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The interferon regulatory factors (IRF) are a family of transcription factors that control intrinsic 

cellular responses to viral infections. The regulation of target gene expression by IRF proteins is 

mediated by binding to interferon-stimulated response elements (ISRE) DNA motifs located in 

the 5’ regulatory region of Interferon-stimulated genes (ISGs). Interferon regulatory factor 4 

(IRF4), a hematopoietic-specific transcription factor, is a potential dual regulator of ISRE-

mediated gene expression although its transcriptional signature is still poorly understood. 

Primary effusion lymphoma (PEL), a rare B-cell malignancy is characterized by the expression 

of high level of cellular IRF4, a disrupted B-cell transcriptional program, and latent infection 

with Kaposi’s sarcoma-associated herpesvirus (KSHV). The goal of this study is to elucidate the 

ability of IRF4 to alter the transcriptional expression of ISRE and ISRE-like sequence regulated 

genes in the absence of B-cell specific binding partners. Small-scale gene expression assays 

showed that IRF4 is capable of differentially regulating the expression of ISRE-responsive 

genes. The positive regulation of IRF4 target genes (ISG60 and Cig5) was shown to be in 

response to direct binding of IRF4 to chromatin regions corresponding to ISRE-motifs located at 

the 5’ promoter regulator regions of ISG60 and Cig5. To understand the role of IRF4 beyond 

cellular gene expression, we tested KSHV-encoded latency associated genes that modulated 

IRF4-mediated gene expression. We identified the viral FLICE inhibitory protein (vFLIP) as an 

enhancer of IRF4-mediated ISG induction and showed that this function is dependent on the 

activation of NF-B. Finally, we examined the role of IRF4 in the regulation of lytic gene 

expression. The replicator and transcription activator (RTA) protein, is a sequence specific 

transcription factor that regulates the expression of a subset of early genes through binding 

ISRE-like motifs on their promoters. Studies aimed at understanding the consequences of IRF4 
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expression in PEL cells showed that IRF4 acts as a negative regulator of lytic gene expression by 

inhibiting RTA expression and RTA-mediated gene transactivation. These data support a model 

in which IRF4 mediates an antiviral cellular response, inhibiting lytic replication of KSHV while 

contributing to the transformative effects of KSHV by promoting viral latency. 
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1.0  INTRODUCTION 

1.1 INTERFERON SIGNALING 

1.1.1 Viruses and Interferon 

The innate immune responses to pathogen invasion are non-specific responses shared amongst 

several different cell types. This biphasic signaling cascade is summarized in Figure 1-1, and 

consists of an early phase characterized by the synthesis of type I interferons (IFNs) and a 

secondary phase or late response to secreted IFNs. The early phase of innate immune signaling is 

initiated by the recognition of virus-specific pathogen-associated molecular patterns (PAMPs) 

and is mediated by pattern-recognition receptors (PRRs). In humans, these include the nine 

membrane-spanning toll-like receptors (TLR), TLR1-9, the cytoplasmic retinoic-acid-inducible 

gene I (RIG-I)-like receptors (RLR), RIG-I and MDA5, various cytoplasmic and nuclear DNA 

sensors, and inflammasome activators. Engagement of TLRs initiates a signaling cascade 

mediated by either TIR-domain-containing adaptor protein-inducing IFNβ (TRIF) and the TRIF-

related adaptor molecule (TRAM), or MyD88 and Toll/IL-1R (TIR) homology domain-

associated protein (TIRAP). The activation of the RLRs engages the adaptor mitochondrial 

antiviral-signaling protein (MAVS). These adaptors stimulate the activation of signaling 

complexes like the Tumor Necrosis Factor (TNF) receptor associated factors -3 and -6 (TRAF3 
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and TRAF6), which further relay the signaling cascade by activating the kinases, TANK-binding 

kinase 1 (TBK1) and the inhibitor of kappa B (IB) kinase complex. Kinase activity is essential 

for the activation of transcription factors such as the interferon regulatory factors (IRF) and 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) required for the induction 

and secretion of type I IFNs, IFN and IFN, as well as select pro-inflammatory cytokines and 

IFN stimulated genes (ISGs). [1]  

 

Type I IFNs exert their pleiotropic antiviral effects by autocrine and paracrine activation 

of the type I IFN receptors, IFNAR1 and IFNAR2, located on the cellular membrane and are 

considered to be the late phase of viral recognition where the antiviral signals are amplified. 

Activation of IFNAR1/2 triggers the Janus kinase – signal transduction and activators of 

transcription (JAK-STAT) signaling pathway. Auto-phosphorylation of the receptor tyrosine 

kinases, Janus kinase 1 (JAK1) and TYK2, allows for the recruitment of the signal transduction 

and activators of transcription (STAT) proteins, STAT1 and STAT2, which, upon being 

phosphorylated, associate with the p48 subunit of the ISGF3 complex, IRF9, to form the active 

ISGF3 signal transduction complex. ISGF3 then translocates to the nucleus, binds to the 

interferon-stimulated response elements (ISRE) commonly located on the promoters of IFN-

stimulated genes (ISGs), and induces mRNA transcription. Efficient innate immune signaling 

event is required for clearance of viral infections through antiviral responses that include the 

inhibition of cellular and viral gene translation, the inhibition of viral replication, and the 

promotion of viral nucleic acid recognition, and the death of the infected cell; moreover, these 

responses are paramount for the establishment of proper adaptive immune responses that further 

mediate viral clearance and provide long lasting immunity to subsequent infection. [2] 
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Increasing evidence suggests that innate immune responses are not only important for the 

recognition of foreign pathogens, but might also play an important role in cellular 

transformation, tumor progression, and tumor immune evasion [3]. A clear understanding of the 

mechanisms by which viruses counter innate immune responses and the function of antiviral 

genes would not only be beneficial for the development of new therapeutic antiviral strategies, 

but might also contribute to a better understanding of the role of innate immune signaling 

components in malignant transformation. This would ultimately allow us to exploit these 

signaling pathways for the development of novel immunotherapies for the treatment of cancer.  
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Figure 1-1. Interferon Production and Signaling Pathway. 

  

1.1.2 Interferon Regulatory Factors 

The IFN regulatory factor (IRF) proteins are central mediators of the type I IFN secretion and 

signaling pathways, although their function extends to the regulation of development and 

Schematic representation of the biphasic interferon production and signaling pathway. The early phase of this 

pathway is characterized by the production of IFN and the induction of a subset of ISGs known as VSIGs. 

The late phase corresponds to the response to IFN stimulus and the further induction of VSIGs and interferon-

responsive genes.  



 5 

maturation of immune cells, amongst other biological processes [3]. To date, nine members of 

the IRF family of proteins, IRF1 through IRF9, have been identified in mammals. Although the 

specific expression and function of the IRF proteins varies between each member (Table 1), they 

all share common structural domains. In their amino (N)-terminus, they possess a highly 

conserved DNA-binding domain (DBD) containing a pentad of tryptophan residues required for 

binding to DNA. The carboxy (C)-terminus of IRF proteins are characterized by the presence of 

the IRF-association domain (IAD), which mediates protein interactions between IRF proteins or 

other transcription factors and an autoinhibitory element (AIE), which controls the activation of 

IRF proteins following conformational changes in response to serine/threonine phosphorylation.  

The function of IRF proteins depends on their expression within the infected tissue, post-

translational modifications, and localization to the nucleus. While the expression of a few IRF 

proteins is constitutive across tissue types (IRF3, IRF6, IRF9), the expression of IRF1, IRF2, 

IRF4, IRF5, IRF7, IRF8, and IRF9 proteins is differentially induced following infection, 

mitogenic stimuli, or DNA damage [4]. Following the induction of expression, these proteins are 

then localized to the cytoplasm where they exist as inactive monomers. Once IRFs have been 

phosphorylated at crucial C-terminal residues, IRF proteins form homo- and heterodimers with 

other transcription factors (IRFs, NFAT, PU.1, STAT1, STAT2, etc), and translocate to the 

nucleus. Following translocation, IRF dimers recognize and bind specific cis-elements located in 

promoter regulatory regions of target genes exerting distinct transcriptional regulatory functions 

either in cooperation or in competition with other factors. The IRF DBD recognition of the ISRE 

consensus sequence, 5’-GAAANNGAAA-3’, is affected the transcriptional activity of IRFs are 

the nucleotides that flank this core element and the dimerization between IRFs and other 

transcription factors [5,6]. IRF expression, activation, and function help shape the intricate 
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cellular responses to pathogen infection, mitogenic stimuli, and stress. Thus, further investigation 

is required to better understand the molecular basis of IRF4 expression and activity and their role 

in maintaining cellular homeostasis.  
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Table 1. Human Interferon Regulatory Factor Expression and Function. 

Interferon 

Regulatory 

Factor 

Expression 
Tissue 

Specificity 
Function 

Disease 

association 

IRF-1 Inducible Most tissue types 

Promotes antiviral and 

antibacterial immune 

responses; tumor supressor 

Susceptibility to viral 

infections and cancer 

IRF-2 
Constitutive and 

inducible by IFN 
Most tissue types 

Attenuates type I IFN 

responses; regulates 

lymphocyte differentiation 

Dermatitis 

IRF-3 Constitutive Most tissue types 

Promotes antiviral and 

antibacterial immune 

responses 

Susceptibility to viral 

infections 

IRF-4 
Inducible by 

mitogenic stimuli 

Lymphocytes and 

adipose tissues 

Controls lymphocyte 

maturation and 

differentiation; regulates lipid 

handling; tumor suppressor; 

promotes oncogenesis 

Lymphoproliferative 

diseases 

IRF-5 Inducible Most tissue types 

Promotes antiviral and 

antibacterial immune 

responses; tumor suppressor 

Susceptibility to viral 

infections; cellular 

transformation 

IRF-6 Constitutive Epithelial 
Regulates epithelial 

development 

Cleft palate; Van der 

Woude syndrome 

and popliteal 

pterygium syndrome 

IRF-7 

Inducible in most 

cell types; 

constitutive in 

pDCs 

Most tissue types 

Promotes antiviral and 

antibacterial immune 

responses; tumor supressor 

Susceptibility to viral 

infections; cellular 

transformation 

IRF-8 
Constitutive and 

inducible 
Lymphocytes 

Controls lymphocyte 

maturation and differentiation 

an type I IFN secretion 

Lymphoproliferative 

diseases 

IRF-9 
Constitutive and 

inducible by IFN 
Most tissue types 

Promotes antiviral and 

antibacterial immune 

responses; tumor supressor 

Susceptibility to viral 

infections 
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1.1.2.1 Interferon Regulatory Factor 4  

 

IRF4 (Uniprot: Q15306) is a 451 amino acid, multidomain protein, belonging to the IRF family 

of transcription factors. In the N-terminus, it has the characteristic helix turn helix DNA-binding 

domain (aa 20-137) containing the pentad of tryptophan residues (W27, W42, W54, W74, and 

W93), followed by a functional regulatory domain at the C-terminus composed of a proline-rich 

domain (PRO) (aa 150–237), the IAD domain (aa 245- 412), and an AIE (aa 412–450) domain 

that regulates IRF4 activation (Figure 1-2). Expression of IRF4 (also known as: MUM1, Pip, 

ICSAT, LSIRF) was initially thought to be restricted to B- and T-lymphocytes although recent 

evidence shows that IRF4 is also expressed in dendritic cells and macrophages [7] and adipose 

tissue [8,9]. Unlike other IRFs, which are involved in the secretion and response of type I IFN 

and type II IFN, the most characteristic function of IRF4 is the regulation of lymphocyte 

maturation.  

 

 

Figure 1-2. IRF4 Functional Domains. 

 

As previously described, the function of IRF4 is determined by the careful regulation of  

 

Studies with mouse deficient in IRF4 and IRF8 (Irf4,8-/-) expression were shown to have 

a block in the transition from pre-B to resting B-cell development [10], suggesting that IRF4 

plays an important role in early B-cell development. It has now been shown that IRF4 controls 

Schematic representation of the IRF4 functional domains. IRF4 has an N-terminal DNA-binding domain (DBD) and 

nuclear localization signal (NLS). The C-terminus of the IRF4 protein is characterized by having a proline rich 

domain (PRO), an IRF association domain (IAD), and an autoinhibitory element (AIE). IRF4 is regulated by 

phosphorylation at serine (purple) and tyrosine (pink) residues.  
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the downregulation of the pre-BCR receptor through the suppression of surrogate light chain 

expression [11], the inhibition of pre-B cell proliferation [12], and Ig light chain transcription 

[7,13]. Studies using IRF4 deficient (Irf4-/-) mice showed normal early development of B- and 

T-lymphocytes, yet fail to develop a mature B-cell repertoire and eventually develop 

lymphoadenopathies. Furthermore, these mice do not form germinal centers upon antigen 

stimulation [14]. IRF4 expression has also been shown to be crucial for the control of PRDM-1 

expression, which inactivates BCL-6 and PAX5 expression, marking the transition from resting 

B-cells to activated plasma cells [15].  

The distinct transcriptional regulatory function of IRF4 is dictated by protein expression, 

the post-translational modifications that control its activation, and the interactions of IRF4 with 

partnering transcription factors. B-cell receptor engagement, CD40 cross-linking, and 

interleukin-4 (IL-4) stimulation [14,16,17] activate NF-B and c-Myc and results in the 

induction of IRF4 transcription [16,18]. Post-transcriptional regulation of IRF4 also plays a 

crucial role in the functions of IRF4 expression. Direct binding of immunophilin FK506 binding 

protein 52 (FKBP52) results in the structural modification of IRF4 and prevention of IRF4/PU.1 

dimer formation and DNA binding [19]. Furthermore, analysis of the IRF4 amino acid sequence 

predicts 21 amino acid residues that can be post-translationally modified by phosphorylation or 

covalent modifications, suggesting the importance of these regulatory modifications controlling 

IRF4 function. To date, four residues have been identified as being important for the 

phosphorylation of IRF4 and its transcriptional activation. One study identified ROCK2 as 

mediating the serine phosphorylation of IRF4 at residues 446 and 447 in T cells (Figure 1-2, 

purple circles) [20]. Other studies demonstrated that tyrosine phosphorylation at residues 61 and 

124 (Figure 1-2, pink circles) was also essential for IRF4 transcriptional activity. Interestingly, 
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although c-Src was shown to stimulate IRF4 phosphorylation and transcriptional activation, the 

authors speculate that there are likely other kinases which are responsible for the direct 

phosphorylation of IRF4 at these tyrosine residues [21].   The potential ubiquitination and 

acetylation of IRF4 and its consequences in regulating protein stability and function still remain 

to be identified. 

The differential role of IRF4 in transcription modulation stems from the interaction 

between IRF4 and other transcription factors. IRF4 possesses weak DNA binding activity, and 

thus, transcriptional regulation and DNA recognition is defined by the proteins that interact with 

IRF4 [22]. The better characterized binding partners of IRF4 are the Ets family of transcription 

factors, PU.1 and Spi-B, which can interact with the IAD of IRF4 forming ets/IRF4 dimers [13]. 

This allows IRF4 to bind DNA in a sequence specific manner by recognizing ets/IRF composite 

elements (EICE) on target gene promoters (5’-GGAANNGAAA-3’). Binding to EICE sequences 

found in the Igk and Iglight chain enhancer in B cells and the ISG15 promoter leads to positive 

activation of transcription of these genes [13,23,24]. On the contrary, IRF4 has been shown to 

dimerize with IRF8 resulting in binding to ISRE elements, negatively regulating the activation of 

the ISG15 promoter [25]. Interestingly, expression of IRF4 resulted in weak activation of ISG15 

promoter, suggesting a potential for positive ISG regulation by IRF4 [23]. These studies 

highlight the diverse functions of IRF4 in regulation of transcription and the importance of 

balanced IRF4 activity in maintaining homeostasis and the potential regulation of innate immune 

responses. 

1.1.2.2 Association of IRF4 with Lymphoproliferative Disease 
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IRF4 expression and function has been associated with a variety of diseases. It has been shown 

that IRF4 is involved in the pathogenesis of autoimmune diseases (reviewed in [26]), negative 

regulation of diet-induced inflammation [8,9], and various lymphoproliferative diseases. While 

IRF4 expression has been found to negatively regulate the proliferation of BCL-6 associated 

malignancies [27,28], there is vast evidence that also implicates IRF4 as a mediator of 

oncogenesis [15,18,29-33]. In particular, IRF4 was first identified during the characterization of 

a chromosomal translocation commonly found in multiple myeloma (MM) cells, a plasmablastic 

malignancy. This translocation, (6;14)(p25;q32), apposes the IgH locus with the IRF4 gene 

resulting in IRF4 overexpression [31], thus enhancing transcription of c-Myc and deregulation of 

cell cycle regulatory proteins. The oncogenic potential of IRF4 in MM is further illustrated by a 

study showing that functional silencing of IRF4 leads decreased cell viability [18] and the 

transformation of Rat-1 cells by ectopic IRF4 expression [34].  

Interestingly, high IRF4 expression has been described in various lymphoproliferative 

diseases associated with latent viral infections and is thought to be involved in the deregulation 

of cellular functions. Human T-lymphotropic virus 1 (HTLV-1) infected adult T-cell leukemia 

(ATL) [35,36], Epstein-Barr Virus (EBV) transformation of B cells [37-40], and primary 

effusion lymphoma (PEL) [29] are all associated with high levels of IRF4 protein expression. 

The HTLV-1-encoded oncogene, Tax-1, is a potent NF-B activator [41] and has been shown to 

induce the expression of IRF4 in infected cells [35]. IRF4 expression has been correlated with 

resistance to antiviral therapy [42], immune evasion and cellular survival [39]. 

There have been various associations of IRF4 with malignancies associated to latent 

Epstein-Barr virus (EBV) infections. The viral encoded latency-membrane protein 1 (LMP-1), 

like Tax-1, activates NF-B and induces the expression of IRF4 [37]. Furthermore, it was shown 
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that the EBV nuclear antigen 3C (EBNA3C) can bind and stabilize IRF4 to promote the 

proliferation of in vitro EBV-transformed lymphoblastoid cell lines (LCLs) from primary B cells 

[40]. IRF4 expression in EBV transformed cells is crucial for the inhibition of IRF5 anti-

apoptotic functions and the regulation of microRNAs involved in the regulation of innate 

immune evasion and cellular proliferation [39], thus making IRF4 a contributor to the oncogenic 

potential of EBV.  

Lastly, primary effusion lymphoma, a rare malignancy associated with KSHV infection, 

has been shown to correlate with high IRF4 expression. To date, neither the mechanisms of IRF4 

induction or activation nor the consequences of IRF4 expression in regulating cellular survival 

and proliferation or antiviral immune responses have been examined. As previous studies have 

shown that interference of IRF4 expression is lethal to multiple myeloma cells, making IRF4 an 

“Achilles’ heel” and potential therapeutic target [18], understanding the functions of IRF4 in 

PEL will help establish whether therapeutic strategies developed for the treatment of MM can be 

applied in the treatment of this rare malignancy. 

1.2 VIRUSES AND CANCER 

The notion of cancer as an infectious disease dates back to the 19
th

 century. Studies in the early 

1900s showed that a “filterable agent” isolated from chicken leukemia cells could recapitulate 

the disease in healthy chickens [43]. However, these studies were not followed up until 1911, 

when Peyton Rous convincingly demonstrated that solid tumors from hens were transmissible 

via inoculation with a filterable agent, Rous sarcoma virus (RSV) [44,45]. Later studies by 

Ludwig Gross, who identified murine leukemia virus (MLV) and mouse polyomavirus (MPyV), 
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provided support to the concept of virus-induced cancers [46,47]. Thus, the field of tumor 

virology was established. 

Seminal studies led by Renato Dulbecco were instrumental in the establishment of 

quantitative methodology that would be applied to the exploration of the molecular principles of 

cellular transformation and solidified the use of tumor viruses as models for understanding 

cellular transformation. Work by Howard Temin and Harry Rubin led to the development of 

quantitative techniques for the study of RSV transformation that would revolutionize modern 

scientific research [48,49]. Rubin and Temin’s assay would allow their colleagues, Dominique 

Stehelin, Harold Varmus, J. Michael Bishop, and Peter Vogt, to discover both viral [50,51] and 

cellular oncogenes [52]. In collaboration with Marguerite Vogt, the mechanisms of Mouse 

Polyoma (Py) virus cellular transformation were described [53-55]. Tumor viruses would then go 

on to be useful tools in the study of malignant transformation and would aid in the discoveries 

and development of new advances in molecular biology, such as the identification and isolation 

of reverse transcriptase (RT) by Howard Temin and David Baltimore [56,57].  

1.2.1 Human Tumor Viruses 

Today, it has been established that cancers arise due to both genetic and exogenous non-

infectious causes. However, it is estimated that infectious agents cause one in five cancers [58]. 

While numerous oncogenic viruses have been described, only seven viruses have been associated 

with human proliferative diseases (Table 2). The first human tumor virus to be identified was 

Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus present in over 95% of the world’s 

population. Using electron microscopy, M. Anthony Epstein, Bert Achong, and Yvonne Barr 

identified herpes-like viral particles in Burkitt’s lymphoma tissues [59]. While the oncogenic 
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potential of EBV is “undermined” by the small percentage of EBV positive individuals that go 

on to develop tumors, in vitro experiments have shown that EBV could prolong the growth of 

normal lymphocytes [60] and is sufficient to transform primary B cells resulting in the 

establishment of lymphoblastoid cell lines (LCL) with enhanced proliferation capacity. Thus, 

EVB is considered an important contributing factor to tumorigenesis. To date, EBV has been 

strongly associated with a range of malignancies including: all cases of endemic Burkitt’s 

lymphoma, nasopharyngeal carcinomas, and EBV-associated lymphoproliferative diseases 

common to both AIDS-related and iatrogenic immunosuppression; and some cases of Burkitt’s 

lymphoma in non-endemic areas and Hodgkin’s disease [61]. 

One year later, in 1965, analysis of sera from leukemia patients allowed Baruch 

Blumberg to first identify the Australia (Au) antigen [62]. This antigen was also observed in 

patients with chronic or acute hepatitis and in 1968, the Au antigen was shown to be the surface 

antigen of the Hepatitis B virus (HBV), a hepadna virus [63]. Both the expression of viral 

proteins (HBx) that induce proinflammatory cytokines and the chronic inflammation induced in 

response to persistent virus infection, increase the incidence of hepatocellular carcinoma (HCC) 

in HBV infected individuals [64]. 

Fifteen years would pass after the discovery of HBV until another tumor virus would be 

discovered. At the time, the involvement of retroviruses in lymphocytic malignancies had been 

well established and new developments in tissue culture techniques were available. This 

facilitated the discovery and isolation of a retrovirus, human T-cell lymphotropic virus-1 

(HTLV-1), from a patient with cutaneous T cell lymphoma [65]. Robert Gallo’s research group 

would go on to demonstrate that infection with HTLV-1 led to cellular transformation [66,67] 

and subsequent studies determined HTLV-1 to be the causative agent of adult T cell leukemia 
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(ATL) [68]. Viral encoded genes, Tax-1 and HBZ, have been linked to HTLV-1 transformation 

and pathogenesis, and their functions continue to be explored at present [69].  

While the identification of these three oncogenic viruses relied on elegant virology, the 

discovery of the next four tumor viruses relied on the use of molecular biology and sequence 

analysis. Given that cervical cancer had been attributed to sexual behavior and that human 

papilloma viruses (HPV) were known to contribute to genital warts [70], Harald zur Hausen set 

out in 1983 to determine whether there was a relationship between HPV and cervical cancer 

[71,72]. By cross-hybridization of HPV DNA with DNA isolated from cervical carcinomas, zur 

Hausen identified the high-risk HPV types 16 and 18. Since then, there have been 15 high-risk 

HPV types identified. It has also been shown that although viral integration and increased 

expression of the E6 and E7 oncogenes are necessary to develop cervical neoplasias, additional 

genetic and environmental factors must contribute to the development of cervical carcinomas 

[73]. 

Nearing the end of the decade, Qui-Lim Choo would focus on trying to identify an 

infectious cause for transfusion-transmitted non-A, non-B hepatitis. Screening cDNA libraries 

from sera of chimpanzees infected with the non-A, non-B hepatitis agent from a diagnosed 

individual [74], the investigators were able to identify genome fragments from the Hepatitis C 

virus (HCV) [75]. HCV would then be established as a causative agent for hepatitis, liver 

cirrhosis, and hepatocellular carcinoma.  Like HBV, HCV does not encode known viral 

oncogenes and thus, the associated liver damage and transformation potential of these viruses is 

due to the inflammatory responses and stress associated to chronic liver infection [76]. HCV 

remains an important pathogen and contributor to the cancer burden affecting 185 million 

individuals, with 20% of those infected at risk of developing HCC [77]. 
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The final two viruses to be discovered and associated to malignant transformation were 

discovered by Drs. Yuan Chang and Patrick Moore. Focusing on malignancies associated to 

AIDS and age-related immunosupression, and utilizing cutting edge techniques, Drs. Chang and 

Moore identified Kaposi’s sarcoma-associated herpes virus (KSHV) in 1994 and Merkel cell 

polyomavirus (MCV) in 2008. Epidemiologic evidence suggested that Kaposi’s sarcoma (KS) 

occurring in AIDS patients was likely due to an infection given the fact that men who have sex 

with men (MSM) AIDS patients were 20 times more likely to develop KS than hemophiliac 

AIDS patients [78]. In collaboration with Ether Cesarman, Drs. Chang and Moore utilized 

representational difference analysis (RDA) to identify herpes-like sequences from KS lesions. 

This technique allowed the identification of herpesvirus-like sequences in KS tissues that were 

shown to share some similarity to other gammaherpesviruses. The lack of complete homology to 

EBV supported the classification of this virus as a novel member of the gammaherpesvirus 

subfamily [79].  

Using a similar approach and newly developed computational techniques [80], Huichen 

Feng, from the Chang-Moore laboratory, would go on to discover MCV in Merkel cell 

carcinomas (MCC) in 2008. Applying digital transcriptome substraction (DTS), Feng was able to 

computationally subtract annotated sequence data and identify sequences of non-human origins 

from MCC derived cDNA libraries. Subsequent analysis of viral databases revealed the presence 

of viral sequences belonging to a novel member of the polyoma viruses [81]. The complete viral 

genome was then sequenced and further experimentation confirmed the role of MCV in MCC 

tumorigenesis [82]. 

It must be noted that oncogenic viruses are diverse in their genome classifications (Table 

2) and the means by which they promote cellular proliferation and transformation are varied. 
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Thus, current work is focused in understanding the molecular functions of viral encoded proteins 

and the role of host responses in malignant transformation. Additionally, other viruses are 

continuously proposed as potential tumor viruses, although for many, their role in cancer remains 

controversial.  
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Table 2. Human Tumor Viruses. 

Virus Genome 
Year 

Described 
Disease Association References 

Epstein-Barr 

virus  

(EBV) 

dsDNA herpesvirus 1964 

Burkitt’s lymphoma, 

nasopharyngeal carcinoma, 

various lymphomas 

[59] 

Hepatitis B 

virus  

(HBV) 

ssDNA and dsDNA 

hepadnavirus 
1965 Hepatocellular carcinoma [62] 

Human T-cell 

lymphotropic 

virus-1 

(HTLV-1) 

(+) ssRNA 

retrovirus 
1980 Adult T cell leukemia  [65] 

High-risk 

human 

papilloma virus 

(HPV) 

dsDNA 

papillomavirus 
1983 

Cervical cancer; penile 

carcinoma; anal carcinoma; 

head and neck squamous cell 

carcinoma 

[71,72] 

Hepatitis C 

virus  

(HCV) 

(+) ssRNA 

flavivirus 
1989 

Hepatocellular carcinoma and 

lymphoma 
[75,83]  

Kaposi’s 

sarcoma-

associated 

herpesvirus 

(KSHV or 

HHV-8) 

dsDNA herpesvirus 1994 

Kaposi’s sarcoma, primary 

effusion lymphoma, 

Multicentric Castleman’s 

disease 

[79] 

Merkel Cell 

Polyomavirus 

(MCV) 

dsDNA 

polyomavirus 
2008 Merkel cell carcinoma [84] 
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1.3 KAPOSI SARCOMA-ASSOCIATED HERPESVIRUS 

1.3.1 KSHV Seroprevalence and Pathogenesis 

The seroprevalence of KSHV is rare (<10% in North America, Europe, and Asia) compared to 

the other more ubiquitous human herpesviruses. However, three at risk populations have been 

identified. KSHV seroprevalence is higher amongst individuals in the Mediterranean (20-30%) 

and MSM (8-40% in North America and Europe) [85-87]. The highest incidence of infection is 

observed in Sub-Saharan Africa where the rates of infection exceed 60% of the population. To 

date, KSHV infection has been associated with three individual malignancies most commonly 

affecting immunocompromised and elderly individuals [88]. KS is an endothelial malignancy 

first described by the Hungarian physician, Moritz Kaposi. KS has four different subtypes: 

Classic KS, occurring in Mediterranean men; African endemic KS, the more aggressive form of 

KS found in Sub-Saharan Africa; AIDS-KS, which follows AIDS related immunosupression; 

and iatrogenic KS, which follows iatrogenic immunosupression of transplant recipients. KS is 

characterized by the presence of proliferating spindle cells capable of forming irregular vascular 

channels. KS is infected with KSHV [79]. 

KSHV infection has also been associated with malignancies of B cell origin. Fifty percent 

of multicentric Castleman’s disease (MCD) cases are positive for KSHV infection [89,90]. MCD 

is a B cell malignancy localized to the mantle zone of lymph nodes and the spleen that is 

comprised of both KSHV negative and KSHV positive cells. MCD cells infected with KSHV are 

exclusively IgM plasmablasts and are polyclonal in nature, suggesting that multiple rounds of 

infection occur in these transformed cells. 
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A third KSHV-related malignancy, primary effusion lymphoma (PEL), has been 

described. The defining criterion for PEL diagnosis is the detection of KSHV infection [91,92]. 

While PEL cells can be co-infected with EBV, development of PEL in the absence of KSHV 

infection has not been described. Thus, KSHV infection seems to be a prerequisite for the 

development of this malignancy [93]. 

The study of KSHV infection and pathogenesis has been limited by the lack of animal 

models. In vivo studies have relied on the use of surrogate rhadinovirus, mouse herpesvirus 68 

(MHV68) [94] and Rhesus rhadinovirus (RRV) [95] infectious models and several transgenic 

mouse models. The study of the KSHV lifecycle is further limited by the lack of in vitro models 

of KSHV infection and the difficulty establishing and maintaining latently infected KS cell lines. 

Thus, the use of readily established PEL cell lines has been instrumental for understanding 

KSHV biology. PEL cells contain 50-150 episomal copies of KSHV. Expression on viral genes 

is limited in these cells. The understanding of viral reactivation has mostly relied on these cells 

[96].  

1.3.2 Primary Effusion Lymphoma 

PEL is a rare KSHV-associated B cell neoplasm occurring primarily in the pleural, peritoneal, 

and pericardial cavities [97]. While development of PEL occurs primarily in AIDS patients, it 

has also been observed in immunocompromised transplant patients [88]. Diagnosis of PEL relies 

on morphologic, immunophenotypic, and genetic criteria. PEL cells are generally enlarged with 

round irregular nuclei and prominent nucleoli [98]. PELs show hypermutations in Ig loci, 

suggesting that they may originate from post-germinal center B-cells. They have the appearance 

of immunoblastic or plasmablastic cells, which they share expression of immunophenotypic 



 21 

marker CD138 and IRF4 [29,30]. Conversely, PEL cells do not express other common B-cell 

markers [30,99]. Unlike other lymphomas, no common genetic abnormalities like myc 

translocations or mutations of the bcl-2 or ras oncogenes have been described for PEL [93].  

PEL is a rare disease accounting for about 3% of AIDS-related lymphomas. Advances in 

the treatment of AIDS and AIDS progression with highly active antiretroviral therapy (HAART) 

have resulted in decreased incidences of PEL [96]. Current chemotherapeutic approaches include 

cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) and modified CHOP-like 

therapies [100] and have remained ineffective. Median survival rates range from 2 to 6 months 

[100,101]. Since KSHV is found to be latent in PEL cells with little to no viral DNA replication, 

treatment with herpes antiviral drugs has proven ineffective. A better understanding of KSHV 

pathogenesis is still necessary to develop efficient antiviral strategies for the treatment of KSHV 

infections and KSHV related malignancies. 

1.4 MOLECULAR BIOLOGY OF KSHV 

Kaposi’s sarcoma associated herpesvirus (KSHV) is a large double-stranded DNA virus 

belonging to the gammaherpesvirus subfamily and Rhadinovirus genera. The 145 kilobase pairs 

genome consists of a long unique region flanked by 20-35 Kb terminal repeat (TR) sequences 

[102]. The genome is maintained as a close circular episome in infected cells and it is linearized 

during replication and virion packaging where it is enclosed in an icosahedral capsid [103].  

The KSHV genome has over 80 genes encoding for structural and DNA-replication 

proteins conserved amongst the herpesviruses. Interestingly, KHSV also has a unique set of 

genes with homology to human genes that is unusual for the herpes viruses. This “molecular 
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piracy” allows KSHV to deregulate biological processes including cell cycle regulation, cellular 

growth and proliferation, angiogenesis, inhibition of cellular death, and innate immune evasion 

[104]. KSHV genes are named after the corresponding genes found in Herpesvirus saimiri, a 

related rhadinovirus (ORF4-ORF75). Genes unique to KSHV are given a K prefix, with open-

reading frames K1-K15 having being identified [105].  

Expression of viral genes is strictly regulated between the KSHV life cycle phases. 

Distinctive of the herpesviruses, during lytic infection, viral genomes are replicated and virions 

are assembled with genes being expressed in a temporal cascade (Immediate Early, Early, and 

Late). KSHV can also establish latency in the infected cell. During this phase, viral replication is 

stalled and gene expression is limited to a few genes required for immune evasion and 

maintenance of the viral genomes. Balanced regulation between the latent and lytic replication 

phases is crucial for efficient viral spread and persistence, thereby contributing to viral 

pathogenesis and cellular transformation.  

1.4.1 Latency 

KSHV infection results in the establishment of latency in the infected cell. Viral latency is 

characterized by limited viral gene transcription and protein synthesis. The expressed transcripts 

during latency or lytic replication have been categorized into three classes based on the 

expression in uninduced or TPA stimulated (lytically induced) PEL cells. Genes expressed in 

unstimulated cells were classified as class I genes, transcripts expressed in uninduced cells that 

were stimulated by TPA treatment were classified as class II genes, and those expressed only 

after induction were classified as class III genes [106].  Unfortunately, PEL cells in culture 

experience some degree of spontaneous reactivation, making it difficult to clearly define latent 
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genes.  Thus, there are continued efforts in understanding the temporal expression of KSHV 

genes [107].  

While the identity of truly latent genes still remains to be established, a few genes have 

been strongly associated with this phase of the lifecycle. These genes have been termed latency-

associated genes and are encoded by open reading frames K12 (Kaposin), K13 (v-FLIP), ORF72 

(v-Cyclin), ORF73 (LANA), and K10.5 (LANA2). Proteins synthesized from these transcripts 

are important for the episomal maintenance of viral genomes (LANA), cellular proliferation (v-

FLIP, vCyclin), and inhibition of apoptosis (LANA, LANA2, v-FLIP, K12). [108] A few of 

these latency-associated genes have also been shown to be involved in the regulation innate 

immune responses [109].  Below, the specific functions of these proteins in the regulation of the 

IFN and ISG expression are discussed. 

1.4.1.1 Latency-Associated Nuclear Antigen (LANA) 

LANA is a 222-234 kDa nuclear protein encoded by ORF73 and it is a latent protein expressed 

in all forms of KSHV-associated malignancies. LANA is a multifunctional protein, interacting 

with both viral and cellular proteins and deregulating several cellular pathways, making it a 

major KSHV oncoprotein [110]. LANA contributes to cellular proliferation and transformation 

through interaction with the p53 and pRB tumor suppressor pathways, and the regulation of 

growth signaling pathways. Furthermore, LANA plays an important role in the persistence of 

KSHV genomes and maintenance of latency. Expression of LANA is required for the replication 

of viral DNA during latency and the tethering of viral genomes to host chromosomes important 

for the segregation of episomal viral DNA in the dividing cells. Inhibition of the lytic switch is 

also an important feature of LANA in the maintenance of latency (Reviewed in [110]). 
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LANA is also an inhibitor of host antiviral responses. LANA inhibits the transcription of 

IFNβ by competing with IRF-3 binding to the PRDI/III domains in the IFN promoter [111]. 

Further inhibition of innate immune signaling was observed by ChIP-Seq analysis of LANA 

binding to host chromosomes in BCBL-1 cells. This study demonstrated that LANA interferes 

with p53 and TNF- signaling pathways as well as inhibiting IFN induced STAT1 gene 

transactivation [112].  

1.4.1.2 LANA2 or viral IFN Regulatory Factor 3 

The viral IFN-regulatory factors are a set of cellular IRF homologues uniquely expressed by the 

rhadinoviruses KSHV and RRV [113]. KSHV encodes four viral homologues of IRF (v-IRF1, v-

IRF2, v-IRF3, and v-IRF4) encoded by the region encompassing ORFs K9-11 (Figure 1-3) and 

their expression is mostly restricted to lytic reactivation. The interferon inhibitory functions of 

these genes have been extensively studied and their functions have been elegantly summarized 

by Baresova et al. [114]. 

 

 

 

Figure 1-3. KSHV Homologues of Cellular IRF Proteins. 

 

Arrangement of vIRF genes on the KSHV genome. KSHV encodes four homologues of cellular IRF proteins: 

vIRF1 (K9), vIRF4 (K10), LANA2/vIRF3 (K10.5), and vIRF2 (K11). The vIRF locus is clustered between ORF57 

(purple) and ORF58 (red).  Terminal repeats are represented by striped boxes.  
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LANA2 (vIRF3) is encoded by ORFK10.5 and it shares homology to IRF4 [115]. 

LANA2 is a particularly interesting member of this family of proteins given its restricted 

expression in infected cells. Its expression has been detected in PEL and MCD, but not in KS, 

suggesting that LANA2 is expressed in a lymphocyte specific manner [116].  LANA2 is a 

potential oncogene that modulates PEL cellular survival and proliferation through direct 

interaction with other host proteins. LANA2 inhibits p53 and Protein Kinase R (PKR) mediated 

apoptosis [116,117], and sequesters 14-3-3, which functions to inactivate FoxO proteins involved 

in cell growth and proliferation [118]. LANA2 contributes to cellular proliferation by enhancing 

c-Myc mediated gene induction [119]. Immunoprecipitation assays show that LANA2 and c-

Myc directly interact and have been found to form a complex with the promoter of c-Myc target 

genes. Furthermore, LANA2 binds Myc Modulator-1 (MM1), disrupting its ability to bind and 

inhibit c-Myc activity. This association led to an increase in the activation of target genes. 

Ultimately, the most seminal study linking LANA2 to PEL oncogenesis showed that silencing of 

LANA2 expression by siRNA, led to cellular death by activation of caspase-3 and caspase-7 

[120]. 

Studies on the pro-viral function of LANA2 have focused on the modulation of 

transcriptional activity of IRF3, IRF5, and IRF7 [115,120-123]. LANA2 has been shown to 

inhibit IRF5-mediated signaling by interacting with IRF5 and therefore inhibiting the DNA 

binding of IRF5 to interferon stimulated responsive elements (ISRE) on target gene promoters 

[123]. The regulatory function of LANA2 on IRF3 and IRF7 mediated gene induction has 

remained controversial with some studies suggesting that LANA2 expression can enhance 

IRF3/IRF7 mediated promoter activation [121]. However, other studies suggest that LANA2 

expression inhibits IRF3/IRF7 mediated transcription [115,122]. Although it remains unclear 
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what the role of LANA2 is in innate immune modulation, these studies have established that 

LANA2 can directly bind IRF proteins affecting their transcriptional activity. 

1.4.1.3 Viral FLICE Inhibitory Protein 

 

The viral FLICE inhibitory protein (vFLIP) expressed during latent infection with KSHV is 

encoded by the ORF71 (K13) [124]. vFLIP shares structural homology with FLICE, also known 

as caspase-8, and it contains two homologous copies of the death effector domain (DED) 

[125,126]. In host cells, the DED is required for the recruitment of FLICE to receptors, like 

Tumor Necrosis Factor Receptor 1, containing death domains (DD) initiating receptor-mediated 

cell-death. vFLIP inhibits FLICE mediated cell death by binding to the DED and preventing its 

interaction with death domains in receptors. This led to an initial speculation that vFLIP could 

inhibit death receptor mediated cell death [126], although later studies demonstrated that vFLIP 

regulates cell survival and proliferation by acting as a potent activator of the NF-B signaling 

pathway [127-136]. 

Briefly, vFLIP activates NF-B by interacting with the IB Kinase (IKK) complex 

[127,137,138]. These proteins phosphorylate IB proteins and target them for degradation by the 

proteosome [137]. Thus, the active NF-B subunits are released and translocated into the nucleus 

where it becomes functionally active. NF-B activation results in gross changes in the 

transcriptional profile of vFLIP expressing cells. Gene set data analysis (GSEA) from 

transcriptome analysis studies in BCBL-1 (PEL cells) and HUVEC (endothelial cells) cell lines 

expressing vFLIP, demonstrated that the Toll, IL-1R and inflammatory pathways were affected 

by vFLIP. Interestingly, these studies also showed that that gene expression is differentially 
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affected in different cell lineages [139]. Besides the strong induction of proinflammatory 

cytokines induced by vFLIP, its expression also results in the enhanced induction of STAT1 

dependent gene expression in endothelial cells, which is required for the characteristic spindle 

cell formation observed in KS lesions. Using a reverse genetic approach, Alkharsah et al. were 

able to show that infection of endothelial cells with FLIP KSHV results in the diminished 

phosphorylation of both STAT1 and STAT2 and a decrease in ISG expression compared to WT 

infected cells. [140] These observations supported earlier observations that ectopic expression of 

vFLIP enhances IFNactivation  by stimulating NF-B binding to the PRDII domain of the 

IFN promoter enhancer [141]. While these latency-associated associated proteins have been 

shown to regulate interferon and inflammatory responses, the consequences of gene expression 

regulation and the contribution of the specifically targeted genes in controlling or promoting 

viral pathogenicity and tumorigenesis remains to be established. 

1.4.2 Switch to Viral Lytic Reactivation 

Reactivation from latency is an important step in the pathogenesis of KSHV and is necessary for 

viral spread and transmission. The switch from latency to lytic replication, in Rhadinoviruses, is 

controlled by the replication and transcription activator (RTA) protein that is encoded by the 

open reading frame ORF50. Expression of RTA is necessary and sufficient to initiate lytic gene 

transcription, virion formation, and death of the host cell. To date, studies of RTA induction and 

function have identified signals that contribute to viral reactivation, such as chemical treatment 

with phorbol esters [142] and histone deacetylase inhibitors [143], calcium inhibition [144], 

hypoxia [145], viral infection [146], and BCR stimulation [147].  
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The first transcript to be induced after stimuli is the 3.6 kb ORF50 transcript, which is 

resistant to protein synthesis inhibition with cyclohexamide (CHX), identifying this protein as 

the KSHV immediate early (IE) protein [148,149]. RTA, a sequence-specific DNA binding 

protein, regulates the transcription of viral early (E) genes and positively autoregulates its 

transcription through complex mechanisms [150-154]. The early genes include genes involved in 

the synthesis of viral DNA and genes required for the expression of the late (L) structural genes. 

Overall, the genes expressed during lytic reactivation include those required for genome 

replication and virion assembly, as well as genes involved in the evasion of cellular death and 

innate immune responses.   

1.4.2.1 RTA-Mediated Transcriptional Regulation 

 

RTA is a 691 amino acid nuclear protein that binds to RTA-responsive elements (RRE) located 

in viral gene promoters and activates gene transcription [149,155]. Additionally, RTA can 

interact with the cellular protein RBP-J-thereby regulating RBP-J-dependent cellular  

gene  expression. The specificity of RTA to the promoters is determined by its direct binding to 

DNA or by its interaction with other cellular and viral DNA binding proteins. Upon recognition 

of RRE sequences, RTA oligomers induce gene expression [156] of a specific set of viral genes 

[157].  

Thus far, there are no obvious RRE consensus motifs identified between the regions 

bound by RTA in various gene promoters. RTA can bind to a 5’-AACAATATAATGTT-3’ 

sequence found in the promoters of both ORF57 and K8, which is distinct from the 5’-

AAATGGGTGGCTAACCCCTACATAA-3’ sequence found in the PAN (nut-1) and K12 

promoters [158], or the RRE found in the v-IL6 promoter 5’-
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AAACCCCGCCCCCTGGTGCTCACTTT-3’ [159]. A second adjacent RRE has been described 

in ORF57 (5’-ATTTTTCGTTTGTG-3’), which is bound by both RTA and IRF7. IRF7 binding 

to this sequence results in the competitive inhibition of RTA-mediated ORF57 induction [160].  

The inhibition posed by IRF7 is overcome by direct ubiquitination and proteosomal degradation 

of IRF7 by RTA [161,162]. It has also been shown that RTA can regulate both viral (K14) and 

cellular gene expression (ISGs) by binding to ISRE-like sequences contained in the promoters of 

these genes [163]. Intriguingly, analysis of the RTA DNA-binding domain primary structure 

revealed conserved amino acids shared between RTA and the IRF family of proteins. Mutations 

at the conserved lysine residue 152, which is homologous to the essential K92 residue in IRF7, 

resulted in impaired binding to ISRE sequences and loss of transcriptional activation capacity of 

RTA [163].  These results suggest that RTA may hijack the IRF signaling pathway in order to 

evade immune responses and that IRF proteins potentially exert a regulatory function on viral 

gene expression shaping the establishment of latency in KSHV infected cells. 

1.5 RATIONALE AND HYPOTHESIS 

The functional role of IRF4 in KSHV-associated B cell malignancies has not yet been explored. 

Little information regarding the signaling events controlled by the IRF transcription factors that 

contribute to immune evasion, viral persistence, and cellular growth and proliferation. Previous 

studies have shown that IRF4 acts as both an activator and repressor of ISRE driven promoter 

activation and this is largely dependent on the interactions of IRF4 with other transcription 

factors. However, the potential regulation of interferon-stimulated genes by IRF4 in the absence 

of co-factors remains to be examined. Furthermore, latency-associated innate immune 
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modulators expressed in KSHV infected cells are capable of shaping the transcriptional potential 

of IRF proteins by directly interacting with these proteins, their transcriptional co-factors or the 

DNA sequences they recognize.  It is likely, that these proteins act as regulators of IRF4 

mediated gene expression in order to ensure viral persistence. Lastly, given the sequence 

similarities between the IRF4 and RTA binding domains, there is a potential that IRF4, like 

IRF7, could bind to ISRE-like sequence modulating RTA-mediated gene transcription. Thus, we 

hypothesize that IRF4 expression in PEL cells results in the regulation of ISRE and ISRE-like 

driven cellular and viral gene expression and contributes to the pathogenesis of KSHV. 
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2.0  REGULATION OF IFN-STIMULATED GENE EXPRESSION BY IRF4 
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2.1 INTRODUCTION 

IRF4 is a tissue specific transcription factor involved in the regulation of immune responses that 

result in the maturation and differentiation of lymphocytes [22]. Interestingly, the expression of 

IRF4 has also been suggested to have transformative potential [34,164] and has been correlated 

with the development of several B- and T-cell lymphoproliferative diseases [18,30,32,33,36]. 

One such malignancy is primary effusion lymphoma (PEL), a KSHV-associated B cell neoplasm 

[88,97]. PEL cells have the appearance of immunoblastic or plasmablastic cells in that these cells 

express high levels of IRF4 and CD138-positive [29,30]. While the transcriptional regulatory 

role of IRF4 in other plasmablastic malignancies has been previously studied, the significance of 

IRF4 in the context of PEL cells has yet to be explored. 

Aside from having a plasma cell-like phenotype, PEL cells are characterized by being 

latently infected with KSHV. IRF proteins are well known for their role in mediating immune 

responses to viral invasion. The unifying feature of this family of proteins is the similarity of 

their N-terminal DBD domain, containing a pentad of tryptophans, crucial for the recognition of 

the ISRE sequence generally found in the promoters of IFN and the effector proteins upregulated 

in response to IFN [165,166]. Thus, it is likely that IRF4 also plays a role in shaping the cellular 

response to viral infection by targeting the expression of IFN-stimulated genes (ISG). 

By forming distinct transcriptional complex with other transcription factors, IRF4 acts as 

both a positive and negative regulator of ISG expression [22]. Dimerization between IRF4 and 

PU.1 results in the potent activation of ISG by binding to EICE enhancer elements [13]. On the 
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other hand, interactions with IRF8, results in the inhibition of ISG15 expression by binding to 

the ISRE motif [25]. However, PEL has been demonstrated to have a disrupted B cell phenotype, 

lacking the expression of PU.1, IRF8, and Oct-2 [167]. Given that IRF4 itself can directly bind 

DNA [168] and this unique condition in which its co-transcriptional regulators are 

downregulated, it is relevant to better understand the transcriptional potential of IRF4 in innate 

immunity.  

In this chapter, we investigate the role of IRF4 in controlling ISRE-driven promoter 

activity through promoter reporter assays, qRT-PCR, and ChIP analysis in model cell lines as 

well as PEL cell lines. The transcriptional control of ISGs by IRF4 is intricate. We show that 

IRF4 can directly target the ISG60 and Cig5 promoters and positively regulate their gene 

expression while also resulting in the downregulation of the IFN-responsive gene, MxA. These 

studies have contributed to further clarify the involvement of IRF4 on the distinct regulation of 

ISRE-mediated gene transcription and have allowed us to establish an assay for future studies on 

identifying modulators of IRF4 function. 
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2.2 MATERIALS AND METHODS 

2.2.1 Cell Lines and Reagents 

The cell lines used in this study have been described on Table 3. HEK293 cells, 293FT, and 

HEK293-derived cell lines, 293i4, RL24i4, and RL24, were cultured in Dulbecco’s Modified 

Eagle Medium (Lonza) containing 10% fetal bovine serum (Atlanta Biologicals) and 100 I.U./ml 

penicillin and 100 mg/ml streptomycin (Lonza). BCBL-1, BC-1, and BC-3 cells were cultured in 

RPMI medium (Lonza) supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals) 

and 100 I.U./ml penicillin and 100 mg/ml streptomycin (Lonza). BCP-1 cells were cultured with 

similar medium conditions but FBS levels were adjusted to 20%. EBV-negative Burkitt 

lymphoma cell line, BJAB, was used as a KSHV negative control cell line. BJAB and BJAB 

derived cells were cultured in RPMI medium supplemented with 10% fetal bovine serum and 

100 I.U./ml penicillin and 100 mg/ml streptomycin (Lonza). Doxycycline (Clonetech) was 

resuspended in a 1 mg/ml stock in H20 and used at the reported concentrations. 
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Table 3. Chapter 2 - Cell Lines. 

Cell Line Description Source Reference 

HEK293 Human embryonic kidney cells, immortalized/ 

transformed by adenovirus transduction. 

ATCC® CRL-

1573 

 

293FT 
HEK293 transformed with the SV40 Large T antigen 

Invitrogen 

(Cat no. R700-07) 

 

293i4 
HEK293-derived doxycycline-inducible IRF4 

expressing cell line generated by lentiviral tranduction 

with pInducer20/IRF4-V5 

Sarkar Lab 

(University of 

Pittsburgh) 

[169] 

293/pLenti HEK293-derived vector control cell line generated by 

lentiviral transduction with pLenti/CMV/Puro 
Sarkar Lab 

[169] 

293/pLenti- 

IRF4-V5 

HEK293-derived cell line generated by lentiviral 

tranduction with pLenti/CMV/Puro/IRF4-V5 
Sarkar Lab 

[169] 

RL24 HEK293 derived stably expressing TLR3, ISG56-FLuc 

and pTK-Rluc 
Sarkar Lab 

[170] 

RL24i4  
RL24 derived doxycycline-inducible IRF4 expressing 

cell line generated by lentiviral tranduction with 

pInducer22/IRF4-V5  

Sarkar Lab 

 

BCBL-1 KSHV +ve, EBV –ve, p53 wt PEL cell line derived 

from a male patient 

Chang-Moore lab 

(University of 

Pittsburgh) 

[171] 

BC-1 KSHV +ve, EBV +ve, p53 wt PEL cell line derived 

from a male patient 

Chang-Moore lab 

(ATCC® CRL-

2230) 

[91] 

BC-3 KSHV +ve, EBV –ve, p53 wt PEL cell line derived 

from a male patient 

Chang-Moore lab 

(ATCC® CRL-

2277) 

[172] 

BCP-1 KSHV +ve, EBV –ve, p53 wt PEL cell line derived 

from a male patient 

Chang-Moore Lab 

(ATCC® CRL-

2294) 

[173] 

BJAB 
EBV –ve human Burkitt’s lymphoma cell line 

Chang-Moore Lab 

 
[174] 

BJABi4 
BJAB –derived doxycycline-inducible IRF4 expressing 

cell line generated by lentiviral tranduction with 

pInducer20/IRF4-V5 

Sarkar Lab [169] 
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2.2.2 Plasmids and Lentiviral Vectors  

IRF4, transcript variant 1 (NM_002460), was PCR amplified with an N-Terminal V5 tag from 

the pCMV6-IRF4 plasmid (Origene) using the following primers: 5’- 

CACCGAATTCCACCATGGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCTAC

GAACCTGGAGGGCGGCGGC-3’; 5’- CGCCATTCCTCTATTCAAGAATGACTCGAG-3’. 

The PCR product was then cloned into pENTR-D/TOPO (Invitrogen) following manufacturer’s 

guidelines. The expression vector pcDNA/IRF4-V5 was generated by recombination between 

pENTR/D-TOPO IRF4-V5 and pcDNA/DEST47 using Gateway LR Clonase II enzyme mix 

(Invitrogen) according to manufacturer’s guidelines.  

Doxycycline-inducible, cDNA expressing lentiviral vectors were generated by 

performing LR recombination between pENTR/D-TOPO IRF4-V5 with pInducer 20 or pInducer 

22 [175] vectors using the Gateway LR Clonase II enzyme mix (Invitrogen) following 

manufacturer’s guideline. Constitutive IRF4 expressing lentiviral vector was generated by LR 

recombination of pENTR/D-TOPO IRF4-V5 with pLenti/CMV/Puro DEST (W118-1) 

(Addgene). Control pInducer20 and pLenti/CMV/Puro vectors were generated by recombination 

with empty pENTR-V5 plasmid (Addgene). 

2.2.3 Lentivirus Packaging and Transduction of Cells 

Lentiviruses were packaged in 293FT by transfection of 5 g of lentiviral vector, 2.5g 

packaging plasmid pCMV89.2 (gag/pol), and 2.5g of envelope plasmid pCMV-VSV-G were 
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transfected into 1x10
7
 293FT cells using Fugene 6 at a 1:3 DNA to Fugene 6 ratio. After 24 hrs, 

medium was changed to 10 ml fresh growth medium (DMEM, 10% FBS, 

Pennicillin/Streptomycin). Supernatants were harvested 48 hrs post transfection and cellular 

debris was removed by centrifugation at 1200 RPM for 5 minutes. Clarified supernatants were 

then filtered using a 0.45M syringe filter and concentrated using Lenti-X concentrator 

(Clontech). Briefly, virus supernatants were incubated with 4X Lenti-X Concentrator overnight 

at 4 °C. Samples were spun at 1,500 x g for 45 minutes at 4°C.  Pellets were resuspended and 

concentrated to 1/10 original volume. Virus preparations were kept frozen at -80
o
C until further 

use. 

HEK293-derived 293i4 cells were generated by overnight lentiviral infection of 1x10
6
 

cells with 500l virus packaged from pInducer20/IRF-V5 (previously described) in the presence 

of 5g/ml polybrene (Sigma-Aldrich). 48 hrs post-infection, cells were selected with 500g/ml 

G418 (InvivoGen) for 7 days. G418-resistant cells were pooled and used for further studies. 

RL24i4 cells were generated by overnight infection of 1x10
6 

RL24 cells with 500l 

concentrated pInducer22/IRF4-V5 virus. Pools of infected cells were used for further studies. 

293FT-derived pLenti-IRF4 cells were generated by overnight lentiviral infection of 1x10
6 

cells
 

with 500 l virus packaged from pLenti/CMV/Puro/IRF4-V5 or empty pLenti/CMV/Puro 

(previously described). At 48 hrs post-infection, cells were selected with 1g/ml Puromycin 

(InvivoGen) for 7 days. Puromycin-resistant cells were pooled and used for further studies. 

BJABi4 cells were generated lentiviral infection with pInducer20/IRF4-V5 virus. In brief, 1x10
6 

cells were infected by spin inoculation (30 min. at 2500 RPM, room temperature) with 1 ml of 

concentrated virus resuspended in RPMI. Cells were selected with 500g/ml G418 for 7 days. 

G418-resistant pools of cells were used in these studies. 
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2.2.4 RNA Isolation and qRT-PCR 

RNA was isolated from cells using TRIzol® reagent (Invitrogen) following manufacturer’s 

protocol. Briefly, cells were lysed in 1 ml TRIzol® reagent and incubated 5 minutes at RT prior 

to addition of 200 l of chloroform. Samples were spun down and the aqueous portion as 

harvested and incubated with equal volume of isopropanol for 10 minutes at room temperature. 

RNA was harvested by centrifugation and washed with 70% ethanol. RNA pellets were 

resuspended in DEPC-treated nuclease free water. Total RNA extractions were treated with 

DNA-free (Ambion) to remove DNA contamination. In brief, 5g of RNA were dissolved in 

24l of water with DNAse I buffer and 1l of DNAse I. Samples were incubated at 37°C for 

1hr. 1l total RNA was used for reverse transcription using iScript cDNA synthesis kit (Bio-

Rad) according to manufacturer’s instructions. cDNA was diluted in water 1:3 and 1l per 

sample was subjected to SYBR green real-time PCR using a CFX96 real time system (Bio-Rad). 

Samples were denatured at 98
o
C for 2 minutes, followed by 40 cycles of amplification as 

follows: 98
o
C for 2s, 56

o
C for 5s with reading of plate. Samples were the incubated at 95

o
C for 

10 min. Melt curves were produced by exposing the final PCR product to a temperature gradient 

from 65
o
C to 95

o
C, in 0.5

o
C increments with constant fluorescent readouts collected between 

each increment. Primers used for target gene amplification can be found in Table 2. Each sample 

was normalized to RPL32 and expressed as fold change with respect to vector expressing cells or 

non-stimulated cells (Value 1).  
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Table 4. IFN-Stimulated Gene Primer Set. 

 

2.2.5 Luciferase Assays 

RL24 cells (1.5 × 10
5
 cells/well) in 24-well plate were transfected with 0, 100, 250, 500 ng of 

pcDNA/IRF4-V5 or empty vector using Fugene 6 at a 1:3 DNA: Fugene 6 ratio. DNA 

concentrations were kept consistent amongst all wells (500 ng). At 24 hours post transfection, 

cells were collected by trypsin-EDTA digestion and seeded into 6 wells in a white walled 96-

well plate. At 48 hours post transfection, luciferase activity was measured using the Dual-Glo 

Gene Orientation              Sequence 

RPL32 
Forward 5' - CAACATTGGTTATGGAAGCAACA - 3' 

Reverse 5' - TGACGTTGTGGACCAGGAACT - 3' 

IRF4 
Forward 5' - ACCCGCAGATGTCCATGAG - 3' 

Reverse 5' - GTGGCATCATGTAGTTGTGAACCT - 3' 

ISG60 

Forward 5’-AGTCTAGTCACTTGGGGAAAC-3’ 

Reverse 
5’-ATAAATCTGAGCATCTGAGAGTC-3’ 

 

Cig5/Viperin 
Forward 5' - CAGTGCTTGCATTGCTTTGT - 3' 

Reverse 5' - CAAGGTTCCAGCGTGATTTT - 3' 

OasL 
Forward 5' - GGACCGTGGAGGAGTTTCTG - 3' 

Reverse 5' - GAGCCCACCTTGACTACCTTC - 3' 

IFN 
Forward 5' - TGGGAGGATTCTGCATTACC - 3' 

Reverse 5' - CAGCATCTGCTGGTTGAAGA - 3' 

IFN 
Forward 5'- GTGAGGAAATACTTCCAAAGAATCAC - 3' 

Reverse 5' - TCTCATGATTTCTGCTCTGACAA - 3' 

IRF7 
Forward 5' - TACCATCTACCTGGGCTTCG - 3' 

Reverse 5' - AGGGTTCCAGCTTCACCA - 3' 

MxA 
Forward 5' - AGGTCAGTTACCAGGACTAC - 3' 

Reverse 5' - ATGGCATTCTGGGCTTTATT - 3' 

ISG15 
Forward 5' - ACTCATCTTTGCCAGTACAGGAG - 3' 

Reverse 5' - CAGCATCTTCACCGTCAGGTC - 3' 

PKR 
Forward 5' - TCTGACTACCTGTCCTCTGGTTCTT - 3' 

Reverse 5' - GCGAGTGTGCTGGTCACTAAAG - 3' 
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luciferase assay system (Promega). Briefly, 15l of Dual-Glo reagents were added to 100 l of 

cell culture medium. Cells were incubated for 10 minutes and firefly luciferase (Fluc) activity 

was measured. The reaction was stopped using 15l of Stop-Glo reagent and renilla luciferase 

(Rluc) activity was measured. Fluc activity was normalized of Rluc activity and the normalized 

once again to the negative control. Changes in promoter activity were determined as fold change 

with respect to vector expressing cells. Alternatively, 2.5x10
4
 RL24i4 cells were seeded in 96-

well plates and stimulated with increasing doses of doxycycline for 24 hrs. Luciferase activity 

was measured using the Dual luciferase assay system (Promega). Briefly, cells were lysed for 10 

minutes at room temperature with 20l 1x PLB.  After lysis, 7 l of lysate was placed on a 

white walled 96-well plate. Firefly luciferase (Fluc) activity was measured by adding 20l of 

LARII reagent. Following luminescence readings, 20l of Stop and Glo reagent were added to 

quench the reaction and measure renilla luciferase activity (Rluc). Relative luciferase activity 

was determined by normalizing the Fluc/Rluc values relative to untreated cells. 

2.2.6 Chromatin Immunoprecipitation assays 

Chromatin immunoprecipitation (ChIP) was performed using the ChIP-IT Express kit from 

Active Motif according to the manufacturer’s protocols. Briefly, 1x 10
7

 HEK293 cells stably 

expressing pLenti/CMV/Puro vector control or pLenti/CMV/Puro IRF4-V5 or 1x 10
7

 BCBL-1 

cells were cross-linked with 1% formaldehyde in PBS for 10 min. Cells were then placed in lysis 

buffer and homogenized with a dounce homogenizer. Nuclei were harvested and resuspended in 

shearing buffer containing PMSF and protease inhibitors. Chromatin was sheared into 200-600 

bp fragments by sonication. To examine binding of IRF4 to ISRE elements in 293 cells, 25 g of 
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cross-linked chromatin was incubated with 25 l protein G magnetic beads and 3 l anti-V5 

(Invitrogen), anti-Pol II (8WG16) (Millipore), or control IgG antibody overnight to 

immunoprecipitate each target protein. In the case of PEL cells, 20 g of chromatin were 

incubated with protein 25 l of protein G magnetic beads and 4.9 g anti-IRF4 (#4964) (Cell 

Signaling), anti-Pol II (8WG16), or control IgG antibody. DNA was purified after reversing 

protein/DNA cross-linking; equal amounts of the purified ChIP DNA were subjected to 

quantitative PCR analysis, as previously described, using primers ISG60 ISRE (5′-

GGTCTCAAGCCGTTAGGTTTCATTT-3′; 5′-GAAGTCTTCCTGTCTGCCTCAAGTA-3′) 

and Cig 5 ISRE (5’- CCCGATCTCTAGTCTTCAGTCTTGG -3’; 5’-

GCAGGACACACCTTCTTTGACTAAC-3′). Each sample was normalized to the negative 

control and expressed as fold change with respect to vector expressing cells (Value 1). 

2.2.7 Subcellular Fractionations 

293i4 and BCBL-1 cells were harvested and washed with PBS. Cell pellets were suspended in 

hypotonic buffer (20 mM HEPES pH8.0, 10 mM KCl, 1 mM MgCl2, 20% glycerol, 0.1% Triton-

X 100) with protease inhibitors. The cell suspensions (100 l) were vortexed for 30s, incubated 

on ice for 15 min, and centrifuged (16,000g for 10 min at 4 °C). The supernatants were collected 

as soluble cytoplasmic fractions. The remaining nuclear pellets were thoroughly washed in 10 

volumes of hypotonic buffer and then resuspended in 100 l RIPA buffer (50mM Tris-HCl 

[pH7.4], 150mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 1mM EDTA, 1mM PMSF, 1X 

Protease inhibitor cocktail) and incubated in ice for 30 minutes prior to SDS-PAGE. Equal 

volumes of soluble cytoplasmic fraction and total nuclear fraction were resolved and 
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immunoblotted with anti-IRF4 (Cell Signaling), DRBP76 [176], and Tubulin antibodies (Santa 

Cruz). Density analysis was done using ImageJ. 

2.2.8 Immunoblotting 

Protein concentration from cell lysates was determined using the Bio-Rad Protein Assay (Bio-

Rad). Equal amount of protein extracts were resolved on either 8.5% or 12% SDS–

polyacrylamide gels, and proteins were transferred to PVDF membranes. Membranes were 

stained with Ponceau S stain for 5 minutes to assess even transfer, washed twice in Tris-buffered 

saline with Tween 20 (TBS-T; 20 mM Tris, 0.5 M NaCl [pH 7.5] plus 0.5% Tween 20) and 

blocked for 1 hr in 10% nonfat dry milk TBS-T. Primary antibody incubation was done 

overnight in 10% nonfat dry milk. Antibodies used anti-IRF4 (Cell Signaling), anti-ISG60, anti-

ORF50, anti-LANA, anti-LANA2 were used at a concentration of 1:1000 and have been 

previously described [169]. Membranes were then washed twice with TBS-T and incubated with 

horseradish peroxidase-conjugated anti-mouse or anti-rabbit immunoglobulin G (IgG) 

(Rockland) diluted at 1:10000 in TBS-T plus 10% nonfat dry milk. Blots were developed by 

enhanced chemiluminescence using Hy-Glo reagent (Denville) according to manufacturer’s 

protocol.  

2.2.9 VSV Infection and Growth Assessment 

293 cells were stably transduced by viral infection with either pLenti/CMV/Puro/IRF4-V5 or 

empty pLenti/CMV/Puro. Puromycin resistant cell pools were infected with VSV-GFP [177] at a 
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multiplicity of infection (m.o.i) of 0.001. 24 hrs after transfection, cellular supernatants were 

harvested and viral yield was measured by plaque assay on BHK21 cells. 

 

2.2.10 Statistical analysis 

Data were analyzed using two-tailed paired Student's t-test. Values were considered significant at 

p < 0.05. 

2.3 RESULTS 

The PEL cell line BCBL-1 expressed increased levels of IRF4 mRNA (Figure 2-1A) and protein 

concomitant with the expression of LANA and LANA2, KSHV latency associated proteins 

(Figure 2-1B) as has been previously described [29,30]. The transcriptional activities of IRF 

proteins are associated with their activation and nuclear translocation [1],  thus we examined the 

cellular localization of IRF4 in PEL cells. We prepared both soluble cytoplasmic and nuclear 

fractions and subjected them to immunoblot analysis to probe for IRF4 subcellular localization. 

A major portion of IRF4 protein in BCBL-1 cells was localized to the DRBP76-positive nuclear 

fraction, characteristic of an activated IRF. A significantly smaller percentage of the total 

detected IRF4 protein was localized to the Tubulin-positive cytoplasmic fraction (Figure 2-1C). 

Given that IRF4 is found in a presumably activated form in PEL cells, a better understanding of 

the affected target genes could prove beneficial to expand our knowledge on the contributions of 

IRF4 to KSHV pathogenesis. 
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PEL cells have been described to display an incomplete B-cell transcriptional program 

due to the lack of PU.1, IRF8, and Oct-2 expression [167]. We measured the expression of PU.1 

transcripts in the PEL cell line BCBL-1 and Burkitt’s lymphoma cell line, BJAB, relative to 293 

cells, which are devoid of PU.1 expression. In accordance with previous reports, BCBL-1 cells 

expressed similar levels of PU.1 relative to 293 cells. BJAB cells however, showed over 20-fold 

higher PU.1 mRNA transcript relative to 293 cells (Figure 2-1D). Thus, to understand the 

transcriptional potential of IRF4 in the absence of PU.1 or other B-cell specific transcription 

factors, we generated IRF4 expression systems that would allow us to examine IRF4 function in 

several experimentally manipulatable cell lines as well as in PEL cell lines. 
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Figure 2-1. PEL Cell Lines Express IRF4. 

(A) IRF4 mRNA analysis in BJAB and BCBL-1 cells. Total RNA was harvested and subjected to qRT-PCR 

using primers against IRF4 and RPL32 as indicated in materials and methods.  Expression of IRF4 was 

normalized to RPL32 and expressed as fold change with respect to BJAB cells (value 1).  

(B) Analysis of IRF4 protein levels in BJAB and BCBL-1 cells. Lysates were prepared from PEL cell lines and 

probed with anti-IRF4, anti-LANA, anti-LANA2, and anti-Actin antibodies.  

(C) Sub-cellular localization of IRF4 in PEL cell lines. Cytoplasmic and nuclear fractions were prepared from 

1×10
7
 BCBL-1 cells and immunoblotted with IRF4, Tubulin, and DRBP76 antibodies.  

(D) Analysis of PU.1 expression in PEL cell line, BCBL-1. Total RNA was harvested from BJAB, BCBL-1 and 

293 cells and subjected to qRT-PCR using primers against PU.1 and RPL32 as indicated in materials and 

methods.  Expression of PU.1was normalized to RPL32 and expressed as fold change with respect to 293 cells 

(value 1). 
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 IRF4 cDNA was subcloned by PCR amplification from pCMV-XL6/IRF4. An N-terminal V5 

tag was cloned in frame with the IRF4 coding sequence in the PCR reaction. The generated PCR 

fragments were TOPO cloned into the pENTR/D-TOPO vector, thus generating the pENTR-

D/TOPO IRF4-V5 expression vector. The plasmid was isolated from single colonies, amplified, 

and sequenced to verify PCR fidelity and tag insertion. The obtained nucleotide sequence was 

then translated in silico to assess that the proper framing of our newly generated protein-coding 

sequence (CDS). The amino acid sequence showed V5 tag located to the N-terminus (highlighted 

in pink) and the corresponding to the IRF4 mRNA transcript variant 1 (Figure 2-2). pENTR-

D/TOPO IRF4-V5 was then further used to generate both lentivirus-based expression vectors and 

eukaryotic expression vectors described in Chapter 2 Materials and Methods. 

 

 

Figure 2-2. Amino Acid Sequence of IRF4-V5. 

 

Previous reports have suggested that IRF4 has the ability to promote the weak induction 

of promoters encoding ISRE elements. In order to explore whether ectopic expression of IRF4 

can drive the activation of ISRE mediated gene expression, we examined the effect of IRF4 

expression in promoter reporter assays. First, we employed an IFN promoter reporter construct 

(IFN125-luc) containing two tandem IFNB enhancer elements each containing the ISRE-

Amino acid sequence for N-terminal V5 tagged IRF4. V5 sequence has been highlighted in pink. Amino acids 16-

466 correspond to the primary structure of IRF4 (transcript variant 1).  Asterisk denotes stop codon. 
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elements (PRDIII/PRDI) known to be targeted by IRF proteins (Figure 2-3A).  Transfection of 

293T cells with increasing doses of IRF4 cDNA resulted in a dose dependent increase (up to 10-

fold) of the IFN125 reporter construct activity relative to empty vector transfected cells (Figure 

2-3B). Then, we examined whether IRF4 could induce the activation of a second well-

characterized ISRE regulated promoter, ISG56. For this purpose, we used lentivirus from the 

pInducer22/IRF4-V5 vector to stably transduce the RL24 reporter cell lines with a doxycycline-

inducible IRF4 expression vector (RL24i4). RL24 have been engineered to stably express an 

ISG56 promoter-driven firefly luciferase gene along with a renilla luciferase expression vector to 

serve as an internal control [170]. Stimulation of RL24i4 cells with 250 ng/ml of doxycycline 

(Dox) for 48 hrs led to the activation of the ISG56 promoter resulting in an almost 15-fold 

increase in luciferase activity (Figure 2-3C). Dox treatment resulted in the accumulation of IRF4 

protein as determined by western blot analysis using antibodies against the V5 epitope and IRF4 

that was accompanied by the detection of firefly luciferase protein synthesis and the induction of 

ISG60 protein expression  (Figure 2-3D). To verify our luciferase reporter data, we transiently 

transfected pcDNA/IRF4-V5 in 293T cells and examined its effect on ISG60 protein expression. 

Again, IRF4 led to the induction of ISG60 protein 48 hrs after transfection (Figure 2-3E).  

Together, these results suggest that IRF4 acts as a positive regulator of ISRE-driven gene 

expression. 
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Figure 2-3. IRF4 Activates ISRE-driven Promoters. 

 

 

 

 

 

(A) Induction of ISG60 expression by IRF4. 293T cells were transiently transfected with pcDNA/IRF4-V5 or 

vector control. Lysates were prepared and probed with antibodies against IRF4, ISG60, and Actin. 

(B) Schematic representation of the IFN125 luciferase reporter construct. Two tandem IFN enhanceosome 

sequences have been cloned upstream of the firefly luciferase gene. IRF binding domains PRDIII/PRDI are 

highlighted in red and pink. The NF-B binding domain (PRDII), and the AP-1 binding domain (PRD IV) have 

also been depicted in yellow and blue respectively.  

(C) IRF4 activates the IFN reporter construct. Increasing concentrations of IRF4 cDNA were co-transfected 

with IFN-Luc and pRL-null in 293 cells. Firefly luciferase activity was normalized to renilla luciferase activity 

and empty vector transfected cells (value 1). 

(D) Analysis of ISG60 and ISG56 promoter-driven firefly luciferase protein expression in RL24i4 cells. Lysates 

were prepared from 1×10
5
 cells stimulated with 250 ng/ml Dox for 48 hrs and probed with antibodies against 

firefly luciferase, IRF4, V5, ISG60, and Actin.   

(E) Induction of ISG56-luc promoter activity by IRF4. Luciferase activity was measured from Dox-stimulated 

RL24i4 cells (48 hrs). Firefly luciferase activity was normalized to renilla luciferase activity and non-stimulated 

cells (value 1).  
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While ectopic expression of IRF4 was sufficient to activate ISRE-driven promoters and 

induce the expression of ISG60, we wanted to investigate the ability of IRF4 to broadly alter the 

transcriptional expression of ISGs. In order to investigate the effect of ectopic IRF4 expression 

in 293 cells, we engineered a dox-responsive cell line expressing IRF4-V5 (293i4). Stably 

transduced cells responded to 48 hr stimulation with Dox by inducing the expression of IRF4 

mRNA (Figure 2-4A). Similarly, Dox stimulation also promoted dose-dependent IRF4 protein 

synthesis (Figure 2-4B). This upregulation in IRF4 protein expression was concomitant with a 

weak accumulation of ISG60, as previously observed both in Dox stimulated RL24i4 and 293 

cells transiently transfected with IRF4 cDNA. We further examined the protein expression of 

Cig5 (RSAD2) and OASL proteins, two ISGs usually not expressed in normal uninfected cells 

but strongly upregulated upon both viral infection and interferon treatment (Figure 2-4C). Again, 

the both Cig5 and OASL protein synthesis was enhanced in cells expressing IRF4. To determine 

whether the increase in protein synthesis was due to the transcriptional activation of ISG60, 

Cig5, and OASL genes, as predicted from our reporter assays, we examined the levels of mRNA 

expression in Dox stimulated cells by qRT-PCR. As expected, IRF4 expression (Figure 2A and 

B) was associated with a significant increase in both ISG60 (p-value 0.005) and Cig5 (p-value 

0.037) expression. Analysis of OASL mRNA expression showed a trend of upregulation, albeit 

not statistically significant (p-value 0.259), following Dox treatment (Figure 2-4D). Taken 

together, these results suggest that IRF4 can potentially mediate antiviral functions through the 

transcriptional upregulation of genes like ISG60, Cig5, and potentially OASL previously shown 

to have antiviral functions [178,179](Appendix B). 
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Figure 2-4. IRF4-Mediated Induction of Endogenous ISGs in Epithelial Cells. 

 

In order to assess whether IRF4 is a broad transactivator of ISG expression, we measured 

the mRNA expression levels of other ISGs induced by the activation of the IFN synthesis and 

signaling pathway. We first focused on the expression of ISG15 as IRF4 expression had been 

previously shown to activate an ISG15-promoter reporter construct [25]. As expected, the 

(A) Analysis of IRF4 mRNA expression in 293i4. Total RNA was harvested from Dox-stimulated 293i4 cells 

and subjected to qRT-PCR using primers against IRF4 and RPL32 as indicated in materials and methods.  

Expression of IRF4 was normalized to RPL32 and expressed as fold change with respect to non-stimulated cells 

(value 1). 

(B) IRF4 protein expression in 293i4 cells. 293i4 cells were stimulated with increasing doses of Dox for 48 hrs. 

Lysates were probed with antibodies against V5 and Actin. 

(C) ISG protein expression in 293i4 cells. 293i4 cells were stimulated with increasing doses of Dox for 48 hrs. 

Lysates were prepared and probed with antibodies against V5, ISG60, Cig5, OASL, and Actin. 

(D) Analysis of IRF4 mRNA expression in 293i4. Total RNA was harvested from Dox-stimulated 293i4 cells 

and subjected to qRT-PCR using primers against ISG60, Cig5, OASL and RPL32 as indicated in materials and 

methods.  Expression of ISG mRNA was normalized to RPL32 and reported as fold change with respect to non-

stimulated cells (value 1). ** p<0.01 and * p< 0.05  
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expression of IRF4 by stimulation with Dox resulted in a modest (p-value 0.005) induction of 

ISG15 gene expression. Further analysis of ISG expression showed an absence of a significant 

transcriptional induction of PKR (p-value=0.074) and IRF7 (p-value 0.107) (Figure 2-5A). 

Having previously determined that IRF4 expression results in the activation of an IFN promoter 

reporter, we examined whether IRF4 expression could promote the expression of endogenous 

type I IFN. Interestingly, the detection of IFN mRNA (p-value 0.284) was not significantly 

affected by IRF4 expression in Dox treated 294i4 cells.  

We then examined the effect of ectopic IRF4 expression on the transcriptional regulation 

of two genes associated with the late phase of the IFN response pathway, IFN and the 

interferon-responsive gene, MxA. Interestingly, the stimulation of IRF4 expression by 

doxycycline treatment resulted in a trend of inhibition of these genes. We used pan-IFN 

primers and saw a trend of inhibition by IRF4 expression. However, IRF4 led to a significant 

inhibition of MxA in Dox stimulated cells (p-value 0.0308) (Figure 2-5B). Given the differential 

regulation of ISG expression, we questioned whether the selective upregulation of ISG60, Cig5, 

and OASL or the selective inhibition of IFN and MxA by IRF4 had a biological consequence in 

the context of a VSV infection in epithelial cells. We infected 293 cells ether stably expressing 

an empty control vector or 293 cells constitutively expressing IRF4 with VSV (m.o.i = 0.001). 

Although the gene product of the ISGs exert antiviral functions, the weak and selective induction 

of interferon–stimulated genes by IRF4 was not sufficient to block the viral replication of 

vesicular stomatitis virus (VSV) in 293 cells expressing IRF4 (Figure 2-5C). Taken together, 

these results suggest that although IRF4 has a potential transcriptional regulatory capacity to 

drive ISG expression, the transcriptional signature of IRF4 is limited relative to other IRF 

proteins, which can regulate the expression of ISRE responsive genes with greater intensity and 
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broader target specificity mediating strong antiviral responses. However, the mechanism of the 

selective ISG upregulation and its biological consequences still remain to be identified. 

 

 

Figure 2-5. IRF4 Differentially Regulates  ISG Transcription. 

 

In order to establish whether the alterations in ISG transcription caused by IRF4 

expression were shared in B-cells, we generated a BJAB-derived cell line stably expressing Dox-

responsive IRF4, BJABi4. Forty-eight hour treatment with increasing doses of Dox resulted in 

the dose dependent induction of both IRF4 protein synthesis (Figure 2-6A) and mRNA 

(A) Analysis of ISG mRNA induction by IRF4. Total RNA was harvested from Dox-stimulated 293i4 cells (48 hrs) 

and subjected to qRT-PCR using primers against ISG15, PKR, IRF7, and IFN and RPL32 as indicated in materials 

and methods.  Expression of ISG mRNA was normalized to RPL32 and reported as fold change with respect to non-

stimulated cells (value 1). 

(B) Analysis of interferon-responsive gene mRNA induction by IRF4. Total RNA was harvested from Dox-

stimulated 293i4 (48 hrs) cells and subjected to qRT-PCR using primers against Pan- IFN, MxA, and RPL32.  

Expression of ISG mRNA was normalized to RPL32 and reported as fold change with respect to non-stimulated 

cells (value 1). 

(C) IRF4 expression fails to protect 293 cells from viral infection. 293 cells stably expressing IRF4 or vector control 

were infected with VSV-GFP. Supernatants from infected cells were harvested and virus replication was measured 

by plaque assay on BHK21 cells. 
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expression (Figure 2-6B). Analysis of ISG expression following Dox treatment showed that the 

increase in IRF4 expression was concomitant with an increase in ISG60 (Figure 2-6C) and Cig5 

(Figure 2-6D) transcription and a decrease in MxA transcript (Figure 2-6E), as observed in 

epithelial cells. These results indicate the transcriptional regulatory functions of IRF4 are 

conserved across multiple cell types.  

 

 

Figure 2-6. IRF4 Modulates ISG Transcription in BJAB cells. 

 

 

(A) IRF4 protein expression in BJABi4 cells. BJABi4 cells were stimulated for 48 hrs with increasing doses of Dox 

as indicated. Lysates were prepared and probed with antibodies against V5 and Actin.  

(B) Analysis of IRF4 mRNA expression in BJABi4. Total RNA was harvested from 48 hr Dox-stimulated BJABi4 

cells and subjected to qRT-PCR using primers against IRF4 and RPL32 as previously described.  Expression of 

IRF4 was normalized to RPL32 and expressed as fold change with respect to non-stimulated cells (value 1). 

(C-E) ISG protein expression in BJABi4 cells. BJABi4 cells were stimulated with increasing doses of Dox for 48 

hrs. Total RNA was harvested from 48 hr Dox-stimulated BJABi4 cells and subjected to qRT-PCR using primers 

against ISG60 (C), Cig5 (D), MxA (E), and RPL32 as previously described.  ISG mRNA expression was 

normalized to RPL32 and expressed as fold change with respect to non-stimulated cells (value 1). 
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In order to exclude the involvement of other IRF proteins in the transcriptional regulation 

of ISG60 and Cig5, we again employed our 293i4 cell-based system to examine alterations on 

both IRF protein synthesis and mRNA expression levels following Dox treatment. Immunoblot 

analysis of 48 hr Dox-stimulated cells, showed that IRF4 expression was induced in a dose 

dependent manner. However, when we examined the protein levels of IRF proteins, IRF-1, -3, -

5, -7, -8, -9 there was no detectable increase in protein synthesis (Figure 2-7A). Similarly, there 

was no differential mRNA expression was observed after ectopic IRF4 expression (Figure 2-7B). 

Thus, it is likely that the transcriptional activation of ISG60 and Cig5 is due to direct binding of 

IRF4 to ISRE enhancers in their 5’ promoter regions. 

 

 

Figure 2-7. Expression of IRF Proteins in IRF4 Expressing Cells. 

 

(A) Analysis of IRF protein expression in 293i4 cells. 293i4 cells were stimulated for 48 hrs with increasing doses 

of Dox as indicated. Lysates were prepared and probed with antibodies against IRF4, IRF1, IRF3, IRF7, IRF8, 

IRF9, and Actin.  

(B) Analysis of IRF mRNA expression in 293i4. Total RNA was harvested from 48 hr Dox-stimulated 293i4 cells 

and subjected to qRT-PCR using primers against IRF4, IRF1, IRF3, IRF7, IRF8, IRF9, and RPL32 as previously 

described.  The expression of IRFs was normalized to RPL32 and reported as fold change with respect to non-

stimulated cells (#, value 1). 
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In order to dissect the trans- and cis- regulatory elements involved in the regulation of 

ISG60 and Cig5 expression in Dox-stimulated 293i4 cells, we first examined whether IRF4 

localizes in the nucleus following 48 hr treatment of cells. Similar to the expression of IRF4 in 

BCBL-1 cells, IRF4 protein was predominantly detected in the nuclear compartment (~70%) 

confirming its potential role in direct transcriptional regulation of ISGs (Figure 2-8A). We then 

retrieved the 5’ flanking sequences corresponding to nucleotides -1000 to 299 relative to the start 

of transcription of ISG60 and Cig5 using the Transcriptional Regulatory Element Database 

(TRED) database [180]. We used PROMO [181] to search for IRF transcription factor binding 

motifs in the DNA sequences corresponding to the promoter of ISG60 and Cig5, and to identify 

putative ISRE elements regulating the expression of these genes. Two putative sequences with 

less than 15% dissimilarity to IRF binding motifs were identified for ISG60, ISRE I (6.12%) and 

ISRE II (3.64%), and (Figure 2-8B and D) a potential ISRE site in Cig5 with a 1.92% sequence 

dissimilarity. These same putative enhancer elements were also identified as IRF response 

element through sequence analysis using TESS and TFSEARCH. Thus, to determine whether 

IRF4 binds to the identified ISRE elements, we performed chromatin immunoprecipitation 

(ChIP) assays on HEK293 cells constitutively expressing V5-tagged IRF4. ChIP with anti-V5 

antibody showed enrichment for the regions encompassing both the ISREII/I elements of ISG60 

(Figure 2-8C) and to the region containing the ISRE element on the Cig5 promoter (Figure 

2-8E). These results show that ectopic expression of IRF4 in epithelial cells, results in its 

activation and nuclear translocation, where it can directly bind to the ISRE elements in the 

promoters of ISG60 and Cig5, resulting in their transcriptional activation.  
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Figure 2-8. IRF4 Binds to ISRE Motifs in the ISG60 and Cig5 Promoters in Epithelial Cells. 

 

 

 

 

(A) Subcellular localization of IRF4 in 293i4 cells. 293i4 cells were stimulated with Dox and cytoplasmic and 

nuclear protein fractions were extracted. Lysates were probed with antibodies against V5, DRBP76, and Tubulin. 

Expression of IRF4 was predominantly nuclear.  

(B) Schematic representation of the ISG60 promoter-regulatory region depicting the positions of two ISRE sites 

(gray) and their sequences as predicted using the Transcriptional Regulatory Element Database (TRED). A putative 

-B motif (black) was also identified. 

(C) Chromatin-immunoprecipitation of IRF4 bound to ISG60 promoter. Chromatin was prepared from 1×10
7
 

HEK293 cells expressing IRF4-V5 (HEK293/pLenti-IRF4-V5) or vector control (HEK293/pLenti). IRF4 and Pol II 

binding to the promoters were assayed by ChIP assay using anti-V5 and anti-Pol II antibodies for 

immunoprecipitation. Relative promoter occupancy was determined relative to vector control cells as indicated in 

materials and methods.  

(D) Schematic representation of the Cig5 promoter-regulatory region depicting position of the ISRE site (gray) and 

its sequence as predicted using the Transcriptional Regulatory Element Database (TRED). Two putative -B motif 

(black) was also identified. 

(E) Chromatin-immunoprecipitation of IRF4 bound to Cig5 promoter. ChIP assays were performed as described 

above. Relative promoter occupancy was determined relative to vector control cells as indicated in materials and 

methods. 
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To define whether IRF4 participates in the regulation of ISG60 expression in PEL cell 

lines, we examined the association of IRF4 to the ISG60 promoter by ChIP assay in BCBL-1 

cells. As previously observed in HEK293 cells, chromatin pulldown with IRF4 specific 

antibodies showed that IRF4 interacts with the DNA sequences corresponding to the 

ISREII/ISREI enhancer element in the ISG60 promoter. Specifically, there was a 7-fold 

enrichment in the expression of the sequences corresponding to the ISRE motifs relative to that 

observed after with IgG isotype control antibodies. Furthermore, ChIP analysis revealed that 

RNA PolII is also actively recruited to the ISG60 promoter in PEL cells. Together, these results 

suggest that the overexpression of IRF4 in PEL cell lines likely results in the increased 

expression of interferon-stimulated genes, particularly, ISG60 (Figure 2-9A). Thus we examined 

the expression of ISG60 proteins in whole cell lysates prepared from PEL cell lines BCBL-1, 

BC-1, and BCP-1. Immunoblot analysis confirmed that the expression of IRF4 across all lines. 

Interestingly, BCP-1 cells displayed a lower level of IRF4 expression compared to BCBL-1 and 

BC-1, which express similar levels of IRF4. This observation was consistent with previous 

analysis of IRF4 protein expression in PEL cell lines by Arguello et al. [167] (Figure 2-9B). On 

the other hand, the expression of ISG60 varied across all cell types tested. ISG60 protein was 

readily detected in cells BCBL-1 and BC-1 cells, with BCBL-1 cells expressing higher levels of 

ISG60 than BC-1. However, ISG60 expression was not detectable in BCP-1 cells consistent with 

the reduced expression of IRF4 protein. Together, these results suggest that IRF4 is a potential 

regulator of ISG60 expression in both epithelial and PEL cell lines. 
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Figure 2-9. IRF4 Associates to the ISG60 Promoter in PEL cells 

 

2.4 DISCUSSION 

The induction of type I IFN secretion and downstream upregulation of ISG expression is a potent 

antiviral mechanism. Efforts to comprehend the regulation of this complex signaling pathway 

have largely described the IRF family of transcription factors as the major regulators of antiviral 

gene expression [2].  However, few studies on the specific contribution of IRF4 to innate 

immunity and the regulation of effector gene expression have been reported. On one hand, IRF4 

is known to directly interact with the adaptors molecules of Toll-like receptors, MyD88, 

effectively inhibiting IRF5 activation after ligand stimulation [182]. On the other hand IRF4 can 

(A) Analysis of ISG60 protein expression in PEL cell lines BCBL-1, BC-1, and BCP-1. Whole cell lysates were 

prepared from 1×10
6
 cells and probed with antibodies against IRF4, ISG60, and Tubulin.   

(B) Chromatin-immunoprecipitation of endogenous IRF4 bound to ISG60 promoter in BCBL-1 cells. IRF4 (left) 

and Pol II (right) binding to the ISG60 promoter was analyzed by ChIP assay as previously described. Relative 

promoter occupancy was determined relative to isotype control antibody (value 1). 
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bind DNA and act as both a positive and negative transcriptional regulator of antiviral effector 

genes [23,25,183]. The association of IRF4 with IRF and non-IRF proteins awards distinct DNA-

binding specificities to the IRF4 heterodimeric complexes. Furthermore, increasing evidence 

suggests that components of the antiviral innate immune response regulate gammaherpesvirus 

gene expression and reactivation from latency [146,184-187]. While IRF4 expression is 

uprgulated in KSHV infected PEL cells, the role of IRF4 in regulating either cellular or viral 

gene expression in this malignancy has yet to be explored. 

In this chapter, we have examined the transcriptional capacities of IRF4 in a biological 

context lacking expression of PU.1 and IRF8 and where there is an absence of exogenous stimuli 

(viral infection). Thus, we are looking at the inherent ability of IRF4 to regulate cellular ISG 

expression, through ISRE enhancer binding. Using an epithelial cell system, we identified IRF4 

as a dual regulator of ISG expression. First, we observed an IFN-independent induction of ISG60 

and Cig5 mRNA expression and protein synthesis post-expression of IRF4. It should be noted 

however, that the transcriptional signature of IRF4 was restricted to a subset of the ISGs 

examined and the induction of ISG60 and Cig5 was weaker than that generally observed after 

virus infection. Thus, IRF4 mediated ISG induction was not sufficient to confer 293 cells with 

protection against VSV. This is to be expected given that IRF4 expression does not induce the 

expression of IFNandthustheactivation of IFN responsive transcription complexes (ISGF3) 

and IFN-inducible IRF proteins (IRF1, IRF7, and IRF5) that can confer protection from viral 

infection by increasing the magnitude of ISG transcription is absent.  

Needless to say, the biological significance of the ISG induction by IRF4 should not be 

understated by the failure to award protection against VSV. Enhanced ISG expression has 

previously been observed in certain tumor types [5,188-196]. Furthermore, the expression of 
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ISG60 results in the inhibition of ISG54 mediated caspase-3 activation and apoptotic cell death 

[197]. Other studies have shown that ISG15 expression, also weakly induced by IRF4, is 

increased in bladder and prostate cancers [195,196].  The degree of ISG15 expression also 

correlated with tumor invasiveness [195]. Thus IRF4-mediated gene induction could contribute 

to the disruption of homeostasis that leads to cellular transformation and oncogenesis in PEL. 

We also observed a trend of inhibition of IFN and MxA basal expression. This raises a 

question as to the potential mechanism by which IRF4 inhibits gene expression. It is likely that 

IRF4 can also bind to the ISRE elements, generally targeted by ISGF3 complex (STAT1, 

STAT2, IRF9), inhibiting the transcription of MxA. Support for this hypothesis is found in IRF4 

ChIP-seq assays performed by Richard Myers’ group (Hudson Alpha Institute for 

Biotechnology) and deposited in the UCSC Genome Bioinformatics database. Their results show 

a potential binding of IRF4 to the MxA promoter as well as those of genes involved in the relay 

of IFNAR/JAK/STAT signaling pathway [198]. Together, these results suggest that IRF4 might 

be a negative regulator of the IFN response pathway, dampening anti-apoptotic and antiviral 

responses against KSHV. 

Lastly, we examined the protein expression levels of ISG60 across PEL cell lines, we 

found that high levels of IRF4 expression correlated with the induction of ISG60. Interestingly, 

we observed a discrepancy in expression of ISG60 between BCBL-1 and BC-1 cells. BCBL-1 

cells are KSHV +ve and EBV -ve while BC-1 cells are both KSHV and EBV +ve [171,173]. 

This discrepancy in ISG60 expression could be attributed to the presence of EBV encoded viral 

proteins that can interfere with the functions of IRF4. Furthermore, the decrease in IRF4 

expression in BCP-1 cells, relative to BCBL-1 cells, has been previously reported [167]. 

Therefore, comparative genome profiling between the established PEL cell lines could provide 
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useful information in identifying the distinct regulators of IRF4 expression and target gene 

regulation. 
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3.0  MODULATION OF IRF4 MEDIATED SIGNALING BY KSHV ENCODED 

VIRAL FLICE INHIBITORY PROTEIN 
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3.1 INTRODUCTION 

Primary effusion lymphomas are defined by being latently infected with KSHV [88]. In 

the infected cells, the virus persists as a naked episome (50-100 copies/cell) and expresses only a 

limited subset of viral genes [104,106,107,199]. These genes, known as latency-associated 

genes, encode KSHV vFLIP (vFLIP), viral cyclin (vCYC), latency-associated nuclear antigen 

LANA, LANA2 (also known as vIRF3), K12, and miRNA encoding genes [200]. The function 

of these proteins has been the subject of extensive study given that they are the viral mediators 

that promote viral persistence and tumorigenesis. Indeed, the expression of these proteins is 

crucial for maintenance of latency, episome tethering to the chromosomes, viral DNA 

replication, and segregation to daughter cells. Furthermore, these genes have been demonstrated 

to encode potent oncogenes capable of interacting with cellular proteins resulting in the 

deregulation of various cellular processes. Thus, KSHV can promote sustained cellular 

proliferation amidst diminished apoptotic responses and promote inflammation while evading 

immune clearance [104,200].  

Studies focused on understanding how latency-associated proteins shape the immune 

responses in PEL cells have identified specific escape mechanisms including the inhibition of 

antigen presentation [201-203], prevention of cellular apoptosis [116,204], and the inhibition of 

type I IFN mediated antiviral responses [109]. Two of the latency-associated nuclear antigens, 

LANA and LANA2 (vIRF3) have conclusively been shown to negatively regulate the 

transcriptional functions of IRF3 and IRF7, as well as IRF5 resulting in the inhibition of IFN 



 64 

ISG expression, and cell death [111,123]. On the other hand, the activation of NF-B by the 

latency protein vFLIP, results in synergistic enhancements of IRF3 and IRF7 mediated IFN 

promoter activation [141]. Studies examining the importance of vFLIP in the shaping the cellular 

response to viral infection with KSHV, determined vFLIP to be required for the induction of 

interferon stimulated gene expression [140].  

In this chapter, we investigate the effect of latency-associated proteins in regulating the 

expression of IRF4 mediated gene transcription. Co-expression of v-FLIP enhanced 

transcriptional activation of ISGs by IRF4. We demonstrated that the synergistic enhancement of 

ISG60 transcription following IRF4 and v-FLIP co-expression is dependent on the activation of 

NF-B. Thus, these studies illustrate the interplay between host factors and viral proteins in 

regulating gene expression and shed light into the signals that control ISG expression. 

3.2 MATERIALS AND METHODS 

3.2.1 Cell Lines and Reagents 

Cells lines HEK293, 293FT, 293i4, BJAB and BCBL-1 were described in the materials and 

methods section in Chapter 2. WT11 cells, are HEK293-derived cell lines stably expressing 

Flag-tagged TLR3 [176]. 293i4S446D cells are HEK293-derived cells stably transduced with 

pInducer20/IRF4 S446D [169]. 293-derived cells were cultured in Dulbecco’s Modified Eagle 

Medium (Lonza) containing 10% fetal bovine serum (Atlanta Biologicals) and 100 I.U./ml 

penicillin and 100 mg/ml streptomycin (Lonza). Sendai Virus (Cantell Strain) was purchased 

from Charles River Laboratories. Doxycycline (Clonetech) was resuspended in a 1 mg/ml stock 
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in H20 and used at the reported concentrations. TNF (10 ng/ml) and IL1-  (100ng/ml) were 

purchased from PeproTech. 

 

3.2.2 Plasmids and Lentiviral Vectors  

The expression vector pcDNA/IRF4-V5 was generated as previously described in 

Chapter 2. Phosphomimetic mutant of IRF4 S446D was generated by substitution of serine 

(TCC) to aspartic acid (GAC) by site-directed amino acid substitution of pENTR/D-TOPO IRF4-

V5 using QuikChange II site-directed mutagenesis kit (Stratagene) following manufacturer’s 

protocols using primers: 5’- CCACAGATCTATCCGCCATGACTCTATTCAAGAATGACTC-

3’ and 5’- GAGTCATTCTTGAATAGAGTCATGGCGGATAGATCTGTGG-3’. Mutagenesis 

was verified by sequence analysis. Doxycycline-inducible lentiviral vectors were generated by 

performing LR recombination between pENTR/D-TOPO IRF4-S446D-V5 with pInducer 20 

destination vector [175].  

To generate vFLIP (K13) eukaryotic expression vectors pcDNA/K13-HA was generated 

by PCR amplification of K13 cDNA with a C-terminal HA tag from pMSCV/K13 (Kindly 

provided by Dr. Preet Chaudhary, USC Norris) using primers: 5’ 

CACCGAATTCACACCATGGCCACTTACGAG GTTCT- 3’ and 5’-

ATTATCTAGACTAAGGTCCTCCCAGGCTGGCATAGTCAGGCACGT 

CATAAGGATACTCGAGTGGTGTATGGCGATAGTGTTGG - 3’. The PCR product was then 

cloned into pENTR/D-TOPO (Invitrogen), sequence verified, and K13-HA was subcloned into 

the EcoRI-XbaI sites in pcDNA3.1(+)/Hygro (Invitrogen). The vFLIP mutant, A57L, was 

generated by subsititution of the alanine (TCC) codon to leucine (GAC) from the pcDNA/K13-
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HA using QuickChange II site-directed mutagenesis kit using the following mutangenesis 

primers: 5’-CGTTTCCCCTGTTACTGGAATGTCTGTTTCGTG-3’ and 5’ - 

CACGAAACAGACATTCCAGTAACAGGGGAAACG-3’. The IB super-repressor mutant 

S32A/S36A was kindly provided by Dr. Kathy Shair (University of Pittsburgh) and has been 

described before [205]. The pcDNA3.1-HisC/vIRF1 was generated by cloning full length vIRF1 

CDS into the EcoRI and XhoI sites of pcDNA3.1-HisC vector [206]. pMET.vIL-6, was 

generated by cloning vIL-6 from BC-1 cells into the pMET7 expression vector [207]. 

pcDNA3.1-HisA/K3 was generated by cloning K3 form BC-1 cells into pcDNA3.1-TOPO. K3 

was then subcloned into the BstXI site of pcDNA3.1-HisA. The pcDNA/ORF50, pcDNA-

His/LANA, and pcDNA3.1-HisB/LANA2 vectors have been previously described 

[116,169,202]. The pcDNA3.1/vIRF1, vIL-6, pcDNA/ORF50, pcDNA3.1/K3, pcDNA-

His/LANA, and pcDNA/LANA2 vectors were a kind gift of Drs. Yuan Chang and Patrick Moore 

(University of Pittsburgh) and have been previously described.  

3.2.3 Modulation of IRF4 Activity by KSHV Proteins 

293i4 (8x10
5
) cells were seeded on a 6-well plate. 24 hours later, cells were transfected with 800 

g of LANA, LANA2, and vFLIP cDNA of vector control. Eight hrs post transfection, cells 

were trypsinized and plated on 6-wells from a 12-well plate. Cells were then stimulated with 

increasing doses of doxycycline (0-500 ng/ml) at 24 hrs post plating. Total RNA was harvested 

from cells 48 hrs post stimulation as mentioned below. 
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3.2.4 RNA Isolation and qRT-PCR Analysis 

RNA isolation, cDNA synthesis, and qRT-PCR analysis were performed as previously described 

in Chapter 2 Materials and Methods. The qRT-PCR primer sets utilized in this study have been 

described in Table 5. ISG60 and Cig5 specific primers were described in Table 4. 

 

Table 5. KSHV Latency-Associated Genes Set. 

Gene Orientation              Sequence 

RPL32 
Forward 5' - CAACATTGGTTATGGAAGCAACA - 3' 

Reverse 5' - TGACGTTGTGGACCAGGAACT - 3' 

LANA (ORF73) 
Forward 5’-ATACTCATTCTCCATCTCCTGCATTGC-3’ 

Reverse 5’-TTCCTGTAGGACTTGAAAGCGGT-3’ 

LANA2 (K10.5) 
Forward 5’-CTCTTTGATCTGCTTGGCATCC-3’ 

Reverse 5’-TTGCATCCGTGTCGCCT-3’ 

vFLIP (K13) 
Forward 5’-GGATGCCCTAATGTCAATGC-3’ 

Reverse 5’-GGCGATAGTGTTGGAGTGT-3’ 

3.2.5 Subcellular Fractionations 

Subcellular fractionations were done as previously described in Chapter 2 Materials and 

Methods. Densitometric analysis of band intensity was done using ImageJ. 

3.2.6 Immunoblotting 

Protein concentration from cell lysates was determined using the Bio-Rad Protein Assay (Bio-

Rad). Equal amount of protein extracts were separated on 8.5% to 12% SDS–polyacrylamide 

gels, and proteins were transferred to PVDF membranes. Membranes were stained with Ponceau 

S stain for 5 minutes to assess even transfer, washed twice in Tris-buffered saline with Tween 20 
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(TBS-T; 20 mM Tris, 0.5 M NaCl [pH 7.5] plus 0.5% Tween 20) and blocked for 1hrs in 10% 

nonfat dry milk TBS-T. Primary antibody incubation was done overnight in 10% nonfat dry 

milk. Antibodies used anti-V5 (Invitrogen), anti-Tubulin, anti-DRBP76 were used at a 

concentration of 1:1000 and have been previously described [169]. Membranes were then 

washed twice with TBS-T and incubated with horseradish peroxidase-conjugated anti-mouse or 

anti-rabbit immunoglobulin G (IgG) (Rockland) diluted at 1:10,000 in TBS-T plus 10% nonfat 

dry milk. Blots were revealed by enhanced chemiluminescence using Hy-Glo reagent (Denville) 

according to manufacturer’s protocol.  

3.2.7 Luciferase Assays 

1x10
5
 WT11 cells were seeded in a 24-well plate. Cells were transfected with 0.5 or 1g viral 

gene cDNA, 0.5 g IFN125-luc, and ng of renilla luciferase reporter construct. DNA quantity 

was kept constant using empty vector. 24 hrs post transfection, cell were seeded on 96-well 

white-walled plates and infected with Sendai virus (200 HAU/ml) for 8 hrs. Luciferase activity 

was measured by Dual-Glo Assay (Promega) as previously described in Chapter 2 Materials and 

Methods. Firefly luciferase activity was normalized to renilla luciferase activity and expressed as 

fold change relative to vector control transfected cells (value 1).  

3.3 RESULTS 

KSHV encodes over 80 genes, which are necessary for the control of viral gene expression, 

DNA replication, packaging, and assembly of virions. Several of the viral encoded genes serve to 
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manipulate the cellular landscape in order to counteract the host response to and favor viral 

genome persistence and propagation. Infection with Sendai virus (SeV), triggers the activation of 

RIG-I resulting in the activation of IRF3 and transactivation of the antiviral cytokine, IFN, and 

IRF3-target genes that mediate antiviral responses. In order to identify KHSV-encoded genes 

that could either positively or negatively modulate IRF3 functions, we employed an IFN 

promoter luciferase reporter construct. Briefly, WT11 cells were co-transfected with increasing 

concentration of KSHV gene expression plasmids, IFN125-Luc, and a renilla luciferase reporter 

for normalization. After 48 hrs, cells were infected with 200HAU/mL SeV for 8 hrs prior to 

analysis of luciferase activity. Both LANA and vIRF1 inhibited IFN promoter activity. These 

results were in accordance with previously published results suggesting that both LANA and 

vIRF1inhibit IRF3 mediated gene transcription through distinct pathways [111,208]. On the 

other hand, expression of LANA2 (vIRF3) resulted in an increase in promoter activity, 

suggesting that LANA2 is an enhancer of IRF3 mediated transcription as previously reported 

[121]. Interestingly, we observed an increase in promoter activity in mock-infected RTA 

expressing cells, suggesting that RTA is an inducer of IFN (Figure 3-1). Expression of vIL6 

and K3 had no significant effect on the activation of the IFN reporter construct. Together, these 

results demonstrate the mechanistic versatility by which KSHV can deregulate the antiviral 

responses mediated by IRF3. 
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Figure 3-1. KSHV Modulators of IRF3-Mediated Gene Expression. 

 

 

Given that the mechanisms by which LANA and LANA2 regulate IRF3-mediated gene 

induction have been elucidated, and taking into consideration that both LANA and LANA2 are 

co-expressed during latency along with IRF4 (Figure 3-2 and Figure 2-1B), we asked whether 

the expression of these genes had similar regulatory effects on IRF4-mediated transcription. For 

this purpose we focused on the ability of LANA and LANA2 to regulate the transcription of 

ISG60, a direct target of IRF4, in our 293i4 cellular system.  

Identification of IRF3-mediated transcriptional modulators. WT11 cells were tranfected with cDNA corresponding 

to LANA, LANA2, vIRF1, vIL-6, K3, or RTA along with IFN125-luciferase reporter construct and a renilla 

luciferase expressing vector. 48 hrs post transfection, cells were infected with 200HAU/ml Sendai virus for 8 hrs. 

Firefly luciferase activity was measured and normalized to renilla luciferase activity. Promoter activation was 

reported relative to the activity of mock-infected empty vector transfected cells (value 1). 
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Figure 3-2. Detection of KSHV Genes in PEL Cells.  

 

Transient transfection of LANA cDNA in 293i4 cells did not affect the induction of IRF4 

following Dox treatment of 293i4 cells (Figure 3-3A, left). Furthermore, co-expression of LANA 

and IRF4 resulted in equivalent induction of ISG60 transcription in 293i4 cells (Figure 3-3A, 

right). Similarly, the expression of LANA2 neither affected the induction of IRF4 mRNA 

following Dox treatment (Figure 3-3B, left) nor the IRF4 mediated transcription of ISG60 

(Figure 3-3B, right). These results suggest then, that the LANA and LANA2 proteins 

differentially target individual IRF proteins. A third latency-associated gene, vFLIP, has also 

been shown to synergistically enhance of IRF mediated target gene expression [141]. Thus, we 

investigated whether vFLIP could also enhance IRF4 mediated gene expression. Transfection of 

293i4 cells with vFLIP did not affect the induction of IRF4 by Dox treatment (Figure 3-3C, 

right) however the co-expression of IRF4 and vFLIP resulted in a synergistic enhancement in 

ISG60 transcription in cells stimulated with Dox (Figure 3-3C, right). Expression of vFLIP alone 

was not sufficient for the induction of ISG60 mRNA. These results suggest that the expression of 

ISGs is primarily controlled by the activation of IRF proteins. 

Analysis of KSHV latency associated gene transcription in BCBL-1 cells. Total RNA was harvested from 1x106 

KSHV negative cell line BJAB and PEL cell line, BCBL-1. Transciption of LANA, LANA2, and v-FLIP was 

assessed by qRT-PCR analysis. Latency associated gene expression was reported relative to the detection in BCBL-1 

cells (value 1). # represents a lack of detection of transcripts. 
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Figure 3-3. Effect of KSHV Latency-Associated Genes on IRF4-mediated Transcription. 

 

The function of IRF proteins is regulated by their temporal expression, their dimerization 

and translocation to the nucleus, and the phosphorylation of serine and threonine residues in the 

AIE domains located in the C-terminus of IRF proteins (Figure 3-4A). In order to identify the 

mechanism by which vFLIP co-expression enhances IRF4-mediated transcription we used two 

distinct approaches. First, we examined whether the expression of vFLIP resulted in increased 

IRF4 nuclear localization 293i4 cells stimulated with Dox. Analysis of IRF4 subcellular 

(A), (B) and (C) Quantitation of ISG60 mRNA induction in 293iIRF4 cells transfected with KSHV latency-

associated viral proteins. 8×10
5 

cells were transfected in a 6-well plate with 800ng of vFLIP (A), LANA (B), 

LANA2 (C) expression vectors or their respective empty vector controls. Eight hours post transfection, cells were 

transferred to 24-well plates and stimulated with increasing doses of Dox. Total RNA was harvested 48 hrs post 

stimulation. IRF4 (left panel) and ISG60 (right panel) mRNA induction was quantified by qRT-PCR. Samples were 

normalized to RPL32 and expressed as fold change with respect to untreated vector control cells (value 1). 
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translocation confirmed that as previously observed in Figure 2-8, Dox treatment of 293i4 

resulted in the localization of over 70% of the total IRF4 protein expression to the DRBP76 

positive nuclear fraction in vector transfected cells. Expression of vFLIP did not affect the 

subcellular localization of IRF4 (Figure 3-4B). Secondly, we examined the effect of vFLIP 

expression on the C-terminal phosphorylation of IRF4 at Serine 446, which is phosphorylated by 

ROCK2 in T-cells and required for the transcriptional activation of IRF4 [20]. For this purpose, 

we generated a phosphomimetic mutant of IRF4 by substituting the serine residue for an aspartic 

acid residue by site-directed mutagenesis. We then generated the stable cell line 

293iIRF4/S446D, which expressed the phosphomimetic mutant of IRF4 in response to Dox 

treatment (Figure 3-4C). vFLIP was then co-expressed by transfecting 800 ng of cDNA and 

stimulating cells with Dox. Both vector and vFLIP transfected cells expressed comparable levels 

of IRF4 mRNA after 48 hrs of Dox stimulation at the indicated doses (Figure 3-4D).  

Furthermore, stimulation of 293i4/S446D cells with Dox showed expected increase in ISG60 

mRNA in empty vector transfected cells and the transcription of ISG60 was further enhanced by 

the co-expression of vFLIP (Figure 3-4E). Should vFLIP affect the phosphorylation at S446, we 

would have expected to see a loss in the enhancement of ISG60 transcription. Taken together 

these data suggests that the effect of vFLIP on IRF4-mediated transcription is independent of 

phosphorylation of S446 or IRF4 nuclear translocation, suggesting that the observed 

transcriptional enhancement is likely due to mechanisms independent of IRF4 activation and 

function. 
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Figure 3-4. IRF4 Activation is Unchanged by vFLIP Co-Expression. 

 

(A) Schematic representation of IRF protein activation. IRF proteins are generally found in a monomeric 

hypophosphorylated form in the cytoplasm. Upon serine phosphorylation in the C-terminus (yellow circles), IRF 

proteins form dimers and translocate to the nucleus where they regulate ISRE-driven gene expression. 

(B) Effect of vFLIP on IRF4 subcellular localization. 293i4 cells were transfected with pcDNA-K13 and 

stimulated with 0.5g/ml Dox for 48 h. Cells lysates were fractioned and subjected to immunoblotting with 

antibodies against V5. Immunoblots were quantified by densitometry and plotted as total IRF4 localized between 

the cytoplasmic and nuclear fractions. 

(C) Western blot analysis of IRF4 protein induction following Dox stimulation in 293iIRF4/S446D cells. Cells 

were stimulated for 48 h with Dox as indicated. Lysates were prepared and subjected to immunoblotting using 

antibodies against V5 and Tubulin.  

(D and E) Effect of IRF4-S446D on vFLIP-mediated enhancement of ISG60 mRNA induction. 293i4 and 

293i4/S446D were transfected and stimulated as previously described. IRF4 (D) and ISG60 (E) mRNA induction 

was quantified by qRT-PCR. Samples were normalized to RPL32 and expressed as fold change with respect to 

untreated vector control cells (value 1). 
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Unlike other viral encoded FLIPs, a unique feature of KSHV encoded vFLIP is the ability 

to activate NF-B by direct interaction with the IKK complex [137], which was shown to be 

necessary for the transcriptional enhancement of the IFN promoter in cells ectopically 

expressing vFLIP [141]. Thus we examined whether the requirement for NF-B activation was 

necessary for the transcriptional enhancement of ISG60 mediated by the expression of vFLIP. 

First, we treated vFLIP-transfected 293i4 cells with NF-B inhibitor, Bay 11-7082. Briefly, 8 hrs 

post transfection with vFLIP or empty vector, cells were stimulated with 5 M of Bay 11-7082 

and Dox or DMSO for an additional 48 hrs. Treatment with Bay 11-7082 resulted in a 2-fold 

reduction of the transcriptional enhancement of ISG60 (Figure 3-5A). We confirmed the results 

observed by using chemical inhibitors by employing a dominant negative IB (SR-IB 

IB phosphosphorylation at serine residues 32/36 results in its proteolytic degradation releasing 

NF-B subunits[209].  Substitution of Ser 32/36 to Ala in IB results in constitutive repression 

of NF-B [210]. Co-transfection of cells with SR-IB and vFLIP results in a 7-fold reduction 

of the transcriptional enhancement of ISG60, confirming the requirement for NF-B activation 

(Figure 3-5B). Lastly, we tested the role for NF-B in vFLIP-mediated ISG enhancement using a 

genetic mutant of vFLIP impaired in its ability to activate NF-B. Activation of NF-B by 

vFLIP is mediated by the direct contact between vFLIP and IKK. This relies on a binding cleft 

in the death domain of vFLIP containing a critical Alanine residue in position 57 [211]. 

Substitution of Ala 57 to Leu by site-directed mutagenesis, renders vFLIP unable to activate NF-

B as determined by using a NF-B-responsive promoter reporter assay. Transient transfection 

of 293T cells with wt vFLIP resulted in a seven-fold increase in the NF-B responsive promoter 

activity relative to empty vector transfected cells. On the other hand, expression of vFLIP A57L 
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did not activate the reporter promoter (Figure 3-5C).  Thus, we asked whether co-expression of 

IRF4 and the mutant vFLIP would result in changes in ISG60 transcription in 293i4 cells treated 

with Dox. As expected, expression of vFLIP wt or A57L did not affect the induction of IRF4 

after stimulation with Dox (Figure 3-5D, left).  Synergistic enhancement of IRF4-mediated 

ISG60 induction, however, was absent in A57L compared to wild-type vFLIP transfected cells 

(Figure 3-5D, right). Again, no induction of ISG60 was observed in cells transfected with either 

WT or mutant vFLIP expression vectors in the absence of Dox treatment. These results suggest 

that vFLIP upregulates IRF4 mediated ISG60 induction in a NF-B dependent manner. 
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Figure 3-5. vFLIP Enhances ISG60 Induction in an NF-B Dependent Manner. 

 

 

(A) Effect of Bay 11-7082 on ISG induction by IRF4 and vFLIP. 293iIRF4 were transfected with vector control or 

vFLIP for 8 h. After transfection, cells were stimulated with Dox in the presence or absence of 5 Bay 11-7082 

for an additional 48 h. ISG60 mRNA induction was analyzed by qRT-PCR as described before. Samples were 

normalized to RPL32 and expressed as fold change with respect to untreated vector control cells (value 1) 

(B) Effect of SR-IB expression on ISG induction by IRF4 and vFLIP. 293iIRF4 were co-transfected with vFLIP 

and SR-IBor the respective vector controls for 24 h. After transfection, cells were stimulated with Dox for an 

additional 48 h. ISG60 mRNA induction was analyzed by qRT-PCR as described before. Samples were normalized 

to RPL32 and expressed as fold change with respect to untreated vector control cells (value 1).  

(C) NF-B luciferase reporter assays from 293T cells transfected with wild-type vFLIP, vFLIP A57L, or empty 

vector control. 293T cells were co-transfected with 1g of cDNA, 0.4 g of NF-B luciferase reporter construct and 

12 ng of pRL-null. Firefly luciferase activity was measured 48 h post transcription and normalized to renilla 

luciferase.  

(D) qRT-PCR analysis of IRF4 and ISG60 induction in 293iIRF4 cells transfected with wild-type or A57L mutant 

vFLIP. RNA was extracted after transfection of WT or mutant vFLIP cDNA for 8 h followed by 48 h of Dox 

stimulation.  IRF4 (left) and ISG60 (right) mRNA induction was quantified by qRT-PCR. Samples were normalized 

to RPL32 and expressed as fold change with respect to untreated cells (value 1). 
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Finally, to confirm the involvement of NF-B in IRF4 mediated ISG60 upregulation, we 

treated cells with an NF-B activating cytokines, tumor necrosis factor (TNF) and 

Interleukin-1 (IL-1), and examined ISG60 and Cig5 transcript levels in presence of IRF4. 

293i4 cells were stimulated with increasing doses of Dox for 48 h followed by 12 h stimulation 

with 10 ng/ml TNFor 1 ng/ml IL-1. The levels of IRF4 transcription following Dox 

stimulation was equivalent amongst the cells treated with DMSO, TNF, or IL-1(Figure 

3-6A).  Co-stimulation with TNF in presence of IRF4 resulted in markedly increased ISG60 

and Cig5 transcription. To be noted, treatment with TNF alone did not result in a significant 

induction of either ISG60 or Cig5 mRNA (Figure 3-6B). Similarly, treatment with IL-1 resulted 

in a significant synergistic enhancement of ISG60 and Cig5 mRNA transcription in cells 

expressing IRF4, without inducing the expression of either gene in the absence of Dox 

stimulation (Figure 3-6C).  Taken together, these results indicate that activation of NF-B by 

vFLIP or pro-inflammatory cytokines TNF or IL-1 is necessary but not sufficient to get the 

maximal induction of IRF4-dependent ISG gene expression. Thus, the transcriptional regulation 

of these ISGs is primarily mediated by IRF4 binding to the ISRE and further enhanced by the 

recruitment of other transcription factors, like NF-B, to the 5’ promoter regulatory region. 
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Figure 3-6. Proinflammatory Cytokines Enhance ISG Induction by IRF4. 

 

 

 

(A) Analysis of IRF4 induction in Dox-stimulated 293iIRF4 cells. Cells were co-stimulated with Dox for 48 hrs and 

DMSO, TNF10 ng/ml)or IL-1ng/ml) for 12 hrs Samples were normalized to RPL32 and expressed as 

fold change with respect to untreated cells (value 1). 

(B) Analysis of ISG60 induction in TNF stimulated cells. RNA was harvested from 293i4 cells treated as 

mentioned above. Samples were normalized to RPL32 and expressed as fold change with respect to untreated cells 

(value 1). 

(C) Analysis of ISG60 induction in IL-1 stimulated cells. RNA was harvested from 293i4 cells treated as 

mentioned above. Samples were normalized to RPL32 and expressed as fold change with respect to untreated cells 

(value 1). 
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3.4 DISCUSSION 

IRF4 expression leads to the induction of genes previously described to mediate antiviral 

responses as well as inhibit anti-proliferative cellular responses. Thus, we asked whether KSHV 

encodes modulators of IRF mediated responses resulting in the inhibition of anti-viral responses 

or enhancing the expression of genes that potentially promote tumorigenesis and viral 

persistence. For this purpose, we employed two cell-based assays to allow for the efficient 

screening of genetic modulators of both IRF3-mediated immune responses (WT11) and IRF4 

transcriptional functions (293i4). The goal of this approach is to identify modulators and classify 

them in three different categories: activators, enhancers, and inhibitors. The activators are genes 

that result in the induction of promoter activity or mRNA transcription, in the absence of external 

stimuli, as observed for the induction of ISG60 by ectopic IRF4 expression. Transcription 

enhancers are genes that do not affect basal target gene expression upon being expressed, but 

lead to increased transcriptional activation when co-expressed along with the stimulus. Lastly, 

we have transcriptional inhibitors, which as their name indicates, inhibit the transcriptional 

activation of genes upon being expressed. 

 Using our WT11-based cellular system we screened KSHV encoded proteins previously 

implicated in the regulation of immune evasion strategies to identify modulators of IRF-mediated 

transcription. We identified all three classes of modulators of IRF3 mediated transcription 

(Figure 3-1). LANA expression led to an inhibition of IFNpromoter activation following 

infection with SeV. The mechanism of inhibition has been reported to correspond to the binding 

of LANA to the PRDI/PRDIII domains in the IFN enhancer, thus preventing recruitment of 

IRF3 [111]. vIRF1 was also an inhibitor of transactivation and it is thought that this is due to 
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p300 binding by vIRF1 preventing the formation of the CBP/p300-IRF3 transcriptional complex 

[208]. On the other hand, we found that LANA2 (vIRF3) was an IRF3 enhancer, given that no 

changes in basal luciferase activity were observed upon its expression, yet after stimulation, co-

expression of LANA2 led to a 1.9-fold increase in IFN promoter activity. Interestingly, the 

effects of LANA2 on the transcriptional functions of IRF3 still remain unclear. Our observation 

is in accordance with previous reports suggesting that LANA2 enhances IRF3 mediated 

responses [121]. Lastly, we identified RTA, the major regulator of KSHV lytic reactivation, as 

an activator of IFN expression. Ectopic expression of RTA led to an almost 5-fold increase in 

IFN transcription and the promoter activity was further enhanced upon SeV infection. The 

mechanisms and implications of these observations will be further discussed in Chapter 4. 

Using or 293i4 based system, we examined the modulatory function of genes expressed 

during viral latency using ISG60 target gene. We focused on LANA and LANA2 as we had 

previously shown they acted as modulators of IRF3, and we examined the effect of vFLIP, which 

had been shown to enhance the expression of IRF3/7 induction of IFN promoter reporters. To 

our surprise neither LANA nor LANA2 affected the expression of ISG60 mRNA. The difference 

in IRF3 versus IRF4 targeting likely due to the fact that IRF3 mediates strong antiviral and anti-

proliferative responses. We then examined the effect of vFLIP expression and found that vFLIP 

enhances ISG60 transcription by activating NF-B. This result is in accordance to previous 

reports showing that vFLIP enhances IFN transcription by stimulating the activation of NF-B.  

We have shown that the effect of vFLIP is independent from the activation of IRF4. 

Thus, we speculate that the induction of NF-B subunits results in their recruitment to enhancer 

element in the promoters of IRF4 target genes. While the transcription of IFNhas been widely 

shown to be regulated by binding of IRF3/7 to PRDI/PRDIII and further enhanced by binding of 
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NF-B to PRDII [212], the role of NF-B in the enhancement of ISG transcription has not 

received much attention. Recent bioinformatics analysis has shown that c-REL, an NF-B 

transcription factor, is involved in the regulation of a subset of ISGs. Chromatin 

immunoprecipitations and gene expression analysis confirmed that c-REL binds to the promoter 

of ISG60 following treatment with IFN [213].  In this study we show, that indeed ISG60 and 

Cig5 are regulated both by IRF4 and NF-B activation in a physiological context. Although 

further studies are still required to identify NF-B subunits activated by vFLIP that bind the 

IRF4 target promoters, our study has establishes the hierarchical contributions of these two 

transcription factors to conclude that IRF4 expression is necessary and sufficient for the 

activation of ISG60 expression, whereas NF-B requires the prior assembly of IRF4 complexes 

in order to bind to the target gene promoter [214].  
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4.0  IRF4 IS REQUIRED FOR THE MAINTENANCE OF KSHV LATENCY IN 

PRIMARY EFFUSION LYMPHOMA CELLS 
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4.1 INTRODUCTION 

The replication and transcription activator (RTA) protein, encoded by ORF50, mediates 

the switch from latency into lytic reactivation [152]. RTA is a sequence specific DNA-binding 

immediate early (IE) protein that regulates the expression of the early (E) genes encoded by 

KSHV. Like most proteins involved in the regulation of gene transcription, RTA is regulated 

through its temporal expression, posttranslational modifications that result in its activation, and 

the ability to oligomerize and interact with cellular regulators of gene expression [156]. This last 

step in regulation is important for the diverse target gene expression regulation by RTA. 

Studies of RTA structure and function have uncovered an interesting relationship 

between RTA and IFN-regulatory factors (IRFs), which regulate the transcription of antiviral 

genes. Primary structure analysis of the RTA DNA-binding domain, revealed a partial homology 

with the IRF binding domain [163].  Four specific residues were distinguished as being 

conserved between all the cellular IRFs and RTA (RTA P102, F120, K152, A158). Mutation of 

any of these residues decreased the transactivation of genes by RTA. A mutation in IRF7 K97, 

which is homologous to K152 of RTA impairs its ability to induce target gene expression [215]. 

These results suggest that both cellular IRF proteins and RTA can potentially recognize similar 

motifs found in the promoters of innate immune effectors and viral genes. 

Furthermore, a relationship between RTA and the IRF proteins DNA binding has also 

been described. While no obvious RRE consensus sequences have been identified, RTA has been 

shown to bind to RTA-responsive element (RRE) that shares sequence similarity to the ISRE 
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sequences located in the promoters of ISGs [163]. One of these target sites (5’-

ATTTTTCGTTTGTG-3’) is found in the ORF57 promoter. These ISRE-like sequences are 

found in various early genes and IRF7 has been shown to be able to bind to the ORF57 ISRE-

like site resulting in dampened ORF57 after reactivation. These studies raise a question as to the 

potential contribution of innate immune cellular factors in the negative regulation of viral gene 

expression. Having established in Chapter 2 that IRF4 binds to DNA and acts as either a positive 

or a negative regulator of gene expression and given the sequence similarities between ISRE and 

RRE, it is likely that IRF4 regulates KSHV viral gene expression. 

In this chapter, we explore the role of IRF4 in controlling KSHV gene expression in 

primary effusion lymphoma cells. We explore the ability of IRF4 in regulating the expression of 

viral genes regulated by RTA binding to sequences that share similarity to the ISRE enhancer 

element. Using luciferase reporter assays and qRT-PCR analysis, we show that IRF4 expression 

results in the inhibition of RTA protein and mRNA synthesis as well as an inhibition in RTA-

mediated promoter transactivation. We also show that IRF4 binds to the promoter of RTA-target 

gene, ORF57, and thus likely preventing binding of RTA to its target promoters. Finally, we 

have confirmed the transcriptional inhibitory role of IRF4 on RREs by using a reverse genetic 

approach. Knockdown of IRF4 in PEL cells resulted in the spontaneous induction of RTA 

transcription, as well as an induction of lytic genes. Taken together our results uncover a 

mechanism in which the host response limits viral gene expression and lytic replication that 

provides an advantage to KSHV by allowing the virus to escape immune clearance and promote 

oncogenesis. 
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4.2 MATERIALS AND METHODS 

4.2.1 Cell Lines and Reagents 

293FT, BCBL-1, and BCBL-1-derived cells were cultured as previously described in Chapter 2. 

FLYRD18 cells were cultures in DMEM supplemented with 10% FBS, 100 I.U./ml penicillin, 

and 100 mg/ml streptomycin. Doxycycline (Clonetech) stocks were made with a 1 mg/ml 

concentration in H2O and used at the indicated doses. 12-O-Tetradecanoylphorbol-13-acetate 

(TPA) was purchased from Sigma-Aldrich and used at the indicated concentrations. Dimethyl 

sulfoxide (DMSO) (Fisher Scientific) was used as vehicle control.  

Table 6. Chapter 4 - Cell Lines. 

Cell Line Description Source Reference 

FLYRD18 

HT1080-derived packaging cell line producing 

Moloney murine leukemia virus expressing feline 

virus RD-114 envelope glycoprotein. 

Staudt Lab  

(NIH) 
[216] 

BCBL-

1/mCAT 

BCBL-1-derived cells stably transduced with feline 

ecotropic receptor. 
Sarkar Lab 

 

BCBL-

1/mCAT/TetR 

BCBL-1/mCAT-derived cells stably transduced with 

bacterial tetracycline receptor. 
Sarkar Lab 

 

BCBL-

1/shCTRL 

BCL-1/mCAT/TetR -derived cells stably transduced 

with feline ecotropic receptor, TetR, and non-targeting 

shRNA. 

Sarkar Lab 

 

BCBL-

1/shIRF4 

BCL-1/mCAT/TetR -derived cells stably transduced 

with feline ecotropic receptor, TetR, and IRF4 

targeting shRNA. 

Sarkar Lab 

 

BCBL-

1/shIRF4b 

BCL-1/mCAT/TetR-derived cells stably transduced 

with feline ecotropic receptor, TetR, and IRF4 

targeting shRNA. 

Sarkar Lab 

 
 

BCBL-1i4 

BCBL-1 –derived doxycycline-inducible IRF4 

expressing cell line generated by lentiviral tranduction 

with pInducer20/IRF4-V5. 

Sarkar Lab [169] 
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4.2.2 Plasmids and Retroviral vectors  

Retroviral packaging plasmids pHIT60 expressing MoMuLV Gag and Pol and the ecotropic 

envelope-expressing plasmid pHIT/EA6X3*, along with the doxycycline-inducible non-targeting 

shRNA (shCTRL), IRF4 targeting shRNA (shIRF4 and shIRF4b) retroviral vectors were 

obtained from Dr. Louis Staudt (NIH) and have been previously described [18]. pcDNA-ORF50  

and pNut-1-Luc were provided by Dr. David Lukac (Rutgers) and have been previously 

described [149,217]. Lentivirus packaging and the generation of stable cell lines was described 

in Chapter 2 – Materials and Methods. pcDNA/LANA, pcDNA/LANA2, pcDNA/ORF50 have 

been previously described [116,202,217]. pRL-Null vector expressing renilla luciferase was 

obtained from Promega. 

4.2.3 RNA Isolation and qRT-PCR Analysis 

BCBL-1iIRF4 cells were stimulated with Dox for 48 h, followed by stimulation with 15 ng/ml 

TPA for 2, 4, and 8 h prior to harvest. To evaluate efficient IRF4 knockdown in BCBL-

1/shCTRL, BCBL-1/shIRF4, and BCBL-1/shIRF4b cells were treated with 100 ng/ml Dox for 72 

hrs prior to harvest. The evaluation of lytic gene transcription was done after stimulation of 

BCBL-1-derived cell lines with Dox and/or TPA at the indicated doses. RNA isolation and 

cDNA synthesis was performed as previously described. Fold induction of target gene mRNA 

levels were normalized to RPL32 and non–TPA-stimulated cells (value 1).  
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Table 7. KSHV Lytic Gene Primer Sets 

Gene Orientation              Sequence 

RPL32 Forward 5' - CAACATTGGTTATGGAAGCAACA - 3' 

Reverse 5' - TGACGTTGTGGACCAGGAACT - 3' 

RTA (ORF50) Forward 5’-GAACTACTCGAGCTGTGCCCTCCAGCTCTCAC-3’ 

Reverse 5’-GGACGTAAGCTTACAGTATTCTCACAACAGAC-3’ 

v-IL6 Forward 5’-TGGATGCTATGGGTGATCGA-3’ 

Reverse 5’-GGCTCTAGAATACCCTTGCAG-3’ 

PAN Forward 5’-GTTTTCTTATGGATTATTAAGGGTC-3’ 

Reverse 5’-AGGTGAAGCGGCAGCCAAGGTGAC-3’ 

ORF57 Forward 5’-GGGTGGTTTGATGAGAAGGA-3’ 

Reverse 5’-CGCTACCAAATATGCCACCT-3’ 

ORF57 ISRE Forward 5’-ACACTTATGAGTCAGTGTTTTGCCAG-3’ 

Reverse 5’-GGCAGCCAGGTTATATAGTGGGATTA-3’ 

K8.1 
Forward 5’-AAAGCGTCCAGGCCACCACAGA-3’ 

Reverse 5’-GGCAGAAAATGGCACACGGTTAC-3’ 

ORF17 
Forward 5’-GAGCGACTGCTGGCTTCAAC-3’ 

Reverse 5’-CGGTGGAGAAGACTCC-3’ 

ORF67 
Forward 5’-CCCAATATACCGCTGTGAGT-3’ 

Reverse 5’-TTTCCCACCAACGGCC-3’ 

LANA 

(ORF73) 
Forward 5’-ATACTCATTCTCCATCTCCTGCATTGC-3’ 

 Reverse 5’-TTCCTGTAGGACTTGAAAGCGGT-3’ 

4.2.4 Nuclear Fractionations 

Nuclear lysates were prepared as described on Chapter 2 Materials and Methods. 

4.2.5 Luciferase Assays 

293T (1.5 × 10
5 

cells/well) in 24-well plate were co-transfected with 100 or 500 ng of IRF4 

expression plasmid, 0.4 g Nut-1 luciferase reporter construct, 24ng pRL-Null and either 75 ng 

of RTA cDNA or empty vector using Fugene 6 as previously indicated. Total transfected DNA 
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levels were kept equal with empty vector (575ng). Forty-eight hours post transfection, luciferase 

activity was measured using the Dual-Glo luciferase assay system (Promega). Firefly luciferase 

activity was normalized to renilla luciferase activity and expressed as fold induction relative to 

empty vector transfected cells. 

4.2.6 Ectopic IRF4 Expression in BCBL-1 cells 

A total of 2×10
5
 BCBL-1i4 cells per milliliter were treated with 1 μg/ml Dox or left untreated for 

48 h, followed by stimulation with 15 ng/ml TPA or DMSO for 12 h. Cells were harvested and 

whole cell lysates were prepared using RIPA buffer (50mM Tris-HCl [pH7.4], 150mM NaCl, 

1% NP-40, 0.25% sodium deoxycholate, 1mM EDTA, 1mM PMSF, 1x Protease inhibitor 

cocktail) and incubated in ice for 30 minutes prior to SDS-PAGE. Equal protein concentration 

was resolved and immunoblotted with anti-IRF4 (Cell Signaling), DRBP76 [176], and Tubulin 

antibodies (Santa Cruz). Density analysis was done using ImageJ. 

4.2.7 Immunoflourescent Microscopy 

BCBL-1/shIRF4 cells were treated with 100 ng/ml Dox for 96hrs. Cells were fixed with 4% PFA 

and permeabilized with 0.1% Triton-X in PBS. Cells were seeded onto poly-Lysine coated slides 

(Fisher Scientific) and left to air dry. After blocking with 10% goat serum for 1 hr at 37
o
C, cells 

were incubated with KSHV positive human sera for 1hr at 37
o
C, washed and incubated with 

antibodies against human IgA (Sigma) 1hr at 37
o
C. Finally, cells were incubated with mouse 

anti-FITC-conjugated secondary antibody (Santa Cruz) for 1hr at 37
o
C. Slides were fixed and 

mounted with Vectashield containing DAPI. Images were captured with a FV1000 Olympus 
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confocal laser scanning microscope. A total of 36 images per condition taken from triplicate 

experiments were analyzed for quantification of reactivating cells. 

4.2.8 Statistical Analysis 

Data were analyzed using two-tailed paired Student's t-test in GraphPad Prism. Values were 

considered significant at p < 0.05. 

4.3 RESULTS 

Given the previously described similarities between ISRE sequences and ISRE-like RRE 

sequences and the demonstrated inhibition of RTA-mediated transcription by IRF7 binding to 

these motifs, we aimed to establish whether IRF4 could act as a negative regulator of RTA-

mediated gene expression. Previously we have shown that besides being a positive regulator of 

ISG60 and Cig5 gene expression, IRF4 can also negatively regulate ISRE-driven host gene 

transcription (Figure 2-5). To determine whether IRF4 inhibits RTA-mediated transcription we 

co-transfected IRF4 and RTA, along with a Nut-1 (PAN) promoter luciferase reporter construct. 

Ectopic expression of IRF4 inhibited RTA-mediated luciferase activity in a dose-dependent 

manner relative to the activation of the Nut-1 promoter by RTA in cell transfected with empty 

vector control (Figure 4-1A).  

To examine the effect of IRF4 on endogenous RTA and RTA-mediated gene expression 

we generated a stable cell line, BCBL-1i4, was generated, which expressed the Dox-inducible 

V5-tagged IRF4 from pInducer20/IRF4-V5. Treatment with 1 mg/ml of Dox results in the 
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expression of V5 tagged of IRF4 and a 60% increase in the amount of IRF4 protein localized to 

the nucleus (Figure 4-1B). Furthermore, the stimulation of these cells with TPA after treatment 

with Dox and induction of ectopic IRF4 expression resulted in a <20% reduction in RTA protein 

synthesis (Figure 4-1C). We determined that the inhibition in RTA protein synthesis due to 

reduced transcriptional induction of RTA by qRT-PCR analysis. The kinetics of RTA mRNA 

and ORF57, an RTA-responsive gene known to be negatively regulated by IRF7 [163], mRNA 

following TPA treatment was examined in cells stimulated with Dox. As observed in the 

immunoblot analysis, ectopic IRF4 expression resulted in 2-fold inhibition of RTA mRNA after 

TPA treatment (Figure 4-1D, left). Furthermore, the expression of ORF57 mRNA was also 

decreased by the ectopic expression of IRF4 (Figure 4-1D, right). These data suggest that IRF4 

inhibits the expression of RTA-mediated viral gene expression required for the entrance of 

KSHV into the lytic replication cycle.   
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Figure 4-1. IRF4 Inhibits RTA Expression 

 

 

 

 

(A) Effect of IRF4 on Nut-1 luciferase in 293T cells. 293T cells were co-transfected with 100 or 500 ng of IRF4 

expression plasmid, 0.4g Nut-1 luciferase reporter construct, 24 ng pRL-Null and either 75 ng of RTA cDNA or 

empty vector. Total transfected DNA levels were kept equal with empty vector. 48 h after transfection, luciferase 

activity was measured. Fold induction was normalized to both renilla luciferase activity and non-RTA transfected 

cells.  

(B) Analysis of IRF4 protein expression levels in BCBL-1iIRF4 cells. 2×10
5
 cells/ml BCBL-1i4 cells were 

treated with 1g/ml Dox or left untreated for 48 hrs. Subcellular fractions were harvested as previously described 

and subjected to immunoblot with anti-RTA antibody (left). Densitometric analysis of IRF4 expression using 

ImageJ (right). 

(C) Ectopic IRF4 expression leads to reduced RTA protein expression. 2×10
5
 cells/ml BCBL-1iIRF4 cells were 

treated with 1g/ml Dox or left untreated for 48 h, followed by stimulation with 15ng/ml TPA or DMSO for 12 h 

prior to harvesting. Cell lysates were subject to immunoblot with anti-RTA antibody. RTA expression levels were 

quantified for three independent experiments and induction was calculated relative to cells without Dox 

stimulation.  

(D) Inhibition of RTA and ORF57 mRNA induction in BCBL-1 cells by IRF4. BCBL-1iIRF4 cells were 

stimulated with doxycycline for 48 h followed by stimulation with 15ng/ml TPA for 2, 4, and 8 h. Fold induction 

of RTA mRNA levels were normalized to RPL32 and non-TPA stimulated cells. 
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Previously we have demonstrated that IRF4 can bind to ISRE sequences, which are similar to 

RRE sites contained in the promoter regulatory region of some KSHV early genes. Thus we 

asked whether the inhibition in RTA and RTA-mediated gene expression following ectopic 

expression of IRF4 and stimulation with TPA could be due to the binding of IRF4 to ISRE-like 

elements in the promoter of the ORF57 promoter. To address this, we performed ChIP assays 

using antibodies targeting IRF4 followed by qPCR analysis to determine whether the ISRE-like 

RRE motif of ORF57 (Figure 4-2A) is bound by IRF4. Our results indicate that IRF4 indeed 

binds to the ORF57 ISRE-like RRE motif (Figure 4-2B) providing a potential mechanism by 

which IRF4 is inhibiting the expression of RTA and RTA-target genes.  

 

 

Figure 4-2. IRF4 Binds to the ORF57 Promoter in BCBL-1 Cells. 

 

To investigate whether the ISG upregulation observed in PEL cells is solely mediated 

through constitutively high IRF4 expression, we attempted to a reverse genetics approach in PEL 

by short-hairpin RNA knockdown of IRF4 expression. Since we were unable to obtain stable 

(A) Schematic representation of the ORF57 promoter-regulatory region depicting position of RTA binding 

sites (black) and the RTA/IRF binding (gray). The RTA/IRF target sequence has been highlighted. 

(B) Chromatin-immunoprecipitation of endogenous IRF4 bound to ORF57 promoter in BCBL-1 cells. IRF4 

(left) and Pol II (right) binding to the ORF57 promoter was analyzed by ChIP assay as previously described. 

Relative promoter occupancy was determined relative to isotype control antibody (value 1). 
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PEL cell lines constitutively expressing shRNA targeted against IRF4, we engineered BCBL-1 

cells with doxycycline (Dox) inducible expression of either scramble control or two separate 

IRF4-targeting shRNAs (shIRF4, and shIRF4b). Briefly, BCBL-1 cells were engineered to stably 

express the ecotropic retroviral receptor by infection with an endogenous feline virus expressing 

mCAT, followed by infection with an ecotropic retrovirus expressing the bacterial tetracycline 

repressor (TETR). Cells were then transduced with retroviruses expressing inducible shRNA 

targeting IRF4 and a scramble control. Treatment of cells with Dox (100 ng/ml) resulted in about 

50% reduction in IRF4 protein synthesis (Figure 4-3A) and mRNA expression (Figure 4-3B) in 

shIRF4 expressing cells, but not in scramble control (shCTRL) or shIRF4b expressing cells. 

Thus we used the shIRF4 expressing cells and shCTRL cells for further analysis of IRF4 

function. We verified the specificity for IRF4 by immunoblot analysis of IRF proteins, IRF3 and 

IRF9. Although the loss of IRF4 expression was evident at 24 hrs post Dox treatment, the 

decrease in expression was more marked after 96 hrs. However, treatment with Dox resulted in 

equivalent expression of either IRF3 or IRF9 after 24 and 96hrs confirming that the shRNA 

targets IRF4 while not affecting expression of constitutively expressed IRF proteins. IRF 

expression of was not affected by Dox stimulus in the scramble control cells (Figure 4-3C). To 

determine if depletion of IRF4 affects RTA expression in PEL cells, we examined RTA protein 

synthesis in Dox (100ng/ml) treated BCBL-1 shIRF4. As expected from the observations in 

Figure 4-1, we observed an accumulation of RTA protein expression following the loss of IRF4 

protein (Figure 4-3D). Taken together, these results suggest that IRF4 blocks the transcription of 

RTA as well as that of RTA-target genes. 
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Figure 4-3. Downregulation of IRF4 Induces RTA expression 

 

 

Several physiological stress stimuli results in the reactivation of KSHV latently infected cells 

due to the transcriptional activation of RTA. Furthermore, chemical treatment of PEL cell lines 

with phorbol esters (TPA) and HDAC inhibitors also results in the induction of RTA expression, 

which is sufficient to initiate the lytic replication cascade. Given that loss of IRF4 resulted in an 

increase in RTA protein synthesis, we asked if the knockdown of IRF4 would synergize with the 

chemical TPA, which would confirm the role of IRF4 as a negative inhibitor of RTA 

transcription. Thus, we treated BCBL-1 shCTRL and shIRF4 cells with Dox for 72 hrs followed 

(A) Loss of IRF4 protein expression in cells expressing an IRF4 targeting short-hairpin. Whole cell lysates prepared 

from shRNA expressing BCBL-1 cells after 72 h treatment with 100 ng/ml Dox were immunoblotted with 

antibodies against IRF4 and actin. 

(B) Quantitative RT-PCR analysis of IRF4 mRNA levels in short-hairpin expressing BCBL-1 cells after 72 h 

treatment with 100 ng/ml dox. Samples were normalized to RPL32 and expressed as fold change with respect to 

untreated cells (value 1). 

(C) Specificity of IRF4 targeting by the short-hairpin 24 h (left) and 96 h (right) after stimulation with Dox. Whole 

cell lysates prepared from shRNA expressing BCBL-1 cells after 72 h Dox treatment were immunoblotted with 

antibodies against IRF4, IRF3, IRF9 and Actin. 

(D)Nuclear accumulation of RTA expression follows loss of IRF4. Nuclear fractions were prepared from cell 

treated with Dox for 72 hrs. Fractions were resolved by SDS-PAGE and immunoblotted with antibodies against 

IRF4, RTA, DRBP76, and Tubulin. 
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by stimulation with 5 and 15 ng/ml TPA for 12 hrs. Stimulation with either 5 ng/ml or 15ng/ml 

TPA resulted in similar induction of RTA protein synthesis in both shCTRL and shIRF4 cells 

without Dox treatment and neither concentration affected IRF4 protein levels (Figure 4-4A, lanes 

2,3,8,9). Stimulation with Dox alone, resulted in a significant decreased IRF4 protein levels was 

accompanied with an induction in RTA protein synthesis (lanes 10-12) as expected. The 

induction of RTA was in response to the loss of IRF4, as Dox treatment of shCTRL cells did not 

affect either IRF4 or RTA levels (lane 4). Interestingly, the induction of RTA protein sythesis 

was comparable in shIRF4 cells treated with Dox alone or treated with TPA-alone. In shCTRL 

cells Dox treatment alone had no effect in either IRF4 or RTA protein expression (lanes 4 and 1). 

Furthermore, co-stimulation with TPA resulted in enhanced RTA expression in sh-IRF4 cells 

(lanes 11 and 12) relative to Dox untreated cells (lanes 8, 9 and 5, 6) and shCTRL cells.  

The observed increase in protein expression was due to the transcriptional activation of 

RTA as determined by qRT-PCR. Dox (100 ng/ml) treatment of shIRF4 cells led to an observed 

3.4-fold increase in RTA mRNA compared to a 10.5-fold increase in mRNA transcription when 

cells were co-stimulated with Dox and TPA (15 ng/ml) (Figure 4-4B). These results were 

concordant with our previous studies demonstrating that IRF4 acts as a repressor of RTA 

transcription. As seen for RTA protein synthesis, both shCTRL and shIRF4 cell lines responded 

equally to stimulation with TPA (Figure 4-4A lanes 2,3 and 8,9), suggesting that there were no 

inherent differences in the ability to respond to phorbol ester treatment.  

RTA plays a critical role in initiating the switch from latency to the lytic reactivation of 

KSHV by [218] specifically regulating the transcription of eight viral lytic genes containing RRE 

sequences and inducing the downstream lytic gene cascade. To examine the consequence of 

IRF4 downregulation on direct targets of RTA, we measured the induction of RTA-responsive 
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genes ORF57, vIL-6, and PAN mRNA [219] following treatment of cells with Dox and TPA. 

Similar to the observed RTA transcript induction, loss of IRF4 resulted in a 2 to 4-fold increase 

in basal early gene transcription of the three targets examined relative to untreated cells. 

Furthermore, co-stimulation with Dox and TPA, resulted in a significant enhancement in ORF57, 

PAN, and vIL-6 transcription in shIRF4 expressing cells compared to that observed in co-

stimulated shCTRL cells (Figure 4-4C). To address the possibility that treatment with Dox leads 

to an overall increase in gene transcription, we measured the mRNA levels of the latency-

associated nuclear antigen, LANA, following Dox and/or TPA stimulation. While treatment with 

TPA resulted in a comparable decrease in LANA mRNA in both shCTRL and shIRF4 cells, 

treatment with Dox led to lower LANA mRNA levels in shIRF4 cells, but not in shCTRL cells 

relative to non-stimulated cells. As expected, dual stimulation with Dox and TPA resulted in a 

decrease in LANA mRNA in both cell lines (Figure 4-4D). These results are in accordance with 

previous studies showing that chemical stimulation of lytic reactivation results in the decrease in 

LANA transcription accompanied with an induction of IE gene expression [220]. Taken together, 

our results indicate that IRF4 downregulation in PEL cells is likely sufficient to allow entry into 

the viral lytic reactivation program, rather than resulting in a non-specific activation of viral gene 

expression.  
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Figure 4-4. Downregulation of IRF4 Sensitizes PEL cells to TPA treatment. 

 

Bonafide lytic reactivation and viral replication is accompanied by an increase in virion 

structure and assembly associated gene expression. To determine whether this occurred in 

BCBL-1 shIRF4 cells after treatment with Dox, we measured the transcriptional induction of the 

genes encoding for the viral glycoprotein K8.1, ORF17, and ORF67 by qRT-PCR, we observed 

higher mRNA expression of all three genes in cells treated with Dox for 72 hrs, relative to non-

treated cells (Figure 4-5A). Additional treatment of Dox stimulated cells with TPA, resulted in 

enhanced mRNA expression of the late genes, K8.1 and ORF17. Interestingly, while the 

expression of ORF67 mRNA was higher in cells treated with Dox relative to untreated or TPA-

alone treated cells, co-stimulation of cells with Dox and TPA did not result in increased mRNA 

(A) Analysis of RTA protein induction following Dox treatment and TPA stimulation in BCBL-1 sh-CTRL and 

sh-IRF4 cells. Cells were stimulated with Dox for 48 h followed by an additional treatment for 24 h with 5 or 15 

ng/ml TPA. Lysates were prepared after stimulation and immunoblotted with anti-RTA, IRF4, and Actin 

antibodies.   

(B-D) qRT-PCR analysis of IRF4 and RTA mRNA levels; (C) RTA target genes, ORF57, PAN, vIL-6 (D) 

LANA in Dox treated BCBL-1 sh-CTRL and sh-IRF4 cells. Cells were stimulated as previously described, total 

RNA was harvested and subjected to qRT-PCR. Samples were normalized to RPL32 and expressed as fold 

change with respect their respective untreated cells (value 1).  
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levels compared to cells treated with Dox alone. We then examined the induction of KSHV viral 

protein expression in BCBL-1 shIRF4 cells stimulated with 100ng/ml Dox for 96 hrs. Cells were 

fixed and stained using anti-KSHV sera. We observed a significant two fold increase in 

cytoplasmic staining in cells in Dox treated cells (Figure 4-5B), indicating that loss of IRF4 is 

sufficient for the induction of lytic reactivation of a portion of BCBL-1 shIRF4 cells. 

 

 

Figure 4-5. The Loss of IRF4 Upregulates Structural and DNA Replication Genes. 

 

 

As we have previously shown that IRF4 acts as a positive regulator of ISRE-mediated 

expression of ISG60 and Cig5, we evaluated the effect of IRF4 knockdown on the expression of 

these genes. Unexpectedly, transcription of ISG60 and Cig5 was increased after IRF4 depletion, 

4-fold and 6-fold respectively (Figure 4-6A). This was accompanied by an increase in ISG60 

(A) qRT-PCR analysis of late genes K8.1, ORF17, and ORF67 in Dox treated BCBL-1 sh-CTRL and sh-IRF4 

cells. Cells were stimulated as previously described, total RNA was harvested and subjected to qRT-PCR. 

Samples were normalized to RPL32 and expressed as fold change with respect their respective untreated cells 

(value 1). 

(B) BCBL-1 shIRF4 cells stimulated with Dox for 96 hrs. Following stimulation, cells were fixed, stained with 

KSHV positive human sera (green), nuclei were stained with DAPI (blue), and samples imaged by confocal 

microscopy (left). Quantification of KSHV reactivation (left). 
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protein synthesis after Dox treatment of BCBL-1 cells (Figure 4-6B). RTA is a sequence-specific 

DNA binding protein that recognizes and binds to ISRE and ISRE-like sequences found in the 

promoter regulatory regions of cellular ISGs as well viral genes [163]. Thus, we evaluated the 

possibility that ISG induction observed by IRF4 silencing was due to the observed RTA 

induction. Ectopic expression of RTA resulted in an almost 5-fold increase in the activity of the 

ISRE-regulated IFN reporter construct relative to vector transfected cells (Figure 4-6C).  

Furthermore, RTA expression resulted in a 5-fold increase in the induction of ISG60 mRNA 

transcription (Figure 4-6D) accompanied by an increase in ISG60 protein synthesis (Figure 

4-6E). Taken together, these results indicate that the loss of IRF4 induces the expression of RTA, 

which itself can target genes in an ISRE dependent manner. Thus, we establish a critical 

counterbalance between IRF4 and RTA; while the former negatively regulates viral gene 

expression, the latter targets similar sequences in cellular gene promoters strongly activating 

their expression.  
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Figure 4-6. Expression of RTA Induces ISG60 Expression. 

 

 

(A) Quantitative RT-PCR analysis of ISG60 and Cig5 mRNA expression in shRNA expressing BCBL-1 cells 

after 72 h Dox treatment. Samples were normalized to RPL32 and expressed as fold change with respect to 

untreated cells (value 1). 

(B) Analysis of ISG60 protein induction levels in whole cell lysates prepared from sh-IRF4 expressing BCBL-1 

cells after 72h treatment with Dox.  

(C) Effect of RTA expression on IFN-promoter activity. HEK293 cells were transfected with RTA or vector 

control along with IFN125-luc and pRL-Null. Luciferase activity was measured as previously described. 

Samples were normalized to renilla luciferase control and expressed as fold change with respect to empty vector 

transfected cells (value 1).
 

(D) Quantitative RT-PCR analysis of ISG60 following ectopic expression of RTA in 293T cells. Samples were 

normalized to RPL32 and expressed as fold change with respect to empty vector transfected cells (value 1). 

(E) Analysis of ISG60 protein induction following ectopic expression of RTA in 293T cells. Lysates were 

prepared 48 hrs after transfection and probed with antibodies against RTA, ISG60, and Actin.
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4.4 DISCUSSION 

One important feature in the life cycle of herpesviruses is their ability to establish life-

long latent infections, which acts as a mechanism for immune evasion and contributes to the 

pathogenesis viral related malignancies. On the other hand, viral spread necessitates that viral 

genes be expressed, genomes replicated, and new infectious virions be assembled. The role of 

virally encoded genes in both the establishment of latent infection or the switch to lytic 

reactivation has been extensively studied. However, a better understanding of the events that 

determine whether the virus will establish latency or undergo lytic replication requires an 

understanding of both the viral and cellular signals that shape these outcomes. Given the lack of 

infectious models to study the biology of KSHV, most studies to date have focused in 

understanding latency in PEL cells as well as the extrinsic signals that result in the induction of 

lytic replication.  

These studies have been useful in identifying various stimuli, like hypoxia, oxidative 

stress, UV irradiation, and chemical treatment with phorbol esters and chemical inhibitors, that 

result in the induction of lytic reactivation by inducing the expression of the replication and 

transcription activator protein (RTA), encoded by ORF50. RTA, the major immediate early (IE) 

protein required for the induction of early (E) gene expression, is a sequence specific DNA-

binding protein, which is necessary and sufficient for lytic reactivation of KSHV in both B-cell 

and endothelial cells.  

However, the intrinsic cellular signaling pathways that counter viral gene expression 

during primary infection of cells and that act during latent infection still remain to be understood. 

It has become increasingly evident that the innate immune response to viral infection could be a 

major player in the restriction of viral replication and maintaining viral latency. Studies have 
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shown that the importance of type I IFN signaling in this process. Infection of IFNAR−/− mice 

with murine gammaherpesvirus closely related to KSHV, MHV68, resulted in comparable latent 

infection in peritoneal cells and splenocytes as wt mice [184]. However, IFNAR deficiency led 

to higher rates of viral reactivation. These alterations in reactivation efficiency were found to be 

dependent on the inhibition of a latency-associated gene, M2, required for efficient viral 

reactivation. Follow-up studies showed that the expression of M2 is regulated by IRF2 binding to 

an ISRE in the M2 promoter during latency. IFNAR deficient mice fail to upregulate IRF2 

expression thus displaying increased rates of reactivation [184-186,221]. Thus, these studies 

highlight an important role for the host effector proteins and transcription factors that regulate 

their expression in controlling viral latency. 

To better understand involvement of IRF4 in regulating KSHV viral latency. We looked 

at the transcriptional inhibition of RTA and ISRE-like driven viral gene expression. Our reporter 

assay and qRT-PCR analysis show that ectopic expression of IRF4 results in the inhibition of 

viral gene expression concomitant with a two-fold decrease in RTA and ORF57 mRNA 

following chemical treatment to induce reactivation. Ye et al. [84] showed that a two-fold 

decrease in RTA mRNA expression after reactivation by sodium butyrate treatment in PEL cells, 

led to a 14-fold reduction in virus production. Thus, ectopic expression of IRF4 might results in 

significantly lower viral yields upon reactivation. On the other hand, we used a reverse genetics 

approach in which we downregulated IRF4 expression in BCBL-1 cells. This resulted in the 

spontaneous induction of RTA protein synthesis and downstream expression of early genes and 

late structural and DNA replication genes. Furthermore, we saw the accumulation of cytoplasmic 

lytic proteins in the absence of exogenous stimuli like TPA, UV treatment, or viral infection. 

Given that the loss of IRF4 sensitizes PEL cells to TPA stimulus, it would be interesting to 
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address whether IRF4 downregulation also confers sensitivity to reactivation following viral 

infection, TLR ligation, and other chemical treatment. This study shows that the expression of 

IRF4 leads to the inhibition of lytic reactivation. Further examination of the cellular cues that 

control IRF4 function in PEL and the viral mechanisms that counter its inhibitory activities 

during reactivation still remain to be addressed. 
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5.0  CONCLUSIONS AND FUTURE PERSPECTIVES 

The interferon regulatory factor (IRF) 4, a hematopoietic cell-specific transcription factor that 

regulates the maturation and differentiation of immune cells, is found to be expressed in PEL 

cells. However, there is little information regarding the role of IRF4 in regulating gene 

expression in this malignancy. In this study, we focus on the transcriptional regulatory potential 

of IRF4 in the regulation of interferon-stimulated genes (ISGs), effector genes stimulated upon 

the detection of virus infection and IFN sensing. First, using promoter reporter assays and 

mRNA expression profiling in 293 cells devoid of IRF4 expression, we have established IRF4 as 

a direct regulator of a subset of interferon-stimulated genes (ISG). Then, we showed that IRF4 

targets a subset of genes and promotes ISG transcription through direct chromatin binding at 

regions containing the interferon-stimulated response elements (ISRE) motifs. While the IRF 

proteins share redundant targets, they also possess distinct transcriptional profiles. Independent 

of the association of transcription factors that specify the motifs recognized by IRF proteins, the 

nucleotides flanking the core ISRE sequence also dictate target specificity [5]. Mapping of IRF4 

targeted motifs through careful sequence analysis of putative binding sites identified by ChIP-seq 

would allow us to predict and identify effector genes involved in the pathogenesis of PEL and 

other IRF4-associated diseases. Moreover, it would allow us to better understand how the 

concomitant activation of IRF4 with various transcriptions factors, like NF-B, serves to broaden 

and magnify the transcriptional profile of IRF4. 



 106 

In the past, our group has employed cell-based assays to carry out efficient screens of 

small molecule inhibitors to identify modifiers of TLR signaling pathways [170,222]. These 

same strategies can be employed to identify both chemical and genetic modulators of IRF4 

function with therapeutic potential against IRF4-associated autoimmune diseases, cancers, and 

the modulation of host responses to infection. Here, we have generated cell-based systems (293i4 

and RL24i4) that allowed us to identify targets of IRF4 and viral encoded modulators of IRF4 

activity. Using 293i4 cells, we explored the IRF4-specific immunomodulatory functions of three 

KSHV latency associated proteins: LANA, LANA2, and vFLIP. We have identified the Kaposi 

sarcoma-associated herpesvirus (KSHV)-encoded viral FLICE inhibitory protein (vFLIP) as a 

novel enhancer of IRF4-mediated gene expression, and through mechanistic studies we have 

shown that this function is NF-B dependent. Based on studies that show enhanced PRDII 

activation by vFLIP [141] and studies showing the recruitment of c-REL to the ISG60 promoter 

after IFN treatment [223], is due to binding of NF-B to -B responsive elements in the 

promoter of ISG60. An understanding of the relationship between the cellular response to viral 

infection and the mechanisms by which the virus counteracts these responses is crucial for a 

better understanding of KSHV pathogenesis and the molecular differences between endothelial 

and B-cell malignancies. 

Genome-wide gene expression profiling in HUVEC cells has been carried out to 

understand the cellular response to KSHV infection of endothelial cells. A comparative analysis 

of these studies has shown that KSHV induces the differential expression of innate immune 

genes including transcription factors, effector genes, and proinflammatory cytokines [224]. 

Interestingly, vFLIP has been shown to be required for the sustained induction of STAT1 

activation and ISG expression during after infection of HUVEC cells [140]. These studies, along 
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with ours, strengthen the function of vFLIP as an enhancer of IRF regulated genes. Further 

investigation will establish the significance of immune gene activation in the context of KSHV 

latency.  RNAi screens could provide useful information with regard to the specific role of ISGs 

and IFN response in both the establishment of latency during primary infection and the 

maintenance of latency in PEL and KS cells. 

Chronic viral infection triggers intrinsic cellular responses that are aimed to inhibit viral 

replication, protein expression, and spread. The innate immune response to viral infection is 

initiated by the recognition of pathogen associated molecules that trigger signaling cascades 

resulting in the carefully orchestrated activation of transcription factors that stimulate the 

production of antiviral cytokines and chemokines. Cytokine secretion is necessary to alert non-

infected cells and promote the expression of cellular effectors that promote the clearance of viral 

infections. The secretion of chemokines is paramount to elicit a proper adaptive immune 

response to the invading pathogen. To better understand the significance and consequences of 

these intrinsic responses it is important to fully understand how they function in regulating the 

replication of viruses and how the invading pathogen circumvents these responses.  

Thus, to prevent immune recognition and clearance, KSHV has developed strategies that 

allows it to persist in the infected cell. A great deal of effort has been placed on understanding 

the mechanisms by which KSHV evades the host response. To achieve this, KSHV encodes 

molecular decoys that resemble immune components and act to negatively regulate the response 

of their cellular counterparts. Moreover, the role of the latency-associated proteins in promoting 

immune evasion and establishment of viral latency has also been extensively described. To fully 

understand the viral strategies for evasion one must also understand how the pressure exerted by 

the host response and how it carefully balances the outcomes of KSHV infections. 
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Various cellular proteins that participate in KSHV reactivation have been identified. 

These include both kinases (PI3K[147], Pim-1 and Pim-3 [225], ERK1/2 [226], and PKC [227]) 

and transcription factors (like Sp1 [228], C/EBP [229], CBF1/CSL [230,231], Oct-1 [232], 

HMGB-1 [233], and XBP-1 [147,234] that promote RTA induction and  RTA-mediated viral 

gene expression. On the other hand, antagonists of RTA induction and RTA-mediated gene 

expression have also been identified.  These proteins also include signaling molecules like 

Tousled-like kinases (TLKs) [220] and the transcriptional regulators, K-RBP [235], IRF7 [160], 

and Hey1 [236].  However, it should also be noted that the regulation of signaling events 

downstream of RTA induction and transcriptional activation are also important in guaranteeing 

successful viral replication. Thus, differentiating those molecules and modifications that initiate 

RTA transcription and synthesis, the transcriptional function of RTA, and the effect of 

modulation of downstream lytic replication is imperative for a better understanding of KSHV 

biology and the development of effective treatment therapies. 

In conclusion, we postulate that IRF4 is one of the molecules that shape the outcomes of 

KSHV infections. IRF4 exerts KSHV antiviral activity in B-cells by binding of DNA elements in 

cellular and viral genes promoting both indirect (ISGs) and direct (RRE inhibition) silencing of 

lytic gene expression following primary infection (Figure 5-1). This in turn, aids the virus in 

maintaining latency and avoiding immune clearance, establishing lifelong infections in the host. 

While not an oncogene per se, IRF4 promotes the cellular addiction to the oncogenes expressed 

by KSHV. Thus, IRF4 targeted therapies in combination with anti-herpetic treatments, could 

prove useful in the treatment of KSHV associated malignancies, PEL and multicentric 

Castleman’s disease. 
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Figure 5-1. Proposed Model of IRF4 Function in PEL Cells. 

 

IRF4 and RTA balance the KSHV life cycle. ISRE and ISRE-like RRE motifs located in cellular and viral gene 

promoters direct IRF4 to these promoters, regulating target gene expression. This results in the inhibition of viral 

lytic reactivation induced by RTA; thus, promoting KSHV latency. On the other hand, induction of cellular ISG 

expression potentially contributes to inhibiting viral reactivation and promoting cellular transformation. 
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APPENDIX A 

MECHANISM OF INTERFERON STIMULATED GENE INDUCTION BY SV40 

LARGE T ANTIGEN  

Work described in this section was completed by authors Adriana Forero,  

Ole V. Gjoerup, Christopher Bakkenist, James M. Pipas, and Saumendra N. Sarkar. 
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A.1 INTRODUCTION 

The polyomavirus family consists of small double–stranded DNA viruses that infect a wide 

variety of hosts. Infection with polyomaviruses is ubiquitous amongst the human population and 

generally results in subclinical infections in healthy hosts. However, upon the onset of AIDS-

related, age related, and iatrogenic immune suppression, manifestations of clinical disease 

associated with viral infection become apparent. In humans, infection with JC polyoma virus 

(JCV) is linked to the induction of progressive multifocal leukoencephalopathy (PML) 

[237,238]. Meanwhile, infection with BK polyoma virus (BKV) results in the induction of 

polyomavirus-associated nephropathy or hemorrhagic cystitis after immunosuppression [239]. 

To date, there are few successful therapies for the treatment of polyomavirus related diseases. 

Thus, an understanding the interactions between the virus and the host response to viral infection 

is crucial for the development of new effective therapies. 

The wealth of knowledge of polyomavirus biology has stemmed from studies utilizing 

the prototypic polyoma virus, Simian Virus 40 (SV40). SV40 encodes early proteins (large T 

antigen, small t antigen and 17K t) encoded by the T antigen locus and late proteins with 

structural and auxiliary functions in regulating the host cellular responses. The SV40 large T 

antigen (LT) is a well characterized multi-functional protein, which controls the replication of 

viral DNA, regulates host cellular proliferation and gene expression, and can promote cellular 

transformation.  These functions are largely mediated by the interaction of LT with numerous 
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cellular proteins [240]. Understanding the processes deregulated by the interaction of LT and 

cellular proteins is crucial for understanding the pathogenesis of polyomaviruses and their 

transformative phenotype. 

The induction of both intrinsic and extrinsic genotoxic stress damages DNA and triggers 

the DNA-damage response DDR signaling cascade, mediated by the kinases ataxia-telangiectesia 

mutated (ATM) and ATM and Rad3-related (ATR). Activation of these kinases by double-strand 

DNA breaks and single strand DNA gaps, respectively, results in the induction of the DNA 

repair proteins and cell cycle arrest in order to maintain genome integrity [241]. Multiple studies 

have provided evidence that infection with mouse polyoma virus (MPyV) [242], JCV [243], 

BKV [244], and SV40 [245-247]  leads to the activation of both ATM and ATR kinase activity. 

Induction of DDR is required for the induction and hijacking of the DNA-repair machinery to 

mediate the replication of viral genomes. Moreover, it has been shown that expression of SV40 

LT protein alone is sufficient for the activation of the ATM/ATR [247]. However, the cellular 

consequences of compromising the DDR are still not clearly understood. 

Detection of viral infection in epithelial cells and fibroblasts triggers cytoplasmic and 

nuclear sensors that initiate a signaling cascade that results in the activation of type I IFN, 

IFNand the expression of virus-induced interferon-stimulated genes (ISG). Secretion of 

IFNthen triggers the interferon response signaling pathway characterized by the induction of 

IFN and the further induction of ISGs. The ISG have antiviral effector functions that limit the 

replication of viral genomes, inhibit both cellular and viral protein synthesis, and promote the 

death of the infected cell [2]. Previous studies have shown that infection of glial cells with JCV 

results in a strong induction of ISGs likely accounting for the lack of disease progression in 

immunocompetent individuals [248].  Using mouse while genome arrays, we have shown that 
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SV40 LT expression results in a tissue specific altered gene expression [249]. Stable expression 

of LT in mouse embryonic fibroblasts or immortalized human fibroblasts led to the induction of 

genes involved in the IFN response. However, in the absence of an active virus infection, the 

signaling pathways involved in the ISG induction remain elusive.  

In this study, we examine the mechanisms by which ectopic expression of SV40 LT 

antigen results in the induction of interferon stimulated genes in human fibroblasts. Our results 

show that the induction of ISGs is a conserved function amongst the polyomaviruses. We show 

LT expression results in the upregulation of IRF1 protein, which in turn, results in enhanced 

transcription and secretion of IFNand its downstream genes. Furthermore, we show that the 

induction of a DNA damage response is sufficient to induce the expression of IRF1, in an ATR 

kinase activity dependent manner. Our data links mediators of the DNA damage response with 

the regulation of type I IFN responses and the induction of innate immune gene expression in the 

absence of viral infection.  

A.2 MATERIALS AND METHODS 

A.2.1 Cell lines and Reagents 

The cell lines used in this study have been described on Table 8. 293-Ampho (Phoenix 

amphotropic) cell line and 293FT cells were cultured in Dulbecco’s Modified Eagle Medium 

(Lonza) supplemented with 10% fetal bovine serum (Atlanta Biologicals) and 100 I.U./ml 

penicillin and 100 mg/ml streptomycin (Lonza). HCT116 cells were cultured in McCoy’s 5A 

medium (Lonza) containing 10% fetal bovine serum (Atlanta Biologicals) and 100 I.U./ml 
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penicillin and 100 mg/ml streptomycin (Lonza). BJ/TERT and BJ/TERT derived cell lines were 

cultured in Dulbecco’s Modified Eagle Medium (Lonza) supplemented with 20% Medium 199 

(Invitrogen), 10% fetal bovine serum (Atlanta Biologicals) and 100 I.U./ml penicillin and 100 

mg/ml streptomycin (Lonza). Hexydimethrine bromide (Polybrene) was used for viral infections 

at a final concentration of 8 g/ml (Sigma-Aldrich). The selection antibiotics Blasticidin (5 

g/ml) and Puromycin (1 g/ml) were obtained from InvivoGen. Cyclohexamide was used at a 

final concentration of 50 ng/ml (Sigma-Aldrich). ATM kinase inhibitor, KU60019, was obtained 

from Astra Zeneca and used at a final concentration of 2 M. ATR kinase inhibitor ETP-46464 

was previously described [250] and used at various concentrations as indicated. UCN-01 

inhibitor was DMSO (Fisher Scientific) was used as vehicle control for kinase inhibitor 

experiments. 
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Table 8. Appendix C - Cell Lines. 

Cell Line Description Source Reference 

293-Ampho 
HEK293 cells stably expressing amphotropic 

receptor for retroviral packaging. 

Nolan Lab  

(Stanford 

University) 

[251] 

293FT 
HEK293 cells transfromend with SV40 Large T 

antigen. 

Invitrogen 

(Cat no. R700-07) 
 

HCT116 
Colorectal carcinoma cell line derived from p53 wt 

male patient. 

ATCC® CCL-

247 

Lotze Lab  

(University of 

Pittsburgh) 

 

BJ/TERT 

BJ human foreskin fibroblast derived from a male 

patient. Immortalized by stable expression of human 

TERT gene. 

Gjoerup Lab 

(University of 

Pittsburgh) 

[252] 

BJ/TERT 

LBNCX 

BJ/TERT derived cell lines stably transduced with 

the retroviral vector pLBNCX. 

Gjoerup Lab 

 
[247] 

BJ/TERT LT 

BJ/TERT derived cell lines stably transduced with 

retroviral vector pLBNCX encoding the SV40 LT 

cDNA. 

Gjoerup Lab [247] 

BJ/TERT 

LBNCX 

shCTRL 

BJ/TERT derived cell lines stably transduced with 

the retroviral vector pLBNCX and pLKO.1 vector 

expressing a non-targeting shRNA. 

Sarkar Lab  

BJ/TERT LT 

shIFNAR 

BJ/TERT derived cell lines stably transduced with 

the retroviral vector pLBNCX encoding SV40 LT 

cDNA and a pLKO.1 vector expressing an IFNAR1 

targeting shRNA. 

Sarkar Lab  

BJ/TERT 

shCTRL 

BJ/TERT derived cell lines stably transduced 

pLKO.1 vector expressing a non-targeting shRNA. 
Sarkar Lab  

BJ/TERT 

shIFNAR 

 

BJ/TERT derived cell lines stably transduced with a 

pLKO.1 vector expressing an IFNAR1 targeting 

shRNA. 

Sarkar Lab  

BJ/TERT 

LBNCX shIRF1 

BJ/TERT derived cell lines stably transduced with 

the retroviral vector pLBNCX and a pLKO.1 vector 

expressing an IRF1 targeting shRNA. 

Sarkar Lab  

BJ/TERT LT 

shIRF1 

BJ/TERT derived cell lines stably transduced with 

the retroviral vector pLBNCX encoding SV40 LT 

cDNA and a pLKO.1 vector expressing an IRF1 

targeting shRNA. 

Sarkar Lab  

BJ/TERT 

shIRF1 

 

BJ/TERT derived cell lines stably transduced with a 

pLKO.1 vector expressing an IRF1 targeting 

shRNA. 

Sarkar Lab  
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A.2.2 Plasmids and Viruses 

Plasmids encoding the polyoma virus LT antigen were obtained form Dr. Ole Gjoerup. 

Retroviral plasmids pLBNCX and pLBNCX-LT encoding the SV40 LT cDNA have been 

previously described [247].  pCMV-LT plasmid encoding SV40 LT cDNA was previously 

described [253]. Plasmids encoding JCV and BKV LT cDNA have been described in [254].  

Plasmids encoding IRF1 (pcDNA3.1/HisA/huIRF1) and IRF7 (pCMV/FLAG-IRF7, and IRF9 

(pCMV/p48) have been previously described [208,255]. pLKO.1 based lentiviral vectors 

expressing short hairpin RNA targeting IRF1 (TRCN0000014669) and IFNAR1 

(TRCN0000059017) were purchased from Sigma-Aldrich. Vesicular stomatitis virus expressing 

GFP (VSV-GFP) [177] was grown in BHK21 cells. Encephalomyocarditis virus (EMCV), 

obtained from ATCC (VR-1479), and HSV-1 (K26) [256] were grown in Vero cells. Sendai 

virus (Cantell strain) was purchased from Charles River Laboratories. Multiplicity of infection 

(m.o.i) and virus titers were determined by growth in their respective producer cell lines. 

A.2.3 Retroviral and lentiviral infection and stable cell line generation 

Retroviral vectors pLBNCX and pLBNCX-LT were transfected into (1x10
7
) Phoenix 

amphotropic packaging cell line (293-Ampho) using Fugene 6 (Roche) following manufacturer’s 

guidelines. Supernatants (~7 mL) were harvested 48 h post-transfection and filtered through a 

0.45-m membrane (Millipore) and stored at -80°C. BJ/TERT cells were infected with 1 ml of 

virus supernatant in the presence of 8 g/ml polybrene and placed under antibiotic selection with 
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Blasticidin (5 g/ml) 48 hrs after transfection. Antibiotic resistant cells were used for further 

studies. 

pLKO.1 shRNA delivery lentiviral vectors were packaged in 293FT cells by transient 

transfection with Fugene 6 (Roche). BJ/TERT-derived pLKO.1 transduced cells were generated 

by overnight lentiviral infection with virus packaged from pLKO.1 shCTRL or pLKO.1 

shIFNAR in the presence of 8 g/ml polybrene (Sigma-Aldrich). 48 hrs post-infection, cells 

were selected with 1g/ml Puromycin (InvivoGen) for 7 days. Puromycin-resistant cells were 

pooled and used for further studies. 

A.2.4 Luciferase Assays 

HEK293T (1.5 × 10
5
 cells/well) in 24-well plate were co-transfected with 250 ng empty 

vector, IRF1, IRF7, and IRF9 cDNA, 400ng luciferase reporter construct, and 50ng pRL-null 

using Fugene 6 at a 1: 3 DNA to transfection reagent ratio. Twenty-four hours later, the cells 

from each well were collected by trypsin-EDTA digestion and seeded into 6 wells in 96-well 

plate. Forty-eight hours post transfection we measured luciferase activity using the Dual-Glo 

luciferase assay system (Promega,). Firefly luciferase activity was normalized to renilla 

luciferase activity and expressed as fold changes as indicated. BJ/TERT cells were transfected 

with 1 g pGL3 Basic or pIFN125-luc plasmid using Lipofectamine 2000. 

A.2.5 Immunoblotting 

Whole cell lysates were prepared as previously described in Chapter 2. Primary antibody 

incubation with antibodies against SV LT (pAb 416 and 419) [247], ISG56 and ISG60 [176], 
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OASL (Abgent), IRF1 (Santa Cruz), IRF7 (Santa Cruz), IRF9 (Santa Cruz), GFP (Santa Cruz), 

Sendai virus C-protein [257], phospho-p53 (Ser15) or total p53 (DO1) (Santa Cruz), Actin 

(Santa Cruz), and Tubulin (SantaCruz) was done overnight in 10% nonfat dry milk. Membranes 

were then washed twice with TBS-T and incubated with horseradish peroxidase-conjugated anti-

mouse or anti-rabbit immunoglobulin G (IgG) diluted at 1:10000 in TBS-T plus 10% nonfat dry 

milk. Blots were revealed by enhanced chemiluminescence using Hy-Glo reagent (Denville) 

according to manufacturer’s protocol. 

A.2.6 RNA Isolation and qRT-PCR Analysis. 

Total RNA was harvested from 1x10
6
 BJ/TERT LBNCX or LT cells as previously described in 

Chapter 2 Materials and methods. cDNA synthesis and qRT-PCR analysis was done as 

previously described using primers sets from Table 4. Target gene expression was normalized to 

RPL32 and vector expressing cells (value 1). 

A.2.7 IRF3 Dimerization Assays. 

BJ/TERT, BJ/TERT LBNCX, and BJ/TERT LT cells (1 x 10
6
) were plated in 10 cm plates. 

BJ/TERT cells were infected with 300 HAU/ml of SeV for 8 hrs. Were washed with PBS and 

lysed in 70 l of lysis buffer (50mM Tris-HCl, pH7.5; 150 mM NaCl; 1mM EDTA; 1% NP-40; 

2 mM Na3VO4; 10 mM NaF; 12 mM -glycerophosphate). Lysates were then diluted in equal 

volumes of PAGE loading buffer (2X) (0.125M Tris-HCl, pH6.8; 20% glycerol; 0.1 mg/ml BPB 

dye.) Samples were resolved in an 8% polyacrylamide gel by Native PAGE using PAGE running 

buffer (3 g/L Tris; 144 g/L; 1% deoxycholic acid). Protein was transferred to PVDF membranes 
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and probed with anti-IRF3 antibody [176] overnight in 10% nonfat dry milk. Membranes were 

then washed twice with TBS-T and incubated with horseradish peroxidase-conjugated anti-rabbit 

immunoglobulin G (IgG) diluted at 1:10000 in TBS-T plus 10% nonfat dry milk. Blots were 

revealed by enhanced chemiluminescence using Hy-Glo reagent (Denville) according to 

manufacturer’s protocol. 

A.2.8 UV Irradiation of BJ/TERT Cells. 

BJ/TERT were plated at 70% confluency in 10cm dishes and left to attach overnight. Cells were 

then treated 2uM of ATM kinase inhibitor (KU60019) or 5uM of ATR kinase inhibitor (ETP-

46464) for two hours prior to UV-irradiation. Medium was removed and cells were washed twice 

with PBS and irradiated with 20J/m
2
 UV. Fresh medium containing the ATM/ATR kinase 

inhibitors was added on to the cells and cells were incubated for 22 hrs post irradiation. Lysates 

were prepared as described above and protein expression was determined by immunoblot 

analysis. 

A.2.9 Viral replication assays 

BJ/TERT LBNCX or BJ/TERT LT cells were infected with VSV-GFP (m.o.i = 10), HSV-1 

(K26) at an m.o.i = 5, or EMCV (m.o.i = 5). Infected cell supernatants were harvested at the 

indicated timepoints and kept at -80 
o
C until further use. Infectious virus production measured by 

plaque assay on Vero (HSV-1 and EMCV) or BHK-21 (VSV) cells.  48 hours post infection, 

plaques were counted and virus production was quantified as plaque forming units (PFU)/ml.  
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Alternatively, BJ/TERT LT cells were plated at 80% confluency and treated with 50 

ng/ml Cyclohexamide (CHX) for 17 hrs prior to treatment with specific ATR kinase inhibitor 

ETP-46464. Cells were washed twice with PBS and incubated with 4 m ETP-46464 or DMSO. 

Cells were washed once again, followed by infection with EMCV (m.o.i. = 50) for 30hrs. Virus 

growth was quantified by plaque assay on BHK21 cells and expressed as plaque forming units 

(PFU)/ml. 

A.2.10 Cellular viability determination by crystal violet staining. 

BJ/TERT LT cells were plated in 12-well plated and treated as described above. Thirty hours 

post-infection supernatants were harvested for plaque assay. Cells were stained with crystal 

violet (0.01%) overnight. Plates were washed with distilled water and left to dry. The retained 

crystal violet was solubilized by resuspension with 600 l 2% SDS solution in PBS for 30 

minutes at room temperature and constant shaking.  Absorbance at 600 nm was then used to 

determine crystal violet. Cellular viability was expressed as change relative to mock-infected 

cells (value 1). 

A.3 RESULTS 

Previous studies on the global changes in gene expression induced by SV40 Large T antigen 

(LT) expression identified a significant number of interferon stimulated genes (ISG) upregulated 

in mouse embryo fibroblasts [258]. The induction of ISG protein expression appears to be 

common to other human polyomavirus LT expression, as infection with JC virus has also been 
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shown to induce the expression of an IFN response transcriptional signature. In order to confirm 

whether LT antigens encoded by human polyomavirus induce the expression of ISGs, we 

transiently transfected SV40, BKV, and JCV LT cDNA in HCT116 cells. Expression of SV40 

LT led to a robust induction of ISG60 (IFIT3) protein synthesis, similar to the induction 

observed in JCV LT transduced cells BKV LT, which has a reduced stability and is generally 

detected at lower levels, could marginally induce the expression of ISGs relative to SV40 or LT, 

although they overall ISG expression was increased (Figure 5-2A). We then utilized SV40 LT to 

further characterize the induction of these subsets of genes in human fibroblasts. Stable 

expression of LT, in BJ/TERT cells resulted in an increase in the protein levels of ISG60 and the 

related protein ISG56 (IFIT1). Furthermore, the synthesis of OASL protein was also upregulated 

in LT expressing cells relative to vector control cells (Figure 5-2B). The increase in protein 

synthesis was accompanied by an increase in ISG56, ISG60, and OASL mRNA transcription, 

suggesting that LT stimulates the transcription of these genes, which results in increased protein 

expression (Figure 5-2C, Top). Other human ISGs also identified in the mouse genome arrays, 

Cig5 and ISG15, were also detected in human fibroblasts (Figure 5-2C, Bottom).  
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Figure 5-2. Polyoma Virus T Antigen Induces ISG Expression. 

 

 

(A) Induction of ISG60 by Polyoma virus LT antigen. HCT116 cells (1x10
6
) were transiently transfected with (1 g) 

SV40, (5 g) BKV, and (1 g) JCV LT expression vectors or equal mass of empty vector control. 72 hrs post 

transfection, lysates were prepared and probed with antibodies against LT, IS60, and Actin. 

(B) Induction of ISG protein expression in human fibroblasts. Lysates were prepared from BJ/TERT cells stably 

expressing SV40 LT antigen or empty vector and probed with antibodies against LT, OASL, ISG56, IS60, and 

Actin. 

(C) Induction of ISG transcripts in human fibroblasts. Lysates were prepared from BJ/TERT cells stably expressing 

SV40 LT antigen or empty vector and probed with antibodies against LT, OASL, ISG56, IS60, and Actin. 
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Given the strong upregulation of ISGs, we investigated whether the expression of these 

genes resulted in the protection of LT expressing fibroblasts from infection with different 

viruses. BJ/TERT cells were infected with vesicular stomatitis virus (VSV), a (-) single-stranded 

RNA (ssRNA) virus expressing green fluorescent protein (VSV-GFP) at an m.o.i of 10, and 

incubated for 24 hrs following infection. BJ/TERT cells either expressing LBNCX or LT were 

resistant to the cytopathic effects of VSV infection. However, analysis by fluorescent 

microscopy showed readily detectable GFP expression in empty vector (LBNCX) expressing 

cells, while there was little to no detectable GFP expression in cells stably expressing LT (Figure 

5-3A). Similarly, immunoblot analysis of GFP expression in VSV-GFP infected cells, showed 

decrease GFP protein in cells expressing LT, relative to cells expressing empty vector. The 

decrease in viral protein synthesis was also observed after infection with Sendai virus (SeV), also 

a (-) ssRNA. BJ/TERT LT cells infected with SeV for 24 hrs, failed to synthesize the major 

capsid protein (C-protein) confirming that LT expression restricts viral protein sysnthesis upon 

superinfection with RNA viruses (Figure 5-3B). To examine the overall effect on virus 

replication, BJ /TERT expressing LT and vector control cells were infected with VSV and 

EMCV, a (+) ss-RNA virus, and growth was assessed 1-48 hrs post infection. The growth of 

VSV (Figure 5-3C) and EMCV (Figure 5-3D) was severely impaired by the expression of LT. 

We then tested whether LT expression could inhibit the growth of a dsDNA virus, HSV-1. 

Growth of HSV-1 in BJ/TERT cells expressing LT was decreased by 2-log relative to the growth 

in empty vector expressing cells (Figure 5-3D). Taken together, these results suggest that the 

increase in ISG expression induced LT protects cells from viral infection. 
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Figure 5-3. SV40 LT Expression Protects Cells from Viral Infection. 

 

 

(A) GFP expression in VSV-GFP infected BJ/TERT cells. BJ/TERT cells expressing SV40 LT or vector control 

were infected with VSV-GFP (m.o.i 10) for 24 hrs. GFP expression was detected by fluorescence microscopy.   

(B) Analysis of viral protein expression in infected BJ/TERT cells. BJ/TERT cells expressing SV40 LT or vector 

control were infected with VSV-GFP (m.o.i 5) or SeV (200 HAU/ml) for 24 hrs. Lysates were prepared and probed 

with antibodies against LT, GFP, and SeV C-protein. 

(C) Analysis of VSV growth in BJ/TERT cells. BJ/TERT cells expressing SV40 LT or vector control were infected 

with VSV-GFP (m.o.i 5). Supernatants were harvested at the indicated time-points and virus replication was 

measured by plaque assay on BHK21 cells. 

(D) Analysis of EMCV growth in BJ/TERT cells. BJ/TERT cells expressing SV40 LT or vector control were 

infected with EMCV (m.o.i 5). Supernatants were harvested at the indicated time-points and virus replication was 

measured by plaque assay on Vero cells. 

(E) Analysis of HSV-1 growth in BJ/TERT cells. BJ/TERT cells expressing SV40 LT or vector control were 

infected with HSV-1 (K26-GFP) (m.o.i 5). Supernatants were harvested at the indicated time-points and virus 

replication was measured by plaque assay on Vero cells. 
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In the context of a viral infection, the expression of ISGs generally follows nucleic acid 

sensing by cytoplasmic and nuclear receptors, which activates IRF3 and its downstream 

induction of IFN and ISGs. Type I IFNs then bind to the type I IFN receptor, IFNAR1, 

activating of the JAK/STAT signaling pathway. This results in the tyrosine (Tyr) 

phosphorylation of STAT1 and formation of the STAT1/STAT2/IRF9 (ISGF3) signaling 

complex that further regulates the expression of ISGs. Previously, we showed that LT expression 

in MEF fibroblasts resulted in the direct phosphorylation of STAT1 at Tyr701 in the absence of 

type I IFN induction. Moreover, we showed that STAT1 Tyr701 was also phosphorylated in LT 

expressing human cells [258]. Thus, to confirm that the induction of ISGs in human fibroblasts is 

due to the independent from type I IFN, we examined the effect of IFNAR knockdown in 

BJ/TERT cells. As expected, expression of LT antigen resulted in the increased ISG mRNA 

expression in cells expressing a non-targeting shRNA. Surprisingly, downregulation of IFNAR1 

resulted in a decrease in ISG60, OASL, and the interferon responsive gene, MxA mRNA (Figure 

5-4A), suggesting that a type I IFN protein is involved in the induction of ISGs in human cells.  

Indeed, the ectopic expression of LT resulted in the stimulation of IFN transcription in 

shCTRL cells. Downregulation of IFNAR1 resulted in further enhancement of IFN, likely due 

to the lack of a negative feedback loop required to dampen the induction of type I IFN (Figure 

5-4B, left). Interestingly, the transcription of ISG15 followed the same pattern of expression as 

seen for IFNtranscriptionFigure 5-4B, right), suggesting that transcriptional activation of both 

genes is controlled by the same factor involved in the early phase of the interferon synthesis 

pathway, while the upregulation of ISG60, OASL, and MxA is largely dependent on the 

activation of the JAK/STAT signaling pathway following IFN detection. Additionally, we 
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measured the levels of IFNAR1 expression in shCTRL and shIFNAR cells expressing either the 

empty vector or LT. While the expression of LT led to a slight increase in IFNAR1 mRNA 

expression, targeting of IFNAR1 with shRNA led to nearly 90% decrease in mRNA expression 

in both LBNCX and LT expressing cells lines (Figure 5-4C). Together, the data suggest that in 

human fibroblasts the activation of cellular factors involved in the transcriptional upregulation of 

IFN are likely being targeted by LT, consequently lead to the induction of ISGs. 

 

Figure 5-4. Type I IFN Receptor is Necessary for ISG Amplification. 

 

(A) Analysis of ISG induction in IFNAR1 knockdown cells. RNA was harvested from BJ/TERT cells expressing 

either empty vector or SV40 LT cDNA as well as a short hairpin targeting IFNAR1. Expression of OASL, ISG60, 

and MxA was analyzed by qRT-PCR. Samples were normalized to RPL32 and expressed as fold change with 

respect to LBNCX vector control cells (value 1). 

(B) Analysis of IFN and ISG15 induction in IFNAR1 knockdown cells. RNA was harvested from BJ/TERT cells 

expressing either empty vector or SV40 LT cDNA as well as a short hairpin targeting IFNAR1. Expression of IFN 

and ISG15 mRNA was analyzed by qRT-PCR. Samples were normalized to RPL32 and expressed as fold change 

with respect to LBNCX vector control cells (value 1). 

(C) Validation of IFNAR knockdown in BJ/TERT cells. RNA was harvested from BJ/TERT cells expressing either 

empty vector or SV40 LT cDNA as well as a short hairpin targeting IFNAR1. Expression of IFNAR1 mRNA was 

analyzed by qRT-PCR. Samples were normalized to RPL32 and expressed as fold change with respect to LBNCX 

vector control cells expressing the non-targeting shRNA (value 1). 
 

 



 127 

Given that IFN gene expression was detected in LT expressing cells, we postulate that 

the mechanism of ISG induction in human fibroblast relies on factors involved in the regulation 

of type I IFN induction. As observed in shCTRL and shIFNAR expressing cells, IFN mRNA 

was readily detectable in BJ/TERT cells stably expressing LT or BJ/TERT cells treated p(I):(C) 

overnight. However, the induction of IFN mRNA following p(I):(C) treatment was 20 times 

greater than that observed by LT expression (Figure 5-5A). To our surprise, the induction of type 

I IFN by LT was restricted to the stimulation of IFN transcription as no transcription of IFN 

genes was detected in BJ/TERT LT cells by qRT-PCR analysis using Pan-IFN targeting 

primers. We examined the response of BJ/TERT cells to p(I):(C) and were able to measure a 

readily detectable induction of IFN transcription (Figure 5-5B). These results suggest that LT 

activates factors that lead to a low induction of IFN in the absence of IFN induction; however, 

dsRNA stimulation results in the activation of a second set of transcriptional activators, which 

can effectively induce high levels of IFN expression resulting in the downstream induction of 

IFN. 

The major regulators of transcription in the IFN response pathways are the IRF family of 

proteins. Five of these proteins, IRF1, IRF3, IRF5, IRF7, and IRF9 are ubiquitously expressed 

amongst different tissues where they positively regulate the expression of ISGs. . The activation 

of IRF3 leads to its dimerization and translocation into the nucleus, leading to the induction of 

IFN transcription. To determine if the expression of LT induces the activation of IRF3 we 

examined the presence of IRF3 dimers in LT and SeV infected cells. IRF3 dimers were readily 

detected in BJ/TERT cells 8 hrs after viral infection. However, the expression of LT or vector 

control failed to stimulate IRF3 activation (Figure 5-5C). With the exception of IRF3, the 

induction of protein synthesis acts as a regulatory step in the transcriptional activation of these 
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factors. Thus, we explored whether LT altered their level of expression. Comparison of IRF 

protein expression in BJ/TERT LT cells and empty vector expressing cells showed a significant 

increase in IRF1, IRF7, and IRF9 (Figure 5-5D, left). On the other hand, the transcription of 

IRF5, which is involved in both the induction of IFN and the inhibition cellular replication, was 

drastically downregulated by LT (Figure 5-5D, right). Expression of IRF3, the primary mediator 

of the dsRNA sensing and IFN secretion and we observed a slight decrease in mRNA 

expression in LT expressing cells. These results suggested then that the induction of IFN was 

likely mediated by IRF1, IRF7, or IRF9. To examine the effect of these proteins on IFN 

promoter activation, we co-transfected 293 cells with IRF1, IRF7, or IRF9 cDNA and IFN125-

luc and pRL-null as a transfection control. Expression of IRF1 resulted in over 10-fold increase 

in promoter activity while IRF7 transduction resulted in a 5-fold induction in promoter activity 

relative to vector control transfected cells (Figure 5-5E). Given that IRF9 resulted in a weak 

induction in our reporter assay and that IFN mRNA levels were enhanced after the 

downregulation of IFNAR1 rather than being reduced, we excluded the possibility that IRF9 is 

involved in the direct activation of IFNtranscription in BJ/TERT LT cells.We verified the 

activity of the IFN125-luc in BJ/TERT cells by transient transfection of BJ/TERT LT with 1 g 

IFN125-luc and recorded a 10-fold increase in luciferase activity relative to the luciferase 

activity observed in pGL3-basic transfected cells (Figure 5-5F). 
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Figure 5-5. SV40 LT Promotes the Induction IFNExpression. 

 

(A and B) SV40LT induction of type I IFN. BJ/TERT cells were stimulated with poly(I):poly(C) 100 g/ml or 

stably transduced with LBNCX or SV40 LT. Total RNA was extracted from 1x10
7
 cells and IFN (A) and Pan-

IFN (B) mRNA levels were analysed by qRT-PCR. mRNA expression was normalized to RPL32 and expressed 

relative to vector control expressing cells (value 1). 

(C) IRF3 dimerization assay. Lysates were prepared from BJ/TERT cells stably expressing vector control, SV40 

LT, or cells infected with 300 HAU/ml for 8 hrs. Protein was resolved by Native PAGE and probed with anti-

IRF3 antibodies. 

(D) Modulation of IRF gene expression by SV40 LT. Lysates were prepared from BJ/TERT cells stably 

expressing vector control or SV40 LT and probed with antibodies against the antiviral mediators IRF1, IRF7, and 

IRF9 as well as Tubulin (D). Total RNA was extracted from 1x10
7
 BJ/TERT cells stably expressing vector control 

or SV40 LT and IRF5 and IRF3 mRNA levels were analysed by qRT-PCR (E). Target gene mRNA expression 

was normalized to RPL32 and expressed relative to vector control expressing cells (value 1). 

(E) Induction of IFN promoter activity by IRF proteins. IRF1, IRF7, or IRF9 cDNA was co-transfected with 

IFN 5-luc and pRL-null in 293 cells. Firefly luciferase activity was normalized to renilla luciferase activity and 

promoter activity was expressed as change relative to vector control transfected cells (value 1). 

(F) SV40 LT expression induces the IFN promoter. 1 g of IFN luciferase reporter construct or pGL3 basic 

vecor control was transiently transfected in BJ/TERT LT cells. Firefly luciferase was normalized to empty vector 

expressing cells (value 1). 
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In order to define whether either IRF1 or IRF7 is required for the induction of IFN 

promoted by LT, we used knocked down the expression of these genes by transiently 

transfecting siRNA targeting IRF1 or IRF7 in BJ/TERT LT cells. The downregulation of IRF1, 

specifically, was accompanied by a decrease in the expression of ISGs, previously determined to 

be induced in an IFNAR1-dependent manner as determined by the loss of OASL and ISG60 

protein expression. Furthermore, loss of IRF1 expression led to a decrease of IRF7, which not 

only regulates ISG expression, but is also an IFN responsive ISG. However, knockdown of 

IRF7 did not affect the expression of either ISGs or IRF1 (Figure 5-6A). The loss of ISG 

expression was due to a decrease in transcriptional activation of these genes as determined by the 

decrease in mRNA levels following the knockdown of IRF1. Downregulation of IRF1 in 

BJ/TERT LT cells also led to the inhibition of IFN mRNA, explaining the concomitant loss of 

ISG expression. Again, the knockdown IRF7 had no effect in the transcription of ISGs and 

resulted in a slight increase in IFN transcription (Figure 5-6B). Knockdown of either IRF1 or 

IRF7 had a similar effect on the transcription of OASL, likely due to the loss of IFN synthesis. 

We then examined the effect of knocking down IRF1 and IRF7 on the expression of these genes. 

Transient targeting of IRF1 resulted in a 50% loss in IRF1 mRNA expression, while targeting 

IRF7 had no effect on the transcription of IRF1 (Figure 5-6C). However, silencing of IRF1 led to 

a 50% decrease in IRF7 transcription, which was lower than the almost 90% loss in IRF7 mRNA 

observed when IRF7 was silenced specifically (Figure 5-6D). The modulation of gene expression 

that followed the downregulation of IRF1 was not due to changes in LT, as equivalent protein 

and mRNA expression was detected after downregulation of either gene (Figure 5-6E and A).  

We further supported our siRNA studies by measuring the induction of IFN mRNA in 

cell stably expressing an IRF1-targeting shRNA. As previously observed, IRF1 knockdown cells 
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resulted in a 40% loss of IFN transfection and a 50% decrease in IRF1 without any effect on the 

expression of SV40 LT (Figure 5-6F). These results suggest IRF1 controls IFN transcription 

and that response to IFN secretion leads to the IFNAR1 dependent activation of IRF7 and IRF9, 

which then can participate in the enhanced expression of ISGs like OASL, ISG60, and MxA.  
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Figure 5-6. Induction of IRF1 Results in IFN Transactivation. 

 

 

(A) Requirement for IRF1 in the induction of ISG protein synthesis. Briefly, BJ/TERT cells were transfected 

with 160 pmoles of siRNA against IRF1 and IRF7 and incubated for 48 hrs. Lysates were prepared and probed 

with antibodies against OASL, ISG60, SV40 LT, IRF1, IRF7, and Actin. 

(B-E) IRF1 and IRF7 requirement for the transcriptional induction of IFN and OASL. IFNand OASL (B), 

IRF1 (C), IRF7 (D), and SV40 LT (E) mRNA levels were assessed by qRT-PCR. Briefly, BJ/TERT cells were 

transfected with 160 pmoles of siRNA against IRF1 and IRF7. Total RNA was harvested and cDNA was 

synthezised. Expression of target genes was determined by qRT-PCR analysis and normalized to RPL32 and 

control siRNA transfected cells (value 1).  

(E) Analysis of ISG protein expression in IRF1 and IRF7 knockdown cells. BJ/TERT LT cells were transfected 

with siRNA gainst IRF1 and IRF7 as described above. Lysates were prepared and probed with antibodies against 

SV40 LT, ISG60, OASL, IRF1, IRF7, and Actin. 

(F) Analysis of IFN mRNA expression in IRF1 knockdown cells. BJ/TERT cells were stably transduced with an 

shRNA targeting IRF1 or a non-targeting shRNA. Cells were then stably transduced with pLBNCX or pLBNCX-

LT. Total RNA was harvested and mRNA expression was determined by qRT-PCR. Expression of target genes 

was normalized to RPL32 and reported relative to the enhancement observed over empty vector expressing cells 

(value 1). 
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Expression of LT has been shown to induce DNA damage in human fibroblasts and the 

activation of an ATM/ATR kinase mediated DNA damage response (DDR) [243,244,247]. 

Moreover, the induction DDR has previously been associated with the induction of IRF1 protein 

expression [259]. We confirmed that the induction of DNA damage by UV irradiation in 

fibroblast resulted in the induction of both IRF1 and IRF7. Following genotoxic insult, 

ATM/ATR activation results in the phosphorylation of p53 at Ser15, which leads to the 

stabilization of p53. We inquired whether either ATM or ATR kinase activity is involved in the 

in the stabilization of both IRF1 and p53 by pre-treating cells with ATM and ATR specific 

inhibitors prior to UV irradiation (Figure 5-7A). The induction of IRF1 and IRF7 was 

comparable in BJ/TERT cells treated with ATM inhibitor (KU60019) was comparable to the 

induction observed in DMSO treated cells. However, ATR kinase inhibitor (ETP-46464) 

treatment resulted in a marked decrease in the induction of IRF1 protein synthesis concomitant 

with a loss of IRF7 expression (Figure 5-7B). 
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Figure 5-7. DNA Damage Induces IRF1 and IRF7 in an ATR Kinase dependent manner. 

 

We then asked if the inhibition of ATR kinase activity in cells stably expressing LT could 

also result in a decrease in ISG expression and IRF1 stabilization. As observed in UV irradiated 

cells, 24 hr treatment of BJ/TERT LT cells with ATM kinase inhibitor (KU60019) did not affect 

the expression IRF1 or OASL, and the levels of protein expression were comparable to those 

detected in cells treated with DMSO. On the other hand, ATR kinase inhibition led to a decrease 

in OASL protein synthesis following a reduction in the expression of IRF1. Given that LT 

antigen is modified by ATM, we tested whether inhibitor treatment affected the LT protein 

stability. Treatment with either inhibitor did not affect the level of LT protein expression (Figure 

5-8A). We confirmed that ATM and ATR kinase activity was inhibited by measuring whether 

inhibitor treatment decrease the phosphorylation p53 at Ser15. Indeed, both ATM and ATR 

(A) Schematic representation of experimental design.  Briefly, BJ/TERT were plated at 70% confluency in 10cm 

dishes and treated with 2uM or 5uM of ATM (KU60019) or ATR (ETP-46464) kinase inhibitor respectively. 

Cells were then irradiated with 20J/m
2
 UV and further incubated for 22 hrs post irradiation in the presence of 

kinase inhibitors. 

(B) Analysis of IRF1 and IRF7 induction in UV-irradiated BJ/TERT cells. Lysates were prepared from cells 

stimulated as described above and probed with antibodies against IRF1, IRF7, p53, and Actin. 
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specific kinase inhibitors led to a decrease in Ser15 phosphorylation without affecting the 

stability of p53 in BJ/TERT LT cells (Figure 5-8B).  

Expression of IRF1 can be regulated by either the transcriptional activation of IRF1 

mRNA or by post-translational modifications that stabilize IRF1 protein expression. In order to 

determine whether ATR kinase activity is involved in either of these two regulatory responses, 

me quantified the levels of IRF1 mRNA after treatment of BJ/TERT LT cells with ATM or ATR 

kinase inhibitors. ATR kinase inhibition led to a decrease in the transcription of IRF1 mRNA, 

while ATM inhibition had no effect on IRF1 mRNA expression. Likewise, ATR kinase 

inhibition led to a decrease in IFN mRNA levels, accounting for both the decrease in OASL 

mRNA and protein expression (Figure 5-8C). 

Finally, we addressed whether the inhibition of IFNdue to the loss of ATR kinase 

activity, reverses the protection of fibroblast from viral infection afforded by LT expression. 

First, we treated BJ/TERT LT cells with 50 ng/ml cyclohexamide (CHX) for 17 hrs to inhibit the 

LT-mediated transcription of IFNThus, we pre-incubated cells with ATR kinase inhibitor 

followed by 2 hr adsorption of VSV-GFP onto the cells. Finally, we incubated both mock 

infected and infected cell with either ETP-46464 or DMSO for an additional 30 hrs. ATR kinase 

inhibition decreased the LT protection of cells from virus mediated cells death as we observed a 

significant decrease (~25%) in cell survival relative to the induction of cell death in DMSO 

treated cells (Figure 5-8C, left). The loss in viability was accompanied by a 25% increase in viral 

growth in BJ/TERT LT cells devoid of ATR kinase activity (Figure 5-8D, right). Taken together, 

our results suggest that LT triggers the DNA damage response and relies on ATR to enhanced 

expression of IRF1. This results in the induction of low levels IFNthat generate an antiviral 
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state and protects cells from viral infection through the induction of effectors that negatively 

regulate viral replication and gene expression. 
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

 

Figure 5-8. Induction of ISGs by LT dependent on ATR Kinase activity. 

 

(A) Analysis of ISG induction in ATM/ATR kinase inhibitor treated BJ/TERT LT cells. Lysates were prepared 

from BJ/TERT cells stimulated for 24 hrs with the indicated doses of KU60019 or ETP46464. Levels of OASL, 

IRF1, LT, and Actin were detected by immunoblot. 

(B) Analysis of p53 phosphorylation in ATM/ATR kinase inhibitor treated BJ/TERT LT cells. Cells were 

treated as described above. Lysates were prepared, and probed with antibodies against phosphorylated p53 

(Serine 15), total p53, and Actin.  

(C) Analysis of IFN mRNA in ATM/ATR kinase inhibitor treated BJ/TERT LT cells. Total RNA was 

prepared from BJ/TERT cells stimulated for 24 hrs with 2 M KU60019 or 4 M ETP-46464. Expression of 

IFN, IRF1, and OASL were determined by qRT-PCR. Samples were normalized to RPL32 and vehicle treated 

cells (value 1).  

(D) EMCV growth in BJ/ETRT LT cells treated with ETP-46464. In brief, BJ/TERT LT cells were plated in 

12-well plates at an 80% confluency. Cells were treated with CHX (50 ng/ml) for 17hrs prior to viral infection. 

Three hours prior to EMCV infection, cells were stimulated with 5 M of ETP-46464. Cells were then infected 

with EMCV (m.o.i 50). Infected cells were stained with crystal violet to determine cell survival relative to 

mock-infected cells (left). Supernatants were harvested 30hrs post infection and viral growth in DMSO or ATR 

kinase inhibitor treated infected cells was determined by plaque assay on Vero cells (right).  
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A.4 DISCUSSION 

In this study we have defined the mechanism by which stable expression of SV40 LT 

induces the expression of IFN-stimulated genes. Our results indicate that the induction of ISGs 

occurred in both an IFNAR1-dependent and IFNAR1-independent manner. Thus, this suggested 

that LT expression results in the induction of factors that control the expression of type I IFNs. 

Indeed, we observed a strong upregulation of IFN mRNA by LT accompanied by increases in 

the expression of regulators of IFN responses: IRF1, IRF7, and IRF9.  Furthermore, we show 

both LT expression and UV irradiation result in the stabilization of IRF1 expression through the 

induction of ATR kinase activation, specifically, which leads to the upregulation of IFN 

expression. Thus, our study emphasizes the interface between the DNA-damage response (DDR) 

and the IFN antiviral response, which is largely mediated by ATR kinase. 

The DDR is a complex cellular network involved in the detection of genotoxic stress, 

which triggers cell-cycle arrest and DNA repair or triggers apoptosis if the insult fails to be 

repaired. The major sensors of DDR are the phosphoinositide 3-kinase related kinases (PIKK), 

ATM and ATR, that act on substrates that include check-point kinases that magnify the signaling 

cascade. Early studies have connected DDR to the induction of IRF1 expression [259-262]. IRF1 

is an important mediator of IFN responses [263-265], although its role in the regulation of other 

stress responses is still not clearly understood.  Studies have implicated IRF1in the induction, 

along with p53, of genes involved in the regulation of cell growth, susceptibility to 

transformation by oncogenes, induction of apoptosis [259,260]. Mechanistic studies examining 

the regulation of IRF-1 expression, have linked ATM with the induction of IRF-1 in epithelial 

cells [259]. Other studies have also identified NF-B as a crucial factor involved in the induction 
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of IRF1 and IRF7 expression in human epithelial cells [266]. Thus, it is likely that the triggering 

of DDR is a mechanism to protect genome integrity and to some extent, act as an antiviral 

response against virus infection. 

The relationship between viruses and DDR has become an interesting subject of 

investigation. Much attention has been placed on understanding the complex molecular 

interactions between DNA viruses and the DDR (Reviewed in [267,268]). Detection of viral 

genomes as damaged DNA, the expression of viral oncogenes which deregulate cell-cycle 

checkpoints and promote replicative stress, and the induction of reactive oxygen species are all 

triggers for a response that can have potentially deleterious consequences for both the virus and 

the infected cell. On the other hand, other studies have elucidated ways in which invading 

pathogens hijack these pathways during the course of infection to promote efficient replication of 

their genomes [268]. Using a virally encoded oncogene and employing chemical inhibitors of the 

master regulatory kinases of the DDR, ATM and ATR, we were able to distinguish the signaling 

pathways and shed light on the connection between DDR and antiviral IFN responses. Although 

we have not shown how ATR is able to induce IRF1 and which ATR substrate is necessary, our 

future studies will be directed towards this.  

Classic IFN induction has been viewed mostly as being caused by virus infection and 

sensing of viral nucleic acid. Here, we show a unique mechanism for LT mediated induction of 

IFN that is distinct from previous mechanisms and provide a mechanistic connection between 

DDR and IFN induction. The DDR is a complex cellular network involved in the detection of 

genotoxic stress, which triggers cell-cycle arrest and DNA repair or triggers apoptosis if the 

insult fails to be repaired. The major sensors of DDR are the phosphoinositide 3-kinase related 

kinases (PIKK), ATM and ATR that act on substrates that include check-point kinases that 
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magnify the signaling cascade. Early studies have connected DDR to IRF1 on a different context 

[259-262]. Discovered as an important mediator of IFN responses [263-265], the role of IRF1 in 

the regulation of other stress responses is still not clearly understood.  Studies have implicated 

IRF1in the induction, along with p53, of genes involved in the regulation of cell growth, 

susceptibility to transformation by oncogenes, induction of apoptosis [260]. Mechanistic studies 

examining the regulation of IRF-1 expression, have linked ATM with the induction of IRF-1 in 

epithelial cells [259]. Other studies have also identified NF-B as a crucial factor involved in the 

induction of IRF1 and IRF7 expression in human epithelial cells [266]. Thus, it is likely that the 

triggering of DDR is a mechanism to protect genome integrity and to some extent, act as an 

antiviral response against virus infection. 

In the context of virus infection much attention has been on understanding the complex 

molecular interactions between DNA viruses and the DDR (Reviewed in [267,268]). Detection 

of viral genomes as damaged DNA, the expression of viral oncogenes which deregulate cell-

cycle checkpoints and promote replicative stress, and the induction of reactive oxygen species 

are all triggers for a response that can have potentially deleterious consequences for both the 

virus and the infected cell. On the other hand, other studies have elucidated ways in which 

invading pathogens hijack these pathways during the course of infection to promote efficient 

replication of their genomes [268]. Using a virally encoded oncogene and investigating the 

master regulatory kinases of the DDR, ATM and ATR, we were able to distinguish the signaling 

pathways and shed light on the connection between DDR and antiviral IFN responses. 

We have shown that while the induction of ATM and ATR-triggered signaling cascades 

lead to the activation of proteins of benefit for viral replication and immune evasion, the ATR-

signaling arm specifically acts as a sensor of virus induced replicative stress and potentially 
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promotes viral elimination through the induction of IFN responses in human fibroblasts. This 

notion is further supported by previous observations of specific targeting of ATR-mediated 

signaling during the course of viral infections. HSV-1 relies on the induction of both ATM and 

ATR activity early in infection to stimulate the replication of viral genomes, while effectively 

degrading ATR at later time points to successfully complete the infectious cycle [269,270]. 

Similarly, the polyomavirus [242-245,247,271] and human papillomaviruses [272] also induce 

the DDR machinery for viral replication while countering these responses during the late phases 

of viral replication for the completion of the infectious cycle.  

 Interestingly, RNA viruses, like HIV-1 [273], avian infectious bronchitis virus [274], 

Hepatitis C virus [275], and Rift Valley Fever [276], have also been shown to trigger DNA-

damage responses. Thus, it is likely that these viruses have developed strategies to overcome the 

blockade imposed by the induction of DDR-mediated IFN induction. Indeed, studies provide 

evidence that Rift Valley Fever Virus non-structural (NS) proteins induce replicative stress that 

triggers the ATM signaling pathway and enhances viral replication. On the other hand, NSs 

target ATR-signaling, specifically, to further promote viral growth [276]. Thus, while we and 

others have provided evidence that the ATR signaling pathway is involved in the regulation of 

immune responses, the overall role of ATR in mediating antiviral responses still remains to be 

clarified. 

DNA tumor viruses not only benefit from the induction of effector genes that can 

promote genome replication, but also have developed strategies to prevent the arrest in cellular 

replication, cellular death, and other potential antiviral effects mediated by DDR [267]. In 

particular, SV40 LT can efficiently abrogate the transcriptional functions of p53, preventing the 

induction of apoptosis [240]. This in turn can result in the abrogation of a negative inhibition of 
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DDR and thus contribute to the constitutive secretion of low levels of IFNin human fibroblasts 

stably transduced with LT. Elevated levels of IFN induce the expression of genes involved in 

the IFN responsive pathway, which have been previously shown to be upregulated in certain 

types of cancer and promote poor prognosis and response to therapy [5,188-194]. Furthermore, 

some of the effector genes of the IFN response are epigenetic modifiers that promote nuclear 

programming and modify cellular gene expression [277]. Thus, we propose that the induction of 

DNA damage and IFN responses by LT, in the absence of viral infection and intact apoptotic 

responses, contributes to the global changes in gene expression observed in LT transformed cells 

and adds to the transformative capacity of LT. 
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APPENDIX B  

ENHANCED APOPTOSIC RESPONSES TO DOUBLE-STRANDED RNA IN 

METASTATIC HNSCC IS INDEPENDENT FROM IFNAR-MEDIATED SIGNALING 

 

Work described in this section was partly published in Cancer Research  

(Cancer Res. 2012 Jan 1;72(1):45-55) by authors Naoki Umemura, Jianzhong Zhu, 

Yvonne K. Mburu, Adriana Forero, Paishiun N. Hsieh, Ravikumar Muthuswamy,  

Pawel Kalinski, Robert L. Ferris, and Saumendra N. Sarkar. 
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B.1 INTRODUCTION 

Head and neck squamous cell carcinomas (HNSCC) are the sixth most common cancer 

worldwide [278]. Lymph node metastasis is associated with poor prognosis of HNSCC and 

metastatic disease accounts for most cancer mortality [24]. Thus, it is important to elucidate the 

intrinsic differences between primary tumors and their metastatic lesions to better understand the 

disease and to develop effective therapies. Synthetic double-stranded RNAs that are cognate 

ligands of TLR3 have been used as adjuvants to cancer immunotherapies to further enhance their 

proapoptotic activity in cancer cells. Using paired autologous primary and metastatic head and 

neck squamous cell carcinoma cell lines and tumor specimens, the potential therapeutic 

application of TLR3 ligands in metastatic progression was explored. Metastatic tumor cell lines 

showed enhanced apoptosis relative to primary cells in response to TLR stimulation by p(I):(C) 

treatment. Primary and metastatic cells did not display any differences in TLR3 expression and 

sensing of synthetic dsRNA.  

In this study, we examine the role of type I IFN signaling on the enhanced apoptosis 

observed in metastatic cells. Using shRNA lentiviral expression vectors, we were able to 

knokdown IFNAR1 expression and show that while ISG expression is enhanced by IFNAR1 

activation, the enhanced apoptotic effect of p(I):(C) treatment in metastatic cells is does not 

require IFN signaling. Rather the enhanced apoptosis was found to be due to defective p(I):(C)–

mediated NF-κB activation in metastatic cells (Figure 5-9). 
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Figure 5-9. Proposed Model for Enhanced Apoptosis in Metastatic HNSCC Cells. 

 

B.2 MATERIALS AND METHODS 

Cell lines 

The cell lines used in this study have been described on Table 9. HNSCC cell lines, PCI15A and 

PCI15B, PCI15B-derived cells, and 293FT were cultured in DMEM (Lonza) containing 10% 

FBS (Atlanta Biologicals) and 100 I.U./ml penicillin and 100 mg/ml streptomycin (Lonza). 

BJ/TERT cells were cultured in 80% DMEM, 20% Medium 199 (Invitrogen), 10% FBS, and 100 

I.U./ml penicillin and 100 mg/ml streptomycin. 

Schematic representation of TLR3 signaling pathway. Sensing of dsRNA results in the dimerization of TLR3 and 

signaling through TRIF. Engagement of the TRAF3 complex results in the activation of IRF3 and the 

transcription of effector genes that result in cell apoptosis. TRAF6-mediated signaling results in the activation of 

NF-B in primary tumor cells, which promotes the expression of proinflammatory genes and negatively regulates 

cellular apoptosis. Defective NF-B signaling in metastatic cells results in enhanced IRf3-mediated apoptosis.  
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Table 9. Appendix A - Cell Lines 

Cell Line Description Source 
Reference 

BJ/TERT hTERT immortalized BJ Fibroblasts  
Gjoerup Lab 

(Tufts University) 
[252] 

BJ/TERT 

shCTRL 

hTERT immortalized BJ Fibroblasts expressing 

scrambled shRNA. Generated by lentiviral tranduction 

with pLKO.1 - shCTRL  

Sarkar Lab 

(University of 

Pittsburgh) 

 

BJ/TERT 

shIFNAR 

hTERT immortalized BJ Fibroblast expressing 

scrambled shRNA. Generated by lentiviral tranduction 

with pLKO.1 – shIFNAR1 

Sarkar Lab  

PCI-15A 
Human epithelial cells derived from primary HNSCC 

tumor lesions. 

Whiteside Lab 

(University of 

Pittsburgh) 

[279] 

PCI-15A 

shCTRL 

PCI-15A-derived cell line expressing scrambled 

shRNA. Generated by lentiviral tranduction with 

pLKO.1 - shCTRL 

Sarkar Lab [280] 

PCI-15B 

shIFNAR 

PCI-15B-derived cell line expressing shRNA targeting 

IFNAR1. Generated by lentiviral tranduction with 

pLKO.1 – shIFNAR1  

Sarkar Lab 

 
[280] 

PCI-15B 

Human epithelial cells derived from recurrent 

metastatic HNSCC lesions from the same donor as 

PCI15A. 

Whiteside Lab 

(University of 

Pittsburgh) 

[279] 

PCI-15B 

shCTRL 

PCI-15B-derived cell line expressing scrambled 

shRNA. Generated by lentiviral tranduction with 

pLKO.1 - shCTRL 

Sarkar Lab [280] 

PCI-15B 

shIFNAR 

PCI-15B-derived cell line expressing shRNA targeting 

IFNAR1. Generated by lentiviral tranduction with 

pLKO.1 – shIFNAR1  

Sarkar Lab 

 

[280] 
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B.2.1 Lentivirus packaging and generation of stable cell lines 

Lentiviral vectors (pLKO.1) for the delivery of constitutively expressed shRNA were used in this 

study. Specifically, the vectors targeting IFNAR1 (shIFNAR) were purchased from Sigma-

Aldrich and scramble control hairpin (shCTRL) was obtained from Addgene (plasmid 10879). 

The specific targeting sequences are described in Table 10 below. 

 

Table 10. pLKO.1 Based shRNA Delivery Vectors. 

Clone TRC Number Target Sequence 

shCTRL  CCGCAGGTATGCACGCGT 

shIFNAR Clone 1 TRCN0000059017 GTTGACTCATTTACACCATTT 

shIFNAR Clone 3 TRCN0000059015 CGACATCATAGATGACAACTT 

shIFNAR Clone 4 TRCN0000059014 CCTTAGTGATTCATTCCATAT 

shIFNAR Clone 5 TRCN0000059013 GCCAAGATTCAGGAAATTATT 

 

Lentiviruses were packaged in 293FT cells using the methodology described in Chapter 2 

materials and methods. PCI15B-derived pLKO.1 cells were generated by overnight lentiviral 

infection with virus packaged from pLKO.1 shCTRL or pLKO.1 shIFNAR in the presence of 5 

g/ml polybrene (Sigma-Aldrich). 48 hrs post-infection, cells were selected with 1 g/ml 

Puromycin (InvivoGen) for 7 days. Puromycin-resistant cells were pooled and used for further 

studies. 

B.2.2 RNA Isolation and Quantitative Reverse Transcriptase Polymerase Chain Reaction 

Analysis qRT-PCR. 

RNA isolations and cDNA synthesis was performed as described in Chapter 2 materials and 

methods. Samples were subjected to SYBR green real-time PCR using a CFX96 real time system 
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(Bio-Rad). IFNAR1 cDNA was specifically amplified using primers: (Forward) 5’ – 

GAAACCACTGACTGTATATTGTGTGAAA – 3’and (Reverse) 5’ - 

CAGCGTCACTAAAAACACTGCTTT – 3’. RPL32 primer set sequences have been previously 

described in Table 4. Each sample was normalized to RPL32 and expressed as fold change with 

respect to vector expressing cells (value 1).  

B.2.3 Immunoblotting 

Cells were treated with 25 or 50 g/ml p(I):(C) (GE) for 24 hrs and lysed as described in Chapter 

2 Materials and Methods. Lysates were resolved in 8% SDS–polyacrylamide gels. Proteins were 

transferred to PVDF membranes, washed twice in Tris-buffered saline with Tween 20 (TBS-T; 

20 mM Tris, 0.5 M NaCl [pH 7.5] plus 0.5% Tween 20) and blocked for 1hr in 10% nonfat dry 

milk TBS-T. Primary antibody incubation with anti-ISG56 antibody[176], anti-Cleaved PARP 

(Asp214, Cell Signaling), or anti-Actin (Santa Cruz) was done overnight in 10% nonfat dry milk. 

Membranes were then washed twice with TBS-T and incubated with horseradish peroxidase-

conjugated anti-mouse or anti-rabbit immunoglobulin G (IgG) diluted at 1:10,000 in TBS-T plus 

10% nonfat dry milk. Blots were revealed by enhanced chemiluminescence using Hy-Glo 

reagent (Denville) according to manufacturer’s protocol.  

B.2.4 Caspase 3 and Caspase 7 activity 

PCI15B shCTRL or PCI15B shIFNAR cell (2x10
4
) were seeded on 96-well plates. Cells were 

treated with 12, 25, 50 g/ml p(I):(C) of for 24 hrs. Plates were then allowed to equilibrate to 

room temperature and 20 l of Caspase-Glo® 3/7 Assay (Promega) were added to each well. 
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Plates were then incubated 30 minutes to 3 hrs at room temperature on a plate shaker. 

Luminescence emitted was measured using luminescence plate reader. Results were expressed as 

relative light units (x1000). 

B.3 RESULTS AND DISCUSSION 

To evaluate the efficiency of IFNAR1 silencing by lentiviral shRNA vectors, we infected 

immortalized human fibroblasts, BJ/TERT, with one of four different lentivirus clones 

expressing IFNAR1 targeting sequences (shIFNAR1) or scramble control (shCTRL) and stable 

cell lines were generated by selection with puromycin. The levels of IFNAR1 mRNA expression 

relative to scramble control were measured by qRT-PCR. Three of the lentiviral constructs 

showed 50-60% silencing (clones 3-5) while transduction of cells with lentiviral clone 1 resulted 

in a 90% reduction in IFNAR1 mRNA (Figure 5-10A). 
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Figure 5-10. Enhanced Apoptosis in Metastatic Cells is Independent of IFNAR Signaling. 

(A) Analysis of IFNAR1 knockdown efficiency. Total RNA was harvested from BJ/TERT cells stably expressing 

shRNA targeting IFNAR1 or non-targeting shRNA (shCTRL) and subjected to qRT-PCR. Samples were normalized 

to RPL32 and expressed as fold change respective to shCTRL cells (value 1). 

(B) IFNAR1 expression in PCI15A and PCI15B cells stably expressing IFNAR1 targeting shRNA. Total RNA was 

extracted from PCI15A and PCI15B cells stably expressing shRNA targeting IFNAR1 or non-targeting shRNA 

(shCTRL) and subjected to qRT-PCR. Samples were normalized to RPL32 and expressed as fold change respective 

to shCTRL cells (value 1). 

(C) PARP induction in IFNAR knockdown cells. PCI15B shCTRL and shIFNAR cells were stimulated with 

increasing doses of p(I):p(C) as indicated. Lysates were prepared and probed with antibodies against cleaved PARP 

(Asp 214), ISG56, and Actin. 

(D) Requirement of IFNAR1 in mediating the apoptotic response to dsRNA stimulus. PCI15B shCTRL and 

shIFNAR cells were stimulated with increasing doses of p(I):p(C) as indicated. Caspase 3/7 activity was measured 

using a Caspase-Glo® 3/7 Assay. 
 

Lentiviral clone 1 was chosen for its maximal knockdown efficiency and in conjunction 

with the scramble control was used to stably transduce primary and metastatic HNSCC cells 

(PCI15A and B respectively). We observed an 80-90% reduction in IFNAR1 mRNA levels in 

these cell lines (Figure 5-10B). The effect of IFNAR downregulation response to p(I):(C) 

treatment in PCI15B cells was examined by measuring the levels of ISG56 induction following 

stimulation. Treatment with poly(I):poly(C) resulted in the induction of ISG56 protein synthesis 
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in both shCTRL and shIFNAR1 cells. Since type I IFN secretion results in an autocrine and 

paracrine enhancement of ISG56 protein synthesis, ISG56 expression was dramatically 

decreased in shIFNAR1 relative to shCTRL cells as expected following TLR3 ligation (Figure 

5-10C). To determine whether response to IFN was involved in the enhanced apoptotic after 

p(I):(C) treatment, we measured the levels of cleaved PARP protein. No differences were 

observed in the induction of ISG56 protein after stimulation with either 25 or 50 ng/ml as 

compared to the induction of ISG56 observed in shCTRL cells. To further confirm the 

independence of enhanced apoptosis on IFNAR1, we determined the activity of pro-apoptotic 

caspases by measuring the cleavage of the luminogenic Caspase3/7 DEVD substrate in PCI15B 

shCTRL and shIFNAR cells treated for 24 hrs with increasing p(I):(C) doses. The response to 

p(I):(C) treatment was comparable between both cells lines for all doses tested (Figure 5-10D). 

Taken together, these results in suggest that the differential apoptotic response to p(I):(C) is not 

due to defects in type I IFN responses. Using type I IFN neutralizing antibodies we have shown 

that the this phenomenon occurs independent of IFN signaling [280]. Thus, we determined that 

the enhanced apoptotic effect of dsRNA treatment is due to defects in the signaling pathway 

regulating the activation of transcription factors that control the secretion of IFN rather than on 

the secondary IFN responsive signaling cascade.  Ultimately, a defect in the activation of NF-κB 

following TLR3 ligation in metastatic cells was identified as being important for enhanced 

apoptosis.  
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APPENDIX C 

ANTIVIRAL ACTIVITY OF HUMAN OASL IS MEDIATED BY 

MIMICKING UBIQUITIN CHAINS TO ACTIVATE RIG-I PATHWAY 

Work described in this section was completed by authors Jianzhong Zhu, Yugen Zhang, 

Rolando A. Cuevas, Adriana Forero, Jayeeta Dhar, Mikkel Søes Ibsen, Jonathan Leo Schmid-

Burgk, Madhavi K. Ganapathiraju, Takashi Fujita, Rune Hartmann, Zhijian J. Chen, Sailen 

Barik, Veit Hornung, Carolyn B. Coyne,
 

and Saumendra N. Sarkar 
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C.1 INTRODUCTION 

Recognition of viral RNA by the cytoplasmic receptors retinoic acid inducible gene I (RIG-I) or 

melanoma differentiation-associated gene 5 (MDA5) [281,282] engages the adaptor 

mitochondrial antiviral-signaling protein (MAVS) [283-286] and initiates a signaling cascade 

that leads to the transcriptional activation of antiviral genes and type I interferons (IFN) 

[287,288]. This pathway is also important in the detection viral DNA as it is transcribed into 

RNA by RNA polymerase III (RNA PolIII) [289,290]. RLR function is mediated by the 

controlled expression of protein expression, the detection of dsRNA, and post-translational 

modifications that induce conformational changes and activate signaling cascades. Furthermore,  

ubiquitin conjugation plays an important role in the activation of RLR signaling pathways [291]. 

The oligoadenylate synthtases (OAS) are a family of proteins characterized by their 

ability to synthesize the 2’-5’ oligoadenylates required for RNaseL activation and downstream 

RNA degradation [292]. Human oligoadenylate synthtase-like (OASL), is related to the OAS 

family given that it possesses an N-terminal OAS-like domain, which harbors critical mutations 

in the catalytic site rendering it null of 2’-5’ OAS activity. Two unique tandem ubiquitin-like 

domains (UBL) are found in the C-terminus of OASL although the importance of these domains 

in regulating OASL function has yet to be defined [293,294].  

We have previously established that that OASL expression results in higher IFN and ISG 

induction and protein expression following viral infection. Here we characterize the antiviral 
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function of OASL in enhancing RIG-I-mediated signaling, showing that ectopic OASL 

expression confers protection against RNA and DNA viruses, without affecting signaling 

through the adaptor protein, STING. Furthermore, we explored the ability of OASL to 

reconstitute RIG-I mediated signaling in the absence of ubiquitin. Finally, we have generated a 

series of eukaryotic expression vectors and baculovirus expressing OASL and RIG-I mutants to 

study the mechanism of OASL and RIG-I interactions. 

C.2 MATERIALS AND METHODS 

C.2.1 Cell lines and viruses 

The cell lines used in this study have been described on Table 11. HEK293 cells, 

HEK293-derived cell lines, U20S, HT1080, Vero, and BHK21 cells were cultured in Dulbecco’s 

Modified Eagle Medium (Lonza) containing 10% fetal bovine serum (Atlanta Biologicals) and 

100 I.U./ml penicillin and 100 mg/ml streptomycin (Lonza). SF9 cells were cultured in Grace’s 

insect medium (Invitrogen) supplemented with 10% FBS and 10 g/ml gentamicin (Invitrogen). 

Cells were cultured at 27
o
C. Sendai virus (SeV, Cantell strain) was purchased from Charles 

River Laboratories (Wilmington, MA); Encephalomyocarditis virus (EMCV) was purchased 

from ATCC (CR-1479) and the EGFP-tagged Vesicular stomatitis virus (VSV) and GFP-tagged 

HSV-1 (K26) [256] viruses have been previously described. p(I):(C) was purchased from GE and 

resuspended in nuclease free dH20. 
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Table 11. Appendix B - Cell Lines 

Cell Line Description Source 

HEK293/pLenti 
HEK293-derived cells stably transduced with 

pLenti-CMV-Puro vector. 
Sarkar Lab 

HEK293/OASL-V5 
HEK293-derived cells stably transduced with C-

terminal V5-tagged OASL. 
Sarkar Lab 

HT1080 
Fibrosarcoma epithelial cell derived from a male 

patient. 

Sarkar Lab 

ATCC® CLL-121 

 

HT1080/pLenti 
HT1080 derived cells stably transduced with 

pLenti-CMV-Puro vector. 
Sarkar Lab 

HT1080/OASL-V5 
HT1080- derived cells stably transduced with C-

terminal V5-tagged OASL. 
Sarkar Lab 

U2OS/shUb 
U2OS-derived cells stably expressing shRNA 

against Ubiquitin. 

Cheng Lab 

(UT Southwestern) 

[295,296] 

U2OS/ shUb/pLenti 
U2OS/shUb-derived cells stably transduced with 

pLenti-CMV-Hygro vector. 
Sarkar Lab 

U2OS/shUB/OASL-

V5 

U2OS/shUb-derived cells stably transduced with 

C-terminal V5-tagged OASL. 
Sarkar Lab 

Vero African green monkey kidney epithelial cells ATCC® CLL-81 

BHK-21 Baby hamster kidney fibroblast cells ATCC® CLL-10 

Sf9 Spodoptera frugiperda epithelial cells ATCC® CRL-1711 

 

C.2.2 Lentivirus packaging and generation of stable cell lines 

Lentiviral OASL expression was generated by LR recombination of pENTR/D-TOPO OASL-V5 

plasmid or empty pENTR vector with pLenti/CMV/Hygro (Addgene). Lentiviruses were 

packaged as previously described in Chapter 2 – Materials and Methods. U2OS/shUb cells were 
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infected with concentrated lentivirus preparations in the presence of 5 g/ml polybrene. Cells 

were placed under selection with 800 g/ml hygromycin 48 hrs post transfection. Pooled cells 

displaying hygromycin resistance were used for further studies. 

C.2.3 STING stimulations  

293 cells (3x10
5
) were plated in 24-well plates. Cells were then transfected with 5uM of 

oligonucleotides, AT2 with a phosphorothioate backbone (PTO) or AT5 with a phosphodiester 

backbone (PDE) (Kindly provided by Dr. Kate Fitzgerald at U Mass, and described in [297]) or 1 

g p(I):(C). Briefly, oligos or p(I):(C) were dissolved in OptiMEM (Invitrogen) in a final volume 

of 25l (Mix A). In a second tube, 10l of Lipofectamine 2000 were dissolved in 15l 

OptiMEM (Mix B). Both mixes were incubated for 5 mins at room temperature. Mixes A and B 

were then mixed together and incubated for 15 mins to promote Lipofectamine:DNA complex 

formation prior to the addition to cells. At 9 hours post transfection, total RNA was harvested 

and samples were subjected to qRT-PCR analysis to measure mRNA expression of IFN. 

C.2.4 Plasmids and Baculoviral vectors 

RIG-I and MDA5 deletion mutants, tagged with FLAG, were cloned by PCR amplification using 

the primers described on Table 12. PCR products were ligated into the pENTR-D/TOPO 

construct following manufacturer’s guidelines. Eukaryotic expression vectors were generated by 

LR recombination of pENTR/D-TOPO/RIG-I 1-186, pENTR/D-TOPO/RIG-I 1-240, pENTR/D-

TOPO/RIG-I 232-797, or pENTR/D-TOPO/RIG-I 1-797-925 into pcDNA/DEST47 using 

Gateway® LR clonase® II kit (Invitrogen) following manufacturer’s guidelines. OASL-V5 CDS 
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was cloned into pENTR-D/TOPO as previously described (cloning performed by YZ). In order 

to generate recombinant baculovirus vectors, pENTR/D-TOPO/RIG-I 1797-925 plasmid was LR 

recombined with pDEST20 (Invitrogen), Gateway® LR Clonase® II kit using following 

manufacturer’s guidelines. LR recombination into pDEST20 introduced an N-terminal 

Glutathione S-transferase (GST)-tag to be used for recombinant protein purification. OASL was 

subcloned, using a similar strategy, into pDEST10. This recombination introduced an N-terminal 

6xHis tag to the OASL vector to be used for affinity purification of recombinant OASL protein. 

Both pDEST20/RIG-I vectors and pDEST10/OASL vectors were used to transform DH10BAC 

cells to generate recombinant baculovirus DNA. Transformed bacteria was grown in Luria agar 

plates containing 150 μg/ml kanamycin,   7 μg/ml gentamicin, 10 μg/ml tetracycline,  100 

μg/ml Bluo-gal  , and 40 μg/ml IPTG.  Single white colonies were picked after growth for 24-

48 hrs at 37
o
C and phenotypes were verified by colony PCR. Positive colonies were expanded in 

medium with selection antibiotics and plasmids were prepared using the (Invitrogen) following 

manufacturer’s guidelines.
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Table 12. Appendix C - Cloning Primers 

Primer 

Name 
Sequence 

RIG-I_F1 5’ -CACCATGGACTACAAGGACGACGATGACAAGACCACCGAGCAGCGA-3’ 

RIG-I_R186 5’-TCACCACAGTTCACTGAA-3’ 

RIG-I_R240 5’-TCATGGGCTGTACAAGTT-3’ 

RIG-I_F232 5’-CACCATG GACTTACAAGGACGACGATGACAAG GTGTCTGATACAAAC-3’ 

RIG-I_F797 5’-CACCATG GACTTACAAGGACGACGATGACAAG CCAAAACCTGTACCT-3’ 

RIG-I_R797 5’- TCATGGTTTTTCTTGACTATC-3’ 

RIG-I_925  
5’ - TCATTTGGACATTTCTGCTGGATCAA -3’ 

 

RIG-I_F1 Long 

 

5’-CACCATGGATTATAAAGATGACGATGATAAAACCACCGAGCAGCGACGCAGCCTGCAAGC - 3’ 

 

RIG-I_R925 

Long 

 

5’ - TCATTTGGACATTTCTGCTGGATCAAATGGTATCTTCTCAAAATGAAAGTCC - 3’ 

 

 

C.2.5 Baculovirus production 

Baculovirus DNA (GST-RIG-I 797-925 Bacmid or His-OASL FL Bacmid) was transfected with 

Cellfectin® II (Invitrogen) into Sf9 cells in antibiotic free medium using manufacturer’s 

guidelines. Briefly, 8x105 cells/ml were plated in antibiotic and serum-free medium and left 

attach for 15 minutes. Meanwhile, we diluted 8 μl in 100 μl in unsupplemented Grace’s Medium 

and in a separate tube we diluted 1 μl baculovirus DNA in 100 μl Grace’s Medium. The DNA 

and transfection reagent mixture were combined and incubated15–30 minutes at room 

temperature, before adding to cells.  Transfected Sf9 cells were incubate cells at 27°C for 5 

hours. The transfection medium was removed and replaced with 2 ml of complete growth 

medium. Cells were then incubated for 72 hrs and supernatant containing recombinant 



 159 

baculovirus was harvested. Supernatants were clarified by centrifugation at 500 x g for 5 minutes 

to remove cells and large debris. The viral yield from the OASL expressing baculovirus was 

assessed by qPCR using OASL primers described in Chapter 2. 

C.2.6 Protein purification 

Sf9 cells in T-75 flasks were inoculated with baculovirus at an m.o.i of 1 (as determined by 

qPCR) and incubated for 48-72 hrs until cytopathic effect (CPE) was detectable. Cells were 

harvested by centrifugation at 500 x g for 5 minutes. Pellets were washed with PBS, aliquoted 

into 4 equal fractions, and frozen at -80
o
C. OASL protein was purified using the Ni-NTA 

agarose from (Qiagen). Recombinant RIG-I CTD (797-925) protein was purified by using the 

GST-spin purification kit (Pierce) following manufacturer’s guidelines. Full length RIG-I 

recombinant protein was a kind gift of Dr. James Chen (UT Southwestern). Purified proteins 

were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue R-250 stain (0.1% 

Coomassie Blue, 50% methanol, 10% glacial acetic acid) to check purity and concentration. Gels 

were destained by thorough washing in destaining solution (50% methanol, 10% glacial acetic 

acid) and air-dried using DryEase® Mini-Gel Drying System (Invitrogen) following 

manufacturer’s guidelines.  

C.2.7 RNA Isolation and qRT-PCR 

RNA isolations and qRT-PCR analysis was performed as described in Chapter 2 - materials and 

methods. Primers sets used for RPL32, OASL, ISG56 and ISG60 induction have also been 
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previously described in Chapter 2. Each sample was normalized to RPL32 and expressed as fold 

change with respect to vector expressing cells (value 1).  

C.2.8 Immunoblotting 

Whole cell lysates were prepared as previously described. Primary antibody incubation with anti-

V5 antibody (Invitrogen), anti- FLAG (Sigma-Aldrich), and anti-Tubulin (Santa Cruz) was done 

overnight in 10% nonfat dry milk. Membranes were then washed twice with TBS-T and 

incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit immunoglobulin G 

(IgG) diluted at 1:10000 in TBS-T plus 10% nonfat dry milk. Blots were revealed by enhanced 

chemiluminescence using Hy-Glo reagent (Denville) according to manufacturer’s protocol.  

C.2.9 Determination of viral growth  

HEK293/pcDNA or HEK293/OASL were infected with VSV-GFP (m.o.i = 0.01), HSV-1 (K26) 

(m.o.i = 5), or EMCV (m.o.i = 5). Infected cell supernatants were harvested at the indicated 

timepoints and kept at -80 
o
C until further use. Infectious virus production measured by plaque 

assay on Vero (HSV-1 and EMCV) or BHK-21 (VSV) cells.  48 hours post infection, plaques 

were counted and virus production was quantified as plaque forming units (PFU)/ml.  

C.2.10 Statistical Analysis 

Statistical Analysis was done using a two-tailed Student t test analysis using GraphPad Prism. 
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C.3 RESULTS AND DISCUSSION 

C.3.1 Antiviral activity of OASL 

Stimulation of the RIG-I signaling pathway results in the activation of IRF3 and induction of 

IFN-stimulated gene expression. One of the effector genes induced OASL, which others in the 

laboratory have shown to interact with RIG-I enhancing the induction of type I IFN and ISGs 

after viral infection (unpublished data). To examine whether the enhanced expression of these 

confers increase antiviral immunity, we examined the growth of two RNA viruses, VSV and 

EMCV, and a DNA virus, HSV-1. While both VSV and MDA are detected by cytosolic ds RAN 

sensors, VSV triggers the activation of the RIG-I signaling pathways, while EMCV is detected 

by MDA5.  Infection of 293 cells ectopically expressing OASL or empty vector control with 

VSV resulted in an almost 50% reduction of VSV growth 8 hrs post infection (Figure 5-11A). 

Interestingly, the growth of EMCV was comparable between the empty vector and OASL 

expressing cells (Figure 5-11B). We tested a third virus, HSV-1, a DNA virus that has been 

shown to induce RIG-I activation through the generation of RNA PolIII transcripts [290]. 

Ectopic expression of OASL led to a 50% decrease in viral growth 24 hrs post infection as 

determined by plaque assay (Figure 5-11C).  
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Figure 5-11. OASL Protects Cells From Viral Infections That Activate RIG-I 

 

The Plasmodium falciparum (Pf) genome contains AT-rich tracks that have been shown 

to induce type I IFNs through pathways not involving known DNA sensors TLR9, DAI, RNA 

polymerase-III or IFI16/p204. However, IFN secretion and ISG induction follows the activation 

of a signaling cascade mediated by the activator STING, TBK1, and IRF3-IRF7 activation [297]. 

Since the expression of OASL is also upregulated through STING activation, we examined 

whether ectopic OASL activation could enhance the response to AT-Rich DNA. We transfected 

HEK293 cells stably expressing OASL or vector control with oligonucleotides (ODNs) that were 

designed based on a portion of the Pf genome on chromosome 9 that contains three AT rich-

repeats, or p(I):(C). The oligonucleotides were designed in either a phosphorothiorate backbone 

(PTO; AT2) or a phosphodiester backbone (PDE; AT5). Following 9 hrs after transfection, we 

harvested total RNA and measured the induction of ISG56 and IFNtranscripts. As expected, 

the transfection of p(I):(C) led to an induced the expression of ISG56, which was higher in cells 

A) Reduction of VSV replication by OASL. HEK293-OASL stable cells and HEK293-vector stable cells 

were infected with VSV- GFP at 5 m.o.i. Eight hours post-infection supernatants were harvested and virus 

titers were determined by plaque assay on BHK21 cells. 

B) OASL expression inhibits HSV-1 replication. HEK293-OASL stable cells and HEK293-vector stable 

cells were infected with HSV-1 at 5 m.o.i. Cell-free supernatants were collected at 24 h post infection and 

subjected to virus titration by plaque assay on Vero cells. * P < 0.05 by two-tailed Student t test analysis 

using GraphPad Prism. 

C) OASL expression has no effect in EMCV replication. HEK293-OASL stable cells and HEK293-vector 

stable cells were infected with EMCV at 5 m.o.i. Supernatants were harvested at the indicated time points 

and virus titers were determined by plaque assay on Vero cells. * P < 0.05 by two-tailed Student t test. 
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expressing OASL. Transfection with either AT2 or AT5 failed to induce the expression of ISG56 

9 hrs after transfection (Figure 5-12A). Again, transfection of pI:C led to the activation of RIG-I 

and an almost 2-fold enhancement of IFN induction over vector control cells. The expression of 

IFN was readily detectable in cells transfected with AT2 expressed, although similar levels 

were detected whether OASL was ectopically expressed or not. The transfection of AT5 did not 

stimulate the induction of IFN in either cell tested (Figure 5-12B). Taken together, these results 

suggest that the enhanced IFN response mediated by OASL exerts antimicrobial activity 

specifically against pathogens that trigger RIG-I activation. 

 

Figure 5-12. OASL Fails to Enhance the Response to AT-Rich DNA. 

 

C.3.2 Structural interactions between OASL and RIG-I 

The activation of RIG-I requires a two-step mechanism in which binding of 5’-

triphosphate RNA (5’ ppp-RNA) precedes the binding of K63-linked poly-ubiquitin chains 

Effect of OASL expression on the response to AT-Rich DNA stimulation. HEK293-OASL stable cells and 

HEK293-vector stable cells were transfected with 5 M AT-rich oligonucleotides or 1 g p(I):(C). Nine 

hours post-transfection, total RNA was harvested and the induction of ISG56 (A) or IFNwas measured. 
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[298,299]. Ubiquitin, a 76-amino acid polypeptide, plays critical roles in the regulation of 

signaling pathways including trafficking, cell cycle regulation, DNA repair, protein stabilization, 

and the activation of innate immune responses and inflammation [300]. In the absence of the 

catalytic activity, characteristic of the OAS proteins, the antiviral mechanism of human OASL 

has remained elusive. Structurally, OASL contains two tandem ubiquitin-like domains (UBL) in 

the C-terminus, which distinguish the protein from other members of the OAS family [293,301]. 

The UBL domains are necessary for the antiviral effects mediated by OASL [302-304]. Studies 

in our laboratory have shown an interaction between OASL and RIG-I (unpublished data from 

JZ and YZ). To examine whether expression of OASL enhanced RIG-I activation, we employed 

U2OS cells stably expressing a tetracycline-inducible shRNA against ubiquitin [296]. Treatment 

of U2OS/shUB cells for 72 with tetracycline (TET) (1 g/ml resulted in the loss of UBC 

expression (Figure 5-13A). We then stably transduced U2OS-shUB with a lentivirus expressing 

OASL-V5 or empty vector and cells were placed under antibiotic selection with Hygromycin B. 

The expression of OASL was examined in our stable cell lines (U2OS/shUb/OASL and 

U2OS/shUB/pLenti) using antibodies against the V5 epitope (Figure 5-13B). U2OS/shUb/OASL 

and U2OS/shUB/pLenti cells were treated with TET for 72 hrs followed by infection with 2 and 

5 HAU/ml SeV for 12 hrs. As expected, infected cells ectopically expressing OASL expressed 2-

3 times higher levels of ISG60 mRNA than vector expressing cells at the doses tested. Cells 

stimulated with TET prior to infection showed drastically reduced ISG60 expression with similar 

levels of induction regardless of OASL expression (Figure 5-13C). Ubiquitin has been shown to 

be an important peptide in the regulation of innate immune signaling responses [300], it is 

expected that ablation of protein expression results in diminished responses to viral infection. 
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Thus, indicating that the UBL-domain interactions of OASL and RIG-I should be further studied 

in an in vitro cell-free based system. 

 

Figure 5-13. Ubiquitin is Required for ISG induction. 

 

First, we have generated eukaryotic expression vectors coding for FL-RIG-I as well as truncation 

mutants of RIG-I (Figure 5-14A). RIG-I truncation mutants (1-186), (1-240), (232-797), and 

(797-925) were generated by PCR amplification with the primers described in Table 12. PCR 

fragments were cloned into pENTR/D-TOPO, sequence verified, and further recombined with 

pcDNA47/DEST using the Gateway® LR clonase® II enzyme kit to generate eukaryotic 

expression vectors. We assessed the expression of our recombinant proteins by transfecting the 

pcDNA47-based vectors in 293T cells. After 48 hrs, we examined protein expression by 

A) Downregulation of ubiquitin in USOS/shUb cells. U2OS/shUb cells (1x10
6
)

 
 were stimulated with 1 

g/ml tetracycline. After 72 hrs stimulation, with medium changes every 24 hrs, total RNA was harvested 

and UBC mRNA was measured. Samples were normalized to RPL32 control and expression was reported 

relative to non-stimulated cells (Value 1). 

B) Ectopic expression of OASL in U2OS/shUb. U2OS/shUB cells were infected with pLenti or 

pLenti/Hygro/OASL and selected with hygromycin. Lysates were prepared from stable pools and probed 

with antibodies against V5 and Actin.  

C) SeV induction of ISG60 mRNA in the absence of ubiquitin. U2OS/shUB/OASL-V5 stable cells and 

vector stable cells were treated with 1 g/ml tetracycline for 72 hrs. Cells were then infected with 2 or 5 

HAU/ml SeV for 12 hrs. Total RNA was harvested and ISG60 mRNA expression was measured by qRT-

PCR. Samples were normalized to RPL32 control and expression was reported relative to non-stimulated, 

mock-infected cells (Value 1).  
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immunoblot using antibodies against the FLAG epitope. FL-RIG-I protein was detected around 

100 kDa, as expected from the predicted molecular weight (102 kDa). The expression of the N-

terminal CARD domain mutants 1-186 and 1-240 was also readily detected at the corresponding 

sizes (~21 kDa and 27 kDa respectively). The proteins corresponding to the N-terminal 

constructs 232-797 and 797-925 was detected at ~75 kDa and 15 kDa, respectively (Figure 5-

14B, right). Thus, we have generated a recombinant protein expression system to ectopically 

express the RIG-I truncated proteins in eukaryotic allowing us to perform immunoprecipitation 

(IP) assays to identify the minimal domains required for the interactions between OASL and 

RIG-I. Furthermore, our pcDNA47 vector contains a T7 RNA polymerase promoter making 

these suitable plasmids for the in vitro cell-free based synthesis of recombinant proteins. Finally, 

we generated recombinant baculoviruses expressing (His)6-OASL (FL) and GST-RIG-I 797-925. 

We purified recombinant proteins from 48-72 hr infected Sf9 cells by affinity purification. 

Purified proteins were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue.  

Purified (His)6-OASL (predicted 65 kDa) was detected at a molecular weight of around 55 kDa 

and GST-tagged RIG-I 797-925 ran between 15-20 kDa as expected. GST-RIG-I (FL) was 

kindly provided by ZJ Chen and was detected at about 100 kDa as expected (Figure 5-14B, left). 

Future experiments employing our recombinant proteins will be used to study cell free in vitro 

protein-protein interactions, as well as doing in vitro reconstitution of the RIG-I signaling 

pathways. Taken together, we have generated reagents to study RIG-I-OASL interactions in in 

vitro systems or using cell-based functional assays.  
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Figure 5-14. Cloning of RIG-I Truncation Mutants. 

 

A) Schematic representation of the RIG-I truncation mutants, their corresponding amino acids, and 

predicted molecular weights. N-terminal CARD domains (red), linker regions (white), helicase domain 

(green), and C-terminal domain (CTD) (lilac) are depicted. 

B) Expression of RIG-I truncation mutants. (Left) 293T cells were transfected with FL-RIG-I, N-terminal 

FLAG-tagged RIG-I constructs (1-186) and (1-240), RIG-I helicase domain (232-797), and the CTD 

truncation construct (797-925). Lysates were prepared and probed with antibodies against FLAG epitope 

(Sigma-Aldrich). Recombinant protein isolated from Sf9 cells were purified using Ni-NTA agarose (OASL) 

or GST-conjugated resin (GST-RIG-I 797-925). Proteins were resolved by SDS-PAGE and gels were 

stained with Coomassie Blue. 
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