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The skin is an important barrier essential for immune response.  When the skin is 

wounded, the initial step of fibroblast migration into the tissue is required for subsequent 

restored and normal integrity of the skin.  Fibroblasts involved in this process of wound healing 

require proper signaling critical for cell motility and contractions of the extracellular matrix 

(ECM).  Furthermore, regeneration of dermal tissue represents one of the most intense anabolic 

processes, requiring a robust vascular system to deliver nutrients and remove dead debris.  

Endothelial cells are also influenced by the regulation of a provisional ECM by fibroblasts.  As a 

reservoir of growth factors/cytokines for motility/regression, it functionally serves as a dynamic 

scaffold for vessels to graft into the wound to mediate angiogenesis.  Both systems of 

angiogenesis and fibroblasts remodeling require growth factor induced regulation of motility.  

During growth factor induced motility, PLCy1 is activated via EGFR/VEGFR/other RTK 

signaling and produces diacylglycerol for coactivation of PKCδ to regulate MLC-2 contractility 

in fibroblast and endothelial cells.  However, the functional regulation of PKCδ mediated 

contractile signaling has not been investigated fully, as it specifically relates to upstream 

signaling.  Therefore, it is hypothesized PLCy1 dependent regulation of PKCδ mediates force 

signaling in these cell types. To test this hypothesis we first investigated the consequence of 

PKCδ translocation to the membrane for activation and whether localization is implicated in 

force regulation.  To determine whether PKCδ activation during force signaling is mediated at 
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the membrane, PKCδ was targeted to the membrane by engineering a K-ras farnesylation motif 

of the c-terminus of PKCδ.  Membrane tethering of PKCδ led to increased directional force 

exertion onto the ECM/substrate, as upstream regulation is mediated by PLCy1.  In addition, we 

also investigated, whether PKCδ regulation was involved in endothelial capillary retraction 

mediated by initial dissociation signals during wound healing.  Endothelial cells were allowed to 

form cords on Matrigel, and cords were dissociated with CXCR3 ligand, CXCXL-4 (PF4).  

During this cord dissociation, we found that motile contractility mediated by VEGFR signaling is 

partially dependent on PKCδ.  This study further supports PKCδ as a key regulator of 

contractility in cell migration.           
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PREFACE 
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1.0  INTRODUCTION 

Cell migration is essential for organism development, wound healing, immune response, 

and cancer invasion (Germain et al., 2012; Lauffenburger and Horwitz, 1996; Roca-Cusachs et 

al., 2013; Stossel, 1993; Wells et al., 1998).  As cell migration is a basic necessity to maintain 

life, cells rely on directional cues to govern successive actions for normal processes in the body, 

which could be either further migration, contraction, secretion of growth factors/chemokines, etc.  

The mechanism of cell migration, as governed by extracellular signals has been intensely 

investigated (Roca-Cusachs et al., 2013; Wells et al., 1998).  However, exact predictive and 

therapeutically targetable mechanisms have remained elusive in many disease models due to 

dynamic, heterogeneous, and noisy cellular environments in the body.  As migration is key to 

how cells function in many of these disease models such as cancer and developmental disorders, 

it is also essential in maintaining proper wound healing (Wu et al.; Yates et al., 2007).   

Deficiencies in wound healing contribute to 6 to 20 billion (USD) in health care cost.  These 

diseases in wound healing, although not as life threatening as other human diseases, affects a 

significant number of the population estimated to (1%) and (15%)  of the elderly (Markova and 

Mostow, 2012).  In efforts to decrease morbidity of defective wound healing, much investigation 

has occurred in elucidating the precise mechanisms of how cells migrate to regenerate the 

wound. It is known that cell migration is directed by cellular sensing of local concentration 

gradients of chemical factors (Roca-Cusachs et al., 2013; Wells et al., 1998).  In wound healing, 
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for cells to migrate into the wound, growth factors such as EGF, PDGF, HB-EGF, VEGF, 

PDGF, and others are utilized for multiple cell types for regeneration and repair (Roca-Cusachs 

et al., 2013; Wells et al., 1998).  To further understand cell migration mediated by growth factor 

mediated motility, we explored the role of a downstream target of EGFR/VEGFR signaling, 

PKCδ, and how it mediates contractility after growth factor stimulation.  But more importantly, 

this study further explores the mechanism and impact of cell migration, as it is an underlying 

function of individual cells to promote both disease and life.    

 

1.1 BIOPHYSICAL PROCESS OF CELL MIGRATION  

From characterizing fibroblasts locomotion, cell migration can be separated into four 

distinct processes that often function in synchrony. These events during cell migration are: 

lamellipod extension, leading edge adhesion to the substratum, contraction of the cell body 

towards the leading edge, and rear end release.  To begin cell movement, the lamellipod 

extension is often the first step to establish cell asymmetry as the cell situates itself for active 

motility. As initiation occurs, multiple lamellipodia and/or filopodia can emanate from the cell 

body in which subsequently one lamellipod becomes dominant as the other lamellipodia and 

filopodia are retracted.  Furthermore, additional extensions are suppressed as this dominant 

lamellipod emerges (Bailly et al., 1998).  Persistence of this lamellipodium occurs as long as the 

original direction is maintained (Wells et al., 1998). Molecularly, these cell protrusions 

consisting of lamellipodia/filopodia are primarily mediated by the assembly of actin filaments.   

Neighboring the plasma membrane, the increased polymerization of actin monomers to actin 
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crosslinks is thought to mediate blebbling which overcomes membrane tension leading to a 

visible protrusion (Pollard and Borisy, 2003). After a dominant lamellipodium extends, it 

adheres to the substratum through ECM binding via integrin and non-integrin receptors (Faassen 

et al., 1992; Huttenlocher et al., 1995).  Focal adhesions are formed at or near the leading edge 

and remain until the cell rear detaches, as the process is repeated (Lauffenburger and Horwitz, 

1996).  Being linked consequentially to these actions, the cell body is pushed forward through 

cytoskeletal regulation of contraction in which tension signaling is initially generated at the 

leading edge.  The forces necessary for this cell body contraction towards the extended 

lamellipodia is primarily generated by myosin, actin, and crosslinking proteins (Goeckeler and 

Wysolmerski, 1995; Lauffenburger and Horwitz, 1996).  The last step requires rear end release 

where both force mediated by this retraction and calpain mediated cleavage of focal adhesions 

(Leloup et al.; Shao et al., 2006) releases the rear end towards the cell body for eventual net 

movement that is based on leading edge direction.  As a result of chemotactic signaling, 

cytoskeletal reorganization shifts sessile cells to an asymmetric, motile morphology.  

Furthermore, these processes may be synchronous or asynchronous of each other depending on 

molecular signaling, environment, etc., but in either case each process influences all other 

processes (Wells et al., 1998). 
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Figure 1. The process of cell migration 

This is a schematic of cell migration on a 2D substrate.  The first step requires 

extension of lamellipodium directed schematically to the right, in which net 

movement is projected to occur.  This occurs through adhesions to the substrate, 

increased actin dynamics at the leading edge with increased crosslinking, and 

increased turnover of adhesions at the leading edge to obtain a dominant leading 

edge. The lamellipodium adheres to the substrate, as (EGFR activation of PLCy1 

is primarily at the leading edge).  Growth factor chemotactic signaling also 

stabilizes the lamellipodium extension.  Cell body contraction towards the 

extended lamellipodium is needed for most of the cell to productively move.  

Cytoskeleton reorganization is required to mediate this process, but PLCy1 also 

mediates this contraction by activating PKCδ that can activate contractility.  

Finally there is rear release of adhesions through both increased contractility and 

increased calpain cleavage.        
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1.1.1 DUROTAXIS (MECHANICAL STIMULIM MODULATING CELL MOTILITY 

The body is mostly made of compliant tissue that deforms from a certain amount of 

exerted force.   In addition, human body tissue is also heterogeneous and dynamic, in which the 

cells are receptive of compliance or stiffness in the cell.   As cells respond to the ECM 

environment in this manner, the cells migrate via durotaxis.   Durotactic migration occurs in 

fibroblasts where cells migrate preferentially from softer to stiffer regions of substrate (Baker 

and Chen, 2012).  As conventional 2D motility occurs on a hard and consistent substrate, studies 

utilizing soft 2D gels have shown that durotaxis affects cell adhesions, cell differentiation, and 

cell survival and functionality (Engler et al., 2006; Paszek et al., 2005).     

Furthermore, cells can mediate signal transduction during durotaxis as ECM bound 

proteins or proteins linked to scaffolds connected to the ECM undergo conformational 

modifications as a result of changes to the ECM (Roca-Cusachs et al., 2012; Roca-Cusachs et al., 

2013).   More specifically, focal adhesion complexes are modulated by force, as a previous study 

found that modulation of the focal adhesions through extracellular force causes talin to expose a 

vinculin binding site (del Rio et al., 2009).  This results in vinculin binding as through 

mechanotransduction signaling of talin.  Durotaxis is even more complicated, due to the cell’s 

response to force.   Not only does the cell detect externally applied force, the cell must respond 

appropriately to this force by actively exerting force on the substrate as a result of the 

deformation that it caused to the substrate. This process as a positive feedback loop, requires cell 

migration to mediate the function of durotaxis both actively and passively simultaneously.  
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1.1.2 Theoretical mechanisms of durotaxis 

There are two major hypotheses in how  cells responsively mediate durotactic migration 

(Roca-Cusachs et al., 2013).  One theory is based on the cytoskeletal structure of the cell, in 

which the cell has a centripetal flow of actin polymerization toward the cell center.  During 

durotactic movement, forces and deformations that are experienced by the cell through ECM 

linked proteins modulate the dynamic flow of  actin cytoskeleton (Chan and Odde, 2008).  An 

alternative hypothesis indicates that the cell during migration is trying to maintain constant 

substrate deformation.  As substrate stiffness increases, the cell exerts more force to maintain 

constant deformation onto the substratum (Plotnikov et al., 2012; Wang, 2009). Furthermore, the 

cell senses and interprets the amount of force required to exert a certain level of substrate 

deformation.   The transmission of force to the substratum could be isolated to individual focal 

adhesions connected to contractility (Ghassemi et al., 2012; Plotnikov et al., 2012) or the whole 

cell.  For increased net migration of the cell in both cases, focal adhesions linked to the 

substratum must be broken by force (Chan and Odde, 2008) and calpain protease activity 

(Leloup et al.; Shao et al., 2006).  Furthermore, cell migration that occurs on stiffer substrates 

requires increased force to break cell to ECM bonds.  This partly explains evidence of 

pronounced stress fibers occurring in cells on stiff substrates such as plastic or glass, as increased 

force is required to break cell to ECM bonds. Although there is much work to validate these 

theoretical propositions on the mechanism of how durotaxis is occurring, it is essential to take 

these theories into consideration during cell migration.  
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1.2 3D CELL MIGRATION 

As new technologies are better able to mimic the in vivo microenvironment, increasing 

consideration of the differences between 2D migration and 3D migration have been observed in 

the field.   Moreover, these differences should be considered to comprehensively extrapolate how 

cell motility/cell migration occurs irrespective of dimension. One of these differences is that 3D 

environments have lower substrate stiffness that may impact the regulation of durotaxis (Baker 

and Chen, 2012).   In vivo ECM has fibrous, structurally heterogeneous, and anisotropic 

characteristics (Pathak and Kumar, 2011).  Size, shape, and organization of the ECM as well as 

how the cell is constrained by the ECM impacts the manner of force impacting the cell in 3D.  

Furthermore, neighboring cells localized within fibrocartilage were found to  experience stretch 

differently based on their proximity and extent of adhesions to the collagen fibrils in ECM 

(Upton et al., 2008).  Additional parameters during 3D migration are cell morphology and 

orientation to the direction of applied forces (Kurpinski et al., 2006). These parameters have also 

been shown experimentally to differentially influence gene expression (Heo et al., 2011).  

Furthermore, durotaxis as discussed previously is modulated differently in 3D environments 

compared to 2D.  Cells in the 2D environment are allowed to deform free of mechanical or 

physical constraint dorsally in the cell, in which the ventral portion is constrained and attached to 

the substrate (Baker and Chen, 2012).  In addition to constraint in all dimensions, 3D 

environments force cells to narrow as they elongate under stretch as this action generates stress 

in all planes of the cell (Baker and Chen, 2012). Moreover in 2D environments, cell migration 

occurs in the orientation of force in respect to focal adhesions that is tangential (in the same path) 

to the cell surface (Baker and Chen, 2012). Therefore force is transmitted towards the basal 

surface of the cell along the stress fibers (Dembo and Wang, 1999; Tan et al., 2003).  In contrast 
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to 2D migration, cells involved in 3D migration are embedded in a matrix and apply force within 

that matrix mostly perpendicular to the membrane.  This force persists through the midline of the 

cell as it is propelled forward through the  matrix (Baker and Chen, 2012).  

Differences in the dimension of cell migration have been an important aspect in 

investigating motility.   This study utilized both 2D assays and 3D assays, where the 

experimental variables involved in the regulation of chemokinectic signaling was not changed in 

the 3d environment according to our experimental input and output variables. 

 

1.3 WOUND HEALING AND FIBROBLASTS MOTILITY/CONTRACTION 

During wound healing fibroblasts and keratinocytes migrate into the wound bed after the 

fibrin clot is formed, as platelets degranualate releasing growth factors and cytokines as an initial 

phase for wound healing (Leibovich and Wiseman, 1988).  These released growth factors elicit 

chemokine homing of fibroblasts to the wound and further matrikine signals to induce 

remodeling, contraction, and synthesis of a collagen rich wound bed (Singer and Clark, 1999).   

As the fibroblasts are contracting and synthesizing the provisional matrix, fast and responsive 

signaling cues are needed to induce the appropriate remodeling (Yates et al., 2011).  As the 

provisional matrix matures into acellular, ECM rich dermis, retention of most of the original 

tensile strength is essential (Yates et al., 2011).  Furthermore, the dermis receives and absorbs 

most of the mechanical load received in the skin, in a wound the ECM strength is immature 

because it is actively being remodeled by fibroblasts (Langrana et al., 1983; Lauritzen et al., 

1981; Timmenga et al., 1991). The forces that are applied via fibroblasts for remodeling must be 
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concerted and connected as they coordinate for regeneration of the dermis.   However, if there is 

too much contraction then fibroblast and myofibroblast contractility exacerbate the wound to a 

scar, with overabundant, disorganized ECM (Yates et al., 2011).  This is also mediated by 

fibroplasia through hyper-proliferation with reduced cell death in fibroblasts exacerbate this 

phenotype (Yates et al., 2011). 

 

 

 

Figure 2. Schematic drawing of the skin wound healing model 

Cellular dedifferentiation occurs after the fibrin clot has formed and where 

platelet degranulation releases both growth factors and cytokines.  Afterwards, 

this partly initiates keratinocyte migration and fibroblast immigration into the 

wound for repopulation and for synthesis of a provisional and immature ECM for 
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restoration of tissue. However stop signals mediated by IP-10 and IP-9, CXCR3 

ligands, are needed to halt proliferation of fibroblasts and keratinocytes.  They are 

also needed to elicit contraction of the provisional matrix through myofibroblasts.  

1.4 DYNAMICS OF ANGIOGENESIS DURING WOUND HEALING  

In conjunction with fibroblast regulation of the ECM, increased vasculature through the 

formation of new blood vessels is required for wound healing.  The developing capillary sprouts 

digest the basement membrane and then penetrate through it in order to invade into the stroma.   

As new capillaries have not yet formed, endothelial cells organize into tube-like structures that 

extend, branch, and network until vessels stabilize and quiesce for diapedesis. Proliferation also 

feeds this growing network as chemotaxis leads from the front (Clark et al., 1996; Madri et al., 

1996).  In the context of wound healing, after 4 days, capillary sprouts mediate this same process 

as previously described (McClain et al., 1996).  Furthermore, the initiation of this process of 

invasion into the platelet plug precedes fibroblast invasion (Tonnesen et al., 2000). This timing 

also supports that capillary tips of angiogenic blood vessels are surrounded by plasma-derived 

fibrin and fibronectin, as the migrating wound fibroblast-derived ECM composed of fibronectin 

and hyaluronan appears slightly later (Tonnesen et al., 2000). The specific dynamics of 

angiogenesis where endothelial cells migrate from preexisting vessels to form new vessels is 

tightly regulated, in which VEGFR signaling is a central component to this regulation.  Notch 

signaling allows for the differentiation between tip and stalk endothelial cells. The tip cells lead a 

group of endothelial cells to migrate away from  preexisting vessels through downregulation of 

stalk cell VEGFR levels, as these cells are not leading the sprout (Hellstrom et al., 2007; Lanner 
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et al., 2007).  This also is modulated by chemotaxis in which the individual motility of the tip 

cells is important for the initial sprout as they migrate towards increased VEGF/GF 

concentrations.  In addition, growth factor induced motile signals disrupt quiescence, which also 

contribute to dissociation and the propulsion of the new sprout.   Growth factor induced PKCδ 

regulation of contractility may also be involved in the process of endothelial retraction.  

Furthermore, inadequate angiogenesis has been shown to be a predominant pathology of chronic 

and poorly healing wounds influenced by the complications of  venous stasis disease, diabetes, 

and aging (Bodnar et al., 2006; Yates et al., 2007) .   

 

                    

Figure 3. Angiogenesis during Wound healing. 
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In the initial 24 hours, platelets have migrated into the wound to form a fibrin 

clot.  In addition macrophages are also localized in this early wound phase 

digesting cellular debris, as they also combined with platelet release of 

chemokines and growth factors.  After 4 days, neoangiogenesis is driven by 

increased proliferation and migration of endothelial cells into the wound.  There 

they help vascularize the tissue for additional remodeling. After a few weeks, 

vascularization regresses from the dermis to leave an acellular matrix rich tissue 

that restores the skin close to its original integrity.   CXCR3 chemokines, such as 

IP-10 are needed to cause regression of angiogenesis and stop proliferation and 

migration of endothelial cells 

1.5 REGULATING CELL MIGRATION VIA RECEPTOR TYROSINE KINASES 

 

Receptor Tyrosine Kinases (RTK) such as Epidermal Growth Factor Receptor (EGFR) 

and Vascular Endothelial Growth Factor Receptor (VEGFR2) are master regulators of signaling 

cascades involved in motility, proliferation, and survival of cells, especially during wound 

healing.  They activate numerous molecules leading to mitogenic and motile signaling cascades 

in the cell.  EGFR agonists such as HB-EGF, EGF, TGFα, and etc., are released in the tissue to 

promote juxtacrine, matrikine, and chemokine signaling for motility (Wells et al., 1998).  

Liberated and bound ligands bind to EGFR at the cell surface, where EGFRs dimerize and cross-

phosphorylate cytoplasmic tails for further transactivation (Ferguson, 2004).  The kinase activity 

of EGFR and other RTKs leads to phosphorylation on primarily tyrosine residues on numerous 
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substrates.  Among these substrates phosphorylated by EGFR and VEGFR, phospo-lipase c γ-1 

(PLCγ1) is a known substrate that is directly phosphorylated by RTKs (Bates et al., 2002; 

Margolis et al., 1990; Wells et al., 1999).  This activation increases the activity of PLCγ1 to 

hydrolyze phosphoinositide bisphosphate (4, 5) (PIP2) into diaclyglycerol and IP3. IP3 regulates 

calcium channels which converges with other PKC regulation, but diaclyglycerol is known to 

mediate coactivation  of novel PKC family members and augment further activation of kinase 

activity of these proteins through non-mitogenic signaling (Iwabu et al., 2004; Wells et al., 

1999).   Subsequent PKCδ kinase signaling converges with other growth factor induced signals 

to increase motility while other pathways through RTK signaling mediate survival and 

proliferation.  In addition, PKCδ that is downstream from EGFR signaling has been shown to be 

an important regulator of cell speed through systems biology (Kharait et al., 2007).    

1.6 PKC-FAMILY (SERINE/THREONINE) KINASES 

PKCδ is part of the serine/threonine PKC family that makes up approximately 2% of the 

human kinome (Rosse et al., 2010). These kinases are conserved throughout eukaryotes from 

yeast, to fruit fly to mammals (Mellor and Parker, 1998). The kinase domain in all PKC isoforms 

is highly conserved and is located next to a hinge region which links it to a n-terminal regulatory 

domain.  In many PKC family members, this n-terminal regulatory region is held  inactive by a 

pseudosubstrate auto-inhibitory motif,  which in the inactive state binds to the binding pocket for 

PKC substrates. Once activated, PKC is also modulated by the binding of second messengers 

and/or allosteric effectors at its regulatory domain, in which this regulation typically occurs close 

to the plasma membrane. All of these events disrupt conformational auto-regulation by 
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displacing the bound pseudosubstrate region from the active site of the kinase domain allowing 

activation of PKC (Oancea and Meyer, 1998). 

This family of kinases have overlapping function and the PKC family can be divided into 

four distinct subgroups, mostly distinguished by their divergent regulatory domains. The most 

notable class is the typical or conventional PKCs (cPKCs), comprising of PKCα, PKCβ and 

PKCγ. They are activated allosterically by diacylglycerol and phospholipid binding at their 

conserved region 1 (C1) domains and are activated by Ca2+ -dependent phospholipid binding at 

their C2 domains. The novel PKCs (nPKCs) consisting of PKCδ, PKCε, PKCθ, and PKCη, are 

also allosterically activated by diacylglycerol, but their phospholipid binding is Ca2+ independent 

(Rosse et al., 2010). 

 

Figure 4.  PKC family 

This figure depicts a schematic of the protein structure of the PKC kinase family. 

The first group is the typical or conventional PKC family members which are 

calcium sensitive.  The novel PKC family members have modifications in their 

regulatory regions rendering them  calcium insensitive. b) Indicates the structure 

of the kinase when it is auto-inhibited by its pseudosubstrate region, upon 
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activation and membrane localization the pseudosubstrate inhibition is prevented, 

and its catalytic kinase domain is liberated to phosphorylate substrates for signal 

transduction.  

1.6.1  Specific PKCδ structure and activation 

PKCδ among other PKC isoforms contain an N-terminal regulatory domain, two 

membrane targeting region (C1, C2), and a conserved c-terminal catalytic domain that has 

catalytic kinase activity and ATP substrate binding (Stahelin et al., 2004).  These motifs are 

contained within all the PKC family of proteins.  However, the C1 domain of PKCδ, (and novel 

PKC family members) does not bind to calcium but only to diacylglycerol and phosphotidyl 

serine.  PKCδ has two C1 domains comprised of two beta sheets and a short c-terminal alpha-

helix (Kikkawa et al., 2002).  Diacylglycerol (PMA) can bind to this region increasing 

hydrophobicity causing the n-terminus to be more hydrophobic promoting increased membrane 

targeting.  These actions eventually result in conformational change releasing pseudosubstrate 

auto-inhibition (Stahelin et al., 2005; Stahelin et al., 2004). Eventually PKCδ in the open 

confirmation is targeted to the membrane where activation is stabilized by PDK1 

phosphorylation (Newton, 2003), as PDK1 is  stabilized by PIP3 anchoring at the membrane.  

Interestingly, EGFR activates PI3 kinase which phosphorylates PIP2 into PIP3 and possibly 

synergizing the anchoring of PDK1 (Choi and Jeong, 2005; Paradis et al., 1999; Toker, 2003).    

In addition to these factors, further auto-phosphorylation activates PKCδ further on the turn 

motif S643 residue (Ron and Kazanietz, 1999; Seki et al., 2005).  However different mechanisms 

of phosphorylation to further activate PKCδ are based on cell type/stimulus.  Due to a nuclear 

localization sequence, PKCδ has been found to actively translocate to the nucleus upon certain 
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stimuli.  Non-receptor tyrosine kinase, Src, has also been found to directly phosphorylate PKCδ.    

Furthermore,  Src kinase mediates phosphorylation on specific tyrosine residues on PKCδ in 

transformed mouse keratinocytes, as this contributes to alterations of tight junctions resulting in a 

differentiated phenotype (Joseloff et al., 2002).  Additional data also associate Src signaling to 

force, as seen in cyclic uni-axial stretching of endothelial cells (Katanosaka et al., 2008; Wang et 

al., 2001b).  Stretch induced activation of Src tyrosine kinase leads to increased phosphorylation 

of focal adhesion proteins including FAK, p130Cas, and paxillin (Joseloff et al., 2002; 

Katanosaka et al., 2008; Wang et al., 2001a). 

1.6.2 PKCδ molecular function  

PKCδ is expressed in numerous cell types and has been found to mediate numerous 

functions: cell motility, contraction, apoptosis, differentiation, anti-proliferation ((Bertram and 

Ley, 2011; Breitkreutz et al., 2007; Puceat and Vassort, 1996; Saito, 1995; Soltoff et al., 1998; 

Weinstein, 1991).  In mouse studies with PKCδ deletion, PKCδ-KO mice had a normal life-span 

and normal fertility.  However, mice displayed increased B-lymphocytes due to decreased cell 

death, which led to an autoimmune phenotype (Miyamoto et al., 2002).  In other organ systems 

such as the bone, PKCδ-KO mice embryos showed decreased ossification and increased 

chondrocyte maturation (Tu et al., 2007).   In addition, further studies have also indicated that 

PKCδ is involved in vessel formation and angiofactor formation in diabetic limbs, kidneys, and 

retinas (Geraldes et al., 2009; Lizotte et al., 2013; Mima et al., 2012).  These studies suggest 

PKCδ involvement in cell proliferation and cytoskeleton function.  As a kinase, PKCδ has been 

found to interact with numerous substrates in many disease models.  Moreover, its translocation 

to many cellular compartments such as the cytosol, nucleus, mitochondria, membrane, vesicles, 
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and numerous cellular sites for protein scaffolds have been documented in the literature.  For cell 

motility, numerous interactions were found in different systems that impacted migration. EGFR 

signaling can be attenuated by PKC agonist, increasing phosphorylation at its c-terminus and 

directly inhibiting EGF binding to EGFR (Wells et al., 1998).  Furthermore, PKCδ can localize 

and suppress junctions by direct phosphorylation of overexpressed E-cadherin (Chen and Chen, 

2009) or direct interaction  with  p190RhoGaP  and FAK  to increase multicellular permeability 

(Fordjour and Harrington, 2009; Grinnell and Harrington; Harrington et al., 2005).  Although 

direct cytoskeletal regulation through PKCδ was found, these studies did not fully investigate 

implications to the mechanism of cytoskeletal regulation.   A previous study investigated how 

EGFR dependent regulation mediates phosphorylation of an intermediate kinase, MLCK (Iwabu 

et al., 2004).  This activation of MLCK is mediated through activation of PKCδ through 

conventional membrane targeting is augmented by EGFR signaling/DAG regulation (Iwabu et 

al., 2004).   However, direct interaction has not been found that suggests the role of an 

intermediate kinase which is beyond the scope of this study.   At increased kinase activity, 

MLCK can directly phosphorylate myosin light chain which then allows for active MLC-2 to 

regulate the affinity of myosin heavy chain to actin by treadmilling actin/myosin interactions 

important for contraction (Pasapera et al., 2010; Totsukawa et al., 2000). 

1.7 EGFR REGULATION OF ASYMMETRIC SIGNALING FOR MOTILITY 

EGFR phosphorylation of PLCy1 is localized at the leading edge membrane (Wells et al., 

1999), as phosphoinositides such as PIP2 are prevalent throughout the membrane and organelle 

compartments.   Furthermore, phosphatidylinositol (3,4,5)-triphosphate (PIP3) is distributed at 
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the leading edge and has been implicated for its activity in directionality and persistence in cell 

motility (Chen et al., 1996; Turner et al., 1996; Wells et al., 1998).  Interestingly 

phosphatidylinositol (4,5)-bisphosphate (PIP2), that could also be generated from PIP3, has been 

found to be an important cofactor in many proteins involved  in motility, notably for proteins that 

have PH domains causing targeting to the membrane.  As shown in (Fig. 4), PLCy1 catalyzes 

PIP2 primarily at the leading edge during motility and generates diacylglycerol and IP3 (Insall 

and Weiner, 2001; Wells et al., 1999).  This catalysis of PIP2 may be one of the many factors 

driving cell asymmetry, where amounts of PIP2 are at low stabilized levels at the leading edge 

(Shao et al., 2006). 

1.8 PKCδ REGULATION OF ASYMMETRIC SIGNALING FOR MOTILITY 

THROUGH MLC ACTIVATION 

During asymmetric signaling PKCδ is localized behind the leading edge but in front of 

the nucleus (Fan et al., 2006).  PKCδ is also localized to membrane fractions that are at the 

leading and internalized endosomes that are being recycled during EGFR signaling (Llado et al., 

2004; Wadsworth and Goldfine, 2002).  PKCδ localization behind the leading edge is thought to 

facilitate PKCδ translocation to the membrane upon RTK stimulation as it remains activated in 

the cytoplasm to induce MLCK to MLC phosphorylation for contractility.   This is presumed to 

coordinate with cell body contraction towards the lamellipod during active cell motility and other 

cellular functions not investigated.  System analysis accurately predicts activation of PKCδ to 

correlate with increased cell speed and  activation of MLC also correlates with increased 2D cell 

speed (Kharait et al., 2007).  Taken altogether, these data indicate the spatiotemporal distribution 
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of PKCδ is important for growth factor induced motility.     Furthermore from a previous 

investigation, PKCδ regulated force signaling in an EGFR/PLCy1 dependent manner (Iwabu et 

al., 2004).   When EGFR signaling to PLCy1 was inhibited PKCδ activation and MLC activation 

was delayed (Iwabu et al., 2004).  In addition delay in isometric force was also observed when 

this pathway was inhibited (Iwabu et al., 2004), suggesting PKCδ and MLC as major 

downstream mediators to this pathway.   However, from these data it was not known how the 

intrinsic translocation of PKCδ affects activation and how asymmetric signaling of force was 

occurring.  Correlating strongly with durotaxis, PKCδ and associated activation mediate 

signaling that regulate adhesions during basal motility as it indirectly affects cell-substratum 

interaction. Including this study, more evidence is attributing PKCδ specifically serving as a 

communication between adhesion receptors during cell migrations.  
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Figure 5.  PKCδ regulation of stress fibers according to lamellipodium/filopodia 

During growth factor induced motility, EGFR upregulate PLCy1 at the leading edge.  

This activation induces PLCy1 hydrolysis of PI 4,5 bisphophate into diacylglycerol and 

IP3.  Resultant diacylglycerol and phosphotidyl serine as coactivators of PKCδ cause 

translocation of PKCδ to the membrane. Further activation occurs at the membrane to 

signal downstream for MLC-2 activation. MLC-2 then regulates the actin/myosin heavy 

chain interaction influencing contraction in motility as it is enriched near membrane 

protrusions and retraction areas 

1.9 OTHER REGULATION OF CONTRACTILITY DURING MOTILITY  

Motility is regulated through complex pathways mediating dynamic regulation of 

cytoskeleton and the connecting plasma membrane.  Other divergent pathways also mediate 

contractility through Rho-GTPASE family of proteins, as these proteins regulate cytoskeleton 

actin nucleation and actin polymerization at the leading edge and through filopodia (Hall, 2012; 

Negishi and Katoh, 2002).  RhoA, RhoB, and RhoC in the GTP-bound activated states regulate 

ROCK1 and ROCK2 kinase activity (Chaturvedi et al., 2011; Ridley, 2013; Shi et al., 2009; 

Vega et al., 2011).  Furthermore, this activation causes ROCK1 to activate Lim kinase that 

would subsequently regulate cofillin (Vardouli et al., 2005),  ROCK has been found also to 

phosphorylate cytoskeleton proteins such as MLC and Myosin phosphatase to regulate 

contractility (Hall, 2012; Totsukawa et al., 2004).  PKCδ regulates contractility in conjunction 

with other cytoskeletal proteins but that PKCδ plays a more upstream role in 

chemotaxis/chemokinesis signaling.  Furthermore, PI3 kinase regulation of PIP3 by EGFR to 
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stabilize lamellipodia extension also divergently connects to PIP2 hydrolysis through 

diacylglycerol linked to PKCδ that induces increased contractility as previously described.  

Increasedelucidation of molecular signaling duringcell motility implicates phosphoinositides at 

the membrane as major coordinators driving chemotaxis.  These studies also suggest that these 

pathways converge to mediate motility, implying a simple straight forward model may not 

accurately depict the major driving forces of cell migration. 

1.10 CXCR3 REGULATION OF CONTRACTION IN THE WOUND 

As both motility and isometric force are involved in remodeling collagen or compacting a 

provisional wound matrix (Allen et al., 2002), key regulators of growth factor induced motility 

are essential in understanding how the wound bed contracts appropriately.  During the resolving 

phase of wound healing, ‘stop’ signals (CXCL10 and CXCL11) are needed to cause regression 

of proliferation and migration into the wound by fibroblasts, keratinocytes, and endothelial cells. 

This regression in healing tissue is required and if not properly regulated, results in increased 

scarring due to fibroplasia and hyper-proliferation of keratinocytes (Yates et al., 2007).   This 

results in decreased collagen organization and decreased tensile strength and integrity of the skin.  

Pathological phenotype is shown in CXCR3 KO mice where in mouse wounded skins there is 

hyper proliferation of fibroblasts with a disorganized less contracted collagen matrix (Yates et 

al., 2007).  Furthermore, this results in a delay in wound healing in which wounds take longer to 

heal compared to  mice with normal CXCR3 activity (Yates et al., 2007). 
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1.10.1 CXCR3 regulation in context of spatiotemporal regulation in fibroblast 

Further investigation of individual cells reveals CXCR3 is a mediator of complex 

intercellular communication involved in migration/proliferation/contraction of the wound.   

CXCL11 (IP9) and CXCL10 (IP10) are secreted by macrophages and keratinocytes as 

keratinocytes regenerate the basal cellular layer of the epidermis (Satish et al., 2005).  

Furthermore, these cytokines were first shown to elicit signals that decreased cell motility and 

decrease proliferation (Yates et al., 2011). Motility is inhibited through CXCR3 mediated 

activation of PKA, which inhibits m-calpain activity (Leloup et al.).   This is dominant over 

EGFR mediated upregulation of m-calpain activity.  As m-calpain is involved in a critical step of 

motility for rear-retraction, CXCR3 activation by IP-10 and IP9 would inhibit rear retraction for 

productive motility (Leloup et al.).  EGFR activation of ERK phosphorylation for m-calpain 

would also increase the activity in combination with m-calpain binding of PIP2 that has been 

shown to critically activate its protease activity (Leloup et al.). This spatio-temporal regulation 

also is in concert with contractility, at which IP-10 and IP-9 would cause inhibition of rear 

retraction but would potentiate the cell to increase isometric contraction onto the matrix directed 

from the lamellipodium.    This potentiation of contraction was investigated in this study through 

an endothelial cell model. Furthermore, CXCR3 likewise modulated calpain activity that affected 

isometric contraction in the endothelial capillaries undergoing dissociation.  

1.10.2 CXCR3 regulation of vessels 

As a wound is formed, capillaries that are damaged induce angiogenic regenerative 

signaling of severed vessels.  As pro-angiogenic growth factors are released by platelets and 
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macrophages, individual endothelial cells involved require initial signals to ‘dedifferentiate’ and 

dissociate from vessels.  These signals are mediated primarily by growth factors 

VEGF/PDGF/HB-EGF/TGF.  In addition, CXCL4 (PF4) also mediates dissociation through 

CXCR3 signaling (Bodnar et al., 2006).  This was previously shown that CXCR3 ‘stop’ 

signaling mediated by IP-10 and PF4 inhibits neoangiogenesis in the wound, if inhibited the 

wound vasculature would become leaky.  PF4 activation of CXCR3 initiates vessel regression 

through increasing apoptosis, decreasing migration, and increasing capillary dissociation 

(Bodnar et al., 2006).  This mechanism of capillary dissociation related to motility is through 

CXCR3 activation of PLCβ, which increases μ-calpain activity by increased calcium levels 

(Bodnar et al., 2009).  These calpains were found to mediate dissociation through disrupting 

Integrin β3 bonds in the cytoplasm that translate to the ECM and cell to cell adhesions.  As this 

regulation is occurring, force signaling is presumed to occur through RTK signaling of force 

through PKCδ.       

1.11 POSSIBLE PKCδ DEPENDENT REGULATION OF ENDOTHELIAL 

DISSOCIATION THROUGH CXCR3  

It has been well established that VEGFR signaling to PKCδ is involved in cord 

dissociation and increased capillary permeability when activated (Bates et al., 2002; Goeckeler 

and Wysolmerski, 1995; Rahman et al., 2001) and PKCδ inhibition results in reduced regulation 

of stress fibers and focal adhesions in endothelial cells (Joyce and Meklir, 1992; Rahman et al., 

2001; Tinsley et al., 2004).  When PKCδ is knocked-down in diabetic mice, endothelial 

dysfunction occurs as this results in less VEGF, TGFβ, and extracellular matrix proteins in 
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kidney glomeruli.  This also caused less albuminuria and attenuation of kidney dysfunction 

(Mima et al., 2012).  Additional in vivo data involving PKCδ in endothelial retraction and barrier 

function, indicated that PKCδ was responsible for decreased blood flow, capillary density, and 

number of capillaries in diabetic mice (Bai et al., 2010).  Although these data are in the context 

of hyperglycemia, data from the literature on PKCδ strongly suggest its involvement in 

endothelial cell retraction and cell survival. Furthermore, PKCδ was also found at steady-state 

activation of cytoskeleton tension through junctions and actin fibers promoting endothelial cell 

barrier (Harrington et al., 2005; Yuan, 2002)].  Conversely activated PKCδ promotes decreased 

vascular permeability, as it alternatively provides signaling for structural function.  In endothelial 

retraction, it has been found that MLCK, downstream of PKCδ (Goeckeler and Wysolmerski, 

1995; Sheldon et al., 1993), regulates endothelial retraction via MLC activation.  VEGF has been 

shown to induce increased cellular force to the ECM via CTFM (Ghosh et al., 2008; Yang et al., 

2011).  Furthermore, endothelial capillaries are also responsive to shear stress that induce VEGF 

and growth regulation (Gan et al., 2000; Masumura et al., 2009; Urbich et al., 2003; Wang et al., 

2005). Capillaries must also dissociate in order for immune cell extravasation that requires force  

to break intra/intercellular bonds for cells to dissociate.   Capillary dissociation for angiogenesis 

requires VCAM, VE-Cadherin bond breakage in order for the endothelial cells to dissociate.  

However, this breakage requires force at a molecular level, but also at a cellular level in which 

cell and tissue morphology applies to force dissociation.  At the in vitro tissue level, it is not well 

understood how PKCδ is regulating force signaling in capillaries.  Furthermore, the role of PKCδ 

mediating endothelial cord retraction has not been determined in the context of CXCR3 

upregulation.  



 25 

1.12 FIBROBLASTS AND ENDOTHELIAL CORDS REGULATE CONTRACTILITY 

THROUGH SIMILAR MECHANISMS OF PKCδ 

Although these two cell types regulate contractility with different mechanisms and 

cellular functions, PKCδ regulates force signaling similarly with different spatiotemporal context 

for cell migration and isometric force exertion.  In these experimental models, spatio-temporal 

regulation through EGFR/RTK signaling has been well elucidated in motility and contractions.  

However the spatiotemporal modulation of force signaling mediated by PKCδ has not been 

investigated.   The regulation of PKCδ in the context of CXCR3 mediated dissociation has also 

not been investigated.   It is possible that dynamic localization of PKCδ may impact dissociation 

of endothelial cords in the same way as fibroblasts mediate ECM compaction.  Endothelial cords 

as a model system can be visualized systematically as multicellular force is generated.  In 

contrast, impact of force of fibroblast in an ECM can only be measured through its effects on  

collagen compaction itself which is less direct.    

1.13 MEMBRANE-TARGETING WITH FARNESYLTRANSFERASE 

A technique previously established (Leloup et al.) would drive increased placement of 

PKCδ spatially close to the membrane.  This involves splicing 6 contiguous lysines followed by 

c-terminus Kras-farnesylation motif (CaaX) onto PKCδ for increased membrane targeting. 

prenyl modification is covalently placed on the cysteine residue through a farnesyltransferase in 

which the aliphatic amino acids are replaced with a methyl group.  This occurs through a 

biochemical process of 3 steps. The actual binding of this motif involves both electrostatic and 
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hydrophobic interactions to increase the affinity for the membrane (Leloup et al.).  The K-ras 

protein instead of H-ras was also selected due to its constitutive activity in cells for prenylation, 

whereas the H-ras motif is prenylated in select systems and induced with select stimuli.  

Therefore, this robust technique was utilized to target PKCδ to the membrane.  

 

 

Figure 6.  Membrane targeted PKCδ regulation of stress fibers that are directed towards 

PKCδ regulations at membrane/to ECM 

K-ras membrane targeting (CaaX) constitutively places PKCδ to the membrane 

from its c-terminal.  With this modification, the C1 domain of the n-terminal 

region isable to bind to DAG/PS  that is generated at the leading edge independent 

of translocation.  This localization would increase the probability that PKCδ could 

be activated by diacylglycerol and drive p-MLC-2 activity for stress fiber activity 

outwards towards the ECM and thus promote increased contractility in tissues 

through isometric contraction.  
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1.14 HYPOTHESIS 

It is hypothesized that PKCδ modulates the distribution of force from VEGF/EGFR 

signaling.  As an essential location where PKCδ mediated signaling is connected to this 

chemotactic response, activation at the membrane modulates force distribution. Furthermore, 

PKCδ also regulates the cytoskeleton in interconnected endothelial cells in the form of multi-

cellular endothelial cord structures.  It is also hypothesized that force signaling regulated by 

PKCδ aides in endothelial cord dissociation by signaling for motile contractile signaling  that 

would disrupt cell to cell adhesions and initiate sprouting for angiogenesis.  These aims will 

support the overall hypothesis that PKCδ is a dynamic and an essential mediator of contractility 

during cell migration, as this regulation is strongly connected and coordinated with 

VEGFR/EGFR signaling driving chemotaxis. 

 



 28 

2.0  PKCδ LOCALIZATION AT THE MEMBRANE INCREASES MATRIX TRACTION 

FORCE DEPENDENT ONPLCΓ1/EGFR SIGNALING 

Joshua Jamison1, Douglas Lauffenburger3, James C Wang2, Alan Wells1 

 

Departments of Pathology1 and Orthopedic Surgery2, and McGowan Institute for 

Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 

Department of Biological Engineering3, MIT, Cambridge, MA 

 



 29 

2.1 ABSTRACT 

Introduction: During wound healing, fibroblasts initially migrate into the wound bed and 

later contract the matrix.  Relevant mediators of transcellular contractility revealed by systems 

analyses are protein kinase c delta/myosin light chain-2 (PKCδ/MLC-2).  PKCδ is activated by 

growth factor-driven PLCγ1 hydrolysis of phosphoinositide bisphosphate (PIP2) hydrolysis when 

it becomes tranlocated to the membrane.  This leads to MLC-2 phosphorylation that regulates 

myosin for contractility.  Furthermore, PKCδ n-terminus mediates PKCδ localization to the 

membrane in relative proximity to PLCγ1 activity.  However, the role this localization and the 

relationship to its activation and signaling of force is not well understood. Therefore, we 

investigated whether the membrane localization of PKCδ mediates the transcellular contractility 

of fibroblasts. 

Methods: To determine PKCδ activation in targeted membrane locations in mouse 

fibroblast cells (NR6-WT), two PKCδ constructs were generated; PKCδ-CaaX with farnesylation 

moiety targeting PKCδ to the membrane and PKCδ-SaaX a non-targeting control.  

Results:  Increased mean cell force was observed before and during EGF stimulation in 

fibroblasts expressing membrane-targeted PKCδ (PKCδ-CaaX) when analyzed with 2D cell 

traction force and 3D compaction of collagen matrix. This effect was reduced in cells deficient in 

EGFR/PLCy1 signaling.  In cells expressing non-membrane targeted PKCδ (PKCδ-SaaX), the 

cell force exerted outside the ECM (extracellular matrix) was less, but cell 

motility/speed/persistence was increased after EGF stimulation.  Change in cell motility and 
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increased force exertion was also preceded by change in cell morphology.   Organization of actin 

stress fibers was also decreased as a result of increasing membrane targeting of PKCδ.  

Conclusion: From these results membrane tethering of PKCδ leads to increased force 

exertion on ECM.   Furthermore, our data show PLCγ1 regulation of PKCδ, at least in part, 

drives transcellular contractility in fibroblasts.   
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2.2 INTRODUCTION 

Fibroblasts require time- and context-specific signaling for motility and contraction of the 

matrix.  In cells that undergo motility/contractions, the filopodia/lamellipodium first extends and 

eventually adheres to the substrate/target. The cell body then impels towards the lamellipodium 

with subsequent rear retraction.  Subsequent cell retraction is modulated through disruption of 

adhesions at the rear of the cell.  Similar migration and contraction in the wound are stimulated 

by release of growth factors such as epidermal growth factor (EGF), VEGF, PDGF.  

Interestingly, as wound healing resolves, CXCR3 cytokines such as CXCL4, CXCL9, and 

CXCL10 are released, with their subsequent signaling preventing rear retraction.    This signaling  

eventually leads to channeling the motile phenotype into amplified trans-cellular contractions 

required to contract to restore tensile strength to the tissue (Allen et al., 2002). 

Components of the cell contractility and motility pathway have been identified.  Growth 

factor and matrikine signaling through the epidermal growth factor receptor (EGFR) initiates 

motility via phosphorylation and activation of PLCy1 at the membrane (Chen et al., 1994b). 

Activated PLCy1 then catalyzes the hydrolysis of PIP2 primarily at the leading edge and 

generates diacylglycerol (DAG) and IP3 (Insall and Weiner, 2001; Wells et al., 1999).  Increased 

levels of DAG at the leading edge (Shao et al., 2006) synergizes the effect of PKCδ localization 

to the membrane (Ron and Kazanietz, 1999).  DAG subsequently stabilizes the activation of 

PKCδ through direct binding of its N-terminal C1 domain (Kikkawa et al., 2002; Seki et al., 

2005; Stahelin et al., 2005).  Furthermore,  PKCδ localization behind the leading edge allows it 
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to propel the cell body towards the extended lamellipodium and also mediate isometric force 

concomitant with motility (Andujar et al., 1992).    

We previously showed that the EGFR-induced activation of PKCδ modulates force 

through an intermediate kinase, myosin light chain kinase (MLCK).  MLCK can directly 

phosphorylate (myosin-light-chain) MLC to induce cellular contractions (Iwabu et al., 2004).  

Furthermore, reduced activation of PLCy1 delayed subsequent activation of PKCδ and 

downstream MLC2. This caused inefficient contractions by the cells compared to normal PLCy1 

signaling (Iwabu et al., 2004).   These data indicate that EGFR triggers contractile responses 

efficiently and quickly through PLCy1/PKCδ pathway.  However, how the spatial localization of 

PKCδ to upstream modulators mediates force signaling has not been demonstrated.   Therefore, 

PKCδ regulation of contraction and force distribution was investigated through its membrane 

translocation to PLCy1 activity.  

2.3 RESULTS 

2.3.1 Membrane targeting of PKCδ increases extracellular force on substratum 

To investigate whether membrane targeting is sufficient to initiate trans-cellular 

contractility, PKCδ was directed to the membrane by splicing the farnesylation site of K-ras to 

the C-terminus (Leloup et al.)(Fig.  7a).  These PKCδ constructs in a bicistronic vector 

expressing GFP were then stably transfected into mouse fibroblast cells with either reconstituted 

full length EGFR (NR6- -991).  To 
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specifically investigate how membrane targeted PKCδ affects individual cell force that is exerted 

onto the substratum, contractility was assessed utilizing cell traction force microscopy.  

 Cells expressing PKCδ-CaaX exerted increased contraction of the substratum.  

This increased force was mainly localized at the front or rear of the cells with the cells appearing 

generally non-motile (Fig. 7b).  Furthermore, PKCδ-CaaX expressing cells also exerted 

increased tension at non-peripheral parts of the cell possibly due to the ubiquitous expression of 

PKCδ localization at the membrane. The cells responded to EGF quickly with concerted forces 

being exerted on to the substratum before and after EGF treatment compared to PKCδ-SaaX 

(Fig. 7c).     

 

PKCδ-CaaX localization in the cell would position it closer to PLCγ1 activity (hydrolysis 

of PIP2) after EGFR stimulation (Margolis et al., 1990) or simply move it to be activated 

constitutively by phosphotidyl serine on the inner membrane.  To determine whether PLCγ1 

signaling was required for force generation through membrane targeted PKCδ, cells that fail to 

activate PLCy1     signaling upon EGF exposure (NR6-991), were investigated for cell force 

generation.  NR6-991 cells could not exert as much force as NR6-WT (Fig. 7c).   Molecular 

signaling of PLCy1 was further investigated in membrane-targeted PKCδ expressing cells.  

Decreased phosphorylation of PKCδ in response to EGF was observed in cells challenged with 

PLCy1 deficient signaling, suggesting full PKCδ effects are PLCy1 mediated (Fig. 7d).  In 

addition, knockdown of endogenous PKCδ and similar levels of protein expression from 

constructs were confirmed in stable cell lines (Fig. 7e, Fig. 7f).   These results reinforce the 

rationale that EGFR stimulation of PLCy1 is key to PKCδ mediated fibroblast contractility. 
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Figure 7.  Membrane targeted PKCδ increases force of isometric contractions through EGFR/ 

PLCγ1 signaling (Cell Traction Force Microscopy).  
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 a) A schematic of PKCδ showing the kras farnesylation motif at the c-terminus of the 

protein. Membrane targeted PKCδ (PKCδ-CaaX) is represented with the CVIM domain 

and non-membrane targeted (PKCδ-SaaX) is represented by SVIM.  bc) PKCδ-CaaX 

cells were placed on (0.5µm red beads) were prepared with 100 µg collagen cross-linked 

to PAG/beads. b)   Cell traction was extrapolated through bead displacement as the cells 

exerted force. All forces exerted onto the substratum of each cell by bead displacement 

were computationally measured and analyzed using the software MatLab environment 

(Wang; Wang and Li, 2009; Wang et al., 2002).  Unconstrained traction is force exerted 

by the cells in kPa that is derived from bead displacement on 3kPa PAG/bead gel and 

described previously in (25-27).  Traction force output with unconstrained traction and 

absolute bead displacement from data extrapolation was gathered from all groups for 

each individual cell.  Colorimetric indicators displays red as the most intense in traction 

force and dark blue displays minimal traction force.   Images of cells were taken at 20X 

objective magnification. c)  Boxplot of individual cell constrained force measurements 

between 25th and 75th percentile.  Collective statistical analysis via Student’s T Test was 

performed between NR6-WT PKCδ-CaaX and NR6-991-PKCδ-Caax after EGF 

treatment at p = 6.87821e-09). As indicated in results and methods, NR6-WT cell lines 

contain full length EGFR and NR6-991 cell lines contain truncated EGFR that is 

deficient in PLCy1 signaling. d) Immunoblot analysis of cells  transiently transfected 

with (PKCδ-C/SaaX) and 50 µM of  siRNA of mouse PKCδ siRNA into NR6-WT and 

NR6-991 fibroblast  were then incubated in quiescent media overnight and treated with 

EGF for 1 hour prior to cell lysis.  Western blot analysis of cell lysates was performed.  

GFP that is expressed with the vector was utilized as control for protein levels.   e) 
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Lysates of siRNA knockdown of endogenous PKCδ of fibroblasts is represented in 

immunoblot.  The non-linked GFP on the same vector were utilized for loading control.   

f)  Immunoblot of cell lysates with stably transfected PKCδ-CaaX and  PKCδ-SaaX.  

Non-linked GFP protein levels were utilized for loading control. 

 

2.3.2 Membrane-targeted PKCδ localizes to cell membrane to induce force signaling 

PKCδ membrane translocation is essential to regulation of its activity.  To determine how 

increased membrane targeting affects PKCδ activation, membrane and cytosolic fractions of 

PKCδ were analyzed comparing the two constructs in stably transfected cell lines.   From these 

data, there was increased total PKCδ in the membranes of PKCδ-CaaX stably transfected cells 

compared to PKCδ-SaaX expressing cells.  EGF stimulation activated both PKCδ-CaaX and 

PKCδ-SaaX at membrane indicated by increased phosphorylated PKCδ fractions (Fig. 8a).  In 

addition, depletion of cytosolic fractions of activated PKCδ during EGF stimulation was also 

observed, confirming net translocation of PKCδ as opposed to de novo synthesis.  Although 

activated PKCδ-SaaX increased at the membrane during EGF stimulation as expected, these data 

also indicate that activated PKCδ-CaaX was increased in membrane fractions even prior to EGF 

treatment.  This localization prior to EGF stimulation was intended and partially obviated the 

need for stimulation by EGF.   

 In addition, this increase in phosphorylated PKCδ localization to the membrane 

was further tested in specific cells through a ‘cell footprint’ assay. Similarly, activated PKCδ 

localized to the membrane prior to EGF stimulation (Fig. 8b).  After EGF stimulation, the 

activated PKCδ was found mainly to be membrane-targeted in comparison with a decrease in 
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non-membrane-targeted fractions. These data suggest that membrane targeting increases PKCδ 

localization to the membrane for activation in response to EGF and membrane targeting in itself 

partially acts as a stimulus.   

 Localization of PKCδ and its impact on force transduction was further 

investigated by visualizing PKCδ through tagging the membrane targeted PKCδ with GFP.  Cells 

transfected with this construct were analyzed by cell traction force microscopy.  Cells that 

expressed PKCδ-CaaX increased cortical tension close to the peripheries of the cell whereas the 

non-membrane targeted PKCδ localized throughout the cytoplasm with little effect in 

morphology (Fig. 8c).  We furthermore found that PKCδ localization correlated with specific 

force being exerted onto the substratum prior and during PKCδ localization.  These forces were 

exerted primarily behind the leading edge, along with some random specific non-peripheral force 

transduction.  These data suggest PKCδ localization is directly associated to the distribution of 

force to the cells. 
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Figure 8.   Membrane-targeted PKCδ at the membrane maps with force distribution 

a) Stably transfected PKCδ-CaaX and PKCδ-SaaX NR6-WT cells were stimulated with 

10 nM of EGF in quiescent media.  After hypotonic fractionation, lysates were divided 

either into supernatant, which contains cytoplasmic proteins or pellet which contains 

membrane-linked proteins.  Lysates were subjected to SDS-PAGE and immunoblotted 

for indicated proteins.  GFP was utilized as a negative control for cytoplasm 

contamination in membrane fractions. b) Stably transfected PKCδ-CaaX and PKCδ-SaaX 

NR6-WT cells were stimulated with 10 nM of EGF in quiescent media for 60 minutes 

prior to fixation.  Footprints were collected as described in methods and were 

immunostained for activated PKCδ.  Images were then taken of footprints with confocal 

microscopy at 40x objective magnification.  DAPI was utilized as a negative control for 

the presence of the nucleus, which is removed in the process of retaining the bottom 

membrane only attached to the substrate.  The Deep-Red membrane stain was utilized as 

a positive control for membranes.  c)    DNA constructs with GFP linked to PKCδ-CaaX 

and PKCδ-SaaX were transfected in NR6-WT.  Cells were then plated onto PAG/beads 

substrate as described previously in (Fig. 7) in the presence of culturing media.  Images 

of cells were taken at 20x objective every 10 minutes as localization of PKCδ was 

observed and force was extrapolated from bead displacement represented in constrained 

traction force indicated in colorimetric graph.  In colorimetric graph, red represents high 

traction force and blue represents low/no traction force. Merged images of constrained 

traction force and GFP PKCδ localization is indicated.  Red represents strong force and 

white represent PKCδ localization.  
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2.3.3 Membrane targeted PKCδ displays increased contraction of collagen gel compared 

to non-targeted PKCδ expressing cells  

Cell motility and isometric cell force both contribute to the eventual compaction of both 

wound bed collagen/ECM and artificial collagen ECM (Allen et al., 2002). To further investigate 

whether membrane targeted PKCδ causes increased force in a 3D ECM, the collective ability of 

cells to compact a collagen gel over time was investigated utilizing a gel compaction assay.   

Cells expressing PKCδ-CaaX mediated increased gel compaction compared to non-targeted 

PKCδ-SaaX (Fig. 9), at which became significant at longer time periods (Fig. 9b).  These data 

suggest membrane targeted PKCδ predisposed cells to increased signaling for compaction which 

led to increased compaction of collagen gels compared to PKCδ-SaaX. 

 

Figure 9.  Gel compaction is increased in cells expressing membrane-targeted PKCδ.    
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a,b) Stably transfected PKCδ-CaaX and PKCδ-SaaX NR6-WT cells were incubated in 1 mg/ml of 

polymerized collagen.  Collagen gel and cells were incubated with growth factor for indicated time points 

and compaction was observed by visually measuring the size of collagen gel relative to well size. a) Picture 

of gels were taken.  b) Ratio of gel size to well was calculated by image J line scan parameter of  no EGF 

treated sample and  analysis of multiple gel compaction assays (n=3) was performed as previously 

described and ratios were analyzed by Student-T-test p=.006.     

2.3.4 Non-membrane targeted PKCδ presents increased cell motility   

Our earlier systems biology analysis of motility signaling highlighted the adhesion to 

contractility ratio as key to motility (Kharait et al., 2007), along with the ability to labilize or 

turnover adhesions. Thus, we sought to determine the effect of a lower level but tonic activation 

of the contractility pathway as driven by membrane-targeted PKCδ (Fig. 10). Live cell imaging 

of stably transfected PKCδ-C/SaaX cells were observed on a collagen coated plastic substratum 

with knockdown of endogenous PKCδ.  Analysis of random cell motility during live cell 

imaging showed that cells expressing PKCδ-CaaX moved faster in an unstimulated mode. 

Following EGF stimulation, PKCδ-SaaX moved faster than PKCδ-CaaX (Fig. 10a).  To further 

determine the extent of collective migration, a scratch wound healing assay was utilized. PKCδ-

SaaX was found to move farther into the scratch compared to PKCδ-CaaX (Fig. 10d). These 

findings are consistent with increased cell adhesion leading to decreased cell motility. Our 

approach to utilize forced membrane targeting of PKCδ does cause increased force into 

adhesions unto the substratum that subsequently results in decreased cell motility.   

 

To investigate whether membrane targeted PKCδ involves increased force exertion onto 

the substratum during motility, cells were challenged to migrate on an adhesive substrate.  The 
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increased adhesion would increase PKCδ/MLC activation while causing decreased cell speed in 

normal fibroblasts (Kharait et al., 2007).  Furthermore, increased intracellular force during active 

cell motility would be able to overcome the effect of an increased adhesive substrate.  From our 

results membrane targeted PKCδ remained at the same level of persistence at low to high 

collagen content, with slightly decreased cell motility (Fig. 10e).  Cells expressing the non-

targeted PKCδ-SaaX were observed to have more persistent paths compared to PKCδ-CaaX with 

increased cell speed with low adhesive substratum (Fig. 10f, 10e).  When challenged with an 

adhesive substrate, non-membrane targeted PKCδ had reduced cell speed on the adhesive 

substrate with decreased motility persistence compared to PKCδ-CaaX indicated in (Fig 10f, Fig 

10g, Fig 10h).  These data suggest in membrane targeted PKCδ expressing cells decreased cell 

speed may be due to increased force to the substratum at a level to overcome the effects of a very 

adhesive substrate.     
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Figure 10.  Cell motility is restricted by membrane targeting of PKCδ. 

a).  Live cell images of stably transfected PKCδ-CaaX and PKCδ-SaaX NR6-WT 

(EGFR) cells with endogenous knockdown of PKCδ were taken every 30 minutes with 

and without 1 nM of EGF in quiescent media for 24 hour time period.  Cell motility was 

analyzed by metamorph software.  (Two-Sample-t-test was utilized to evaluate 

significance p<.05, n>11). b) Live cell images of stably transfected PKCδ-CaaX and 

PKCδ-SaaX NR6-WT (EGFR) cells with endogenous knockdown of PKCδ were taken 

every 15 minutes stimulated with 5nM of EGF and 5 nM of insulin for 5 hours.  Average 

individual cell speed/path was analyzed at 15 minute intervals for a total duration of 5 

hours with metamorph software. (Two-Sample-T-test was utilized to evaluate 

significance (p < 0.05, n >11).  c) Stably transfected PKCδ-CaaX and PKCδ-SaaX NR6-

WT (EGFR) were grown in a 6 well plate to 90% confluency prior to scratching with 

rubber policeman.  Cells were treated with 1 nM of EGF in quiescent media and images 

of scratch were taken at 4X objective magnification.  d,e,f,g)  Stably transfected PKCδ-

CaaX and PKCδ-SaaX NR6-WT (EGFR) cells were grown to 90% confluency prior to 

plating on collagen I coated plate.  Cells were then allowed to adhere overnight and then 

transfected with 50uM of PKCδ specific siRNA and stimulated with 1 nM EGF.  Cells 

were then imaged  for 12 hours with 30 minute intervals and average individual cell 

speed (d) /path (e) /persistence (absolute displacement from origin)(f) was analyzed  with 

metamorph software.  (g) Persistence was analyzed utilizing the median of absolute angle 

standard deviation relative to control.      
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2.3.5 Membrane targeting of PKCδ activates stress fibers and leads to morphological 

changes independent of growth factor exposure 

Cell morphology change precedes growth factor stimulated cell motility (Wells et al., 

1999).  To investigate how cells are affected by force signaling, stable cell lines were analyzed 

for stress fiber organization. To further investigate cytoskeletal tension resulting from PKCδ 

localization to the membrane, stress fibers of stably transfected cells were visualized by 

rhodamine-labeled phalloidin.  Fibroblasts with PKCδ-CaaX demonstrated disorganized stress 

fibers, even prior to EGF stimulation.  In contrast, more organized and pronounced stress fibers 

were observed in PKCδ-SaaX expressing cells (Fig. 11a).   These results show that distribution 

of force to the ECM disrupts stress fibers to the cortex and cell body.    

 To investigate how increased membrane targeting translated to cell morphology, 

we induced increased kras farnesylation by adding insulin in combination with EGF.  This 

stimulus would increase PKCδ membrane targeting. We found that increasing membrane 

targeting caused increased protrusions (Fig. 11b, Fig S1).  Of interest, PKCδ-SaaX correlated 

with fewer protrusions as normal localization of activated PKCδ is cell front limited. However, 

this increase in protrusions only occurred with this stimulus.  EGF stimulation alone did not 

cause these results.  These data suggest decreased cortical stress fibers allow for the plasticity of 

membrane targeted PKCδ to exert protrusions to the ECM. 
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Figure 11.  Membrane-targeting of PKCδ cytoskeletal structure of cells, without altering cell 

signaling of EGFR/ PLCγ1 / PKCδ pathway. 

a)  PKCδ CaaX/SaaX stably transfected cells were incubated in quiescent media prior to 

treatment of EGF (10 nM) for 60’ and were fixed with 4% formaldehyde solution, 

permeabilized, and stained for phalloidin.  Fluorescent images were taken utilizing 

confocal microscopy at mid z-stack.   b) Cells were grown and transfected as previously 

described in (Fig 3a).  Extended protrusions from cell body were manually counted after 

5 hours and graphed, (p < 0.05, n>11).     

2.4 DISCUSSION 

We have shown that increasing PKCδ translocation by membrane tethering redistributed 

force signaling outward to the ECM  that is partially PLCγ1 dependent (Fig 7c).  In addition to 

isometric force exerted under the cell to the substratum, force that is exerted on the cell body is 

also a significant portion of cellular contraction.  Force on to the cell body can be indirectly 

measured through live cell motility (Allen et al., 2002).   Membrane targeted PKCδ caused a 

shift in cellular force from the cell body to the ECM.  As a result, decreased cell speed was 

observed suggesting that the increased force ‘froze’ the adhesions (Fig. 10a-d).  In non-

membrane targeted PKCδ expressing cells, distribution of force was manifested by increased cell 

speed compared to membrane targeted PKCδ expressing cells.  As migration involves a cycle of 

de-adhesion, these cells also presented a reduced net extracellular force to the ECM (Fig 7, 10).  

As increased restrictive forces to the cells occurred during motility, cells expressing membrane-

targeted PKCδ were more resilient to the effects of an adhesive substrate as determined through 
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persistence measurements (Fig 10e-h).  These data indicate that slightly shifting the dynamics of 

PKCδ localization shifts signaling of force distribution.  This is a very specific effect, since cells 

were not manipulated with any other regulators of the cytoskeleton.   

 Interestingly, the difference between PKCδ-CaaX and PKCδ-SaaX were 

negligible in total downstream signaling to MLC-2.  This implies that signaling of the proteins 

are the same with similar levels of expression (Fig 7e).  However, localization of exerted force is 

the key determinant, and highlights the need to examine signaling cascades in subcellular 

compartments.  Furthermore, from our studies only PKCδ-CaaX localizes to the membrane with 

increased activation of PKCδ.  This furthermore correlates with cellular force distribution to the 

ECM (Fig 8).  Considering their similarity, the differences in cellular responses are due to the 

intended difference in localization dynamics and resultant activation.   

    

 Force distribution to the ECM and force distribution to the cell body are both 

simultaneously and reciprocally being applied.  As cells adhere to the ECM and actively migrate 

on a 2D substratum, forces emitted by these two actions are required by the cell for active 

motility.   In a 3D-context, such as in a gel compaction assay, force exertion from the cells and 

forces applied to the cells are collectively systemic (Sherratt et al., 1992). Each cell integrates its 

force into the system with increased plasticity and synergism impacting contractions of the ECM 

(Schmitt-Graff et al., 1994).  From this study, increased ECM compaction was observed as a 

result of signaling of force through membrane-targeted PKCδ (Fig 9).  Signaling through growth 

factors and cytokines integrate cellular responses to coordinate systemic contraction of a 

wounded matrix.  This study primarily focused on EGF signaling, since it is an essential growth 

factor for motility during wound healing.  Downstream of EGFR signaling, EGFR stimulation of 
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PIP2 hydrolysis impacts divergent regulation of motility and contraction.  Although, PKCδ 

regulation is downstream of PIP2 hydrolysis, it has also been found to activate m-Calpain 

through direct binding (Leloup et al.).  As PIP2 is being hydrolyzed at the leading edge, the rear 

of the cell retains PIP2 levels where it aids in activation of m-Calpain to cleave rear adhesions 

(Leloup et al.; Wells et al., 2005).   This further supports the subcellular directionality of EGFR 

mediated PIP2 hydrolysis, and reinforcing the concept that spatial localizations of signaling 

nexus are important for productive motility (Wells et al., 1999). Among context-specific 

functions of fibroblasts in wound healing, the mechanics for ECM remodeling (Allen et al., 

2002)  is regulated by both motility and isometric contraction critical for remodeling of the 

compacting ECM  (Dickinson and Tranquillo, 1993; Felsenfeld et al., 1996; Plotnikov et al., 

2012).  These factors in combination with the transient release of both growth factor and 

cytokine antagonist regulate the dynamic and synchronous relationship of how fibroblasts 

mediate this motility and contraction of the wound.  If not properly regulated, this fine-tuned 

system that is mediated by durotaxis and chemotaxis, may shift to exacerbate the healing tissue 

into fibrosis or fibroplasia (Marinkovic et al., 2012; Yates et al., 2007). 

 

2.5 MATERIALS AND METHODS 

 

Cell Culture - NR6-WT and NR6-991 cell lines were established previously from 

parental Swiss mouse 3T3 variant fibroblasts that lack endogenous EGFR as an original gift from 

Dr. Harvey Herschman (Pruss and Herschman, 1977).  These cells were cultured in minimal 
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essential media (MEM) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 0.1 mM 

MEM, nonessential amino acids, penicillin (100 units/ml), streptomycin (100 µg/ml), and G418 

(350 µg/ml) for continual selection of EGFR.  Subconfluent (< 75%) cultures were split every 4 

days using 0.25% trypsin/0.25 mM EDTA in MEM to dislodge cells from culture and washed 

further with MEM before seeding. 

 

Plasmid Construction and transfection - PKCδ constructs were established from human-

derived Hs68 fibroblast cell line, in which the Kras mouse sequence (CaaX for farnesylation; 

SAAX for control) was spliced to the carboxyl-terminus of PKCδ in 3 rounds of PCR 

amplification.  Recombinant PKCδ was then ligated into the p-select-GFP-zeocin plasmid 

(Invitrogen) using the BamH1 and Nhe1 sites.  Stable transfection was performed with 4µg of 

each plasmid (PKCδ-CaaX or PKCδ-SaaX) and lipofectamine according to the manufacturers’ 

protocol. Following transfection, cells were grown and split in MEM containing 300µg/mL 

zeocin (Invitrogen).   

In addition to PKCδ transfection, 50 µM mouse siRNA targeting the PKCδ 3’ UTR was 

also transfected into transient and stably transfected cells. The primers used for siRNA synthesis 

were 5’-AACACAUCACCAGUCUCCUACAUGCUU-3’ and 3’-

TTGUGUAGUGGUCAGAGGAUGUACG-5’ respectively.  This sequence was designed using 

the online software from Integrated DNA Technologies.    

 

Cell Traction Force Measurements - Cell Traction Force Microscopy protocol was 

performed as previously described (Wang and Lin, 2007).  Briefly, 6 well glass bottom plates 

(Mattek) were first activated by treatment with 0.1M sodium hydroxide for 1 day and allowing to 
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air-dry overnight.  The next day approximately 2 drops of 3-aminopropyltrimethoxysilane was 

added to each well followed by washing with de-ionized water, incubation in 0.5% 

glutaraledehyde for 1 hr and finally air dry.  After activation, the first layer of gel was made with 

11µL polyacrylamide (5% acrylamide and 0.1% bisacrylamide), 20 µL of 10% ammonium 

persulfate and 2µL TEMED and poured on the activated glass bottom plates. A circular glass 

coverslip was then placed on top of the solution.  After polymerization, the glass coverslip was 

removed and a second layer of gel as described previously but with 0.5 µM fluorescently labeled 

beads was poured on top of the first layer and the gel was incubated overnight in water with a 

glass coverslip placed on top.  Collagen was then crosslinked to the gel by adding sulfo-

SANPAH on the top followed by exposure to UV-radiation.  After washing 4 times with PBS, 

collagen I (150 µg/ml, BD Bioscience) was added on the gel and allowed to crosslink with sulfo-

SANPAH overnight.  Prior to plating fibroblasts onto the polyacrylamide gel, cells were 

transfected with 50 µM PKCδ siRNA and incubated overnight in MEM.  Transfected cells were 

then detached by trypsinization and added to polyacrylamide gels in quiescent media and 

allowed to adhere for at least 5 hrs. Live cell images were taken at indicated time points with a 

20X objective, and bead displacements and force were computed using the MatLab 

programming software as previously  described (Wang and Lin, 2007).        

 

Primary antibodies and reagents - For immunoblotting and immunostaining the 

following antibodies were used at a dilution of 1:1000:  Anti-PKCδ antibody (BD Biosciences), 

anti-phospho-PKCδ (S643 PKC delta/S676 PKC-theta), anti-ppMLC-2 (S18/19), and anti-MLC-

2 (Cell Signaling), and anti-GFP-FL (SantuCruz).  For actin staining, phallodin-conjugated to 

Alexa-568 (Invitrogen) was added at 1:40 dilution.   
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Gel compaction assay—Stably transfected NR6-WT fibroblasts were grown in 

polymerized collagen I using previously described methods with modifications (Iwabu et al., 

2004). Stably transfected PKCδ-CaaX and PKCδ-SaaX expressing cells were cultured to 

subconfluence and harvested using 0.25% trypsin/EDTA.  Cells were then resuspended in MEM, 

diluted to 1 x 106 cells/mL and centrifuged at 1000 rpm for 5 min.  Fibroblasts were then 

resuspended in quiescent media containing 1mg/mL bovine serum albumin and EGF at various 

concentrations. Neutralized collagen solution (1mg/ml collagen/media-pH-7) was immediately 

mixed with fibroblast solution and allowed to polymerize for 1 hr at 37C.  After polymerization, 

collagen was released from the sides of the wells by a small pipette tip.  Compaction was 

determined by decrease in the size of the collagen gel which was documented as images.  

Quantification of the images was performed by line scan procedure using the image J software. 

From this analysis we obtained the ratio of the diameter of standardized well to the diameter of 

collagen gel, as diameter was preferred over area of compaction due to little difference in 

experimental outcome and significance.  

 

Motility Measurements--Stably transfected cells were grown as previously described and 

plated onto collagen coated plates.  Afterwards, cells were transfected with 50uM siRNA for 24 

hours prior to imaging.  Cells were then incubated in quiescent media overnight and treated with 

1 nM of EGF for 24 hours in In live imaging chamber at (5% CO2, 4% O2).  Cells treated with 

insulin were incubated at 5nM EGF and 5 nM insulin to increase membrane targeting at 5 hour 

time period.  Cell speed was tracked utilizing metamorph software utilizing the track object 
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function.  Individual cells were highlighted and the software computationally tracked cell 

movement as cell displacement in each frame along xy coordinates.   

 

Hypotonic Subcellular Fractionation--Subcellular fractionation was described previously 

(Jiang et al., 2002).  Briefly, stably transfected cells were grown to subconfluency prior to 

quiescence media incubation overnight.   Cells were then treated with 10 nM of EGF for 60 

minutes.  Cells were then scraped at 4 ͦC with rubber policeman and lysed with hypotonic buffer 

(10mM HEPES pH 7.4, 1.5mM MgCl2, 10 mM KCl, 0.2 mM phenylmethylsulfonyl fluoride, 0.5 

mM dithiothreitol). Cell lysates at 0.5 mL were then homogenized on ice further with dounce at 

the rate of 40 strokes.  Unhomogenized cellular debris was removed by centrifugation at 1,000 x 

g for 5 minutes.  Supernatant was then subjected to ultra-centrifugation at 100,000 x g for 1 hour 

at 4 ͦC.  Supernatant and pellet were then separated and extracted with 1X 

sodium dodecyl sulfate (SDS) sample loading buffer.       

 

Cell Footprinting--The dorsal part of the cell was removed as described previously 

(Leloup et al.; Shao et al., 2006).  Stably transfected cells were plated onto collagen coated 

(50ug/mL) glass coverslip prior to incubation of quiescent media.  Cells were then stimulated 

with 10 nM of EGF for 60 minutes prior to cell footprint isolation.  In addition, a.ll isolation 

solutions were incubated at 4 ͦC prior to use.  Fibroblasts were washed with 

morpholineethanesulfonic acid-buffered saline (MBS; 20 mM morpholineethanesulfonic acid 

[pH 5.5], 135 mM NaCl, 0.5 mM CaCl2, 1 mM MgCl2).  Cells were then coated with a 1% 

solution of cationic colloidal silica (silica prepared as a 30% stock colloid).  (Cationic colloidal 

silica was obtained by written request from Donna Beer Stolz, University of Pittsburgh, 
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Pittsburgh, PA.)  Repeat of wash with MBS was done prior to coating cells with 1% polyacrylic 

acid (Sigma Aldrich) in MBS.   Polyacrylic coat was removed with another wash of MBS.  Cells 

were then swelled for 10 minutes with hypotonic lysis buffer (2.5 mM imidazole. pH 7.0) 

supplemented with protease inhibitors (1:100, protease inhibitor cocktail; Sigma Aldrich).  Cells 

were unroofed by mild application of lysis buffer through a 5-ml syringe fitted with a blunted, 

flattened 18-gauge needle. Periodically, the state of unroofing was observed in cells by inverted 

phase-contrast microscopy.  Footprints were then fixed in 2% formaldehyde in PBS for 5 

minutes and permeabilized with 0.1% TritonX-100 in PBS (wash buffer).  After wash, cells were 

immunostained with phospho-PKCδ (S643 PKCδ/S676 PKC) at 1:50 dilution in 30 mg of BSA.  

Secondary antibody conjugated to Alexa-594 was utilized to immunostain for 1 hour.  Nuclei 

were stained with DAPI in PBS. 

2.6 SUPPORTING INFORMATION  

Movie S1: Mapping of PKCδ to force exertion. GFP-linked PKCδ CaaX stably 

transfected cells were induced with FBS and force exerted on the substratum was calculated and 

false-colored red, whereas the PKC is false-colored white. Shown is a representative cell at 10 

minute intervals for 80 minutes. 

Movie S2: Membrane-targeted PKCδ exert increased protrusion. (2)PKCδ CaaX/ (3) 

SaaX stably transfected cells were induced with 5 nM EGF and 5 nM insulin as described in 

(Figures 11a, 12b). Images were taken at 20X objective magnification with resolution 

0.35um/pixel. Movie frames were at 15 minute intervals for 5 hours.  
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Movie S3: Membrane-targeted PKCδ exert increased protrusion.(2)PKCδ CaaX/ (3)SaaX 

stably transfected cells were induced with 5 nM EGF and 5 nM insulin as described in (Figures 

11a, 12b). Images were taken at 20X objective magnification with resolution 0.35um/pixel. 

Movie frames were at 15 minute intervals for 5 hours.  
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3.0  PKCδ REGULATES FORCE SIGNALING DURING VEGF/PF4 INDUCED 

DISSOCIATION OF ENDOTHELIAL TUBES 

 

 

Joshua Jamison, James H-C. Wang, Alan Wells 
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3.1 ABSTRACT 

Wound healing requires the vasculature to re-establish itself from the severed ends. 

Endothelial cells within capillaries must detach from neighboring cells before they can migrate 

to the wound and initiate angiogenesis. The dissociation of these endothelial capillaries is driven, 

at least in part, by platelets’ release of growth factors and cytokines, particularly the chemokine 

CXCL4/platelet factor-4 (PF4). As this retraction is partly mediated by increased transcellular 

contractility, the protein kinase c-δ/myosin light chain-2 (PKCδ/MLC-2) signaling axis becomes 

a candidate for this mechanism. Phospholipase C (PLC) hydrolysis of phosphoinositide 

bisphosphate (PIP2), which ensues upon CXCR3 binding by CXCL4, could potentially activate 

PKCδ for regulation of MLC. We hypothesize that PKCδ activation promotes dissociation of 

endothelial cords after exposure to platelet-released CXCL4 and VEGF. To investigate this 

mechanism of contractility, endothelial cells were allowed to form cords with subsequent 

dissociation secondary to the addition of CXCL4. In this study, CXCL4-induced dissociation 

was reduced by a VEGFR inhibitor (sunitinib malate) and/or PKCδ inhibition. Increased 

contractility through MLC expression increased contractility in a PKCδ-dependent manner 

during combined CXCL4+VEGF treatment. As force was translated to focal adhesions, focal 

adhesion regulation of both individual cells and endothelial cords indicated that mechano-

transduction responsive zyxin expression was upregulated after PKCδ inhibition. This study 

suggests that growth factor regulation of PKCδ may be involved in CXCL4-mediated 

dissociation of endothelial cords.   
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3.2 INTRODUCTION 

  The barrier function of the skin must be quickly re-established if compromised upon 

wounding. This repair requires a vascular system for tissue maintenance. However, during 

wounding the vessels are destroyed and thus there is a need for angiogenesis from the tips of 

severed vessels. This is driven by the pro-angiogenic growth factors released first by platelets 

and then by macrophages in the wound. Endothelial cells that are involved in angiogenesis 

require initial signals to ‘dedifferentiate’ and separate from the existing severed vessels prior to 

the subsequent inductive signals to migrate into the wound bed. Among these earliest signals are 

those released by the platelets during clotting, including the chemokine CXCL4 and growth 

factors VEGF, PDGF, HB-EGF, and TGFβ(Li et al., 2003). 

  Many of the intracellular signaling pathways that drive fibroblasts and endothelial cells to 

migrate are known.  Downstream of growth factor receptor activation, PLC signaling triggers 

PKCδ to regulate cell motility via increasing transcellular contractility in fibroblasts and 

endothelial cells (Chen et al., 1994a; Chen et al., 1994b; Iwabu et al., 2004; Jamison et al., 2013; 

Joyce and Meklir, 1992; Shizukuda et al., 1999b; Yamamura et al., 1996). Growth factor and 

matrikine signaling through the epidermal growth factor receptor (EGFR) initiates motility via 

phosphorylation and activation of PLCγ1 at the membrane (Chen et al., 1994b). Activated 

PLCγ1 then catalyzes the hydrolysis of PIP2 primarily at the leading edge and generates 

diacylglycerol (DAG) and IP3 (Insall and Weiner, 2001; Wells et al., 1999).  Increased levels of 

DAG at the leading edge (Shao et al., 2006) synergizes the effect of PKCδ localization to the 

membrane (Ron and Kazanietz, 1999).  DAG subsequently stabilizes the activation of PKCδ 

through direct binding of its N-terminal C1 domain (Kikkawa et al., 2002; Seki et al., 2005; 

Stahelin et al., 2005).  Furthermore,  PKCδ localization behind the leading edge allows it to 
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propel the cell body towards the extended lamellipodium and also mediate isometric force 

concomitant with motility (Andujar et al., 1992).  EGFR-induced activation of PKCδ modulation 

of force has been previously shown through an intermediate kinase, myosin light chain kinase 

(MLCK).  MLCK can directly phosphorylate (myosin-light-chain) MLC to induce regulation of 

contractions (Iwabu et al., 2004).  Furthermore, reduced activation of PLCγ1 delayed subsequent 

activation of PKCδ and downstream MLC2.  These data have shown that EGFR triggers 

contractile responses efficiently and quickly through PLCγ1/PKCδ pathway.   

  Dermal functions of the skin are essential for barrier function that is quickly re-

established if compromised upon wounding.  Dermal tissue repair involves intense anabolic 

processes that require vascular system for tissue maintenance. However, during wounding the 

vessels are destroyed and thus there is a need for angiogenesis from the tips of severed vessels. 

This is driven by the pro-angiogenic growth factors released by platelets and then macrophages 

in the wound. Endothelial cells that are involved in angiogenesis require initial signals to 

‘dedifferentiate’ and separate from the existing severed vessels and subsequent inductive signals 

to migrate into the wound bed.  Among these signals are the chemokine PF4 and growth factors 

VEGF/PDGF/HB-EGF/TGF (Li et al., 2003). These cells are also influenced by the regulation of 

provisional ECM by fibroblasts. Serving as a reservoir of growth factors/cytokines, this 

provisional ECM mediates motility/regression.  It also exist as a dynamic scaffold for vessels to 

graft into the wound bed (Dvorak et al., 1987; Folkman, 1997; Herman, 1993; Li et al., 2003). 

 Therefore, we hypothesize that PKCδ regulates tension of endothelial cords for cell 

retraction during neo-angiogenesis as its activation is mediated by increased VEGFR signaling.  

Through VEGFR regulation of PKCδ, endothelial cells can mediate efficient dissociation 

required for neo-angiogenesis. As wound healing and angiogenesis are time- and context-specific 
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dependent, proper signaling of force through VEGFR signaling is required to induce normal 

angiogenesis.    

3.3 RESULTS 

3.3.1 PF4 induced dissociation is VEGFR-dependent  

To investigate endothelial PF4-mediated dissociation, we utilized human microvascular 

endothelial cells (HMEC-1) plated on Matrigel. Cords were formed for 24 hours and then 

subsequently induced to dissociate with PF4 and VEGF, two factors released by platelets during 

the hemostatic plug of wounding.  Inhibition of VEGFR/PDGFR signaling using sunitinib (2.5 

uM) inhibited dissociation as noted by increased cord length (Fig. 13). In addition, PF4 had an 

increased effect over VEGF mediating dissociation (Fig 13). 
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Figure 12.  VEGFR/PKCδ inhibition decreases PF4 induced cord dissociation. 

a) Representative phase contrast images are shown of HMEC cells treated with indicated 

treatments.  Images were taken of live cords after 24 hours.  Disruption in webbed 

patterning of cells indicates increased dissociation.  b) Images described in (Fig 13a) 

were quantified as described in methods utilizing Metamorph analysis software. N = 3; 
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mean ± s.d. c) Quantification of cords that were induced to dissociate were quantified 

utilizing Metamorph as in (Fig. 13b).   HMEC cells were allowed to form cords and 24 

hours afterwards, 20 uM of antisense/sense oligonucleotides were added to cords as 

described in methods and allowed dissociate with inhibition of PKCδ for 24 hours.  Cords 

and cord length were measured (N = 3; mean ± s.d. ** P < 0.05). d) Immunoblot analysis 

of HMEC monolayer lysates was observed during 24 hour PF4 (10 nM) and VEGF (2.5 

nM) addition in the presence of antisense inhibition. GAPDH was utilized as loading 

control as representative blot is shown e) HMEC monolayer of cell lysates were analyzed 

through immunoblot analysis after PF4 (10 nM)  and VEGF (2.5 nM)  in the presence 

and absence of PKCδ inhibitor (Rottlerin 5 uM) for 24 hours. GAPDH was utilized as 

loading control in which representative blot is shown.  f) Quantification of cord motion in 

supplemental movies 1 and 2. Live cell imaging of cords as they move were quantified 

with metamorph analysis (Sup. Movie 1/2), as each cord excluding branches were tracked 

and quantified as average distance displacement for 30’. N =14 cords measured; mean ± 

s.d. **P < 0.01.  

3.3.2 VEGFR/PF4 induced dissociation is partially PKCδ-dependent  

As tube dissociation involves the separation of cell-cell contacts, we investigated whether 

transcellular contractility was involved. This was blunted by downregulation of the key regulator 

of this tension PKCδ.  Formed cords were stimulated to dissociate with PF4 and VEGF in the 

presence or absence of antisense towards PKCδ or PKC-alpha (as a control). After stimulation 

with VEGF/PF4 for cords to dissociate, endothelial cord length was partially rescued by 

antisense against PKCδ (Fig.12c). PKC-alpha downregulation attenuated cord dissociation to a 
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lesser degree.  In addition, the antisense decreased PKCδ and MLC-2 levels/ppMLC-2 levels that 

are downstream of PKCδ regulation (Fig. 12d).   PKCδ inhibition was also achieved 

pharmacologically utilizing the selective agent rottlerin, which limited MLC and ppMLC 

regulation through downregulation of PKCδ (Fig 12e).  These data indicate that PKCδ affects 

MLC-2 actions, which in turn regulate stress fibers.   

3.3.3 Dynamics of endothelial cords/capillaries tension require PKCδ-dependent motility 

of cords and individual cells  

Cell motility is critical for vessel formation and vessel regression (Stokes et al., 1991). To 

further investigate the role of activating PKCδ during VEGF/PF4 mediated dissociation, 

endothelial cords were induced to dissociate in the presence of the PKCδ inhibitor rottlerin. This 

decreased random cord motion (Fig 12f, Sup. Movie 1, 2). Cord motion, a process of vessel 

maturation, was also observed, but to a lesser extent, in controls not being induced to dissociate.  

From these data, dissociation was mediated by motility of the cells and possibly isometric 

contractions that are PKCδ dependent.  

We further investigated cord dissociation/mobility and found increased mobility and 

contractions in cords that were treated with PF4/VEGF (Sup. Movies 3, 4). In addition, increased 

force was exerted onto the Matrigel by the endothelial cells seen by the deformation of the 

substratum as noted with phase contrast microscopy. Individual endothelial cells at junctions 

were compressed and spheroid, in which its morphology appeared to integrate with movements 

for cord collapse (Supplemental Movie 4).   
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3.3.4 Activation of PKCδ is increased during PF4/VEGF induced dissociation of 

endothelial cords 

To further investigate whether PKCδ was activated during dissociation, dissociated cords 

were examined for their levels of PKCδ and activated PKCδ.  In PF4+VEGF induced cells, this 

ratio was increased at junctions with increased phosphorylated PKCδ at junction edges and 

decreased PKCδ in the inner part of the junction (Fig. 13).  In addition, in PF4 only and 

PF4+VEGF mediated dissociation, endothelial cells with a spheroid morphology with increased 

activated PKCδ were also observed. Although, PKCδ has been shown in previous literature to 

mediate apoptosis (Geraldes et al., 2009; Shizukuda et al., 1999a), it seems that these cells may 

compress themselves to incorporate in the cords and to actively mediate tension at junctions (Fig 

13, Supplemental Movie 4). This would be consistent with our findings of PKCδ directing cell 

contractility (Iwabu et al., 2004), Jamison et al}. These data infer that activation of PKCδ is 

associated with force generation and possibly force mechanics in endothelial cord dissociation. 
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Figure 13.  Figure 13. PKCδ is activated at cord junctions during dissociation 

Immunostain of HMEC endothelial cells formed into cords onto Matrigel treated with 

indicated treatments for 24 hours after cords are formed.   a) Representative images 

through confocal microcopy were selected where immunostained PKCδ and phospho-

PKCδ are indicated by green and orange respectively.  Increased orange/red staining 

indicates that phospho-PKCδ has increased activation.  b) Representative image of PF4 

100nM/VEGF 2.5 nM treated cord that was immunostained with PKCδ and phospho-

PKCδ indicated in green and orange separate images.  Cells were also stained for nuclei 

with DAPI staining represented as blue and actin with phallodin (Alexa-633) represented 

as red. Representative image of a larger sized cord indicates increased effects of force 

translated in the ratio of activated PKCδ to PKCδ.  Arrows of increased phosphorylated 

PKCδ expressing cells indicates positioning of possibly active cells at branch points of 

cords.  

3.3.5 Mechanotransduction of VEGF/PF4 induced cord dissociation is PKCδ dependent  

Cord dissociation involves the coordination of intercellular forces in order for capillaries 

to collapse. Zyxin, a focal adhesion protein that has been previously found to be induced during 

stretch induced response, was utilized to investigate mechanosensory input into the cords as they 

dissociate.  Stably transfected zyxin and PKCδ was increased in Matrigel induced endothelial 

cords in comparison to tissue culture (data not shown).  This finding may indicate endothelial 

cords upregulate force signaling compared to 2D monolayer of cells.  Further investigation of 

zyxin showed that its expression is linked to PKCδ activity, as inhibition of PKCδ caused 

increased zyxin expression in 2D monolayer (Fig 14a).  Furthermore, downregulation of PKCδ 
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with antisense oligonucleotides in formed endothelial cords induced to dissociate through 

PF4/VEGF led to increased zyxin expression (Fig 14b). These data suggest focal adhesions are 

dynamically regulated when force is induced and when inhibited focal adhesions are stabilized 

and contributing to inhibition of cord dissociation.  

 

Figure 14.  PKCδ inhibition stabilized focal adhesions during PF4-VEGF mediated dissociation 

Immunoblot of HMEC monolayer transfected with Dominant negative PKCδ 

(4ug/lipofectamine) prior to treatment PF4/VEGF treatment in quiescence media for 24 

hours.) Live cell fluorescent images of Zyxin expressing HMEC-1 cells that have formed 

cords.   After cords were formed cells were incubated for 5 days with 20 uM PKCδ-sense 

or PKCδ-anti-sense in VEGF 2.5 nM/PF4 100 nM. 

 

To further investigate how cords regulate force, PKCδ localization was also investigated 

during live cell imaging.   PKCδ expression localizes to actively motile areas of the active cord, 

(Fig. 15, Sup. Movie 6).  These data suggest force signaling through VEGFR is being applied 

during dissociation through motility signaling via PKCδ.   By individual endothelial cells 
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inducing dissociation, PKCδ regulation of force is directly involved in cord stability and 

formation.  By its regulation in cord movement, signaling through VEGFR causes PKCδ to elicit 

both static and dissociative regulation of force respectively for endothelial capillary stability and 

dissociation. 

 

Figure 15.  PF4-VEGF force induction that influences PKCδ expression in cords 

GFP-PKCδ /membrane stain (light blue) fluorescence, phase were examined on live 

cords expression on cords after 1 day of incubation in quiescent media as images were 

taken during live cell imaging at 10x objective magnification. Sup Movie 5 was analyzed 

by imaris software utilizing filament tracking program, multi-colored lines represent 

different stages of motion color coded by the time interval.  

 

These data suggest force signaling through VEGFR is being applied during dissociation 

through motility signaling via PKCδ.  By PKCδ driven regulation in cord movement, signaling 

through VEGFR causes PKCδ to increase dissociative regulation of force for endothelial 

capillary stability and dissociation.   
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3.4 DISCUSSION 

PF4 receptor, CXCR3, primarily regulates endothelial capillary dissociation through 

calcium regulation.  Through upregulated calcium levels, this mechanism causes u-calpain 

activation which results in cleavage of focal adhesions for deadherence and increased calcium 

levels also modulates various proteins for cytoskeleton structure (Bodnar et al., 2006).  This 

study investigated VEGFR signaling to PKCδ as a non-direct molecular mediator of PF4 induced 

cord/capillary dissociation. From this study, PKCδ that is regulated by VEGFR\tyrosine kinase 

signaling plays a role in dissociation in PF4 (Fig 12).  Attenuation of cord dissociation through 

inhibition of VEGFR and PKCδ indicates that full dissociation of cords on Matrigel requires 

VEGFR signaling and PKCδ signaling (Fig 12a, Fig. 12b).  VEGFR regulation also mediates 

increased regulation of PKCδ seen in our data with upregulation of PKCδ levels (Fig. 12d). 

PKCδ regulation of contractility through MLC was observed through data in which  antisense of 

PKCδ and PKCα antisense caused MLC downregulation after PF4-VEGF treatment (Fig 12d).   

However the effect of PKCα antisense was less and may partially affect PKCδ activity indirectly 

through an unknown mechanism.   We furthermore decreased dissociation response through 

inhibition of rottlerin by causing the cords to become static and non-motile (Supplemental Movie 

1, 2, Fig 12f).  As motility is essential for cord formation, our data also suggest importance in 

cord integrity (Supplemental Movie 3), that translates to cord retraction and dissociation 

(Supplemental Movie 4).  Activation of PKCδ was also investigated during dissociation in cords.   

The ratio of activated PKCδ to PKCδ was observed increased at junctions in PF4-VEGF treated 

cells (Fig 13). Moreover, some cells that are activated with PKCδ are circular and are centrally 

located at junctions (Fig 13).  It is interesting to postulate whether these cells are functionally 

important in integrating cord force as the cords dissociate or move; further experiments are 
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needed to fully test this hypothesis.   If future data supports this idea, it offers new insight into 

how PKCδ regulates motility and force in the microvasculature.  In this situation, motility and 

force would be essential if these cells act dynamically to integrate with cord motion.   

We furthermore show that cord motility and dissociation is directly linked to PKCδ 

regulation.   PKCδ contribution to dissociation seems to effect plasticity of active movement 

more so than disrupting intracellular junctions mediated by calpains (Fig 12f).    PKCδ have been 

previously found to regulate focal adhesions through its kinase domain and down-regulate focal 

adhesions (Fordjour and Harrington, 2009; Grinnell and Harrington; Harrington et al., 2005)).  

Although this mechanism is not novel for PF4 induced dissociation, previous findings fail to 

attribute contractility as a function of this mechanism to down regulate focal adhesions.  

Although direction interaction of PKCδ to focal adhesion complexes have been found, it may 

also serve to mediate multiple functions in suppressing focal adhesions while up regulating 

contractility through its kinase activity.  However, there is direct regulation of MLC activity 

through PKCδ in which MLC localizes throughout the cytoplasm along stress fibers, as focal 

adhesion and stress fibers are directly linked in the cytoskeleton (Wang et al., 2001a; Wang et 

al., 2001b). From this investigation we show that PKCδ regulates dissociation through VEGFR 

to PLCy1 signaling.  However, it remains unknown of whether force signaling is directing the 

dissociation or recursively responding to force regulation.  Both situations require PKCδ but in a 

different context for full dissociation.  From this investigation, it is also realized that motility 

mechanisms seen in 2d migration play an important role in multi-cellular tissue. Increased 

calcium signaling perpetuates increased contraction and deadhesion (Bodnar et al., 2009), as 

VEGFR signaling is also mediating and directing the precise contractions through PKCδ 

signaling.  Furthermore, these data indicate chemotactic signaling for sprouting and motility 
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regulates this dissociative response through PKCδ, as its capabilities to translocate to cellular 

compartments help mediate this directionality (Jamison, et al.). 

Furthermore, after dissociation has occurred, stabilization of PKCδ may still mediate 

further contraction of cords to form stabilized vessels (Fordjour and Harrington, 2009; Grinnell 

and Harrington; Harrington et al., 2005).  These events fine tune the normal vascular structure 

and provide stabilized signaling for autocrine signaling, as downregulated chemotaxis drives 

vasculature stabilization and formation.  VEGF induced chemotaxis upregulation of PKCδ drives 

destabilization of the vasculature that is responsive to motile signaling.  This is combined with 

extracellular signaling of other molecular mediators and regulation by the stroma.  Furthermore, 

pericytes also regulate the microvascular with force exertion (Lee et al., 2010; Murphy and 

Wagner, 1994) and the study of how pericytes regulate cord stability/dissociation would further 

elucidate how force signaling is modulated in vivo.   

3.5 MATERIALS AND METHODS 

HMEC-1 cell culture--HMEC-1 (human dermal microvascular endothelial cells) were 

obtained from CDC, Atlanta, Georgia.  Endothelial cells were grown in MCDB 131 (Gibco) 

media with 10 mM L-glutamine supplemented and 10% fetal bovine serum. In addition, stable 

cell lines of HMEC-1 cells were also established with neomycin selection (350 ng/mL) of Zyxin-

gfp plasmid obtained commercially from (Origene).  Stable selection of focal adhesion marker     

 

Matrigel Tube formation assay--Cells were grown to 50% confluency prior to seeding 

onto Matrigel.  Matrigel (BD biosciences) was seeded onto u-chamber slide at 10 ul per well or 
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120 uL per well for 24 well plate and incubated for 30 minutes at 37 ͦC for polymerization.  Cells 

were then re-plated onto matrigel at 75,000 cells per well (24 well), 15,000 cells per well (u-

chamber slide, Ibidi) for 24 hours.   Cords were grown overnight in quiescent media 0.5% FBS.  

Afterwards endothelial cords were allowed to dissociate with VEGF-BB growth factor and 

Recominbnat PF4 (PeproTech) that was added at 2.5 nM and 100 nM respectively for 24 hours 

or indicated time points in figure/movie.  Some groups cells were quantified for cord length by 

adding 2.5 uM Cell Tracker Green for better quantification of cords.  

 

Antisense inhibition: DNA oligonucleotides sequence targeting PKCδ and PKCα were 

obtained from the literature () and ordered from IDT adding phopho-thioate bonds at the end 

nucleotides.  Oligonucleotides sense and anti-sense of human PKCδ are 

GTGGCATGATGGAGCCTTTT and 5’TTTTCCGAGGTAGTACCGTG-3’ respectively.  

Oligonucleotide sense and antisense PKCα are 5’-CGGGCAACGACTCCACGGCG-3’ 

respectively.   DNA oligonucleotides at 20 uM were added after HMEC cords were formed in 

quiescence media, and additional antisense was added to the cells via lipofectamine according 

manufacturer protocol.  

Live Cell Imaging—HMEC-1 cells were grown and plated in a 6 well glass bottom plate 

on matrigel as previously described and then put into live cell chamber with (5% O2, 5% CO2, 

90% N2) at 37 ͦC. HMEC cells were imaged for either 7 hours at 30 minute intervals (Movie 1, 2) 

or for 1 hour and 20 minutes at 5 minute intervals (Move 3 and Movie 4).  Size bars are indicated 

in image.   HMEC cells in movie 5 were taken for 4 hours at 15 minute intervals in 6 well glass 

bottom well, cords were induced to dissociate after 3 days of quiescent media, then induced to 

dissociate with PF4 100 nM and VEGF2.5 nM for 4 hours where pictures were taken every 15 
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minutes. 

Immunostaining/Confocal Microscopy—HMEC-1 cells cultured and plated onto 15 well 

u-chamber slides (Ibidi) as previously described. After selected treatments, cells were fixed in 

2% formaldehyde in PBS for 10 minutes.  Cells were then permeabilize with 0.1% Triton-X-100 

in PBS (wash buffer) for 10 minutes.  Afterwards, cells were washed for 30 minutes (3x washes) 

prior to incubation with antibody.  Antibodies were diluted (1:50) for anti-phospho-PKC-

theta/delta (S643/S676)(Cell Signaling) polyclonal rabbit and (1:100) anti-PKCδ (polyclonal 

anti-mouse) in wash buffer with 30 mg of bovine serum albumin and  cells were immunostained 

overnight at 4 ͦC. Cells were then washed for 15 minutes (3x) and  incubated with secondary 

antibody at (1:100) (Alexa-488-antimouse and Alexa-594-antirabbit- LifeTechnologies)  in wash 

buffer/30mg of BSA/5% goat serum, as secondary antibodies were raised in goat. Antibody was 

incubated onto cells for 1 hour at room temperature.  Cells were then washed (3x).  Alexafluor-

633 phalloidin (1:40) in PBS and DAPI (1:10000) was added to cell cells.  Afterwards, cells 

were desiccated for 60’ at RT to decrease matrigel depth (z).  PBS was added to cells for 30 

minutes prior to imaging. 
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4.0  DISCUSSION 

Individual cells regulate force throughout various tissues to provide proper structure and 

function for various physiological and molecular processes.  This study suggests PKCδ as an 

important regulator of motile cellular force through EGFR signaling. As specific localization of 

PKCδ directs force spatially, regulation of force signaling exerted by the cell is primarily 

directed by growth factor signaling.  By creating constructs of PKCδ that increased localization 

to the membrane, we increased specific signaling of EGFR activation to PKCδ through PLCy1 

activity. We found that targeting PKCδ to the membrane increased force to the ECM through cell 

traction force microscopy (Fig 7).  Through this directed cellular localization, it also caused a 

measurable increase in cellular force to the 3D ECM as well (Fig 9).  However, regulation of 

MLC was relatively the same when comparing negative control that is not targeted to the 

membrane (data not shown), as there is slight increase in PKCδ activation.  From these data, 

EGFR signaling to PLCγ1 may actually position rather than initiate activation.  Although, EGFR 

signaling to PI3 kinase may alternatively mediate a more direct role in regulating PKCδ 

molecular activation through PDK1.  These data also suggested that force signaling through 

PKCδ was PLCγ1 dependent   by utilizing EGFR-mutant cell lines that is PLCγ1 activation 

deficient which exhibited response to EGF with reduced force signaling (Fig 7).  These results 

were similar to a previous study demonstrating that these cell lines were deficient of force 

signaling at early time points but also activated force through PKCδ and MLC at later time 
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points with sustained contractility (Iwabu et al., 2004).  This also infers that EGFR signaling to 

PKCδ to regulate force signaling is modulated under more direct cytoskeletal regulators for force 

possibly mediated byPLCγ1 independent pathway such as Rho-GTPASE during sustained 

contractility (Totsukawa et al., 2004).   

4.1  FORCE SIGNALING IS SPATIALLY LOCALIZED 

Through the technique of membrane targeting, PKCδ localization was directed spatially 

closer towards PLCγ1 signaling.  Force signaling that is normally mediated by PKCδ remains 

intact for cell motility. Membrane targeting PKCδ caused increased force towards the ECM but 

restricting maximum speed due to increased adhesiveness.   This is suggested from our data in 

which membrane targeting caused attenuation of cell speed for cell motility (Fig 10).  PKCδ 

localization to the membrane directs the signaling of cell force through RTK signaling   as this 

translocation to mediate signaling is relevant to our understanding of the coordination of cell 

motility.   While lamellipodia and filopodia extending forward during cell motility, the signaling 

for contraction of the cell body is needed to connect towards the lamellipod.  Activation and 

translocation of PKCδ partially mediates this contraction of the cell body towards the 

lamellipodia during 2D cell motility.  Moreover, concomitantly with this process, it is also likely 

that in order for contraction to occur sufficiently, cell force must be initiated from the ECM that 

is connected to the cell membrane.  The membrane may also be utilized in anchoring a molecular 

scaffolds involving PKCδ to direct the location of force signaling.   At the cytoplasm with a less 

diverse milieu of PKC activators, regulation of kinase signaling possibly occurs but is delayed as 

it is not coordinated from the extended membrane of the lamellipod. Alternatively, increased 



 77 

contractility can occur from the membrane through Rho Gtpase signaling.  In both cases, PKCδ 

kinase activity can signal downstream at which retrograde flow of activated pools would then 

direct cell body contraction perinculear where PKCδ accumulates (Fan et al., 2006).  All of this 

process is initiated by EGFR/VEGFR kinase activity.    

This process is dynamic where the leading edge is driven by adherence and persistence 

based on focal contacts (Weiger et al., 2009).  PKCδ signaling was shown to drive protrusions 

but may biophysically orient the cell to the direction of lamellipodia extensions.  However, 

increased membrane targeting may conversely cause increased sensitivity to lamellipodium 

protrusion, at which would decrease persistence due to increased ambiguity of directional 

signaling (Fig. 10).   Instead of directional migration,ambiguous  remodeling of  the provisional 

matrix for proper wound healing may also occur (Allen et al., 2002).  In this context, these 

lamellipodia and filopodia are not only needed for active 3D motility, but also mediate 

compaction of the ECM.  As the lamellipodia and filopodia connect to collagen through focal 

adhesions and integrins, both motile and isometric force are acting simultaneously for 

compaction  (Allen et al., 2002).  

 

4.2  PROJECTED REGULATION OF PKCδ IN 3D ENVIRONMENT FOR 

FIBROBLASTS  

Our experiments to capture PKCδ regulation of force signaling may be modest compared 

to the 3d environment.   Previous findings indicate that cell protrusions in 2D are more relevant 

predictors of how cells migrate in 3D (Meyer et al., 2012).    Furthermore, increased regulation 

of force due to cell extensions/protrusions in a 3D ECM may occur while the cell is supported 

and suspended via these connections to the ECM.  In contrast, the cell is suspended only by 
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gravity, impacting its weight and force signaling on a 2D flat substrate.  The force directed at 2D 

protrusions is projected to be minimal since it is not supported.   In addition, durotaxis signaling 

that correlates with 3D environment could also be investigated through challenging the cells to 

migrate on an adhesive substrate.  When membrane targeted PKCδ expressing cells were 

challenged to migrate on an increased collagen substrate, they were more resilient to increased 

adhesiveness by less deviation in their persistence when challenged (Fig. 10).  This indicates that 

although membrane targeting causes slower cell speed, it has increased adhesiveness to the 

substrate.   

4.3 FORCED MEMBRANE TARGETING OF PKCδ  

To explore the role of PKCδ regulation through PLCy1, the increase of membrane 

targeting was achieved by genetically adding a k-ras farnesylation motif at the c-terminus to 

PKCδ.  To isolate the engineered product, the endogenous PKCδ was knocked-down while the 

human PKCδ was transiently and stably transfected into NR6-WT mouse fibroblast cell lines. 

With transient transfections, many cells would over-express the PKCδ construct with the high 

levels of proteins possibly accumulating and mislocalizing to different cellular compartments. 

Furthermore, overexpression of PKCδ also saturates total levels but not activated levels making 

it difficult for experimental analysis.   

A second confounding variable is that adding a farnesylation moiety increases the 

hydrophobicity of the protein.  This modification may be independent of the regulatory region of 

PKCδ, at which the c-terminus interacts with neither the regulatory region nor the kinase 

domain.  However, this modification may cause changes in PKCδ leading to alternative protein-
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protein interactions to cause the altered phenotype observed.  As previously discussed, PKCδ has 

a number of permissive interactions.  These nonspecific interactions may occur, but it is highly 

unlikely to confound the major hypothesis.  Moreover, multiple experiments (PLC inhibition and 

EGFR deficiency that regulates PLC) show that membrane-targeted PKCδ activation is under 

less stringent regulation.  

One known activator of PKCδ which may play role in EGFR induced signaling is PDK-1.  

By constitutively localizing PKCδ at the membrane, the membrane anchored PDK-1 may 

activate PKCδ in an unregulated manner. This may possibly be the cause of a lower threshold to 

PLCy1 noted with these constructs.  This may factor into PKCδ seemingly constitutive 

activation. 

However, the main pitfall of experimentation but conversely the greatest insight in 

extrapolating PKCδ mediated effects on motility is that membrane targeting does not increase 

molecular MLC activation.  Transiently and stably expressing PKCδ does increase MLC 

activation with the addition of PKCδ, but increase in activation does not occur when PKCδ is 

targeted to the membrane.  From this lack of increase compared to negative control suggests that 

increased membrane localization of PKCδ in itself does not cause increased MLC activation.  

However, membrane targeting induced increased de-alignment in stress fibers.   As discussed 

previously, this could be an indirect effect of increasing cytoskeletal regulation through PKCδ 

activation, or from what I proposed in (Chapter 2) that this membrane targeting of PKCδ causes 

redistribution of MLC activation.  Unfortunately, it would be very difficult to test causative 

interactions, since PKCδ interaction to MLC is not direct but through MLCK.  And to further 

confound rationalizing this molecular pathway in motility, PKCδ interaction to MLCK is not 

direct. To possibly investigate this question with current research tools, is to develop a light-
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activated PKCδ construct and have MLC conformational FRET construct.  As positional 

activation PKCδ with fluorescence light the activation could be linked to MLC status. But this is 

even more artificial than this project, though a positive finding would further confirm that 

localization regulates the alignment of MLC for increased contractility.  

Furthermore, there is also a possibility of testing an indirect effect, where MLC activity 

and distribution may be indirectly affected by PKCδ activation.  To partially circumvent indirect 

effects, this project could further be strengthen by evaluating substrate specificity directly.  

Computational modeling and critical mutations to PKCδ that would alter kinase specificity could 

be generated to determine whether the specificity of MLC in this pathway is specific.  Further 

studies in kinase specificity would be needed by modulating bona fide interactions and 

nonspecific interactions through mutations.  This artificial system would be able to test 

specificity as experimental tools are becoming more available and engineered DNA more 

accessible in addition to the technology of high throughput screening PKCδ construct activity.  

Nevertheless, systems biology and a priori predictions may be an alternative and cleaner way to 

define loosely connected pathways for testing.       

 

4.4  PKCδ MAY NOT BE INVOLVED IN DUROTAXIS SENSING  

For PKCδ regulation of cellular contractility, durotaxis responsiveness/sensitivity may 

not be augmented. To some extent, this may correspond to the rationale of  membrane targeted-

PKCδ expressing cells migrate slower in 2D,  but are better able to withstand a very adhesive 

substrate, necessitating  force signaling to emanate from membrane localized PKCδ to the cell 

body.  Whether PKCδ signaling is connected to contractile units that sense restrictive 

environments during durotaxis is largely unknown. However, increased signaling of  PKCδ to 
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direct force signaling to the ECM may come at a cost that may override a cell’s tendency to 

move at faster speeds/maintain constant deformation (Roca-Cusachs et al., 2013). I speculate that 

PKCδ signaling is working independently of this durotactic sensing, by membrane targeted 

PKCδ results in reduced cell motility.  It is also presumed that if it is a part of durotactic sensing 

that it would increase persistence in a restrictive environment rather than maintaining persistence 

at a constant level.  Regulation of PKCδ in these experiments suggests that its lack of 

responsiveness to adhesiveness may possibly make it independent to durotactic force sensing 

(Plotnikov et al., 2012; Roca-Cusachs et al., 2013).  This may be relevant to the general 

understanding of chemotaxis.   

Downstream of EGFR chemotaxis signaling, fibroblasts must direct force irrespective of 

substrate stiffness in order to migrate appropriately into heterogeneous tissue.  In the wound 

milieu, fibroblasts and other cell types must migrate through ECM that has different rigidity.   

This raises an important experimental question that should be investigated: does chemotaxis 

function above durotaxis during cell migration?  Rationalizing the differences and key molecular 

players in cell migration would fuel pursuits investigating 3D environments, as the differences in 

regulation during 2D migration is more obvious. 

4.5  PKCδ REGULATION OF FORCE ENDOTHELIAL CORDS 

To additionally investigate PKCδ dependent regulation of cellular force, another 

experimental model involving endothelial cells in cords was utilized during dissociation induced 

by CXCL-4 and VEGF.  In human body microvasculature, endothelial cells experience continual 

cell force through either shear stress and pulsatile lamellar flow of force, by which they modulate 

their cytoskeleton to align with these fluid forces (Cucina et al., 1995; Galbraith et al., 1998; 

Imberti et al., 2000).  These cells would also experience increased force during dissociation 
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during the initial stages of angiogenesis.  From this study, PF4-VEGF induced dissociation of 

endothelial cords were in part mediated by PKCδ regulation as this dissociation was also 

mediated by VEGFR signaling (Fig. 12).  Cell motility is important part of vascular sprouting, 

but it is also a part of vascular stability since the vascular must respond to hydrostatic force to 

properly respond to changes in blood flow (Fu and Tarbell, 2013).  As intercellular force is 

mostly directed through intercellular bonds, motile force signaling would modulate permeability.   

Interestingly PKCδ regulates force signaling in this study through motile contractile signaling, in 

which we found PKCδ inhibition decreased this mobility of cords (Fig. 12, Sup Movie S2.1, 

S2.2).  This mobility is linked to the regulation of dissociation, since VEGF signaling mediates 

increased vascular migration and decreases permeability in vessels.  Previously, this study 

investigated PKCδ regulation of cell force through membrane translocation (Jamison et al., 

2013). This ability to translocate, positions PKCδ to modulate force, especially in a quick and 

efficient fashion.  Regulation in this manner may also be essential in competitive regulation of 

vascular sprouting that requires the modulation of VEGFR upregulation in sprouting tip cells 

(Hellstrom et al., 2007).   PKCδ regulation intracellularly may affect these sprouting cells by 

mediating force towards the extended protrusions that sense the ECM as it projects the cell body 

away from the main endothelial cord.  Furthermore, this regulation of endothelial cords as a 

whole, causes cords to collapse through this contraction of the cell body.   This coordinated 

contraction causes vessels or cords to involute, shifting cell distribution in the vessel or cords at 

branch points as a result of retraction.  Involution of the original vessel may serve as a source for 

increased cells at branch points, where new vessels can reorient themselves more towards 

chemotactic signaling.  Furthermore, we found that this force signaling translate to increased 

focal adhesion activity, as PKCδ inhibition caused increased upregulation of Zyxin that is 
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mechanotransduction regulated (Fig. 15).  From these data, it is concluded the cell body and 

membrane/focal adhesions are affected by PKCδ activity to translate force to the ECM. 

 

4.6  DUROTAXIS REGULATION OF ENDOTHELIAL CORDS ON 

SUBSTRATE/STROMA 

 In addition, our findings also show that endothelial cords exert force onto the ECM 

during live cell imaging, even in non-treated cords.  These data suggest the ECM is not just an 

important scaffold and reservoir of growth factors to modulate endothelial cords, it is also a 

regulator of durotactic signaling.  Endothelial cords exert force onto the Matrigel ECM, which is 

a soft substrate that deforms considerably.  Previous findings have shown that soft substrates, 

affect the differentiation of many cell types (Evans et al., 2009).  Force that is exerted on the 

substrate actually may be another form of signaling through durotaxis that coordinate cells 

spatially in the vasculature/cords (Heo et al., 2011; Teh et al., 2011, 2013).  The leading 

endothelial cells can also digest and secrete the ECM, guided similarly to juxtacrine signaling 

through ECM modulation.    Thus, this facilitates the migration and capillary formation of 

endothelial cells that receives these signals.  However, PKCδ is only contributing to force 

regulation and not durotactic signaling.   Dissociation that is induced by VEGF would reorient 

this ECM tracking behavior of endothelial cells, as this is required for angiogenesis to form new 

sprouting capillaries that are channeled towards the chemotactic signaling.  Downstream of 

VEGFR signaling, PKCδ regulates force in cell migration.  It is postulated that dual function of 

PKCδ stabilizes vascular permeability by orienting ECM mediated stress fibers, which would 

conversely place the pathway critical for contributing to the disorganization of stress fibers in 

response to VEGF.  These events that channel ECM deposition (Yates et al., 2011) may also 
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channel durotactic force on the ECM to modulate new orientations of capillary formation.    

Mechanisms of how force signaling drive this process would have to be elucidated. 

4.7 MULTIPLE TASKS OF PKCδ MAY BE LINKED INFLUENCING 

DIFFERENTIATION  

PKCδ has been implicated in regulating differentiation in keratinocytes (Joseloff et al., 

2002), as cells may differentiate through force signaling by PKCδ. Regulation of the 

cytoskeleton may be a part of mediating differentiation in multiple cell types through PKCδ.   

Moreover, complicated involvement of PKCδ regulation of vesicular trafficking, is being 

attributed to mediating differentiation in many cell types.   

4.7.1 PKCδ regulation of Exocytosis  

It is known that PKCδ regulation directly influences trafficking, as first seen through 

EGFR attenuation of signaling (Wells et al., 1998).   Additional studies, are correlating this 

regulation of exocytosis in the effects in bone metabolism, granule exocytosis, to differentiation 

(Cremasco et al., 2012; Ma et al., 2008).  PKCδ regulation of force signaling and chemotactic 

motility may coordinate both cytoskeleton signaling with vesicular trafficking for exocytosis in 

certain cell types.  Furthermore, in osteoclasts PKCδ has been known to regulate remodeling by 

regulating exocytosis through cathepsin K (Cremasco et al., 2012).  In lymphocytes, PKCδ 

functions in exocytosis during lytic granule exocytosis utilized by CD8+ CTL in response to 

intracellular pathogens (Ma et al., 2008).  Although different from the wound bed, these 
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functions correlate with fibroblasts functions of secreting the collagen ECM.  A direct link 

between chemotactic signaling through growth factors and contraction of the ECM would be 

interesting as PKCδ may be a central player of both.  Furthermore, as PKCδ mediated exocytosis 

may affect autocrine signaling, it may also be correlated to the release of factors necessary for 

appropriate differentiation of cells in the tissue. Furthermore, as new studies implicate PKCδ in 

additional roles, its cytoskeletal regulation may overarch other functions in the cell. These 

functional studies also highlight the need for analysis of signaling proteins such as PKCδ that has 

broad downstream effectors but converge and coordinate functions.  As PKCδ was successfully 

investigated through a systems biology approach, it is very likely that this approach is needed to 

also fully characterize multi-specificity kinases.  

4.8 FUTURE EXPERIMENTAL DIRECTIONS 

PKCδ has been implicated in numerous pathways that possibly converge on one another 

in signaling and functionality.  Additional studies are needed to investigate the exact 

consequence of PKCδ localization as it relates to receptor internalization.   Furthermore, studies 

are also needed to investigate how vascular pruning is directed through cheomtactic signaling.  

Active motility signaling in the microvasculature through PKCδ may also involve pericyte 

regulation of vessel stability.  Further investigation of how this occurs during normal and 

pathological angiogenesis would also be of interest to pursue.   This project’s investigation of 

cord mobility highlights that migration does not stop when the cells are coalesced in a capillary.  

Migration does occur in intact capillaries/cords and further study is needed in how it is 

implicated in vessel stability in different systems.   



 86 

It is also essential that PKCδ along with its family members undergo a thorough pathway 

analysis, considering additional parameters of localization and asymmetric signaling in cells.  

But as computational software advances with more powerful informatics algorithms, it may even 

be more advantageous to pursue pathway analysis of how the PKC family functions converge or 

diverge from lower to highly evolved organisms. As this family of kinases is highly conserved in 

addition to multiple functionality of each of its members, investigating the evolution/progression 

of the family’s functions may help to understand more comprehensive implication of signaling. 

Integrating the analysis of this type of study wound increase the knowledge of how PKC is 

functioning in the cell.    PKC function may also be compared across multiple cellular lineages.  

Fibroblast utilization of PKCδ may be similar to lymphocyte utilization of PKCδ during rolling 

adhesions.  This type of study may be helpful in getting a grasp of how PKCδ signaling translate 

to multiple cellular functions.  Translational research would require inhibition/activation of a 

particular PKCδ mediated function to avert a pathological phenotype.  Translational research 

utilizing this approach would extrapolate defined signaling from a complex multi-signaling 

pathway.   This would become especially essential in designing therapeutics in complicated 

disease processes such as wound healing.   

Knowledge that PKCδ regulates force in an RTK dependent manner may help in 

advancing strategies for therapies in various diseases such as wound healing requirements of 

PKCδ regulation of force.   
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4.9 FUTURE CLINICAL APPLICATIONS 

4.9.1 Clinical Applications in Wound Healing 

Wound healing is a very dynamic and complex process for regeneration in which exogenous 

addition of growth factors have been largely unsuccessful in correcting scarring and failure to 

heal (Yates et al., 2012).  As a model for almost perfect wound healing early gestation in-utero 

wound healing leads to regeneration, whereas late utero into adulthood, wound healing leads to a 

scar, with increased severity of scar with gestational age (Yates et al., 2011).  The difference in 

the wound fibroblasts in-utero vs. adult is drastically different wherein fetal fibroblasts have 

reduced force exertion but with increased chemotactic response to EGF.  This appears 

superficially to be conflicting since EGF is supposed to increase the signaling of force exertion. 

However my study supports the hypothesis that PKCδ may be regulated at reduced levels during 

fetal wound healing in fibroblasts.  However, due to the complexity of signaling through EGFR 

(which is increased in the fetus), force regulation may be reduced only to a lower threshold of 

EGFR mediated regulation of motile signaling.  Moreover, EGF stimulation would require a 

lower threshold to stimulate force through a less restrictive matrix environment in the fetus 

(Yates et al., 2012).  Unpublished data also suggest that levels of membrane-targeted PKCδ were 

drastically lower in cells that were in a 3D collagen matrix compared to non-membrane targeted 

PKCδ expressing stable cells.  In one perspective, this may indicate that the feed-forward 

mechanism of progressive contraction does not necessitate higher PKCδ or even MLC levels.  It 

was also previously shown that contractility is modulated in biphasic manner with lower levels 

of activation of MLC for efficient contractility during haptokinesis (Kharait et al., 2007).  

Nevertheless, PKCδ regulation in fetal fibroblasts must be investigated.  Furthermore, it is 
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known that a stiffer matrix supports increased myofibroblasts differentiation and increased 

scarring (Yates et al., 2011).  It would even be more interesting if wound healing was dependent 

on matrix stiffness and composition, since in scar-less wound healing, the fetal ECM is not 

mature and has a less stiff matrix (Yates et al., 2012).    

With knowledge that wound healing may be affected by having a less stiff matrix, 

additional investigation, including epidemiological, is needed on prophylactic skin care.  To date, 

there is no published studies on whether increased utilization of skin care products (lotions, 

serums, etc.) to soften and hydrate the epidermis have an effect on wound healing in humans.  In 

addition, it is not known whether the stiffness of the dermis impacts the epidermis as far as 

wound healing.  Knowledge of the parameters of chemotaxis and durotaxis would help in the 

design of ECM scaffold stiffness, to graft in the wound bed.   

 Translational research in wound healing treatment would possibly need to 

consider scaffold compliance and also its ability to be modulated by fibroblasts (especially if 

growth factors are added to scaffold). Experimental extrapolation of force through proposed 

PKCδ activity may help in bioengineering a substrate tensile stiffness which would optimize the 

survival and differentiation of cells in efforts to reproduce tensile stiffness of the dermal ECM.  

As the design would implement chemotaxis, normal cells would graft into the scaffold through 

migration.    

Negative pressure therapy is also another aspect in wound care management that utilizes 

force.  The appropriate tension applied through this therapy to stimulate a robust response of 

migration into the wound may be critical in optimizing this therapy.  This study may help in 

extrapolating the pressure need to facilitate appropriate cell response to force as they exert force 

during chemotaxis.   
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 In sum, the effects of skin stiffness on wound healing, and conversely the results 

of increased cell contractility on wound outcome hold promise for novel approaches to limit 

scarring while improving healing.  

 

APPENDIX 

A.1 ABBREVIATIONS 

ACN-4 – α-actinin-4 

ATP – adenosine thriphosphate 

Cdc42 – cell division cycle protein 42 

COL - Collagen 

CXCL4 – CXC ERL+ 4 (chemokine) 

CXCL10 – CXC ERL+ 10/IP-10 (chemokine) 

CXCL11 – CXC ERL+ 11/IP-9 (chemokine) 

E-cadherin - epithelial cadherin 

ECM – extracellular matrix 

EGF- epidermal growth factor 

EGFR – epidermal growth factor receptor 

FAK-focal adhesion kinase 

FBS – fetal bovine serum 

FN - Fibronectin 

GAPDH – glyceraldehide-3-phosphate dehydrogenase 
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GF- growth factor 

GFP-green fluorescent protein 

HB-EGF- Heparin bound- Epidermal Growth factor 

KO-knock-out 

MLC – myosin light chain 

MLCK – myosin light chain kinase 

PDGF-Platelet Derived Growth factor 

PDK1- phosphoinositide dependent kinase-1 

PIP2 - Phosphatidylinositol 4,5-bisphosphate 

PIP3 – Phosphatidylinositol 3,4,5-trisphosphate 

PF4- Platelet factor 4/CXCL4 

PLCγ1- Phospo-lipase- γ1 

Rac – Ras-related C3 botulinum toxin substrate 

Ras – Rat sarcoma oncogene 

Rho – Ras homolog 

ROCK – Rho associated kinase 

RTK- receptor tyrosine kinase 

TGF-β – tumor growth factor β 

VEGF- vascular endothelial growth factor 

VEGFR- Vascular endothelial growth factor receptor 
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