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ABSTRACT 

During hematopoiesis the transcription factor E47 plays two important roles. First, E47 promotes 

lymphoid lineage development. Second, E47 regulates proliferation of LT-HSCs, bone marrow 

cells uniquely capable of long-term self-renewal and multilineage reconstitution. Because 

hyperproliferation of LT-HSCs can be detrimental to its function, LT-HSC proliferation must be 

tightly regulated.  We have previously shown that E47 directly activates the cell cycle inhibitor 

p21 in LT-HSCs. However, the biological relevance of the E47-p21 pathway to LT-HSC 

function in vivo has not yet been examined. Here, we used mice with reduced gene dosage in 

E47 and p21 individually (E47het or p21het) versus in tandem (E47hetp21het) and show that 

E47hetp21het LT-HSCs exhibit hyperproliferation during homeostasis and under transplantation 

stress. In serial adoptive transfers that rigorously challenge self-renewal, E47hetp21het LT-HSCs 

dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 

pathway in preserving LT-HSC self-renewal under repopulation stress. Transient numeric 

recovery of downstream progenitors enabled production of functionally competent myeloid cells 

but not lymphoid cells as common lymphoid progenitors (CLPs) were decreased and peripheral 

lymphocytes virtually ablated. Thus, we demonstrate a developmental compartment-specific and 

lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSC and lymphoid 

lineage cells under hematopoietic repopulation stress in vivo. It is likely that other mechanisms 

exist by which E47 regulate LT-HSC proliferation. Therefore, we also examined if p15PAF is a 

 iv 



direct E47 target gene since E47-deficient and p15PAF-deficient mice share very similar early 

hematopoietic defects during homeostasis. We show that E47 can activate p15PAF promoter-

mediated transcription in a model cell line. Unexpectedly, analysis of transcript levels show a 2-

fold increase in E47-deficient progenitors compared to WT, while protein levels were 

comparable. These findings suggest that E47 is a transcriptional regulator of p15PAF expression 

that is part of a broader network of transcriptional and post-translational mechanisms that 

regulate p15PAF expression in primary hematopoietic progenitors. Collectively, these studies 

demonstrate the importance of the E47-p21 pathway in LT-HSC self-renewal and lymphoid 

lineage development under transplantation stress and identify p15PAF as a novel E47 target gene. 

These findings might provide mechanistic insights into preserving and enhancing LT-HSC 

function for improved therapeutic hematopoietic stem cell transplantation.   
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1.0  INTRODUCTION 

1.1 HEMATOPOIESIS 

Hematopoiesis (Figure 1-1) is the process by which more than ten different mature blood cells 

with varying and diverse functions is produced (1). The blood is a highly regenerative tissue such 

that ~3x105 erythrocytes and ~3x104 white blood cells are estimated to be produced every second 

during steady-state conditions (2). While hematopoiesis is capable of sustaining blood cell 

production during steady-state conditions, it is also a quite dynamic process such that blood cell 

output can be rapidly increased in response to emergency conditions like unexpected blood loss 

or during acute and chronic infections (2).  

In adults, hematopoiesis occurs in the bone marrow where hematopoietic stem cells 

HSCs) undergo a defined differentiation process that is hierarchical in nature. Current models of 

hematopoiesis indicates a progressive loss of multi-lineage potential as self-renewing, multi-

potent HSCs transition to non-self-renewing, lineage-restricted progenitor cells that produce  

mature, terminally differentiated blood cells (3-5). Long-term repopulating hematopoietic stem 

cells (LT-HSCs) reside at the apex of the hematopoietic hierarchy as these cells are uniquely 

capable of self-renewal allowing for long-term reconstitution of the hematopoietic system (6, 7). 
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Figure 1-1. Schematic Diagram of Adult Hematopoiesis 

Long-term self-renewing HSCs are at the top of a hierarchy of multiple progenitor cell stages 

that eventually generates mature cells of all blood lineages. Shown here is murine hematopoiesis 

as currently defined. Distinct hematopoietic stem and progenitor cell subsets have been described 

by correlating surface marker expression with functional properties. Abbreviations used are: LT-

HSC, long-term  hematopoietic stem cell; ST-HSC, short-term  hematopoietic stem cell; MPP, 

multipotent progenitor; LMPP, lymphoid-myeloid primed MPP; ELP, early lymphoid 

progenitor; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; GMP, 

granulocyte–macrophage progenitor; MEP, megakaryocyte–erythrocyte progenitor; CDP, 

common dendritic progenitor; MDP, monocyte–dendritic cell progenitor; NK, natural killer cell.  

Findings from new studies are continuously refining this model. Figure is modified from original 

and reprinted with permission from Cold Spring Harbor Laboratory Press, Copyright 2012. 

Rieger MA and Schroeder T, 2012 Cold Spring Harb Perspect Biol 2012;4:a008250.  
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LT-HSCs differentiate into short-term HSCs (ST-HSCs), which have limited to no self-

renewal potential resulting in the ability to reconstitute the immune system short-term. ST-HSCs 

can differentiate into non-renewing multipotential progenitors (MPP) which still capable of full 

multi-lineage reconstitution (3, 4). MPPs can generate common myeloid progenitors (CMP) 

which do not have lymphoid potential, but can generate myeloid, megakaryocytic and erythroid 

lineage cells through differentiation into lineage-restricted granulocyte/macrophage progenitors 

(GMP) and megakaryocytic/erythrocytic progenitors (MEP) (4, 8).  As MPPs lose 

megakaryocyte/erythrocyte potential they differentiate into lymphoid-primed multipotent 

progenitors (LMPP) that retain full lymphoid and myeloid potential characterized by upregulated 

expression of the flk2/flt3 cytokine receptor (5). LMPPs can generate myeloid precursors via 

differentiation into GMPs. LMPPs can also generate lymphoid precursors via differentiation into 

common lymphoid progenitors (CLP) where IL-7Rα is expressed on the cell surface indicating 

lymphoid lineage specification as CLPs have very little to no myeloid potential (3, 5, 9). In 

addition, MPPs or LMPPs can emigrate from the bone marrow and seed the thymus 

differentiating into early thymic progenitors (ETP) to generate T lineage cells (10-12). The 

model of hematopoiesis presented here reflects current state of research where most of the work 

done is in the murine hematopoietic system. This model will most likely change to incorporate 

new findings (1). For example, new studies are aimed at identifying factors such as long non-

coding RNAs (13-17), microRNAs (18-23), and epigenetic factors (24-28), that are involved in 

the regulation of hematopoiesis. In addition, new studies are focused on understanding whether 

all HSCs have equal potential to give rise to all downstream lineages or whether heterogeneity in 

HSCs exist such that specific HSCs are already primed for commitment towards a specific 

lineages only (29-31). Another emerging theme is based on findings that LT-HSC can directly 
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respond to TLR agonists and interferons which are produced during chronic inflammation (32-

34). Therefore, new studies are aimed at examining the effects of chronic inflammatory diseases 

to long-term HSC self-renewal and HSC function in vivo. Thus, hematopoiesis is an ideal model 

system for understanding the molecular mechanisms involved in tissue regeneration, 

developmental plasticity and lineage fate decisions (35). 

 

1.2 LONG-TERM HEMATOPOIETIC STEM CELLS (LT-HSCS) 

1.2.1 A Brief Historical Perspective  

The idea of a common precursor or what is now recognized as HSCs, from which all blood cells 

originate, was first postulated by A. Maximow in 1909 (36). A few decades later`, Lorenz et. al 

discovered that radiation lethality is primarily due to bone marrow failure and this finding was 

the first tangible evidence for the existence of HSCs. Lorenz et. al showed that lethal effects of 

radiation-exposure can be prevented upon injection of spleen or bone marrow (BM) cells from 

unexposed donors in mice and guinea pigs (37). Seminal work by Till and McCulloch 

established the spleen colony forming assay, a functional assay establishing the concept that 

HSCs are the only cell population in the BM uniquely capable of multi-lineage differentiation 

and self-replication (7, 38, 39). The spleen colony forming assay involves transplantation of 

limiting number of syngeneic bone marrow cells into recipient mice resulting in the formation of 

colonies, macroscopic clusters of cells deriving from a single progenitor, which can be readily 
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counted in the recipients’ spleen after 7-14 days. Although it has now been shown that the cells 

that actually form colonies are not HSCs per se (40), the concept of using experimental assays to 

retrospectively identify HSCs through its function was a major technical advancement. To date, 

functional assays that establish [1] long term self-renewal and [2] multilineage reconstitution still 

remain as the gold standard in identifying long-term hematopoietic stem cells from other 

multipotent progenitor cells. Since then, technical developments especially over the last 30 years 

in the fields of genetics, molecular biology, mouse transgenics, monoclonal antibody generation, 

and flow cytometry technology as summarized in (41) and (42), have significantly advanced 

HSC research.  

1.2.2 Identification of Long-Term Hematopoietic Stem Cells; Phenotypic and Functional 

Approaches  

1.2.2.1 Phenotypic Identification of Long-Term Hematopoietic Stem Cells  

 

The use of antigen-specific monoclonal antibodies conjugated to fluorophores, in combination 

with fluorescence-activated cell sorting (FACS), has become the standard technique used in 

isolating certain cell populations in the bone marrow prospectively including LT-HSCs (43), 

multipotent progenitors (5) and various other immune cell populations (44). Using these surface 

markers, research over the last ten years has seen the field progress from the isolation of cell 

populations to the isolation of single cells such that mechanistic studies are focused on 

examining individual HSCs and not on a highly heterogeneous population of cells (31, 45, 46). 

By extension, the use of a defined set of surface markers to prospectively isolate and/or identify 

a specific cell population has also been used in other tissues. Specific examples include studies in 
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gallbladder (47), bronchiolar (48) and cancer stem cells (49), as well as studies involving 

hepatocyte progenitor cells (50) and liver regeneration studies (51).  

 

In the murine bone marrow, all progenitor cells including LT-HSCs can be found in the 

LSK (LSK: Lin-Sca-1+ c-kit+) fraction. These cells are characterized as negative for expression 

of all lineage markers (Lin-: lacking expression of NK1.1, Ter119, Gr-1/Ly6G, CD11b/Mac1, 

CD11c, CD3, CD4, CD8, CD19, CD45R/B220) while expressing stem cell antigen-1 (Sca-1) and 

the c-kit tyrosine kinase receptor for stem cell factor (52, 53).  However, the LSK fraction of the 

bone marrow is a highly heterogeneous population of progenitor cells consisting mostly of MPPs 

and short-term HSCs; with LT-HSCs representing only a very small fraction ( >10%) of cells in 

the LSK compartment (43, 54). Additional markers have been used to enhance the purity of LT-

HSCs within the LSK fraction.  The absence of expression of tyrosine kinase receptor flk2/flt3 

differentiates total HSCs, containing both LT-HSCs and ST-HSCs (total HSCs: flk2- LSK), from 

MPPs within the LSK compartment (MPP: flk2+ LSK) (5, 55). More recently, the inclusion of 

SLAM (signaling lymphocyte activation molecule) family members CD150, CD48, CD229 and 

CD244 in the antibody panel to identify HSCs via surface marker phenotype has further 

improved enrichment for LT-HSCs within the LSK fraction (43, 54). LT-HSCs are in the 

CD150+CD48- compartment of LSKs and are negative for CD244 expression Differential 

expression of CD229 further subdivide LT-HSCs into two fractions, HSC-1 (CD229-) and HSC-

2 (CD229+), wherein HSC-1 cells are more quiescent and have greater self-renewal potential 

than HSC-2 cells (54). In addition, analysis of CD150 expression together with flk2/flt3 

expression has allowed for the phenotypic differentiation of LT-HSCs (LT-HSC: CD150+ flk2- 

LSK) from ST-HSCs (ST-HSC: CD150- flk2- LSK) and MPPs (MPP: CD150- flk2+ LSK) within 
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the LSK compartment (56). Another strategy utilized to enrich for HSCs is via staining of murine 

bone marrow with fluorescent dyes such as Hoechst 33342 (57, 58). A rare group of bone 

marrow cells, termed as side population (SP) cells, does not retain Hoechst 33342 due to efflux 

of the fluorescent dye mediated by the ATP-binding cassette (ABC) family of transporters in 

these cells (59, 60). SP cells identify a group of cells enriched for HSCs, which is comparable to 

the LSK fraction in the murine bone marrow (61).  Thus, the combinatorial expression of a 

defined set of surface markers can prospectively identify LT-HSCs amongst other cells in the 

murine bone marrow.  

 

Similar to mice, enriched population of human HSCs can be found in the lineage negative 

fraction of cells from adult bone marrow as well as fetal cord blood. However, unlike murine 

HSCs, human HSCs are identified via the expression of the sialomucin transmembrane protein 

CD34 (62-64). Differential expression of CD38, a cyclic ADP ribose hydrolase, allows for 

further enrichment of human HSCs within the Lin- CD34+ population (human HSCs: Lin- 

CD34+CD38-) (65). The expression of glycoprotein CD133 also serves as a positive and/or 

alternative marker for selection of human HSCs, that largely overlaps with CD34 expression 

thereby permitting validation of findings using two independent surface markers (66). Recently, 

it has been shown that expression of the integrin α6 protein CD49f, allows phenotypic resolution 

of human LT-HSCs (CD49f+) from ST-HSCs (CD49f-), for the first time (67). Therefore, 

expression of a defined set of surface markers can also be used to prospectively isolate human 

HSCs and this approach is routinely used in the clinic to isolate and enrich for human HSCs from 

human bone marrow, peripheral blood or banked cord blood for use in hematopoietic stem cell 

transplantation (HSCT).  
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Phenotypic identification of LT-HSCs using surface marker expression does not 

necessarily correlate to identification of bona fide functional LT-HSCs (43). For example, total 

HSCs phenotypically identified as flk2- LSKs contain only ~1 in 50 cells that have long-term 

self-renewal capabilities (68). In addition, self-renewal potential is enriched to only ~1 in 3 cells 

using the CD150+ CD48- LSK (43) or CD150+ flk2- LSK definitions (56). The use of adoptive 

transfer assays to reconstitute the hematopoietic system of sub-lethally irradiated recipients with 

donor bone marrow cells remains the gold standard assay for identification of functional LT-

HSCs albeit retrospectively. 

1.2.2.2 Functional Identification of Long-Term Hematopoietic Stem Cells  

 

While the use of surface markers are especially useful in the phenotypic identification and 

prospective isolation of LT-HSCs, only functional tests in vivo can identify bona fide LT-HSCs 

through demonstration of long-term self-renewal and multilineage reconstitution potential, two 

unique properties of LT-HSCs (1, 41). Similarly, functional assays testing for self-renewal and 

multipotency have also been used in studying other types of stem cells (69-71). In the case of 

LT-HSCs, the use of adoptive transfer assay allows for the demonstration of these two key 

properties of LT-HSCs in vivo. This technique involves transfer of donor-derived cells 

containing LT-HSCs into conditioned hosts irradiated to eradicate the recipients’ hematopoietic 

system. The use of congenic donor and recipient mice, for example CD45.1, CD45.2, or 

expressing both CD45.1 and CD45.2, has made it possible to track donor and recipient-derived 

cells within the same host. Thus, LT-HSCs can be retrospectively identified via their ability to 

fully repopulate the hematopoietic system of irradiated hosts reflecting multi-lineage 
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reconstitution at least 16 weeks after transplantation (41). The extraordinary potential of HSCs 

was elegantly demonstrated by Osawa et.al., upon transplantation of a single CD34- LSK murine 

cell able to fully reconstitute the hematopoietic system of recipient mice (72). The most stringent 

analysis of self-renewal potential is examined using serial transplantation assays (41). In mice, it 

has been shown that LT-HSCs are capable of self-renewal that lasts beyond the normal lifetime 

of its original donor as shown by ability of LT-HSCs to reconstitute a recipient’s hematopoietic 

system even after passage through as many as 5 recipients (73, 74).    

 

Research, and therefore knowledge of hematopoiesis and HSC function are based mostly 

on findings from analyses of specific murine mutants and the use of experimental murine 

transplantation models. Predominance of murine models over human studies in HSC function is 

mainly due to technical and ethical reasons (75). In the mouse, easy manipulation of the 

expression of target genes leads to highly specific mechanistic gain-of-function and loss of 

function studies. It is also possible to use inbred murine strains for bone marrow transplantation 

assays resulting in reproducible studies of in vivo HSC function. However, there are inherent 

differences between murine and human HSCs in terms of surface marker expression as discussed 

previously and in cellular behavior  during cell cycling and DNA damage responses (64). For 

example, mouse HSCs divide once every 30–50 days while human HSCs divide every 175-350 

days (42). Therefore to study human HSC function in vivo, xenogeneic transplantation models 

have been developed whereby human HSCs are transplanted in recipient mice which are 

immune-deficient mice, genetically engineered to be able to sustain human hematopoiesis (42). 

For example, NOD-Scid mice are able to support human cell engraftment due to absence of 

functional murine T and B cells and low cytotoxic NK cell activity (76).   However, while NOD-
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Scid mice can support human B lineage and myeloid lineage development, it is unable to support 

development of human T cells making it difficult to evaluate the full multi-lineage reconstitution 

potential of human HSCs. Other immune-deficient mouse models have been developed such as 

the NSG (NOD-Scid-IL2Rγc
-/-) mice (77, 78), or mice expressing non cross-reactive human 

cytokines such as thrombopoietin, IL-3, GM-CSF (42, 79, 80). In creating these new mouse 

models, the goal remains to be improvement of human HSC engraftment and improved human 

chimerism in order to become more suitable hosts in studying human HSC function in vivo. 

1.3 REGULATION OF LT-HSC PROLIFERATION  

1.3.1 The Biological Importance of Regulating LT-HSC Proliferation  

LT-HSCs must differentiate to replace blood cells lost due to natural turnover or unexpected 

demand. At the same time LT-HSCs must also self-renew to maintain LT-HSCs numbers 

allowing hematopoiesis to continue throughout an organism’s lifetime (81, 82). Adult LT-HSCs 

reside in BM niches in a quiescent/G0 state to preserve LT-HSC longevity and function (83). 

Excessive proliferation or loss of LT-HSC quiescence can lead to defects in LT-HSC self-

renewal resulting in loss of LT-HSCs and eventual hematopoietic failure (81, 84, 85). 

Hyperproliferation can also cause an accumulation of replication-associated mutations that 

potentially serves as a starting point for oncogenic transformation (86, 87). Thus, it is important 

that the balance between proliferation and quiescence in LT-HSCs is tightly regulated.  
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Numerous studies have elucidated several different factors including cell cycle 

regulators, transcription factors, growth factors, and even microRNAs that control LT-HSC 

proliferation in mice (reviewed in (81), (82), and (85)). Table 1 shows a summary of the major 

identified factors that act as positive or negative regulators of HSC proliferation. These factors 

can also be subdivided into cell-intrinsic or cell-extrinsic regulators depending on the whether 

these factors are acting within the stem cell itself (cell-intrinsic) or within the 

microenvironment/BM niche (cell-extrinsic) and are comprehensively reviewed in (88), (85) and 

(82). 

 

Table 1. Summary of Several Identified Factors that Regulate HSC Proliferation 

Category Effect Name of quiescent regulators 
Extrinsic 
regulators 

Positive regulators Bone-lining osteoblastic cells and stem cell factor/C-kit signaling, 
Tie2/Ang-1 signaling as well as TPO/MPL signaling 

  Hypoxic environment  
  Other matrix components, N-cadherin, integrins, osteopontin 
  Ca2+ ions 
  Transforming growth factor ß 
  Wnt signaling pathway 
 Negative 

regulators 
Hedgehog (Hh) signaling pathway 

   
Intrinsic  
regulators 

Positive regulators Transcription Factors: Gfi-1, Pbx1, p53, Scl, Irf2, TXNIP, Nurr1, 
GATA-2 

  Cyclin-dependent kinase inhibitors: p21, p57 
  Others: Cdc42, Fbw7, pTEN, PML, TSC1, ATM, FoxOs, STAT5, 

Rb, Lkb1, Mi-2b, and Wnt5 
 Negative 

regulators 
MEF/EL4 

  Lnk 
  c-Myc 

 

 

Reprinted with permission from Elsevier, Copyright 2011. Li, J. Exp Hematol. 2011. 
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1.3.2 Regulation of LT-HSC Proliferation by Cell Cycle Regulators 

It is unsurprising that the genetic disruption of factors involved in cell cycle regulation can result 

in perturbations in LT-HSC proliferation, as these factors are also expressed and functional in 

these cells. One of the first cell cycle regulators identified to regulate HSC proliferation is the 

cyclin-dependent kinase (CDK) inhibitor p21, a member of the Cip/Kip family of CDK 

inhibitors. Cheng et.al, demonstrated that p21 deficient mice had increased frequency of cycling 

HSCs with a concomitant decrease in the frequency of HSCs in the quiescent phase (84). 

Further, p21KO HSCs were more sensitive to the mitotoxic drug 5-FU, failed to persist long-term 

in the bone marrow, and were unable to reconstitute recipient mice in a serial adoptive transfer 

assay (84). Like p21, p27 is also a member of the Cip/Kip family of CDK inhibitors. Unlike p21, 

absence of p27 in HSCs does not affect HSC proliferation or HSC numbers but rather resulted in 

enlarged progeny pool size (89). In addition to p21 and p27, the Cip/Kip family also includes 

p57, which also plays a role in the regulation of HSC proliferation. Conditional deletion of p57 

resulted in a reduction in both HSC numbers and frequency of quiescent HSCs. Similar to p21KO 

HSCs, deletion of p57 in HSCs also resulted in poor reconstitution in recipient mice after 

transplantation (90). In addition, conditional deletion of both p21 and p57 showed a more severe 

phenotype than deletion of p57 alone (90), indicating that there is functional overlap in the 

regulation of HSC proliferation, which was also demonstrated by a compensatory role for p27 in 

the absence of p57 (91). Indeed, the conditional deletion of all three retinoblastoma proteins pRb, 

p107 and p130, also resulted in hyperproliferation of HSCs and severe defects in HSC self-

renewal and reconstitution of recipient mice (92). Lastly, unlike previously discussed cell cycle 

regulators above, the expression of the cyclin dependent kinase inhibitor p16INK4a in HSCs have 

been shown to significantly increase with age (93) and is associated with onset of senescence 
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(94, 95). While  these studies demonstrate that cell cycle regulators play a role in regulating LT-

HSC proliferation, the expression of these cell cycles regulators themselves are controlled by 

transcription factors, thus providing another level of regulatory control.   

1.3.3 Regulation of LT-HSC Proliferation by Transcription Factors  

Transcription factors regulate many developmental and homeostatic processes in both 

verterbrates and invertebrates (96). Thus, transcription factors also represent another group of 

factors that play an important role in regulating LT-HSC proliferation and maintaining LT- HSC 

integrity, since an organism’s survival and longevity is dependent on a functional and robust 

hematopoietic system wherein LT-HSCs are the sole source of all hematopoietic cells throughout 

life. Examples of transcription factors important to LT-HSC proliferation include zinc finger 

transcriptional repressor Gfi1, wherein mice deficient in Gfi1 had increased HSC proliferation 

and poor reconstitution of recipients (97). Similarly, haploinsufficiency of the transcription 

factor SCL/TAL1 in HSCs also resulted in increased proliferation and impaired long-term 

reconstitution (98). More recently, studies have shown that genetic deletion of other transcription 

factors such as Pbx1, p53, IRF-2, Nurr1, and DmtfI in mice all resulted in the loss of HSC 

quiescence and loss of HSC function (99-103). E proteins are a family of transcription factors, 

and one of its members, E47, play an important role in lineage fate decision. Moreover, the 

transcription factor E47 is also an important regulator of HSC proliferation and self-renewal. 
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1.4 THE TRANSCRIPTION FACTOR E47 

1.4.1 E47 is a Member of the Class I bHLH Family of E proteins  

 

Figure 1-2. E47 is a member of the Class I family of E proteins. 

(A) Schematic diagram of E proteins showing the key protein domains — activation domain 1 

(AD1), AD2 and basic helix–loop–helix (bHLH) domain. Alternative transcription start sites 

give rise to canonical (Can) and alternative (Alt) forms of HEB and E2-2 proteins. (B) The four 

inhibitor of DNA binding (ID) proteins are shown. (C) The domains of the class II bHLH 

proteins stem-cell leukemia factor (SCL; also known as TAL1) and lymphoblastic leukemia 1 

(LYL1) are shown. Differences in shading signify sequence homology. (D) Schematic diagram 

of different E protein dimers and their potential functions. Top: E protein homodimers that are 

bound to the CACCTG E-box sequence in target genes function as transcriptional activators 

through the recruitment of co-activators (CoA) such as p300. Middle: E protein–class II bHLH 

heterodimers that are bound to the CATATG E-box sequence in target genes function as 

transcriptional activators or repressors depending on the proteins that are recruited (co-activators 
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or co-repressors (CoR, such as ETO or mSin3A)) and on neighboring transcription factors. 

Bottom: E protein–ID protein heterodimers fail to bind DNA and do not activate gene 

transcription. Figure reprinted with permission from Nature Publishing Group, Copyright 2009. 

Kee, B.L. “E and Id proteins branch out”. Nature Reviews Immunology. 2009. 

 

E47 is a transcription factor that is a member of the class I basic helix loop helix (bHLH) 

family of E proteins (Figure 1-2). E proteins are characterized by the ability to bind to the E-box 

consensus sequence CANNTGG in the promoter or enhancer regions of its target genes (104, 

105). E47 is transcribed from the E2A (Tcfe2a) gene which, upon alternative splicing can 

produce E47 or E12 proteins, the seminal difference being in the DNA binding domain (106) 

with E47 binding the E box site with a higher affinity than E12 (107). E47 is expressed in B cells 

as homodimers but can heterodimerize with other Class I E protein family members such as HEB 

in T cells through protein-protein interactions between the two helix loop helix domains (105). 

E47 can also dimerize with antagonistic ID proteins such as ID2 and ID3 that act as dominant 

negative inhibitors of E47 activity through the formation of a dimer that is unable to bind to 

DNA due to the absence of the basic DNA binding domain in Id proteins (96, 105). Thus, 

transcriptional regulation of target genes by E47 is dependent on dimerization partners of E47.  

1.4.2 The Role of E47 in Lymphoid Lineage Development  

E47 is a critical transcription factor in lymphoid lineage development and its role in lymphocyte 

development has been extensively studied in mice. E47-deficient mice have a block in B cell 

development at the pre-pro-B cell stage prior to B lineage commitment (108-110) and residual 

progenitors are developmentally plastic (111). Even in mature B cells, conditional disruption of 
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E47 prompts lineage reprogramming and Hodgkin lymphomagenesis (112), indicating an 

ongoing requirement for E47 activity in sustaining B cell identity. 

 

In E47-deficient mice, T cell development is partially impaired (113) because within T 

cell precursors, E47 heterodimerizes with HEB to induce T cell-specific genes and repress genes 

associated with the natural killer cell fate (114-116). In the absence of E47, E47-deficient mice 

also develop fatal thymomas of double negative origin (113). By contrast to B and T cells, E47 

activity is dispensable in myeloid cells (109). In early myeloid precursors, E47 is antagonized by 

inhibitor of differentiation (Id) proteins that recruit E47 into functionally inert heterodimers 

(105). Id levels remain high in mature myeloid cells (117-119).  

 

E47 is an essential factor in B cell development because it initiates the expression of 

EBF, which in turn activates Pax-5 expression (120-122), while both E47 and EBF bind to 

regulatory elements in Foxo1 locus (123), all of which results in specification of B lineage fate. 

This transcriptional cascade leads to the expression of lineage specific genes required for B cell 

development such as mb-1, λ5, VpreB, IL7R, Rag1, Rag2, and CD19 (124, 125). E47 is also 

involved in repression of genes associated with other linage fates, such as gata1, epo-r and c-fms 

which are required for myeloid and erythroid development respectively (111). In addition, E47 

activity is required to activate rag1 expression to initiate V(D)J recombination in CLPs (110), 

and early B (126) and T precursor cells (113, 127). Thus in order to promote lymphoid lineage 

development, E47 has three main functions within CLPs: [1] initiate a transcriptional cascade to 

promote B lineage fate, [2] repress activation of genes associated with alternative lineages, and 

[3] activate rag expression to initiate V(D)J recombination of the antigen receptor gene.  
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In humans, studies involving E47 and ID proteins have led to findings in agreement with 

mouse models that E47 activity is required in lymphoid development but not for myeloid or NK 

cell development. For example, in the human thymus where bipotential T/natural killer (NK) 

progenitors are present, E47 activity is important for progression into T lineage development as 

dominant negative inhibition of E47 activity through interaction with ID3 led to NK over T cell 

development (128). Similarly, overexpression of ID3 in multipotent CD34+ CD38- fetal liver 

cells led to inhibition of B cell development but not myeloid or NK cell development (129). 

Collectively, these studies underscore the importance of E47 activity in lymphoid lineage 

development in both mouse and man.   

1.4.3 E47 and the Development of Specific Blood Cancers In Mouse and Man  

Several studies in mice have shown a role for E47 as a tumor suppressor. Mice lacking 

functional E47 developed T cell lymphomas as early as 75 days after birth and ectopic 

expression of E47 in these cells induced apoptosis (130). In addition, enforced expression of 

inhibitors of E47 such as Id1 and Id2 in T cell precursors also resulted in the development of T 

lymphomas (131-133). 

 

In humans, E47 is linked to certain types of acute lymphoblastic leukemia, as well as the 

B cell cancer Hodgkin’s lymphoma. For example, chromosomal translocation (t17;19) replacing 

the E47 basic helix loop helix region with HLF, a gene encoding a leucine zipper resulted in pro-

B cell leukemia (134). A chimeric E2A-pbx fusion protein resulting from a chromosomal 

translocation involving E2A gene (t1;19) where the 5’ portion of the E2A gene is fused to the 
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homeodomain-containing region of the pbx1 gene also resulted in pre-B cell leukemia (135, 

136)}. In certain patients with T acute lymphoblastic leukemia, a gain of function mutation 

resulted in activation of another bHLH protein TAL1 resulting in inhibition of E47 activity (137, 

138). Approximately 70% of patients suffering from a T cell lymphoma subtype known as 

Sezary syndrome had recurrent E2A gene deletion (139). In classical Hodgkin’s lymphoma, 

overexpression of the E47 antagonist Id2 resulting in loss of E47 activity is mechanistically 

linked to B-cell derived lymphomas (112). Together, these studies suggest a tumor suppressive 

activity for E47 and indicate that the loss of E47 activity may be an important event in the 

development of specific lymphoid cancers.   

1.4.4 The Role of E47 in LT-HSCs and Multipotent Progenitors  

We have shown that E47 is expressed in common lymphoid progenitors (CLPs) and that E47 

deficiency results in reduced CLP numbers (110). This demonstrates that the defects due to E47 

deficiency are not only limited to the development of B and T lineage precursors but is also 

manifested in the defective development of CLPs (110). More recent findings from our 

laboratory and others have shown that the E47 protein is also expressed in developmental subsets 

upstream of CLPs, specifically in HSCs, MPPs and LMPPs (12, 56, 140). Furthermore, our data 

indicates that the E47 protein is present in total LSKs, a heterogeneous population containing 

both total HSCs and MPPs, and that protein expression increases during developmental 

progression to B lineage cells (140). This is in agreement with published reports using E2A-GFP 

knock-in mice to detect E2A expression (141, 142). These findings prompted us to a closer 

examination of E47-deficient mice focusing on the hematopoietic stem cell and multipotent 

progenitor compartments, the former of which is the sole source of self-renewing progenitors. 
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E47-deficiency resulted in LMPPs with poorly primed lymphoid lineage genes indicating a 

defect in lymphoid lineage progression. More importantly, E47-null total HSCs have increased 

proliferation and loss of quiescence. Analysis of total HSC function in vivo using adoptive 

transfer assays, showed that E47-null HSCs have poor self-renewal capabilities and as a 

consequence, recipient mice that received donor BM from E47-deficient mice had defective 

multilineage reconstitution compared to recipient mice that received WT donor bone marrow 

(143). Thus, these studies indicate that E47 is required for efficient LT-HSC self-renewal and 

maintenance. 

 

 

Figure 1-3. The transcription factor E47 regulates the expression of cell cycle regulator p21  

 (A) p21 expression is downregulated by ~50% in E47-deficient HSC-enriched LSKs. WT or 

E47 KO LSKs were examined for p21 expression by QPCR. Data were normalized to β-actin 

and represents the mean of four independent analyses from three independent sorts (B) p21 

expression is upregulated in the context of enforced E47 expression. Lineageneg cells were 

transduced with either E47-ER-huCD25 or control bHLH-ER-huCD25 retrovirus lacking the 

transactivation domain. Cells were incubated with 4-OHT for 6 hours to activate E47 expression. 

Positively transduced cells (huCD25+) were sorted, and cDNA was prepared from extracted 

mRNA. QPCR was used to measure p21 levels. Data were normalized to β-actin. Results are 

representative of three independent experiments. Figure reprinted with permission from the 
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American Association of Immunologists, Copyright 2008. Yang, Q., et.al, “E47 controls the 

developmental integrity and cell cycle quiescence of multipotential hematopoietic progenitors,” 

published in The Journal of Immunology, vol. 181, pp. 5885-5894, 2008   Journal of 

Immunology. 2008. 

 

Data from our studies and others indicate that the cell cycle inhibitor p21 is an E47 target 

gene (56, 140, 143). We have shown by loss-of-function and gain-of-function assays that E47 

directly activates p21 transcription in HSCs (Figure 1-3) (140, 143). In addition to HSCs, E47 

also regulates p21 expression in both precursor B cell and T cell compartments (115, 144), which 

is a striking contrast to the developmental stage- and/or lineage specificity of most other E47 

regulated genes. Further supporting the role of p21 as an E47 target gene are findings that p21 

promoter region contain E-box sites that can physiologically bind to E47 (145). Thus, the 

recurrent cooperation of E47 and p21 in multiple hematopoietic compartments hints at the 

fundamental importance of the E47-p21 pathway in LT-HSCs as well as in other hematopoietic 

compartments. 
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2.0  INTRODUCTION TO THE PROJECT AND STATEMENT OF THE PROBLEM  

Several studies have identified multiple different pathways involving various transcription 

factors and cell cycle regulators that control HSC proliferation. Amongst the factors previously 

identified are the transcription factor E47 and the cell cycle regulator p21. In the absence of E47, 

HSCs are functionally exhausted due to a loss of G0 quiescence, hyperproliferation, and reduced 

expression of  cell cycle regulators including  p21 (56, 140, 143). The p21 cyclin-dependent 

kinase inhibitor is also a major regulator of LT-HSC self-renewal and integrity under stress 

conditions (82, 84, 146). Following hematopoietic repopulation challenge or DNA damage, p21-

deficient LT-HSCs exhibit loss of quiescence, hyperproliferation, and a 50% reduction in 

repopulating units (RU) (84, 147). In contrast to a role in stress hematopoiesis, p21 appears to be 

dispensable for steady-state HSC maintenance (148). The pathways by which p21 is activated in 

LT-HSCs are not known but appear to be p53-independent in the contexts of radiation damage 

and serial repopulation stress (147). We have shown by gain-of-function and loss-of-function 

studies that E47 directly activates p21 in HSCs (140, 143). However, the relevance of the E47-

p21 pathway to HSC function in vivo has not yet been examined. Whether the E47-p21 pathway 

is biologically important in maintaining LT-HSC integrity under transplantation stress also 

remains to be seen. In further establishing the mechanisms of how E47 regulates LT-HSC 

proliferation to preserve LT-HSC integrity, it is also of great interest to us to determine what 

other cell cycle-associated factors are regulated by E47 in LT-HSCs. Our central hypothesis is 
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that E47 acts as a cell-intrinsic factor that preserves LT-HSC self-renewal and prevents loss of 

LT-HSC integrity associated with hyperproliferation by controlling LT-HSC proliferation 

through the regulation of the expression of specific cell cycle associated factors in LT-HSCs.  

 

In Aims 1 and 2, we will establish the biological importance of the E47-p21 pathway in 

LT-HSC function during homeostasis and under transplantation stress. In Aim 3, we will 

determine if the nuclear protein p15PAF is a novel E47 target gene, whose expression, like p21, is 

also regulated by E47. 

2.1 SPECIFIC AIMS 

Specific Aim 1: Examine the effect of E47-p21 pathway in LT-HSCs in intact animals during 

homeostasis by using mice with reduced gene dosage for both E47 and p21 in tandem 

(E47hetp21het) compared to wild-type (WT) and single heterozygous controls (E47het and p21het).   

Using these mice, we will examine the expression of E47 and p21 in total HSCs to look at 

relative contribution of E47 in the regulation of p21 expression. To investigate the specific effect 

of compound E47 and p21 heterozygosity in LT-HSCs in intact animals, we will determine the 

phenotypic numbers of HSCs and multipotent progenitors in the bone marrow. We will also 

examine the proliferation status of LT-HSCs in E47hetp21het mice during steady-state conditions 

and determine the effect of mitotoxic drug 5-FU in E47hetp21het total HSCs.  

 

Specific Aim 2: Examine the biological relevance of the E47-p21 pathway to LT-HSC function 

in vivo. We will examine the effects of combined heterozygosity in E47 and p21 on self-renewal 
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and multi-lineage reconstitution potentials of LT-HSCs using serial transplantation assay. This is 

a rigorous test of LT-HSC function in vivo where donor LT-HSCs are forced to reconstitute the 

hematopoietic system of irradiated recipient mice through three rounds of serial transfer.  We 

will also examine the relative contribution of E47-p21 pathway in the development of BM 

progenitors upstream versus downstream of lympho-myeloid commitment.   

 

Specific Aim 3:  Determine if p15PAF is a novel E47 target gene. Early hematopoietic defects 

observed during homeostasis in HSCs derived from E47KO mice are very similar to defects 

observed in HSCs from p15PAF KO mice, suggesting a possible relationship between the 

transcription factor E47 and p15PAF, a 15 Kda nuclear protein. In addition, analysis of the p15PAF, 

promoter region revealed several consensus CAANTG E-box sites which may serve as potential 

binding sites for E47 in regulating p15PAF expression. To determine if p15PAF is a novel E47 

target gene, we will first determine if p15PAF promoter mediated transcription is activated by E47 

using a luciferase reporter assay. We will also examine p15PAF mRNA and protein levels of 

p15PAF in E47-deficient HSCs.     
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2.2 SIGNIFICANCE AND RELEVANCE 

Impaired LT-HSC function has severe consequences for human health since LT-HSCs are the 

sole source of all blood cells throughout life. First, loss of LT-HSC self-renewal and/or multi-

lineage reconstitution capabilities can result in eventual BM failure and lethality (42). Second, 

the acquisition of hyperproliferation or disruption of mechanisms controlling HSC proliferation 

can be a starting point for additional mutations transforming HSCs or its downstream progeny 

into cancer stem cells (149). Studies in acute myeloid leukemia (AML) have characterized and 

shown the existence of leukemic stem cells, which are suggested to be the causative agent of the 

disease (150, 151). Also, loss of function studies of several genes associated with leukemia such 

as runx1, pten and cdc42 have all shown dysregulation in HSC proliferation (152, 153) further 

emphasizing how perturbations in the mechanisms controlling HSC proliferation can become 

permissive to cancer (154). Third, loss of LT-HSC functional integrity may also contribute to the 

overall process of aging. This is supported by findings that aging is associated with decreased 

marrow cellularity, myeloid lineage skewing of blood cell output, and a blunted response 

generated by immune effector cells (81, 149, 155, 156). Furthermore, it has been shown that LT-

HSC function is impaired with age, as HSCs from old mice have poorer multilineage 

reconstitution potential than LT-HSCs from young mice in serial transplantation assays (157). 

Together, these studies indicate that LT-HSC function decreases with age, despite an increase in 

cellularity, resulting in less robust hematopoietic potential in aged individuals. Thus, it is 

important to establish the mechanisms controlling LT-HSC proliferation which has important 

direct implication to LT-HSC integrity. Understanding these mechanisms can lead to 
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improvement of LT-HSC function and/or reverse the deleterious effects on hematopoiesis due to 

loss of LT-HSC integrity for future therapeutic application. For example, a major clinical 

problem is that human HSCs are a very rare population of cells routinely used for BM 

transplantation. Human HSCs are obtained either from banked cord blood, directly from the bone 

marrow, or through mobilization of HSCs to the periphery via stimulation with Granulocyte-

Colony Stimulating Factor (G-CSF). Therefore, expansion of HSCs without affecting HSC 

quality can improve the therapeutic effect of BM transplantation by avoiding problems 

associated with limiting numbers of HSCs and/or loss of high quality HSCs available for 

transplant use. Lastly, the mechanisms involved in regulation of HSC self-renewal and 

maintenance of functional integrity may also be applicable to other types of stem cell systems. 
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3.0  CELL-INTRINSIC IN VIVO REQUIREMENT FOR THE E47-P21 PATHWAY IN 

LONG-TERM HEMATOPOIETIC STEM CELLS  

 

Chapter 3 is adapted from the Journal of Immunology manuscript “Cell-Intrinsic In Vivo 

Requirement for the E47-p21 Pathway in Long-Term Hematopoietic Stem Cells” Santos, PM, 

Ding Y, and Borghesi, L; published ahead of print November 20, 2013, 

doi:10.4049/jimmunol.1302502. Copyright 2013. The American Association of Immunologists, 

Inc. Copyright permission is kept on file with Patricia M. Santos. 
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3.1 ABSTRACT 

Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation 

have been identified but knowledge of their in vivo interaction in a linear pathway is lacking. 

Here, we show a direct genetic link between the transcription factor E47 and the major cell cycle 

regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous 

studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro and in 

this study, we now determine the in vivo relevance of the E47-p21 pathway by reducing the gene 

dose of each factor individually (E47het or p21het) versus in tandem (E47hetp21het). E47hetp21het 

LT-HSCs and downstream short-term HSCs (ST-HSCs) exhibit hyperproliferation and 

preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient 

controls. In serial adoptive transfers that rigorously challenge self-renewal, E47hetp21het LT-

HSCs dramatically and progressively decline, indicating importance of cell-intrinsic E47-p21 in 

preserving LT-HSCs under stress. Transient numeric recovery of downstream ST-HSCs enabled 

the production of functionally competent myeloid but not lymphoid cells as common lymphoid 

progenitors (CLPs) were decreased and peripheral lymphocytes virtually ablated. Thus, we 

demonstrate a developmental compartment-specific and lineage-specific requirement for the 

E47-p21 pathway in maintaining LT-HSC, B and T cells under hematopoietic repopulation stress 

in vivo. 
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3.2 INTRODUCTION 

A limited pool of LT-HSCs constantly replenishes downstream lymphoid and myeloid lineages 

that have been depleted by normal turnover or consumed by infection stress (158). Self-renewing 

LT-HSCs differentiate to non-renewing multipotent progenitors (MPP) and then lymphoid-

myeloid primed progenitors (LMPP), which subsequently produce common lymphoid 

progenitors (CLP) with B and T lymphoid potential (5, 159). The E47 transcription factor, in 

conjunction with transcriptional partners, regulates key aspects of hematopoiesis including HSC 

self-renewal, lymphoid lineage priming, B and T cell fate specification and antigen receptor 

repertoire formation (35, 96).  

 

Recent progress has defined the E47-dependent genes that coordinate cell activity in both 

developmental stage-specific and lineage-specific manners (12, 56, 110, 123, 140, 143, 160). In 

striking contrast to the cohort of E47 target genes that are unique to individual developmental 

subsets, one recurrent target of E47 binding activity stands out: the major cyclin dependent 

kinase inhibitor p21 (cdkn1A/cip1/waf1). We and others have shown that E47 directly activates 

p21 transcription in primitive HSCs in vitro (56, 140, 143). In addition, E47 levels correlate with 

p21 expression in B lineage precursors, and loss of a single allele of E47 reduces p21 with 

concomitant hyperproliferation (144). Similarly, p21 is also a direct target of E47 transcriptional 

activity in T lineage cells (115). However, while these in vitro studies indicate that E47 activates 

p21 expression in HSCs and lymphoid precursors, the biological relevance of the E47-p21 

pathway to HSC function has not yet been examined. Furthermore, in addition to E47, other 

transcription factors also expressed in HSCs such as ikaros and Notch are capable of regulating 

p21 expression (161, 162). Hence, the relative contribution of E47 in regulating p21 expression 
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in HSCs in vivo remains unknown. Also unclear is whether the E47-mediated p21 activity is 

required in the multipotent stages between HSCs and lympho-myeloid segregation.  

 

Here, we establish the biological relevance of genetic interactions between E47 and p21 

in LT-HSCs and downstream compartments in vivo using mice with reduced gene dosage of each 

factor, E47het, p21het, and E47 hetp21het. Defects specific to compound haploinsufficient animals, 

but not either haploinsufficiency alone, reveal combined effects of two interacting partners (163, 

164). Moreover, the use of E47het mice permits an analysis of mature B and T cells that is not 

possible in E47 knockouts due to the severe immune deficiency. We directly track LT-HSC self-

renewal integrity in compound heterozygotes and examine cumulative deficiencies in 

downstream B and T compartments. Since E47 is dispensable after the point of myeloid 

restriction, myeloid precursors serve as an internal reference population for comparing the 

magnitude of hematopoietic deficiencies incurred upstream versus downstream of lympho-

myeloid specification. Together, this approach enables us to establish the biological importance 

of genetic interactions between E47 and p21 specifically within LT-HSCs, within developmental 

compartments upstream versus downstream of lympho-myeloid restriction, and the cumulative 

impact to B cells and T cells.  
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3.3 MATERIALS AND METHODS 

3.3.1 Mice 

Mice were bred in accordance with Institutional Animal Care and Use Committee (IACUC) 

policies at the University of Pittsburgh School of Medicine. E47het (C57BL/6) mice (143) were 

intercrossed with p21KO mice (129/Sv; purchased from The Jackson Laboratories), and 

backcrossed to the C57BL/6 background for 7-8 generations. E47 and p21 genotyping were done 

as described (84, 106).  

3.3.2 Flow Cytometry  

BM and spleen were harvested as previously described (110, 126). Cell staining was performed 

using antibodies from eBioscience, BD Pharmingen or Biolegend. Primary antibodies were 

AA4.1 APC (clone AA4.1), B220 APC, FITC or biotin (clone RA3−6B2), CD3 FITC or biotin 

(clone 2C11), CD4 biotin (clone GK1.5), CD11b PE, biotin or FITC (clone M1/70), CD11c 

FITC (clone N418), CD19 APC, biotin, FITC or Cy5PE or PerCPCy5.5 (clone MB19−1), CD43 

PE (clone S7), CD45.2 PacBlue or APC (clone 104), CD48 APC (clone HM48−1), CD117 

APCeFluor 780 (clone 2B8), CD127 PeCy5 (clone A7R34), CD135 PE (clone A2F10), CD150 

PECy7 (clone 9D1), DX5 biotin (clone DX5), Gr-1 biotin or FITC (clone 8C5), IgM (clone 331) 

biotin or FITC, Ly6C biotin (clone HK1.4), NK1.1 biotin or FITC (clone PK136), TER-119 

biotin or FITC (clone TER-119), and Sca-1 FITC, Cy5PE or PerCPCy5.5 (clone D7). Secondary 
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reagents were streptavidin-Cy7PE or streptavidin-eFluor 450. Flow cytometry was performed on 

a four-laser, twelve-detector LSR II and a three-laser, eleven-detector Aria (BD Biosciences). 

Data were analyzed using FlowJo software Version 9.9.1 (Tree Star). 

 

3.3.3 Treatment of Mice with 5-FU or LPS 

Mice were injected i.p or i.v with 150 mg/kg 5-FU (Sigma-Aldrich) (140, 143, 165) and 

sacrificed either 16 hours or 14 days later as described in figure legends. For LPS treatment, 

mice were injected i.p. with 15 µg LPS (Sigma-Aldrich) or PBS control once a day for two days 

and were sacrificed on the third day as described (166).  

 

3.3.4 BrdU Incorporation and anti-BrdU Staining 

Mice were injected i.p. with 200 µL of 3 mg/mL BrdU at 12-h intervals for 48 hours as described 

(140, 143). Two days after the first injection, mice were sacrificed and BM cells stained with 

antibodies to relevant surface markers. BM cells were fixed and permeabilized followed by 

staining with anti-BrdU FITC per manufacturer’s instructions (BD Pharmingen).   
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3.3.5 Intracellular Staining with g-pH2A.X and Caspase-3  

Mice were injected i.v. with 150 mg/kg 5-FU as previously described (166). Fourteen 

days after treatment, mice were sacrificed and BM cells were enriched for lineage negative cells 

via lineage depletion using magnetic separation (AutoMACS, Miltenyi Biotech) (140, Yang, 

2011 #25). BM cells were stained with antibodies to relevant surface markers and were fixed and 

permeabilized (Cytofix/Cytoperm, BD Pharmingen) followed by intracellular staining with 

phospho-histone H2A.X-Alexa 488 (clone 20E3, Cell Signaling) and caspase-3 PE (clone C92-

605, BD Pharmingen). 

 

3.3.6 Serial Transplantation Assays 

For serial transplantation assays, 2 x 106 BM cells from CD45.2+ donor mice were injected into 

the tail veins of sub-lethally irradiated (1000 rads) CD45.1+ C57BL/6 primary recipients. Sixteen 

weeks after transplantation, 2 x 106 BM cells from primary recipients were transferred into sub-

lethally irradiated CD45.1+ secondary recipients. Eight weeks after transplant, 2 x 106 BM cells 

from secondary recipients were transferred into sub-lethally irradiated CD45.1+ tertiary 

recipients. Multi-lineage reconstitution was examined every 4 weeks in the peripheral blood and 

at 16 weeks post-transplant in spleen and BM of primary, secondary and tertiary recipients. 

 

For homing and niche engraftment analysis, 2 x 106 CD45.2+ donor BM cells were 

injected into the tail veins of sub-lethally irradiated (1000 rads) CD45.1+ recipients. Recipient 

mice were sacrificed 2 weeks post-transplant, and donor-derived precursors enumerated.  
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3.3.7 Gene Expression Analysis 

RNA was extracted using RNeasy Micro Kit (Qiagen) according to manufacturer’s instructions 

and reverse transcribed into cDNA with Superscript III Reverse Transcriptase (Invitrogen) using 

oligoDT primers (110). Quantitative real-time PCR (qPCR) reactions were performed in 

triplicates using Taqman probes (Invitrogen) and detected by StepOne Plus System (BioRad). 

Expression levels were calculated for each gene relative to actb and expressed as the fold 

difference relative to wild type (ddCT method). 

 

3.3.8 Statistics 

Statistical analysis was performed using one-way ANOVA with pairwise comparison. Asterisk 

(*) indicates p<0.05, ns indicates not statistically significant.  
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3.4 RESULTS 

3.4.1 E47 and p21 functionally collaborate to regulate homeostatic LT-HSC proliferation 

in vivo 

To better understand the biological importance of E47 and p21 collaboration during 

hematopoiesis, we developed a genetic model in which each gene is haploinsufficient 

individually, or in combination. We then tracked hematopoiesis during steady-state and under 

repopulation stress for visualization of defects following functional challenge. The genotypes are 

wild-type (WT), single haploinsufficiency in E47 or p21 (E47het, p21het) and compound 

haploinsufficiency (E47hetp21het). We directly examined E47 and p21 transcript levels in 

primitive, multipotent lineage negative c-kit+ Sca-1+ (LSKs) BM precursors using qPCR. E47 

transcript levels were similar in WT and p21het LSKs, and were reduced by ~40% in both E47het 

and E47hetp21het LSKs (Figure 3-1A). Relative to WT, p21 transcript levels were reduced by 50-

60% in both E47het LSKs and p21het LSKs and by ~75% in E47hetp21het LSKs (Figure 3-1B). 

Thus, E47 activity appears to account for an appreciable proportion of p21 transcript expression. 

We then compared the impact of single E47 haploinsufficiency versus combined E47-p21 

haploinsufficiency to hematopoietic stem and progenitor cell biology. 
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Figure 3-1. E47 and p21 expression in WT, E47HET, p21HET or E47HETp21HET  total LSKs.  

Bone marrow from WT, E47HET, p21HET or E47HET p21HET mice was isolated and stained to 

resolve LSK subset. Total LSKs were sorted and RNA was extracted to examine (A) E47 and 

(B) p21 transcript levels via QPCR. Gene expression was normalized to β-actin and expression 

level of each gene is shown relative to WT LSK. Data are shown as mean ± SD of triplicates 

from two independent sorts. 

 

 

Focusing first on hematopoiesis during homeostasis in intact animals, we examined 

proliferation of BM progenitors in vivo. We pulsed mice with BrdU, a nucleotide analogue that is 

incorporated during S phase thereby reflecting de novo DNA synthesis, and resolved the 

sequential developmental subsets long-term renewing LT-HSCs, short-term renewing ST-HSCs,  

and non-renewing MPPs (Figure 3-2A). Bona fide LT-HSCs represent 1% of total LSKs, and 

complementary phenotypic schemes resolve LT-HSCs to increasing degrees of functional purity. 

Absence of the flk2 cytokine receptor marks total HSCs, of which 1 in 50 have long-term self-

renewal capabilities (68). Self-renewal potential is enriched to ~1 in 3 using the CD150+CD48-

LSK (43) or CD150+flk2-LSK definitions (56). There is no evidence that E47 transcriptionally 

regulates the expression of these phenotypic markers, and the mean fluorescence intensity of 

surface expression of CD150, CD48 and flk2 appears to be preserved in primitive precursors  
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Figure 3-2. Increased homeostatic proliferation unique to E47HET p21HET LT-HSCs in vivo.  

Bone marrow from WT, E47HET, p21HET or E47HETp21HET mice was isolated and stained to 

resolve specific subsets of progenitor cells. (A) Gating strategy used to identify LSKs (Lineage-

c-kit+ Sca-1+), phenotypic LT-HSCs were identified as CD150+ flk2- LSK, short-term HSCs (ST-

HSC) as CD150- flk2-  LSK, total HSCs as flk2- LSK and multipotent progenitors (MPP) as flk2+ 

LSK. (B &C) WT, E47het, p21het or E47hetp21het mice were injected i.p. with 200 µL of 3 mg/mL 

BrdU twice a day for 2 days then sacrificed to examine proliferation status. (B) BM was either 

stained directly to identify total HSC (flk2- LSK) and MPP (flk2+ LSK); or was enriched for 

HSCs via depletion of Lineage+ cells followed by surface marker staining to identify LT-HSC 

(CD150+ flk2-  LSK) and ST-HSC (CD150- flk2-  LSK). Cells were then fixed and permeabilized 

followed by intracellular staining with anti-BrdU. Flow profiles shown are from one of 4-5 
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representative experiments. Grey histograms indicate PBS stained control. (C) Bar graph 

represents mean ± SD of data pooled from n=4-6 mice per genotype. * indicates p<0.05.  

 

from E47 knockouts (12, 56, 140, 143). Downstream of LT-HSCs, ST-HSCs are CD150-flk2-

LSKs, and MPPs are flk2+LSKs. Here, we explicitly validate our major findings by strategically 

exploiting all three phenotypic definitions of HSCs rather than relying on any single marker 

panel. 

In intact animals, the percentage of BrdU+ proliferating E47hetp21het LT-HSCs 

(CD150+flk2-LSK; 21 ± 5%),  was increased two-fold relative to WT or single E47het or p21het 

mice (11 ± 2%, 14 ± 4%, and 13 ± 3%, respectively, p<0.05, n=4-6 mice/group; Figure 3-

2B&C). The percentage of BrdU+ E47hetp21het ST-HSCs (CD150-flk2-LSK; 25 ± 7%) was also 

increased relative to controls (14 ± 1%, 16 ± 4%, and 14 ± 4%, respectively, p<0.05, n=4-6 

mice/group; Figure 3-2B&C). Proliferation in E47hetp21het MPPs was elevated relative to WT 

and p21het, but was not statistically different than single E47het controls. Under these steady-state 

conditions, absolute numbers of LSKs, total HSC, MPP, and lymphoid-restricted CLP (lineage-

ScaloIL7R+AA4.1+) subsets were comparable across all four genotypes (Figure 3-3). These data 

suggest that E47 and p21 interactions may be particularly important within the self-renewing LT-

HSC subset.    
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Figure 3-3. Absolute numbers of different bone marrow multipotent progenitors in 

E47hetp21het mice are comparable to controls.  

Bone marrow from WT, E47HET, p21HET or E47HETp21HET mice was isolated and stained to 

resolve specific subsets of progenitor cells. (A) Detailed gating strategy used to identify LSKs 

(Lineage-c-kit+ Sca-1+), phenotypic total HSCs were identified as flk2- LSK, multipotent 

progenitors (MPP) as flk2+ LSK, and common lymphoid progenitors (CLPs) were identified as 

Lin- IL7R+ AA4.1+ Sca-1low. (B) BM from WT, E47het, p21het or E47hetp21het mice was stained to 

enumerate LSK, total HSC, MPP or CLP numbers as indicated in (A). Data represents 4-9 mice 

per genotype. p > 0.05, not significant.  
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3.4.2 Preferential susceptibility of E47hetp21het HSCs to a cellular mitotoxin 

Hematopoiesis under stress may reveal biological defects not detectable under steady-state 

conditions in intact animals. Therefore, we examined the biological responses of E47hetp21het 

mice to three different stresses that test hematopoietic function: challenge with the mitotoxic 

drug 5-fluorouracil (5-FU), induction of emergency myelopoiesis by lipopolysaccharide (LPS), 

and long-term serial adoptive transfer. Emergency myelopoiesis is a short-term acute stress while 

repeated serial transfer is a long-term chronic stress. Serial adoptive transfer studies additionally 

provide a strategic opportunity to distinguish the biological importance of E47-p21 interactions 

within hematopoietic tissue (i.e. cell-intrinsic) versus within the cells of the microenvironment 

(i.e. cell-extrinsic). 

 

Figure 3-4. E47hetp21het HSCs are more susceptible to a cellular mitotoxin.  

WT, E47het, p21het or E47hetp21het mice were injected i.p. with 150 mg/kg 5-FU and sacrificed 

after 16 hours. BM cells were stained to determine total HSC (flk2- LSK) or MPP (flk2+ LSK) 

numbers. Data is shown as mean ± SD of cell number relative to WT, n=4-8 mice per group. * 

indicates p<0.05, ns indicates not significant.  
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The chemotherapeutic 5-FU is selectively toxic to actively dividing cells, providing an 

independent experimental measure of loss of LT-HSC quiescence in vivo (41). Following two 

rounds of 5-FU treatment, total HSCs from E47hetp21het mice were reduced ~50% compared to 

any of the control groups (n=4-8 mice/group, p<0.05) (Figure 3-4). E47hetp21het MPPs were also 

reduced by 40-60% relative to WT but were not statistically different than the single 

haploinsufficient controls. Together, these data reinforce findings in Figure 1 that the E47-p21 

pathway regulates LT-HSC proliferation during homeostasis and is important in maintaining 

HSC numbers under mitotoxic stress.  

 

3.4.3 E47 and p21 are dispensable for rapid myeloid differentiation under emergency 

hematopoiesis  

The careful balance between self-renewal and differentiation replenishes HSC numbers and 

sustains the replacement of mature cells (82). In addition to compromising proliferation and 

cellularity of LT-HSCs and uncommitted progenitors, we hypothesized that compound 

haploinsufficiency could impair functional integrity of immediate downstream progeny derived 

from these primitive subsets during hematopoiesis under stress conditions. 

 

Exposure to bacterial LPS elicits rapid granulopoiesis and concomitant mobilization to 

peripheral blood. In reactive neutrophilia, multipotent HSCs and MPPs as well as bi-potent 

granulocyte-monocyte progenitors (GMPs) contribute to accelerated granulopoiesis (166-168). 

We challenged mice with two rounds of LPS exposure and examined immature (CD11b+Gr-1int) 

and mature (CD11b+Gr-1hi) granulocytes in the BM and peripheral blood (PB), respectively. 
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Following LPS exposure, CD11b+Gr-1int immature BM granulocytes were comparably increased 

3-fold (Figure 3-5A). Newly differentiated granulocytes also appeared competent to emigrate to 

PB, regardless of genotype (Figure 3-5B). Thus, despite the characteristic hyperproliferation, the 

immediate progeny of E47hetp21het LT-HSCs and MPPs displayed grossly normal responses to 

acute LPS challenge.   

 

Figure 3-5. E47 and p21 are dispensable for rapid myeloid differentiation under emergency 

hematopoiesis. 

Mice were treated with either PBS or 30 µg total LPS over 2 days and sacrificed 24 hours after 

last treatment. BM (A) or PB (B) cells were stained to identify mature (CD11b+ Gr-1hi) or 

immature granulocytes (CD11b+ Gr-1int). Data shown is representative of two independent 

experiments. p>0.05, not significant.  
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3.4.4 Compromised E47hetp21het LT-HSC persistence in long-term serial transfer assays 

 

Figure 3-6. Serial adoptive transfer assay experimental plan. 

Serial transplantation was performed  by transferring 2 x 106 BM cells from CD45.2+ WT, 

E47het, p21het or E47hetp21het mice  into sub-lethally irradiated CD45.1+ C57BL/6 recipient mice 

to examine LT-HSC self-renewal and persistence through three rounds of serial transfer. Each set 

of recipient mice were sacrificed 16 weeks after transplantation.  

 

 

Serial repopulation remains the gold standard assay for studying LT-HSC function (41). We 

examined self-renewal and functional integrity of E47hetp21het LT-HSCs in serial transfer 

through primary, secondary and tertiary WT recipients as illustrated in Figure 3-6. CD45 

congenic markers permit the tracking of cells of donor origin. Following engraftment, we 

examined donor-derived leukocytes every 4 weeks in the PB, and at 16 weeks in BM and spleen.  
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Donor-derived cells were ~95% of total cells in the bone marrow and spleen of primary, 

secondary and tertiary recipients 16 weeks post-transplant, regardless of donor genotype (Figure 

3-7). Reconstitution at 16 weeks or longer ensures that hematopoiesis is derived from engrafted 

LT-HSCs and not by shorter-lived non-renewing progenitors co-transferred during 

transplantation (41).  

 

Figure 3-7. Donor-derived reconstitution of recipient bone marrow and spleen.   

Serial transplantation was performed as described in Figure 3-6. Frequency of donor-derived 

cells (% CD45.2+) in (A) bone marrow or (B) spleen of primary, secondary and tertiary 

recipients was examined 16 weeks after transplantation. Graphs are shown as mean ± SD of data 

from n= 5-10 mice per recipient for each donor genotype. p>0.05,  not significant.  

 

 

 

In contrast to controls, E47hetp21het LT-HSCs were profoundly depleted by serial transfer. 

While primary recipients had comparable numbers of LT-HSCs regardless of donor genotype, 

secondary recipients and tertiary recipients of E47hetp21het donor BM had a striking ~40% and 

90% reduction in LT-HSCs, respectively (p<0.05, n=4-8 mice/group) (Figure 3-8B). By 

contrast, the progressive loss in LT-HSCs from WT as well as the single heterozygous control 
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groups in secondary recipients was mild. Further, BM LT-HSCs from tertiary recipients in any of 

the control groups was reduced to ~50%, consistent with previous findings (84). The magnitude 

of the dramatic reduction in E47hetp21het donor-derived LT-HSCs was identical using both the  

 

 

Figure 3-8. E47hetp21het LT-HSCs exhibit decreased self-renewal and persistence in vivo. 

Serial transplantation was performed as described in Figure 3-6. (A) Mice were sacrificed at 

sixteen weeks post-transplant and the number of donor-derived BM LT-HSCs (CD45.2+ CD150+ 

CD48- LSK or CD45.2+ CD150+ flk2- LSK) was enumerated in primary, secondary or tertiary 

recipients. Graph is shown as mean ± SD of data pooled from n= 4-8 recipient mice for each 

genotype. (B) Mice were sacrificed two weeks after primary transplantation and the frequency of 

CD45.2+ total HSCs was examined. Data is shown as mean ± SD from n= 2-3 recipient mice per 
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group. (C) Gating strategy used to identify donor-derived BM LT-HSCs as CD45.2+ CD150+ 

CD48- LSK or CD45.2+ CD150+ flk2- LSK. * indicates p<0.05, ns indicates not significant.  

 

 

stringent CD150+ CD48- LSK and CD150+ flk2- LSK LT-HSC definitions (Figure 3-8B) 

suggesting that the findings were not specific to one particular gating scheme (see Figure 3-8A 

for gating strategy). 

The striking reduction of donor-derived E47hetp21het LT-HSCs in serial transfer could not 

be explained by poor homing/engraftment. Two weeks after transfer, the frequency of donor-

derived HSCs (CD45.2+flk2-LSKs) was similar across all primary recipients regardless of donor 

genotype, suggesting comparable engraftment (Figure 3-8C). 

 

While the frequency of donor-derived E47hetp21het LT-HSC was similar relative to 

controls, the pattern of proliferation was not. The frequency of BrdU+ donor-derived LT-HSC 

from E47hetp21het mice, ~34%, was increased ~2-fold compared to WT, E47het or p21het in 

secondary recipients (respectively, p<0.05, n=3-5 mice/group; Figure 3-9A&B). As expected 

under transplantation stress, MPP subsets from all groups were actively cycling (p>0.05, n=3-5 

mice/group), and no subtle differences were revealed in this BrdU pulsing regimen. 
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Figure 3-9. E47hetp21het total HSCs display hyperproliferation following transplantation 

stress.  

Serial transplantation was performed as described in Figure 3-6. Secondary recipient mice were 

transplanted with 2 x 106 BM cells using primary recipient mice as donors. Sixteen weeks  after 

transplantation, mice were sacrificed and BM cells stained to identify donor-derived total HSCs 

(CD45.2+ flk2- LSK) and MPPs (CD45.2+ flk2+ LSK) followed by anti-BrdU staining to examine 

proliferation status (A) Flow cytometry profiles from one experiment representative of 3 

experiments are shown. Shaded grey histograms indicate PBS stained control. (B) Bar graph 

represents mean ± SD of data from n=3-5 recipient mice per donor genotype. * indicates p<0.05, 

ns indicates not significant. 

 

Taken together, E47 and p21 collaborate to restrain LT-HSC proliferation, thereby 

preserving LT-HSC numbers in the context of long-term repopulation stress. Moreover, the 

requirement for E47-p21 interactions is cell-intrinsic, since E47hetp21het LT-HSCs fail to persist 

when engrafted into WT recipient hosts. 
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3.4.5 Cumulative versus developmental-compartment specific burden of combined E47-

p21 haploinsufficiency  

Lymphopoiesis and myelopoiesis differ in the requirement for E47, providing a unique 

experimental opportunity to evaluate the biological impact of E47-p21 collaboration to 

progenitor compartments upstream versus downstream of lympho-myeloid restriction. E47 is 

essential for multiple aspects of B and T cell development (106, 108, 110, 114, 123, 169) 

including p21-mediated proliferation (115, 140, 143, 144). By contrast, once uncommitted 

precursors have restricted to the myeloid lineage, E47 activity and, by extrapolation, E47-

dependent p21 activity becomes dispensable (109). Thus, defects in lymphoid output from 

E47hetp21het LT-HSCs should reflect the aggregate burden of haploinsufficiency at the 

multipotent and lymphoid specified stages of development while defects in myeloid output 

should reflect the burden of haploinsufficiency incurred exclusively at the multipotent stages.  

 

The poor persistence of E47hetp21het LT-HSCs in serial transfer through WT hosts was 

accompanied by marked divergence in peripheral lymphoid and myeloid reconstitution. 

Specifically, while the failure of B and T lymphoid production closely tracked the numeric loss 

of LT-HSCs through serial transfer, myeloid production remained intact in these same animals. 

At 16 weeks post-transplant, the absolute number and frequency of donor-derived E47hetp21het 

CD19+ B and CD3+ T cells was dramatically decreased by ~60% and ~90% in secondary and 

tertiary recipients, respectively (p<0.05, n=2-9 mice/group), (Figure 3-10B&C), proportional to 

reductions in E47hetp21het LT-HSCs (Figure 3-8A). By contrast, numbers and frequency of 

myeloid cells (Gr-1+ or CD11b+) derived from E47hetp21het donor BM were normal across all 

three serial transfers (Figure 3-10B&C). Moreover, that E47hetp21het mice had largely normal  
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Figure 3-10. E47hetp21het LT-HSCs display progressive in vivo decrease in lymphoid lineage 

reconstitution accompanied by normal myeloid lineage reconstitution.   

Serial transplantation was performed as described in Figure 3-6. Sixteen weeks after 

transplantation, donor-derived cells were identified from spleen (SPL) or peripheral blood (PB). 

(A) Left panel, gating strategy used to identify donor-derived B (CD45.2+ CD19+), T (CD45.2+ 

CD3+) and myeloid lineage (CD45.2+CD11b+) cells in spleen. Right panel, gating strategy used 

to identify donor-derived B (CD45.2+ CD19+), T (CD45.2+ CD3+) and myeloid lineage (CD45.2+ 

Gr-1+) cells in PB. Donor-derived reconstitution of lymphoid and myeloid lineage was examined 
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in (B) spleen and (C) peripheral blood in recipients sixteen weeks after each round of 

transplantation. Graphs are shown as mean ± SD of data from n= 2-9 mice per recipient for each 

donor genotype. * indicates p<0.05, ns indicates not significant. 

 

 

neutrophil responsiveness to LPS challenge (Figures 3-5), suggests that myeloid lineage cells 

are grossly intact both phenotypically and functionally. 

 

A recent study showed that significant reductions in CD150+ LT-HSCs following 

deletion of the CXCL12 chemokine from BM endothelial niches could be counterbalanced by 

homeostatic mechanisms that restore downstream MPPs and LMPPs to normal frequencies 

(170). We examined hematopoietic subsets derived from LT-HSCs to establish the consequences 

of the E47hetp21het defect to immediate downstream progenitors, 16 weeks post-transfer. Despite 

a 50% reduction in LT-HSCs,  secondary recipients of E47hetp21het donor BM had largely normal 

numbers of ST-HSCs, suggesting that the requirement for the E47-p21 pathway at the LT-HSC 

stage could be overcome in downstream compartments. Donor-derived MPPs and LMPPs (using 

CD150-flk2+LSK and flk2high LSK definitions, respectively (56, 170)) were reduced relative to 

WT and p21het mice, but were identical to that of single E47 het mice (Figure 3-11). By contrast, 

E47hetp21het CLPs were reduced 2-fold compared to WT or single heterozygous controls, and 

downstream B and T cells were severely depleted (Figure 3-10B&C). Thus, while the striking 

numerical depletion of E47hetp21het LT-HSCs can be transiently compensated by expansion of 

downstream multipotent subsets competent to produce a functional myeloid compartment, the 

lymphoid compartment could not be replenished. Together, our findings indicate a cell-intrinsic 
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role for genetic interactions between E47 and p21 in the selective maintenance of LT-HSC, B 

cell and T cell compartments under long-term hematopoietic repopulation stress in vivo. 

 

 

Figure 3-11. Reduced common lymphoid progenitors in the bone marrow of E47hetp21het 

secondary recipients.  

Sixteen weeks after transplant, presence of donor-derived short-term HSCs (ST-HSC), 

multipotent progenitors (MPP), lymphoid myeloid primed progenitors (LMPP) and common 

lymphoid progenitors (CLP) in BM of secondary recipients was examined. Data are shown as 

mean ± SD from n= 5-9 mice per donor genotype. * indicates p<0.05, ns indicates not 

significant. 

 

3.4.6 Gene expression analysis in E47hetp21het total HSCs 

To obtain a broader perspective on the impact of combined E47 and p21 heterozygosity to the 

expression profile of other known regulators of HSC pool size, we examined transcript levels of 

known E47-regulated target genes as well as other cell cycle associated genes (72, 115, 171, 

172). Here, we used 5-FU treatment to deplete cycling HSCs and examined the gene expression 
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profile of residual HSCs subjected to repopulation stress in order to reconstitute the immune 

system (41, 165). E47hetp21het total HSCs undergoing repopulation stress exhibit a ~1.5-3-fold 

increase in cdk6, p18, and ikaros transcripts as assessed by QPCR (Figure 3-12). There were no 

detectable changes in p27 and Notch1 transcript levels, two factors that regulate the precursor 

pool size but  

 

 

Figure 3-12. Gene expression analysis in E47hetp21het HSCs.  

At day 14 after a single 5-FU i.v. injection, total HSCs (flk2- LSK) were sorted from WT, E47het, 

p21het or E47hetp21het mice. RNA was extracted and cDNA was generated via RT-PCR and used 

to examine expression levels of cdk6, p18, ikaros1, p27 and Notch1 using quantitative real-time 

PCR (qPCR). Gene expression was normalized to β-actin. Data are shown as mean ± SD of 

triplicates from at least two independent sorts. * indicates p<0.05, ns not significant.  

 

 

not HSC cell cycle activity per se (89, 173). While both ikaros and Notch can activate p21 

expression, neither factor was able to compensate for E47 haploinsufficiency. We saw no 

evidence of differences in γ-ph2AX levels or caspase-3 protein in E47hetp21het total HSCs 

undergoing repopulation stress (Figure 3-13), suggesting that loss of LT-HSCs could not be 
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readily explained by impaired DNA damage repair response or increased apoptosis, even though 

rapid clearance of dying cells in vivo may slightly underestimate their detection via flow 

cytometry. Together, these data demonstrate that E47 mechanistically regulates LT-HSC self-

renewal by controlling p21-dependent cell cycle activity. 

 

 

Figure 3-13. Expression of g-pH2A.X and caspase-3 in E47hetp21het total HSCs undergoing 

repopulation stress are comparable to controls. 

Mice were treated with a single dose of 150 mg/kg 5-FU or PBS via tail vein injection. Fourteen 

days after treatment, mice were sacrificed and bone marrow cells enriched for Lineageneg cells 

were stained for surface markers to identify total HSCs (flk2- LSKs) followed by intracellular 

staining for g-pH2A.X (top panel) and caspase-3 expression (bottom panel). 
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3.5 DISCUSSION 

E47 is a key component of gene regulatory networks that establish B and T cell fate, and 

participates in HSC maintenance (56, 115, 123, 140, 143, 174). While our in vitro evidence 

showed that E47 directly regulates p21 in HSCs, establishing the biological contribution of E47-

p21 pathway to hematopoiesis has been elusive due to the difficulty of analyzing rare HSCs in 

vivo, the challenge of overcoming early lymphoid arrest in E47-deficient mice, and the 

knowledge that both factors are broadly expressed in cells other than leukocytes. To determine 

the extent of functional collaboration by E47 and p21 during hematopoiesis, we engineered mice 

with reduced gene dosage of each factor and transplanted BM from E47hetp21het mice into WT 

hosts. Our findings reveal a severe progressive deficiency in E47hetp21het LT-HSC self-renewal 

following long-term serial repopulation. A transient recovery of cellularity in donor-derived ST-

HSC/MPP stages enabled normal myeloid production but lymphoid production was 

unrecoverable. The gross severity of the lymphoid defect in compound E47hetp21het mice 

compared to single haploinsufficiency of either gene alone was striking, an important finding 

given the increasingly frequent linkage of E47 loss of heterozygosity with lymphoid 

malignancies and immune deficiency.  

 

While several lines of evidence hint at a relationship between E47 and p21 in each HSCs 

and lymphoid-committed precursors, the biological impact has been unclear (56, 140, 143). 

Indeed, the severe defect in the earliest stages of hematopoiesis in p21 null mice has precluded 

analysis of p21 contributions in compartments downstream of lympho-myeloid divergence. In 
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this study, we exploited the fact that the E47 pathway is dispensable in myeloid lineage cells to 

establish the biological importance of the E47-p21 pathway within HSCs upstream of lympho-

myeloid divergence. Our results demonstrate a role for the E47-p21 pathway in LT-HSC 

maintenance under activation stress but not steady state, and reveal a stringent requirement for 

E47-p21 activity in the lymphoid lineages following forced repopulation. In E47hetp21het HSCs, 

reductions in p21 were accompanied by dysregulation of cdk6, p18 and ikaros, all of which 

directly regulate cell cycling and likely contribute to the overall phenotype. Since none of these 

genes are altered in HSCs from mice singly haploinsufficient in either E47 or p21, their 

dysregulation in E47hetp21het HSCs maybe a consequence of observed hyperproliferation rather 

than the cause. While E47 is known to directly regulate expression of these genes under 

homeostatic conditions, our observations may reflect the contribution by other cell cycle 

regulators activated in HSCs undergoing repopulation stress. p21 null mice on either the original 

129 background or the pure B6 background exhibit poor HSC persistence under certain 

repopulation stress paradigms but changes in companion cell cycle regulators have not been 

examined (84, 148). Our findings reveal a skewing of B/T ratios that emerges in tertiary 

recipients of p21 haploinsufficient BM, demonstrating a negative biological consequence of even 

relatively minor reductions in p21. Indeed, a striking feature of our findings is that the 

combination of two relatively subtle lesions, haploinsufficiency in each E47 and p21, curtails 

lymphopoiesis to a severe degree not observed in the context of either single lesion alone.  

 

In summary, our results define the differential contribution of cell-intrinsic E47-p21 

within discrete developmental hematopoietic compartments in vivo. E47hetp21het LT-HSCs 

exhibit a profound loss of self-renewal in serial repopulation across mice accompanied by 
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ablation of the lymphoid lineages. The E47-p21 pathway appeared to be dispensable in the ST-

HSC/MPP stages of hematopoiesis, and downstream myeloid activity remained intact. That the 

combination of two subtle lesions, loss of a single allele of a transcription factor and a cell cycle 

regulator factor, amplifies the magnitude of hematopoietic disruption beyond either defect alone, 

has important clinical implications. E47 loss of heterozygosity is linked to multiple leukemias, 

and our findings provide an opportunity screening at-risk individuals for cooperating lesions.  
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4.0  DETERMINATION OF P15PAF AS A DIRECT TARGET GENE OF THE 

TRANSCRIPTION FACTOR E47  

 

4.1 ABSTRACT 

HSC proliferation is tightly regulated because it can have adverse effects to HSC function. Our 

new findings demonstrate E47 as a major regulator of HSC cycling under stress. By reducing the 

gene dose of each factor individually (E47het or p21het) versus in tandem (E47hetp21het), we show 

that E47hetp21het LT-HSCs exhibit hyperproliferation during homeostasis and under 

transplantation stress. In serial adoptive transfers that rigorously challenge self-renewal, we 

demonstrate the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress as 

E47hetp21het LT-HSCs dramatically and progressively decline upon each round of transfer. 

Mechanistically, E47 regulates transcription of the cyclin-dependent kinase inhibitor p21, 

resulting in a role for E47 in the inhibition of HSC proliferation. Recently, a role for the nuclear 

protein p15PAF in inhibiting HSC proliferation has also been described. Moreover, the phenotype 

observed in p15PAF-deficient mimics the hallmark phenotype also observed in E47-deficient 

mice. During homeostasis, both mouse models present with relatively modest changes in HSC 

and MPP numbers that becomes progressively worse in downstream progenitors as LMPP and 
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CLP numbers are severely reduced. In this study, we examined the role of E47 as a direct 

transcriptional regulator of p15PAF expression by using two different approaches to examine the 

relationship between E47 and p15PAF. First, sequence analysis of the p15PAF promoter region 

revealed over 10 different sites containing the E-box consensus sequence. Our luciferase assay 

findings show that E47 can directly activate p15PAF promoter-mediated transcription by ~20-110-

fold in a dose-dependent manner using a model cell line. Moreover, E47 activation of p15PAF 

promoter-mediated transcription was ablated in p15PAF promoter constructs in the reverse 

orientation suggesting importance of the 5’ promoter region for E47 binding. Second, we 

examined the direct consequence of E47 deficiency to p15PAF mRNA and protein levels in 

primary hematopoietic precursors. Unexpectedly, our findings indicate that E47-deficiency 

resulted in a significant 2-fold increase in p15PAF expression in primary HSCs and MPPs. The 

seemingly contradictory findings that E47 activates p15PAF expression in a model cell line but 

suppresses p15PAF expression in primary hematopoietic precursors may be due to the cumulative 

effects of regulatory elements such as enhancers, trans-acting regulatory proteins and epigenetic 

regulators, uniquely present or active in E47-deficient primary HSCs and MPPs. Analysis of 

p15PAF protein levels in E47-deficient HSCs and MPPs were comparable to WT, despite a 2-fold 

increase in p15PAF transcripts in the E47-deficient subsets.  These findings are in agreement with 

previous studies that demonstrate a significant role for post-translational mechanisms that 

regulate p15PAF expression under homeostatic conditions. Therefore, additional studies are 

needed to demonstrate direct binding of E47 to p15PAF promoter region, to identify biologically 

important E-boxes, and to determine the biological contribution of E47 and p15PAF  in tandem to 

HSC function in vivo.  
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4.2 INTRODUCTION 

The transcription factor E47 plays a central role in the regulatory network involved in the 

specification, commitment and differentiation of progenitor cells to the lymphoid lineage (96). 

Differentiation of multipotent progenitor cells into mature B or T cells involves a progressive 

loss of developmental potential, the activation of lineage-specific gene expression, and 

repression of genes associated with alternative lineages.  The E47 protein was originally 

identified due to its DNA binding to E-box sequences (CANNTG) in the enhancer regions of the 

immunoglobulin heavy chain (IgH) and kappa light chains (Igκ) (104, 175). Indeed, E47 has been 

shown to activate the expression of several different genes with very diverse functions. These 

target genes include EBF an important transcription factor in B lineage development, the B-cell 

specific transmembrane signaling receptor CD79a (also known as mb-1); pre-B cell receptor 

surrogate light chain components λ5 and V-preB;  and rag 1/2, which encode enzymes involved 

in antigen gene receptor rearrangement unique to B cells and T cells. E47 also acts as a 

functional repressor of c-fms and GATA-1, genes which are associated with alternative myeloid 

and erythroid lineages respectively (111). In addition, E47 can modulate DNA methylation and 

chromatin accessibility upon binding to regulatory elements in target genes including CD79a, 

rag1 and Foxo1 (123). Together, these studies indicate that E47 promotes lymphoid lineage 

development through regulation of lineage-specific gene expression and modulation of DNA 

methylation and chromatin accessibility.  

 

In addition to the role of E47 in promoting lymphoid lineage development, E47 also 

regulates cellular proliferation. Ectopic expression of E47 in fibroblasts resulted in a block in the 

G1 phase of the cell cycle (176). E47 activity has also been shown to be inhibitory to 
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proliferation in both progenitor B and T cells (144, 177). Similarly, we have also shown that 

HSCs lacking functional E47 exhibit increased proliferation and loss of quiescence (140, 143). 

Together, these studies indicate that E47 activity regulates cellular proliferation in bone marrow 

progenitor cells. One mechanism by which E47 can control proliferation is through regulation of 

expression of the cell cycle inhibitor p21. Using gain of function and loss of function studies 

involving E47 in HSCs, we have shown that p21 is a downstream target of E47 in restraining 

HSC proliferation (140), consistent with previous findings (144, 145). However, other pathways 

likely exist by which E47 can regulate HSC proliferation. In this study, we focused on the 

candidate E47 target p15PAF as both E47-deficient and p15PAF-deficient mice share a striking 

phenotypic resemblance in early hematopoietic defects.  

 

Emerging studies hint at a functional relationship between the transcription factor E47 

and the nuclear protein p15PAF (KIAA0101). A 15 kDa protein that contains a binding motif for 

association with proliferating cell nuclear antigen (PCNA), p15PAF is highly expressed in the 

nucleus of proliferating cells and is minimally expressed in quiescent cells (178). Increased 

expression of p15PAF has been found in esophageal, breast, uterine, brain, kidney and lung 

tumors (178) and overexpression of p15PAF correlates to poor prognosis in primary lung cancer 

patients (179). Previous studies also indicate that the function of p15PAF may be linked to PCNA 

activity during DNA replication and DNA repair (180). Involvement of p15PAF in DNA repair 

after UV-induced DNA damage  mediated by the activating transcription factor, ATF3, has also 

been reported (181). Cell line-based studies have also implicated a role for p15PAF in cellular 

proliferation (180, 182-184). Analysis of p15PAF-deficient mice indicates that p15PAF is important 

in HSC proliferation and as a consequence, HSC function. Mice deficient in p15PAF had HSC 
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hyperproliferation, decreased HSC persistence and poor multilineage reconstitution of recipient 

mice under repopulation stress (185). The early hematopoietic defects observed in p15PAF-

deficient mice have a striking similarity to the phenotype observed in E47-deficient mice 

exhibiting moderate reductions in HSCs and MPPs and profound reductions in LMPPs and CLPs 

under homeostasis.  Moreover, we have also identified multiple E-box sites in the murine p15PAF 

promoter region  

 

Collectively, these findings led us to hypothesize that p15PAF is a novel target gene 

transcriptionally regulated by E47 and presents another mechanism through which E47 can 

control HSC proliferation. To examine whether E47 can activate p15PAF transcription, we first 

performed sequence analysis of the murine p15PAF promoter region to characterize candidate E 

box binding sites for E47 and performed luciferase assays. We then examined p15PAF mRNA and 

protein levels in primary hematopoietic precursor subsets from E47-deficient mice. Results from 

luciferase reporter assays indicate that E47 directly activates p15PAF promoter mediated 

transcription in 293T cells.  Unexpectedly, and in contrast to our findings with the reporter cell 

line, primary HSCs and MPPs from E47-deficient mice had a significant 2-fold increase in 

p15PAF mRNA expression compared to WT. It is possible that transcriptional regulation of 

p15PAF in primary HSCs is controlled by the interplay of several factors in addition to E47. At 

the protein level, analysis of p15PAF expression in E47-deficient HSCs and MPPs did not reveal 

any significant differences compared to WT,  a finding that reflects previous observations of a 

significant role for post-translational mechanisms in regulating p15PAF activity (185). Thus, our 

findings suggest that E47 is a transcriptional regulator of p15PAF gene expression that is a part of 
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a broader network of transcriptional and post-translational mechanisms that regulate p15PAF 

expression in primary HSCs.  

 

 

 

4.3 MATERIALS AND METHODS 

 

4.3.1 Plasmid Constructs  

The murine C57BL/6 p15PAF promoter was amplified by PCR from splenic DNA using the 

following primers: forward 5’ AAGAACCACTGTGCAGTCTG 3’ and reverse 5’ 

CGCTTGAGAACCTCGATTCT 3’, that targeted a region ~2300 bp upstream of the p15PAF 

transcription start site. The PCR amplified DNA fragment was purified using QiaexII gel 

extraction kit (Qiagen) and cloned directly into pCR2.1 vector using the TOPO TA cloning kit 

(Invitrogen) per manufacturer’s instructions. The p15PAF promoter region was subcloned into the 

pGL4.11 luciferase reporter plasmid (Promega) using the Kpn1 and EcoRV restriction sites in a 

ligation reaction using Ligafast (Promega). Two constructs were created such that the p15PAF 

promoter region is cloned into the pGL4.11 plasmid in both the forward and reverse orientations 

(referred to as mPaF-Fwd and mPaF-Rev, respectively). The E47 expression plasmid was a kind 

gift from Dr. Barbara L. Kee.  
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4.3.2 Luciferase Reporter Assay  

Twelve-well culture plates (BD Falcon) were seeded with 2x105 293T cells per well in RPMI-

1640 (Cellgro) supplemented with 5% fetal bovine growth serum (Hyclone), 100U/mL penicillin 

(Cellgro) and 100 µg/mL streptomycin (Cellgro). Two days after seeding, cells were transfected 

with mPaF-Fwd or mPaF-Rev plasmid with or without the E47 expression plasmid at the 

indicated concentrations. Transfection was performed using Lipofectamine 2000 (Invitrogen) per 

manufacturer’s instructions. One day after transfection, culture media for each well was changed 

with fresh 5% RPMI. Two days after transfection, cells were lysed with 100 µl/well of 1x Lysis 

Buffer (Promega) and lysates were kept at -20ºC. An aliquot of 20 uL per cell lysate was used to 

assay for luciferase activity using Luciferase Assay System (Promega) and quantified using a 

luminometer (Berthold) (186).    

 

4.3.3 Mice 

Mice were bred in accordance with Institutional Animal Care and Use Committee 

(IACUC) policies at the University of Pittsburgh School of Medicine. E47WT and E47KO 

(C57BL/6) mice (143) were bred in house from E47HET  intercrossed with E47HET matings. E47 

genotyping was done as described (84, 106).  
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4.3.4 Flow Cytometry  

Bone marrow from E47WT and E47KO mice were harvested as previously described (110, 126). 

Cell staining was performed using antibodies from eBiosciences, BD Pharmingen or Biolegend. 

Primary antibodies were B220 biotin (clone RA3−6B2), CD3 biotin (clone 2C11), CD11b biotin 

(clone M1/70), CD19 biotin (clone MB19−1), CD117 APCeFluor 780 or PeCy5 (clone 2B8), 

CD135 PE (clone A2F10), Gr-1 biotin (clone 8C5), JYLD 488 (clone JYLD 12), NK1.1 biotin 

(clone PK136), TER-119 biotin (clone TER-119), and Sca-1 FITC, Cy5PE or PerCPCy5.5 (clone 

D7). Secondary reagents were streptavidin-Cy7PE or streptavidin-eFluor 450. Flow cytometry 

was performed on a four-laser, twelve-detector LSR II (BD Biosciences). Data were analyzed 

using FlowJo software Version 9.9.1 (Tree Star).  

 

4.3.5 Cell Sorting 

Cell sorting of total HSCs (flk2- LSK) and MPPs (flk2+ LSK) was performed as previously 

described (140, 143). Briefly, bone marrow cells from E47WT and E47KO mice were stained with 

lineage antibodies (NK1.1, Ter-119, Gr-1, CD11b, B220, CD19, and CD3) conjugated to biotin 

followed by incubation with streptavidin conjugated beads (Miltenyi). Lineage negative cells 

from the bone marrow were obtained via magnetic separation (AutoMACS, Miltenyi). Collected 

lineage negative cells were stained with antibodies to Sca-1, CD117 and CD135. Flk2- LSK or 

flk2+ LSK cells were sorted using a three-laser, eleven-detector cell sorter (Aria, BD 

Biosciences).  
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4.3.6 Gene Expression Analysis 

RNA was extracted from sorted cells using RNeasy Micro Kit (Qiagen) according to 

manufacturer’s instructions and reverse transcribed into cDNA with Superscript III Reverse 

Transcriptase (Invitrogen) using oligoDT primers (110). Quantitative real-time PCR (qPCR) 

reactions were performed in triplicates using  Taqman probe Hs00207134_m1 (Invitrogen) and 

detected by StepOne Plus System (BioRad). Expression levels of p15PAF were calculated relative 

to actb and expressed as the fold difference relative to wild type (ddCT method). 

 

4.3.7 Intracellular Staining with p15PAF 

BM cells were stained with antibodies to relevant surface markers and fixed and permeabilized 

according to manufacturer’s instructions using Cytofix/Cytoperm (BD Pharmingen) followed by 

intracellular staining with JYLD antibody conjugated to AlexaFluor 488 (courtesy of Dr. Lisa 

Denzin) to detect intracellular p15PAF protein expression as previously described (185).  

 

4.3.8 Statistics 

Statistical analysis was performed using student’s t-test. Asterisk (*) indicates p<0.05, ns 

indicates not statistically significant.  
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4.4 RESULTS 

4.4.1 E47 Activates Murine p15PAF Promoter Mediated Transcription  

Table 2. List of potential E-box sites in the murine p15PAF promoter region 

Position Upstream of p15PAF 
Transcription Start Site 

Nucleotide sequence 

-68 caattg 
-577 catttg 
-605 cacgtg 
-1118 cacttg 
-1344 cagttg 
-1497 cacctg 
-1602 cacttg 
-1658 caattg 
-1850 catctg 
-2032 cacatg 
-2226 cacttg 
-2405 catttg 

 

Sequence analysis of the DNA region ~2.5 Kb upstream of the murine p15PAF transcription start 

site revealed 12 different sites containing the E-box consensus sequence motif CANNTG (Table 

2). We hypothesize that one or more of these E-box sequences can serve as a functional binding 

site for the transcription factor E47 leading to the activation of p15PAF promoter and subsequent 

gene expression. To determine if E47 can regulate p15PAF promoter activity, we cloned the 

murine p15PAF promoter region into the pGL4.11 luciferase reporter plasmid in both the forward 

and reverse directions (mPaF-Fwd and mPaF-Rev, respectively) and performed luciferase 

reporter assay in 293T cells (186). Our findings show that E47 can activate the murine p15PAF 

promoter as indicated by the ~20 fold increase in luciferase activity upon transfection of cells 
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with 0.2 µg of E47 compared to luciferase activity in cells transfected with the p15PAF promoter 

alone (Figure 4-1). Increasing concentrations of the E47 expression plasmid were used to co-

transfect 293T cells and resulted in a dose-dependent increase in luciferase activity. A 5-fold 

increase in luciferase activity was observed by using 0.5 µg of E47 compared to 0.2 µg of E47 

expression plasmid. Cloning of the murine p15PAF promoter into the pGL4.11 reporter plasmid in 

the reverse orientation did not result in transcriptional activation by E47. Thus, these results 

suggest that E47 can activate p15PAF promoter mediated transcription in 293T cells, a model cell 

line. In parallel to this gain of E47 function assay, we exploited loss of function assays to 

examine the in vivo consequence of E47 deficiency on p15PAF gene and protein expression. 

 

Figure 4-1. Activation of murine p15PAF promoter by E47 in 293T cells. 

293T cells were transfected with pGL4.11 vector alone, mPaf-Fwd or mPaf-Rev plasmid 

together with the indicated concentration of E47 expression plasmid. Each transfection condition 

was performed in triplicates. Two days after transfection, cell lysates were harvested and 

luciferase activity was measured and normalized to basal luciferase activity of mPaF-Fwd 

transfected cells alone. Values are expressed as mean ± SD and is obtained from n = 5 

independent experiments. Numbers in parenthesis indicates DNA concentration of plasmid used 

per well in each transfection condition. Patricia Santos devised the project, cloned the plasmid 
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constructs and designed the experiments. Rashmi Kumar performed the experiments. Data 

courtesy of Rashmi J. Kumar. Both researchers interpreted the data. 

4.4.2 Analysis of p15PAF Expression in E47-deficient total HSCs  

Our luciferase reporter assay results suggest that E47 can activate p15PAF promoter-mediated 

transcription (Figure 4-1). To determine if E47 regulates transcription of p15PAF in primary 

hematopoietic precursors, we first examined p15PAF mRNA levels in E47WT and E47KO HSCs 

and MPPs using QPCR. Unexpectedly, and distinct from our findings in the luciferase reporter 

assays, results show that HSCs deficient for E47 had a significant 2-fold increase in p15PAF 

mRNA levels (Figure 4-2). In addition, E47KO MPPs also had a ~2-fold increase in p15PAF 

expression compared to E47WT HSCs. These findings suggest that aside from E47, other 

regulatory factors such as enhancers, trans-acting regulatory proteins and epigenetic regulators, 

are involved in the transcriptional regulation of p15PAF expression in primary HSCs and MPPs. 

For example, previous studies show that p15PAF gene expression is regulated by NF-κB (187), 

activating transcription factor 3 (ATF3) (181), and by the Rb/E2F complex (188). Next, we 

examined whether there are any differences in p15PAF protein expression between E47WT and 

E47KO HSCs using flow cytometry. We found no significant differences in p15PAF protein 

expression in E47KO compared to E47WT HSCs (Figure 4-3). In addition, no significant 

differences in p15PAF protein expression in E47KO MPPs versus E47WT MPPs were also observed. 

These findings are consistent with analysis of p15PAF expression in the thymus, where high 

p15PAF mRNA expression did not directly correlate with high levels of p15PAF protein expression 

(185), indicating existence of post-translational regulation of p15PAF protein levels during 

homeostasis. Collectively, our findings suggest that in primary hematopoietic precursors, p15PAF 
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expression is regulated by both transcriptional and post-translational mechanisms independent of 

E47 activity. 

 

Figure 4-2. Analysis of p15PAF mRNA expression in E47-deficient total HSCs and MPPs  

RNA was extracted from sorted total HSCs (flk2- LSK) and MPPs (flk2- LSK) from either E47 

WT or E47 KO mice. cDNA was generated and used to measure p15PAF mRNA expression was 

by QPCR. Data were normalized relative to beta-actin and represents mean ± SD of n=3 

independent sorts, with at least 2 independent analyses for each sort. 

 

Figure 4-3. Analysis of p15PAF protein expression in E47-deficient total HSCs and MPPs  

Total HSCs (flk2- LSK) and MPPs (flk2- LSK) from E47 WT or E47 KO mice were analyzed for 

p15PAF protein expression using flow cytometry. (A) Flow cytometry profiles representative of 

one experiment showing p15PAF protein expression. Numbers in histograms indicate mean 
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fluorescence index (MFI) of p15PAF expression. (B) Bar graph summarizing results in (A) 

represents mean ± SD of MFI from data pooled from n = 3 experiments, ns indicates not 

significant.  

 

4.5 DISCUSSION 

Several studies collectively indicate 2 major functions for E47. First it is an important 

transcription factor required for lymphoid lineage development, and second it serves as a 

negative regulator of proliferation in bone marrow progenitors including HSCs. Strict regulation 

of HSC proliferation is required because of its direct relevance to HSC self-renewal and function 

(81, 83-85). For example, E47-deficient HSCs exhibit diminished self-renewal capability and 

hyperproliferation associated decreased expression of the p21 cell cycle inhibitor (140, 143). We 

hypothesized that additional pathways likely exist by which E47 can regulate HSC proliferation. 

Our interest in p15PAF as an E47 target gene was generated by the strikingly similar phenotype 

observed in p15PAF–deficient HSCs compared to E47-deficient HSCs. Both mouse models 

exhibited similar numerical hematopoietic defects in HSCs, MPPs, LMPPs, and CLP (140, 185). 

Sequence analysis indicates that 12 E-box sites exist in the p15PAF promoter region. We also 

show that E47 can directly activate p15PAF promoter-mediated transcription in 293T cells. 

However, additional studies are needed to determine whether E47 can also activate p15PAF 

promoter-mediated transcription in HSCs. Furthermore, chromatin immunoprecipitation studies 

are needed to determine if E47 can physiologically bind to any of the E-box sites in the p15PAF 

promoter region and to determine which specific E-box site/s are important for E47 binding.  
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Using gain of function and loss of function studies, we have shown that p21 is a 

downstream target of E47 in restraining HSC proliferation (140). In this study, we also examined 

the ability of E47 to directly affect p15PAF expression at both the mRNA and protein level. 

Unexpectedly, our results indicate that in the absence of E47 activity, p15PAF gene expression is 

increased two-fold in HSCs and MPPs. Transcriptional regulation of gene expression involves 

not only transcription factors but also involves the contribution of other regulatory elements 

including enhancers, trans-acting proteins and epigenetic modifiers (189-193). In addition, 

microRNAs also play a role as post-transcriptional regulators of gene expression (194). In our 

luciferase assay experiments, only E47 is present to regulate p15PAF promoter mediated 

transcription in the model 293T cell line. Lacking in this experimental system are regulatory 

factors, present in primary murine HSCs and MPPs, which could contribute to the regulation of 

p15PAF gene expression. Indeed, p15PAF gene expression has been shown to be regulated by NF-

κB (187), activating transcription factor 3 (ATF3) (181), and Rb/E2F complex (188), indicating 

that a broad network of factors are involved in regulation of p15PAF gene expression. Therefore, 

it is important to determine if E47 can directly bind to the p15PAF promoter region and to 

examine whether transduction of primary HSCs with E47 in a gain of function experiment, could 

result in downregulation of p15PAF transcripts in primary HSCs.   

 

Analysis of p15PAF protein levels between WT and E47-deficient HSCs and MPPs 

showed comparable protein expression, despite the differences observed in p15PAF mRNA 

expression. These findings are similar to the analysis of p15PAF expression in murine thymus 

wherein high levels of p15PAF mRNA expression did not correlate to high levels of p15PAF protein 

expression due to post-translational regulation of the p15PAF protein  (185). Previous studies have 
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identified p15PAF to be highly expressed in the nucleus of proliferating cells (178). In our studies 

we examined only the total p15PAF protein expression in primary hematopoietic progenitors. 

What remains unclear is whether there are differences in protein localization between E47WT and 

E47KO HSCs. Taking advantage of most recent advances in flow cytometry technology, analysis 

of p15PAF nuclear localization in primary HSCs can be done using ImageStream, which combines 

conventional flow cytometry with high resolution microscopy (195-200). Also unknown is 

whether differences in p15PAF expression is observed in proliferating cells (S+G2+M) from 

E47WT versus E47KO HSCs since previous studies indicate that p15PAF is highly expressed in 

proliferating cells (178, 185) and E47KO HSCs are hyperproliferating compared to E47WT HSCs 

(140, 143). 

 

 This study represents the first step towards determining the additional mechanisms by 

which E47 can regulate HSC proliferation. While our results suggest that E47 can directly 

activate p15PAF promoter mediated transcription, additional studies are still needed to 

demonstrate direct binding of E47 to E-box sites in the p15PAF promoter region, and importantly, 

to determine the biological contribution of E47 and p15PAF to HSC function in vivo.  
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5.0  OVERALL SUMMARY AND FUTURE DIRECTIONS  

 

5.1 OVERALL SUMMARY  

 

In this study, we specifically show a cell-intrinsic role for the E47-p21 pathway in LT-HSC 

proliferation and self-renewal. Using mice with combined haploinsufficiency in both E47 and 

p21, we show a requirement for the E47-p21 pathway in regulation of LT-HSC proliferation 

under both homeostasis and transplantation stress conditions. Importantly, our findings indicate 

the biological relevance of the E47-p21 pathway in LT-HSC function in vivo. We show that the 

combination of two subtle lesions, loss of a single allele in a transcription factor and cell cycle 

regulator factor, resulted not only in LT-HSC hyperproliferation but also in compromised LT-

HSC self-renewal during transplantation stress. Deregulation of LT-HSC proliferation can have 

severe consequences to LT-HSC self-renewal and function (81, 83-85). In our genetic model, 

transplanted E47hetp21het LT-HSCs failed to persist in WT recipient bone marrow and were 

unable to self-renew during three rounds of serial adoptive transfer. While immediate 

downstream multipotent progenitors were able to recover from the decreased number of LT-

HSCs and were able to efficiently reconstitute myeloid lineages, lymphoid lineage reconstitution 

was severely compromised. Common lymphoid progenitors in the bone marrow of E47hetp21het 
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recipients were dramatically reduced resulting in severe depletion in both B cells and T cells in 

the periphery. Thus, we not only show  a cell-intrinsic role for the E47-p21 pathway in regulation 

of LT-HSC proliferation, but also a requirement for the E47-p21 pathway in lymphoid lineage 

progression (Figure 5-1).  

 

Figure 5-1. Cell-intrinsic requirement for the E47-p21 pathway in distinct developmental 

compartments during hematopoiesis  

The model summarizes major findings and the relevance of E47-p21 pathway in LT-HSC 

function and hematopoiesis in the context of transplantation stress. [1] Cell-intrinsic role for 

E47-p21 pathway in the regulation LT-HSC proliferation in both homeostasis and transplantation 

stress. [2] Requirement for the E47-p21 pathway in lymphoid lineage progression, and [3] E47-

p21 pathway is dispensable in myeloid lineage development.   
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In this study, we took advantage of a genetic model making use of mice that are wild 

type, haploinsufficient for E47 alone, or haploinsufficient for both E47 and p21 in tandem. 

Several studies indicate that reduced dosage of E47 predisposes individuals to cancer (112, 133, 

139). For example, deletion of E2A, the parent gene of E47, has been reported in a genome-wide 

mutation study of acute lymphoblastic leukemia (ALL) patients (133). Likewise, ~70% of 

patients suffering from a T cell lymphoma subtype known as Sezary syndrome also had recurrent 

E2A gene deletions (139). Overexpression of E47 antagonist Id2 in classical Hodgkin’s 

lymphoma resulted in the loss of E47 activity and formation of B-cell derived lymphomas (112). 

The sensitive dose requirement for E47 activity in hematopoiesis can exacerbate the impact of 

additional mutations. Our studies demonstrate that coupled with E47 heterozygosity, loss of a 

single allele of p21 exacerbates the phenotype associated with simple E47 insufficiency. 

Specifically, compound heterozygosity of E47 and p21 magnified the defects in 

hyperproliferation, LT-HSC self-renewal and lymphoid reconstitution observed in E47het mice. 

Thus, this experimental model is an example whereby rather subtle changes in E47 gene dosage 

in conjunction with modest changes in p21 heterozygosity aggressively exacerbated the effects 

of E47 haploinsufficiency alone, resulting in immune deficiency. It is possible that a reduction in 

E47 gene dosage, combined with a second heterozygous mutation in a different gene, can 

predispose patients afflicted with loss of heterozygosity mutations in E2A to hematologic 

malignancies.  

 

Because excessive LT-HSC proliferation can have severe consequences to LT-HSC 

function (81, 83-85), we hypothesized that other mechanisms exist by which E47 can regulate 

LT-HSC proliferation.  Indeed, previous studies have identified that in addition to p21, the 
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expression of cell cycle regulators such as cdk6, Rb,  cyclin E1, cyclin E2, and E2F4 are also 

regulated by E47 activity (115, 140). During this work, a novel factor p15PAF, was identified in 

which p15PAF-deficient mice and E47-deficient mice had a striking phenotypic similarity of early 

hematopoietic defects. We then focused on examining p15PAF as a potential E47 target gene. Our 

findings demonstrate that E47 directly activates p15PAF promoter mediated transcription in 293T 

cells. However, analysis of p15PAF gene and protein expression in E47-deficient primary HSCs 

and MPPs suggests that the expression of p15PAF is regulated at the gene and protein level 

despite a lack of E47 activity. It remains to be seen whether E47 can also directly activate p15PAF 

promoter mediated transcription and whether forced expression of E47 affects p15PAF gene and 

protein expression in primary HSCs. Therefore, it is possible that E47 is a part of a broader 

network of factors that regulate p15PAF expression at the transcriptional and post-translational 

level. Finally, it will be interesting to determine the biological relevance of E47-p15PAF pathway 

to HSC function in the context of transplantation stress. 
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5.2 FUTURE DIRECTIONS  

In this study we have shown that genetic disruption of one allele each, in both E47 and p21 in 

LT-HSCs, resulted in loss of lymphoid lineage reconstitution while myeloid lineage 

reconstitution remained intact in recipient mice. Recent studies indicate that the HSC 

compartment consists of a very heterogeneous population of stem cells. This heterogeneity is 

reflected not only in how long these stem cells are able to sustain hematopoiesis (i.e. LT-HSCs 

versus ST-HSCs) but also in the type of differentiated mature immune cells that these stem cells 

can produce. Three different types of HSCs are classified based on their respective 

differentiation potential as tested through serial transplantation. The different HSC types are 

identified as balanced (Bala-HSC), lymphoid-biased (Ly-bi) and myeloid-biased (My-bi) HSCs 

(29, 30). Bala-HSCs can reconstitute recipients resulting in donor-derived cells which are ~10% 

myeloid and ~90% lymphoid cells in the periphery. Ly-bi HSCs can generate only a few myeloid 

cells, while producing a majority of donor-derived lymphoid cells in recipients. Conversely, 

adoptive transfer recipients transplanted with My-bi HSCs produce mostly donor-derived 

myeloid cells and less of donor-derived lymphoid cells (201, 202). Through differential 

expression of SLAM family member CD229, Oguro et.al. were able to identify myeloid biased 

HSCs (CD229− HSCs) that are more quiescent compared to lymphoid biased HSCs (CD229− 

HSCs) (54). Each type of HSC generates the same type of HSC, such that the differentiation 

capacities of these HSCs are epigenetically fixed and predetermined (201, 202). Similarly, a 

recent study using single cell clonal analysis of HSCs have unexpectedly identified myeloid-

restricted progenitors with long-term repopulating activity termed as MyRPs, which like My-bi 
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HSCs, can give rise to megakaryocytic, erythroid and myeloid lineages. However, MyRPs are 

unlike My-bi HSCs in that MyRP’s are already committed to these three lineages and does not 

produce any lymphoid lineage cells (31). Interestingly, this study also made use of paired 

daughter cell assay combined with transplantation to show the first experimental evidence of 

HSCs undergoing symmetrical division (31).  

 

Based on our findings, perturbations in the E47-p21 pathway in LT-HSCs affected only 

lymphoid lineage reconstitution in recipients. Therefore, it is possible that the E47-p21 pathway 

is required for the maintenance of self-renewal in lymphoid-biased HSCs only. By contrast, the 

E47-p21 pathway may not be essential in maintaining self-renewal potential of myeloid-biased 

HSC as well as that of balanced-HSCs and future studies can be done to address this hypothesis. 

It will also be interesting to determine if specific epigenetic changes uniquely occurring in Ly-bi 

HSCs as a result of E47 activity, can mechanistically explain why the E47-p21 pathway would 

only be relevant to the maintenance of  Ly-bi HSC self-renewal potential. 

 

Serial transplantation of E47hetp21het HSCs into WT hosts resulted in recipients 

characterized by progressive loss of lymphoid lineage reconstitution and normal myeloid lineage 

reconstitution. This skewing towards myeloid lineage cells over lymphoid lineage cells is highly 

reminiscent of the hematopoietic composition of aged individuals (cited studies made use of 

samples from 18-26 month old mice or from 65-85 years old humans unless stated otherwise) 

(157, 203-206). In addition, our findings of decreased CLP numbers in E47hetp21het secondary 

recipients were also observed in the bone marrow of mice aged 8 months and older (207, 208). 

Unexpectedly, analysis of bone marrow from old mice indicates an expansion of the HSC 
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compartment (209, 210) and similar findings were also observed in humans (204, 211). HSC 

expansion in elderly individuals seems counter-intuitive to the age-associated changes observed 

in the hematopoietic system. However, it has been shown that while HSCs are expanded in aged 

mice, old HSCs have, on a per cell basis, decreased capacity for self-renewal and reconstitution 

of recipients in serial transplantation assays (212). Furthermore, the use of old HSCs as donors 

resulted in myeloid-biased reconstitution of recipients, which may be partly explained by the 

changing composition of HSCs such that My-bi HSCs are selectively expanded in the bone 

marrow of aged mice (29). At the molecular level, old HSCs are reported to have increased 

expression of genes linked to oxidative stress, protein aggregation and inflammatory responses 

and decreased expression of genes involved in DNA repair and chromatin remodeling compared 

to young HSCs (203). Furthermore, upregulation of myeloid lineage-associated genes and 

downregulation of lymphoid lineage associated genes were also observed (157, 203, 204). 

Collectively, these studies demonstrate that part of the changes observed in old HSCs versus 

young HSCs can be attributed to cell-intrinsic transcriptional changes. In addition, the 

contribution of epigenetic regulation to changes observed in old HSCs  has also been described 

as a fraction of old HSCs display lower histone H4 lysine acetylation due to the higher levels of 

Rho GTPase cdc42 compared to young HSCs (213). Changes in old HSCs due to the cell-

extrinsic effects of an aged bone marrow microenviroment or BM niche have also been 

described. For example, an aged BM niche contributes to myeloid skewing through secretion of 

high levels of Ccl5 (also known as RANTES), a pro-inflammatory cytokine (214).  The 

mechanisms that underlie the changes observed in HSCs and HSC function upon aging 

especially in humans remain poorly understood (215, 216). Thus, it will be interesting to 

determine if HSCs from aged mice or humans have decreased levels of E47, which in turn can 
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affect p21 expression. Previous studies have shown that E47 function is highly conserved 

between mouse and man (108-110, 113-116, 128, 129, 217). Furthermore, it has also been 

previously shown that E47 levels are downregulated in splenic B cells from aged mice (218) as 

well as peripheral blood derived B cells from elderly individuals (219, 220). Precursor B cells 

from the bone marrow of aged mice also had decreased E47 levels due to accelerated Notch-

dependent degradation of E47 (221), and decreased E47 activity due to increased levels of ID2, a 

dominant negative inhibitor of E47 (222). Therefore, it is possible that disruptions in the E47-

p21 pathway might also be observed in old HSCs resulting in age-associated changes to HSC 

function. In summary, additional studies are still needed to determine the mechanisms involved 

in age associated changes to HSC function which can serve as the basis for future translational 

applications to improve HSC function and to improve immune protection in the elderly (213, 

216, 223).  

 

Beyond the established roles of immune cells in mediating disease pathogenesis, 

emerging literature demonstrates that chronic autoimmune/inflammatory environments influence 

hematopoiesis. HSCs in particular are responsive to TLR ligands (32) and interferons (33, 34).  

Changes in HSC cellularity and lineage-biased output can be influenced by both inflammatory 

cytokines and genetic risk factors including cell cycle regulators. For example, in a murine 

model of lupus, the chronic inflammatory environment in these mice favors myeloid over 

lymphoid lineage development through cytokine-driven expansion of myeloid progenitors and 

decreased precursor B cell maturation (172). In addition, a SNP in the gene encoding for p18, 

was found to reduce p18 expression and increase HSC self-renewal in the lupus mice (172). In a 

KRNxG7 murine model of rheumatoid arthritis, diseased mice exhibited increased tissue-
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localized Gr-1+ and CD11b+ myeloid cells due in part to enhanced priming of myeloid-specific 

transcripts in KRNxG7 HSCs and MPPs (224). And, in an IL-23-driven mouse model of colitis, 

skewing towards myeloid production occurred at the expense of lymphoid and erythroid 

progenitors, mediated through effects of IFN-γ and GM-CSF to HSCs and myeloid progenitors 

respectively (225). These studies collectively highlight how a chronic inflammatory environment 

can negatively affect HSC function. E47 levels have been shown to regulate lympho-myeloid 

fate choice in uncommitted progenitors at the single cell level (119). In an experimental model of 

chronic inflammation, our laboratory has shown that  myeloid bias correlates with reductions in 

E47 transcript and protein levels (32). Currently unknown is whether the reductions in E47 are 

also accompanied by reductions in p21 expression, and if it is indeed the case, then the E47-p21 

pathway may also be mechanistically relevant to changes in HSC function mediated by a chronic 

inflammatory environment.  

 

Thus, understanding the molecular mechanisms that regulate HSC self-renewal and 

function have important implications in the clinical setting for purposes of improved therapeutic 

bone marrow stem cell transplantation and preservation of HSC integrity. Indeed as emerging 

literature indicates, clinical diseases such as cancer, aging, and chronic inflammatory conditions, 

have all been shown to influence HSCs and, in some cases, to negatively affect HSC function. 

Therefore, knowledge of the molecular mechanisms that regulate self-renewal and hematopoietic 

potential can also be applied to improving and/or preserving HSC function in the context of these 

diseases.  
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