CTGGGGACTTCACTTACAGGAC Amplify right flank for 

EL23 knockout 

CAGTTTTACGGGTTCTTCGATTAT ACAAGAAAGTCATCAGCGTTGTAG Query left flank for 

EL23 knockout 

GCGTATGACATCCACAGAACTTAC GGTCGAGAGGACAGAGTTAGTAGC Query right flank for 

EL23 knockout 

GATTCCCTACCGCAACTACATGG TGGAGACAGCTGACAACCAG Southern blot probe for 

EL30 

GTTCatgcatATGGCCTTCTTCAGCAC

CAGACGT 

TGGCccatggCGCCGAAGAGGCATCTT

GCAGCTGGCGAAT 

Southern blot probe for 

EL45 

CCGAAGTTGATGGCACATTATACC

GG 

CCGGCGAAGTAGCAGCCTCCTCCTA

G 

Southern blot probe for 

AMA1 

CACCaagcttAGGGAT ACGAACAACT 

CGCTTATTAA G 

GTCttaattaaTCAGTCCAGCATGCTAGC

CAGATACG 

Southern blot probe for 

EL4 (MAF1) 
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Restriction sites are in lowercase, and nucleotides 5’ to restriction sites are to promote restriction 

enzyme recognition.  Regions used for splicing by overlap extension PCR are underlined. 

 

CAGCTTCCTGCACTCTCTCTGAGG CGAAACAGTACAGACATATGACC Verify ScaI site at left 

flank of EL4 

CGAACAGGTCGAACGCGTTGTGCG

AG 

TGGCAGCAAGATGGACATGCAC Verify ScaI site at right 

flank of EL4 

CCaagcttCTGCGACGTGATCGTGGCA

A 

CCatgcatCGCGTAGTCCGGGACGTC

GTACGGGTAACCGGCGGTCAG 

Primers for cloning N-

term HA-tagged 

pMAF1A; promoter 

with signal sequence 

CCatgcatGGTGGTCTAGGCAGTCAG

ATGTCGG 

CCttaattaaTC 

AGTCCAGCATGCTAGCCAG 

Primers for cloning N-

term HA-tagged 

pMAF1A; region 

downstream of signal 

sequence 

atgcatATGTGG CGCATCTGGA 

GATGCC 
GTCttaattaaTCA 

GTCGCCTTGCGGAAACTTGTACTTCC 

Primers for cloning 

MAF1B from cDNA 

CACCaagcttAGGGAT ACGAACAACT 

CGCTTATTAA G 

TCGCGTAGTCCGGGACGTCGTACGG

GTAACCGGCGGTCAGAGCGCCCAGC 

Amplify MAF1A 

promoter from pMAF1A  

CGACGTCCCGGACTACGCGATGCA

TGGTGGTCTAGGCAGTCAGATGTC

GG 

GTCttaattaaTCAGTCGCCTTGCGGAAA

CTTGTACTTCC 

Amplify MAF1B ORF 

for pMAF1B (N-term 

tagged MAF1B under 

MAF1 promoter 
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APPENDIX A 

 

 

Figure A1: Transmission electron micrographs showing HMA in N. caninum expressing T. gondii MAF1A. 

Asterisks show host mitochondria associated with the parasitophorous vacuolar membrane. 
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Figure A2: Transmission electron micrographs showing HMA in T. gondii Type II ME49 strain expressing T. 

gondii MAF1A from a Type I strain. Asterisks show host mitochondria associated with the parasitophorous vacuolar 

membrane. 
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Figure A3: Immunofluorescence assays of T. gondii RH parasites transfected with GRA1 promoter-driven 

HA-tagged constructs for each of the indicated loci.  Parasites were stained with anti-HA as well as the indicated 

secondary antibody to illustrate co-localization (or lack thereof) with the indicated marker.  Images for locus EL3 

were taken using epifluorescence microscopy and the rest of the images were taken with a confocal microscope.  

Scale bar: 5 µm  
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