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ABSTRACT 

Use of the tiny nematode worm Caenorhabditis elegans as a model organism for 

biological research has had a considerable influence on scientific discoveries.  C. elegans 

research has a public health relevance as it has led to better understanding and treatments of 

diseases like cancer and neurodegenerative diseases, which are a public health concern.  

Additionally, C. elegans research offers promise towards a better understanding of the public 

health problems of human obesity and diabetes, as many initial controlled experiments may only 

be done in a model organism (as opposed to human studies).  A commonly employed skill 

among C. elegans researchers is the ability to reliably and accurately distinguish among the five 

stages of worm development by eye; this is required for both producing quality data, and for 

successful worm maintenance and genomic manipulation.  While it is reasonable to presume that 

there is some amount of variability from researcher to researcher in classifying worms into 

particular stages, there is little documentation of formal assessments of reliability between 

researchers.   

The topic of statistical assessment of interrater reliability has been addressed extensively 

as it applies to fields like medical diagnostics, and psychological and sociological studies. While 

numerous methods exist, a popular way of assessing the reliability of two or more different 

measurements on a categorical scale is the kappa statistic.  The ease of computation and the 

single numerical index (ranging from 0 to 1) of the kappa make it a commonly used “quick” 

method of this assessment. However, there are numerous problems that arise in the interpretation 

and application of kappa that can make it untrustworthy, especially when it is used for the 

analysis of data with an ordinal outcome such as developmental stage.   

An alternative methodology is latent variable modeling using a common factor model 

with a probit transformation.  This approach provides more information about the strength of 
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association and bias among raters, and does not give the potentially confusing or paradoxical 

results that kappa does.  The following study has applied both of these methods to a dataset 

containing the ratings of worm larval stage of development for a population of 60 worms by 

seven raters.  This study finds that while both the kappa and the modeling approach give 

concordant results, modeling the data provides a more useful and meaningful summary of the 

agreement between raters.  Additionally, it finds that the overall agreement is high, but that there 

is some degree of variability in the cutoff thresholds by which raters assign developmental stage.  
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PREFACE 
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data.  The post docs, graduate students, and technicians in the Fisher lab who kindly and 

willingly participated in this study played a crucial role in this study; without their participation 

and C. elegans experience, the dataset could not exist.  In addition, Dr. Bilonick provided the 

code and expertise necessary for running the structural equations modeling. 



1.0 INTRODUCTION 

In most types of research, when one wishes to draw a general conclusion about a 

particular population or the difference between two populations, it is common practice to 

make measurements on a subset of the population. Summary statistics like mean and standard 

deviation are used to make general statements about the magnitude and variability of the 

particular phenomenon being measured in the population. When investigators make conclusions 

about significance there is an implicit assumption that the magnitude and variability within the 

dataset are due to the natural magnitude and variability present in the population being 

measured. However, it is well known that these statistics may be distorted by systematic errors 

(biases) and random errors that arise from the method of measurement itself. In certain types of 

experimentation or medical diagnostics, the degree to which measurement error or bias has an 

impact on overall statistics is of interest. This would especially be the case when adequate 

experimental control for measurement error is not possible; for example, if all measurements 

were not being made by the same technician. The degree of measurement error present in a 

particular test may impact the conclusions made from a study. For example, in a simple 

regression problem where the expected value of the response Y is a linear function of a predictor 

X, say α + βX, it is assumed that X is known.  It is well known that when X must be measured 

and is subject to random errors, the estimate of β will be biased toward zero and the larger the 

1 
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random errors, the larger the bias (1).  When there is concern that measurement error is present, 

one may conduct repeated measurements either using the same instrument, or using different 

instruments so that the measurement error can be separated from true variability.  Often times it 

is of interest to compare instruments or methods solely for the purpose of assessing the nature of 

systematic differences and any differences in the expected magnitudes of the random errors 

exhibited by each instrument. Further, the “instruments” may consist of experts making 

judgments or ratings of some attribute, and these ratings are measurements on a discrete ordinal 

scale.  The goal may be to determine how best to improve agreement among the raters. Assessing 

interrater agreement in such cases is the topic of interest in what follows. 

This project will provide a background on two different approaches to assessing interrater 

reliability: the first approach is the commonly used kappa statistic, and the second approach is 

through latent variable modeling. In addition, interrater assessment will be made using these two 

approaches for a particular problem in biological research done using the model organism 

Caenorhabditis elegans.   

1.1 INTERRATER RELIABILITY 

A major challenge for research in the natural sciences, psychology, sociology, and 

medical diagnostics is in assessing how reliably two or more measurement techniques evaluate 

the same phenomenon.  This is particularly vexing in cases where a well-defined gold standard 

measurement does not exist for the outcome of interest, and one cannot confidently say that a 

particular measurement technique is more accurate than the others.  For instance, in medicine, 
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physicians will typically diagnose a disease in a patient based on the presentation of a set of 

symptoms; the ultimate decision of whether or not a patient has a disease is a judgment made by 

the physician, and in turn, these will vary from physician to physician.  A certain degree of 

consistency is desired between doctors to ensure 1) that diseases are not being over- or under-

diagnosed in clinics, and patients are receiving adequate and appropriate care, 2) that any 

research studies addressing the disease of interest possesses internal validity, and 3) that 

estimations for disease prevalence and incidence are accurately reported for public health 

monitoring.  An example of measurements in which reliability between raters, or interrater 

reliability, is a particular concern include clinical psychological diagnosis of patients into 

categories such as “psychotic”, “neurotic” or “organic” between physicians (2).  Concerns over 

interrater reliability may be present for categorical data with two or more outcomes, or for 

continuous data.  They may also be present over comparisons between rating systems with 

differing numbers of categories.  However, this project will focus on ordinal categorical ratings, 

with an equal number of outcomes between raters. It will address how to measure the reliability 

between two or more raters, with a rating system consisting of two or more ordered categories. 

1.1.1 Kappa Statistic 

A comparison between two raters for an outcome with two categories may be displayed 

in a 2x2 table as shown in Table 1. 
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Table 1. 2X2 table for two raters 

Rater 1 (x1) 

yes no 

Rater 2 (x2) yes a b a+b 

no c d c+d 

a+c b+d N 

The variables a, and d represent the counts for which the two raters agreed on the 

outcome, and the values b, and c are discordant between these two raters.  As expected, tables 

with higher values for a, and d and lower values for b, and c have a greater degree of interrater 

reliability.  A simple way to represent this agreement is by stating the proportion of the total that 

are in agreement, or Po = (a + d)/N (2).  Another commonly used value to indicate degree of 

similarity is the intraclass correlation, ρ, which is shown in Equation 1.  The highest value of ρ is 

one, which indicates perfect agreement and occurs when the discordant cells (c and b) are zero.  

The lowest value of ρ is minus one, which indicates perfect disagreement, which occurs when a 

and d are zero. 

Equation 1. 

A limitation to using either of these values to represent interrater reliability is that they do 

not account for the fact that two raters may have some amount of agreement by random chance.  

The kappa statistic was introduced to address this issue, and present a measure of agreement that 

has been chance-corrected, by removing the proportion of agreement expected in the 2x2 table 

by random chance. Equation 2 represents the simplest form of the Kappa statistic, or Cohen’s 

Kappa (3). 
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Equation 2. 

Equation 3. 

Equation 4. 

The ease of computation, and simple interpretation of kappa has made it a widely used 

method for reporting agreement between raters (3, 4).  Specifically, because kappa is chance-

corrected, a value of one may be interpreted as “perfect” agreement, and a value of 0 means that 

the agreement between the raters is no better than agreement by chance alone; any value greater 

than 0 signifies some degree of agreement between raters (4).  As a guide for interpretation of 

kappa values in terms of the strength of agreement, Landis, et. al. have proposed the following 

guidelines: kappa ≤0 is poor agreement, 0.01 – 0.2 is slight, 0.21 – 0.4 is fair, 0.41 – 0.6 is 

moderate, 0.61 – 0.8 is substantial, and 0.81 –  1.0 is almost perfect agreement (5). 

The kappa statistic may be extended to measure agreement between multiple different 

raters assessing an outcome with more than two categories.  To extend kappa to multiple rating 

categories (shown in the table in the k x k table in Table 2), the same expression for kappa in 

equation 2 is used, except the expressions in Equations 5 and 6 are used for Po and Pe, 

respectively.  

Equation 5. 
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Equation 6. 

Table 2. kXk table for two raters 

Rater 1 (x1) 
R

at
er

 2
 (

x
2
) 

1 2 ... k 

1 p11 p12 ... p1k p1* 

2 p21 p22 ... p2k p2* 

... ... ... ... ... ... 

k pk1 pk2 ... pkk pk* 

total p*1 p*2 ... p*k N 

When the number of ratings is constant, an overall kappa value may be obtained, as 

described by Landis et. al., and Fleiss, et. al.  (2, 5). 

For each individual category j, a kappa value may be calculated with the following 

expression in equation 7 and equation 8, where n = number of subjects, k = number of 

categories, xij are the observed number of ratings for each subject (i) and category (j), m is the 

sum of the ratings over all categories, pj = overall proportion of ratings in category j and qj = 1 - 

pj.

Equation 7. 

Equation 8. 
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Equation 9. 

Kappa was originally intended for analyzing nominal categorical data, without any notion 

of one category being more similar to another.  With ordinal data however, due to the ordered 

nature of the categories one would expect that some discordant ratings are more severe than 

others. For example, if there are four ordered categories, 1, 2, 3, and 4, then a disagreement 

between categories adjacent to each other (1 and 2, 3 and 4, for instance) is a lesser disagreement 

than when raters are discordant between categories that are not adjacent (1 and 3, or 1 and 4).  

Cohen proposed the weighted kappa statistic as a way to reflect this information (4, 6).  Relative 

weights are attached to cells of a k by k table (Table 2), with a value of one given to the 

concordant cells, and a value between zero and one given to the discordant cells; the weights 

given to the cells are chosen arbitrarily. 

1.1.2 Shortcomings of Kappa 

Since its introduction, the use of kappa has also been extensively criticized. The main 

problems include issues with interpretability and generalizability of kappa(7-10).  Specifically, 

that 1) there is a lack of consensus about what value of kappa is high enough to be considered 

good agreement among raters, 2) the value of kappa is dependent on the prevalence of the trait 

being measured in a population, and may take on paradoxically high or low values 3) that kappa 

is an omnibus index comprised of many components of rater disagreement, and 4) that when 
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there is an ordering to the categories, the assignment of weights to the categories is arbitrary, and 

may not reflect the true relative differences between categories.   

The first issue arises from the interpretation of a kappa value that lies between zero and 

one.  Significance is usually determined to test the null hypothesis of kappa being equal to zero 

(testing whether there is agreement that is not due to chance alone), however, investigators 

typically want to know whether their raters have a sufficiently high level of agreement, and 

merely having agreement that is better than chance is not good enough.  While it is possible to 

designate cutoff values for kappa values corresponding to high agreement, a decision about 

where to draw these cutoffs would have to be made on an arbitrary basis (10).  It is also 

conceivable for kappa to take on a value of less than zero, which is difficult to interpret.  The 

second issue arises from the notion that kappa may vary with the prevalence of the underlying 

trait; this issue is also known as the base rate problem (7, 9-11).  This is illustrated by Byrt et. al. 

using two by two tables that have the same observed proportion of agreement, but the calculated 

kappa values differ due to the distribution in the marginal totals.  Tables 3 and 4 recapitulate this 

illustration. 
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Table 3. Comparable kappa and proportion of agreement 

A\B Y N total 

Y 40 9 49 

N 6 45 51 

 46 54 100 

Po = 0.85; κ = 0.70 

 
Table 4. Small kappa and high proportion of agreement 

A\B Y N total 

Y 80  10 90 

N 5 5 10 

 85 15 100 

Po = 0.85; κ = 0.32 

 

Tables 3 and 4 both have the same Po’s, of 0.85, however the kappa values are 0.70, and 

0.32 for Table 3 and Table 4, respectively.  This demonstrates an instance in which kappa may 

vary considerably, depending on the distribution of the data. Table 3 has a fairly even 

distribution of yes and no answers in the marginal totals, while Table 4 has a much higher 

proportion of yes answers in the marginal totals, which likely reflects that there is a higher 

prevalence of the disease within the population being measured.  The difference between the 

kappa values for these two tables is due to a difference in the expected proportion of agreement, 

which is 0.5 for Table 3 and 0.78 for Table 4.  This example raises the notion that in some cases, 

the comparison of kappa values obtained from raters assessing different pools of subjects may 

not be reliable. The fact that the kappa value in Table 4 of 0.32 suggests low agreement even 

though the proportion of agreement is very high (0.85) is worrisome because it contradicts the 

initial first glance results.  This has been called a paradoxical result of using kappa (7-9).    

While this example is troublesome, this sort of paradoxical result only becomes an issue 

when the prevalence of the trait being measured in a population is extremely high or low.  A 

detailed analysis of the behavior of kappa under varying rater sensitivities, specificities, and 
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population trait prevalence was described by Guggenmoos-Holzmann (9, 10, 12).  This author 

demonstrates that kappa is extremely unreliable as the trait prevalence approaches zero or 1.  

This study shows that kappa becomes more stable for populations with a trait prevalence 

between 0.3 and 0.7, but that this stability also depends on the sensitivities and specificities of 

the different raters, which indicates that there is always some amount of uncertainty in how 

reliable kappa is, and to what degree kappa is actually influenced by the trait prevalence.   

The third issue of kappa is related to interpretability of the kappa value, in light of the 

fact that kappa is a composite value, representing several different aspects of rater agreement.  

This issue is related to issue 2, in that trait prevalence is one component on which kappa 

depends.  In addition to the prevalence and variance of the trait being measured, kappa is also 

influenced by rater bias and rater error (7-10, 12).  In assessing rater reliability for categorical 

measurements with more than two categories, one rater may have a tendency to classify items in 

one category more than the other raters, which is an example of rater bias.  On the other hand, 

one rater may differ from another due to random error, without any directionality to the 

disagreement.   The kappa statistic alone does not make a distinction between these two sources 

of disagreement.  This reduction of information in the kappa value makes it more difficult for an 

investigator to make specific suggestions for how the interrater reliability may be improved in a 

particular study.   

The fourth issue is present for data in which the rating categories have a natural ordering.  

To use kappa to describe agreement in such data, one may choose to use the basic form of kappa 

that does not account for certain discordances being larger than others, and this information is 

not represented by the statistic.  Alternatively, one may assign weights to the categories, and 

calculate a weighted kappa based on these assignments.  This approach is problematic because 
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the weights are chosen arbitrarily and this form of kappa may be misleading because it assumes 

that the relative distances from one rating category to another is known (10). 

Many investigators have made the case for why reporting kappa by itself, without 

additional summary statistics or raw values for the individual raters, is an insufficient 

representation of interrater reliability.  Some authors have recommended that kappa be reported 

along with other indices that adjust kappa for underlying prevalence and balance of the data (7, 

10, 12, 13).  Other authors have stated that kappa is not very useful, and that other methods, like 

latent variable modeling ought to be used instead to analyze agreement (10, 12, 14). 

1.2 LATENT VARIABLE MODELING WITH STRUCTURAL EQUATIONS 

Latent variable modeling offers a more robust and consistent means of assessing 

interrater reliability, however this approach is also much more computationally demanding and 

conceptually challenging to understand.  The general utility of a latent variable modeling 

approach is that it addresses situations where a phenomenon or physical quality cannot be 

directly measured, and a representative measurement is made instead.  This approach is a means 

to infer specific properties of un-observable variables from variables that are measureable (15).  

The un-observable variables are also known as latent variables, while the measurable variables 

are called manifest variables.  An example of a latent variable that would be of interest to an 

investigator might be disease severity of depression, which presumably follows a continuum, but 

is also not directly measurable.  A manifest variable that represents depression severity and also 

is directly measurable, would be some value along a depression severity rating scale, such as the 
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Hamilton Rating Scale for Depression, obtained from an individual’s response to a questionnaire 

(16).  In this case, the ordinal value obtained from the questionnaire ought to be correlated to the 

“true” latent variable for depression severity.  If an investigator were interested in assessing the 

relationships between depression and other factors (such as income, age, family history, etc.), 

one could build a model linking the measured and unmeasured variables, and ultimately obtain 

estimates for the parameters in the model.  In order to build a good model, there are several key 

concepts one must understand that will be introduced in the sections below.  These include: path 

diagrams, structural equations models, and identification of a model.  Additionally, for the 

assessment of ordered categorical data, the method of ordinal regression will be introduced.   

1.2.1 Path Diagrams 

The geneticist Sewall Wright invented path analysis in 1921 (17).  A path diagram refers 

to a specific graphical display that represents interrelationships between many variables(17).  

These diagrams are meant to provide a visual display of potentially complicated relationships 

between different factors, which can make conceptualization of a particular system feasible. By 

using meaningful symbols and notations, a path diagram will translate into an exact set of 

equations whose parameters may be estimated(17, 18).  While a path diagram itself is not 

essential to the analytics and acquisition of model parameters, it is useful for conceptualization 

and comprehension of what each variable and parameter refers to in a model. Figure 1 is an 

example of a path diagram. 
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Figure 1.  Path diagram with latent and manifest variables 

 

In Figure 1, there are six variables, represented by uppercase letters A, B, C, D, E and F.  

The manifest, or observed variables are outlined in boxes (C, D, E, and F), while the latent 

variables are circled (A and B).  The arrows connecting the variables are either curved with two 

heads, or straight with one head.  The curved two-headed arrow designates a correlation between 

two variables (18).  The straight, one-headed arrow connecting two different variables signifies a 

linearly dependent relationship between the two variables, with the arrowhead pointing in the 

direction in the dependency.  This means that a change in the variable at the tail of the arrow will 

result in a change in the variable at the head of the arrow, but not vice versa (18).  The lowercase 

letters are the magnitudes of the strength of the correlation between two variables, or the slope of 

the linear relation.  Finally, the curved two-headed arrow linking a variable to itself is used to 

represent an error or disturbance term, which may account for errors within a variable that are 

not accounted for by the other terms in the model.  In Figure 1, latent variables A and B are 

correlated with each other, and manifest variables C and D are both dependent on A; the 

manifest variables all have error terms.   
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1.2.2 Structural Equations.  

One way of expressing the information contained in path diagrams is through a set of 

structural equations.  These are constructed by equating each downstream variable to a function 

of the paths leading to it, such that each equation contains a term for each straight arrow leading 

to the downstream variable (18). These equations are essentially regression equations, where the 

lowercase letters are regression coefficients.  For instance, structural equations representing the 

path diagram from Figure 1 are as follows: 

 C = cA 

 D = dA + bB 

 E = eB 

 F = fB 

 

In order to make a comparison between regression coefficients for different equations in 

the path diagram, the coefficients may be standardized by multiplying the rawscore coefficient 

by a ratio of the standard deviations of the variable at the tail of the arrow to that at the head of 

the arrow(18).  

A critical aspect of structural equations modeling is the ability to estimate model 

parameters using an observed dataset.  This is dependent on the number of structural equations, 

and the number of known and unknown variables.  If there are too few equations and known 

parameters to estimate the unknowns, then the model is underdetermined.  A model that has the 

minimum number of unknown parameters in order to provide a unique solution is just 

determined, or identified (18)p. 16.  To show that model identification has been reached, it is 

necessary to demonstrate that each unknown parameter may be expressed as a function of known 

parameters with a unique solution (17)p. 88.  Over determination, or over identification of a 
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model refers to cases where there is an excess of information with which to estimate model 

parameters.  If at least one of the unknown parameters can be expressed with more than one 

function of known parameters, then the model is over identified (17)p. 90.  An over-identified 

model is usually preferred since each measured variable has its own measurement error that has a 

bias from the true value.  A redundancy of identifying data for the unknown factors will usually 

give a closer estimate of the true underlying value (18)p. 17.   

1.2.3 Factor Analysis.  

Path diagrams provide a useful means of estimating parameters found in factor analysis.  

Factor analysis, as originally devised by Spearman in 1904, refers to the idea of several 

measured variables being related to each other by sharing causal relations to one common factor.  

Typically, factor analysis is used to relate a number of measured factors to a single unmeasured, 

or latent factor.  An example path diagram for factor analysis is shown in Figure 2.   

 

 

Figure 2.  Path diagram for a one-factor analysis  
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Factor analysis may be used in an exploratory, hypothesis generating manner, in which 

different models are tested, and variables are added or eliminated, depending on model fit.  This 

form of factor analysis is known as exploratory factor analysis.  In confirmatory factor analysis, 

on the other hand, the model has already been proposed based on an existing theory, and the 

number of factors or variables, and their relationship to each other is already stated.  The main 

aim of confirmatory factor analysis is to determine how well the interrelations among the 

measured variables are accounted for by the model (19). 

In order to model interrater reliability, a confirmatory factor analysis model may be used.  

The path diagram in Figure 2, for example, could represent a model for a comparison between 

four different raters.  In this model, the four raters represented by variables B, C, D, and E are 

assessing the same phenomenon, which is represented by the latent variable A.  The 

measurements made by each rater are independent of each other, but have a linear dependency 

on the same underlying factor.  

Uebersax describes a latent trait agreement analysis approach, which may be used to 

model interrater agreement for categorical ratings(14). This approach assumes that the latent trait 

underlying the ratings is continuous, and that each rater has specific thresholds along the 

continuum to determine how he or she categorizes an item (14).  The parameter estimates for this 

type of model give quantities that represent rater bias, category definitions, as well as 

measurement error.  These parameter estimates each describe how closely each rater is able to 

measure the common latent factor.  

For the comparison of raters using an ordinal rating scale with more than two categories, 

a factor analysis model is appropriate, given that each rater is assessing the same latent quality.  

Such a model could have a path diagram similar to that in Figure 2, with B, C, D, and E each 
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being a different rater, and A being the latent quality each rater is assessing.  However, if one 

assumes that the latent quality follows a continuous distribution, than additional steps will be 

needed in order to relate the ordinal outcomes given by the raters to the latent variable, and 

estimate parameters to explain the relationships between raters.  Specifically, one must determine 

what sort of distribution the latent trait follows, and also, the ordinal outcome data from the 

raters must be transformed such that it bears a linear relation to the latent trait.  The topic of 

Ordinal Regression covers methods of relating an ordinal categorical outcome variable to a 

continuous predictor.  When attempting to analyze data that has an ordinal scale by classical 

regression analysis, one can either treat each ordinal category as a separate indicator variable, or 

one may treat the ordinal data as continuous, using the numerical values assigned to each 

category in the model.  Both of these approaches are problematic.  In treating each ordinal 

category as an indicator variable, one ignores the ordered nature of the categories, and there is a 

loss of information in this analysis. By treating the ordinal data as a continuous scale, one 

incorrectly assumes that the relative distances between each category are determined by the 

numerical values assigned to each category, which can give misleading conclusions (20).

In ordinal regression one assumes that the ordered categories represent different sections 

along a continuous distribution that are delineated by threshold values.  For example, Figure 3 

shows a normal distribution with two threshold values x1 and x2.  The letters A, B, and C are the 

ordinal categories into which the data are classified.  Any latent value that is lower than 

threshold x1 will fall in category A, while a latent value lying in between x1 and x2 will be 

category B, and anything greater than x2 is C.  
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Figure 3.  Standard normal distribution with thresholds. 

To appropriately fit a one factor model to data that has ordinal outcomes, the data must 

be transformed such that the category values represent different levels along a normal 

distribution.  The link function that transforms the data is called a probit function, and it is 

introduced by Agresti, and others (20, 21).  A path diagram for a one factor model with ordinal 

data is shown in Figure 4.  In this model there are three raters who share a common underlying 

factor.  Each rater has their own latent distribution that determines the ordinal ratings, and this 

distribution is connected to the ordinal values by the squiggly arrow, which represents the probit 

transformation.  The threshold values designating each level may be freely estimated, and may 

vary from rater to rater due to the fact that each rater may have slightly different ways of 

defining each category. 
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Figure 4.  Path diagram for a one-factor ordinal model 

 

In this model, the parameters of interest are the threshold values for category 

classifications between the raters (the number of threshold parameter estimates is equal to the 

number of categories minus one, for individual each rater), and also b1, b2, and b3, which 

describe the magnitude of the linear association between each rater’s distribution, and the latent 

distribution from the population that each rater is measuring. In this model, the underlying 

distributions for the latent terms have been constrained to following the standard normal 

distribution.  Therefore, with this standardization, the b terms, which are also called factor 

loadings, are correlation coefficients between each rater and the common factor.  Furthermore, 

the amount by which each rater’s factor loading is smaller than one represents the amount of 

random error for this rater.  From this model, one may compare a set of raters, and determine 

whether one or more rater has a low b estimate, meaning that this rater has a relatively high 

amount of random error.  The threshold values, may also be compared between raters, to see 

whether one rater has different category definitions from the other raters.  For this project, a 
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model similar to Figure 3 will be used, except it will be scaled up to 7 raters, and an outcome 

with 5 categories.  

1.3 CAENORHABDITIS ELEGANS BACKGROUND 

The tiny transparent non-parasitic nematode worm, Caenorhabditis elegans has been a 

model organism for biological studies since the 1960’s.  Presently, there are approximately 

21,500 C. elegans researchers listed on wormbase.org, conducting experiments in topics 

including genetics, aging, pharmacology, neurobiology, and ecology.  A number of qualities 

make worms a useful system in which to study biological processes.  Stocks are easy and 

inexpensive to maintain since worms have a three-day lifecycle and a one-month lifespan, they 

reproduce sexually as self-fertilizing hermaphrodites meaning that a worm strain may be revived 

with a single fertile hermaphrodite worm, and adult worms are only one millimeter in length.  

Additionally, the large worm research community that has existed for over 50 years has afforded 

a wealth of data and resources, including a fully sequenced and extensively mapped genome, a 

large library of genetic mutant strains, an RNAi library enabling silencing of almost any known 

gene, and an online database containing information on the worm genome, phenotypes, reagent 

information, bibliographies, worm morphology, etc. (22).   

The C. elegans life-cycle consists of development as an embryo, then following hatching, 

the progression through the L1, L2, L3 and L4 larval stage, and a final molt into the reproductive 

adult stage.  Figure 5 shows the lifecycle of C. elegans.  Under normal, optimal growth 

conditions, a worm will undergo the normal development pattern (embryo, L1, L2, L3, L4, and 
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adult) in 3 days.  The worm also has the capability of undergoing an alternative life-cycle pattern 

when confronted with stressful environmental conditions, including overcrowding, a lack of 

food, and high temperature.  Such conditions may trigger the diapause life-cycle, in which a 

worm skips the normal L2 and L3 stage of development, and instead becomes a L2d (predauer) 

followed by dauer, and then L4 and adult.  The dauer stage of development is characterized by 

physiological and morphological changes that enable the worm to survive a harsh environment, 

including an increased store of fat, an impervious and stronger cuticle, the ability to move 

rapidly, and a decrease in metabolism (23).  

 

  normal:  L1  L2  L3  L4  reproductive adult 

  diapause: L1  L2d  dauer  L4  reproductive adult 

Figure 5. C. elegans life cycle  

 

A considerable amount of C. elegans research has involved study of the dauer larvae.  

Experiments that have screened for mutations in the worm causing an inappropriate entry into 

dauer have yielded stress response genes, and genes that additionally affect worm lifespan, 

including the worm insulin-like signaling receptor daf-2.  The overlap between genes that 

influence dauer entry and genes that influence longevity, as well as the conservation of the 

signaling pathways that determine dauer decision, make study of the dauer larvae an important 

aspect of C. elegans research.   

The correct identification of a dauer larva, and the ability to distinguish between the 

different stages of worm development are necessary skills for a worm researcher to have; both 

for the routine maintenance of stocks, and for the generation of accurate and reliable data.  A 
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number of publications have reported the proportion of dauer larvae in a population as a read-out 

for the inappropriate dauer entry phenotype (22, 24-28).  These studies have identified important 

genes relevant to aging, diabetes, and cancer.  Included in the pool of C. elegans genes that are 

involved in dauer development are daf-2 (the insulin/IGF-1 receptor) (28, 29), daf-16 (the FOXO 

transcription factor) (30), as well as akt-1, akt-2, and age-1 (genes involved in insulin signaling) 

(31, 32).  Some of these studies depend on the experimenter scoring the worm population by eye 

(33).  It is expected that such experiments are subject to bias from one rater to another, however, 

there is little documentation for formal analyses of rater reliability in the worm community.  

While other, less biased, methods exist for assessing dauer proportion (such as SDS selection, 

which consists of rinsing the worms with a solution that kills all stages of development except 

for dauer), scoring a population by eye allows for the assessment of other stages of development 

resulting in higher resolution.  In addition, treatment with SDS will also kill both partial dauer 

stages and pre-dauer stages of development; these stages are sometimes highly prevalent in a 

population of worms, and if a researcher wants to measure these types of dauers, it is necessary 

to score by eye (34).  A means of formally assessing reliability and bias among worm researchers 

could provide a standardization for developmental assay experiments, as well as aid in the 

training of less experienced researchers.  If a worm lab can demonstrate that each lab member 

has the same propensity for rating a particular stage of development, this would provide evidence 

for internal validity of development assays scored by eye.   

 



 23 

 

2.0  METHODS 

2.1 DATA COLLECTION 

To obtain a mixed stage population of worms containing dauer larvae as well as L1, L2, 

L3 and L4 stages, wild type N2 worms were grown at 20°C on nematode growth agar (NGA); 

this population was supplemented with dauer larvae that were transferred from an eak-4;tatn-1 

double mutant stock, grown at 25°C.  The eak-4;tatn-1 double mutant will consist of 

approximately 90% dauer larva when grown at 25°C.  Movies of the mix stage NGA plate were 

obtained using an I.C. capture 2.0 microscope, with a video camera attached.  These moving 

images were taken at a 40X magnification.  There were 9 separate 5 to 30 second movie files 

made; each movie containing 3 to 10 worms that a rater would score.  To ensure that all raters 

were scoring the same individual worms, the worms from these movies that were rated were each 

given a unique identifying number; these were labeled in a separate image of a still from the first 

frame of each movie.  An example is shown in Figure 6 below.  
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Figure 6. First frame of a movie containing worms numbered 1 through 10 

 

Worm rater data was obtained by recruiting seven individuals who had some amount of 

C. elegans research experience, which ranged from less than a year to nine years of experience.  

Before rating the worms, each rater was given a five-minute tutorial by the author, explaining the 

qualifying features of each stage of development, and showing an example video containing each 

stage.  Raters then were given a score-card (Appendix A), and for each movie file, were asked to 

identify the particular worm to be rated, and then play the video as needed in order to make a 

decision on the stage of development, making a mark under the stage of development column 

corresponding to each worm.  This decision was typically reached after only a second or two of 

viewing the worm; indeed, a rating was usually given after only viewing the still frame from the 

movie.   

These data were tabulated with a column for each rater.  A total of seven raters were 

recruited for this study, and each rater was asked to judge the larval stage of 50 different worms.  

Hence each rater had 60 observations, with the larval stage of development coded by ordinal 

values one through five.  Each rater had some amount of C. elegans experience, ranging from 
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nine years to less than a year.  Rater ALF had the most expertise, with over nine years of 

experience, followed by AAF with three to six years of experience, SAK, AGS, and DAH, who 

each had one to three years of experience, and raters UMA and HNW each had less than a year 

of experience.  There was one missing value in this dataset, which was observation number 41 by 

rater DAH.   

Raters were coded by initials as follows: 

AAF = 1 

ALF = 2 

AGS = 3 

DAH = 4 

HNW = 5 

SAK = 6 

UMA = 7 

 

The larval stages were coded as follows: 

L1 = 1 

L2 = 2 

dauer = 3 

L3 = 4 

L4 = 5 

2.2 ANALYSIS OF INTERRATER RELIABILITY 

2.2.1 Plots and descriptive statistics 

The pairwise error plots were graphed by plotting the results of one rater against the 

results of another, and displayed in an array.  These were produced using the merror.pairs 

statement in R software, and a small amount of noise was added to the data with the jitter 
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statement so that relative point densities could be compared across each graph. The observed 

frequencies and histograms were produced using STATA.  

2.2.2 Kappa Calculations 

Kappa statistics were calculated using the kap command in STATA software, which 

calculates the kappa value when each rater’s outcomes are listed in a column.  For the pairwise 

kappa values, each pair was coded as follows: kap raterA raterB.  The resulting values for 

observed and expected probabilities (po and pe) correspond to those values in Equations 5 and 6, 

and the pairwise kappa value was calculated according to Equation 2 (3).  The command for 

getting the multi-rater kappa for all seven raters was stated as follows: kap rater1 rater2 

rater3 rater4 rater5 rater6 rater7.  This multi-rater kappa value was calculated as 

described by Fleiss et. al., according to Equations 7 8 and 9, where the kappa values comparing 

raters’ agreement for single categories were obtained from Equation 7, and the overall kappa was 

obtained from Equation 9 (2). 

2.2.3 Latent Variable Modeling 

Latent variable modeling was conducted with R software, OpenMX package.  The one 

factor ordinal model with seven raters and five ordinal categories was adapted from code 

available from (http://openmx.psyc.virginia.edu/docs/OpenMx/latest/FactorAnalysisOrdinal_ 

Matrix.html).   An annotated version of the code used to produce the final results is shown in 

Appendix C.  The parameters were estimated using a -2 log likelihood process.  Due to the 
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complexity of this model (having seven raters and five categories), and possibly because there 

were only 60 observations, there was a certain degree of computational challenge in achieving a 

minimum -2 log likelihood.  The parameter estimates given by openMx came with a “code RED” 

warning message that stated the minimum -2LL may not have been achieved.  In order to gain 

more confidence that the best parameter estimates were reached for this model, it was necessary 

to run the code using different starting values for the parameter estimates.  This process was 

repeated over 100 times using slightly altered starting values for each run, and the parameter 

estimates from the model giving the lowest -2LL value were used in the final report.  Appendix 

C shows 10 attempts at running this model that had the lowest -2LL, with starting values, the -2 

log likelihoods and the parameter estimates.  For this report, the results shown were generated 

from manually entering different starting values, and running the program many times.  The best 

results from these attempts had a -2LL of 825.841.  However, a code was also generated that 

automated the process of repeating the model with different starting values for each run, as 

shown in Appendix D.  In this code, the starting values for the parameter estimates were chosen 

at random from a uniform distribution, with maximum and minimum possible values specified.  

This code would enable repeating the model several hundred or thousands of times with relative 

ease, and potentially remove the error message, for future assessments.   
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The 95% confidence intervals for each parameter estimated were obtained using the 

mxCI command within openMx.  This command allows confidence intervals of a specified width 

to be estimated for any of the freely estimated parameters.  These are determined through an 

iterative -2 log likelihood process that occurs after the parameter estimates have been achieved; 

each parameter value is increased until a -2 log likelihood is reached that is 95% greater than the 

starting value to estimate the upper limit, and the parameter value is decreased until a 95% larger 

-2 log likelihood is reached (35). 
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3.0  RESULTS 

3.1 DESCRIPTION OF THE DATA 

The observed relative frequencies of each larval stage are shown in Table 5 for raters one 

through seven.  

Table 5. Observed relative frequencies 

 Rater 1 

(AAF) 

Rater 2 

(ALF) 

Rater 3 

(AGS) 

Rater 4 

(DAH) 

Rater 5 

(HNW) 

Rater 6 

(SAK) 

Rater 7 

(UMA) 

L1 0.2 0.27 0.28 0.36 0.3 0.28 0.25 

L2 0.2 0.13 0.18 0.17 0.13 0.15 0.18 

dauer 0.2 0.23 0.15 0.1 0.15 0.18 0.15 

L3 0.1 0.1 0.12 0.08 0.15 0.2 0.13 

L4 0.3 0.27 0.27 0.29 0.27 0.18 0.28 

 

For the L1 stage, the highest and lowest frequencies were 0.36 and 0.2, for L2 these were 

0.13 and 0.2, 0.10 and 0.23 for dauer, 0.08 and 0.2 for L3, and 0.18 and 0.3 for L4.  Hence, the 

largest discrepancy was in the L1 stage, between raters AAF and DAH.  Figure 7 shows 

histograms for each rater, based on the numbers tabulated in Table 5.  These graphs demonstrate 

that each rater is unique in how they judge this population for stage of development.  

Additionally, it appears that raters AGS, DAH, UMA, and HNW tend to place a larger fraction 

of worms in the extreme larval stages (L1 or L4)  
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Figure 7. Histograms for each rater 
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Figure 8. Pairwise error plots for comparison between raters 
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Figure 8 shows plots comparing the results between each rater.  These pairwise error 

plots represent the results of one rater on the x-axis vs. another rater on the y-axis. In order to 

allow for visualization of overlapping points, a jitter function was used to add a small amount of 

noise to the data.  Any points falling outside of the diagonal correspond to discrepancies between 

the two raters.  For all of the plots, it appears that most of the point density is along the diagonal, 

indicating a considerable degree of agreement overall.  The points tend to agree the most for the 

extreme categories (L1 and L4), and most of the discrepancies appear in the middle categories 

(L2, L3, and dauer).  These plots also demonstrate that for each pair of raters, there is variability 

over whether the disagreements fall above or below the diagonal.  For the pairs of raters with 

most of the discordant points lying in one direction of the diagonal, this is suggestive of a bias, or 

directionality of one rater compared to the other.  For instance, in the plot of rater HNW vs. ALF, 

the points appear to fall in a relatively uniform distribution above or below the diagonal line, 

while in the plot of raters UMA vs. AGS, most of the discordant points lie above the diagonal 

line, suggesting a tendency of rater UMA to rank the subjects in higher categories compared to 

rater AGS.   

3.2 ASSESSMENT OF INTERRATER RELIABILITY WITH THE KAPPA 

STATISTIC 

As a preliminary assessment of interrater reliability between pairs of raters, the observed 

agreements are shown in Table 6.  These values ranged from 66.1% to 86.67% concordant 

ratings.  These pairwise ratings ranged from 0.5641 to 0.8295, corresponding to raters AAF and 
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DAH having the least agreement, and raters UMA and AGS having the highest agreement.  Most 

of these values have a “substantial” strength of agreement (kappa between 0.61 and 0.8), with 

one pair having a “moderate” (0.41 – 0.6) strength kappa, and three pairs with “almost perfect” 

(0.81 – 1) (3, 4, 5) 

Table 6. Pairwise observed and expected agreement and kappa values, equal ratings. 

Observed 

Agreement 

Expected 

Agreement 

Kappa Strength of 

agreement 

(Landis) 

AAF vs. SAK 73.33% 19.83% 0.6674  substantial 

AAF vs. DAH 66.10% 22.23% 0.5641 moderate 

AAF vs. UMA 80.00% 21.50% 0.7452 substantial 

AAF vs. HNW 66.67% 21.17%  0.5772     moderate 

AAF vs. ALF 78.33% 21.67% 0.7234 substantial 

AAF vs. AGS 71.67% 21.50% 0.6391   substantial 

SAK vs. DAH 69.49% 21.55% 0.6111 substantial 

SAK vs. UMA 75.00% 20.44% 0.6858    substantial 

SAK vs. HNW 73.33% 21.14% 0.6619     substantial 

SAK vs. ALF 78.33% 20.72% 0.7267    substantial 

SAK vs. AGS 75.00% 20.75% 0.6845    substantial 

DAH vs. UMA 77.97% 23.07% 0.7136 substantial 

DAH vs. HNW 76.27% 23.53% 0.6897 substantial 

DAH vs. ALF 74.58% 22.75% 0.6709    substantial 

DAH vs. AGS 79.66% 23.50% 0.7341    substantial 

UMA vs. HNW 81.67% 21.75% 0.7657  substantial 

UMA vs. ALF 80.00% 21.50% 0.7452     substantial 

UMA vs. AGS 86.67% 21.81% 0.8295     almost perfect 

HNW vs. ALF 80.00% 21.89% 0.7440 substantial 

HNW vs. AGS 85.00% 22.06% 0.8076     almost perfect 

ALF vs. AGS 85.00% 21.78% 0.8082 almost perfect 

To assess the kappa values across all seven raters, kappa values were calculated for each 

rating category, and an overall kappa values was calculated; these results are displayed in Table 

7. There is the least amount of agreement across raters for the L3 and L2 categories (with “fair”

and “moderate” strength of agreement, respectively); the dauer stage had a “moderate” strength 
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of agreement, and the L1 and L4 stages had “almost perfect” agreement.  These ratings agree 

with a visual assessment of the pairwise error plots, which show a common pattern between 

raters, of many points falling off the diagonal for the middle categories, and few doing so in the 

extreme categories.  The combined kappa value is considered “substantial” agreement.  

 

Table 7. Multiple rater kappa 

Outcome Kappa 

L1 0.8450  

L2 0.5102  

dauer 0.6745 

L3 0.4460 

L4 0.8610 

combined 0.7034 

 

3.3 ASSESSMENT OF INTERRATER RELIABILITY WITH LATENT VARIABLE 

MODELING 

Figure 9 shows the one factor ordinal model that was fit to this data.  The latent variables 

are outlined with circles, with variable S representing the latent common factor, which is the 

continuous distribution of the population stage of development, and variables Y1, through Y7 

representing the underlying continuous distribution along which each rater assesses the stage of 

development.  In this model, variation in the common factor is independently explained by each 

of the rater’s underlying distribtion (as indicated by the single-headed arrows pointing to each of 

the Y variables), and by residual error (as indicated by the double headed arrow).  The manifest 

varaibles are indicated by boxes are P1 through P7.  These are each related to a continuous latent 
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Y variable by the probit function, which estimates threshold parameters along a standard normal 

distiribution.  This relationship is indicated by the squiggly arrows connecting the manifest 

variables to the latents.  The parameters in this model are the b1 through b7, which are the factor 

loadings that relate each rater to the common factor, as well as individual category threshold 

values for each rater (which are equivalent to the number of categories minus one), and residual 

error terms.  Hence, there are seven factor loadings, 4 X 7 = 28 thresholds, and eight residual 

errors, for a total of 43 parameters.  To make this model identified, it is necessary to fix certain 

parameters and variables.  The distribution for the common factor is constrained to the standard 

normal distribution, with a variance of 1.0, and the distributions for each rater’s latent variable 

are also set to the standard normal.  Because of the constraints of the model, the factor loadings 

have been standardized, and their estimated values fall between -1 and 1.  The threshold cut-off 

parameters for each rater are z-score values that lie along a standard normal distribution.  Figure 

10 depicts the threshold values along a standard normal distribution.  The area under the curve 

between two threshold values represents the expected proportion of the particular stage of 

development a given rater will assign.  With these constriants, the model has 35 freely estimated 

parameters.   
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Figure 9. Path diagram for the one-factor ordinal model with 7 raters. 

 

The full information maximum likelihood estimates for the factor loadings are shown in 

Table 8.  These values are all very high, ranging from 0.982 to 0.999, meaning that all of the 

seven raters showed minimal error in predicting the common factor, given that a factor loading 

value of 1 would indicate no error, or perfect correlation to the common factor for a particular 

rater.  Rater AAF had the lowest value of 0.982, while rater HNW had the highest value at 0.999, 

however, the factor loading values for all raters are all very close to one, and all have fairly 

narrow widths (the lowest lower bound was from rater AAF, at 0.971, which is still a high 

correlation).  There is little indication from any of these values that the raters have any 

considerable lack of overall correlation with the common factor.  To explain the apparent 

variation present in the data, the threshold values are more informative.   
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Table 8. Factor loading estimates for one factor ordinal model, with seven raters 

Rater parameter estimate 95% C.I.  

   lower upper 

1 (AAF) b1 0.982 0.971 0.989 

2 (ALF) b2 0.989 0.986 0.992 

3 (AGS) b3 0.995 0.99 0.996 

4 (DAH) b4 0.997 0.994 NA* 

5 (HNW) b5 0.999 0.999 0.999 

6 (SAK) b6 0.988 0.979 0.99 

7 (UMA) b7 0.991 NA 0.993 
*NA indicates instances where an estimate was not reached for the interval value 

Table 9 displays the threshold values for all seven raters, where each threshold value 

represents a z-score along the standard normal curve.   Because there are five possible categories 

for the rater to choose from (L1, L2, L3, dauer, or L4), the first threshold may be interpreted as 

the cuttoff value for the probability a rater will categorize as worm as an L1 (a z-score lower than 

the first threshold gets an L1 ranking, and higher means L2, L3, dauer or L4).  While the z-score 

values themselves do not translate to concrete quantities for how a worm is rated, they are 

informative in comparing one rater to another and informing on whether there are specific 

categories over which raters tend to disagree the most.   

Table 9.  z-score threshold estimates for seven raters  

Rater Threshold 1 Threshold 2 Threshold 3 Threshold 4 

1 (AAF) -0.897 -0.165 0.223 0.558 

2 (ALF) -0.658 -0.142 0.266 0.695 

3 (AGS) -0.605 0.005 0.208 0.718 

4 (DAH) -0.307 0.092 0.233 0.65 

5 (HNW) -0.538 -0.035 0.137 0.753 

6 (SAK) -0.594 -0.083 0.247 0.928 

7 (UMA) -0.725 -0.062 0.162 0.629 

 

Table 10 has the expected frequencies for each stage of development and for each rater.  

These estimates are obtained by calculating the area under the curve of a standard normal 
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distribution between each z-score.  The expected frequency for the L1 stage was obtained by 

calculating the area under the curve from minus infinity to threshold 1, L2 was the area between 

threshold 1 and 2, dauer was between threshold 2 and 3, L3 was between thresholds 3 and 4, and 

L4 was the area from threshold 4 to infinity.    

Table 10.  Expected frequencies of larval stages for each rater  

Rater L1 L2 dauer L3 L4 

1 (AAF) 0.185 0.249 0.154 0.123 0.288 

2 (ALF) 0.255 0.189 0.161 0.152 0.244 

3 (AGS) 0.273 0.229 0.08 0.181 0.236 

4 (DAH) 0.379 0.158 0.055 0.15 0.258 

5 (HNW) 0.295 0.191 0.068 0.22 0.226 

6 (SAK) 0.276 0.191 0.131 0.226 0.177 

7 (UMA) 0.234 0.241 0.089 0.171 0.265 

Average 0.27 0.21 0.11 0.17 0.24 
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Figure 10. Estimated z-score threshold values for each rater red=threshold 1, green=threshold 2, 

blue=threshold 3, and orange=threshold4 

 

 Figure 10 displays the relative locations of each rater’s threshold values along the x-axis 

of a standard normal distribution, to recapitulate the information contained in Tables 9 and 10.  

Rater AAF seems to have a considerably lower value for threshold 1 compared to the others, 

while raters HNW and DAH seem to have much smaller areas between thresholds 2 and 3, which 

corresponds to the frequency of dauer.   
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 To give a visual assessment of model fit, Figure 10 displays plots of the expected 

probabilities of each stage of development for each rater, shown next to plots for the observed 

frequencies for these stages.  Comparing these plots by eye, the general trend for each observed 

plot is present in the predicted plot; specifically raters ALF, AGS, DAH, and HNW have higher 

observed frequencies in the L1 and L4 stages relative to the L2, dauer and L3 stages, and 

similarly, the expected frequency graphs show this pattern.  Rater SAK has a high observed 

proportion in the L1 stage relative to the other stages, while the predicted graph shows a similar 

pattern, and raters AAF and UMA both have higher relative proportions in the L4 stage, 

compared to the other stages in both the observed and the expected graphs.  The graphs display 

slight discrepancies between the predicted and observed frequencies for dauer; these appear to be 

lower for all the raters’ predicted frequencies compared to the observed.   These graphs do not 

reveal any glaring difference in trend between the observed and expected, and are indicative of a 

fairly good model fit.  Table 11 recapitulates the information in Figure 11, but provides 

numerical values to compare observed to expected relative frequencies side by side.   
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Figure 11. Plots showing predicted and observed developmental stage frequencies for each rater. 
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Table 11.  Observed and expected frequencies of each stage 

Rater L1 L2 dauer L3 L4 

1 (AAF) exp 0.185 0.249 0.154 0.123 0.288 

1 (AAF) obs 0.2 0.2 0.2 0.1 0.3 

2 (ALF) exp 0.255 0.189 0.161 0.152 0.244 

2 (ALF) obs 0.27 0.13 0.23 0.1 0.27 

3 (AGS) exp 0.273 0.229 0.08 0.181 0.236 

3 (AGS) obs 0.28 0.18 0.15 0.12 0.27 

4 (DAH) exp 0.379 0.158 0.055 0.15 0.258 

4 (DAH) obs 0.36 0.17 0.1 0.08 0.29 

5 (HNW) exp 0.295 0.191 0.068 0.22 0.226 

5 (HNW) obs 0.3 0.13 0.15 0.15 0.27 

6 (SAK) exp 0.276 0.191 0.131 0.226 0.177 

6 (SAK) obs 0.28 0.15 0.18 0.2 0.18 

7 (UMA) exp 0.234 0.241 0.089 0.171 0.265 

7 (UMA) obs 0.25 0.18 0.25 0.13 0.28 

 

3.3.1 Hypothesis Testing 

 In order to formally test the null hypothesis that particular category thresholds are the 

same as others, Table 12 displays each parameter, with its 95% C.I.   
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Table 12.  Threshold point and interval estimates 

 Rater lower 

bound 

estimate upper bound 

Threshold 

1 

1 (AAF) -1.264 -0.897 NA* 

2 (ALF) -0.772 -0.658 -0.498 

3 (AGS) -0.698 -0.605 -0.534 

4 (DAH) -0.571 -0.307 -0.235 

5 (HNW) -0.601 -0.538 -0.444 

6 (SAK) -0.909 -0.594 -0.315 

7 (UMA) -0.944 -0.725 -0.457 

Threshold 

2 

1 (AAF) -0.172 -0.165 0.067 

2 (ALF) -0.175 -0.142 0.019 

3 (AGS) -0.146 0.005 0.255 

4 (DAH) -0.055 0.092 0.254 

5 (HNW) -0.098 -0.035 0.154 

6 (SAK) -0.154 -0.083 0.123 

7 (UMA) NA* -0.062 0.189 

Threshold 

3 

1 (AAF) 0.077 0.223 0.401 

2 (ALF) 0.207 0.266 0.458 

3 (AGS) 0.185 0.192 0.192 

4 (DAH) 0.165 0.233 0.287 

5 (HNW) 0.096 0.137 0.238 

6 (SAK) 0.151 0.247 0.298 

7 (UMA) 0.086 0.162 0.234 

Threshold 

4 

1 (AAF) 0.421 0.558 0.612 

2 (ALF) 0.545 0.695 0.799 

3 (AGS) 0.521 0.702 0.747 

4 (DAH) 0.526 0.65 0.743 

5 (HNW) 0.557 0.753 0.87 

6 (SAK) NA* 0.928 1.151 

7 (UMA) 0.543 0.629 0.692 

* NA indicates instances where an estimate was not reached for the interval value 

 

 Figure 12 displays the graphs with the relative 95% confidence interval widths, which 

allows for an easy visual determination of any overlap present.  Separate plots were made for 

each threshold, and the x-axis designates the raters one through seven. 
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Figure 12. Plots showing the relative confidence interval widths for each rater’s threshold values.  

(1=AAF, 2=ALF, 3=AGS, 4=DAH, 5=HNW, 6=SAK, 7=UMA) 

 

 To test whether any one of the raters has significantly different threshold values from 

rater ALF, Table 13 displays whether or not there is overlap in the confidence intervals.   

 
Table 13.  95% Confidence interval overlap between ALF vs. other raters 

Rater Threshold 1 Threshold 2 Threshold 3 Threshold 4 

1 (AAF) no yes yes yes 

3 (AGS) yes yes no yes 

4 (DAH) yes yes yes yes 

5 (HNW) yes yes yes yes 

6 (SAK) yes yes yes no 

7(UMA) yes yes yes yes 

 

 Almost all of the confidence intervals for thresholds 1 through 4 show some degree of 

overlap, meaning that this model doesn’t show evidence for a lack of agreement between the 

thresholds for ALF compared to those of the other raters.  Rater AAF does show disagreement 
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with rater ALF for the first threshold; the point estimate for AAF’s threshold is -0.897, while that 

of ALF is -0.658.  Rater AAF’s threshold 1 estimate is considerably lower than the other rater’s 

threshold 1 estimates as well (point estimates of -0.605, -0.307, -0.538, -0.594, -0.725 for raters 

AGS, DAH, HNW, SAK, and UMA, respectively), and rater AAF’s interval estimate did not 

overlap with the interval estimates of raters AGS, DAH, and HNW.  

Table 14.  Larval stage frequency estimates and 95% Confidence interval for each rater. 

 Rater lower 

bound 

estimate upper bound 

L1 

1 (AAF) 0.103 0.185 NA 

2 (ALF) 0.220 0.273 0.309 

3 (AGS) 0.243 0.273 0.297 

4 (DAH) 0.284 0.379 0.407 

5 (HNW) 0.274 0.295 0.329 

6 (SAK) 0.182 0.276 0.376 

7 (UMA) 0.173 0.234 0.324 

L2 

1 (AAF) NA* 0.250 0.424 

2 (ALF) 0.121 0.171 0.288 

3 (AGS) 0.145 0.229 0.358 

4 (DAH) 0.071 0.157 0.316 

5 (HNW) 0.132 0.191 0.287 

6 (SAK) 0.062 0.191 0.367 

7 (UMA) NA* 0.241 0.402 

dauer 

1 (AAF) 0.004 0.154 0.224 

2 (ALF) 0.074 0.161 0.246 

3 (AGS) 0.000 0.074 0.134 

4 (DAH) 0.000 0.055 0.135 

5 (HNW) 0.000 0.068 0.133 

6 (SAK) 0.011 0.131 0.178 

7 (UMA) -0.041 0.089 NA* 

L3 

1 (AAF) 0.007 0.123 0.199 

2 (ALF) 0.031 0.152 1.370 

3 (AGS) 0.123 0.183 0.199 

4 (DAH) 0.088 0.150 0.206 

5 (HNW) 0.117 0.220 0.270 

6 (SAK) NA* 0.226 0.315 

7 (UMA) 0.114 0.171 0.221 

L4 

1 (AAF) 0.270 0.288 0.337 

2 (ALF) 0.212 0.244 0.293 

3 (AGS) 0.228 0.241 0.301 

4 (DAH) 0.229 0.258 0.299 

5 (HNW) 0.192 0.226 0.289 

6 (SAK) 0.125 0.177 NA* 

7 (UMA) 0.244 0.265 0.294 

* NA indicates instances where an estimate was not reached for the interval value 
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Table 14 shows the point estimates and 95% confidence interval estimates converted 

from the threshold estimates, to give the areas under the standard normal distribution between 

two thresholds.  The lower and upper bounds represent the largest and smallest possible areas 

between thresholds that would be given by the lower and upper confidence limits for the 

threshold estimates.  

Figure 13. Estimated larval frequency and 95% confidence interval for each rater. 

Figure 13 displays the information from Table14 in a graphical form.  Each graph 

represents a different stage of development, with the y-axis as the frequency, and a bar for each 

rater.  The L2 and dauer stages appear to have the widest confidence intervals, while the L2 stage 
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as relatively narrow confidence intervals, but shows differences in point estimates from rater to 

rater.  The L4 stage appears to have the least amount of variability, based on the narrow 

confidence intervals, and the similarity of the point estimates, and the L3 stage has fairly close 

point estimates, but wider confidence intervals.    
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4.0  DISCUSSION 

 The aims of this project were to design and carry out an experiment for measuring 

interrater reliability among C. elegans researchers, to evaluate these data using both the kappa 

statistic and a one-factor ordinal latent variable model, and to draw a conclusion about which 

statistical method is the most appropriate and useful for this dataset.  The major findings were 

that 1) it is possible to quickly obtain data from multiple raters assessing the same population of 

worms for five stages of development, 2) that visual assessment of pairwise error plots reveals 

some amount of error and bias among the seven raters, especially for the L2, dauer and L3 

stages, 3) that the overall kappa value is fairly high, but that kappa showed worse agreement for 

the L2 and L3 stages compared to the other stages, and 4) that in the one factor model, all raters 

have very low random error, but they vary in their threshold estimates.   

 The goal of the experimental design was to minimize any sources of variability in the 

data that were not due to rater error.  To ensure that each rater was making an assessment under 

the same visual conditions, a video recording of a magnified population of worms was used 

instead of having the raters look at live worms under a microscope.  This enabled each worm to 

be given a unique identifier to eliminate the possibility that raters were assessing a different set 

of worms, or that the same worm was rated twice.  One criticism of this design is that by using a 

pre-recorded image, this is taking away certain qualities of a visual assessment a rater may use 
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when looking under a microscope, such as adjusting the zoom and focus of the lens; these 

adjustments might be essential in a rater’s ability to make a judgment, and this design does not 

evaluate this aspect of how a rater reaches this judgment.  However, to gain consistency in the 

population being assessed, and for the feasibility of gathering data from multiple raters, it was 

assumed that having each rater view a movie was similar to what a researcher would do to make 

an assessment in the field.  

 To visualize disagreements in this dataset pairwise error plots were generated (Figure 8) 

in which each rater’s results were plotted against those of the other raters.  The points that lie 

along the diagonal line for each plot represent agreement between raters, while those that fall off 

the diagonal are discordant ratings.  These graphs reveal that overall most of the points are 

concordant.  They also provide a means of visualizing the degree of discordance between points, 

and whether there are biases or patterns in the disagreements.   In all of the graphs, most of the 

discordant points fall closer to the center of the graph, meaning that most of the discrepancies 

arise from classifications in the L2, L3 and dauer stages.  The pairwise error plots also exhibited 

certain amounts of bias between some of the raters, based on a majority of discordant points 

lying either above or below the diagonal line. By evaluating the error plots, it appears that rater 

DAH seems to usually give lower ratings compared to other raters.  In comparing UMA vs. 

AGS, UMA seems to rank worms higher.  Additionally, to evaluate rater ALF, who has the most 

experience in C. elegans research, there is not striking visual for a strong bias in most of the 

pairwise plots.  There is an apparent slight bias in ALF vs. AGS and ALF vs. AAF for ALF to 

rank worms higher in both cases.   

 While the pairwise error plots provide visual information about the overall strength of 

agreement, the bias of one rater over another, and about any tendency for one or more categories 
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to have higher disagreement, they do not provide a formal analysis or a numerical index for the 

agreement.  The kappa results give numerical values for the degree of agreement between these 

raters.  The overall kappa value was 0.70, which is considered substantial agreement, and which 

corroborates a visual assessment of the pairwise plots that most points fall along the diagonal 

line.  In addition, the stage-wise multi-rater kappa values show a similar result as the pairwise 

error plots: the L1 and L4 stages had high kappa values of 0.85 and 0.86, respectively, while the 

L2, dauer and L3 stages had slightly lower kappas of 0.51, 0.67, and 0.45 for L2, dauer and L3, 

respectively, indicating less agreement for the L2, dauer, and L3 stages compared to the L1 and 

L4 stages.   

 For this type of data, the use of kappa as a measure of interrater reliability is not ideal.  

The kappa calculations used in this analysis were devised to contrast raters using a categorical 

scale, where the rating categories do not have a natural ordering(3).  In this dataset, because of 

the ordering of the stages of development based on worm length and thickness (L1, L2, dauer, 

L3, and L4), if one rater classifies a worm as an L2 while another rater calls the same worm an 

L4, this is a more pronounced disagreement than L1 vs. L2.  The kappa statistic assumes that all 

instances of discordance are the same in severity. A weighted kappa statistic that accounts for an 

ordering in the categories exists.  However, the decision for what weight to give each category 

requires some guesswork.  For this kappa analysis, the categories were all given the same weight.  

Therefore, the kappa results may be somewhat conservative, given that disagreements between 

adjacent categories have the same magnitude as those between non-adjacent categories and a 

majority of the disagreements within this set are between adjacent categories.   

 Additional problems arise from the kappa statistic, as were discussed in the introduction.  

These include the possibility of the kappa value giving an inaccurate representation of agreement 
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due to the prevalence of the different larval stages in the population.  This is unlikely to be a 

major issue for this dataset, given that there was not much sparseness for any of the larval stages 

in this populations (the lowest average observed frequency across seven raters was 13%, for the 

L3 stage).  The other issue with kappa is that it fails to provide information about bias or 

directionality of the disagreements.  While the kappa value indicates the strength of overall 

agreement, it doesn’t provide an explanation of bias or directionality of disagreement; the kappa 

value contains both elements of rater bias and error without allowing for a separate consideration 

each. Evaluating the data in graphical representations, and by fitting a latent variable model 

allows for concerns over rater bias and the use of ordered categorical outcomes to be accounted 

for.   

 The model that was fit to this data had a total of 35 freely estimated parameters, which 

each had an estimated 95% confidence interval.  As a result, there are a large number of formal 

comparisons between raters that may be done to draw conclusions about the interrater reliability 

in this dataset (including pairwise comparisons between raters, and comparisons of one rater 

versus the group of raters).  The estimation of both factor loading parameters and threshold 

parameters provides two different types of error measurement and comparison between raters.  

The threshold values provide distinctions for how each rater categorizes the worms, and gives 

information about rater biases, or tendencies to rate worms in one category over the others.  

Factor loadings, on the other hand, give an indication of the amount of random error each rater 

has.    

 In this model, the factor loadings were very close to one, meaning that all of the raters 

had a high correlation to the group average, and that the amount of random error that was not 

accounted for in the threshold differences is very low.  Furthermore, there were not any raters 
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who stood out in terms of having a low factor loading compared to the others.  Therefore, most 

of the variability present between the raters was accounted for by differences in the threshold 

values.   

 While a large number of comparisons are possible for the threshold estimates from this 

model, there were a few that were of more interest for the focus of this study.  Specifically, 1) 

assessments were made to determine whether differences in threshold values explain the 

apparant biases that are observed in the error plots, 2) comparisons were made between each 

rater and rater ALF, and 3) comparisons were made to determine whether any rater has a 

different definition for the dauer stage.  One aim of making these comparisons was to determine 

how the raters might adjust their rating strategy to improve their agreement with the other raters 

 Comparing the threshold values from rater to rater gives a determination of differences in 

category definitions between raters, as well as biases that are visually apparent in the pairwise 

error plots.  If the estimated threshold values are considerably different between raters, this 

would indicate a tendency of one rater to classify worms in a higher category than the other.  

Since rater DAH appears to have a bias towards lower ratings, one would expect the threshold 

values to be higher than the other raters.   Indeed, DAH has the highest values for thresholds 1 

and 2 (-0.307, for threshold 1, compared to less than -0.53 for the other raters, and 0.092 for 

threshold 2, compared to 0.005 or less for the other raters).  DAH has a higher expected 

frequency in the L1 stage compared to the others (0.379 vs. 0.295 or less), and a roughly 

comparable L2 expected frequency, which further indicates that DAH has incorrectly classified 

some of the higher staged worms as L1s.  Based on these results, to improve the reliability 

among these raters, rater DAH ought to re-evaluate how to distinguish the younger staged worms 

from the older ones, and be informed of his tendency to rank worms lower.  Based on threshold 
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values, rater SAK has a much higher threshold 4 value, compared to the other raters (the 95% 

confidence intervals do not overlap with those of the other raters), and rater AAF has a 

considerably lower threshold 1 value (the 95% C.I.’s fail to overlap with all other raters, with the 

exception of SAK).  This information would suggest that rater SAK tends to miss worms that 

have reached the L4 stage, and that rater AAF tends to rank L1 worms into higher categories.   

 Another formal assessment one can make from the threshold estimates is to decide 

whether any particular rater is showing a lack of agreement on the dauer stage.  The correct 

identification of dauer larvae is particularly important in C. elegans research because many 

studies investigate the inappropriate entry into dauer.  Any differences between raters for 

threshold 2 or threshold 3 would indicate some amount of disagreement in dauer classification.  

For this dataset, the point estimate values for threshold two range from -0.165 to 0.092, and none 

of the individual raters have a lack of overlap in confidence intervals compared to the other 

raters.  Hence this model doesn’t provide evidence for any one of the raters having a difference 

in distinguishing the dauer stage from the L1 or L2 stages.  For threshold 3, raters ALF and AGS 

have a lack of interval overlap, as was discussed previously, while none of the other raters have a 

lack of overlap.  For both thresholds 2 and 3, there is no evidence of any of the individual raters 

having an interval estimate that fails to overlap with all of the other raters.  Hence this model 

indicates that these raters have a good amount of agreement on threshold designations for the 

dauer stage.    

 While there are some statistically significant discrepancies in threshold values between 

some raters, there were not any specific raters who stood out as being grossly different from the 

others by having consistently higher or lower category definitions, or by having a considerably 

lower factor loading value.  Since rater ALF had the most experience and expertise in the worm 
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field, a reasonable set of null hypotheses to test are that rater ALF’s thresholds are the same as 

each of the other raters’. A comparison of each rater to ALF indicated that the only raters with 

significant differences in threshold definitions were rater AAF, who had a much lower value 

threshold 1, and rater SAK for threshold 4.   

 While this model does provide information for how to minutely adjust how specific raters 

categorize worms, it does not give an indication of any of the raters classifying the worms in a 

considerably different way.  Thus, the one factor ordinal model reveals minor areas of 

discrepancies between raters, while also conveying a general overall agreement between raters.   

 One question that arises from the results of these two analyses is to what degree do the 

two methods for interrater reliability assessment agree with each other.  To begin with, it is not 

feasible to get a numerical value from the modeling parameter estimates that would be directly 

comparable with the kappa values.  However, one can make a general overall conclusion based 

on the similarity of the factor loading values, and the threshold values; the fact that there is not a 

rater who stands out as having a dramatically different factor loading or threshold values means 

that the overall agreement is generally good.  This conclusion certainly corroborates the overall 

multi-rater kappa value.  Another interesting conclusion from the kappa value results for each 

stage of development was that the L1, dauer and L4 stages had high agreement, while the L2 and 

L3 stages did not.  This conclusion fits with a visual assessment of the pairwise error plots.  In 

order to make a similar assessment with the modeling results, the expected frequencies and 95% 

confidence intervals for each stage of development were assessed in Table 14 and Figure 12.  

Based on both the variability in point estimate and width of confidence intervals between raters 

in each graph, the L2 and dauer stages appear to have the most amount of disagreement, and the 

L4 stage has the best agreement between raters, with similar point estimates and narrow 
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confidence intervals.  While these graphs do not appear to clearly match the kappa statistics for 

these stages of development, the graphs contain information about the variability of the data, and 

the individual rater’s predicted frequencies; the kappa value combines this information into one 

index.    

 There are obvious benefits to fitting a model to the data, however, this approach is much 

more computationally demanding than calculating the kappa statistic or doing simpler 

assessments like graphing the data and comparing proportions of agreement.  Fitting this model 

becomes especially taxing as more parameters are involved.  In this project, for instance, after 

over 100 attempts of altering the starting values, the software still provided a warning message 

with the parameter estimates, explaining that the lowest -2 log likelihood may have not been 

reached.  After running the model several times, and achieving parameter estimates that were 

close in magnitude, the model with the lowest -2LL was selected for the final write-up.  The 

automated code shown in Appendix D does minimize some of the labor involved in running the 

code multiple times, however, for this dataset achieving the best parameter estimates is lengthy 

process. To begin an attempt to achieve better estimates for this model for a future publication, 

the model was run 1000 times, to get a slightly low -2LL than shown in this report, with very 

similar parameter estimates.  This indicates that the results reported in this draft are still not quite 

the best, but that they are very likely close enough parameter estimates to draw the same 

conclusions.  Indeed, better estimates could be achieved after running the model more than 1000.   

 Despite the warning messages given from the modeling process, this does not diminish 

the reliability of the estimates.  Running a model does, however take a lot more time and effort in 

comparison to calculating kappa statistics.  A modeling approach is certainly worthwhile, if a 

detailed and informative assessment interrater reliability is desired; especially when one wishes 
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be informed on how specific ways to improve the reliability of the raters.  However, as 

preliminary easy assessments, the kappa and plotting the data may be sufficient.   
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5.0 CONCLUSION 

An overall assessment of this data, based on the descriptive plots, percent agreement 

tables, the kappa statistic values, and the factor loading parameter estimates in the latent variable 

model is that there is a considerable amount of agreement between the raters.  The lowest 

observed pairwise proportion of agreement was 66%, and the overall combined kappa value was 

0.70, which is considered substantial agreement.  The pairwise kappa values ranged from 0.564 

between raters AAF and DAH, which is considered moderate, to 0.8296 between HNW and 

AGS, which is considered “almost perfect”.  The kappa values provided a general index of the 

strength of agreement, however, they failed to measure specific aspects of agreement such as 

rater bias.  In this dataset, since there was a fairly strong amount of concordance between raters, 

the kappa values were at acceptable levels.  In order to gain a better understanding of the sources 

of rater disagreement, the threshold values in the one factor ordinal model were more useful.  

Raters AAF and SAK stood out the most for having remarkably different threshold values 

compared to the other raters (specifically, threshold 1 for AAF and 4 for SAK).  However, none 

of the raters differed significantly for all of the categories relative to the other raters.  

The kappa statistic gave a  general evaluation  of overall reliability, however  it did  not  

provide useful  information that coul  help with  improving  specific aspects of worm 

categorization for particular raters.  
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APPENDIX A 

SCORE CARD 

Name ___________________________ Date ______________ Movie 

Number ________ 

years in a C. elegans lab: <1 ____ 1-3_____ 3-6____ 6-9____ 

9<______ 

Worm 

# 

L1 L2 dauer L3 L4 Worm# #L1 L2 dauer L3 L4 

1 34 

2 35 

3 36 

4 37 

5 38 

6 39 

7 40 

8 41 

9 42 

10 43 

11 44 

12 45 

13 46 

14 47 

15 48 

16 49 

17 50 

18 51 

19 52 

... ... 
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APPENDIX B 

OPEN MX CODE: ONE FACTOR MODEL 

Annotated R code (Ordinal one common factor model, 7 raters, 5 categories) 

(adapted from openMx documentation: 

http://openmx.psyc.virginia.edu/docs/OpenMx/latest/FactorAnalysisOrdinal_Matrix.html) 

1) Read in the raw data (7 raters, 5 rating categories indicated with values 1, 2, 3, 4 and

5) 

data_raw<-read.csv("/Volumes/NO NAME/thesis biostats/Movie_4_5categories.csv", 

sep=",",header=TRUE) 

#remove worm_no 

data_raters<-data_raw[,c("AAF", "SAK", "DAH", "UMA", "HNW", "ALF", "AGS")] 

2) Convert the numerical values to ordered factors using the MxFactor command

ordinalData <- mxFactor(as.data.frame(data_raters),levels=c(1:(nThresholds+1))) 

3) Label the number of raters (nVariables), number of latent factors (nFactors), and

number of category thresholds (number of categories minus one, nThresholds), and rater names 

(raterNames) for the model. 

nVariables<-7 

nFactors<-1 

nThresholds<-4 

raterNames <- c("AAF", "SAK", "DAH", "UMA", "HNW", "ALF", "AGS") 

4) To specify the model, first state a name for the model. Then generate a matrix to

estimate the factor loadings, which has a row for each rater, and a single column (for the one 

factor).  The Free=TRUE statement means that all the values will be freely estimated, and the 

lbound and ubound commands set the upper and lower limits of the factor loadings, which are 

standardized as a result of the common factor variance being fixed to one.  The starting values 

for this matrix are given by the values= statement, which is set arbitrarily.  This starting value 

may be adjusted if the program fails to converge on a minimum -2 log likelihood.   
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oneFactorThresholdModel <- mxModel("oneFactorThresholdModel", 

        mxMatrix( 

            type="Full", 

            nrow=nVariables, 

            ncol=nFactors, 

            free=TRUE, 

            values=0.96, 

            lbound=-.999, 

            ubound=.999, 

            name="facLoadings" 

        ), 

 

5) To constrain the variances of the observed variables to one, a matrix consisting of one 

column for each rater, with a value of one. This is subtracted from the factor loadings squared.  

The squared factor loadings are obtained by multiplying the facLoadings matrix by the 

transposed facLoadings matrix, and applying the diag2vec function to this result.   

 

 
       mxMatrix( 

            type="Unit", 

            nrow=nVariables, 

            ncol=1, 

            name="vectorofOnes" 

        ), 

       mxAlgebra( 

           expression=vectorofOnes - (diag2vec(facLoadings %*% t(facLoadings))) , 

           name="resVariances" 

       ), 

 

6) The expected covariances are obtained by adding each of the residual variances to the 

square of the factor loadings.    
 

 

       mxAlgebra( 

            expression=facLoadings %*% t(facLoadings) + vec2diag(resVariances), 

            name="expCovariances" 

        ), 

 

 

7) For the ordinal model, it is assumed that there is a latent distribution for each rater, 

with threshold values along this distribution that designate different categories.  In this model, 

the latent distribution for each rater is constrained to the standard normal.  Hence, the means for 

each rater are constricted to zero, while the threshold values are freely estimated.  In the 

following statement, a zero vector is created, with columns for each rater.   

 
       mxMatrix( 

            type="Zero", 

            nrow=1, 

            ncol=nVariables, 

            name="expMeans" 

        ), 

 

8) To estimate the threshold values for each rater, first a matrix containing threshold 

deviations is created, with a row for each threshold, and a column for each rater.  These values 

are all freely estimated.  The lower bounds for each estimate are set as minus infinity for the first 

threshold, and then 0.01 for each subsequent threshold deviation.  Again, the starting values in 

the matrix following the values= statement may be adjusted if the model fails to converge.   

 
   mxMatrix( 

            type="Full", 

            nrow=nThresholds, 

            ncol=nVariables, 
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            free=TRUE, 

            values=c(-1, 0.5, 0.5, 0.5), 

            lbound=rep( c(-Inf,rep(.01,(nThresholds-1))) , nVariables), 

            dimnames=list(c(), raterNames), 

            name="thresholdDeviations" 

        ), 

 

9) These threshold deviations are converted to the expected thresholds by multiplying the 

thresholdDeviations matrix by a matrix with a lower half of ones.   
 

        mxMatrix( 

            type="Lower", 

            nrow=nThresholds, 

            ncol=nThresholds, 

            free=FALSE, 

            values=1, 

            name="unitLower" 

        ), 

        mxAlgebra( 

            expression=unitLower %*% thresholdDeviations, 

            name="expThresholds" 

        ), 

 

 

10) The standard deviations are obtained by taking the square root of the variances.  

Additionally, likelihood based confidence intervals may be estimated for the threshold 

deviations.   
 

     mxAlgebra(sqrt(resVariances),"resSDs") 

     mxCI(c(‘‘thresholdDeviations’’)), 

     mxCI(c(‘‘facLoadings’’)) 

    ) 

11) Finally, the model is fit, using the mxRun command, and the output and model 

summary are obtained with the @output and summary commands.  
 

 

oneFactorFit <- mxRun(oneFactorThresholdModel, intervals=TRUE) 

oneFactorFit@output 

summary(oneFactorFit) 
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APPENDIX C 

OPEN MX CODE: RUNNING THE MODEL MANY TIMES 

1) After the data is read-in, the number of thresholds and raters is stated, and the data is

converted to ordinal data, the model is built as before.  

m1 <- mxModel("m1", 
mxMatrix( 

   type="Full", 
   nrow=nVariables, 
   ncol=nFactors, 
   free=TRUE, 
   values=0.96, 
   lbound=-.999, 
   ubound=.999, 
   name="facLoadings" 

), 
mxMatrix( 

   type="Unit", 
   nrow=nVariables, 
   ncol=1, 
   name="vectorofOnes" 

), 
mxAlgebra( 

   expression=vectorofOnes - (diag2vec(facLoadings %*% t(facLoadings))) , 
   name="resVariances" 

), 
mxAlgebra( 

   expression=facLoadings %*% t(facLoadings) + vec2diag(resVariances), 
   name="expCovariances" 

), 
mxMatrix( 

   type="Zero", 
   nrow=1, 
   ncol=nVariables, 
   name="expMeans" 

), 
mxMatrix( 

   type="Full", 
   nrow=nThresholds, 
   ncol=nVariables, 
   free=TRUE, 
   values=c(-1, 0.5, 0.5, 0.5), 
   lbound=rep( c(-Inf,rep(.01,(nThresholds-1))) , nVariables), 
   dimnames=list(c(), raterNames), 
   name="thresholdDeviations" 

), 
mxMatrix( 

   type="Lower", 
   nrow=nThresholds, 
   ncol=nThresholds, 
   free=FALSE, 
   values=1, 
   name="unitLower" 
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), 
mxAlgebra( 

   expression=unitLower %*% thresholdDeviations, 
   name="expThresholds" 

), 
mxData( 

   observed=ordinalData, 
   type='raw' 

), 
mxFIMLObjective( 

   covariance="expCovariances", 
   means="expMeans", 
   dimnames=raterNames, 
   thresholds="expThresholds" 

), mxAlgebra(sqrt(resVariances), "resSDs") 
   ) 

2) The following statements are required for fitting the model, and running it multiple

times, with different starting values 

3) First, the number of trials is stated:

trials <- 1000 

4) Then the starting values for the parameter estimates are set up.  These are set up as

random values along the uniform distribution for each parameter estimate.  For the factor 

loadings, the starting values are given between 0.8 and 0.99.  For the threshold deviations, the 

first estimate is between -3 and 0, and the next three deviations fall between 0.1 and 0.5.   

parNames <- names(omxGetParameters(m1)) 

input <- matrix(NA,trials,length(parNames)) 
dimnames(input) <- list(1:trials,parNames) 

output <- matrix(NA,trials,length(parNames)) 
dimnames(output) <- list(1:trials,parNames) 

fit <- matrix(NA,trials,4) 
dimnames(fit) <- list(c(1:trials),c("Minus2LL","Status","Iterations","time")) 

# Factor loadings 
input[,"m1.facLoadings[1,1]"] <- runif(trials,0.8,0.99) 
input[,"m1.facLoadings[2,1]"] <- runif(trials,0.8,0.99) 
input[,"m1.facLoadings[3,1]"] <- runif(trials,0.8,0.99) 
input[,"m1.facLoadings[4,1]"] <- runif(trials,0.8,0.99) 
input[,"m1.facLoadings[5,1]"] <- runif(trials,0.8,0.99) 
input[,"m1.facLoadings[6,1]"] <- runif(trials,0.8,0.99) 
input[,"m1.facLoadings[7,1]"] <- runif(trials,0.8,0.99) 

# Thresholds for rater 1 
input[,"m1.thresholdDeviations[1,1]"] <- runif(trials,-3,0) 
input[,"m1.thresholdDeviations[2,1]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[3,1]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[4,1]"] <- runif(trials,0.1,0.5) 

# Thresholds for rater 2 
input[,"m1.thresholdDeviations[1,2]"] <- runif(trials,-3,0) 
input[,"m1.thresholdDeviations[2,2]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[3,2]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[4,2]"] <- runif(trials,0.1,0.5) 

# Thresholds for rater 3 
input[,"m1.thresholdDeviations[1,3]"] <- runif(trials,-3,0) 
input[,"m1.thresholdDeviations[2,3]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[3,3]"] <- runif(trials,0.1,0.5) 
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input[,"m1.thresholdDeviations[4,3]"] <- runif(trials,0.1,0.5) 

# Thresholds for rater 4 
input[,"m1.thresholdDeviations[1,4]"] <- runif(trials,-3,0) 
input[,"m1.thresholdDeviations[2,4]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[3,4]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[4,4]"] <- runif(trials,0.1,0.5) 

# Thresholds for rater 5 
input[,"m1.thresholdDeviations[1,5]"] <- runif(trials,-3,0) 
input[,"m1.thresholdDeviations[2,5]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[3,5]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[4,5]"] <- runif(trials,0.1,0.5) 

# Thresholds for rater 6 
input[,"m1.thresholdDeviations[1,6]"] <- runif(trials,-3,0) 
input[,"m1.thresholdDeviations[2,6]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[3,6]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[4,6]"] <- runif(trials,0.1,0.5) 

# Thresholds for rater 7 
input[,"m1.thresholdDeviations[1,7]"] <- runif(trials,-3,0) 
input[,"m1.thresholdDeviations[2,7]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[3,7]"] <- runif(trials,0.1,0.5) 
input[,"m1.thresholdDeviations[4,7]"] <- runif(trials,0.1,0.5) 

5) A loop is set up that will fit the model the number of times specified in the trials

statement, and will give starting values for the parameter estimates according to the input 

statements above.   

# Loop to fit models 

for(i in 1:trials) { 

  temp1 <- omxSetParameters(m1, 
labels=parNames, 

values=input[i,] 
) 

  temp1@name <- paste("Starting Values Set",i) 

  temp2 <- mxRun(temp1,unsafe=TRUE,suppressWarnings=TRUE) 

  output[i,] <- omxGetParameters(temp2) 

  fit[i,] <- c( 
    temp2@output$Minus2LogLikelihood, 
    temp2@output$status[[1]], 
    temp2@output$iterations, 
    temp2@output$wallTime 
    ) 

  print(output[i,]) 
  print(fit[i,]) 
  print(head(table(round(fit[,1],3),fit[,2]))) 

} 

save.image(file="/Users/AAF/Desktop/AAFresults2.RData") 
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APPENDIX D 

MODEL OPTIMIZATION 

starting values parameter estimates 

no. factor 

loadings 

threshold deviations -2 Log 

Likelihood 

factor 

loadings 

threshold 1 threshold 2 threshold 3 threshold 4 

1 0.95 -0.8, 0.5, 0.25, 0.55 

525.845 

AAF: 0.980 

ALF: 0.990 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.995 

AAF: -0.900 

ALF: -0.650 

AGS:-0.340 

DAH: -0.780 

HNW:-0.590 

SAK:-0.720 

UMA: -0.650 

AAF: 0.77 

ALF: 0.55 

AGS: 0.42 

DAH: 0.71 

HNW: 0.54 

SAK: 0.56 

UMA:0.65 

AAF: 0.40 

ALF: 0.35 

AGS: 0.14 

DAH: 0.23 

HNW:0.18 

SAK: 0.45 

UMA:0.21 

AAF: 0.35 

ALF: 0.70 

AGS: 0.45 

DAH: 0.49 

HNW: 0.64 

SAK: 0.41 

UMA:0.54 

2 0.9826788, 

0.9877669, 

0.9966496, 

0.9912003, 

0.999, 

0.9893618, 

0.9950743 

-0.886823, 0.7247954, 0.3845787, 

0.3255732, -0.5859195, 
0.5046829, 0.3326593, 0.6584063, 

-0.3012942, 0.3948908, 

0.1411279, 0.4025556, -
0.7153064, 0.6561375, 0.2222375, 

0.4554093, -0.5260471, 
0.4934621, 0.1711622, 0.5976217, 

-0.6480305, 0.5088975, 

0.4037059, 0.4175175, -
0.5961011, 0.6028839, 0.2017089, 

0.4960843 

525.8586 

AAF: 0.980 

ALF: 0.990 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AAF:  -0.890 

ALF:  -0.590 

AGS:-0.310 

DAH: -0.720 

HNW: -0.530 

SAK: -0.650 

UMA: -0.600 

AAF: 0.72 

ALF: 0.51 

AGS: 0.40 

DAH: 0.66 

HNW: 0.49 

SAK: 0.51 

UMA: 0.60 

AAF: 0.40 

ALF: 0.33 

AGS: 0.14 

DAH: 0.22 

HNW: 0.17 

SAK: 0.41 

UMA: 0.20 

AAF: 0.34 

ALF: 0.68 

AGS: 0.42 

DAH: 0.47 

HNW: 0.62 

SAK: 0.43 

UMA: 0.51 

3 0.9819188, 

0.9882382, 

0.9966982, 

0.9911327, 

0.999, 

0.9892152, 

0.9948704 

-0.8965172, 0.7695836, 

0.3992047, 0.3532392, -
0.6460816, 0.5472614, 0.3452207, 

0.7006323, -0.3383669, 0.421621, 

0.1402084, 0.4460048, -
0.7832472, 0.7057979, 0.2312134, 

0.4866034, -0.590711, 0.544264, 

0.1768126, 0.6368714, -
0.7226458, 0.5551665, 0.4538412, 

0.4140419, -0.6547262, 

0.6460972, 0.2081288, 0.5428632 

525.8587 

AAF: 0.980 

ALF: 0.990 

AGS: 0.9970 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AAF: -0.89 

ALF: -0.59 

AGS: -0.31 

DAH: -0.72 

HNW: -0.53 

SAK: -0.65 

UMA: -0.60 

AAF: 0.72 

ALF: 0.51 

AGS: 0.40 

DAH: 0.66 

HNW: 0.49 

SAK: 0.51 

UMA: 0.60 

AAF: 0.39 

ALF: 0.33 

AGS: 0.14 

DAH: 0.22 

HNW: 0.17 

SAK: 0.41 

UMA: 0.20 

AAF: 0.34 

ALF: 0.68 

AGS: 0.42 

DAH: 0.47 

HNW: 0.62 

SAK: 0.43 

UMA: 0.51 

4 0.9841771, 

0.9880693, 

0.9965154, 

0.9904878, 

0.999, 

0.9895322, 

0.9950292 

-0.8965172, 0.7695836, 

0.3992047, 0.3532392, -

0.6460816, 0.5472614, 0.3452207, 
0.7006323, -0.3383669, 0.421621, 

0.1402084, 0.4460048, -

0.7832472, 0.7057979, 0.2312134, 
0.4866034, -0.590711, 0.544264, 

0.1768126, 0.6368714, -

0.7226458, 0.5551665, 0.4538412, 
0.4140419, -0.6547262, 

0.6460972, 0.2081288, 0.5428632 

525.8587 

AAF: 0.980 

ALF: 0.990 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AAF: -0.89 

ALF: -0.59 

AGS: -0.31 

DAH: -0.72 

HNW: -0.53 

SAK: -0.65 

UMA: -0.60 

AAF: 0.72 

ALF: 0.51 

AGS: 0.40 

DAH: 0.66 

HNW: 0.49 

SAK: 0.51 

UMA: 0.60 

AAF: 0.40 

ALF: 0.33 

AGS: 0.14 

DAH: 0.22 

HNW: 0.17 

SAK: 0.41 

UMA: 0.20 

AAF: 0.34 

ALF: 0.68 

AGS: 0.42 

DAH: 0.47 

HNW: 0.62 

SAK: 0.43 

UMA: 0.51 

5 0.9818318, 

0.9882449, 

-0.8965172, 0.7695836, 
0.3992047, 0.3532392, -

0.6460816, 0.5472614, 0.3452207, 
525.8587 

AAF:  0.980 

ALF: 0.990 

AAF: -0.89 

ALF: -0.59 

AAF: 0.72 

ALF: 0.51 

AAF: 0.39 

ALF: 0.33 

AAF: 0.34 

ALF: 0.68 
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0.9965498, 

0.9911239, 

0.999, 

0.9890333, 

0.9949012 

0.7006323, -0.3383669, 0.421621, 

0.1402084, 0.4460048, -
0.7832472, 0.7057979, 0.2312134, 

0.4866034, -0.590711, 0.544264, 

0.1768126, 0.6368714, -
0.7226458, 0.5551665, 0.4538412, 

0.4140419, -0.6547262, 

0.6460972, 0.2081288, 0.5428632 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AGS: -0.31 

DAH: -0.72 

HNW: -0.53 

SAK: -0.65 

UMA: -0.60 

AGS: 0.40 

DAH: 0.66 

HNW: 0.49 

SAK: 0.51 

UMA: 0.60 

AGS: 0.14 

DAH: 0.22 

HNW: 0.17 

SAK: 0.41 

UMA: 0.20 

AGS: 0.42 

DAH: 0.47 

HNW: 0.62 

SAK: 0.43 

UMA: 0.51 

6 0.9882387 -0.8909867, 0.7537725, 

0.397376, 0.3439293 

525.8595 

AAF: 0.980 

ALF: 0.990 

AGS: 0.996 

DAH: 0.990 

HNW:0.999 

SAK:0.990 

UMA: 0.995 

AAF: -0.90 

ALF: -0.60 

AGS: -0.31 

DAH: -0.73 

HNW: -0.54 

SAK: -0.66 

UMA: -0.61 

AAF: 0.72 

ALF: 0.51 

AGS: 0.40 

DAH: 0.66 

HNW: 0.50 

SAK: 0.51 

UMA: 0.61 

AAF: 0.40 

ALF: 0.32 

AGS: 0.144 

DAH: 0.23 

HNW: 0.17 

SAK: 0.41 

UMA: 0.20 

AAF: 0.33 

ALF: 0.68 

AGS: 0.41 

DAH: 0.47 

HNW: 0.62 

SAK: 0.43 

UMA: 0.51 

7 0.95 -0.6027622, 0.4967101, 

0.2858398, 0.6120133 

525.8622 

AAF: 0.980 

ALF: 0.990 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AAF: -0.89 

ALF: -0.58 

AGS: -0.29 

DAH: -0.72 

HNW: -0.51 

SAK: -0.64 

UMA: -0.58 

AAF: 0.73 

ALF: 0.52 

AGS: 0.40 

DAH: 0.68 

HNW: 0.48 

SAK: 0.53 

UMA: 0.61 

AAF: 0.39 

ALF: 0.33 

AGS: 0.15 

DAH: 0.23 

HNW: 0.21 

SAK: 0.40 

UMA: 0.22 

AAF: 0.35 

ALF: 0.69 

AGS: 0.41 

DAH: 0.47 

HNW: 0.60 

SAK: 0.44 

UMA: 0.51 

8 0.95 0.2 

525.8638 

AAF: 0.980 

ALF: 0.990 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AAF: -0.90 

ALF: -0.60 

AGS: -0.32 

DAH: -0.73 

HNW: -0.54 

SAK: -0.66 

UMA: -0.61 

AAF: 0.72 

ALF: 0.51 

AGS: 0.40 

DAH: 0.66 

HNW: 0.49 

SAK: 0.51 

UMA: 0.60 

AAF: 0.50 

ALF: 0.33 

AGS: 0.14 

DAH: 0.22 

HNW: 0.17 

SAK: 0.41 

UMA: 0.20 

AAF: 0.34 

ALF: 0.68 

AGS: 0.42 

DAH: 0.47 

HNW: 0.62 

SAK: 0.43 

UMA: 0.51 

9 0.95 -0.993131, 0.7850118, 

0.4394743, 0.3834882 

525.845 

AAF: 0.980 

ALF: 0.990 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AAF: -0.87 

ALF: -0.63 

AGS: -0.33 

DAH: -0.77 

HNW: -0.57 

SAK: -0.71 

UMA: -0.65 

AAF: 0.73 

ALF: 0.56 

AGS: 0.44 

DAH: 0.68 

HNW: 0.53 

SAK: 0.55 

UMA: 0.67 

AAF: 0.39 

ALF: 0.36 

AGS: 0.17 

DAH: 0.29 

HNW: 0.21 

SAK: 0.47 

UMA: 0.22 

AAF: 0.42 

ALF: 0.83 

AGS: 0.51 

DAH: 0.56 

HNW: 0.74 

SAK: 0.54 

UMA: 0.66 

10 0.95 -0.8909867, 0.7537725, 

0.397376, 0.3439293 

525.8586 

AAF: 0.980 

ALF: 0.990 

AGS: 0.997 

DAH: 0.990 

HNW: 0.999 

SAK: 0.990 

UMA: 0.990 

AAF: -0.88 

ALF: -0.57 

AGS: -0.29 

DAH: -0.71 

HNW: -0.51 

SAK: -0.64 

UMA: -0.58 

AAF:  0.73 

ALF: 0.51 

AGS: 0.40 

DAH: 0.66 

HNW: 0.50 

SAK: 0.51 

UMA: 0.61 

AAF: 0.38 

ALF: 0.33 

AGS: 0.14 

DAH: 0.23 

HNW: 0.17 

SAK: 0.41 

UMA: 0.20 

AAF: 0.34 

ALF: 0.69 

AGS: 0.42 

DAH: 0.47 

HNW: 0.62 

SAK: 0.43 

UMA: 0.52 
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