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ADAPTING THE SCHEDULING OF ILLUSTRATIONS AND GRAPHS TO

LEARNERS IN CONCEPTUAL PHYSICS TUTORING

Michael Lipschultz, PhD

University of Pittsburgh, 2015

This research investigates how to schedule multiple graphical representations in a dialogue-

based conceptual physics tutor. Research on multiple graphical representations in tutoring

suggests either frequently switching representations or fading from concrete to abstract rep-

resentations. However, other research communities suggest that the best representation or

scheduling can be dependent on various student and tutoring context factors.

This thesis investigates whether these factors are important when considering a schedule

of representations. Three major hypotheses are investigated. H1: that the best representa-

tional format for physics concepts is related to properties of the student and the tutoring

context. H2: that it is possible to build models that predict the best representational for-

mat using student and tutoring context information. H3: that picking the representational

format based upon student and tutoring context information will produce better learning

gains than not considering student and tutoring context information. Additionally, this work

addresses the question of whether multiple representations produce greater learning gains

than a single representation (H4).

A first experiment was performed to both investigate H1 and to collect data for H2.

ANOVAs showed significant interaction effects in learning between low and high pretesters

and between high and low spatial reasoning ability subjects, supporting the first hypothesis.

Using the data collected and features describing student and tutoring context information,

models were learned to predict when to show illustrations or graphs. That these models

could be learned, produce meaningful rules, and outperformed a baseline supports H2. A
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new modeling algorithm was developed to learn these models by augmenting multiple linear

regression to consider certain syntactic constraints.

A third study was run to test H3 and H4 and to extrinsically evaluate the adaptive policy

learned. One third of subjects had an adaptive scheduling of representations, one third a

fixed alternating scheduling, and one third saw only one representation. In support of H3,

subjects with high incoming knowledge sometimes perform better when receiving adaptive

scheduling over an alternating scheduling, but there are also counter examples. For H4, it is

not supported in general: showing only illustrations is best overall, but in some cases some

subjects benefit from multiple representations.
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1.0 INTRODUCTION

American students perform poorly in science compared to their peers in other nations [88].

This has been identified as a problem, with science being considered one of the “core academic

subjects” that America needs to focus on and improve student performance on [2]. Despite

efforts starting in 2002 to improve education, no significant improvement in American science

scores between 1995 and 2007 has been observed. There is still a need to improve science

learning in America [1].

One difficult area within science education is physics. Students starting their physics ed-

ucation begin with preconceptions, often misconceptions, regarding physics concepts [103].

During their physics education, students often rely on their “gut feeling” to answer concep-

tual physics questions [100]. At the end of their physics education, students will often still

have those misconceptions [60].

One method used to improve science learning is one-on-one tutoring with a human tutor.

This form of tutoring is one of the most effective methods of instruction [30, 71], found to raise

student grades two standard deviations above classroom instruction alone [21]. However,

human tutors can be expensive and may not be available at the times or for as long as

students need. Researchers are developing intelligent tutoring systems (ITSs) to provide

similar one-on-one tutoring, but from a computer tutor, which could be always available to

the learner. Tutoring systems provide instructional assistance to a learner [105]. ITSs have

shown to be effective at improving student knowledge [109, 10, 68], but not as effective as

human tutoring.

Attempts to improve physics education through the use of intelligent tutoring systems

have targeted both quantitative knowledge (e.g. how to solve physics problems) and con-

ceptual knowledge (e.g. the concept that acceleration is the rate of change of velocity). So
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far, developing ITSs for conceptual physics has been found to be difficult. Researchers have

developed physics tutoring systems that aid students in learning how to solve quantitative

physics problems [109]. However, learning how to solve quantitative physics problems does

not necessarily lead to a good understanding of physics concepts [60]. Failing to learn physics

concepts correctly can lead to difficulties in learning physics. Students solving a problem

correctly, but using incorrect conceptual knowledge, have been shown to struggle with future

problems, both problems similar to the original and problems not directly relying on those

concepts [99].

To address conceptual physics learning, intelligent tutoring system researchers have taken

different approaches to tutoring physics concepts. One dimension to consider is the format

used to represent the concepts. Some use a natural language representation, whether through

dialogues [108, 78, 107] or canned text [95], to present the concepts. Others use visual rep-

resentations, either graphs or illustrations, to convey the concepts. Sometimes they are

presented with text [7, 58] while other times the visuals are provided with almost no text

[62, 3, 4]. Still others have found switching between visual representations during tutor-

ing to be better than using just one visual representation [59, 91]. Section 2.1 introduces

representations and discusses how they have been used with conceptual physics tutoring

systems.

An orthogonal consideration is how adaptive to make the tutoring system. Student

adaptation occurs when a tutoring system’s behavior changes based on the action or actions

of the student. Often, the tutoring system consults a student model to identify the student’s

behavior or to decide how to change. A student model represents information about the

student and can be used to predict what the student knows or how they might behave [105].

The tutoring system can then consult an adaptive policy to determine how its behavior

should change given information about the student and the tutoring context. Research

has found that adapting to students and tutoring contexts can be more effective than non-

adaptive systems (discussed in Section 2.2) and adapting to students is seen as one of the

grand challenges of education technology [117]. However, adapting visual representations

to individuals is still largely unexplored. In this work, I explore augmenting a natural

language-based tutoring system for conceptual physics by adding illustrations and graphs to
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the dialogue. In the final study, the tutor adapts to the students and tutoring context by

selecting to show illustrations or graphs, depending on which is expected to produce greater

learning gains.

The considerations of representational formats to use and how adaptive to make the

system lead to the overarching hypotheses of this work: 1) that the best representational

format for physics concepts is related to properties of the student and the tutoring context,

2) that it is possible to build models that predict the best representational format using

student and tutoring context information, and 3) that picking the representational format

based upon student and tutoring context information will produce better learning gains than

not considering student and tutoring context information. In testing the third hypothesis,

we also investigate a fourth: 4) that showing multiple representations will produce better

learning gains than only showing a single representation. These hypotheses were tested

through an initial study, where students solved problems in the Andes physics problem solv-

ing coach [109] then discussed concepts related to each problem in the Cordillera tutoring

system [107]. In one condition, students saw only graphs and in the other, students saw

only illustrations. Learning gains were measured using pretests and post-tests. Student

information was collected from a background survey and a spatial reasoning test was used

to measure their spatial reasoning ability. ANOVAs showed significant interaction effects

in learning between low and high pretesters and between subjects with high and low spa-

tial reasoning ability, supporting the first overarching hypothesis. Using this data, models

were developed to predict when illustrations and when graphs would most improve learning.

That these models could be learned and produce meaningful models that outperformed a

non-adaptive model supports the second overarching hypothesis. To create these models, I

developed a new modeling algorithm by augmenting multiple linear regression to consider

certain syntactic constraints. One of these models was then used in another study, where it

was incorporated into the Andes and Cordillera systems. This study compared three con-

ditions: one where subjects saw the same representational format throughout tutoring, one

where the representational format alternated according to a pre-set pattern, and one that

consulted the model to determine which representational format to use. I find that in some

cases adapting to student and tutoring context information produces better learning and

3



satisfaction. However, there are also instances when that is not the case. I suspect that this

may be due to limitations in the model and preliminary investigations provide some support

for this.

The following chapters expand on the process and findings from the studies summarized

above. Chapter 2 provides a background on the representations used in intelligent tutoring

systems and student modeling and adaptation. Chapter 3 describes the general experimental

setup for both of the tutoring studies presented in this work. In Chapter 4, a first study was

conducted to determine whether there are differences regarding whether graphs or illustra-

tions lead to greater learning gains. Chapter 5 uses the data collected in the first study to

model the best representation for a given student and tutoring context. In Chapter 6, one of

those models is used in an extrinsic study to determine whether having an adaptive policy

for showing illustrations and graphs during tutoring leads to improved learning. Chapter 7

discusses contributions to the fields of Artificial Intelligence and Education, Intelligent Tu-

toring Systems, and Educational Data Mining. Finally, this chapter considers future work

that may follow from this research.

1.1 CONTRIBUTIONS

With different representations providing different benefits to students [81, 69, 84] and there

being individual differences between students for representational understanding [84, 70,

39], there appears to be a need for tutoring systems to adapt representations to students.

However, tutoring systems that adapt to students do not use multiple representations as

part of the adaptation, and tutoring systems that use multiple representations do not adapt

those representations and their presentation to individual students.

In this research, I augment an existing natural language-based intelligent tutoring system

in the physics domain by adding visual representations – graphs or illustrations – that are

adapted to students. This system advances current tutoring systems by incorporating multi-

ple representations – natural language, graphs, and illustrations – and adapting to differences

among students such that the visual representation thought to most-improve learning within
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a particular tutoring context is displayed. I argue that adapting visual representations to

students and tutoring contexts will show greater learning gains for students over a tutor-

ing system that does not adapt. The adaptation is facilitated by a student model, which

uses features identified as important in the visual adaptation literature [84, 70, 39], student

modeling and adaptation literature [44, 115, 51, 18, 87, 45], and physics education literature

[84, 104] discussed above. Learning such a model, when the best representation is not known

from the training data, is done through a novel algorithm which extends stepwise regres-

sion by considering syntactic constraints and feature relationships. This research benefits

the artificial intelligence in education community by identifying features useful for model-

ing students and predicting whether graphs or cartoonish illustrations are more beneficial

to students within the context of a natural language-based intelligent tutoring system for

conceptual kinematics.

Chapter 4 shows that there are differences among students regarding whether graphs or

illustrations lead to greater learning gains. In a small study, I divide subjects into two condi-

tions, those who will see illustrations during tutoring and those who will see graphs. Tutoring

consisted of solving a physics problem in the Andes intelligent homework helper [109], then

discussing concepts related to the problem with a natural language-based tutoring system;

this was repeated for a second problem. Using learning gains as the dependent variable, I

investigate interactions between incoming physics skill, spatial reasoning ability, and visual

representation shown. I find that there are interactions, suggesting that there are individual

differences among students regarding illustrations and graphs. Prior to this study, it was not

known within the artificial intelligence in education community whether such differences ex-

isted. This also contributes to the information visualization community by providing further

evidence that there are individual differences regarding the best visualization for a task.

In Chapter 5, data collected from the study was used to develop a student model for

predicting which visual representation is beneficial for learning. During the study, informa-

tion was collected that has been found to be useful in other student adaptation tasks or

for identifying what visual representation is beneficial for a subject. These include student

demographic features [84, 51, 25, 27, 11, 70], incoming student proficiency and student per-

formance [70, 25, 27, 11], and contextual information during tutoring [44, 51, 25, 27, 11].
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Using this data, tutoring contexts were identified when graphs were predicted to improve

learning gains and tutoring contexts when illustrations were predicted to improve learning

gains. These tutoring contexts can then be used to create an adaptive policy. An intrinsic

evaluation of the model is performed in this chapter; an extrinsic evaluation of the model

is performed in the next. This chapter also presents a technique for mining data to create

an adaptive policy when a gold standard is not available. It starts with a standard method

(stepwise linear regression) and augments it to remove unwanted terms. The method seeks

to identify tutoring contexts when one graphic is better than the other.

Finally, with a student model, a second study was run to test whether adapting to

students and tutoring contexts shows greater learning gains than a non-adaptive tutoring

system (see Chapter 6). This study uses the same tutoring set up as the first experiment

(problem-solving in Andes with post-problem conceptual discussions). In this new study,

there were three conditions. One condition, the adaptive condition, uses the student model

to determine whether to use graphs or illustrations at points during tutoring. The second

condition, the alternating condition, alternates between graphs and illustrations through-

out tutoring. Students in the third condition, the constant condition, use only one visual

representation throughout tutoring, to be selected randomly at the start of the student’s

session. Here, the goal is to identify whether adapting to students provides greater learning

gains over the other two conditions. Comparing the adaptive and alternating conditions to

the constant condition shows whether multiple visual representations is better than a single

visual representation in a natural language-based physics tutoring system. This expands

on the current research regarding multiple representation during tutoring to include varying

visual representations within a natural language-based tutoring system. Results suggest that

multiple representations are sometimes helpful, but in other cases a single representations –

illustrations – is better. Since the subjects in the study were novices, this finding is consistent

with the literature, which suggests that novices benefit most from illustrations [81, 83, 57].

Comparing the adaptive condition to the alternating condition will show whether adapting

to student and tutoring contextual differences when determining what visual representation

to use is beneficial over just alternating between the two. This is intended to answer the

question of whether adaptation is necessary when deciding what visual representation to
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use. It will also provide an extrinsic evaluation of the student model. Results suggest that

in some cases, adapting is beneficial but in other cases there is no improvement. The lack

of strong support for adapting may be a failing of the model which was learned on limited

data, evidence that adapting is not beneficial, or that frequency of switching is important to

consider (as suggested in [89, 91]. A brief exploration into improving the model with addi-

tional features shows that the model had shortcomings. Finally, this study contributes to the

information visualization community because there is evidence that adapting visualizations

to users improves task performance.
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2.0 RELATED WORK

2.1 OUTPUT REPRESENTATIONS IN INTELLIGENT TUTORING

SYSTEMS

Researchers have used various representations in tutoring systems to convey information

to students. Representations can take the form of natural language or visuals, such as

illustrations and graphs. Below are descriptions and examples of each.

2.1.1 Natural Language Representation

Natural language-based tutors use words to communicate ideas between tutor and student,

either through dialogues [108, 107, 59, 78, 61, 48, 9, 37, 94] or canned text [95, 34]. Some

tutors augment quantitative problem-solving environments to provide conceptual instruction

as part of the problem solving (e.g. [95]), while others attempt to teach the concepts directly

[108, 78, 107, 59, 61].

While these tutors have shown promise in improving students’ conceptual understanding,

they do so by relying on words to describe situations that are visual. However, standard

physics instructional material (e.g. [120]) rely on visuals (i.e. graphs and illustrations) to

teach concepts and even physics experts [103] use visuals to understand physics situations.

2.1.2 Visual Representations

Tutoring systems that use visual representations attempt to convey ideas through the use

of visuals. I will focus specifically on two kinds of visual representations commonly used in

the tutoring system community: illustrations [59, 92, 101, 56, 73, 96] and graphs [74, 92].
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I selected these both because they are common within the tutoring system community and

because they are common in physics education [120, 55]. The illustration representational

format uses images, whether realistic renderings [58] or cartoonish images [92, 70, 57], to rep-

resent situations and concepts. This representation method is intended to present something

students can relate to in their everyday lives. The graph representation conveys situations

and concepts primarily through graphs, such as bar graphs or line graphs [74, 92]. An

example of a cartoonish illustration and a line graph can be seen in Figures 2.1 and 2.2

respectively.

Figure 2.1: A cartoonish illustration representing the concept of 1/3 within the fraction tutor

from [92]. Here, one third of the rod has a cylinder around it.

Figure 2.2: A line graph representing the concept of 1/3 within the fraction tutor from [92].

Here, one third of the number line is grayed.

While there are many different kinds of illustrations, this work specifically focuses on

cartoonish illustrations. This form is used in Andes [109], the problem-solving homework

helper I will be using in the two studies described later. Additionally, cartoonish illustrations

are often used in physics textbooks to convey concepts [120]. The PHeT interactive physics

simulations have found that cartoonish illustrations are an effective method of representing

physics situations [3].

Tutoring systems using graphs or illustrations provide to the student a visual represen-

tation of the situation, sometimes annotated with vectors to further illustrate a concept.

The level of interactivity with the visuals varies from system to system, from static images
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[7] to interactive simulations that allow the student to manipulate variables in the situation

[58, 3, 4]. The optimal level of interactivity with visuals in a tutoring system is not clear.

For this work, I selected a low level of interactivity to simplify the interactions between the

learner and the system. Allowing for more interactivity could increase cognitive load in the

learners and hamper learning. Findings in Chapter 4 suggest this may have been happening

with some learners with even low interactivity. It would be interesting in future work to

determine how interactive to make visuals when using multiple graphical representations.

The visuals may occur with substantial text accompanying them, such as to provide

conceptual help during problem solving [7] or as part of a dialogue with a computer-based

tutor [58]. They may also occur where there is little more text than a question and labels,

with students expected to take the initiative in exploring the simulation and developing

their conceptual understanding [62, 3, 4]. In this work they are presented along with tutorial

dialogues since dialogues have been shown to be an effective tutoring strategy [66, 58].

Many of these systems – particularly the interactive simulations – expect students to

take the initiative in developing their conceptual understanding by explaining the concepts

to themselves (that is, self-explaining). While self-explanations are beneficial for learning

[8, 29], students will often not engage in self-explanations on their own. Failing to self-explain

can be caused by overestimating their understanding of examples or realizing they have a

comprehension gap but lack the knowledge to fill it [93]. To ensure students generate self-

explanations, they should be prompted [29, 32]. For the work presented in this dissertation,

students are prompted occasionally to self-explain as part of the dialogues.

While including visuals is thought to help students learn concepts, much of the intelli-

gent tutoring system research has made the assumption that one visualization is best for all

students. However, differences exist between representations. Illustrations are easier than

graphs for novices to interpret [81], but students may be distracted by the surface features of

illustrations, which graphs lack [69]. There is also evidence showing the benefits of natural

language representations, despite a lack of visuals. Situations presented through natural lan-

guage representations can lead to more correct answers from students and greater confidence

in answers [84].
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2.1.3 Multiple Representations

With advantages and disadvantages to the representational formats, some researchers have

examined the potential benefits of using multiple representations. Being fluent in multiple

representations and being able to translate between them are beneficial for students [92,

5]. Graphs, for example, can help students connect illustrations or verbal descriptions of

situations to the base concepts behind them [104].

Research into how to present multiple visual representations has found that using a

different visual representation for each question or situation is better than using one visual

representation for a while before switching [91]. Additionally, students must be prompted

to self-explain for learning gains to be greater than when seeing only one visualization [92].

It is believed that the use of multiple visual representations changing frequently encourages

students to repeatedly reactivate knowledge about specific representations. While students

do not usually make connections between the representations, being prompted to do so

improves learning over these connections being made explicit by the tutoring system [90].

When natural language representations are presented with visual representations, both

representations tend to be presented synchronously. The natural language representation

may be expository, with the visual representation illustrating the concepts being explained

[7]. The representations can also be more interactive, with the natural language representa-

tion occurring in the form of a dialogue between tutor and student accompanying a static

image [59] or an interactive simulation [58]. Just as with multiple visual representations,

students should receive guidance in using the system in a way conducive to learning, such

as through prompts to self-explain [63].

While thus far I have talked about using multiple different representations during tu-

toring, researchers have examined using different forms of one representation with differing

levels of concreteness. A concrete illustration is an illustration depicting visual and rec-

ognizable objects in a specific situation [96]. An abstract, or idealized, illustration is an

illustration depicting concepts apart from specific objects [96]. An example of a situation

depicted with both a concrete illustration and abstract illustration can be seen in Figure 2.3.

In the figure, the concept being depicted is competitive specialization, the idea that parts
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of a system can organize themselves without the help of a leader or a centralized plan. The

concrete representation shows how ants will each select their own food source – the closest

ant-free food source. The abstract representation shows black dots each selecting a unique

gray blob. Researchers have found that fading from concrete illustrations to abstract illustra-

tions shows greater learning gains over just concrete illustrations, just abstract illustrations,

or switching from abstract to concrete illustrations [57]. Similar results have been found in

the arithmetic domain using concrete and abstract mathematical representations [83].

(a) A concrete representation, involving
ants seeking a food source. (b) An abstract representation.

Figure 2.3: Two illustrations depicting the same concept: competitive specialization, from

[57].

While these methods of displaying multiple representations during tutoring improve

learning, they tend to treat all students as identical. The switching of representations or

level of concreteness is determined by a fixed schedule. However, research suggests that there

are differences among students that can lead to some visualizations being more beneficial

to some students than others, such as gender [84], and spatial reasoning ability [70], verbal

skills [39]. Additionally, research suggests that the best visualization can vary for a single

student, such as skill with the concepts involved [70], which can change over time, and tasks

the student is working on [69]. While tutors using multiple visual representations do not

adapt to individual differences, there are other tutoring systems which do adapt to students.
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In the next section, I outline student modeling, which is often used in automatically-adapting

systems. In the section after, I discuss tutoring systems which adapt to students.

2.2 STUDENT MODELING

Adapting to students can be done with the use of a student model. In this section, student

modeling is introduced. Student models are used to infer hidden information about a student,

such as what domain knowledge (commonly called “knowledge components” or KCs [105])

a student has mastered or what learning behavior the student is employing. Models infer

the hidden information from information readily available to the tutoring system, such as

the student’s correctness on previous interactions with the tutor and what KCs the student

should know so they can respond correctly [77]. To make these inferences, student models

often rely on machine learning or statistical methods [13]. These models are trained on data

obtained in a setting and system similar to the ones the model will be used in. The output of

these models can then be used to guide tutor behavior, such as whether to provide additional

problems to the student [14] or how to respond to a student [6, 112, 77].

One student state often modeled by tutoring systems is student knowledge [35, 38, 22, 86,

24]. Models may take different forms, such as Bayesian networks as in the case of Bayesian

Knowledge Tracing [35, 38] or regression models as in the case of Learning Factors Analysis

[22, 86, 24]. These models map observables to a prediction of the student’s knowledge.

Observables can be such things as information collected from a background survey (e.g.

previous experience with the domain) [36], interactions with the tutoring system (e.g. the

correctness of previous interactions with the tutor) [86, 18, 87, 45, 51, 51], body language

[44, 115], and domain knowledge provided by system designers [22, 86, 24, 35, 38].

Student models have various parameters which must be set. To set them, real-world data

is collected containing both the observables and, if possible, the ground truth values that

the model will be predicting. In some cases, the ground truth can be observed or directly

inferred from an observable, as in the case of whether a student knows a concept, which can

be inferred from whether they answer the next question correctly that involves that concept.
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In these cases, supervised machine learning can be used to set the parameters. With the

model and its learned parameters, it can be intrinsically evaluated on a set of data not used

in training the model by measuring how well the model’s predictions match the ground truth

values in that held-out set [15, 111]. Here, the ground truth in the data is used as a gold

standard to evaluate the model. The model’s performance is compared to a baseline model.

In some cases, the ground truth value may not be observable, as in the case of whether it

is better to elicit information from a student or to tell them the information [28]. In these

cases, other techniques must be used to learn a model and evaluate it, such as optimizing

for overall learning gains [25]. In contrast to an intrinsic evaluation, an extrinsic evaluation

places the model in a tutoring system and evaluates how well it performs at improving the

tutoring. In the elicit versus tell example, an extrinsic evaluation would show that deciding

whether to elicit or tell using the learned model improves student learning over some other

option (e.g. always telling) [26].

While this section described student modeling in the context of modeling student knowl-

edge, models can also be developed for other student attributes [6, 50, 52, 33], as seen in the

next section. In the next section, I discuss in what ways tutoring systems have adapted to

learners.

2.3 STUDENT ADAPTATION

Researchers have examined different methods of adapting computer tutors to learners. While

some made use of a model (e.g. [33, 44]), others used a Wizard of Oz setup (e.g. [6, 52]).

A Wizard of Oz setup replaces a student model with a human, making decisions about the

student’s state [6]. This section explores tutoring systems that adapt to learners’ states.

Researchers have had success developing tutors that adapt to students’ mental states,

such as motivation [6, 50], uncertainty [52], and various affective states [33]. Adapting to

these involves providing additional feedback from the tutor that addresses the student’s dis-

position (e.g. giving feedback with a positive slant for poorly-performing studious students)

[40, 6, 50, 52]. This feedback has led to increased persistence [6], learning gains over no
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feedback on affect [52], and increased speed of learning [49]. Detecting these states include

such features as body language and facial expressions [44, 115], lexical or dialogue features

[44, 51], response times [18], audio or spoken features [87, 45, 51], student features [51], and

student goals [31].

Researchers have also examined adapting pedagogical strategies to students. In deter-

mining the level of interactivity, it is important to consider the skill level of the student in

comparison to the difficulty of the content to learn [106]. For content that is at the current

skill level of the student, or easier, high levels of interactivity (e.g. dialogue with tutor)

provide no benefit over low or no interactivity (e.g. reading a canned text). For content that

is just above the student’s skill level (i.e. material the student has not yet mastered, but

is ready to learn), then higher levels of interactivity are beneficial. Determining skill level

can be gauged with a pretest and monitored through interactions with the tutoring system

[36, 86]. Interactivity can be at the problem-level, where the system will decide which prob-

lem to give the student next [36]. Finer-grained level of interactivity decisions (e.g. how

intrusive to make hints) can be made using student demographic, temporal, contextual, and

student performance features [25, 27, 11].

Students may engage in behavior that is not conducive to learning, such as “gaming the

system”, where students obtain correct answers by taking advantage of the tutoring system’s

feedback and help [16]. Addressing this behavior has shown to improve learning [14] and

has been successfully detecting with models using student performance, contextual, and

temporal features [111, 15]. However, not all students who take advantage of the tutoring

system’s help are doing so in a manner that hinders learning [98]. Distinguishing between

helpful and harmful uses of a tutoring system’s helps can also be done through the use of a

model that uses temporal features [98].

Within the realm of adapting representations, some work has been done within natural

language-based tutoring systems. When determining how cohesive to make canned text or

how cohesive to make tutor turns in relation to student turns in a dialogue, it is important

to consider the skill level of the student. Students with low skill levels benefit from high

cohesion, whereas students with high skill levels either benefit from low cohesion or there is

no difference in the level of cohesion [113, 82, 112].
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Similar to the tutoring system community, researchers in information visualization have

looked at finding the best representation for the data and for the task, rather than for

the user. However, findings suggest that adapting the representation for individual user

differences is important. The better representation for a particular user may depend on

personality traits, such as locus of control [118] and openness to experience [119]. Visual-

spatial abilities, such as visual perception speed [31] and spatial orientation ability [110, 102],

can also have an influence on which representation is better. Non-visual cognitive abilities

can also have an influence, such as associative memory [23] and domain expertise [41, 102].

With domain expertise, as users gain expertise, the better representation may even change

[41]. But even among experts, different visualizations of the same data appear better for

experts in different fields [79].
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3.0 DESIGN OF TUTORING STUDIES

This chapter introduces the tutoring system architecture and common materials across the

two tutoring studies described in this dissertation. The general procedure of both studies is

shown below. Both studies were on kinematics, the part of physics involving displacement,

velocity, and acceleration. All subjects completed the studies in one session.

1. Complete background survey

2. Read physics textbook

3. Take physics pretest

4. Interface training

5. Tutoring

For each problem in the study:

a. Solve the problem

b. Discuss with tutor each post-problem reflection dialogue

6. Take physics post-test

7. Take satisfaction survey

8. Pay subject

In later chapters, “session” will refer to the entire tutoring session, item 5 in the general

procedures above. “Problem” will refer to tutoring on a specific problem, both the 5a and

5b in the procedures above. “Problem Solving” specifically refers to 5a and “Post-Problem

Discussion” specifically refers to 5b. “WalkThru” refers to the walk-through dialogues the

subjects engage in during problem solving.
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3.1 BACKGROUND SURVEY

Upon arriving and completing the consent form, subjects completed a background survey,

similar to one used in a prior study which also examined post-problem discussions for learning

conceptual physics [66]. The change made to the survey was to ask for the three SAT

scores; the prior study took place before there were three SAT scores. The survey asked for

information thought to be useful for the student modeling task described in Chapter 5, such

as gender and whether they had taken high school physics [84, 70]. See Appendix A for the

complete survey.

3.2 PHYSICS TEXTBOOK

They then read a short physics textbook on kinematics. The physics textbook was adapted

from one used in a previous tutoring study [26]. This previous study was on work and

energy, but its textbook included kinematics since kinematics is a prerequisite for work and

energy. For the studies discussed in this dissertation, only the sections relevant for kinematics

were included. These sections were displacement, velocity, acceleration, and gravitational

acceleration. The textbook also used images to illustrate concepts. Since this could act as

a confound in the studies presented in this dissertation, the images were removed from the

textbook.

Since two-dimensional motion was covered in these studies but were not included in

the prior study, a section on two dimensional motion was added. Additionally, kinematics

equations were added to the textbook since the subjects in these studies would be solving

problems. The complete textbook can be found in Appendix B.
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3.3 PRETEST AND POST-TEST

After reading the textbook, subjects took a pretest to measure their incoming physics knowl-

edge. Each study had two isomorphic tests, one randomly selected for the pretest and the

other then used for the post-test. The tests were multiple choice to allow for automatic

grading. Since each study had its own tests, the details of the tests will be discussed in those

chapters.

These tests are administered to measure learning. The tests should be isomorphic to

each other; they should ask the same questions but with different cover stories so that the

same concepts are evaluated on both tests. The two scores can then be used to measure

the learning that took place during tutoring and this can be done in various ways. Raw

learning gain is the difference between the post-test score and the pretest score; it measures

how much improvement there was regardless of how much room for improvement there was.

Normalized learning gain is the raw learning gain divided by the difference between the

maximum score and the pretest score. The numerator represents how much the learner

improved; the numerator represents the total room for improvement. Thus, normalized

learning gain represents the percent improvement seen. Finally, post-test score controlled

for pretest score makes use of regression to factor out the effect of pretest score on the

post-test score. There is no consensus within the community for which method of measuring

learning is best. Some make use of raw learning gains [12, 116], others make use of normalized

learning gains [43], others post-test controlled for pretest [54], and still others use multiple

measures [53].

3.4 TUTORING SYSTEM ARCHITECTURE

This dissertation made use of the Rimac system[65]. Rimac is a tutoring system for intro-

ductory physics. It involves both solving physics problems and a post-problem discussion

reflecting on the concepts involved in the problem. Having learners reflect on concepts in-

volved in a problem after solving the problem has been found to be an effective method for
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learning physics concepts [66]. Rimac was developed to test the effectiveness of interactiv-

ity and levels of abstraction in post-problem reflective dialogues on learning in high school

physics students [77]. While the work presented in this dissertation makes use of many of

the tools and material developed for Rimac, the research presented here diverges from Rimac

on the research questions and target subjects. What follows is a description of the Rimac

tutoring system and where my tutoring architecture differs from it.

At the time of running the experiment in Chapter 4, Rimac used the Andes Homework

Helper [109] for its problem-solving component. While Rimac later transitioned to having

students solve the physics problems for homework, then watch a video showing how to solve

the problem before beginning the discussion, this dissertation continues to use Andes for

problem-solving. The post-problem discussions were based on the TuTalk Natural Language

tutorial dialogue toolkit [64].

3.4.1 Problem Solving

The Andes Homework Helper is designed to allow students to solve physics problems on a

computer. It presents a problem description to the user and an image depicting the situation.

Tools are provided to allow the user to draw objects, draw vectors, write equations, and

solve for variables. Andes provides immediate color-coded feedback for user actions: green

means correct and red means incorrect. At any time, the user may ask for help from Andes

and Andes will provide hints on the next step to perform. Occasionally, Andes will offer

unsolicited help to the user if the user did something incorrect.

The Rimac project discovered that before using Andes for the first time, both high

school physics students and high school physics teachers needed training to become familiar

with Andes. Thus, subjects in the studies presented here also underwent interface training.

Training began by watching an eight-minute video on how to use Andes, provided by the

developers of Andes. It showed the viewer how to solve a simple problem in Andes: the

vec1ay problem on using vectors. After the video, the user then solved the same problem

as in the video to practice using Andes before working on a physics problem. The problem

description is shown in Figure 3.1. Solving this practice problem, and all others, was done
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with the help of a coach.

A swimmer wishes to reach a swimming float which is 200 m away and 35.0 deg west of

north. Find the x and y component of the swimmer’s total displacement when she reaches

the float.

x component:

y component:

Figure 3.1: The practice problem given to all subjects in the studies.

The physics coach was developed because pilot testing with Rimac found that Andes had

a large learning curve. Users continued to struggle with Andes after completing the interface

training. The coach would help users both solve the problem and perform actions in Andes.

The coach walked users through solving each problem, following the general steps suggested

by high school physics teachers involved in the Rimac project:

1. Identify the unknown quantity or quantities the learner must solve for.

2. List the known information that is needed to solve for the unknowns.

3. Identify the necessary equation or equations to solve for the unknowns given the knowns.

4. Solve for the unknowns.

For the practice problem, the coach walked the user through solving the problem, during

problem solving the coach would ask the user what they should do instead. If the user was

incorrect, the coach would engage in a brief remediation dialogue to guide the user to the

correct answer. If the user was correct, the coach would move on. In addition to helping the

user go through the problem solving steps, it would also help the user interact with Andes.

Whenever the user needed to enter an answer into Andes, the coach would offer help to
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remind the user how to perform the action. These problem-solving dialogues were approved

by the physics teachers associated with the Rimac project.

Each physics problem in Andes is presented with an illustration of the situation. Since

this work compares illustrations and graphs, the default image provided by Andes was re-

placed with images designed for the studies. Since the graphs developed for the studies

represent change over time, the illustrations were updated to also depict change over time.

After the first study, it was found that the illustrations did not look enough like illustra-

tions. Thus, for the second study, the Andes illustrations were completely replaced with new

illustrations. Figure 3.2 shows the problem description for the kangaroo problem (one of the

problems used in both studies described in this dissertation), the original Andes illustration

and all of the images created to display in Andes for the studies. All of the illustrations and

graphs used in the studies were approved by the physics teachers.

Figure 3.3 shows the problem solving environment. The Andes interface is on the left in

the web browser and the coach (running in Cordillera, as discussed below) is on the right.

The kangaroo problem from the first study is displayed. The image displayed in Andes is

the illustration developed for the study. Cordillera displays the dialogue history between the

coach and the user in the top portion while the bottom portion is available for the user to

respond.

3.4.2 Dialogue Architecture

The coach, and the reflection dialogues discussed below, were written using the TuTalk

toolkit [64]. TuTalk is an authoring tool which enables researchers to write tutoring content

through dialogue scripts, which are then used for automated interaction. A TuTalk client

runs the script, presenting text and other information (such as images, as discussed below) to

the user. It can also elicit responses from the user and take different branches in the dialogue

based on the response. The dialogue author lists potential responses and can tag them as

either correct or incorrect. The responses can also be tagged for knowledge components,

indicating either a user shows evidence of understanding a knowledge component or not

understanding a knowledge component.
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A kangaroo can jump about 1.50 m straight up. What is the magnitude of the take-off velocity?

(a) The original
illustration of the
kangaroo.

(b) The il-
lustration for
the kangaroo
problem used
in the first
study.

(c) The illustration
for the kangaroo
problem used in the
second study.

(d) The graph for the kan-
garoo problem used in both
studies.

Figure 3.2: An example of the illustration provided by Andes and the illustrations and graph

used in the studies described in this dissertation.

The dialogue author can solicit natural language responses from the user or multiple

choice responses. For natural language responses, the user’s response is compared to a list of

anticipated responses and chooses the response that most closely matches the user’s response.

This classification of natural language responses is prone to misclassifying responses unless

the dialogue author lists every possible response from a user. The Rimac project solicited

natural language responses since the project was interested in adjusting the tutor’s words

based on the student’s words. However, since my work is interested in scheduling visual

representations and not in changing the tutor’s word choice, I use only multiple choice

questions to eliminate any chance of TuTalk misclassifying a response.

The Rimac project implemented a new web-based interface for the dialogues. However,
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Figure 3.3: Physics problem solving environment. Andes is on the left and the coach is on

the right.

for my studies I used the Cordillera tutoring system [107] for both the coach and the post-

problem discussion. I chose Cordillera because it had already been tested in a full-scale

study [25]. Additionally, it already supported showing graphics alongside the dialogue.

3.4.3 Post-Problem Discussion

Once the user completes a problem, they begin a discussion on concepts involved in the

problem. For the first study, described in Chapter 4, these dialogues were written for the

study since the Rimac project had not yet settled on the which problems to use. For the

second study, described in Chapter 6, the dialogues were adapted from those written for

Rimac, which required converting the questions to multiple choice and incorporating graphics
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into the dialogues.

The discussion starts by asking the user to reflect upon their solution. For example, the

first question asked following the kangaroo problem shown above is “At what time was the

kangaroo’s velocity greatest?” After the student answers this question, they begin a natural

language-based discussion of the answer. During this discussion, visual representations are

shown to the student to help explain concepts. These visuals are shown in a separate pane in

Cordillera so that they remain visible as the dialogue progresses. A sample of the discussion

from Study 2 for the first question following the kangaroo problem can be seen in Figure 3.4,

where graphs are being used.

Each problem has two or three post-problem dialogues associated with it. After the first

discussion ends, the next discussion begins. Once all discussions for a problem are completed,

the user starts the next problem or moves on to the next part of the study if they have

completed all of the problems. All of the post-problem dialogues and their accompanying

graphics were approved by the physics teachers involved in the Rimac project.

3.5 SATISFACTION SURVEY

The satisfaction survey was adapted from another study on tutorial dialogue systems [46].

Additional question categories were created specifically for the graphics incorporated into the

dialogues. These questions were inspired by those for information visualization [72]. In total

there were 27 questions, 23 five-point Likert scale questions and 4 open-ended questions.

The Likert scale questions were divided into four categories shown below. All satisfaction

questions can be found in Appendix C.

Problem-Solving Graphics – 4 questions on learners’ satisfaction with the graphics dur-

ing problem solving

Post-Problem Discussion (PPD) – 8 questions on learners’ satisfaction with the post-

problem discussions (not including the graphics shown during the discussions)

Post-Problem Discussion Graphics (PPD Graphics) – 6 questions on learners’ satisfac-

tion with the graphics during post-problem discussion
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Overall System – 5 questions on learners’ satisfaction with the overall tutoring system

These categorizations allowed us to examine satisfaction with aspects of the tutoring expe-

rience. From the four categories, two additional categories were created:

Graphics Satisfaction – a combination of the two graphics categories, totaling 10 ques-

tions

Overall Satisfaction – a combination of all four categories, totaling 23 questions
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System: The graph on the right shows the vertical displacement of the kangaroo over time. At
what time during the jump (from the moment it leaves the ground to the moment it reaches
the top of the jump) is the kangaroo moving fastest?

• at T0 (when the kangaroo takes off)
• at T0.5 (half-way through the jump)
• at T1 (top of jump)
• there’s no change in velocity
• I am not sure

Subject: there’s no change in velocity (incorrect)
System: Uhm. Velocity is the change in position over the change in time. So let’s take a

look at the change in position at three instances during the jump: beginning, middle, and
end. The beginning of the jump occurs at T0. Since we need two positions to figure out
a change in position (that is, velocity), let’s also look at a moment (0.1 seconds) after T0.

System: In the figure, a magenta dashed line marks the value of the position at T0+0.1. Notice
that the position changes by about 0.5 meters. Do you see the changes in the graph?

• yes
• no

Subject: yes
System: Good. [...]

Figure 3.4: The beginning of the discussion from the first question of the kangaroo problem

from Study 2.
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4.0 FIRST STUDY ON DIFFERENCES REGARDING GRAPHS AND

ILLUSTRATIONS FOR LEARNERS

In this dissertation, I aim to show whether an adaptive policy for showing graphs and illus-

trations to students during conceptual physics tutoring improves learning. In this chapter,

I show that there are individual differences among students regarding the utility of visual

representations within the context of a natural language-based conceptual kinematics tutor-

ing system. While others have shown that such differences exist between representations for

physics [81, 69, 84], this work has focused on differences when each representation is presented

in isolation. It is still unclear whether differences exist between illustrative representations

and graph representations when presented along with a natural language representation.

Prior work on using visual representations for learning suggest that differences exist.

Therefore, I hypothesize that there is an interaction effect between the visual representation

and the student’s incoming physics skill. Students who are already skilled in physics should

benefit more from graphs, whereas novices should benefit more from illustrations [70, 57].

Skilled students already have some understanding of the physics concepts and so are ready

for the more abstract representation of graphs. Novices, however, still need to learn the

physics concepts and therefore benefit when the concepts are presented within the context

of specific examples, which illustrations provide. Therefore, I hypothesize that novices will

show greater learning gains when receiving tutoring with illustrations over graphs (H1a) and

that skilled students will show greater learning gains when seeing graphs during tutoring

over seeing illustrations (H1b).

There should also be an interaction effect between spatial reasoning skill and visual

representation [70]. Students with low spatial reasoning ability should benefit more from il-

lustrations than graphs because it requires greater spatial reasoning ability to imagine what
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information about a situation a graph is conveying. High spatial reasoning students should

benefit from either visual representation. Therefore, I hypothesize that low spatial reason-

ing students seeing illustrations will show greater learning gains than low spatial reasoning

students seeing graphs (H2).

To determine whether differences exist, I performed an experiment comparing two condi-

tions: one where subjects saw only illustrations during tutoring and the other where subjects

saw only graphs. The following section describes the experiment.

4.1 METHODS

4.1.1 Participants

Twenty-nine college students without college-level physics experience were recruited and

randomly assigned to one of the conditions. They received $8/hour plus $20 for completing

the study and having a higher post-test score than pretest score.

4.1.2 Material

Chapter 3 discusses most of the material used in this study. Here, I only discuss the material

specific to this study.

4.1.2.1 Paper Folding Test The Paper Folding Test is a standard test for determining

spatial reasoning ability [47, 20]. It was administered according to [47] and given following

the background survey.

4.1.2.2 Pretest and Post-test There were two isomorphic tests, one randomly selected

for the pretest and the other then used for the post-test. Each test had 31 multiple-choice

questions. The tests are adapted from two earlier studies, both on post-problem discussions

with tutors [66, 65]. Questions were converted to multiple choice and some questions were
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modified to include graphics. Four of the questions were problem-solving or numeric ques-

tions, all of which were presented using natural language and mathematics. Twenty-seven

were conceptual questions. Of the twenty-seven conceptual questions, nine were presented

using natural language. Of the remaining 18 conceptual questions, nine involved illustrations

and nine involved graphs; these were isomorphic to each other. The complete tests can be

found in Appendix D.

By tagging the questions, I was able to measure not just overall learning gains, but also

learning gains specifically on problem-solving knowledge (labeled “numeric” in the results),

conceptual knowledge, conceptual knowledge in the context of illustrations (referred to as

“illustrations” in the results), and conceptual knowledge in the context of graphs (referred

to as “graphs” in the results).

4.1.2.3 Tutoring In this study, there were two problems. The first problem involved one

dimensional vertical and the second was two dimensional projectile motion. Both problems

had three reflection questions. All subjects received the problems and reflection questions in

the same order. Appendix E shows both problem statements and their reflection questions.

4.1.3 Procedure

The flow of the study is described in Chapter 3. The Paper Folding Test, which is not listed

in the procedures outlined in Chapter 3, occurs between the background survey and the

textbook. Before tutoring, subjects were randomly assigned to one of two conditions. In one

condition, subjects saw only graphs during tutoring; in the other they saw only illustrations.

4.1.4 Statistical Tests

In analysis of the results below, I make use of various statistical tests. In this section, I

discuss the tests.

The Pearson correlation measures the linear relationship between two variables, both the

strength of the relationship and whether it is positive or negative. The correlation coefficient,

r, ranges from -1 to +1. A coefficient of zero indicates there is no linear relationship between
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the variables. A coefficient closer to -1 or +1 indicates a strong linear relationship. A

negative value indicate an inverse relationship between the variables, i.e. as one increases

the other decreases. A positive value indicates a direct relationship: as one increases the

other increases. The coefficient of determination, r2, represents how well the statistical model

fits the data; higher values are better.

Student’s t-test can be one of several tests that follow Student’s t distribution. The

t-test can be used to determine if two sets of data are significantly different from each other

by testing whether their means are significantly different given the standard errors of the

two sets of data. In this work, I make use of two t-tests: paired t-test and the independent

samples t-test. The paired t-test compares two sets of data, where each item in one set has

a corresponding item in the second test. In this work, I use the paired t-test to compare

pretest scores to post-test scores, where the pairing occurs with the student, that is the

student’s pretest score is paired with their post-test score. When it is not possible to pair

items from both sets of data, we use the independent samples t-test. In this work, I use it

in many cases, such as comparing scores or performance between conditions, where it is not

possible to pair a student in one condition with a student in the other. When there is reason

to believe the data sets come from different populations (as in the case of some students

showing learning gains and others not), Levene’s test for the equality of variance should be

used to determine whether it is likely the data sets do come from different populations.

The Analysis of Covariance (ANCOVA) tests whether a dependent variable is different

across different values of one or more categorical independent variables while controlling for

the effects of a continuous variable on the dependent variable. In this work, I use it to

identify interaction effects across categorical variables on learning gains after controlling for

the subjects’ incoming knowledge.

4.2 RESULTS

Twenty-nine subjects participated in the experiment to completion. There were 14 in the

illustration condition and 15 in the graph condition.
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First, I checked to ensure that the Paper Folding Test measured the kind of spatial

reasoning students used in the study. The literature suggests that the test score should

correlate with performance on questions involving the interpretation of graphs [70]. However,

the Paper Folding Test measures how well students can manipulate a three-dimensional

object in their head, which is not similar to the skills needed for interpreting graphs. To test

whether the Paper Folding Test is a good measure of graph interpretation, I ran a Pearson

correlation test between the paper folding test score and the pretest score on just the nine

graph test questions. At a p-value of 0.034, there is a significant correlation between the

two scores (r = 0.3959). We would also expect that there would not be a correlation with

the other test questions. The correlation between the Paper Folding Test and the pretest

questions excluding the graph questions has a p-value of 0.0732. Therefore, I conclude that

the Paper Folding Test measures the kind of spatial reasoning students used.

I then evaluated whether both conditions were balanced regarding incoming physics

experience (as recorded by whether they had high school physics), background physics skill

(measured by pretest score), and spatial reasoning ability (measured by the Paper Folding

Test). A two-tailed independent samples t-test was run for background physics skill and

another was run for spatial reasoning ability. With p-values of 0.943 and 0.524 respectively,

I conclude that the two conditions are balanced on both measures. To determine whether

incoming physics experience is balanced, I ran a chi-squared test. With a p-value of 0.474,

I conclude that the two conditions are balanced on incoming physics experience.

Overall, we see that the subjects learned, with an average pretest score of 18.5 and an

average post-test score of 23.2. A paired t-test shows this learning is significant (p = 0.0006).

Of the 29 students who participated in the study, 22 of them had higher post-test scores than

pretest scores. Five subjects in the illustration condition and two in the graphs condition did

not show learning gains. In the following analysis, only those 22 students who had learning

gains are included. However, for completeness, the results when including all 29 subjects are

also shown.

One possible reason those seven subjects did not learn is that they were already high-

knowledge subjects. I compared the pretest scores of those who learned to those who did

not using an independent samples t-test with equal variances (Levene’s test for equality of
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variances yields p = 0.095). With a p-value of 0.008, we see that there is a difference between

the two groups. Those who did not learn had a pretest score of 76.5% and those who did

learn had a score of 54.4%. Thus, it appears that some subjects knew too much physics

coming in and did not learn more during tutoring.

To test the two sub-hypotheses, ANCOVAs were run to examine interaction effects be-

tween condition, pretest score, spatial reasoning, and gender. Five ANCOVAs were run, one

for each measure of test score (overall, numeric, conceptual, illustrations, and graphs). Ta-

ble 4.1 shows the main effects for learning gains across the five test score measures (Table 4.2

shows them for all subjects). For each ANCOVA, the dependent variable was the post-test

score, the covariate was the pretest score, and the independent variables were condition

(illustration or graph), overall pretest score (median split1: high or low; median: 58.1%),

spatial reasoning ability (median split: high or low; median: 11.5/20), and gender (female

or male).

I first examine whether there are any main effects for the three variables of interest,

which would suggest an overall effect between levels for that variable. For both condition

and pretest, no main effect is seen, suggesting condition and pretest have no overall effect

on the differences observed in the post-test measures. We do find main effects for spatial

reasoning. Table 4.3 shows the analysis for the spatial reasoning main effects. We see that

for all measures of learning, subjects with high spatial reasoning perform significantly (or

trend, in the case of the numeric measure of learning) better than those with low spatial

reasoning ability.

4.2.1 H1: Interaction Between Physics Skill and Condition

The two sub-hypotheses examined the interaction between physics skill and condition2. H1a

stated that novices will show greater learning gains when shown illustrations and H1b stated

that skilled students will show greater learning gains when seeing graphs. Table 4.4 shows

the interaction effects on just the 22 subjects showing learning gains (Table 4.5 shows the

interaction effect results for all subjects). Of the five measures of test score, only numeric

1For all median splits, subjects exactly at the median were categorized as low
2Published in [75]
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Table 4.1: Main effects for the five test score measures ANCOVAs between condition, pretest

score, spatial reasoning, and gender on the 22 subjects showing learning gains. The post-test

score is the estimated marginal mean of post-test score after controlling for pretest score.

The p-values indicate the significance of each factor in the model.

Post-test Measure

Overall Numeric Conceptual Illustrations Graphs

Number of 31 4 27 9 9

Questions

Post-test 0.768 0.627 0.795 0.793 0.747

Score

Condition p = 0.599 p = 0.608 p = 0.581 p = 0.944 p = 0.249

F1,11 = 0.289 F1,11 = 0.275 F1,11 = 0.319 F1,11 = 0.005 F1,11 = 1.447

pow. = 0.091 pow. = 0.077 pow. = 0.118 pow. = 0.055 pow. = 0.324

Pretest p = 0.321 p = 0.196 p = 0.418 p = 0.260 p = 0.399

F1,11 = 1.059 F1,11 = 1.844 F1,11 = 0.696 F1,11 = 1.378 F1,11 = 0.757

pow. = 0.103 pow. = 0.566 pow. = 0.058 pow. = 0.074 pow. = 0.051

Spatial p = 0.020 p = 0.070 p = 0.015 p = 0.020 p = 0.004

Reasoning F1,11 = 1.809 F1,11 = 3.848 F1,11 = 7.681 F1,11 = 6.888 F1,11 = 11.819

pow. = 0.499 pow. = 0.559 pow. = 0.532 pow. = 0.414 pow. = 0.878

Gender p = 0.519 p = 0.117 p = 0.566 p = 0.948 p = 0.098

F1,11 = 0.446 F1,11 = 2.944 F1,11 = 0.353 F1,11 = 0.004 F1,11 = 3.325

pow. = 0.093 pow. = 0.342 pow. = 0.084 pow. = 0.050 pow. = 0.378

was neither significant nor a trend.

For sub-hypothesis 1a, regarding low pretesters, we see that this hypothesis is confirmed.

Across each of the measures, low pretesters who received illustrations during tutoring scored

higher than low pretesters receiving graphs.
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Table 4.2: Main effects for the five test score measures ANCOVAs between condition, pretest

score, spatial reasoning, and gender for all subjects. The post-test score is the estimated

marginal mean of post-test score after controlling for pretest score. The p-values indicate

the significance of each factor in the model.

Post-test Measure

Overall Numeric Conceptual Illustrations Graphs

Number of 31 4 27 9 9

Questions

Post-test 0.749 0.628 0.772 0.77 0.732

Score

Condition p = 0.545 p = 0.161 p = 0.671 p = 0.904 p = 0.944

F1,14 = 0.379 F1,14 = 2.111 F1,14 = 0.186 F1,14 = 0.015 F1,14 = 0.005

pow. = 0.069 pow. = 0.117 pow. = 0.067 pow. = 0.051 pow. = 0.110

Pretest p = 0.135 p = 0.187 p = 0.199 p = 0.265 p = 0.183

F1,14 = 2.417 F1,14 = 1.861 F1,14 = 1.759 F1,14 = 1.312 F1,14 = 1.896

pow. = 0.081 pow. = 0.427 pow. = 0.050 pow. = 0.058 pow. = 0.214

Spatial p = 0.017 p = 0.032 p = 0.022 p = 0.062 p = 0.001

Reasoning F1,14 = 6.720 F1,14 = 5.276 F1,14 = 6.118 F1,14 = 3.792 F1,14 = 14.587

pow. = 0.395 pow. = 0.446 pow. = 0.352 pow. = 0.180 pow. = 0.706

Gender p = 0.419 p = 0.200 p = 0.522 p = 0.662 p = 0.583

F1,14 = 0.695 F1,14 = 1.807 F1,14 = 0.432 F1,14 = 0.199 F1,14 = 0.316

pow. = 0.122 pow. = 0.240 pow. = 0.094 pow. = 0.070 pow. = 0.082

Sub-hypothesis 1b, regarding high pretesters, is not generally confirmed. When consid-

ering students’ overall learning (as shown in Table 4.4), those who saw illustrations during

tutoring performed better on overall, conceptual, and graphs questions than those who saw

graphs. For all students (see Table 4.5), there is no significant difference for overall and con-
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Table 4.3: Adjusted post-test score given pretest score for the spatial reasoning main effects

for the five test score measures ANCOVAs between condition, pretest score, and spatial

reasoning on the 22 subjects showing learning gains. The p-values indicate the significance

of the difference between the two levels of spatial reasoning ability.

Measure N Spatial=High Spatial=Low p-val power

Overall 31 0.822 0.685 0.035 0.499

Numeric 4 0.701 0.524 0.099 0.559

Conceptual 27 0.847 0.716 0.028 0.532

Illustrations 9 0.872 0.696 0.033 0.414

Graphs 9 0.814 0.651 0.006 0.878

ceptual questions; for graphs questions seeing graphs during tutoring was better for learning.

Since five out of seven subjects who did not show learning were in the illustration condition,

this perhaps suggests that the learning for some high pretesters is hindered by illustrations.

While the literature suggests that graphs are more helpful for non-novices [70], it does not

appear to offer any explanation for why illustrations would be harmful.

When looking at the learning gains on just illustration test questions for the 22 subjects

showing learning, we find a trend result that seems to be a reversal. Subjects who saw

graphs scored higher than those who saw illustrations during tutoring. Comparing this

result to the one from graphs, we see that better performance on graph test questions came

from students who saw illustrations during tutoring and better performance on illustration

test questions came from students who saw graphs during tutoring. This hints that maybe

switching representations improves learning.

4.2.2 H2: Interaction Between Spatial Reasoning Skill and Condition

Hypothesis 2 stated that students with low spatial reasoning ability should show greater

learning gains when illustrations are used during tutoring than graphs. Similar to the test-
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Table 4.4: Adjusted post-test scores for the five test score measure ANCOVAs between

pretest score and condition (illustration or graph). The scores are percentages out of the

total number of questions for that measure (e.g. out of nine for graphs).

Measure N Pretest=High Pretest=Low Interaction

Illus. Graph Illus. Graph p-val power

Overall 31 0.876 0.865 0.784 0.655 0.049 0.259

Numeric 4 0.821 0.643 0.791 0.463 0.168 0.544

Conceptual 27 0.876 0.870 0.817 0.694 0.034 0.245

Illustrations 9 0.878 0.916 0.798 0.702 0.080 0.058

Graphs 9 0.828 0.785 0.801 0.634 0.013 0.315

Table 4.5: Adjusted post-test scores for the five test score measure ANCOVAs between

pretest score and condition. The scores are percentages out of the total number of questions

for that measure (e.g. out of nine for graphs). All 29 subjects are included.

Measure N Pretest=High Pretest=Low Interaction

Illus. Graph Illus. Graph p-val power

Overall 31 0.780 0.860 0.747 0.629 0.168 0.105

Numeric 4 0.709 0.732 0.651 0.454 0.329 0.127

Conceptual 27 0.777 0.872 0.782 0.671 0.147 0.100

Illustrations 9 0.793 0.891 0.786 0.694 0.297 0.051

Graphs 9 0.674 0.832 0.759 0.625 0.007 0.211

ing of H1, I again ran ANCOVAs for each of the five test score measures, with independent

variables being condition and spatial reasoning test (median split: high, low; median =

11.5/20). Table 4.6 shows the interaction effects for the 22 subjects showing learning gains

(Table 4.7 shows the results for all subjects). We find significant results for illustrations
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and graphs; the others are trends. Although hypothesis 2 was only interested in low spatial

reasoning subjects, I am more generally interested in exploring whether there are spatial

reasoning differences among subjects regarding visual representations to address the overar-

ching hypotheses of this dissertation, so I include in this table the high-spatial students as

well.

Table 4.6: Adjusted post-test scores for all of the test score measure ANCOVAs that showed

significant or trend interactions between spatial reasoning score and condition. The scores

are percentages out of the total number of questions for that measure (e.g. out of nine for

graphs).

Measure N Spatial=High Spatial=Low Interaction

Illus. Graph Illus. Graph p-val power

Overall 31 0.899 0.746 0.658 0.704 0.063 0.244

Numeric 4 0.818 0.584 0.469 0.560 0.073 0.610

Conceptual 27 0.916 0.777 0.697 0.728 0.057 0.110

Illustrations 9 0.926 0.818 0.647 0.728 0.023 0.060

Graphs 9 0.902 0.725 0.662 0.643 0.037 0.420

From these results, H2 is generally not confirmed. Low spatial reasoning subjects appear

to perform better on overall, numeric, conceptual, and illustration questions when they are

shown graphs during tutoring. This may be due to low spatial reasoning subjects being

more challenged by graphs, which require a greater amount of spatial reasoning processing

[70]. This challenge may encourage them to try harder to understand the material, thus

learning more. The one exception to this is the graphs result for only the 22 subjects

showing learning. Here, low spatial reasoning subjects learn better with illustrations. This

may be due to graphs being generally difficult for students [19, 84]. Combining the difficulty

of learning the concepts while seeing graphs with the difficulty of interpreting the graphs

during the post-test, students may have become exhausted or confused, leading to lower

scores on these questions.

For high-spatial subjects, the literature suggests that there would not be a difference
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Table 4.7: Adjusted post-test scores for all of the test score ANCOVAs that showed signif-

icant or trend interactions between spatial reasoning score and condition. The scores are

percentages out of the total number of questions for that measure (e.g. out of nine for

graphs). All 29 subjects are included.

Measure N Spatial=High Spatial=Low Interaction

Illus. Graph Illus. Graph p-val power

Overall 31 0.864 0.732 0.652 0.680 0.229 0.103

Numeric 4 0.815 0.550 0.525 0.544 0.059 0.195

Conceptual 27 0.877 0.769 0.684 0.707 0.351 0.090

Illustrations 9 0.880 0.812 0.697 0.707 0.706 0.050

Graphs 9 0.859 0.725 0.601 0.663 0.066 0.348

between seeing illustrations and seeing graphs [20]. However, we see that those who saw

illustrations during tutoring performed better than those who saw graphs. One possibility

is that students who saw illustrations during tutoring needed to work harder to learn the

concepts in a context-free way. Graphs provide a context-free representation of the concepts

and so students in this condition may not have needed to work as hard to learn the concepts

in a context-free way. It may also be that since all subjects were novices (since none had

taken college-level physics), illustrations were the better graphic to shown based on incoming

knowledge, as suggested by some research on the use of multiple graphical representations

[57].

4.3 DISCUSSION

This study examined whether there are differences among groups of subjects regarding visual

representations within the context of a natural language-based conceptual physics tutoring
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system. Showing half of the subjects only illustrations and the other half only graphs, I found

that there were interaction effects between learning gains and pretest score and between

learning gains and spatial reasoning ability. This suggests that it might be important to

adapt visual representations to students.

In particular, it was found that low pretesters benefit from illustrations, which is consis-

tent with the literature [57, 70]. For high pretesters, illustrations during tutoring is helpful

for some test questions and no different than graphs for others. However, including the

subjects who did not learn, high pretesters score higher on graph test questions when seeing

graphs, suggesting that maybe there are instances when graphs are more beneficial than

illustrations for high pretesters. Additionally, learning for high pretesters appears to be

hindered by illustrations, which is not explained by existing cognitive science or physics

education literature.

It was also found that, in contrast to the spatial reasoning literature reviewed earlier, it

may be better to show low spatial reasoning students graphs and high spatial reasoning stu-

dents illustrations. This may be due to low spatial reasoning subjects being more challenged

by graphs, which require a greater amount of spatial reasoning processing [70], challenging

them to try harder and therefore learn more. However, for graph test questions, low spatial

reasoning subjects performed better when being tutored with illustrations. This may be due

to graphs being difficult for students [19, 84].
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5.0 MODELING STUDENT BENEFITS FROM ILLUSTRATIONS AND

GRAPHS

The previous chapter found differences between students regarding illustrations and graphs.

An overarching hypothesis this dissertation is exploring is whether adapting to these differ-

ences improves learning. Adaptation requires a student model that can predict what kind

of visual representation should be shown at various times during a tutoring session. This

chapter describes the development of such a model.

Intelligent tutoring systems have used student models to adapt to student knowledge or

skill [25, 27, 11, 113], affective states [6, 50, 52], and engagement or interactivity [17, 14].

These models have used such features as domain information [17, 114, 77], student skill

within the domain [25, 27, 77], student interaction with the tutoring system and contextual

information [14, 44, 51, 18, 87, 45, 51], demographic information [25, 27, 11, 77], and body

language and facial expressions [44, 115]. Adaptation can take the form of changes to the

presentation of information within a representational format (e.g. highly cohesive text or

low cohesion) [113], additional feedback to provide scaffolding [6, 50, 52, 14], or change in

pedagogical behavior (e.g. supplementary exercises to cover skipped work) [14, 25, 27]. Both

modeling the student and adapting to them have seen success in these other areas, but so

far no research has examined adapting visual representations to students.

This chapter explores building models to predict when illustrations and graphs benefit

learning. I first describe an algorithm that constructs such models; it uses stepwise linear

regression on syntactically-constrained equations, augmented to remove unwanted terms.

I then examine the models learned and find that models that include pretest score when

describing tutoring contexts perform better. The best model comes from including both

pretest score and gender.

41



5.1 FEATURES

The data for this model learning comes from the study described in the previous chapter.

Data from all 29 subject are included, giving 2043 data points at the utterance level, one for

each interaction with the coach or reflection tutor. From that data, I extracted the features

below. Similar features have been used in previous work on tutoring systems [42, 11, 25]

and have been found useful by cognitive science research on visual representations [84, 70].

From this literature, I selected the features I could extract from the data collected during

the study.

Median splits were performed for ease of interpreting results. Table 5.1 shows value

ranges for the features that were median split.

Table 5.1: Low, median, and high values for all features that were median split.

Feature Low Median High

SpatialReason 1.25 11.50 19.00

PreScore 12.9% 58.1% 100%

WalkThruPctCorrect 0.0% 83% 100%

RQPctCorrect 0.0% 94% 100%

ProblemPctCorrect 0.0% 93% 100%

SessionPctCorrect 0.0% 90% 100%

PctThruProblem 25% 63% 100%

PctThruSession 12% 62% 100%

ItemDifficulty 0.0% 0.0% 100%

Gender – Female or Male

HSPhysics – whether the subject had physics in high school or not (yes, no)

SpatialReason – score on the Paper Folding Test (high, low)1

Condition – experimental condition (graph, illustration)

1Median splits were performed for ease of interpreting results.
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PreScore – score on pretest (high, low)

WalkThruPctCorrect – percent of correct answers in the current problem’s walk through

dialogue with the physics coach (high, low)

RQPctCorrect – percent of correct answers in the current problem’s prior reflection dia-

logue (high, low)

ProblemPctCorrect – percent of correct answers in current problem (both walk through

dialogue and prior reflection dialogue(s)) (high, low)

SessionPctCorrect – percent of correct answers in tutoring session (high, low)

PctThruProblem – for each problem, how far through the dialogues (measured by number

of walk through and reflection) the subject has gone (early, late)

PctThruSession – how far through tutoring the subject is (measured by number of dia-

logues completed) (early, late)

TimeThruProblem – for each problem, how long (in seconds) the subject has spent with

the current problem (both the walk through and reflections) (early, late)

TimeThruSession – how long (in seconds) the subject has spent with the tutor (early,

late)

DialogStage – whether the subject is engaging in ProblemSolving or PostProblemDis-

cussion

ResponseTimePrevWords – how long (in seconds) the subject took to respond, divided

by the number of words to read in the prompt (high, low)

KCusage – whether Knowledge Components (KCs) must be stated or applied

ItemDifficulty – whether the question is easy or hard, as determined by percent correct

on a small pilot study using these dialogues

5.2 MODELING

I am interested in building an adaptive policy to determine a scheduling of illustrations and

graphs that maximizes learning. Standard supervised machine learning technique require a

gold standard that indicates the correct answer. In this case, the gold standard would need to
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indicate whether an illustration or a graph was the better representation to show the learner

at a particular point in tutoring. The data collected from the previous chapter contains the

representation a subject saw, but not whether that was the better representation of the two

to show them. Since it is not clear how to determine which representation is the better one

for a subject at a particular point in tutoring, I cannot use supervised learning to create the

adaptive policy.

Instead, I use the subject’s learning gain as an indicator of how beneficial the representa-

tion they saw was to learning. To accomplish this, I use an augmented form of stepwise linear

regression that seeks to explain the variance in post-test score using interactions between

the features above. Standard stepwise regression produces rules that may be contradictory

or non-adaptive, which are not helpful in creating an adaptive policy. I augment stepwise

regression to address these additional constraints. I also constrain the syntax of the models

to better describe the tutoring context. Thus, I am trying to optimize r2, subject to cer-

tain constraints. This is similar to other regression-based modeling approaches, which place

syntactic constraints on the equation [22, 86, 24].

To use the features in stepwise regression, each feature is converted into two factors,

one for each value the feature can have, such as GenderIsFemale and GenderIsMale, for the

Gender feature. Each factor has a value of either 1 or 0, depending on whether the feature has

that particular value for that data point. For example, for a female subject, GenderIsFemale

will be 1 and GenderIsMale will be 0. From these factors, I develop terms by multiplying

two or more factors together, such as ConditionIsGraph*GenderIsFemale. Terms are then

included in models of the form postscore =
∑

terms + prescore. Both postscore (post-test

score) and prescore (pretest score) are continuous variables. Prescore is included because

pretest scores are often correlated with post-test scores; in this corpus it is a trend (r = 0.318,

p = 0.087).

I use syntactic constraints to identify when illustrations or graphs are better. Others

have also constrained the equation syntax when developing regression equations for student

modeling [22, 86, 24]. Each term in the model will contain one Condition factor. This is done

so that the final model learned can indicate situations when a graphic helped or hindered

learning. Additional factors in the term describe the context. For example, if the final model
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learned is:

postscore = + 0.123 ∗ ConditionIsGraph ∗GenderIsFemale

− 0.456 ∗ ConditionIsGraph ∗ PctThruSessionIsLate

+ prescore

then from this one can deduce the adaptive policy below. A negative sign on the coefficient

suggests that it is detrimental to learning to show graphs when it is later in tutoring. Since

the only other option is to show illustrations, one can conclude that when it is later in

tutoring, show illustrations.

1. When the gender is female, show graphs.

2. When it is later in tutoring, do not show graphs.

One question is what to do for females later in tutoring. In this work, I considered the

ordering of the rules and applied the first rule that could be applied. So in the case of females

later in tutoring, the “gender is female” rule would be applied since it is ranked higher.

However, an alternative would be to add an interaction term to the model and relearn the

model. In this case, that would mean adding the terms: ConditionIsGraph*GenderIsFemale*

PctThruSessionIsLate and ConditionIsIllus*GenderIsFemale*PctThruSessionIsLate. This is

one avenue for future work on improving this modeling algorithm.

Because of the simplicity of the example model, it fails to state what to do for males early

in tutoring. Learned models were large enough to provide rules for all tutoring situations

encountered. Had this not, a simpler model could have been consulted. In the example above,

a simpler model could have been one that just used ConditionIsGraph and ConditionIsIllus

as terms.

5.2.1 Learning Models

Learning an adaptive policy begins with backward stepwise linear regression. The model

learned contains a subset of the terms from the original equation; these terms explain the
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variance in post-test score. If one were to extract rules from the model to form the policy, the

policy may have contradictory rules. For example, consider the following learned equation:

postscore = + 0.123 ∗ ConditionIsGraph ∗GenderIsFemale (5.1)

− 0.456 ∗ ConditionIsGraph ∗ PctThruSessionIsLate (5.2)

+ 0.789 ∗ ConditionIsIllus ∗GenderIsFemale (5.3)

+ 0.123 ∗ ConditionIsGraph ∗ PctThruSessionIsEarly (5.4)

+ 0.111 ∗ prescore (5.5)

In this example, the first and third terms contradict each other. The first says to show

graphs when the subject is female, while the third says to show illustrations. To address

this contradiction, one can remove the term with the lower absolute value of the coefficient2

(avc). In this case, remove term 1.

While there are no more contradictions in the equation, I am interested in an adaptive

policy and terms 2 and 4 are not adaptive. Together, they say to show graphs regardless

of how far along in the tutoring the subject is. As with the contradictory term pair above,

remove the term with the lower avc; in this case term 4, leaving the equation:

postscore =− 0.456 ∗ ConditionIsGraph ∗ PctThruSessionIsLate

+ 0.789 ∗ ConditionIsIllus ∗GenderIsFemale

+ 0.111 ∗ prescore

The final step in learning the equation is to run multiple linear regression to learn the

final coefficients of the equation. This step is performed to determine whether any of the

coefficient signs change, which could change the conclusions of the policy. In the running

example, the model could be:

postscore = + 0.012 ∗ ConditionIsGraph ∗ PctThruSessionIsLate

+ 0.678 ∗ ConditionIsIllus ∗GenderIsFemale

+ 0.222 ∗ prescore

2I also explored removing both terms, but found that the final models did not perform as well.
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To construct a policy from this model, rank the terms according to their avcs and convert

them to rules. For example, using the equation above:

1. For female subjects, show illustrations

2. When the subject is later in tutoring, show graphs

The policy can then be applied at every decision point by starting at the top of the list and

applying the first that applies. To summarize, the algorithm used to learn the model is:

1. Run stepwise linear regression on the data subject to syntactic constraints

2. Identify problematic term pairs. Problematic rules can be identified by:

Contradictory pair – Two terms concluding opposite conditions and the remaining

factors are identical

Non-adaptive pair – Two terms concluding the same condition, the other factors are

the same, except one is opposite between the two terms

3. For each problematic term pair, remove the one with the lower avc

4. Using the remaining terms in the model, run multiple linear regression to learn the final

model

5. Convert the terms into rules, ranking them from highest to lowest avc

5.2.2 Statistical Tests

In analysis of the results below, I make use of various statistical techniques. In this section,

I introduce them.

Cross-validation is a technique for validating a prediction model. Models are often trained

on a data set in which both the model inputs and model output are already known. Often,

one wants to know how a model will perform on unseen data, to limit overfitting the model

to the training data set and to learn how well the model will work on a real-world problem.

Cross-validation is a technique for using the training set to both train the model and evaluate

it on unseen data. In k-fold cross-validation, the training data is partitioned into k distinct

subsets, called folds. Then, the model is trained on k − 1 folds and the remaining fold is

used for evaluating the model. This training and evaluating is repeated k times, each time

with a different fold held out for evaluation. When evaluation is complete for an iteration,

47



the evaluation metric is recorded and ultimately combined with the evaluation metrics from

the other iterations. In this work, k is taken to be 10.

The evaluation metric used to compare the models is the adjusted r2 value. As discussed

in 4.1.4, the r2 value is a measure of how well a statistical model fits the data (higher values

are better). Models with more independent variables may have a higher r2 but at the cost of

increased complexity. The adjusted r2 considers the number of independent variables when

determining the value and will increase if the additional variables improve the predictive

ability of the model. Since I compare the models with varying numbers of terms, I compare

them on the adjusted r2 instead of r2.

In comparing models using k-fold cross-validation, one has k values for each model. To

compare the models, I compute the 95% confidence interval for the true mean of those k

values for each model. Confidence intervals for the mean are a range in which one can be

n% confident that the true mean lies within. The confidence interval for one model can be

compared to the confidence interval for another model. If there is an overlap, then it can

be said that the performance of one model and the performance of the other model may not

be different. Thus, confidence intervals can be a method of comparing many models to each

other.

5.3 RESULTS

The models are compared to a baseline, which always predicts showing the same kind of

graphic3. Since showing illustrations produced slightly better learning gains than graphs, I

use as the baseline a model that always shows illustrations. The models are each evaluated

using ten-fold cross validation and are compared according to the adjusted r2 value. The

performance of the baseline can be seen in the first row of Table 5.2. While the performance

of the models are calculated using 10-fold cross-validation, the model rules presented come

from the model learned on all of the data.

3Most of these results have been published in [76]. The 3 Factor results that do not include PreScore are
unpublished, as is the work on identifying a non-simple adaptive model (Section 5.3.3).
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Table 5.2: Models learned are compared according to adjusted r2 values and their 95% confidence
intervals. Italicized rows indicate results significantly better than baseline (p < 0.05). Bold indicates
the best result.

Model Adj. r2 95% CI

Baseline (Illustration) 0.1127 (0.0896, 0.1358)

1 Factor 0.0955 (0.0737, 0.1172)

2 Factors

Gender 0.1788 (0.1428, 0.2148)
SpatialReason 0.1488 (0.1149, 0.1826)
PreScore 0.3499 (0.3266, 0.3732)
PctThruProblem 0.1007 (0.0635, 0.1378)
PctThruSession 0.1180 (0.0851, 0.1509)

3 Factors

PreScore & Gender 0.4571 (0.4220, 0.4922)
PreScore & SpatialReason 0.2817 (0.2367, 0.3267)
PreScore & PctThruProblem 0.3418 (0.3183, 0.3653)
PreScore & PctThruSession 0.3087 (0.2782, 0.3392)
Gender & SpatialReason 0.3500 (0.3193, 0.3807)
Gender & PctThruProblem 0.2093 (0.1672, 0.2515)
Gender & PctThruSession 0.1923 (0.1451, 0.2396)
SpatialReason & PctThruProblem 0.1510 (0.1051, 0.1969)
SpatialReason & PctThruSession 0.1688 (0.1444, 0.1932)
PctThruProblem & PctThruSession 0.1068 (0.0677, 0.1459)

The second row in Table 5.2, the “1 Factor” model, presents the model learned when

there is only one factor describing the tutoring context, and the interaction feature Condition.

That is, the initial equation was of the form shown below, where F1 is the set of all factors

except those involving Condition. This produces a model similar to those seen in the previous

section.

postscore = prescore

+ (ConditionIsGraph + ConditionIsIllus) ∗
∑

factori∈F1

factori

The adjusted r2 value is 0.0955 for this model, which is not significantly different than

the baseline. One possible reason for the poor performance of this model is that it can only

identify simple tutoring contexts. Since all terms in this model consist of one non-Condition
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factor, the model can only identify tutoring contexts by one feature (e.g. GenderIsFemale

or PctThruSessionIsLate). One feature may not be enough to adequately describe tutoring

contexts when illustrations or graphs are more beneficial than the other; the descriptions

may be too coarse-grained.

5.3.1 Two-Factor Models

To create finer-grained tutoring context descriptions, another factor feature is added to each

factor to describe the tutoring context. Five features were selected based on prior work

suggesting a change in these features can cause large changes in models [75, 70]: Gender,

SpatialReason, PreScore, PctThruProblem, and PctThruSession. An example of one such

initial equation is shown below (for Gender), where F2,Gender is the set of all factors except

Condition or Gender factors. To illustrate what the model looks like, one term from the

model is ConditionIsGraph*GenderIsFemale*PctThruSessionIsLater.

postscore = prescore + [(GenderIsFemale + GenderIsMale)

∗ (ConditionIsGraph + ConditionIsIllus)

∗
∑

factori∈F2,Gender

factori]

The results for these models can be found in the “2 Factor” models in Table 5.2. Of

the five models, two perform significantly better than baseline: Gender and PreScore, with

PreScore significantly better than other models seen so far. The rules for the model are in

Table 5.3.

Table 5.3: Rules for the best two-factor model: PreScore.

High Pretesters (n = 11) Low Pretesters (n = 18)
1. If WalkThruPctCorrect=Low, show Graphs 1. If SessionPctCorrect=High,
2. If RQPctCorrect=Low, show Graphs show Illus
3. If SessionPctCorrect=High, show Illus 2. If ProblemPctCorrect=Low,
4. If PctThruSession=Late, show Illus show Illus
5. If ProblemPctCorrect=Low, show Graphs 3. If PctThruSession=Late, show Illus
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From the model, one can see that low pretesters should be shown illustrations. This is

consistent with cognitive science research, which suggests that novices benefit from illustra-

tions because they are more concrete and relatable than graphs [70]. It is also consistent

with the results from Chapter 4, which found low pretesters benefit from illustrations.

High pretesters, however, benefit when the representations change. This sheds some

light on prior work on this corpus, which found no significant interaction effect between

Condition and PreScore for high pretesters. While the prior finding suggested the graphic

did not matter for high pretesters, the model above suggests tutoring contexts when the

graphic does matter. If there are many correct responses in the tutoring session or if it is

later in tutoring, illustrations are better. If there are few correct responses during the walk

through dialogue, reflection dialogue, or the problem, show graphs.

5.3.2 Three-Factor Models

Given the success of finer-grained tutoring context descriptions by adding a second tutoring

context description factor, I now explore adding a third. The third factors were selected

from the same set of five as in the previous section.

The results for these models can be found in the “3 Factors” models in Table 5.2. The

models perform significantly better than baseline, with PreScore*Gender performing signif-

icantly better than the rest. Table 5.4 has the rules for the model.

Within this model, one can see difference between Genders. For example, low pretesting

females may benefit from seeing graphs when SessionPctCorrect is high, whereas low pretest-

ing males may benefit from illustrations when SessionPctCorrect is high. Differences also

exist between PreScore. For example, female high pretesters may benefit from graphs when

PctThruSession is early whereas female low pretesters may benefit from illustrations. That

these differences exist in the model suggest that looking at interactions with both features

improves tutoring context description.

Comparing this model to 2-factor PreScore model, one can see that there are situations

when low pretesters may benefit from graphs. Low pretesting females may benefit from

graphs when SessionPctCorrect is high. Low pretesting males may benefit from graphs
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Table 5.4: Rules for the best three-factor model: PreScore*Gender.

Female High Pretesters (n = 8) Female Low Pretesters (n = 9)

1. If WalkThruPctCorrect=Low, 1. If SessionPctCorrect=High,
show Graphs show Graphs

2. If RQPctCorrect=Low, show Graphs 2. If PctThruSession=Early, show Illus
3. If SessionPctCorrect=High, show Illus 3. If ProblemPctCorrect=High, show Illus
4. If ProblemPctCorrect=High, show Illus 4. If PctThruProblem=Early, show Illus
5. If PctThruProblem=Early, 5. If RQPctCorrect=Low, show Illus

show Graphs
6. If PctThruSession=Early, show Graphs

Male High Pretesters (n = 3) Male Low Pretesters (n = 9)

1. If RQPctCorrect=Low, show Illus 1. If RQPctCorrect=Low, show Illus
2. If SessionPctCorrect=High, show Illus 2. If WalkThruPctCorrect=Low, show Illus
3. If WalkThruPctCorrect=Low, 3. If SessionPctCorrect=High, show Illus

show Illus 4. If PctThruSession=Early, show Graphs
5. If PctThruProblem=Early, show Graphs
6. If ProblemPctCorrect=High, show Illus

earlier in the tutoring session or earlier in a new problem. From this, I conclude that

increasing the descriptiveness of each term in the model can yield improved performance.

Continuing to create finer-grained tutoring context descriptions might yield better models,

but the data set is too small to handle the increase in terms that would result.

5.3.3 Identifying Non-Simple Adaptive Model

Since I am interested in showing the effectiveness of adapting representational formats to

learners and tutoring contexts, I would like to have a model that is not simple with regard

to its adaptive rules. I am seeking a policy that predicts showing illustrations and graphs

approximately equally and includes a variety of tutoring contexts.

While parsimony is generally a desirous property of models [97], in the testing of overar-

ching hypothesis 3 of this dissertation (adapting the schedule of illustrations and graphs is

better than alternating between them), I prefer a model that has many adaptive rules over a

more parsimonious one. For example, a policy with the rules shown below does not capture

much variety during tutoring.
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1. If PctThruSession=Early, show illustrations

2. If PctThruSession=Late, show graphs

A policy with rules incorporating more features can capture more variety, such as the one

shown below.

1. If PctThruSession=Early, show illustrations

2. If Gender=Female, show graphs

3. If SessionPctCorrect=High, show illustrations

4. If PctThruSession=Late, show graphs

More rules does not necessarily indicate more variety. Some features capture similar

information. For example, SessionPctCorrect and ProblemPctCorrect measure correctness

over a series of dialogues. If one is high, then the other is likely to be high as well, as can

be seen for high pretesting females. Thus, the sub-policy for high pretesting females could

be simplified by merging the first two rules and the second two rules:

1. If few correct responses, show graphs

2. If many correct responses, show illustrations

3. If PctThruProblem=Early, show graphs

4. If PctThruSession=Early, show graphs

A policy that predicts one representation far more often than the other may result in

a fairly non-adaptive policy. In the extreme case, a model that includes many features,

but always predicts one representation is no better than a model that includes no features

and just predicts that representation. For example, the Female Low Pretester sub-policy in

Table 5.4 has five rules but since four of them predict the same representation, it can be

simplified to:

1. If SessionPctCorrect=High, show graphs

2. Otherwise: show illustrations

It is also possible to observe trends within a partition, such as the only time to show

males graphs is when they are starting the tutoring session or starting a new problem. Thus,

the males sub-policy can simplify to:
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1. If low pretester and either starting the session or starting a new problem, show graphs

2. Otherwise, show illustrations

Following the above rules simplifies the PreTest*Gender model to:

Female:

Low pretester:

1. If many correct answers during tutoring: show Graphs

2. Otherwise: show Illustrations

High pretester:

1. If many correct answers: show Illustrations

2. Otherwise: show Graphs

Male:

1. If low pretester and either starting the session or starting a new problem: show

Graphs

2. Otherwise: show Illustrations

The fifth-best performing model, PreScore*PctThruSession, (shown in Table 5.5) is the

best-performing model that has many adaptive rules. For high pretesters, half of the policy

rules require knowledge of progress through the tutoring session. For low pretesters all of

the rules require that information. For each of the sub-models, many rules are needed to

describe the model. Therefore, because of its relative complexity, this is the model used in

the next study. Applying the simplification steps outlined above yields:

High pretester:

1. If early in session and few correct answers: show Illustrations

2. If few correct answers: show Graphs

3. If many correct answers: show Illustrations

4. If later in tutoring and early in problem: show Graphs

Low pretester:

Early in session:

1. If few correct answers in problem: show Graphs
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Table 5.5: Rules for the fifth-best model: PreScore*PctThruSession.

High Pretesters Early in Session Low Pretesters Early in Session

1. If RQPctCorrect=Low, show Graph 1. If ProblemPctCorrect=Low, show Graph
2. If WalkThruPctCorrect=Low, 2. If SessionPctCorrect=Low, show Illus

show Graph 3. If ProblemPctCorrect=High, show Illus
3. If SessionPctCorrect=High, show Illus
4. If ProblemPctCorrect=Low, show Illus

High Pretesters Later in Session Low Pretesters Later in Session

1. If SessionPctCorrect=Low, show Graph 1. If RQPctCorrect=Low, show Illus
2. If ProblemPctCorrect=High, show Illus 2. If WalkThruPctCorrect=Low, show Illus
3. If WalkThruPctCorrect=Low, show Graph 3. If SessioinPctCorrect=Low, show Graph
4. If RQPctCorrect=Low, show Graph 4. If SessionPctCorrect=High, show Illus
5. If PctThruProblem=Early, show Graph 5. If ProblemPctCorrect=High, show Graph

2. If few correct answers in session: show Illustrations

3. If many correct answers in problem: show Illustrations

Later in session:

1. If few correct answers in dialogue: show Illustrations

2. If few correct answers in session: show Graphs

3. If many correct answers in session: show Illustrations

4. If many correct answers in problem: show Graphs

5.4 DISCUSSION

Prior work on this data found differences from the pooled data [75] by identifying situations

when one group of students may benefit from one visual representation over another. This

chapter identifies tutoring contexts when one representation might be better than the other

and certain partitionings of subjects and tutoring contexts that greatly improve the model’s

adjusted r2 value. In particular, partitioning along pretest score or gender produces signif-

icantly better models than no partitioning or partitioning along spatial reasoning ability or
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percentage through a problem or through the tutoring session. These findings are consis-

tent with the literature, which suggested that gender [84] and domain knowledge [79, 70]

are important factors when deciding on a representation to show. That spatial reasoning

ability was not an important feature to consider is counter to the cognitive science literature

[110, 70].

Examining the rules learned in the best-performing model, as measured by adjusted

r2 value, find instances that appear to agree with the cognitive science literature. Some

research suggests beginners should start with illustrations since they are relatable, whereas

those with some knowledge might benefit more from graphs [70, 57, 104]. We see this with

females in the PreScore*Gender model. Low pretesting females should see illustrations when

starting the tutoring session or starting a new problem, unless they have been doing well in

tutoring already in which case they should see graphs. High pretesting females should start

off with graphs. However, we also find cases that disagree with the literature, such as low

pretesting males starting with graphs. For low pretesters, there appears to be an interaction

with gender regarding which representation to start with, as suggested by Meltzer’s research

which found that females perform worse than males when given abstract representations

such as graphs [84].

This chapter also presented a technique for mining data to create an adaptive policy

when a gold standard is not available. It starts with a standard method (stepwise linear

regression) and augments it to remove terms unwanted for developing adaptive systems.

The method seeks to identify tutoring contexts when one graphic is better than the other.

Increasing tutoring context descriptions, by adding more factors to each term, improve model

performance. Many models, particularly those involving PreScore, significantly outperform

the baseline.

Finally, while some models performed significantly better than baseline, they did not

learn complex adaptive rules. The fifth best-performing model had the most adaptive policy.

This model, PreScore*PctThruSession, is used in the next chapter. In the next chapter, I

perform an extrinsic evaluation of the PreScore*PctThruSession by incorporating it into the

tutoring system and evaluating its effectiveness at selecting representations that aid learning

compared to both alternating visual representations and using only one throughout tutoring.
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6.0 EVALUATION OF SCHEDULING REPRESENTATIONS

In the previous chapter, I found tutoring contexts when one representation should be more

beneficial for learning than another. From these tutoring contexts, an adaptive policy was

developed. In this chapter, I evaluate the PreScore*PctThruSession model by performing a

user study. This study will test whether adapting the scheduling of graphs and illustrations

to students and tutoring contexts improves learning over an alternating scheduling of graphs

and illustrations.

The study is also designed to answer another question within the ITS community. With

this study, I wish to show whether multiple visual representations is better than a single visual

representation in a natural language-based physics tutoring system. Current research sug-

gests that switching representations regularly improves learning over switching infrequently

[91] or not at all [92], but this is within the fractions domain, does not make a distinction be-

tween visual representations (e.g. illustrations versus graphs), and is not within the context

of a natural language-based tutoring system.

6.1 METHODS

6.1.1 Participants

Eighty-seven subjects without college physics were recruited and randomly assigned to one

of the conditions. They received $8 per hour plus $5 for completing the study and having a

higher post-test score than pretest score.
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6.1.2 Material

Chapter 3 discusses most of the material used in this study. Only the material specific to

this study is discussed here.

6.1.2.1 Knowledge Components The knowledge components (KCs) used in this study

were developed for an earlier study on post-problem tutorial discussions with a human tutor

[66], which the Rimac project then extended and used to tag their dialogues [65]. Since the

study described in this chapter focuses on a smaller section of physics, the KCs used in this

study are a subset of those used in the previous studies. The numbering of the KCs has

been kept the same as with those previous studies, thus “missing” KCs are those not used

in this study. What follows are the six KCs present in this study, along with a description

and example of each. For the dialogue examples, the subject’s response is shown with the

correctness tag in italics. Examples of the KCs in the tests can be found in Appendix G.

Definition of Acceleration (KC15) – Acceleration is a change in velocity over a certain

time interval. It is a vector, and hence has magnitude and direction and can be defined

in terms of acceleration x and acceleration y (for 2-D motion) and its S.I. unit is m/s2.

An example from the kangaroo problem’s post-problem discussion:

System: What physical quantity represents a change in velocity over time?

Subject: acceleration (correct)

Direction of Acceleration and Velocity (KC23) – Acceleration points in the same di-

rection as the change in velocity. If an object is speeding up, acceleration points in

the same direction as the velocity; if it is slowing down, it is decelerating and it points

opposite the velocity. An example from the kangaroo problem’s post-problem discussion:

System: So we’ve established that the velocity is pointing up, but that it’s getting

smaller. Let’s now look at the direction of acceleration. What direction is the

acceleration of the kangaroo during that time?

Subject: Down (correct)

Gravitational Acceleration (KC24) – The acceleration due to gravity is a downwards-

pointing vector with a practically constant magnitude (9.8 m/s) (near the earths surface)
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and therefore only the y-component of acceleration is affected. An example from the

kangaroo problem’s post-problem discussion:

System: What is the acceleration due to?

Subject: gravity (correct)

Horizontal Velocity is Constant in Projectile Motion (KC25) – In ideal projectile

motion, the horizontal components of the projectile’s velocity are unaffected by gravity,

and remain constant. An example from the arrow problem’s post-problem discussion:

System: As we discussed earlier, the arrow experienced an acceleration in the y-

direction; it was due to gravity. Did the arrow experience gravity in the x-direction?

Subject: No (correct)

Definition of Velocity (KC28) – Velocity is displacement (change in position) per time.

It is a vector with dimensions of length/time and SI units of meters/second (m/s). An

example from the kangaroo problem’s post-problem discussion:

System: At what time during the jump (from the moment it leaves the ground to the

moment it reaches the top of the jump) is the kangaroo moving fastest?

Subject: at T0 (when the kangaroo takes off) (correct)

Independence of X and Y (KC32) – While motion in x and y is independent, that is we

can think of it as two 1-D parts, they are each a function of time. An example from the

stone problem’s post-problem discussion:

System: If the stone is thrown with a larger horizontal initial velocity, what happens to

the time spent in the air?

Subject: it stays in the air for the same amount of time (correct)

6.1.2.2 Pretest and Post-test There were two isomorphic tests, one randomly selected

for the pretest and the other then used for the post-test. There were 48 multiple-choice

questions on each test. The tests are adapted from two earlier studies, both on post-problem

discussions with tutors [66, 65]. Questions were converted to multiple choice and some

questions were modified to include graphics. To measure performance on both illustration

questions and graph questions, isomorphic test questions were written, one set of questions

relating to illustrations and the other set relating to graphs.
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The pre-existing test questions were already tagged with KCs from the prior study that

the questions came from. Some of the new test questions were isomorphs of existing test

questions and so were given the same tags as the original questions. Other new questions

were testing how well the subject could interpret graphs and illustrations and thus had no

applicable knowledge component. Both tests can be found in Appendix G.

6.1.2.3 Tutoring While the pilot study had two tutoring problems, one involving verti-

cal motion and one involving projectile motion, this study had four problems in total. The

first two were one-dimensional motion problems. The first problem was a horizontal motion

problem involving a supertanker slowing to a stop. The second was a vertical motion prob-

lem involving a kangaroo jumping up. This kangaroo problem was a modified version of the

kangaroo problem from the first study. The reflection dialogues, illustrations, and graphs

were updated based on feedback from the first study.

The last two problems were projectile motion problems. The first involved an arrow

being shot at a target and the second involved a stone being thrown off of a building. In

both cases, the projectile was launched horizontally. The arrow problem was a modified

version of the arrow problem from the first study. The reflection dialogues, illustrations, and

graphs were updated based on feedback from the first study.

The arrow problem had three post-problem reflection dialogues; the other three had two.

During tutoring, the representational form could change at the start of each problem and at

the start of each reflection dialogue, giving a total of 13 points during tutoring during which

a decision needed to be made on which representation to show. The problems and reflection

questions can be seen in Appendix H.

The problems, graphics, and reflection questions were approved by the high school physics

teachers involved in the Rimac project. The physics problems came from the standard set

of problems provided by the Andes physics tutoring system [109]. The reflection dialogues

for the supertanker and stone problems were adapted from the Rimac project’s reflection

dialogues [65], modified to incorporate graphics into the discussion. The graphics were

created specifically for this study and were approved by the physics teachers as being relevant

for the problems and concepts being discussed, as being similar to illustrations and graphs
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used in standard physics education material, and that both the illustrations and graphs

portray similar information.

6.1.3 Procedure

The flow of the study is described in Chapter 3. To determine whether adapting the schedul-

ing improves learning, the experiment compared three conditions (see below). Before tutor-

ing, subjects were assigned to a condition. For the alternating and constant conditions,

subjects in these conditions were then randomly assigned to one of the sub-conditions.

adaptive – the scheduling of graphs and illustrations adapts to the student and tutoring

contexts using the PreScore*PctThruSession policy learned in Chapter 5

alternating – the scheduling of graphs and illustrations alternate: at each point during

tutoring, when a decision of which representation to show needs to be made, the repre-

sentation switches; there are two sub-conditions based on which representation is shown

first:

alternating-graph – the first representations shown are graphs

alternating-illus – the first representations shown are illustrations

constant – the representation shown remains constant throughout tutoring; there are two

sub-conditions based on which representation is shown:

constant-graph – the representations shown are graphs

constant-illus – the representations shown are illustrations

6.1.4 Statistical Tests

In analysis of the results below, I make use of various statistical tests. In Section 4.1.4 I

introduced independent-samples t-test and Pearson correlation, in this section I introduce

the new tests.

The Analysis of Variance (ANOVA) is used to analyze the difference between group

means. One or more categorical independent variables are used to determine the groups.

If there is more than one independent variable, ANOVA can form groups using each inde-

pendently, then also form groups considering values from both variables. By forming groups
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Table 6.1: Distribution of students across conditions and sub-conditions.

Condition Sub-condition N

constant 30
graph 15
illus 15

alternating 29
graph 14
illus 15

adaptive 27

using multiple variables, one can identify interactions between independent variables. If an

interaction is found, a post-hoc test can be used to identify which groups are different from

other groups. In this work, I use Tukey’s Honest Significant Difference (Tukey HSD) test.

6.2 RESULTS

Eighty-seven subjects without college physics were recruited and randomly assigned to one

of the conditions. All 87 subjects showed learning gains. For one subject, in the alternating

condition (alternating-graph sub-condition), I lost the logs for one problem. Therefore, in

the analysis below, I will be using data from the remaining 86 subjects. Table 6.1 shows the

distribution of students.

To verify that the conditions are balanced for background physics knowledge, I compare

the pretest scores across the conditions with an ANOVA. With a p-value of 0.493, I confirm

that the conditions are balanced for background physics knowledge. I also check that condi-

tions are balanced for gender using the Pearson Chi-Squared test and age using an ANOVA

and find that there are no significant differences across conditions (p = 0.408, p = 0.409

respectively). To check that the two tests were isomorphic, I ran an independent-samples

t-test on the pretest scores and found no significant difference (p = 0.610).

Overall, subjects showed significant learning gains (p = 0.000) from pretest to post-test,
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scoring 29.0 out of 48 on the pretest and 37.7 out of 48 on the post-test. Within each

condition, subjects showed significant learning gains. For the constant condition, subjects

scored 29.7 on the pretest and 37.0 on the post-test (p = 0.000). For the alternating condition,

subjects scored 30.3 on the pretest and 39.4 on the post-test (p = 0.000). For the adaptive

condition, subjects scored 28.7 on the pretest and 36.6 on the post-test (p = 0.000).

In the following sections, “Problem-Solving Graphics” will be abbreviated “PS” and

“Post-Problem Discussion” will be abbreviated “PPD”.

6.2.1 Single Representation versus Multiple Representations

I first test the hypothesis that there is an advantage to showing multiple visual represen-

tations over showing a single visual representation in a natural language-based conceptual

physics tutoring system. This is done by comparing two groups. The single representation

group consists of the constant condition. The multiple representation group consists of the

alternating and adaptive conditions. In Section 6.2.1.1, I examine differences in learning

gains and satisfaction between the single representation group and the multiple represen-

tation group. I then examine interaction effects with measures of incoming knowledge and

gender in Section 6.2.2.3. Section 6.2.1.3 investigates whether one group of students learned

faster than another by examining learning curves.

6.2.1.1 Learning Gains and Satisfaction Table 6.2 compares learning gains and sat-

isfaction across the two groups using independent samples t-test. Here I use raw learning

gains, although similar results were found for normalized learning gains and post-test score

controlled for pretest. For learning gains, we see that there is one significant difference, for

KC32. Here, subjects seeing only one representation perform significantly better on KC32

than those seeing multiple representations. However, it is unclear whether this significant

difference is from the number of representations seen or from the kind of graphic seen. We

also see significant differences for satisfaction. For the three satisfaction measures involving

graphics, we see that subjects seeing multiple representations preferred the graphics more

than those who saw only one representation. While it may seem that this suggests subjects
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prefer seeing multiple representations over a single representation, it is not clear whether

multiple representations are preferred over only illustrations or only graphs.

To investigate, I use an ANOVA to compare constant-graph, constant-illus, and multiple

representations; the results can be found in Table 6.3. We see that there are significant

differences between the three representations for each significant measure of learning or

satisfaction. Post-hoc comparisons using Tukey HSD can be found in Table 6.4. We see

that there are significant differences between constant-graph and multiple representations

for the satisfaction measures, with subjects preferring the graphics more when they see

multiple representations. Comparing constant-illus and multiple representations, we see

that subjects perform significantly better on KC32 when seeing only illustrations than when

seeing multiple representations. Finally, comparing constant-graph to constant-illus, we see

that subjects prefer the illustrations over graphs for both problem solving and in general.

To conclude, while multiple representations may be better than graphs, it appears that

illustrations are best overall, performing either better than or no different than graphs and

multiple representations.

6.2.1.2 Interaction Effects The previous section suggests that learners should only see

illustrations; showing multiple representations is either not significantly different or in some

cases significantly worse than just showing illustrations. This result is consistent with some

literature suggesting that illustrations are more beneficial for novices [81, 83, 57]. Since

none of the subjects in this study have had college physics, they can be considered novices.

However, since the best representation or scheduling can depend on a person’s gender [84]

and knowledge [70, 79], I suspect that there might be interaction effects between the number

of representations seen and certain groupings of students.

Since the best representation may depend on knowledge or gender, I now investigate

interaction effects between the number of representations seen and gender and knowledge.

Incoming knowledge can be determined from the subject’s score on the pretest, from the

background survey question asking whether they had had high school physics, and from

the background survey question asking whether they have had Calculus 1. For pretest

score, a median split (median: 29.5/48) was performed to divide students into high and
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Table 6.2: Comparing single representation to multiple representations across learning gains and
satisfaction using independent samples t-test. Learning gains range from 0 to the number of
questions. Satisfactions range from 1 to 5. For all tests, the degrees of freedom are 84.

Measure Measure N Single Multiple p-value power
Type Representation Representations

(N = 30) (N = 56)

L
ea

rn
in

g
G

ai
n

Overall 48 9.07 8.54 0.6759 0.0699
KC15 12 2.80 2.93 0.8719 0.0529
KC23 12 0.40 0.48 0.5650 0.0881
KC24 4 0.43 0.41 0.8939 0.0520
KC25 2 0.50 0.55 0.6397 0.0751
KC28 13 2.03 1.98 0.9230 0.0511
KC32 3 0.73 0.46 0.0281 0.5982

S
at

is
fa

ct
io

n

PS Graphics 4 4.17 4.50 0.0240 0.6224
PPD 8 3.87 3.83 0.8272 0.0554
PPD Graphics 6 4.07 4.47 0.0063 0.7917
Overall System 5 3.67 3.76 0.6578 0.0724
Graphics Satisfaction 10 4.12 4.48 0.0054 0.8060
Overall Satisfaction 23 3.94 4.14 0.1285 0.3294

Table 6.3: Comparing constant-graph, constant-illus and multiple representations across the signif-
icant measures of learning and satisfaction. Learning gains range from 0 to the number of questions.
Satisfactions range from 1 to 5.

Measure N Constant- Constant- Multiple F2,84 p-value power
graph illus Repr.

(n = 15) (n = 15) (n = 56)

KC32 3 0.6000 0.8667 0.4643 3.471 0.0356 0.424
PS Graphics 4 3.8167 4.5167 4.4955 7.931 0.0007 0.438
PPD Graphics 6 3.8556 4.2889 4.4673 5.930 0.0039 0.433
Graphics Satisfaction 10 3.8361 4.4028 4.4814 8.600 0.0004 0.443
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Table 6.4: Post-hoc comparisons between constant-graph, constant-illus and multiple representa-
tions across the significant measures of learning and satisfaction. For each measure, the top value
in the cell represents the difference of the average of the two groups. The middle value is the p-
value and the bottom value is the power. Learning gains range from 0 to the number of questions.
Satisfactions range from 1 to 5.

Measure Constant-graph Constant-illus Constant-graph
vs. Mult. Repr. vs. Mult. Repr. vs. Constant-illus

Degrees of Freedom 69 69 28

KC32 0.1357 0.4024 -0.2667
0.653 0.028 0.356
0.131 0.725 0.366

PS Graphics -0.6789 0.0211 -0.7000
0.001 0.992 0.006
0.957 0.053 0.639

PPD Graphics -0.6117 -0.1783 -0.4333
0.003 0.578 0.135
0.933 0.170 0.412

Graphics Satisfaction -0.6453 -0.7862 -0.5667
0.000 0.870 0.014
0.983 0.085 0.637

low pretesters. The subject’s gender was also recorded from the background survey. To

determine whether there is an interaction effect, I perform a two-factor ANOVA, with single

versus multiple representations as one factor and incoming knowledge or gender as the other.

Table 6.5 shows the interactions for pretest; none are significant.Table 6.6 shows the inter-

actions for high school physics, where we do find a significant interaction with Post-Problem

Discussion. We see that subjects who have had high school physics prefer the post-problem

discussions while seeing only a single representation over seeing multiple representations.

Those who have not had high school physics prefer post-problem discussions while seeing

multiple representations over single representations.

Table 6.7 shows the interaction results for those who have had (or were currently taking)

calculus 1. We see one significant interaction effect with KC25. Here, subjects who have

not had calculus yet perform much better when seeing multiple representations than when

seeing a single representation. Those with calculus 1 experience do better when seeing a
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Table 6.5: Examining interaction effects between a median split of pretest score and number of
representations seen. Learning gains range from 0 to the number of questions. Satisfactions range
from 1 to 5.

Measure Single Multiple
Type Measure N F2,84 p-val power High Low High Low

(n=12) (n=18) (n=30) (n=26)

L
ea

rn
in

g
G

a
in

Overall 48 0.224 0.7995 0.225 6.9167 10.5000 7.1667 10.1154
KC15 12 0.942 0.3940 0.322 3.1667 2.5556 2.5667 3.3462
KC23 12 0.711 0.4940 0.312 0.5000 0.3333 0.4667 0.5000
KC24 4 0.023 0.9774 0.058 0.1667 0.6111 0.2000 0.6538
KC25 2 1.189 0.3095 0.327 0.2500 0.6667 0.4667 0.6538
KC28 13 0.435 0.6487 0.283 1.3333 2.5000 1.6667 2.3462
KC32 3 0.697 0.5008 0.311 0.7500 0.7222 0.4000 0.5385

S
at

is
fa

ct
io

n

PS Graphics 4 1.049 0.3550 0.325 4.0417 4.2500 4.5250 4.4615
PPD 8 3.103 0.0501 0.383 3.6354 4.0208 3.9417 3.7067
PPD Graphics 6 2.816 0.0655 0.382 3.8333 4.2315 4.5278 4.3974
Overall System 5 0.511 0.6020 0.294 3.6000 3.7111 3.8050 3.7000
Graphics Satis. 10 2.155 0.1223 0.332 3.9375 4.2407 4.5264 4.4295
Overall Satis. 23 2.219 0.1150 0.332 3.7776 4.0534 4.1999 4.0664

Table 6.6: Examining interaction effects between high school physics experience and number of
representations seen. Learning gains range from 0 to the number of questions. Satisfactions range
from 1 to 5.

Measure Single Multiple
Type Measure N F2,84 p-val power Yes No Yes No

(n=17) (n=13) (n=41) (n=15)

L
ea

rn
in

g
G

ai
n

Overall 48 0.937 0.3960 0.322 8.4706 9.8462 8.7805 7.8667
KC15 12 0.177 0.8380 0.202 2.6471 3.0000 2.9268 2.9333
KC23 12 0.410 0.6651 0.278 0.2353 0.6154 0.4146 0.6667
KC24 4 0.561 0.5730 0.300 0.4706 0.3846 0.4878 0.2000
KC25 2 1.037 0.3590 0.324 0.5294 0.4615 0.5122 0.6667
KC28 13 1.188 0.3100 0.327 1.7647 2.3846 2.1220 1.6000
KC32 3 0.460 0.6327 0.287 0.7059 0.7692 0.4146 0.6000

S
a
ti

sf
a
ct

io
n

PS Graphics 4 1.030 0.3616 0.324 4.2353 4.0769 4.4634 4.5833
PPD 8 3.240 0.0441 0.433 4.0588 3.6154 3.7744 3.9917
PPD Graphics 6 2.215 0.1155 0.333 4.1373 3.9872 4.3821 4.7000
Overall System 5 1.689 0.1909 0.331 3.9882 3.2462 3.8085 3.6133
Graphics Satis. 10 1.840 0.1651 0.332 4.1863 4.0321 4.4228 4.6417
Overall Satis. 23 2.773 0.0682 0.383 4.1049 3.7314 4.1071 4.2221
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Table 6.7: Examining interaction effects between Calculus experience and number of representa-
tions seen. Learning gains range from 0 to the number of questions. Satisfactions range from 1 to
5.

Measure Single Multiple
Type Measure N F2,84 p-val power Yes No Yes No

(n=11) (n=19) (n=26) (n=30)

L
ea

rn
in

g
G

ai
n

Overall 48 0.624 0.5730 0.306 9.2632 8.7273 9.4667 7.4615
KC15 12 0.298 0.7430 0.253 2.7368 2.9091 3.1000 2.7308
KC23 12 0.052 0.9490 0.099 0.3684 0.4545 0.4333 0.5385
KC24 4 0.151 0.8600 0.187 0.3684 0.5455 0.3000 0.5385
KC25 2 4.216 0.0180 0.494 0.5789 0.3636 0.4000 0.7308
KC28 13 0.099 0.9060 0.148 2.1579 1.8182 2.2000 1.7308
KC32 3 0.014 0.9859 0.041 0.7368 0.7273 0.4667 0.4615

S
at

is
fa

ct
io

n

PS Graphics 4 0.753 0.4740 0.315 4.1053 4.2727 4.5167 4.4712
PPD 8 1.020 0.3650 0.324 3.7895 4.0000 3.8708 3.7885
PPD Graphics 6 1.584 0.2113 0.331 3.9386 4.3030 4.4667 4.4679
Overall System 5 2.732 0.0709 0.411 3.5053 3.9455 3.9000 3.5904
Graphics Satis. 10 1.322 0.2722 0.328 4.0219 4.2879 4.4917 4.4696
Overall Satis. 23 2.149 0.1230 0.333 3.8346 4.1303 4.1885 4.0795

single representation.

The interaction results for Gender can be found in Table 6.8. We again see a significant

interaction effect with KC25. Females perform better when seeing a single representation

over seeing multiple representations. Males appear to perform better seeing multiple repre-

sentations but since there are so few males in the single representation condition, this may

not be the case.

When examining interaction effects, we found instances where some students benefit from

multiple representations over a single representation. Subjects who have not had calculus

have greater learning gains on KC25 when seeing multiple representations over seeing only

one representation. The same may be true for males. Subjects who have not had high

school physics prefer the post-problem discussions when seeing multiple representations over

seeing a single representation. Thus, it appears that subjects who have not had calculus and

subjects who have not had physics both benefit from multiple representations. This is in

contrast to the findings in Section 5.3.1, where the model predicted showing low pretesters a
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Table 6.8: Examining interaction effects between gender and number of representations seen.
Learning gains range from 0 to the number of questions. Satisfactions range from 1 to 5.

Measure Single Multiple
Type Measure N F2,84 p-val power Female Male Female Male

(n=23) (n=7) (n=35) (n=21)

L
ea

rn
in

g
G

ai
n

Overall 48 0.176 0.8393 0.239 9.7391 6.8571 9.4000 7.0952
KC15 12 0.007 0.9930 0.062 3.0435 2.0000 3.3143 2.2857
KC23 12 0.681 0.5090 0.227 0.4348 0.2857 0.4571 0.5238
KC24 4 1.102 0.3371 0.328 0.5652 0.0000 0.4857 0.2857
KC25 2 4.318 0.0164 0.433 0.6522 0.0000 0.5714 0.5238
KC28 13 0.235 0.7910 0.260 2.2609 1.2857 2.2286 1.5714
KC32 3 0.916 0.4042 0.325 0.7826 0.5714 0.4571 0.4762

S
at
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fa

ct
io

n

PS Graphics 4 0.221 0.8018 0.256 4.1413 4.2500 4.4857 4.5119
PPD 8 0.399 0.6720 0.294 3.8750 3.8393 3.7893 3.9048
PPD Graphics 6 1.473 0.2351 0.331 4.1522 3.8095 4.4524 4.4921
Overall System 5 1.105 0.3360 0.328 3.7478 3.4000 3.7200 3.8167
Graphics Satis. 10 0.503 0.6066 0.327 4.1467 4.0298 4.4690 4.5020
Overall Satis. 23 0.824 0.4420 0.323 3.9791 3.8247 4.1118 4.1813

single representation (illustrations) while high pretesters should see multiple representations.

This difference in results may be due to different students, different sample sizes, or changes

in images or tutoring environment. It is also possible that pretest score measures something

similar, but different, than high school physics experience, such as physics knowledge versus

experience with physics. A similar possibility exists with calculus 1 experience, which could

measure whether students have been taught to think a certain way versus physics knowledge.

6.2.1.3 Learning Curves In the previous section, I examined learning gains between

groups of subjects. Learning gains are computed from a test given before the tutoring and

another test given after. Another option for measuring learning is to use learning curves.

A learning curve is a plot of the error on a knowledge component during tutoring over the

number of opportunities to practice that knowledge component [80]. If a subject is learning,

then as the number of opportunities increase, the error rate should decrease and thus the

learning curve should decrease. The error rates for each KC can be aggregated for each

student, giving the performance of any skill over the opportunities to practice it [80]. A
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curve can be fit to the data, giving an equation representing the relationship between error

rate and number of opportunities to practice. Learning curves have been observed to follow

a power law relation shown in equation 6.1 [80, 85]:

Y = aXb (6.1)

where:

Y is the error rate

X is the number of opportunities to practice the knowledge component

The parameters a and b are learned as the curve is fit to the data. The parameter a is

the error rate of the first opportunity (representing the intrinsic difficulty of the KC), and b

is the learning rate. Negative learning rates indicate that the subject is making fewer errors

over the opportunities. A larger magnitude for b indicates a greater rate of change in the

error rate over the opportunities. Finally, the fit of the curve (adjusted r2) can be a measure

of how much learning is taking place with respect to the task being measured [80].

Following the suggestions of the literature [80], I aggregate the KC error rates for indi-

vidual subjects, fit a power curve to the aggregated error rate for each subject, then compare

the learning rate (b) and the adjusted r2 value across subjects. One open question is how

many opportunities to include [80]. As the number of opportunities increases, the number of

KCs still in use tends to decrease. Some use every opportunity [22, 67] while other suggest

establishing a threshold such as when the number of data points in an opportunity drops

below 50% of the number in the first opportunity [80]. Since there is no standard thresh-

old to use, I experimented with both. I found that no threshold generally produced more

interesting results for comparing single versus multiple representation learning curves. For

alternating versus adaptive learning curves, I found that the 50% threshold produced more

interesting curves. In future work, it would be good to develop a more formal method for

determining the threshold a priori.

The average learning rate for subjects seeing a single representation is -1.070 and the

adjusted r2 value is 0.240. For subjects seeing multiple representations the learning rate is

-1.167 and the adjusted r2 is 0.293. Using an independent samples t-test, we find that there
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Table 6.9: Interaction effect results for pretest and single vs. multiple representations on learning
curves.

single multiple
measure p-val High Low High Low

learning rate 0.1210 -1.1690 -1.0225 -1.0895 -1.2518
Adj. r2 0.1750 0.2185 0.1530 0.2131 0.2527

Table 6.10: Interaction effect results for high school physics experience and single vs. multiple
representations on learning curves.

single multiple
measure p-val No Yes No Yes

learning rate 0.6830 -1.0403 -1.1122 -1.1757 -1.1626
Adj. r2 0.8590 0.1538 0.1986 0.2097 0.2402

is no significant difference between the two groups of subjects on learning rate (p = 0.310)

or adjusted r2 (p = 0.275).

As with the learning gains and satisfaction analysis above, I now examine whether there

are interaction effects with incoming knowledge and gender. For pretest (Table 6.9), high

school physics experience (Table 6.10), and gender (Table 6.12), we see no significant differ-

ences. For Calculus, we find significant interaction effects on both learning rate and adjusted

r2. For both, subjects who have had calculus learn faster and have more of their learning

explained by the number of opportunities they have had when seeing single representations

over seeing multiple representations. The opposite occurs for subjects who did not have

calculus; they do better when seeing multiple representations. We again find that those

without calculus perform better with multiple representations.

6.2.2 Alternating Representations vs. Adaptive Scheduling of Representations

I now test the hypothesis that adaptive scheduling of representations is more beneficial than

alternating representations in a natural language-based conceptual physics tutoring system.
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Table 6.11: Interaction effect results for calculus experience and single vs. multiple representations
on learning curves.

single multiple
measure p-val Yes No Yes No

learning rate 0.0024 -1.2223 -0.8371 -1.0683 -1.2837
Adj. r2 0.0144 0.2309 0.0898 0.2100 0.2580

Table 6.12: Interaction effect results for gender and single vs. multiple representations on learning
curves.

single multiple

measure p-val Female Male Female Male
learning rate 0.2760 -1.0248 -1.2658 -1.1670 -1.1648
Adj. r2 0.3330 0.1585 0.2471 0.2301 0.2349

In Section 6.2.2.1 the frequency of switching for alternating and adaptive policies are com-

pared, found to be different, and some investigations into how frequency of switching affects

learning are performed. In Section 6.2.2.2, I examine differences in learning gains and satis-

faction between subjects who saw representations according to a fixed, alternating schedule

and subjects who saw representations according to an adaptive schedule. I then exam-

ine interaction effects with measures of incoming knowledge and gender in Section 6.2.2.3.

Section 6.2.2.4 investigates whether one group of subjects learned faster than another by

examining learning curves.

6.2.2.1 Frequency of Switching Table 6.13 shows the frequency of switching for each

of the subjects. From this table, we see that the adaptive condition switched representations

between one and four times; the alternating condition switched 12 times.

As seen below, the alternating condition often performs no differently than the adaptive

condition. One possible reason for this is that the alternating condition does occasionally

show the same graphic as the adaptive model would predict. Does the alternating condition

do no different than adaptive because it shows the same graphic as the adaptive model
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Table 6.13: Number of decision points during tutoring where the representation changed.

# Switches # Subjects # Alternating # Adaptive

1 15 0 15
3 11 0 11
4 1 0 1
12 29 29 0

Table 6.14: Distribution of how often the alternating scheduling picked the same representation
that the adaptive policy would have picked.

# Matches # Subjects

4 9
6 3
7 5
8 12

predicts? To answer this question, I first ran the data from the alternating subjects through

the adaptive model to get the model’s predictions. I counted the number of times the graphic

type the model predicted agreed with what the subject saw. Table 6.14 is a summary of the

results. Note that there are a total of 13 places in tutoring when the tutor decided which

type to show next.

There is a plurality of subjects who saw the graphic suggested by the adaptive model 61%

(8/13) of the time. This suggests that it is possible that alternating did so well because it

fairly often did what adaptive would do. If that’s the case, then we would expect a positive

correlation between the number of matches and learning or satisfaction. I ran Pearson

correlations to test this. From Table 6.15, we see no correlation between number of matches

and learning or satisfaction. These results fail to support the hypothesis that alternating

did so well because it mimicked the adaptive condition.

Based on the analysis so far, it is not clear why alternating does as well as adaptive. It

could be that frequent switching produces learning gains as good as adapting to the user.

It could also be that the adaptive policy needs to be improved. If frequent switching does
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Table 6.15: Correlations between number of times the alternating condition agreed with the adap-
tive model’s prediction and learning or satisfaction.

Measure Type Measure N r p
L

ea
rn

in
g

G
ai

n
Overall 48 0.1143 0.5550
KC15 12 -0.0306 0.8747
KC23 12 -0.0880 0.6497
KC24 4 0.2110 0.2718
KC25 2 -0.2308 0.2285
KC28 13 0.2646 0.1653
KC32 3 0.0390 0.8407

S
at

is
fa

ct
io

n

PS Graphics 4 -0.3096 0.1022
PPD 8 -0.1902 0.3230
PPD Graphics 6 -0.2489 0.1930
Overall System 5 -0.2421 0.2058
Graphics Satisfaction 10 -0.3134 0.0978
Overall Satisfaction 23 -0.2982 0.1162

improve learning, then we would expect more frequent switches to positively correlate with

learning. To evaluate this, I examined the correlations between number of times the rep-

resentations switched and learning gains and satisfaction on the alternating and adaptive

conditions. From Table 6.16, we see no such correlations. However, when examining the cor-

relations just within the adaptive condition (see Table 6.17), we find that there is a significant

negative correlation for KC24. This suggests that for KC24 (gravitational acceleration), more

frequent switching adversely affects learning. This does not support the hypothesis that fre-

quent switching positively correlates with learning. Instead, the model seems to have found

schedules of graphic types that produces learning with fewer switches. This suggests that

the adaptive policy is able to produce learning gains without many switches.

From the analysis in this section, we fail to find evidence suggesting that the frequency

of switching can account for differences in learning between the alternating and adaptive

conditions. While the literature does suggest that frequent switching is better than infrequent

switching [91], the subjects are different. In future work it would be good to control for the

number of switches subjects see.
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Table 6.16: Correlations between number of times representations switched and learning or satis-
faction, on alternating and adaptive conditions.

Measure Type Measure N r p

L
ea

rn
in

g
G

ai
n

Overall 48 0.1390 0.3069
KC15 12 -0.0574 0.6742
KC23 12 -0.1413 0.2988
KC24 4 0.1036 0.4475
KC25 2 -0.1676 0.2170
KC28 13 0.0103 0.9400
KC32 3 0.2128 0.1153

S
at

is
fa

ct
io

n

PS Graphics 4 0.0156 0.9090
PPD 8 -0.1030 0.4499
PPD Graphics 6 -0.0107 0.9376
Overall System 5 0.0010 0.9943
Graphics Satisfaction 10 0.0011 0.9936
Overall Satisfaction 23 -0.0330 0.8094

Table 6.17: Correlations between number of times representations switched and learning or satis-
faction, on the adaptive condition.

Measure Type Measure N r p

L
ea

rn
in

g
G

ai
n

Overall 48 -0.1138 0.5720
KC15 12 -0.3164 0.1079
KC23 12 -0.2418 0.2244
KC24 4 -0.3963 0.0407
KC25 2 0.0189 0.9254
KC28 13 -0.0010 0.9959
KC32 3 -0.1350 0.5018

S
at

is
fa

ct
io

n

PS Graphics 4 0.2010 0.3147
PPD 8 0.1486 0.4594
PPD Graphics 6 0.2725 0.1690
Overall System 5 0.1936 0.3334
Graphics Satisfaction 10 0.2590 0.1920
Overall Satisfaction 23 0.2360 0.2361
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Table 6.18: Comparing adaptive scheduling to fixed scheduling of multiple representations across
measures of learning and satisfaction. Learning gains range from 0 to the number of questions.
Satisfactions range from 1 to 5. For all tests, the degrees of freedom are 54.

Measure Measure N Adaptive Alternating p-value power
Type (n=27) (n=29)

L
ea

rn
in

g
G

a
in

Overall 48 7.85 8.54 0.5291 0.096
KC15 12 3.04 2.93 0.8847 0.052
KC23 12 0.56 0.48 0.6119 0.079
KC24 4 0.37 0.41 0.8301 0.055
KC25 2 0.63 0.55 0.5168 0.099
KC28 13 1.96 1.98 0.9741 0.050
KC32 3 0.33 0.46 0.3440 0.156

S
at

is
fa

ct
io

n

PS Graphics 4 4.49 4.50 0.9657 0.050
PPD 8 3.92 3.83 0.6062 0.080
PPD Graphics 6 4.48 4.47 0.9518 0.050
Overall System 5 3.77 3.76 0.9549 0.050
Graphics Satisfaction 10 4.48 4.48 0.9882 0.050
Overall Satisfaction 23 4.16 4.14 0.8422 0.054

6.2.2.2 Learning Gains and Satisfaction Table 6.18 compares learning gains and

satisfaction across the two conditions using an independent samples t-test. Here I use raw

learning gains, although similar results were found for normalized learning gains and post-

test score controlled for pretest. There are no significant differences across conditions. This

might suggest that the frequency of switching might not be important when using multiple

representations. This is contrary to prior research on the frequency of switching between

multiple representations for a fractions tutor, which found that switching frequently is more

beneficial than infrequent switching [91]. There are many differences between the fractions

tutor study and the current one, including domain, subject population, and number of

representations available. Future work is needed to investigate how frequency of switching

graphical representations affects conceptual physics learning.

6.2.2.3 Interaction Effects I now investigate interaction effects to identify sets of stu-

dents who benefit from an adaptive schedule over an alternating schedule. As with the single

versus multiple representation analysis above, I consider three measures of knowledge and
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Table 6.19: Interaction effects between a median split of pretest score and scheduling of multiple
representations for measures of learning and satisfaction. Learning gains range from 0 to the number
of questions. Satisfactions range from 1 to 5.

Measure Alternating Adaptive
Type Measure N F1,55 p-val power High Low High Low

(n=15) (n=14) (n=9) (n=18)

L
ea

rn
in

g
G

ai
n

Overall 48 1.464 0.2314 0.327 7.0000 11.5000 6.8889 8.3333
KC15 12 2.594 0.1130 0.333 1.4667 4.2857 3.0000 3.0556
KC23 12 0.155 0.6950 0.184 0.2667 0.5714 0.4444 0.6111
KC24 4 0.168 0.6832 0.191 0.2667 0.6429 0.0000 0.5556
KC25 2 4.184 0.0456 0.494 0.5333 0.4286 0.3333 0.7778
KC28 13 0.031 0.8610 0.073 1.6667 2.3571 1.6667 2.1111
KC32 3 0.629 0.4310 0.298 0.4667 0.7143 0.3333 0.3333

S
at

is
fa

ct
io

n

PS Graphics 4 0.006 0.9370 0.027 4.5167 4.4821 4.5278 4.4722
PPD 8 2.997 0.0890 0.409 3.9667 3.5179 3.7639 4.0000
PPD Graphics 6 0.527 0.4710 0.287 4.5667 4.3452 4.4630 4.4815
Overall System 5 6.443 0.0140 0.494 4.0400 3.4286 3.3556 3.9750
Graphics Satis. 10 0.170 0.6820 0.192 4.5417 4.4137 4.4954 4.4769
Overall Satis. 23 3.099 0.0839 0.411 4.2725 3.9435 4.0275 4.2322

gender.

The interaction results for pretest score can be found in Table 6.19. Here we see significant

interaction effects for KC 25 and Overall System Satisfaction. On KC 25, low pretesters

perform better when receiving an adaptive scheduling of representations than with fixed

scheduling. High pretesters perform better on KC 25 with the fixed alternating scheduling

than with the adaptive scheduling. We see similar results with Overall System satisfaction:

low pretesters prefer the system when receiving an adaptive scheduling while high pretesters

prefer the system when receiving the alternating scheduling.

The interaction results for high school physics are shown in Table 6.20. Here we have

two significant interaction effects, one with KC 15 and the other with KC 23. For both KCs,

subjects who had high school physics perform better when receiving an adaptive scheduling

of representations than when receiving an alternating scheduling. Those who did not have

high school physics perform better with an alternating scheduling.

Both high school physics and pretest score are intended to be measures of incoming
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Table 6.20: Examining interaction effects between high school physics experience and scheduling
of multiple representations for measures of learning and satisfaction. Learning gains range from 0
to the number of questions. Satisfactions range from 1 to 5.

Measure Alternating Adaptive
Type Measure N F1,55 p-val power Yes No Yes No

(n=23) (n=6) (n=18) (n=9)

L
ea

rn
in

g
G

ai
n

Overall 48 4.013 0.0501 0.383 8.6522 11.167 8.9444 5.6667
KC15 12 6.854 0.0114 0.445 2.2609 5.0000 3.7778 1.5556
KC23 12 13.263 0.0006 0.408 0.2174 1.1667 0.6667 0.3333
KC24 4 1.054 0.3090 0.332 0.5652 0.0000 0.3889 0.3333
KC25 2 3.360 0.0722 0.359 0.3913 0.8333 0.6667 0.5556
KC28 13 0.131 0.7190 0.172 2.1739 1.3333 2.0556 1.7778
KC32 3 0.454 0.5031 0.283 0.5652 0.6667 0.2222 0.5556

S
at

is
fa

ct
io

n

PS Graphics 4 0.729 0.3970 0.315 4.4457 4.7083 4.4861 4.5000
PPD 8 0.777 0.3820 0.318 3.7554 3.7292 3.7986 4.1667
PPD Graphics 6 0.048 0.8271 0.097 4.3841 4.7500 4.3796 4.6667
Overall Sys. 5 0.005 0.9460 0.025 3.7913 3.5667 3.8306 3.6444
Graphics Satis. 10 0.320 0.5740 0.245 4.4149 4.7292 4.4329 4.5833
Overall Satis. 23 0.006 0.9400 0.028 4.0941 4.1885 4.1237 4.2444

knowledge. We would expect to see similar results for both, but instead we appear to

be finding contradictory results. For incoming knowledge according to the pretest, high

knowledge does better with an alternating schedule and low knowledge does better with an

adaptive schedule. For incoming knowledge according to high school physics experience, high

knowledge does better with an adaptive schedule and low knowledge does better with an

alternating schedule. These seemingly different results may be due to differences in the KCs.

KC 15 and KC 23 both involve acceleration while KC 25 involves the horizontal component of

velocity in projectile motion. It might be that with these subjects, acceleration is better with

one scheduling method and projectile motion or velocity is better with a different schedule.

However, there may be other reasons for the observed difference. Future research is needed

to investigate.

There were no significant interaction results for calculus (Table 6.21) or gender (Ta-

ble 6.22).

78



Table 6.21: Examining interaction effects between Calculus experience and scheduling of multiple
representations for measures of learning and satisfaction. Learning gains range from 0 to the number
of questions. Satisfactions range from 1 to 5.

Measure Alternating Adaptive
Type Measure N F1,55 p-val power Yes No Yes No

(n=18) (n=11) (n=12) (n=15)

L
ea

rn
in

g
G

ai
n

Overall 48 0.534 0.4680 0.295 10.2222 7.4545 8.3333 7.4667
KC15 12 0.043 0.8370 0.091 3.0556 2.4545 3.1667 2.9333
KC23 12 0.564 0.4560 0.299 0.3333 0.5455 0.5833 0.5333
KC24 4 3.484 0.0673 0.360 0.5000 0.3636 0.0000 0.6667
KC25 2 0.266 0.6078 0.238 0.3889 0.6364 0.4167 0.8000
KC28 13 0.139 0.7110 0.178 2.2778 1.5455 2.0833 1.8667
KC32 3 0.483 0.4900 0.288 0.6111 0.5455 0.2500 0.4000

S
at

is
fa

ct
io

n

PS Graphics 4 0.250 0.6190 0.232 4.5417 4.4318 4.4792 4.5000
PPD 8 2.799 0.1000 0.337 3.9167 3.4773 3.8021 4.0167
PPD Graphics 6 0.037 0.8480 0.083 4.4722 4.4394 4.4583 4.4889
Overall System 5 1.737 0.1930 0.346 3.9889 3.3455 3.7667 3.7700
Graphics Satis. 10 0.136 0.7140 0.176 4.5069 4.4356 4.4688 4.4944
Overall Satis. 23 1.526 0.2220 0.343 4.2299 3.9235 4.1266 4.1939

Table 6.22: Examining interaction effects between gender and scheduling of multiple represen-
tations for measures of learning and satisfaction. Learning gains range from 0 to the number of
questions. Satisfactions range from 1 to 5.

Measure Alternating Adaptive
Type Measure N F1,55 p-val power Female Male Female Male

(n=18) (n=11) (n=17) (n=10)

L
ea

rn
in

g
G

a
in

Overall 48 0.000 0.9932 0.003 10.0556 7.7273 8.7059 6.4000
KC15 12 0.024 0.8780 0.064 3.1667 2.2727 3.4706 2.3000
KC23 12 0.000 0.9890 0.003 0.3889 0.4545 0.5294 0.6000
KC24 4 0.088 0.7680 0.139 0.5000 0.3636 0.4706 0.2000
KC25 2 0.000 0.9950 0.004 0.5000 0.4545 0.6471 0.6000
KC28 13 0.986 0.3250 0.329 2.5000 1.1818 1.9412 2.0000
KC32 3 0.295 0.5890 0.247 0.6111 0.5455 0.2941 0.4000

S
at
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io

n

PS Graphics 4 0.434 0.5130 0.280 4.4583 4.5682 4.5147 4.4500
PPD 8 0.001 0.9700 0.012 3.7083 3.8182 3.8750 4.0000
PPD Graphics 6 0.095 0.7590 0.145 4.4259 4.5152 4.4804 4.4667
Overall System 5 0.042 0.8380 0.090 3.6889 3.8364 3.7529 3.7950
Graphics Satis. 10 0.271 0.6050 0.239 4.4421 4.5417 4.4975 4.4583
Overall Satis. 23 0.087 0.7690 0.138 4.0704 4.1845 4.1558 4.1779
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Table 6.23: Interaction effect results for pretest and alternating vs. adaptive scheduling of repre-
sentations on learning curves.

alternate adaptive
measure p-val High Low High Low

learning rate 0.0342 0.0726 -0.5321 -0.4262 -0.3532
Adj. r2 0.7300 -0.0335 0.0325 -0.0384 -0.0190

6.2.2.4 Learning Curves In this section, I create learning curves to measure learning

rate of the subjects and to evaluate how well the error rate is described by the number of

opportunities to practice (adjusted r2). As described in Section 6.2.1.3, I aggregate the KC

error rates for individual subjects, fit a power curve to the aggregated error rate for each

subject, then compare the learning rate and the adjusted r2 value across subjects. In this

section, I only consider the first n opportunities, where opportunity n+1 has fewer than 50%

of the data points that opportunity 1 had.

The average learning rate for scheduling representations according to an alternating

schedule is -0.187 and the adjusted r2 value is -0.005. For subjects seeing representations

according to an adaptive schedule, the learning rate is -0.388 and the adjusted r2 is -0.028.

Using an independent samples t-test, we find that there is no significant difference between

the two groups of subjects on learning rate (p = 0.221) or adjusted r2 (p = 0.726). Since

no significant differences are found, I examine interaction effects with measures of incoming

knowledge and with gender.

High school physics experience (Table 6.24) and gender (Table 6.26) show no significant

interaction effects. However, we find significant interactions with pretest (Table 6.23) and

with calculus (Table 6.25). For pretest, we find that high pretesters learn more quickly when

receiving an adaptive scheduling, whereas low pretesters learn more quickly when receiving

an alternating scheduling.

Significant interactions also exist with calculus (Table 6.25). On learning rate, subjects

with calculus learn much quicker with the adaptive model whereas subjects without calculus

learn quicker with the alternating model. On adjusted r2, subjects who had calculus have
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Table 6.24: Interaction effect results for high school physics experience and alternating vs. adaptive
scheduling of representations on learning curves.

alternate adaptive
measure p-val Yes No Yes No

learning rate 0.0769 -0.0417 -0.7178 -0.3781 -0.4088
Adj. r2 0.4010 -0.0097 0.0112 0.0074 -0.0997

Table 6.25: Interaction effect results for calculus experience and alternating versus adaptive
scheduling of representations on learning curves.

alternate adaptive
measure p-val Yes No Yes No

learning rate 0.0220 -0.0614 -0.4119 -0.6177 -0.2048
Adj. r2 0.0164 -0.0732 0.1172 0.0445 -0.0866

better fits with the adaptive model while subjects who did not have better fits with the

alternating model.

Overall, it appears that subjects with some incoming experience do better with the

adaptive model whereas subjects with low incoming experience do better with the alternating

mode. It might be that subjects with little incoming experience learn more quickly when

the representations are frequently switching, which is consistent with the literature [89, 91],

or that the adaptive model did not perform well for the low pretesters. In Section 6.2.3 I

explore improving the model.

Table 6.26: Interaction effect results for gender and alternating vs. adaptive scheduling of repre-
sentations on learning curves.

alternate adaptive
measure p-val Female Male Female Male

learning rate 0.1300 -0.2467 -0.0783 -0.2588 -0.6084
Adj. r2 0.2990 0.0573 -0.1177 -0.0158 -0.0496
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6.2.3 Modeling Revisited

From the results above, we see instances when an adaptive scheduling is better than an

alternating scheduling, but other times when there is no significant difference or even times

when alternating does better. One potential reason for this is that the adaptive policy may

not be very good. The best model identified in Chapter 5 was built from limited data. The

sample size was small, only 2043 data points. Additionally, subjects in the first study only

ever saw one representation during tutoring whereas in this study subjects could see two.

Therefore, the model was not able to consider the effects of a subject having seen or not

having seen a representation before when deciding which representation to use. Additionally,

the number of problems increased and the two problems that were used in both studies were

modified before being used in the new study. These limitations may explain why the adaptive

condition did not consistently perform better than alternating.

To start investigating the claim that the adaptive model was limited, I use the method

described in Section 5.2 to learn a new model from the data collected in this study. Addition-

ally, this new model will also have access to new features that capture information related

to subjects potentially seeing multiple representations. Once this new model is learned, I

show that it performs better than two baselines on an intrinsic evaluation. In future work, I

propose running an experiment similar to the one performed in Chapter 5 to learn the best

adaptive policy given the data available.

In addition to the features described in Section 5.1, I add the new features shown below.

Some have been median split; Table 6.27 shows a distribution of the values for the variables

that were median split.

RepSeenPrior – Has the subject seen the current representation before the most recent

decision point (no, yes)

RepLastSeenSec – Number of seconds since the subject last saw the representation (me-

dian split: high, low)

RepLastSeenTurn – Number of dialogue turns since the subject last saw the representation

(median split: high, low)

RepTimeSpentSec – Total number of seconds the subject spent with the representation
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Table 6.27: Low, median, and high values for the new representation features that were median
split.

Feature Low Median High

RepLastSeenSec 0.91 200.28 1844.35
RepLastSeenTurn 7.00 52.00 313.00
RepTimeSpentSec 0.00 1684.87 9143.52
RepTimeSpentTurns 0.00 264.00 1188.00
RepPretest 3.00 10.00 17.00
RepPerformance 0.22 0.69 1.00
RepPerformancePrev 0.00 1.00 1.00
RepSwitches 0.00 1.00 12.00

(median split: high, low)

RepTimeSpentTurns – Total number of turns the subject spent with the representation

(median split: high, low)

RepPretest – The percent correct on pretest questions involving the representation (median

split: high, low)

RepPerformance – The percent correct of dialogue turns (prior to the current dialogue)

involving the representation (median split: high, low)

RepPerformancePrev – The percent correct on dialogue turns from the most recent pre-

vious dialogue that involving the representation (median split: high, low)

RepSwitches – How frequent the representation had been switching; the ratio of number of

times the representation switched over the number of opportunities for the representation

to switch (median split: high, low)

To learn the new model, I follow the steps described in Section 5.2. Since I am currently

only interested in showing that a better model exists, I learn the simplest model: the 1

Factor model. The 1 Factor model has only one factor in each term describing the tutoring

context, plus a second factor indicating the representation to show. The initial equation is
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of the form:

postscore = prescore

+ (RepIsGraph + RepIsIllus) ∗
∑

factori∈F1

factori

where RepIsGraph and RepIsIllus are binary factors indicating whether the subject saw a

graph or saw an illustration, and F1 is the set of all factors except RepIsGraph and RepIsIllus.

The 1 Factor model is compared to two baselines. The first baseline is similar to the

baseline from Chapter 5. This Single-Graphic Baseline always predicts showing the

same representation. I use stepwise regression, starting with the equation postscore =

prescore + RepIsGraph + RepIsIllus, to identify which representation to always show.

Stepwise regression eliminates RepIsGraph, leaving RepIsIllus with a positive coefficient,

indicating that illustrations should be the graphic to always show. Thus, the baseline used

here is the same baseline from Chapter 5.

The second baseline comes from the PreScore*Gender model identified as the best from

Chapter 5. Thus, I call it the PreScore*Gender Baseline. I take the terms in the

PreScore*Gender model from Section 5.3.2, form a new equation, and perform linear re-

gression with the data from the new study to learn new coefficients. By doing this, I am

examining whether the features transfer rather than the entire model.

As in Chapter 5, I perform 10-fold cross-validation for each of the three models described

above and compare the adjusted r2 values. All subjects who completed the study were

included in this analysis. Table 6.28 shows the results.

The 1 Factor model performs significantly better than the two baselines, suggesting that

the additional features benefit modeling. Below are the rules extracted from the 1 Factor

model, ranked according to the magnitude of the coefficient (coefficient shown in parentheses;

larger indicates more important; the new features are bolded):

1. If HSPhysics = No, show Illus (2.6926)

2. If SessionPctCorrect = High, show Graph (2.5050)

3. If RepPerformance = High, show Graph (2.3797)
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Table 6.28: Models learned are compared according to adjusted r2 values and their 95% confidence
intervals.

Model Adj. r2 95% CI

Single-Graphic Baseline 0.514 (0.505, 0.524)
PreScore*Gender Baseline 0.557 (0.548, 0.565)
1 Factor Model 0.601 (0.594, 0.607)

4. If ProblemPctCorrect = High, show Illus (2.1863)

5. If RepPretest = High, show Graph (2.0186)

6. If PctThruSession = Late, show Graph (1.6913)

7. If RepSwitches = Frequent, show Illus (1.6825)

8. If Gender = Male, show Illus (1.3350)

9. If RepTimeSpentTurns = High, show Illus (1.1616)

10. If RQPctCorrect = High, show Graph (0.9148)

11. If PctThruProblem = Late, show Graph (0.7793)

12. If RepTimeSpentSec = High, show Illus (0.7377)

13. If TimeThruSession = Late, show Illus (0.7234)

14. If PctThruProblem = Early, show Illus (0.6413)

15. If DialogStage = ProblemSolving, show Graph (0.6329)

16. If RepSeenPrior = True, show Illus (0.5952)

17. If RepLastSeenSec = High, show Illus (0.5348)

18. If PctThruSession = Early, show Illus (0.5181)

19. If KCusage = Apply, show Illus (0.3123)

20. If ResponseTimePrevWords = Low, show Graph (0.2580)

The new representation features (bolded above) appear to be important, appearing in

seven of the twenty rules and four being in the top half of the rules. For example, the

third most important feature is RepPerformance, which says that if learners do well when

seeing graphs, they should continue to see graphs. The fifth most important (RepPretest)

similarly says that if learners do well on graph pretest questions, they should see graphs
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during tutoring. These findings are consistent with the literature which suggests that since

abstract representations of the tutoring context, such as graphs, are believed to be better

for students who can handle them [57, 70], learners who are doing well with graphs should

see them.

There also appears to be a preference for showing graphs when subjects show evidence of

understanding the concepts and illustrations when they show evidence of not understanding

concepts, which is consistent with the literature [69, 57, 70]. When SessionPctCorrect or

RQPctCorrect are High, subjects should see graphs. If the subject has not had high school

physics, then they should see illustrations. One exception exists for this pattern. If the

subject has been correct frequently within a problem, they should see illustrations. It is not

clear why many correct answers within a problem suggests seeing illustrations, but many

correct answers in the tutoring session or in a reflection dialogue suggest graphs. Adding

more contextual factors may provide insights.

Additionally, we are finding rules that suggest subjects early in tutoring should see il-

lustrations and subjects later in tutoring should see graphs. This is also consistent with

the literature, which suggests that learners do best when transitioning from concrete repre-

sentations (e.g. illustrations) to more abstract representations (e.g. graphs) [57, 83]. When

PctThruSession is Late or when PctThruProblem is High, subjects should see graphs. When

PctThruSession is Early or when PctThruProblem is Early, subjects should see illustrations.

To summarize, we found that the 1 Factor model may perform better than the baselines

because of the representation features that have been added. Almost half of the 20 rules

include these new features and almost half of the top 10 most important rules include these

features. The model produces rules that are consistent with the literature. Subjects who

can handle graphs or subjects who are doing well should see graphs. There should also be a

general trend over time from showing illustrations to showing graphs.

We also observe that the PreScore*Gender baseline performs significantly better than the

Single-Graphic Baseline, which suggests that the modeling approach might produce models

that can transfer from one situation to another, although the weights might need to be

relearned. Table 6.29 shows rules for this model. The rules learned with this new dataset

were generally similar to those learned from the first study. Of the 20 rules, 8 switched their
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conclusion (e.g. SessionPctCorrect=High for Female High Pretesters was originally Illus,

but when relearning it becomes Graph). Since the sign of the coefficient can indicate which

representation to show, a conclusion may change if the sign of the coefficient changed. The

ranking of the rules can shift as coefficients change. On average, the rules did not shift much,

shifting up or down only 1.3 positions.

Table 6.29: Rules for the PreScore*Gender baseline.

Female High Pretesters (n = 20) Female Low Pretesters (n = 38)

1. If ProblemPctCorrect=High, show Illus 1. If SessionPctCorrect=High,
2. If PctThruSession=Early, show Graph show Graph
3. If SessionPctCorrect=High, show Graph 2. If ProblemPctCorrect=High, show Illus
4. If PctThruProblem=Early, 3. If RQPctCorrect=Low, show Graph

show Graph 4. If PctThruSession=Early, show Illus
5. If WalkThruPctCorrect=Low, 5. If PctThruProblem=Early, show Illus

show Graph
6. If RQPctCorrect=Low, show Illus

Male High Pretesters (n = 22) Male Low Pretesters (n = 6)

1. If SessionPctCorrect=High, show Illus 1. If RQPctCorrect=Low, show Graph
2. If RQPctCorrect=Low, show Illus 2. If WalkThruPctCorrect=Low, show Graph
3. If WalkThruPctCorrect=Low, 3. If SessionPctCorrect=High, show Illus

show Illus 4. If PctThruSession=Early, show Illus
5. If ProblemPctCorrect=High, show Graph
6. If PctThruProblem=Early, show Illus

6.3 DISCUSSION

The study presented in this chapter presented illustrations and graphs to subjects according

to one of three schedules during conceptual physics tutoring. One schedule, the constant

schedule, showed only illustrations or only graphs during tutoring. Another schedule, the

alternating schedule, switched representations at the start of each dialogue. The third sched-

ule, the adaptive schedule, consulted the adaptive policy learned in Chapter 5 to decide which

representation to show at the start of each dialogue. A summary of findings from this chapter

can be found in Table 6.30
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One question I wished to address with this study was whether multiple representations are

helpful in dialogue-based conceptual physics tutoring. In answering this question, I compared

subjects in the constant schedule condition to the subjects in the other two conditions. The

subjects were compared on learning gains, satisfaction, learning rate, and how much of their

error rate during tutoring is explained by the number of opportunities to practice. We

found that subjects learn KC 32 (independence of x and y motion) better when seeing only

illustrations and that subjects seeing only illustrations prefer the graphics more than when

seeing graphs or multiple representations.

However, when looking at interaction effects with incoming knowledge and gender, we

found that, for some students, multiple representations are better. Males and subjects with

low incoming knowledge might benefit from multiple representations. For males and subjects

with no calculus experience, seeing multiple representations produced larger learning gains

than seeing a single representation on KC 25 (horizontal component of velocity in projectile

motion is constant). Subjects with no calculus experience also learned faster and had more

of their decrease in error rate described by an increase in practice when seeing multiple

representations. Subjects with no high school physics preferred the post-problem discussions

more when seeing multiple representations.

This study was also designed to address the question of whether an adaptive schedul-

ing of representations is more beneficial to learners than a fixed, alternating scheduling. In

answering this question, I compared subjects in the adaptive condition to subjects in the

alternating condition. Unfortunately, since the number of switches between representations

is strongly dependent on the condition (adaptive subjects saw between one and four, alter-

nating subjects saw twelve), any findings can be the result of the frequency of switching and

not the method of scheduling. When comparing conditions on learning gains, satisfaction,

learning rate, and how much of their error rate during tutoring is explained by the number of

opportunities to practice, we find no significant differences. This could suggest that adaptive

scheduling is no better than alternating. However, it may also suggest that the frequency of

switching is not important, which would contradict other research [89, 91], just that subjects

see multiple representations. Additionally, it may suggest that the frequency of switching

can be reduced if done according to an adaptive policy.
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Examining interaction effects with pretest score, high school physics, and calculus finds

cases where the adaptive policy is better. For low pretesters, subjects learn more on KC 25

(horizontal component of velocity in projectile motion) and like the overall tutoring system

more with the adaptive schedule than the alternating schedule. However, high pretesters

learn faster when receiving an adaptive schedule and low pretesters learn faster when receiv-

ing an alternating schedule. Subjects with high school physics learn more on KC 15 and

KC 23 (both involving acceleration) with an adaptive schedule over an alternating schedule.

Subjects with calculus experience learn quicker and have more of their learning explained

by practice opportunities when seeing an adaptive scheduling.

Generally, subjects with high incoming knowledge perform better when receiving an

adaptive schedule, whereas those with low incoming knowledge perform better with an al-

ternating schedule. Once exception is that low pretesters perform better on KC 25 and like

the overall system more when receiving an adaptive scheduling. This seeming contradiction

could be explained by different knowledge components benefit differently from adaptive ver-

sus alternating polices (or the frequency of switching). However, more work is needed to

investigate this.

Finally, this study was also an extrinsic evaluation of the adaptive policy learned in

the previous chapter. Since the adaptive condition does not consistently perform better, I

conclude that the adaptive policy needs improvement. The policy was learned from data

where subjects never switched representations during tutoring. However, it was used to

determine when to switch representations. Thus, I believe that the adaptive policy was

limited in what tutoring contextual information it could consult.

To test this belief, I created nine new features to capture tutoring context information

regarding the switching of representations. Using both the old features and these nine new

features, a new policy was learned from the data collected in this study. The new policy

used seven of the nine new features and almost half of the policy rules involved these new

features. It performed better on an intrinsic evaluation than two baselines, suggesting that

the representational information captured by these features is important for an adaptive

policy. Rules from the policy also appear consistent with the literature. Subjects who can

handle graphs or who are doing well should see graphs [57, 70, 69]. There should also be a
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general trend over time from showing illustrations to showing graphs [57, 83]. Now that it

has been shown that these features are important, in future work I propose searching for a

better model.

One of the two baselines was based off of the best model learned in Chapter 5: PreScore*

Gender model. I also used the data to relearn the weights for the model. This model

performed significantly better than a single-graphic baseline, suggesting that the modeling

approach outlined in Chapter 5 may transfer to new situations, but the weights may need

to be relearned.

6.3.1 Lessons Learned

In augmenting the Rimac tutoring system with visual representations, I learned lessons that

may be helpful in future research along these lines.

Two common complaints about the tutoring environment involved the displays. One

complaint involved the refresh rate of the monitors, which were old cathode ray tube (CRT)

monitors. These monitors had refresh rates of 48 Hz. Some subjects commented that they

could see slight flickering on the screen, which they found distracting. A few students also

commented towards the end of the study that their eyes were tired, which may also be due

to the flickering. It might be good for future studies to use monitors with higher refresh

rates to possibly reduce distractions and eye fatigue.

The second common complaint about the displays was that the text in the images was

too small. The font family and size (Arial 9-point font) were chosen because they were the

defaults in Gnuplot, the graphing software used to generate the graphs. For the illustrations

to be consistent, text in the illustrations were also 9-point Arial. Some students remarked

that the text in the graphics was too small to read easily. In the future, it might be good to

use a larger font size in graphics.

Students who saw illustrations occasionally commented that the illustrations were nicer

than what they’ve seen in some science classess. This is in contrast to comments from the

first study, where they found the illustrations too abstract. The addition of extraneous

features such as a sun in the background, a blue sky, and green grass seemed to help to make
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the illustrations more concrete.

Augmenting Rimac with graphics was a fairly smooth process. The underlying TuTalk

authoring language already supported embedding graphics into dialogues. The hard part

was that the Rimac client did not support graphics. This led me to use an older TuTalk

client, Cordillera. The advantage to using the Rimac client was that the Andes physics

homework helper could be embedded within it, giving a consistent interface during tutoring.

Cordillera did not support embedding Andes within it, so a separate web browser was used

to display Andes, with only part of Cordillera visible for the walkthrough dialogues; the rest

of Cordillera was hidden off-screen. When it came time for the reflection dialogues, all of

Cordillera would be made visible so the subject could see both the dialogue and the graphics,

which were in a separate pane of the interface.
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Table 6.30: Summary of findings from the chapter.

Single vs. Multiple Representations

Interaction Measure Finding

None KC32 illustrations are better than multiple repre-
sentations

None PS Graphics multiple representations and illustrations are
better than graphs

None PPD Graphics multiple representations are better than
graphs

None Graphics multiple representations and illustrations are
better than graphs

HS Physics PPD
Subjects with high school physics do better
with single representations
Subjects without high school physics do bet-
ter with multiple representations

Calculus
KC25 Subjects with calculus experience do better

with single representations
Learning Rate Subjects without calculus experience do bet-

ter with multiple representations
Adj. r2

Gender
KC25 Females do better with single representations

Males do better with multiple representations

Alternating vs. Adaptive

Interaction Measure Finding

None KC24 Frequency of switching adversely affects
learning

Pretest KC25 Low pretesters do better with adaptive
scheduling

Overall Satisfaction High pretesters do better with alternating
scheduling

Pretest Learning Rate Low pretesters do better with alternating
scheduling
High pretesters do better with adaptive
scheduling

High School Physics KC15 Subjects with high school physics do better
with adaptive scheduling

KC23 Subjects without high school physics do bet-
ter with alternating scheduling

Calculus Learning Rate Subjects with calculus experience do better
with adaptive scheduling

Adj. r2 Subjects without calculus experience do bet-
ter with alternating scheduling
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7.0 CONTRIBUTIONS AND FUTURE WORK

Physics education research and cognitive science research both suggest that different graphi-

cal representations provide differing benefits to learners [81, 69, 84, 39, 70], suggesting a need

to adapt representations to learners in physics tutoring systems. However, physics tutoring

systems tend to rely on a single graphical representation (e.g. [109, 3, 7, 58, 62]). Tutoring

systems that adapt to students do not use multiple representations as part of the adaptation

(e.g. [6, 33, 52, 40, 50]), and tutoring systems that use multiple representations do not adapt

those representations and their presentation to individual students (e.g. [57, 83, 91]). This

research is positioned at the intersection of two areas of research: using multiple graphical

representations in tutoring and tutoring systems that adapt to learners.

In the research presented, I explored the importance of adapting the scheduling of multi-

ple graphical representations to learners and tutoring contexts in the context of a dialogue-

based conceptual physics tutor. The work was designed to test three overarching hypotheses.

H1: determine whether the best graphical representation for physics concepts is related to

properties of the learner and the tutoring context. H2: examine whether it is possible to

build models that predict the best representation using those properties. H3: show that

using an adaptive scheduling of representations based on a model learned while investigating

H2 will produce greater learning gains than a non-adaptive scheduling. In working on H2, I

developed a modeling algorithm that augments multiple linear regression to syntactic con-

straints. In testing H3, I also tested a fourth hypothesis, H4: show that multiple graphical

representations are more beneficial for learning than a single graphical representation.
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7.1 H1: BEST REPRESENTATION DEPENDENT ON LEARNER AND

TUTORING CONTEXT

Within the artificial intelligence in education community, it was not known whether differ-

ences existed between illustrations and graphs for conceptual physics learning. Prior research

in the physics education community had shown that illustrations and graphs have different

learning benefits for different students [81, 69, 84], but these focused on paper-and-pencil

learning and without a natural-language-based tutor. The artificial intelligence in education

community has made use of illustrations and graphs but without considering the differing

benefits of each.

In Chapter 4, data was collected from a study in which subjects saw either illustrations

during tutoring or graphs. During tutoring, subjects solved problems in the Andes intelligent

homework helper [109], then discussed concepts related to the problems in an augmented

version of the Rimac reflection dialogue tutor [65].

From this data, interaction effects were identified for learning gains between represen-

tation seen and student features, confirming H1. Low pretesters seeing illustrations during

tutoring score higher than low pretesters seeing graphs; this result is consistent with findings

from cognitive science [70, 57]. However, for high pretesters, there is no consistently good

representation, contrary to other research which suggested that non-novice learners would

perform better with graphs [57]. Instead, it may suggest that switching representations

will be beneficial for them, which is in partial agreement with related work suggesting that

switching representations are beneficial for all learners [91].

In using the data to build models from which adaptive policies could be created, we

find tutoring contexts when one representation may be more beneficial than the other. We

again see that low pretesters benefit most from illustrations. For high pretesters, we find

further evidence that switching representations is beneficial for them. However, instead

of a fixed switching schedule, as suggested in [91], we find particular contexts when one

representation is more beneficial than the other. Illustrations are better if there are many

correct responses in the tutoring session or if it is later in tutoring and graphs are better

if there are fewer correct responses. These findings are in opposition to prior work, which
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suggests showing abstract representations such as graphs later in tutoring [57] or when the

student is doing well [104, 69] and showing illustrations when the student is performing

poorly [81, 57]. These opposite findings may be due to differences in domains (e.g. [57, 104])

or different situations (e.g. problem solving [69]). However, it may also be that there are

additional factors influencing these results or that the model identifies tutoring contexts in

which illustrations or graphs present a challenge to the learners, which with the help of the

natural language tutor learners are able to overcome. More research is needed to determine

the cause of the different results found in this body of research and prior research.

We also found that subjects with low spatial reasoning perform significantly better when

viewing graphs during tutoring than illustrations. While this supports H1, it is contradictory

to cognitive science literature which suggests that low spatial reasoning subjects would per-

form poorly when given graphs to learn from [70]. Although the cognitive science literature

suggested high spatial reasoning subjects would show no difference in learning when shown

illustrations versus graphs [70], we found that they performed better with illustrations. One

possible explanation is that students who saw illustrations during tutoring needed to work

harder to learn the concepts in a context-free way. Graphs provide a context-free repre-

sentation of the concepts [74, 104] and so students in this condition may not have needed

to work as hard to learn the concepts in a context-free way. Another possibility is that

the test used for determining spatial reasoning ability – the Paper Folding Test, a standard

test for measuring spatial reasoning ability [47, 20] – may not have accurately measured the

spatial reasoning skills used in this study. Further research is needed to determine which

spatial reasoning test best measures the spatial reasoning skills used in interpreting graphs

for physics.

We find additional learner and tutoring context factors influencing the best representation

from the adaptivity model for pretest and gender from Section 5.3.2. Low pretesting females

may benefit from seeing graphs when performing well, whereas low pretesting males may

benefit from illustrations. Female high pretesters may benefit from graphs early in tutoring,

whereas female low pretesters may benefit from illustrations; this is consistent with the

literature on when to show illustrations and graphs [57, 83].

However, the low adjusted r2 values in the models learned in Chapter 5 suggest that
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not all learning is explained by the features used in the models. While this may be due to

limitations of the modeling technique, it may also be due to unidentified features that are

important to learning. Identifying these new features that explain the learning is an avenue

for future work. Section 6.2.3 began to identify some features, noting that how subjects

performed previously with a given representation can have a significant effect on which rep-

resentation to show them in the future. The findings in Section 6.2.2.3 that certain concepts

prefer different schedulings may suggest that the concepts being tutored are better-learned

using one representation or scheduling of representations than another. More research is

needed to investigate the effect concepts have on the representation to display. Additionally,

more research is needed to identify additional features.

7.2 H2: BUILDING MODELS TO PREDICT REPRESENTATION

Since adapting graphical representations to learners and tutoring contexts had not been done

before, one contribution of this work is showing that models can be built that predict the

better representation for a particular learner and tutoring context. To build the models, a

new modeling algorithm was developed. The features used in the modeling had been found

useful in other student modeling tasks [42, 11, 25] and have been found useful in cognitive

science research on visual representations [84, 70]. I show that many of these features are

useful in predicting when to show illustrations and when to show graphs.

In building the models, there was no gold standard; we had only which representation

a subject saw and how much they learned. Thus, to build a model, I developed an algo-

rithm which modifies stepwise linear regression according to syntactic constraints, similar to

other student modeling approaches [22, 86, 24]. The models learned predict post-test score

given pretest score and a collection of terms representing context information. The terms

are a product of binary features describing learner and tutoring context information; one

feature in each term indicates whether a graph or illustration was shown. Each term can be

converted into a rule indicating which contexts illustrations or graphs are beneficial. After

stepwise regression selects the terms that explain the change in post-test score, the modeling
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algorithm must then identify problematic pairs of terms (e.g. contradictory rules, such as

show illustrations for low pretesters and show graphs for low pretesters) and remove the term

with the lower absolute value of the coefficient. Linear regression is run on the remaining

terms to determine the final coefficient values. The terms are then ranked according to the

absolute value of the coefficient (higher value indicates more important) and converted into

adaptive policy rules.

For an intrinsic evaluation, the models learned were compared to a single-representation

model baseline on adjusted r2 values. The learned model using only one context feature

(plus a feature indicating whether to show illustrations or graphs) in each term performed

no different than the baseline. However, adding additional context in each term improved

performance. I found that including a feature indicating pretest score and a feature indicating

gender produced the model with the highest observed adjusted r2 value (the PreScore*Gender

model). This is in agreement with the cognitive science literature, which suggested that

gender and knowledge were important to consider when deciding which representation to

use [104, 69, 84, 70].

To evaluate whether the model can transfer to new situations, the data from the study

described in Chapter 6, was used to compare the adaptivity based on pretest and gender

to a non-adaptive model baseline. The terms in the adaptive model model were kept, but

the weights were relearned using the new data. It performed significantly better than the

baseline, showing that the modeling approach outlined in Chapter 5 may transfer to new

situations, although coefficients may need to be relearned.

An extrinsic evaluation of one of the models learned occurred in the user study described

in Chapter 6. Here, the model was compared to a non-adaptive model that just alternated

between the representations. Since the adaptive model does not consistently perform better,

this suggests that either the third overarching hypothesis is wrong or that the policy needs

improvement. The policy was learned from data where subjects never switched representa-

tions during tutoring. However, it was used to determine when to switch representations.

Thus, I believe that the adaptive policy was limited in what tutoring context information it

could consult. The small pilot experiment in Section 6.2.3 supports this.

In future work, improvements to this modeling technique should be explored. One avenue
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is the automatic selection of “important” features to use when adding factors to a term to

increase contextual description. In this work, I consulted the literature to pick these features,

but an automatic method may identify unexpected but important features. More work should

also be done to determine how best to identify and handle problematic rules. Preliminary

work was done in this thesis, but more can be done, such as whether running multiple linear

regression is the best last step or whether stepwise regression should be run again. Another

avenue for improving the algorithm is to determine how best to handle non-adaptive rule

pairs. In this work, I removed the rule with a lower avc, but another possibility is to merge

the two rules, removing the factor that is opposite in the two rules. Finally, this modeling

algorithm should be compared to other algorithms such as reinforcement learning, which is

another technique used to develop models when the gold standard is not available.

7.3 H3 AND H4: BEST SCHEDULING OF REPRESENTATIONS

Within the artificial intelligence in education community, it is not known whether adapting

graphical representations to learners and tutoring contexts is more beneficial for learning

over alternating graphical representations. Evidence from the cognitive science and physics

education literature suggest that adapting would better [81, 69, 84, 39, 70], as does the

evidence supporting hypotheses H1 and H2, but no tutoring study had yet investigated it.

Additionally, it is not known whether multiple graphical representations are more benefi-

cial for learning than a single graphical representation for conceptual physics tutoring and

when accompanied with a natural language representation. Research within the artificial

intelligence in education community on other subjects found that multiple graphical repre-

sentations were better than a single graphical representation [57, 83, 91], but no such research

had yet been performed for physics and with the graphical representations accompanied by

natural language dialogues. In Chapter 6, I investigate both hypotheses.

In examining H3, subjects receiving an adaptive scheduling of representations were com-

pared to subjects receiving an alternating scheduling. We find no significant differences

between subjects. This could suggest that adaptive scheduling is no better than alternat-
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ing. However, there was a significant difference in the frequency of switching representations

between the two conditions. Therefore, since no significant differences were found between

subjects in the two conditions, it may also suggest that the frequency of switching is not

important, which would contradict other research [89, 91].

However, some subjects seem to benefit from adaptive scheduling. Generally, subjects

with high incoming knowledge perform better when receiving an adaptive schedule, whereas

those with low incoming knowledge perform better with an alternating schedule. Once ex-

ception is that low pretesters perform better on concepts involving projectile motion and like

the overall system more when receiving an adaptive scheduling. This seeming contradiction

could be explained by different knowledge components benefit differently from adaptive ver-

sus alternating polices (or the frequency of switching). A future study is needed to determine

whether certain concepts benefit from one representation over another or one scheduling of

representations over another.

While adaptive scheduling has benefits for some subjects, it is not clear that adaptive

scheduling is better than alternating scheduling. This may be due to the adaptive policy

used for the adaptive scheduling. The policy was trained from data where subjects only

ever saw one representation, but was then used to predict which representation a subject

should see. The target application did not match the source application of the training data.

Thus, the adaptive policy may be failing to capture aspects of the tutoring context that

are important for determining which representation to show; the small pilot experiment in

Section 6.2.3 supports this. A future study should be performed that controls the frequency

of switching for both an alternating scheduling and an adaptive scheduling. A better policy

should also be learned from the data collected in Chapter 6. Alternatively, a new study could

be performed that randomly decides which representation to show. This random ordering of

representations for each subject would yield a wide variety of representation sequences and

tutoring contexts for those representations. This would increase the search space that the

modeling algorithm has to identify important contexts for each representation, potentially

leading to a better adaptive model learned.

In examining H4, subjects seeing only a single representation were compared to subjects

seeing multiple representations (scheduled either adaptively or alternating). Subjects seeing
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only illustrations learn the independence of x and y motion better and prefer the graphics

more than subjects seeing multiple representations and subjects seeing only graphs. While

this result seems counter to the literature on multiple graphical representations, it may be

that the subjects can all be considered novices since none of them have had college-level

physics. Some research suggests that novices benefit more from illustrations over graphs

[70].

However, some students do perform better with multiple representations. Males and

subjects with no calculus experience had larger learning gains on questions related to pro-

jectile motion when seeing multiple representations. Subjects with no calculus experience

also learned faster and had more of their decrease in error rate during tutoring described by

an increase in practice when seeing multiple representations. Subjects with no high school

physics preferred the post-problem discussions more when seeing multiple representations.

While this study found that subjects generally perform better with a single representa-

tion, the multiple representations were scheduled to be either alternating or adaptive. One

option for scheduling multiple representations that was not evaluated was concreteness fading

– transitioning from a concrete representation (e.g. illustrations) to an abstract representa-

tion (e.g. graphs). In a future study for natural-language based conceptual physics tutoring,

the single-representation condition should be compared to concreteness-fading scheduling of

multiple representations. Additionally, this study compared single and multiple graphical

representations within the context of a typed dialogue tutoring system. It is possible that

the added dimension of a typed dialogue affects the benefits of multiple graphical repre-

sentations. A future study should investigate this, perhaps by comparing a dialogue-only

condition, a multiple-graphical-representations-only condition, and a condition with both

dialogue and multiple graphical representations.

7.4 GENERALIZING RESULTS

While this work was consistent with some prior work, it also had findings that contradicted

other prior work. Thus, it is important to discuss how this work differs from prior work,
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to help explain why differences were found with prior work and to offer suggestions on the

generalizability of the findings from this work. The results presented in this dissertation

were found within the context of a natural language-based conceptual physics tutor, with

communication between subject and computer tutor occurring through text. Related work

cited in this dissertation differ on various points, such as involving fractions instead of physics

[91], or on physics test rather than tutoring [70]

Where findings presented here agree with this work suggest areas where the findings may

generalize. Where the findings disagree suggest there may be specific features of the domain,

tutoring environment, or context where the findings are specific to the domain, environment,

or context. Future work could investigate what it is that causes those differences to lead to

different findings.

In developing the models, we find that gender, pretest score, and correctness during

tutoring are important features for predicting which representation to use. These features

are also important for determining student performance on solving kinematics [69, 70], work-

energy [104], and electrical circuit [84] physics problems; and for a conceptual physics work-

energy tutor [25]. The diversity of physics topics and problem types (i.e. problem solving

and conceptual) suggests that these features are helpful across physics topics and problem

types. These features are also important for determining student affect in a spoken dialogue

computer tutor for computer literacy [42]; determining hint interactivity in a biology tutor

[11]; and in determining pedagogical strategies for a conceptual physics tutor [25]. This

suggests that the features are generally helpful for many different student modeling tasks.

Combined, these features are likely helpful for many modeling tasks.

We found that low pretesters perform better when seeing illustrations. This is consistent

with research on learning scientific principles [57], physics problem solving [70], and math-

ematical knowledge [83]. Given the diversity of subjects, the finding likely generalizes to

math and science topics in general.

For high pretesters, there does not appear to be a consistently good representation,

contrary to prior work [57]. Contrary to other work, we find that the frequency of switching

is not important [89, 91]. Instead, we find particular contexts when one representation is

better than another. These findings are in opposition to prior work, which suggests showing
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abstract representations such as graphs later in tutoring [57] or when the student is doing

well [104, 69] and showing illustrations when the student is performing poorly [81, 57]. These

opposite findings may be due to differences in domains (e.g. [57, 104]) or different situations

(e.g. problem solving [69]). More research is suggested to determine the cause of the different

results found in this dissertation and in prior research.
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APPENDIX A

BACKGROUND SURVEY

• Age

• Year in School

– Freshman

– Sophomore

– Junior

– Senior

– Other (please specify)

• Gender

– Female

– Male

• Academic Major

• Math SAT

• Reading SAT

• Writing SAT

• Did you take physics in high school?

– No

– Yes
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– Advanced Placement

• Have you taken (or are you taking) Calculus? If you’ve taken calculus in high school,

choose “Yes”.

– No

– Yes

• Do you plan to take physics some time during your college years?

– No

– Maybe

– Yes
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APPENDIX B

TEXTBOOK

B.1 INTRODUCTION

This brief textbook was designed to provide you with sufficient background knowledge of

physics to be able to learn something from this study. It assumes no prior college-level

physics knowledge.

A Note About Notation: For consistency’s sake, this textbook shows equations and num-

bers that use superscripts and subscripts the same way you would type them in this study.

For example, to enter an equation with exponents, you would indicate the superscripted

exponents using the carat character ˆ (shift-6):

a2 + b2 = c2 —¿ aˆ2 + bˆ2 = cˆ2

Similarly, to enter an equation with subscripts, you would indicate the subscripts using

adjacent [lower-case] letters:

vf = vi + at —¿ vf = vi + a*t

To enter an expression involving a square root, use sqrt:

c =
√

(a2 + b2) —¿ c = sqrt(aˆ2 + bˆ2)

v0 =
√

[KE0/(1/2m)] —¿ v0 = sqrt[KE0 / (0.5*m)]
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B.2 DISPLACEMENT

Displacement is a vector quantity representing the change in position of an object. Its

standard unit of measure is the meter (m) and is often represented by a variable name

beginning with d.

It is not the same as the scalar measure of distance traveled by a moving object. For

example, a swimmer who swims in a straight line from one end of a 100-m pool to the other

end and back swims a total distance of 200 m, but her displacement during that same time

interval is 0 m because she returns to her original position.

If a football player runs straight down the sideline from one end zone to the other, he

runs a total distance of 100 yds, and his displacement is 100 yds in the direction of the far

end zone. However, if he starts and ends at the same two points on the sideline as before,

but runs in a zig-zag or haphazard pattern all over the field instead of a straight line, his

displacement is still 100 yds downfield but he will have run a distance greater than 100 yds.

B.3 VELOCITY

Velocity is a vector quantity representing the rate of change in position of an object per

unit time. Its standard unit of measure is meters per second (m/s) and is often represented

by a variable name beginning with v.

The average velocity of a moving object is its displacement during a time interval di-

vided by the duration of the time interval. However, velocity in this study will refer to the

instantaneous velocity of an object, which is its displacement per unit time at a given point

in time (or, over an infinitesimal time interval).

For example, let’s say you throw a ball straight up in the air with an initial velocity of

5 m/s upwards. A short time later, its velocity will be less than 5 m/s upwards because

gravity will slow it down. At the point in time where the ball ceases to move upwards but

before it begins to fall back down, it has a velocity of 0 m/s. It will eventually land back in

your hands with a downward velocity of some magnitude.
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B.4 ACCELERATION

Acceleration is a vector quantity representing the rate of change in velocity of an object

per unit time. Its standard unit of measure is meters per second per second, or meters per

second squared (m/sˆ2) and is often represented by a variable name beginning with a.

The average acceleration of a moving object is its change in velocity during a time interval

divided by the duration of the time interval. However, acceleration in this study will refer

to the instantaneous acceleration of an object, which is its change in velocity per unit time

at a given point in time (or, over an infinitesimal time interval).

As with other vector variables, be careful to account for direction when dealing with

acceleration. For example, suppose the driver of a car moving east at 60 mph applies the

brakes. The car’s velocity vector will continue to be eastward until the car stops, but the

braking acceleration vector will be to the west, in the direction opposite the car’s displace-

ment. In other words, because it’s slowing down, the acceleration must be in the opposite

direction of velocity. Had they been in the same direction, then the car would be speeding

up.

Although some vectors change in magnitude or direction as an object moves (such as the

velocity on this and the previous page), most of the accelerations you will encounter in this

study will be constant.

B.5 GRAVITATIONAL ACCELERATION

One such constant acceleration used in this study is the acceleration due to gravity of a

moving object near the surface of the Earth. It can be shown experimentally that all objects

near the Earth’s surface have exactly the same downward acceleration, whenever the effects

of air resistance can be eliminated or otherwise ignored.

Unlike many other accelerations, this special constant is not represented by a variable

name beginning with a. Its magnitude is represented by the scalar variable g, and its direction

is always straight down (toward the center of the Earth): g = 9.8 m/sˆ2 downward
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B.6 RELATIONSHIPS BETWEEN QUANTITIES

The physical quantities of displacement, velocity, acceleration, and time are related through

a few equations. You do not need to memorize these equations; you will have access to them

when you need them.

Table B1: Equations and descriptions for one dimensional motion.

Equations Description

d = d0 + v0 * t + 1/2 * a * tˆ2 The displacement (d) at time (t) is depen-

dent on the initial displacement (d0), the ini-

tial velocity (v0), and the acceleration (a).

Usually initial velocity (v0) is zero.

d = d0 + v0 * t If there is no acceleration, the displacement

(d) at time (t) is dependent on just the ini-

tial displacement (d0) and the initial velocity

(v0).

v = v0 + a * t The velocity (v) at time (t) is dependent on

the initial velocity (v0) and the acceleration

(a).

v = (d1 - d0) / t The average velocity (v) depends on the

change in displacement (d1 - d0) over the

time it took for that change to take place.

vˆ2 = v0ˆ2 + 2 * a * d The velocity (v) depends on the initial veloc-

ity (v0), acceleration (a), and displacement

(d).

a = (v1 - v0) / t The average acceleration (a) depends on the

change in velocity (v1 - v0) over the time it

took for that change to take place.

Note: For this study, if the movement is in the vertical (y) direction, then the acceleration

108



(a) can be replaced with gravity (g) in the equations above.

B.7 TWO DIMENSIONAL MOTION

Since displacement, velocity, and acceleration are vector quantities, they have a direction.

For the problems you will be seeing in this study, there will be two main dimensions:

• horizontal (x-direction): motion left and right, such as a child running down the street

• vertical (y-direction): motion up and down, such as a child tossing a ball into the air

Horizontal motion and vertical motion are independent of each other. For example,

when a child tosses a ball into the air, its height is not affected by whether or not the child

is running. Similarly, whether or not a child tosses a ball into the air does not affect how far

the child runs.

Since gravity is a downward acceleration, it only acts in the vertical direction (y-direction)

not in the horizontal (x-direction).

Examples of two-dimensional motion include dropping an object, tossing an object up

and letting it fall, or kicking a football down the field.

In each of these cases, the objects are being pulled down by gravity, even if they were

initially going up (as in the child tossing the ball or a ball being kicked). In the third

example, of the football being kicked, it was given an initial velocity in both the x-direction

(horizontal) and y-direction (vertical), but gravity only acted in the y-direction.

Since the x-direction and y-direction act independently of each other, it is possible to

separate the x-component and y-component of the physics vectors and talk about them

separately. To refer to the:

• x-component, we use the subscript x

• y-component, we use the subscript y

So, to refer to the x-component of displacement, it would be d x. The y-component of initial

velocity would be v0 y.
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This two-dimensional motion is called projectile motion because there is a projectile. In

the case of a ball being tossed to someone else, the projectile would be the ball. On earth,

the ball will initially go upward, but will eventually arc downward. This is because gravity

is pulling it down. Had the ball been tossed in space, where gravity doesn’t exist, it will

continue going in the direction it was tossed – it won’t arc downward!.

B.8 RELATIONSHIPS BETWEEN QUANTITIES (2D)

Here we see how the equations change when considering two-dimensional motion. You do

not need to memorize these equations; you will have access to them when you need them.

Notice:

1. We’re repeating most of the same equations from before. There are fewer equations in

the Y-Direction because there will always be an acceleration, so the equations with no

acceleration aren’t in the Y-Direction table.

2. In the y-direction, acceleration is due to gravity for this study.

3. Time does not have an x-component or a y-component!
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X-Direction (Horizontal motion)

Table B2: Equations and descriptions for the horizontal component of projectile motion.

Equation Description

d x = v0 x * t + 1/2 * a x * tˆ2 The displacement (d x) at time (t) is depen-

dent on the initial velocity (v0 x) and the

acceleration (a x).

d x = v0 x * t If there is no acceleration, the displacement

(d x) at time (t) is dependent on just the

initial velocity (v0 x).

v x = v0 x + a x * t The velocity (v x) at time (t) is dependent

on the initial velocity (v0 x) and the acceler-

ation (a x).

v x = (d1 x - d0 x) / t The average velocity (v x) depends on the

change in displacement (d1 x - d0 x) over the

time it took for that change to take place.

v xˆ2 = v0 xˆ2 + 2 * a x * d x The velocity (v x) depends on the initial

velocity (v0 x), acceleration (a x), and dis-

placement (d x).

a x = (v1 x - v0 x) / t The average acceleration (a x) depends on

the change in velocity (v1 x - v0 x) over the

time it took for that change to take place.
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Y-Direction (Vertical motion)

Table B3: Equations and descriptions for the vertical component of projectile motion.

Equation Description

d y = v0 y * t + 1/2 * g * tˆ2 The displacement (d y) at time (t) is depen-

dent on the initial velocity (v0 y) and gravity

(g).

v y = v0 y + g * t The velocity (v y) at time (t) is dependent

on the initial velocity (v0 y) and gravity (g).

v y = (d1 y - d0 y) / t The average velocity (v y) depends on the

change in displacement (d1 y - d0 y) over the

time it took for that change to take place.

v yˆ2 = v0 yˆ2 + 2 * g * d y The velocity (v y) depends on the initial ve-

locity (v0 y), acceleration (g), and displace-

ment (d y).
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APPENDIX C

SATISFACTION SURVEY QUESTIONS

This appendix shows the satisfaction survey questions used.

Problem-Solving Graphics

1. I found the graphics easy to understand.

2. I thought that the graphics helped me understand the problem better than not

having them.

3. When solving the physics problem, I referred to the graphic displayed to help me

solve it.

4. The graphics displayed are the kind I like to see when solving a physics (or math or

science) problem.

Post-Problem Discussion

1. I thought working with the post-problem tutor was fun.

2. I felt in control of my conversations with the post-problem tutor.

3. I felt like the post-problem tutor adapted to my responses.

4. I was able to recover easily from errors in the post-problem tutor.

5. I found the information provided by the post-problem tutor to be clear.

6. I thought that the post-problem discussion was clear and natural.

7. I found it easy to learn from the post-problem tutor.
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8. My conversation with the post-problem tutor quickly led to me having a deeper

understanding of the material.

Post-Problem Discussion Graphics

1. I found the graphics easy to understand.

2. I liked that the graphics displayed during the discussion were the same as the graphics

during problem-solving.

3. I feel like the graphics helped me understand the concepts better than not having

them.

4. I thought that the graphics were well-integrated into the dialogues.

5. When learning physics (or math or science), I prefer seeing the kinds of graphics

that I saw.

6. If I had trouble understanding the graphics, the tutor explained them clearly.

Overall System

1. I am satisfied with my experience learning physics from this system.

2. I thought that working in this learning environment was just like working one-on-one

with a human tutor.

3. I would use this system again to continue learning about physics.

4. I would like to be able to use a system like this to learn about other topics.

5. I think this was a good way to learn about physics.

Open-Ended Questions

1. What did you like the *most* about the graphics and post-problem discussion?

2. What did you like the *least* about the graphics and post-problem discussion?

3. What would you like to see changed or improved about the graphics and post-

problem discussion?

4. Is there anything else you would like to say?
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APPENDIX D

TEST QUESTIONS FOR THE FIRST STUDY

This appendix shows the two tests for the first study, described in Chapter 4. In italics and

parentheses following each question is the tag for the type of question.

D.1 TEST A

This section shows the test questions for test A.

1. An orange rolls off the edge of a table and lands on the floor. The table is 1.50 m high

and the orange lands 0.6 m from the base of the table.

a. Which of the equations below would you use to determine how long it took for the

orange to fall? (numeric)

· dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

· v2y = v02
y + 2 ∗ g ∗ dy (in Andes: v yˆ2 = v0 yˆ2 + 2 * g * d y)

· vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

· g = (vy − v0y)/t (in Andes: g = (v y - v0 y) / t)

b. Which number would you use for v0 y? (numeric) · 0 m/s

· 1.50 m

· 0.6 m

· 9.8 m/sˆ2
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· That value is not known for this problem.

c. Assuming you have solved for time already (in part a), which of the equations below

would you use to determine how fast the orange was rolling as it rolled off the edge?

(numeric)

· vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

· v2x = v02
x + 2 ∗ ax ∗ dx (in Andes: v xˆ2 = v0 xˆ2 + 2 * a x * d x)

· dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

· dx = v0x ∗ t (in Andes: d x = v0 x * t)

d. What physics quantity represents change in velocity over time? (conceptual)

· displacement

· acceleration

· velocity

· None of the above

2. A child tosses a ball up and forward. The two graphs shown below show the vertical

and horizontal positions of the ball over time. Consider these graphs when answering

the following questions. Ignore the effects of air resistance.

a. Where is the magnitude of the vertical velocity largest? (graphs)

· Position A

· Position B

· Position C

· Position D

· All positions are equal
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b. Where is the magnitude of the horizontal velocity largest? (graphs)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

c. Where is the magnitude of vertical velocity smallest? (graphs)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

3. A child tosses a ball up and to the right (just like on the previous page). Now, the graphs

below show the vertical and horizontal velocities over time. Consider these graphs when

answering the following questions. Ignore the effects of air resistance.

a. Between time A and time B, what is the direction of vertical velocity? (graphs)

· up

· down

· left

· right

· the ball isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (graphs)
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· up

· down

· left

· right

· the ball isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity? (graphs)

· up

· down

· left

· right

· the ball isn’t moving vertically

d. Between time C and time D, what is the direction of vertical acceleration? (graphs)

· up

· down

· left

· right

· the ball isn’t moving vertically

e. Between time A and time B, what is the direction of horizontal velocity? (graphs)

· up

· down

· left

· right

· the ball isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?

(graphs)

· up

· down

· left

· right

· the ball isn’t moving horizontally
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4. A woman tosses her keys straight up into the air.

a. On the way up, after it leaves her hand, what is the direction of velocity? (con-

ceptual)

· Up

· Down

· Left

· Right

· There is not enough information to know.

b. On the way up, after it leaves her hand, what is the direction of acceleration?

(conceptual)

· Up

· Down

· Left

· Right

· There is not enough information to know.

c. On the way back down, what is the direction of velocity? (conceptual)

· Up

· Down

· Left

· Right

· There is not enough information to know.

d. On the way back down, what is the direction of acceleration? (conceptual)

· Up

· Down

· Left

· Right

· There is not enough information to know.

5. Suppose that a freely falling object were somehow equipped with a speedometer. By how

much would its speed reading increase with each second of fall? Ignore air resistance.

(numeric)
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· 19.6 m/s

· 9.8 m/s

· 4.9 m/s

· 0.0 m/s, the speed is constant

· None of the above.

6. A jogger is jogging west towards a water fountain.

a. As she approaches the fountain, she slows to a stop. What is the direction of accel-

eration? (conceptual)

· East

· West

· There is no acceleration

· None of the above

b. After getting a drink of water, she continues jogging west. What is her direction of

acceleration as she returns to her normal jogging speed? (conceptual)

· East

· West

· There is no acceleration

· None of the above

7. A boy has tossed an apple up and to the right. Consider the trajectory of the apple

shown in the figure when answering the following questions. Ignore the effects of air

resistance.
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a. Where is the magnitude of the vertical velocity largest? (illustrations)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

b. Where is the magnitude of the horizontal velocity largest? (illustrations)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

c. Where is the magnitude of vertical velocity smallest? (illustrations)
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· Position A

· Position B

· Position C

· Position D

· All positions are equal

8. A boy has tossed an apple up and to the right(just like on the previous page). Consider

these figures below when answering the following questions. The arrows represent the

velocity at that time. Ignore the effects of air resistance.

a. Between time A and time B, what is the direction of vertical velocity? (illustra-

tions)

· up

· down

· left

· right
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· the apple isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (illus-

trations)

· up

· down

· left

· right

· the apple isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity? (illustra-

tions)

· up

· down

· left

· right

· the apple isn’t moving vertically

d. Between time C and time D, what is the direction of vertical acceleration? (illus-

trations)

· up

· down

· left

· right

· the apple isn’t moving vertically

e. Between time A and time B, what is the direction of horizontal velocity? (illustra-

tions)

· up

· down

· left

· right

· the apple isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?
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(illustrations)

· up

· down

· left

· right

· the apple isn’t moving horizontally

9. Which of the following is the definition of acceleration? (conceptual)

· change in velocity over change in time

· change in speed over change in time

· change in displacement over change in time

· None of the above.

10. Is acceleration a vector or scalar variable? (conceptual)

· vector

· scalar

D.2 TEST B

This section shows the test questions for test B.

1. A toy car runs off the edge of a table that is 1.225 m high. The car lands 0.40 m from

the base of the table.

a. Which of the equations below would you use to determine how long it took for the

car to fall? (numeric)

· dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

· v2y = v02
y + 2 ∗ g ∗ dy (in Andes: v yˆ2 = v0 yˆ2 + 2 * g * d y)

· vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

· g = (vy − v0y)/t (in Andes: g = (v y - v0 y) / t)

b. Which number would you use for v0 y? (numeric)

· 0 m/s

· 1.225 m
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· 0.40 m

· 9.8 m/sˆ2

· That value is not known for this problem.

c. Assuming you have solved for time already (in part a), which of the equations below

would you use to determine how fast the orange was rolling as it rolled off the edge?

(numeric)

· vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

· v2x = v02
x + 2 ∗ ax ∗ dx (in Andes: v xˆ2 = v0 xˆ2 + 2 * a x * d x)

· dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

· dx = v0x ∗ t (in Andes: d x = v0 x * t)

d. What physics quantity represents change in velocity over time? (conceptual)

· displacement

· acceleration

· velocity

· None of the above

2. A cannonball was shot over a wall towards a castle. The two graphs below show the

vertical and horizontal positions of the ball over time. Consider these graphs when

answering the following questions. Ignore the effects of air resistance.

a. Where is the magnitude of the vertical velocity largest? (graphs)
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· Position A

· Position B

· Position C

· Position D

· All positions are equal

b. Where is the magnitude of the horizontal velocity largest? (graphs)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

c. Where is the magnitude of vertical velocity smallest? (graphs)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

3. A cannonball was shot over a wall towards a castle to the right (just like on the previous

page). Now, the graphs below show the vertical and horizontal velocities over time.

Consider these graphs when answering the following questions. Ignore the effects of air

resistance.
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a. Between time A and time B, what is the direction of vertical velocity? (graphs)

· up

· down

· left

· right

· the ball isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (graphs)

· up

· down

· left

· right

· the ball isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity? (graphs)

· up

· down

· left

· right

· the ball isn’t moving vertically

d. Between time C and time D, what is the direction of vertical acceleration? (graphs)

127



· up

· down

· left

· right

· the ball isn’t moving vertically

e. Between time A and time B, what is the direction of horizontal velocity? (graphs)

· up

· down

· left

· right

· the ball isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?

(graphs)

· up

· down

· left

· right

· the ball isn’t moving horizontally

4. A child tosses a bouncy ball straight into the air.

a. After it leaves his hand, on the way up, what is the direction of velocity? (con-

ceptual)

· Up

· Down

· Left

· Right

· There is not enough information to know.

b. After it leaves his hand, on the way up, what is the direction of acceleration?

(conceptual)

· Up

· Down
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· Left

· Right

· There is not enough information to know.

c. On its way back down, what is the direction of velocity? (conceptual)

· Up

· Down

· Left

· Right

· There is not enough information to know.

d. On its way back down, what is the direction of acceleration? (conceptual)

· Up

· Down

· Left

· Right

· There is not enough information to know.

5. Suppose that a hot air balloonist drops an apple from rest over the side while the balloon

is hovering stationary. By how much would the apple’s speed increase with each second

of fall? Ignore air resistance. (numeric)

· 19.6 m/s

· 9.8 m/s

· 4.9 m/s

· 0.0 m/s, the speed is constant

· None of the above.

6. A train is traveling north towards a train station.

a. As it arrives at the station, it slows to a stop. What is the direction of acceleration?

(conceptual)

· North

· South

· There is no acceleration

· None of the above
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b. When the train departs the station, it heads north to the next station. What is the

direction of acceleration as it speeds up? (conceptual)

· North

· South

· There is no acceleration

· None of the above

7. A child tosses a ball up and to the right. The two graphs shown below show the vertical

and horizontal positions of the ball over time. Consider these graphs when answering

the following questions. Ignore the effects of air resistance.
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a. Where is the magnitude of the vertical velocity largest? (illustrations)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

b. Where is the magnitude of the horizontal velocity largest? (illustrations)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

c. Where is the magnitude of vertical velocity smallest? (illustrations)

· Position A

· Position B

· Position C

· Position D

· All positions are equal

8. A child tosses a ball up and to the right (just like on the previous page). Consider these

figures below when answering the following questions. The arrows represent the velocity

at that time. Ignore the effects of air resistance.
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a. Between time A and time B, what is the direction of vertical velocity? (illustra-

tions)

· up

· down

· left

· right

· the apple isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (illus-
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trations)

· up

· down

· left

· right

· the apple isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity? (illustra-

tions)

· up

· down

· left

· right

· the apple isn’t moving vertically

d. Between time C and time D, what is the direction of vertical acceleration? (illus-

trations)

· up

· down

· left

· right

· the apple isn’t moving vertically

e. Between time A and time B, what is the direction of horizontal velocity? (illustra-

tions)

· up

· down

· left

· right

· the apple isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?

(illustrations)

· up
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· down

· left

· right

· the apple isn’t moving horizontally

9. Which of the following is the definition of acceleration? (conceptual)

· change in velocity over change in time

· change in speed over change in time

· change in displacement over change in time

· None of the above.

10. Is acceleration a vector or scalar variable? (conceptual)

· vector

· scalar
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APPENDIX E

FIRST STUDY PROBLEMS AND REFLECTION QUESTIONS

E.1 PROBLEM 1: KANGAROO

Problem Statement: A kangaroo can jump about 1.50 m straight up. What is the mag-

nitude of the take-off velocity?

Reflection Questions:

1. At what time was the kangaroo’s velocity greatest?

2. So we know when the kangaroo is moving fastest, but why is it slowing down?

3. What was the direction of acceleration?

The image shown during the problem-solving for the illustration condition can be found

in E1a; the graph version can be found in E1b.

E.2 PROBLEM 2: ARROW

Problem Statement: Suppose you aim a bow horizontally, directly at the center of a target

25.0 m away from you. If the speed of the arrow is 60 m/s, how far from the center of

the target will it strike the target? That is, find the vertical displacement of the arrow.

Assume there is no air friction.

135



Reflection Questions:

1. Why did the arrow hit below the target?

2. How can the archer hit the target?

3. Does the arrow experience any acceleration in the x-direction while in flight?

The image shown during the problem-solving for the illustration condition can be found

in E2a; the graph version can be found in E2b.
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(a) An illustration
of the situation,
shown only to
students in the
illustration condi-
tion.

(b) A graph of the situation, shown only
to students in the graph condition.

Figure E1: The two possible visual representations for the kangaroo problem are shown.
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(a) An illustration
of the situation,
shown only to
students in the
illustration condi-
tion.

(b) A graph of the situation, shown only
to students in the graph condition.

Figure E2: The two possible visual representations for the kangaroo problem are shown.
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APPENDIX F

SUPPLEMENTAL RESULT ANALYSIS FOR STUDY 1

F.1 TABLES FOR PRETEST SCORE AND STUDY CONDITION

ANOVAS

Table F1: Raw learning gain pretest-condition ANOVA results for the five test score mea-

sures. The scores are percentages out of the total number of questions for that measure (e.g.

out of nine for graphs).

Measure Pretest=High Pretest=Low Interaction p-val

Illus. Graph Illus. Graph

Overall 0.129 0.161 0.382 0.151 0.123

Numeric 0.100 0.050 0.400 0.067 0.438

Conceptual 0.135 0.183 0.379 0.167 0.090

Illustrations 0.167 0.222 365 0.222 0.228

Graphs 0.222 0.194 0.413 0.185 0.105
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Table F2: Normalized learning gain pretest-condition ANOVA results for the five test score

measures. The scores are percentages out of the total number of questions for that measure

(e.g. out of nine for graphs).

Measure Pretest=High Pretest=Low Interaction p-val

Illus. Graph Illus. Graph

Overall 0.556 0.668 0.614 0.316 0.094

Numeric 0.500 0.500 0.462 0.093 0.427

Conceptual 0.571 0.701 0.648 0.365 0.062

Illustrations 0.667 0.854 0.607 0.446 0.049

Graphs 0.750 0.688 0.612 0.329 0.013

Table F3: Raw learning gain pretest-condition ANOVA results for the five test score mea-

sures. All 29 subjects are included in this table. The scores are percentages out of the total

number of questions for that measure (e.g. out of nine for graphs).

Measure Pretest=High Pretest=Low Interaction p-val

Illus. Graph Illus. Graph

Overall -0.032 0.110 0.335 0.135 0.121

Problem-Solving -0.067 0.000 0.350 0.060 0.076

Conceptual -0.026 0.131 0.332 0.150 0.149

Illustrations 0.019 0.156 0.306 0.200 0.173

Graphs 0.019 0.156 0.375 0.189 0.183

140



Table F4: Normalized learning gain pretest-condition ANOVA results for the five test score

measures. All 29 subjects are included in this table. The scores are percentages out of the

total number of questions for that measure (e.g. out of nine for graphs).

Measure Pretest=High Pretest=Low Interaction p-val

Illus. Graph Illus. Graph

Overall 0.052 0.334 0.537 0.284 0.296

Problem-Solving 0.000 0.200 0.404 0.083 0.281

Conceptual 0.065 0.361 0.567 0.329 0.311

Illustrations 0.222 0.683 0.506 0.402 0.098

Graphs 0.194 0.550 0.560 0.330 0.173
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F.2 SPATIAL REASONING AND STUDY CONDITION ANOVAS

TABLES

Table F5: Raw learning gain spatial reasoning-condition ANOVA results for the five test

score measures. The scores are percentages out of the total number of questions for that

measure (e.g. out of nine for graphs).

Measure Spatial=High Spatial=Low Interaction p-val

Illus. Graph Illus. Graph

Overall 0.371 0.188 0.237 0.124 0.190

Problem-Solving 0.333 0.067 0.333 0.057 0.531

Conceptual 0.378 0.212 0.218 0.137 0.147

Illustrations 0.370 0.259 0.222 0.190 0.440

Graphs 0.444 0.241 0.222 0.143 0.510
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Table F6: Normalized learning gain spatial reasoning-condition ANOVA results for the five

test score measures. The scores are percentages out of the total number of questions for that

measure (e.g. out of nine for graphs).

Measure Spatial=High Spatial=Low Interaction p-val

Illus. Graph Illus. Graph

Overall 0.697 0.598 0.410 0.275 0.261

Problem-Solving 0.522 0.389 0.367 0.071 0.609

Conceptual 0.736 0.646 0.421 0.316 0.220

Illustrations 0.736 0.769 0.389 0.402 0.378

Graphs 0.775 0.673 0.378 0.240 0.184

Table F7: Raw learning gain spatial reasoning-condition ANOVA results for the five test

score measures. All 29 subjects are included in this table. The scores are percentages out of

the total number of questions for that measure (e.g. out of nine for graphs).

Measure Spatial=High Spatial=Low Interaction p-val

Illus. Graph Illus. Graph

Overall 0.211 0.147 0.116 0.109 0.481

Problem-Solving 0.178 0.029 0.160 0.050 0.389

Conceptual 0.218 0.170 0.108 0.120 0.521

Illustrations 0.210 0.206 0.133 0.167 0.601

Graphs 0.284 0.206 0.111 0.153 0.261
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Table F8: Normalized learning gain spatial reasoning-condition ANOVA results for the five

test score measures. All 29 subjects are included in this table. The scores are percentages

out of the total number of questions for that measure (e.g. out of nine for graphs).

Measure Spatial=High Spatial=Low Interaction p-val

Illus. Graph Illus. Graph

Overall 0.465 0.370 0.086 0.241 0.455

Problem-Solving 0.348 0.190 0.020 0.062 0.416

Conceptual 0.490 0.411 0.103 0.277 0.483

Illustrations 0.469 0.660 0.233 0.352 0.599

Graphs 0.539 0.577 0.160 0.251 0.675
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APPENDIX G

TEST QUESTIONS FOR THE SECOND STUDY

This appendix shows the two tests for the second study, described in Chapter 6. Each

question is also tagged for applicable knowledge components and is indicated in italics after

the question.

G.1 TEST A

This section shows the test questions for test A.

1. Two sailors are stranded at sea. To signal an approaching plane, they fire a flare straight

into the air. The graph shown below has the vertical position of the flare. Consider this

graph when answering the following questions. Ignore the effects of air resistance.
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a. Where is the magnitude of the vertical position largest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

b. Where is the magnitude of vertical position smallest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

c. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal

d. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal

2. A flare is shot straight up into the air (as on the previous page). Now, the graphs below

show the vertical position and vertical velocity over time. Consider these graphs when
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answering the following questions. Ignore the effects of air resistance.

a. Between time A and time B, what is the direction of vertical velocity?

· up

· down

· left

· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right
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· it isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

3. A soccer player kicks a ball into the air so that it goes over opposing player and lands

near a teammate down the field. The two graphs shown below show the vertical and

horizontal positions of the ball over time. Consider these graphs when answering the

following questions. Ignore the effects of air resistance.
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a. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

b. Where is the magnitude of the horizontal velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal
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c. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

4. A soccer player kicks a ball into the air so that it goes over opposing player and lands

near a teammate down the field (just like on the previous page). Now, the graphs below

show the vertical and horizontalpositions and velocitiesover time. Consider these graphs

when answering the following questions. Ignore the effects of air resistance.

a. Between time A and time B, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of verticalacceleration? (KC15,

KC23 )

· up
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· down

· left

· right

· it isn’t moving vertically

c. Between time C and time D, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time C and time D, what is the direction of verticalacceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

e. Between time A and time B, what is the direction of horizontal velocity?

· up

· down

· left

· right

· it isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?

(KC15, KC23 )

· up
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· down

· left

· right

· it isn’t moving horizontally

5. Suppose someone dropped a ball from the top of a tall building (e.g. the Cathedral of

Learning). By how much would the balls speed increase with each second of fall? Ignore

air resistance. (KC24 )

· 19.6 m/s

· 9.8 m/s

· 4.9 m/s

· 0.0 m/s, the speed is constant

· None of the above.

6. During baseball practice, an outfielder throws the baseball perfectly horizontally to see

how far it would go before it lands.

a. When did the baseball begin to fall? (KC24 )

· The moment it left his hand

· A few moments after it left his hand

· It depends on how fast it was thrown

· It never falls

b. If the ball hit the ground in 2.7 seconds, would it land in more or less time if he had

thrown it softer? (KC32 )

· More time

· Less time

· Same amount of time

· It is not possible to tell with the information given

c. If the pitcher were standing on the top of the Grand Canyon and threw the baseball,
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when would the ball be falling straight down? (KC25 )

· Near the end of the fall/throw

· Itll never fall straight down

· It depends on how fast it was thrown

d. In what direction was gravity working? (KC24 )

· Horizontally

· Vertically

· Both horizontally and vertically

· There was no gravity in this situation

7. A woman tosses her keys straight up into the air.

a. On the way up, after it leaves her hand, what is the direction of velocity? (KC28 )

· up

· down

· left

· right

· There is not enough information to know.

b. On the way up, after it leaves her hand, what is the direction of acceleration?

(KC15 )

· up

· down

· left

· right

· There is not enough information to know.

c. On the way back down, what is the direction of velocity?(KC28 )

· up

· down
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· left

· right

· There is not enough information to know.

d. On the way back down, what is the direction of acceleration? (KC15 )

· up

· down

· left

· right

· There is not enough information to know.

e. On the way up, when were the keys moving fastest? (KC28 )

· Just after leaving her hand

· Around the midpoint of the ascent

· At the top of the toss

· There is not enough information to know

8. An orange rolls off the edge of a table and lands on the floor. The table is 1.50 m high

and the orange lands 0.6 m from the base of the table.

a. Which of the equations below would you use to determine how long it took for the

orange to fall? (KC32 )

·dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

·v2y = v02
y + 2 ∗ g ∗ dy (in Andes: v yˆ2 = v0 yˆ2 + 2 * g * d y)

·vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

·g = (vy − v0y)/t (in Andes: g = (v y - v0 y) / t)

b. Which number would you use for v0 y?

· 0 m/s

· 1.50 m

· 0.6 m
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· 9.8 m/sˆ2

· That value is not known for this problem.

c. Assuming you have solved for time already (in part a), which of the equations below

would you use to determine how fast the orange was rolling as it rolled off the edge?

(KC32, KC25 )

· vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

· v2x = v02
x + 2 ∗ ax ∗ dx (in Andes: v xˆ2 = v0 xˆ2 + 2 * a x * d x)

· dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

· dx = v0x ∗ t (in Andes: d x = v0 x * t)

d. When does the orange begin falling? (KC24 )

· Immediately after it leaves the table

· A few moments after it leaves the table

· It depends on how fast it was rolling

· It never falls

9. A young child was throwing a block straight up into the air to see if she could hit the

ceiling. Consider the trajectory of the block shown in the figure when answering the

following questions. Ignore the effects of air resistance.
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a. Where is the magnitude of the vertical position largest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

b. Where is the magnitude of vertical position smallest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

c. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal

d. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal

10. A child is tossing a block up into the air (just like on the previous page). Consider these

figures below when answering the following questions. Ignore the effects of air resistance.
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a. Between time A and time B, what is the direction of vertical velocity?

· up

· down

· left

· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically
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11. Two kids are playing a game of water balloon catch. Consider the trajectory of the water

balloon shown in the figures when answering the following questions. Ignore the effects

of air resistance.
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a. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

b. Where is the magnitude of the horizontal velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

c. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

12. Two kids are playing a game of water balloon catch (just like on the previous page).

Consider these figures below when answering the following questions. Ignore the effects

of air resistance.
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a. Between time A and time B, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of verticalacceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

c. Between time C and time D, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time C and time D, what is the direction of verticalacceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically
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e. Between time A and time B, what is the direction of horizontal velocity?

· up

· down

· left

· right

· it isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?

(KC15, KC23 )

· up

· down

· left

· right

· it isn’t moving horizontally

G.2 TEST B

This section shows the test questions for test B.

1. To entertain his baby, a father playfully tosses the child straight up. The graph shown

below has the vertical position of the baby. Consider this graph when answering the

following questions. Ignore the effects of air resistance.
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a. Where is the magnitude of the vertical position largest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

b. Where is the magnitude of vertical position smallest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

c. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal
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d. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal

2. A baby is tossed up into the air (as on the previous page). Now, the graphs below

show the vertical position and vertical velocity over time. Consider these graphs when

answering the following questions. Ignore the effects of air resistance.

a. Between time A and time B, what is the direction of vertical velocity?

· up

· down

· left
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· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

3. A medieval army catapults an explosive device at an approaching army. The two graphs

shown below show the vertical and horizontal positions of the explosive device over time.

Consider these graphs when answering the following questions. Ignore the effects of air

resistance.
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a. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

b. Where is the magnitude of the horizontal velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal
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c. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

4. A medieval army catapults an explosive device at an approaching army (just like the

previous page). Now, the graphs below show the vertical and horizontalpositions and ve-

locitiesover time. Consider these graphs when answering the following questions. Ignore

the effects of air resistance.

a. Between time A and time B, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of verticalacceleration? (KC15,

KC23 )

· up
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· down

· left

· right

· it isn’t moving vertically

c. Between time C and time D, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time C and time D, what is the direction of verticalacceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

e. Between time A and time B, what is the direction of horizontal velocity?

· up

· down

· left

· right

· it isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?

(KC15, KC23 )

· up
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· down

· left

· right

· it isn’t moving horizontally

5. Suppose that a hot air balloonist drops an apple from rest over the side while the balloon

is hovering stationary. By how much would the apple’s speed increase with each second

of fall? Ignore air resistance. (KC24 )

· 19.6 m/s

· 9.8 m/s

· 4.9 m/s

· 0.0 m/s, the speed is constant

· None of the above.

6. During football practice, the quarterback throws a football down the field to see how far

it would go before it lands. He threw the football exactly horizontally.

a. When did the football begin to fall? (KC24 )

· The moment it left his hand

· A few moments after it left his hand

· It depends on how fast it was thrown

· It never falls

b. If the ball hit the ground in 2.7 seconds, would it land in more or less time if he had

thrown it softer? (KC32 )

· More time

· Less time

· Same amount of time

· It is not possible to tell with the information given

c. If the quarterback were standing at the very top of the football stadium and threw
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the football, when would the ball be falling straight down? (KC25 )

· Near the end of the fall/throw

· Itll never fall straight down

· It depends on how fast it was thrown

d. In what direction was gravity working? (KC24 )

· Horizontally

· Vertically

· Both horizontally and vertically

· There was no gravity in this situation

7. A child tosses a bouncy ball straight into the air.

a. After it leaves his hand,on the way up, what is the direction of its velocity?

(KC28 )

· up

· down

· left

· right

· There is not enough information to know.

b. After it leaves his hand,on the way up, what is the direction of its acceleration?

(KC15 )

· up

· down

· left

· right

· There is not enough information to know.

c. On the way back down, what is the direction of velocity? (KC28 )

· up
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· down

· left

· right

· There is not enough information to know.

d. On the way back down, what is the direction of acceleration? (KC15 )

· up

· down

· left

· right

· There is not enough information to know.

e. On the way up, when were the keys moving fastest? (KC28 )

· Just after leaving his hand

· Around the midpoint of the ascent

· At the top of the toss

· There is not enough information to know

8. A toy car runs off the edge of a table that is 1.225 m high. The car lands 0.40 m from

the base of the table.

a. Which of the equations below would you use to determine how long it took for the

car to fall? (KC32 )

·dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

·v2y = v02
y + 2 ∗ g ∗ dy (in Andes: v yˆ2 = v0 yˆ2 + 2 * g * d y)

·vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

·g = (vy − v0y)/t (in Andes: g = (v y - v0 y) / t)

b. Which number would you use for v0 y?

· 0 m/s

· 1.50 m
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· 0.6 m

· 9.8 m/sˆ2

· That value is not known for this problem.

c. Assuming you have solved for time already (in part a), which of the equations below

would you use to determine how fast the car was rolling as it rolled off the edge?

(KC32, KC25 )

· vy = v0y + g ∗ t (in Andes: v y = v0 y + g * t)

· v2x = v02
x + 2 ∗ ax ∗ dx (in Andes: v xˆ2 = v0 xˆ2 + 2 * a x * d x)

· dy = v0y ∗ t + 1/2 ∗ g ∗ t2 (in Andes: d y = v0 y * t + 1/2 * g * tˆ2)

· dx = v0x ∗ t (in Andes: d x = v0 x * t)

d. When does the car begin falling? (KC24 )

· Immediately after it leaves the table

· A few moments after it leaves the table

· It depends on how fast it was rolling

· It never falls

9. In a game of tennis, the player serving the ball tossed the tennis ball straight into the

air before hitting it with her racket. Consider the trajectory of the tennis ball shown in

the figure when answering the following questions. Ignore the effects of air resistance.
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a. Where is the magnitude of the vertical position largest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

b. Where is the magnitude of vertical position smallest?

· Position A

· Position B

· Position C

· Position D

· All positions equal

c. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal

d. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions equal

10. The server in a game of tennis tosses the ball into the (just like on the previous page).

Consider these figures below when answering the following questions. Ignore the effects
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of air resistance.
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a. Between time A and time B, what is the direction of vertical velocity?

· up

· down

· left

· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

c. Between time C and time D, what is the direction of vertical velocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time A and time B, what is the direction of vertical acceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically
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11. An army is practicing firing its cannon. They fire the cannon at a target that’s 75 m

away. Consider the trajectory of the cannon ball shown in the figures when answering

the following questions. Ignore the effects of air resistance.
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a. Where is the magnitude of the vertical velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

b. Where is the magnitude of the horizontal velocity largest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

c. Where is the magnitude of vertical velocity smallest? (KC28 )

· Position A

· Position B

· Position C

· Position D

· All positions are equal

12. An army is practicing firing its cannon by firing it at a target that’s 75 m away. (just

like on the previous page). Consider these figures below when answering the following

questions. Ignore the effects of air resistance.
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a. Between time A and time B, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

b. Between time A and time B, what is the direction of verticalacceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically

c. Between time C and time D, what is the direction of verticalvelocity?

· up

· down

· left

· right

· it isn’t moving vertically

d. Between time C and time D, what is the direction of verticalacceleration? (KC15,

KC23 )

· up

· down

· left

· right

· it isn’t moving vertically
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e. Between time A and time B, what is the direction of horizontal velocity?

· up

· down

· left

· right

· it isn’t moving horizontally

f. Between time A and time B, what is the direction of horizontal acceleration?

(KC15, KC23 )

· up

· down

· left

· right

· it isn’t moving horizontally
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APPENDIX H

TUTORING PROBLEMS FOR THE SECOND STUDY

This appendix shows the four tutoring problems and their reflection questions for the second

study, described in Chapter 6.

H.1 PROBLEM 1: SUPERTANKER

Problem statement: A modern supertanker is gigantic: 1200 to 1300 ft long with a 200

ft beam. Fully loaded, it chugs along at about 16.0 knots (8.33 m/s). It can take 1200 s to

bring it to a full stop. Calculate the corresponding acceleration in m/sˆ2 and determine the

displacement of the tanker as it slows to a stop.

Reflection Questions:

1. Is the acceleration pointing in the same direction or in the opposite direction of the

supertanker’s motion?

2. If the acceleration in this problem were doubled, how would the displacement change?

Would it be more, less, or the same?
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Figure H1: The illustration presented with the supertanker problem statement.

H.2 PROBLEM 2: KANGAROO

Problem statement: A kangaroo can jump about 1.50 m straight up. What is the mag-

nitude of the take-off velocity?

Reflection Questions:
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Figure H2: The graph presented with the supertanker problem statement.

1. At what time during the jump (from the moment it leaves the ground to the moment it

reaches the top of the jump) is the kangaroo moving fastest?

2. What is the direction of acceleration

a. while the kangaroo is going up?

b. while the kangaroo is going down?

c. at the peak of the jump?

H.3 PROBLEM 3: ARROW

Problem statement: Suppose you aim a bow horizontally, directly at the center of a target

25.0 m away from you. If the speed of the arrow is 60 m/s, how far from the center of the

target will it strike the target? That is, find the vertical displacement of the arrow while it

is in flight. Assume there is no air friction.

Reflection Questions:

1. Instead of hitting the center of the target, the arrow was too far above or below? Why?
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Figure H3: The illustration presented with the kangaroo problem statement.

2. What variable can the archer change so that he would hit the target?

3. Did the arrow experience an acceleration in the x-direction after being released from the
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Figure H4: The graph presented with the kangaroo problem statement.

bow? Why not?

H.4 PROBLEM 4: STONE

Problem statement: A red colored stone is thrown horizontally at a velocity of 5.0 m/s

from the roof of a 35.0 m building and later hits the ground below. What is the red stone’s

horizontal displacement? Ignore the effects of air friction.

Reflection Questions:

1. For this discussion, we will consider a new situation where the person threw the stone

with a larger initial horizontal velocity. If the stone is thrown with a larger horizontal

initial velocity, what happens to the time spent in the air?

2. In the original problem given, when will the direction of the stone’s fall be straight down?
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Figure H5: The illustration presented with the arrow problem statement.

192



Figure H6: The graph presented with the arrow problem statement.
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Figure H7: The illustration presented with the stone problem statement.
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Figure H8: The graph presented with the stone problem statement.
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