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SIMULTANEOUS POPULATION AND DOSE SELECTION IN CLINICAL

TRIALS AND CLUSTER VALIDATION

Siyu Li, PhD

University of Pittsburgh, 2014

In clinical trials, the population of interest may be heterogeneous with regard to a subject’s

protein expression level, genotype, or other characteristics, e.g., age or initial disease severity.

In particular, there can exist a subpopulation of subjects with certain characteristics that

are more sensitive to the targeted agents. Wang et al. [68] suggested a two-stage design

involving subpopulation enrichment along with a sample size adaptation in the second stage

when evaluating the treatment effects on the overall population and the subpopulations.

An important component of drug development is to select the minimum effective dose

(MED). Multiple comparisons and adaptive designs have been used for dose selection, typi-

cally in Phase 2 clinical trials.

In this research, we consider Phase 2 clinical trials with multiple populations and multiple

doses. We propose methodologies for both non-adaptive and adaptive designs to select the

most desired dose and population to enter the Phase 3 confirmative clinical trials. A testing

scheme is established under the closed testing principle to strongly protect the familywise

type I error rate for the population and MED choice for both non-adaptive and adaptive

designs. Flexible test orderings are considered in order to achieve the largest power for a

variety of study goals.

In related research for post-mortem tissue studies where we again study the heterogeneity

of a population, we externally validate a previous subpopulation finding in a schizophrenia

population. Previous research of ours had suggested a subpopulation of all individuals di-

agnosed with schizophrenia [66]. This subpopulation was termed the low GABA marker
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(LGM) cluster. A new study was undertaken to validate these findings. In our research we

first extend the classification approach proposed by Kapp and Tibshirani [27] and apply it

to the validating data set. Then we apply the clustering analysis, as used in the previous

research, on the validating data set and the combination of the defining and validating data

sets to again demonstrate that the LGM finding is valid.

Keywords: population selection, dose selection, partial enrichment, adaptive design, cluster

validation.
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1.0 INTRODUCTION FOR DOSE AND POPULATION SELECTION

1.1 BACKGROUND AND LITERATURE REVIEW

1.1.1 Subpopulation Study

With the rapid development of molecular biotechnologies and genomic technologies, such as

IHC (ImmunoHistoChemistry) test, FISH (Fluorescence In Situ Hybridization) test, SNP

(Single Nucleotide Polymorphism) genotyping and microarrays, etc., researchers are more

aware that populations of interest in clinical trials are not homogeneous. Subjects are hetero-

geneous with regard to differing levels of protein expression and various genotypes that they

carry. Certain recent studies have shown that there can exist a subpopulation of subjects

with certain characteristics that are more sensitive to targeted agents. For example, breast

cancer subjects with c-erbB-2 gene overexpression had significantly longer survival times

under a high-dose regimen of adjuvant chemotherapy [43]. Metastatic colorectal cancer sub-

jects with wild-type K-ras gene are more sensitive to cetuximab treatment compared to the

subjects with a mutation in K-ras [30]. Furthermore, in general, disease severity levels and

the baseline properties further contribute to the heterogeneity of the treatment responses

of the population of interest. For example, antidepressant drug effects are related to initial

severity, with the benefit increasing with the initial severity of depression [31]; [17].

There are marketed drugs that are specifically targeting subpopulations of sensitive sub-

jects. For example, Iressa R© (gefitinib) is used for treatment of adults with non-small cell

lung cancer with activating mutations in EGFR-TK (Epidermal Growth Factor Receptor-

Tyrosine Kinase). Zelboraf R© (vemurafenib) effectively treats metastatic melanoma subjects

who have BRAF V600E gene mutation. Herceptin R© (trastuzumab) is indicated to actively
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treat metastatic breast cancer subjects who over-express HER2 (Human Epidermal growth

factor Receptor 2) protein [3] [4]. Erbitux R© (cetuximab) is an effective treatment for col-

orectal cancer that has metastasized based on the absence of K-ras gene mutation [36] [12].

The sensitive subpopulations are identified based on classifiers. In some settings, the

classifiers can be fixed at the beginning of the study. The new techniques for gene sequencing

have greatly helped physicians to know subjects’ genotypes and protein expression levels. For

example, the number of HER2 genes in the cancer cells can be measured by the FISH test;

the amount of HER2 protein on the surface of cancer cells can be measured by IHC test; and

K-ras mutations can be detected by simple, robust, and sensitive gene sequencing methods

[44]. The U.S. Food and Drug Administration (FDA) has approved the therascreen KRAS

RGQ PCR Kit to obtain information about the K-ras mutation in metastasized colorectal

cancer subjects, which is the first genetic test that has been approved by the FDA. Classifiers

based on baseline properties, such as age, disease severity and blood pressure can be obtained

before treatment as well.

In other settings, the classifiers can also be adaptively defined, which means they are

developed during the trial based on the data available at an interim analysis [72]. Freidlin

and Simon [18] proposed the signature design, which is conducted in two stages and the

classifiers are determined based on the Stage I data. The treatment effects are tested at the

final analysis for the overall population as well as for the selected sensitive subpopulation

accrued in Stage II. Their design is intended for high-dimensional data, such as microarrays,

where thousands of genes were measured but only a few might be used to identify a sen-

sitive population. Jiang et al. [26] proposed a similar design where the classifier is based

on continuous biomarkers, for example, protein expression levels and blood pressure. The

procedure estimates a cutoff value of the biomarker based on Stage I data and consequently

defines the sensitive subpopulation. The treatment effects are evaluated on both the overall

population and the sensitive subpopulation at the end of the study.

In this dissertation, we consider biopharmaceutical clinical trials where the sensitive

subpopulations are identified by fixed classifiers, which are well defined before the study.

The true proportion of a sensitive subpopulation to the overall disease population cannot

be known precisely. However, using numerous datasets from various sources, these propor-
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tions can be in many cases be accurately estimated. In the United States, there are HMO’s

(Health Maintenance Organizations) and the VA (Veterans Administration) that maintain

large pertinent computerized databases. The vast data in these managed care database

systems are rich sources to study the characteristics, proportions and distributions of pos-

sible subpopulations [33]. The WHO (World Health Organization) also maintains Global

InfoBases for worldwide population epidemiology data and for chronic diseases and their

risk factors, which can serve as a good source to estimate the proportion of a subpopulation

based on baseline properties [11] [46]. For example, the proportion (global and for each

area) of subpopulations with diabetes and the proportion (global and for each area) of sub-

population with hypertension have been obtained from the WHO Global InfoBse [1] [28].

Meta-analysis can also be used to estimate the proportions of subpopulations by combining

information from multiple studies. For example, the obesity proportion is obtained based on

databases from various sources which cover approximately 88% of the world population [29].

Another example would be the proportion of a specific gene expression or gene mutation.

Numerous studies have been conducted on the subpopulation with HER2 overexpression.

Based on such databases and studies, it is reasonable to assume that the proportions of the

subpopulations defined by widely-studied classifiers are constants. This assumption is used

in the proposed designs we develop.

Traditionally, the treatment effect is evaluated on either an unselected overall population

or a sensitive subpopulation in a clinical trial, with the intended population being defined

in the protocol [41] [56] [19] [22]. If the subpopulation, in which it is more likely to show an

effective drug effect, is identified a priori and investigated, then such a subpopulation is called

an enriched population. There are various designs for such populations and studies which are

generally termed enrichment designs [61]. Sometimes the assessment of the treatment effect

in the subpopulation is post hoc, where the subpopulation analysis is conducted after the the

clinical trials find no positive overall treatment effects [10] [47]. The FDA rejects such post

hoc subpopulation analyses due to the risk of spurious results [38]. Moreover, when multiple

comparisons in subpopulation analyses are not appropriately performed, the probability of

false positive findings can be substantial, and therefore may lead to approval of drugs that

are not effective [21] [67]. Methods have been proposed to assess the overall treatment effect
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and the treatment effect on the sensitive subpopulation in one trial [72] [26] [58].

In order to accelerate drug development, the FDA is encouraging development of adaptive

designs with more flexibility, which promise quicker results and smaller trials [65]. Adaptive

designs have been used for assessing whether there is a drug effect in the overall population

or in the subpopulations [54]. However, due to multiple hypotheses being potentially tested

for different populations and the adaptive nature of the study, one major concern is how to

protect the FamilyWise Type I Error Rate (FWER) in the strong sense. The strong control

of FWER is defined by Hochberg and Tamhane [23] as “the probability of making one or

more false discoveries, or type I errors among all the hypotheses when performing multiple

hypotheses tests”. The FDA (2010) stated in the draft guidance for adaptive design clinical

trials for drugs and biologics that “The chief concerns with these [adaptive] designs are

control of the study-wide Type I error rate ...”. Russek-Cohen and Simmon [54] presented

a novel two-stage adaptive design that incorporated a test for a subpopulation. However,

they did not prove strong control of FWER for their design. Rosenblum and Van Der Laan

[50] proposed a procedure based on Russek-Cohen and Simmon’s work, and they modified

the design such that FWER was strongly controlled. Zhao et al. [72] proposed an adaptive

design called the feedback procedure in clinical trials with a sensitive subpopulation, and

showed their procedure strongly controlled for FWER. Song and Chi [58] proposed a method

for testing both the overall and subpopulation hypotheses with strong control of FWER and

also having an optimal power property. Wang et al. [69] proposed a design where the

non-sensitive subpopulation was dropped after Stage I and the hypothesis was focused on

a single population or subpopulation. Wang et al. [68] considered a setting with two fixed

binary classifiers. The subpopulations were defined in the protocol, and were nested, i.e.,

subpopulation 1 is nested in subpopulation 2, and subpopulation 2 is nested in the overall

population. The authors proposed a two-stage adaptive enrichment design involving a second

stage sample size adaptation.

Beyond the difficulty of strong controlling the FWER, there are other challenges for

these proceeding noted adaptive enrichment designs. One is that the results are hard to

interpret in that the drug effects are evaluated on certain subpopulations. Also, because

of the enrichment of the subpopulation, the treatment effect for the overall population is
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usually estimated with bias [68]. The FDA (2010) stated that “The chief concerns with

these [adaptive] designs are ... minimization of the impact of any adaptation-associated

statistical or operational bias on the estimates of treatment effects, and the interpretability

of trial results”. For example, the study proposed in Wang et al. [68] failed to provide

unbiased estimators of the drug effects for the overall population if the subpopulations were

enriched in Stage II. The challenges also come from the lack of testing the interactions of drug

effect within the subpopulations and the overall population. Simon and Wang [57] suggested

that if effectiveness was established only on the subpopulation, then the conclusion of the

study should avoid the overall population.

1.1.2 Dose Selection

Clinical trials that involve new drug development typically have four phases, commonly

known as Phases 1, 2, 3 and 4. After the pharmacodynamics and pharmacokinetics of

the drug components have been studied, the candidate drug will be tested on humans for its

efficacy and safety in Phase 1 clinical trials. The most common objective of traditional Phase

2 clinical trials is to find a dose (doses) of a drug candidate that is (are) both efficacious

and safe. Phase 2 also defines the population on which to study drug. These studies are

often designed with small or moderate sample sizes, and they are usually short-term. The

dose (doses) selected in Phase 2 is (are) used in the Phase 3 clinical trials. Phase 3 clinical

trials are confirmatory studies and the objective of Phase 3 trials is to verify the established

findings from the earlier stages. Certain Phase 3 trials can be long-term that can last up

to several years and large numbers of subjects being recruited. If the drug candidate is

shown to be efficacious and safe through Phase 1, 2 and 3 of the clinical trials, a new drug

application will be filed to the FDA for the approval of the drug. After the drug goes on the

market, there can be post-marketing studies, which are called Phase 4 clinical trial. [64]

Phase 2 trials are usually designed to compare one or more doses of the drug candidate

against placebo (or active control that we want to show superiority to). Typically, these

studies are designed with parallel treatment groups with fixed doses and placebo. In com-

mon cases, the goal is to find the Minimum Effective Dose (MED) of the candidate drug.
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MED is defined as ”the lowest dose producing a clinically important response that can be de-

clared statistically, significantly different from the placebo response” (See Ruberg [52] [53]).

Multiple comparison methods or modeling approaches are typically used to analyze the trial

results. Various multiple comparison procedures have been developed based on contrasts

of the treatment group means [51] [15] [34]. Step-down multiple comparison procedures are

widely used based on the closure principle proposed by Marcus et al. [39], thereby preserving

the FWER. Multiple comparison procedures treat dose as a qualitative factor, and no as-

sumption about the underlying dose-response model needs to be made. Therefore, multiple

comparison procedures are relatively robust to the underlying dose-response distribution.

Model-based approaches, on the other hand, assume a parametric model for the relationship

between response and dose, where dose is considered as a quantitative factor. Sometimes,

the toxicity is further evaluated in Phase 2 trial, and model-based approaches can be used

for dose-finding based on efficacy-toxicity trade-offs [62].

There is substantial literature proposing methods on adaptive designs, which modify the

trial design and/or statistical procedures during the study based on the observed interim

data [8]. Adaptive dose finding designs are widely used in Phase 2 clinical trials to identify

MED and/or MTD. Bauer and Rohmel [6] suggested an adaptive design for establishing

the relationship between response and dose. Zhang et al. [71] proposed an adaptive dose-

finding design that incorporates both efficacy and toxicity assessment. Sampson and Sill [55]

proposed an adaptive design concerning dropping the inferior treatment groups. Sample size

re-estimation designs are another widely studied adaptive designs. Proschan and Hunsberger

[48] suggested a method of re-estimating the sample size of Stage II based on conditional

power. Based on Proschan and Hunsberger’s work, Liu and Chi [37] developed an adaptive

sample size adjustment design dealing with smaller than anticipated effect size. Hung et al.

[24] proposed a sample size modification based on an interim review of effect size.

Although there is previous research focusing on selecting the sensitive populations or

finding the effective/safe doses, however, there appears to be little research dealing with

simultaneously dose and population selection. In this dissertation, we want to propose non-

adaptive and adaptive designs of simultaneous population and dose selection in one study.
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1.2 RESEARCH OVERVIEW

In our research, we consider settings where the classifier is pre-specified and the subpop-

ulations are nested, as in Wang et al. [68]. We focus on one subpopulation cases in this

dissertation while briefly introducing the extension to multiple subpopulations cases. More-

over, we consider trials where the follow-up time is relatively short so that adaptive designs

are feasible. We consider evaluating treatment effects for each does on every subpopulation

as well as the overall population. Our research focuses on designing studies to evaluate

the treatment effects of each dose on both the subpopulations and the overall population,

and finding the most desirable dose and population combination, while controlling FWER’s.

While our main purpose is developing adaptive designs to accomplish this, we also examine

fixed sample size designs.

In this dissertation, we first introduce the objectives of these dose and population se-

lection studies in Section 2.1. Then we discuss the challenges of designing such studies in

Section 2.2.

In Chapter 3, we focus on the two dose and two population case, where the possible

sensitive subpopulation is nested in the overall population. We propose a non-adaptive

design to simultaneously pick the desired population and the MED, and we also provide the

statistical methodologies for analyzing the data collected from such designs. The design of

the study is introduced in Section 3.1.1, and the assumptions are discussed in Section 3.1.2.

In order to strongly control the familywise type I error, we construct the testing schemes

under the principle of closed testing, which is carefully described in Section 3.2.1. There

are various testing schemes that can be constructed under the principle of closed testing

procedures. We illustrate one such testing scheme and its corresponding decision rule as an

example in Section 3.2.2. We also propose general testing schemes and their decision rules in

Section 3.2.3. After we build a closed testing scheme, we illustrate in Section 3.3 how each

hypothesis in the testing scheme can be tested using ideas of Follmann [16]. Because there

are various orderings of the proposed testing schemes, we show how simulation studies allow

us to choose an appropriate test ordering based on the study objectives and the beliefs of

the drug effects in Section 3.4 . In Section 3.5, we show how to extend the two population
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and two dose cases to three population and three dose cases.

In Chapter 4, for the two dose and two population settings, we propose two adaptive

designs. The first adaptive design (Section 4.1) considers a second stage sample size ad-

justment and the second adaptive design (Section 4.2) allows both a second stage sample

size adjustment and a second stage subpopulation sampling proportion adjustment. Both

adaptive designs are fully developed and analyses that strongly control FWER are given.

Limited simulation results are presented in Section 4.3 to show the characteristics of the

adaptive designs.

In Chapter 5, we present auxiliary material concerning identifying possible subpopula-

tions based on post-mortem studies in schizophrenia. Previously, we have identified a cluster

of schizophrenia subjects that consistently express lower GABA marker mRNA levels [66].

A second dataset was to be made available due to these findings, and this motivates us to

consider approaches to see if a previously identified cluster is still present in a new dataset.

In other words, we want to show whether the previously found cluster is valid. A review of

previous study and study goal is provided in Section 5.1. We review the motivating data in

Section 5.2. Cluster validation in new data sets is discussed by Kapp and Tibshirani [27],

which we review, as well as other related literature (Section 5.3.1). We propose to extend

Kapp and Tibshirani’s classification approach to make the procedure more appropriate for

our purposes (Section 5.3.2). The proposed cluster validation procedures is applied to our

motivating data (Section 5.3.3). We also directly apply the cluster analysis approach, as used

for the previous data set, to the validating data set or the combination of the motivating and

validating data sets to again show the cluster findings (Section 5.4). Summary of findings

are provided in Section 5.5.

In Chapter 6, we provide conclusions and possible future research directions.
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2.0 OBJECTIVES AND CHALLENGES FOR DOSE AND POPULATION

SELECTION

2.1 GOAL

Consider a Phase 2 clinical trial where the drug effects of multiple dose levels on multiple

populations are to be evaluated. After the trial, a decision is made regarding which dose

and which population proceeds to the Phase 3 clinical trials.

Previously proposed methods for designing Phase 2 clinical trials and analyzing the

collected data focused on either finding a dose in one homogeneous population or finding

a population with the fixed dose in a single trial. We want to develop methodologies of

selecting dose and population simultaneously within one trial.

The goals of such studies vary, depending on what the biopharmaceutical companies

want to achieve, e.g., aiming at approval of the drug no matter the population, or marketing

to the largest population, all in the context of the drug’s properties, e.g., severe side effects

when doses are too high. Here, we describe three reasonable company objectives.

1. Identify any dose and population combination.

When there is no concern about adverse effects of the highest dose under study, it is

reasonable for the pharmaceutical company to consider the trial a success if the treatment

effect on any dose and population combination is shown to be effective.

2. Identify the largest population where there is at least one dose effective and

the MED for that population.

Sometimes, the pharmaceutical companies want to have as large a market as reasonable.

As a consequence, our primary goal is to identify the largest population possible where
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there is at least one effective dose for this population. Our secondary goal is that for this

population, we want to find the minimum effective dose. This is because the side effects

are expected to be lower at lower doses, as well as less severe.

3. Identity the lowest dose which is effective on at least one population and the

largest population corresponding to this dose.

Sometimes, the drug might have severe side effect at high doses for the overall population

or a subpopulation. For example, the anti-coagulant drug, Coumadin R© (warfarin), which

reduces blood clotting, is reported to have severe adverse effect in the elderly people.

Hylek et al. [25] reported that subjects over 80 years old are especially susceptible to

bleeding complications. Thus for such drugs, we’d like to avoid the high doses, and prefer

low doses even if the low doses only work on a sensitive subpopulation. Therefore, the

primary goal is to find the lowest dose which works for at least one population, and the

secondary goal is to find the largest population for this dose.

2.2 CHALLENGES

A major challenge is how to find the most desired population and dose corresponding to

the study goal. The study goal will be described in details in Section 2.1, from which we

will see that the study goal varies from study to study. For example, the primary goal can

be finding the largest population or finding the lowest dose. Obviously, there is no unique

testing procedure that is best (largest power for the desired dose and population) for every

study goal. We want to address this challenge by designing flexible testing schemes such

that the testing schemes are easy to be modified in order to perform best for each specific

study goal.

Another challenge of such multiple dose and multiple population studies is how to

strongly control the familywise Type I error rate. In a study, the treatment effect of each

dose in each population is compared with the controls from the same population. For an L

dose (excluding control) and M populations problem, there are L∗M contrasts to be tested,

i.e., comparing the drug responses of Dose i in Population j with controls in Population j,
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where i = 1, 2, · · · , L, j = 1, 2, · · · ,M . Appropriate multiple comparison procedures are

required in order to test all the treatment effects without inflating Type I error.

Sometimes the proportion of the subpopulation to the overall population is small. For

moderate sample sizes, there are relatively few subjects that are from the subpopulation.

Thus, we don’t have large power for testing the treatment effects on the subpopulation.

Enrichment designs have been proposed previously, where all subjects are selected from the

subpopulation due to small sample sizes. However, the enrichment studies only focus on the

subpopulation of interest, and the treatment effect of the overall population is not evaluated.

One possible solution is that we may partially enrich the subpopulation, which means we

pick a larger proportion of subjects from the subpopulation than the true proportion, so

that there will be enough subjects from the subpopulation. However, the sample of a partial

enrichment design is not representative of the true population, and we won’t be able to obtain

an unbiased estimator of the drug effect for the overall population. In this dissertation, we

want to partially enrich the subpopulation, while maintaining unbiased estimators of the

drug effects for the subpopulation and the overall population.

It is a challenge how to conduct the study adaptively. Adaptive designs are more flexible,

with quicker results, smaller sample sizes or larger power. In these population and dose selec-

tion studies, possible adaptations include increasing the second stage sample size, increasing

the proportion of subjects selected from the subpopulation, and dropping a dose/doses after

examining the interim data. When adaptive designs are conducted, it is important to pay

attention to controlling the study-wide type I error.
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3.0 NON-ADAPTIVE DESIGN FOR TWO DOSES AND TWO

POPULATIONS

3.1 THE PROBLEM SET UP

3.1.1 Notation and The Design

Consider one binary indicator I. The indicator can be a genotype (e.g., KRAS gene mutation

versus no mutation), or protein expression levels (e.g., over-expression of HER2 protein versus

normal expression), or a baseline covariate (e.g., age < 80 versus age ≥ 80), or the initial

disease severity (e.g., severe depression versus mild or moderate depression), etc. The study

subjects can be classified prior to sampling into one of the two mutually exclusive subsets

I+ and I−. In the study, we are interested in assessing the drug effects in two populations:

the overall population and the subpopulation with positive indicator, I+.

Denote the two populations of interest by GA and GS, where GA is the overall population,

and GS is the subpopulation with I+. Also denote GS− as the compliment population with

negative indicator I−. The subpopulation GS and the compliment population GS− are both

nested in the overall population GA, and the compliment population consists of all subjects

that are contained in GA but not contained in GS. Denote the populations by Gl, where

l = A, S, S−.

Suppose the proportion of the subpopulation GS out of the overall population GA is

known, as described in Chapter 1, and is denoted by f . Since the subpopulation and the

complimentary population are mutually exclusive, the true proportion of the complimentary

population GS− is (1−f). Suppose in our study design, the proportion of subjects in the sam-

ple that will be selected from the subpopulation GS is chosen to be g, 0 < g < 1. Therefore,
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the proportion of subjects that will be selected from the complimentary population GS− is

1−g. When g = f , that indicates that the sample has “true” proportion of subjects that are

from each population; g > f indicates that the subpopulation with I+ is partially enriched;

and g < f indicates that the complimentary population with I− is partially enriched.

Usually, there are more than 2 dose levels being considered in clinical trials. Further-

more, there might be more than 2 population levels. However, for simplicity and illustrative

purpose, we are going to consider 2 population and 2 dose case to demonstrate our pro-

posed methodologies for trial design and data analysis. Extending our 2 population and 2

dose case to multiple population and multiple dose cases is notationally complex, while the

methodologies of study design and data analysis are similar. The extension will be discussed

in Section 3.5.

Suppose the 2 dose levels of interest are Low and High. There is a control group as well,

receiving placebo (or active comparator that we want to show superiority to). The subjects

within each population are randomly assigned to one of the three treatment arms: low dose,

high dose, or placebo. Denote the treatments by m, where m = L,H, c.

Denote the total sample size for the study by NTotal. Thus, we have stratified sampling,

i.e., gNTotal subjects are sampled from the subpopulation GS, and (1 − g)NTotal subjects

sampled from the complimentary population GS− .

For simplicity, assume that subjects within a population are randomly assigned to high

dose, low dose, or placebo with equal numbers in each. Denote the total number of subjects

receiving each treatment by N , where N = NTotal/3, so that gNTotal/3 = gN subjects in

the subpopulation group GS will be assigned to receive high dose, low dose, and placebo,

respectively. Similarly, (1 − g)N subjects in the complimentary population group GS− will

be assigned to receive high dose, low dose, and placebo, respectively. The following table

summarizes the experimental design with respect to the sample size of stratified sampling.

Denote the response of each subject in the study by XGl,m,i, where l = S, S−; m = L,H, c;

i = 1, 2, · · · , gN , if l = S; i = 1, 2, · · · , (1− g)N , if l = S−.

Denote by µGl,m the population l true mean response at dose m, where l = A, S, S−;

m = L,H, c. Denote the true drug effect of dose m relative to the control group in population
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Table 1: Non-Adaptive Study Design Sample Sizes: 2 by 2 Case

Doses

Low High Control Total

Subpopulation GS gN gN gN gNTotal

Complimentary Pop. GS− (1− g)N (1− g)N (1− g)N (1− g)NTotal

Overall Pop. GA N N N NTotal

Note: NTotal is the total sample size, N is the sample size for each dose, and g is the sampling
proportion of subjects from subpopulation.

l by ∆Gl,m,

∆Gl,m = µGl,m − µGl,c, (3.1)

where l = A, S, S−; m = L,H.

3.1.2 The Assumptions

In this dissertation, we make the following assumptions:

1. All responses XGl,m,i from the subpopulation and complimentary population are mutually

independent. Thus the subpopulation sample mean responses X̄GS ,L, X̄GS ,H , X̄GS ,c,

X̄GS− ,L
, X̄GS− ,H

, and X̄GS− ,c
are mutually independent.

2. XGl,m,i are normally distributed with mean µGl,m and a common variance σ2. Due to

the generally sufficiently large sample sizes in each group, we assume throughout this

dissertation that the variance is known,

XGl,m,i ∼ N (µGl,m, σ
2), σ2 is known,

where l = S, S−; m = L,H, c; i =

 1, 2, · · · , gN, if l = S;

1, 2, · · · , (1− g)N, if l = S−.

We can easily obtain the distributions of sample mean responses for each treatment m,

where m = L,H, c, for the subpopulation and the complimentary population, namely,

X̄GS ,m ∼ N (µGS ,m,
σ2

gN
),
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X̄GS− ,m
∼ N (µGS− ,m,

σ2

(1− g)N
),

where m = L,H.

3. We assume that the drug has nonnegative effect for both doses, which is that we assume

that the mean response of subjects µGl,m in population Gl with dose m is not smaller

than the mean response of subjects µGl,c in that population with placebo, so that

∆Gl,m = µGl,m − µGl,c ≥ 0,

where l = A, S, S−; m = L,H.

4. As discussed in Section 1.1.1, we assume that the proportion f of the subpopulation GS

is known. Therefore, we have that for m = L,H, c,

µGA,m = fµGS ,m + (1− f)µGS− ,m,

and for m = L,H,

∆GA,m = µGA,m − µGA,c

= [fµGS ,m + (1− f)µGS− ,m]− [fµGS ,c + (1− f)µGS− ,c]

= f(µGS ,m − µGS ,c) + (1− f)(µGS− ,m − µGS− ,c)

= f∆GS ,m + (1− f)∆GS− ,m
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3.2 THE PROPOSED TESTING SCHEME

In the clinical trials, we are interested in evaluating the drug effects on four groups: {GA,

Low}, {GA, High}, {GS, Low}, {GS, High}, which are low dose in the overall population,

high dose in the overall population, low dose in the subpopulation, and high dose in the

subpopulation, respectively. Thus we want to construct a testing procedure that tests for

the drug effects ∆, where ∆ = (∆GA,L,∆GA,H ,∆GS ,L,∆GS ,H)′.

First of all, the testing scheme must be flexible in order to meet various goals of the

company as described in Section 2.1. Moreover, as discussed in Section 2.2, it is very impor-

tant that the Type I FWER is strongly controlled using our proposed testing scheme since

multiple comparisons are conducted.

In this section, we will first introduce the concept of closed testing procedures proposed

by Marcus, Peritz, and Gabriel [39]. Then we will introduce our proposed testing scheme

which is constructed under the principle of closed testing.

3.2.1 Closed Testing Procedures

Marcus, Peritz, and Gabriel [39] proposed the concept of closed testing procedures, which

is a property of multiple comparison testing procedures that consists of a set of hypotheses

that are closed under intersection. Closed testing procedures control the familywise type I

error rate at level α in the strong sense.

Familywise type I Error Rate (FWER) is defined as the probability of rejecting one

or more true null hypotheses when performing multiple hypotheses tests, i.e., FWER =

P(Rejecting at least one true null hypothesis). A procedure controls the familywise error

rate in the weak sense if the probability of rejecting one or more true null hypotheses when

all null hypotheses are true is less than or equal to the significance level α, i.e., P(Rejecting

at least one true null hypothesis | All null hypotheses are true) ≤ α. A procedure controls

the FWER in the strong sense if the probability of rejecting one or more true null hypotheses

under any configuration of the true and non-true null hypotheses is less than the significance

level α, i.e., P(Rejecting at least one true null hypothesis | Any configuration of true and
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non-true hypotheses) ≤ α.

A closed testing procedure requires a set of hypotheses that are closed under intersection.

Before we introduce the details of closed testing procedures, we first elaborate on “closed un-

der intersection”. Suppose we have a random sample following a distribution with unknown

parameters ~θ: ~θ ∈ Ω, where Ω is the parameter space. Suppose we want to test a set of

hypotheses, with H
(1)
0 , H

(2)
0 , · · · , H(K)

0 as the null hypotheses and H
(1)
a , H

(2)
a , · · · , H(K)

a as the

alternatives. Each hypothesis H(i) tests whether the parameters ~θ are in the null parameter

space ωi: ~θ ∈ ωi, for i = 1, 2, · · · , K. Since Ω is the parameter space, it is obvious that each

null parameter space ωi is contained in Ω: ωi ⊆ Ω. Let W be the set of all null parameter

spaces: W = {ωi}. Then W is closed under intersection if for any elements ωi, ωj in W ,

the intersection of the two elements is also in W : ∀ωi, ωj ∈ W implies ωi ∩ ωj ∈ W , where

i, j = 1, 2, · · · , K.

The closed testing procedure requires a set of hypotheses, i.e., H(1), H(2), · · · , H(K) that

are closed under intersection, then a null hypothesis H
(i)
0 can be rejected at level α if and only

if ωi and all null parameter spaces w’s that are included in wi and belong to W are tested and

rejected at local significance level α. Local significance means that each of these hypotheses

is tested at its own nominal significance level α using any valid statistical procedure.

For example, suppose there are a set of hypotheses H(1), H(2), H(3) to be tested. The

closed testing procedure allows the rejection of any one of these hypotheses, say H(1), if

all possible intersection hypotheses involving H(1), i.e., H(1), H(1) ∩H(2), H(1) ∩H(3), H(1) ∩

H(2) ∩H(3), can be each rejected by using valid α level tests.

Marcus et al. [39] provided a proof that any closed testing procedure protects the fami-

lywise error rate in the strong sense.

3.2.2 Details for One Testing Scheme as an Example

In this section, we construct the testing scheme which we show to be a closed testing proce-

dure. For the two population and two dose case, our testing scheme consists of 4 individual

hypotheses.

There are 4 individual hypotheses within each testing scheme. There is one common
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hypothesis to be tested , which is to test whether the 4 drug effects all equal to 0, i.e., ∆GA,L =

∆GA,H = ∆GS ,L = ∆GS ,H = 0. Let c1, c2, c3, c4 ∈ {{GA, L}, {GA, H}, {GS, L}, {GS, H}} and

c1 6= c2 6= c3 6= c4, i.e., each ci is a population and dose combination and c1, c2, c3, c4

represent different combinations. The other three hypotheses test whether ∆c1 = ∆c2 =

∆c3 = 0, ∆c1 = ∆c2 = 0, and ∆c1 = 0, respectively. Each corresponding alternative

hypothesis states that there is at least one positive drug effect among the populations and

doses considered in the null hypothesis. Note that c1, c2, c3, c4 can be chosen in multiple

ways from {{GA, L}, {GA, H}, {GS, L}, {GS, H}}, so that there are 4! possible outcomes for

choosing c1, c2, c3, c4 and hence there are 4! possible testing schemes. We denote each of

these possible testing schemes by a test ordering.

The testing scheme allows for various orderings in order to achieve desired power charac-

teristics, and the orderings are determined based on the previous knowledge or prior beliefs

about the parameters (drug effects and variances) and the goal of the trial. We will show in

Section 3.4 how to choose an ordering for our testing scheme under various circumstances.

Now, we show the details for one possible ordering of the testing scheme as an illustration.

Specifically, we show how the decision rule is made, and how the familywise type I error rate is

strongly protected. Other orderings and their decision rules similarly control the familywise

type I error rate in the strong sense. The corresponding decision rules are made for each

ordering accordingly.

3.2.2.1 Illustration Details

Suppose in a clinical trial, our goal is to find the largest population where there is at

least one effective dose and for this population find the Minimum Effect Dose (MED). To

achieve this goal, we consider the following testing scheme where the null hypotheses are

H
(4)
0 : ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0, (3.3a)

H
(3)
0 : ∆GA,L = ∆GA,H = ∆GS ,L = 0, (3.3b)

H
(2)
0 : ∆GA,L = ∆GA,H = 0, (3.3c)

H
(1)
0 : ∆GA,L = 0, (3.3d)
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where ∆Gl,m is given by equation (3.1).

Each corresponding alternative hypothesis states that there is at least one positive drug

effect among the populations and doses considered in the null hypothesis:

H(4)
a : ∆GA,L > 0 or ∆GA,H > 0 or ∆GS ,L > 0 or ∆GS ,H > 0, (3.4a)

H(3)
a : ∆GA,L > 0 or ∆GA,H > 0 or ∆GS ,L > 0, (3.4b)

H(2)
a : ∆GA,L > 0 or ∆GA,H > 0, (3.4c)

H(1)
a : ∆GA,L > 0. (3.4d)

We test the family of hypotheses in a step down manner from the highest level until we

accept one null hypothesis. To be specific, H(4) is tested first. If H
(4)
0 is rejected, then H(3)

is to be tested next; otherwise, stop testing. If H
(3)
0 is rejected, then continue to test H(2);

otherwise, stop testing. Similarly, If H
(2)
0 is rejected, then continue to test H(1); otherwise,

stop.

Note that the family of hypotheses listed in equation (3.3) and (3.4) is a step down

procedure, and due to the property that a step down testing procedure is a closed testing

procedure, strong control of FWER is guaranteed in our scheme.

3.2.2.2 The Corresponding Decision Rule

We establish a one to one correspondence between the chosen population and its cor-

responding MED and all possible outcomes of true and false null hypotheses. After the

hypotheses are tested, we make the conclusions based on the testing results according to the

following rules.

• If H
(4)
0 is true, i.e., ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0, then there is no population

that has an effective dose.

• If H
(4)
0 is false, i.e., ∆GA,L > 0 or ∆GA,H > 0 or ∆GS ,L > 0 or ∆GS ,H > 0, and if

H
(3)
0 is true, i.e., ∆GA,L = ∆GA,H = ∆GS ,L = 0, then we conclude ∆GS ,H > 0. We thereby

establish the largest population that has a positive dose effect is the subpopulation and

the MED for this population is the high dose. We denote this choice by {GS, High}.
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• If H
(4)
0 is false, and H

(3)
0 is false, i.e., ∆GA,L > 0 or ∆GA,H > 0 or ∆GS ,L > 0, and

if H
(2)
0 is true, i.e., ∆GA,L = ∆GA,H = 0, then we conclude ∆GS ,L > 0 and it is possible

that ∆GS ,H > 0. We thereby establish the largest population that has a positive dose

effect is the subpopulation and the MED for this population is the low dose. We denote

this choice by {GS, Low}.

• If H
(4)
0 is false, H

(3)
0 is false, and H

(2)
0 is false, i.e., ∆GA,L > 0 or ∆GA,H > 0, and

if H
(1)
0 is true, i.e., ∆GA,L = 0, then we conclude ∆GA,H > 0 and it is possible that

∆GS ,L > 0,∆GS ,H > 0. We thereby establish the largest population that has a positive

dose effect is the overall population and the MED for this population is the high dose.

We denote this choice by {GA, High}.

• If H
(4)
0 is false, H

(3)
0 is false, H

(2)
0 is false, and H

(1)
0 is false, we conclude ∆GA,L > 0 and it

is possible that ∆GA,H > 0, ∆GS ,L > 0, ∆GS ,H > 0. We establish the largest population

that has a positive dose effect is the overall population and the MED for this population

is the low dose. We denote this choice by {GA, Low}.

For this illustration, Table 2 summarizes all the possible outcomes and the corresponding

conclusions and Figure 1 is an alternative representation.

Table 2: Outcomes of the Procedure and Decision Rule for Section 3.2.2.1

H
(4)
0 H

(3)
0 H

(2)
0 H

(1)
0 ∆GA,L ∆GA,H ∆GS ,L ∆GS ,H Conclusion

ACC NT NT NT 0 0 0 0 None
REJ ACC NT NT 0 0 0 > 0 GS , High
REJ REJ ACC NT 0 0 > 0 UKN GS , Low
REJ REJ REJ ACC 0 > 0 UKN UKN GA, High
REJ REJ REJ REJ > 0 UKN UKN UKN GA, Low

Note: ACC=Accept, REJ=Reject, NT=Not Tested, UKN=Unknown.

3.2.2.3 Discussion on the Test Ordering

There are totally 24 possible test orderings in 2 population and 2 dose case. Some of

the test ordering work well for certain study goals under certain prior knowledge or beliefs

of the drug effects, while other test orderings may not even make sense.
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Figure 1: Testing Scheme and Decision Rule in One Testing Order for Illustration Purpose
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In Section 3.2.2.1 and Section 3.2.2.2, we demonstrated a testing scheme, its test ordering

and the corresponding decision rule for illustrative purpose. In simulation studies in Section

3.4, we will evaluate how this test ordering performs in several different scenarios of prior

knowledge or beliefs of drug effects with respect to varying study objectives .

It makes sense that the test ordering proposed in Section 3.2.2.1 performs well for certain

study objective and certain prior beliefs of the drug effects. For example, suppose the

primary objective of a study is to obtain the largest population where at least one dose is

effective, the secondary objective is to find the MED for that population, and the drug effects

are positive for all dose and population combinations. This means that our most desired

population and dose combination is {GA, Low}. If we could not conclude {GA, Low}, then

the next most desired population and dose combination is {GA, High}. Only when we could

not conclude any effective dose on the overall population, we may make conclusions about

the subpopulation. The decision rule for the test ordering in Section 3.2.2.1 tells us the

followings:

1. If H
(4)
0 is rejected and H

(3)
0 is accepted, we conclude {GS, High}. This is reasonable

because accepting H
(3)
0 indicates that the drug effects of {GA, Low}, {GA, High}, {GS,

Low} are all zero, and {GS, High} is the only population and dose combination that is

effective.

2. If H
(4)
0 is rejected, H

(3)
0 is rejected, and H

(2)
0 is accepted, we conclude {GS, Low} while it

is possible that {GS, High} is effective. The conclusion makes sense in that within one

population, we want to find the minimum effective dose. Consequently, if we know {GS,

Low} is effective, we conclude {GS, Low} no matter {GS, High} is effective or not.

3. If H
(4)
0 is rejected, H

(3)
0 is rejected, H

(2)
0 is rejected, and H

(1)
0 is accepted, we conclude

{GA, High} while it is possible that {GS, Low} and {GS, High} are effective. The

conclusion makes sense in that we want to find the largest population in this study.

Consequently, if we know {GA, High} is effective, we conclude it no matter {GS, High}

or {GS, Low} is effective or not.

4. If H
(4)
0 is rejected, H

(3)
0 is rejected, H

(2)
0 is rejected, and H

(1)
0 is rejected, we conclude

{GA, Low} while it is possible that {GA, High}, {GS, Low}, and {GS, High} are effective.

The conclusion is reasonable in that {GA, Low} is the most desirable population and
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dose combination, if it is effective, we conclude it no matter whether the other three

combinations are effective or not.

However, for other study objectives, this test ordering may not be appropriate. For exam-

ple, suppose now the primary goal of our study is to obtain the lowest dose which is effective

on at least one population, and the secondary goal is to find the largest population where

this dose is effective. This means that our most desired population and dose combination is

{GA, Low}. If we could not conclude {GA, Low}, then the next most desired population and

dose combination is {GS, Low}. Only when we could not conclude the low dose effective on

either overall population or the subpopulation, we consider making conclusions about the

high dose. The test ordering indicated in Section 3.2.2.1 is not appropriate in that when

H
(4)
0 is rejected, H

(3)
0 is rejected, H

(2)
0 is rejected, and H

(1)
0 is accepted, according to the

decision rule, we conclude {GA, High} while it is possible that {GS, Low} and {GS, High}

are effective. The conclusion is not appropriate here because we want to find the lowest

dose. If both {GA, High} and {GS, Low} are effective here, we are not making the correct

conclusion.

Moreover, for other prior beliefs of the drug effects, this test ordering may not be ap-

propriate either. For example, suppose the drug has no or little effect at the low dose. This

means that our most desired population and dose combination is {GA, High}. If we could

not conclude {GA, High} , then the next most desired population and dose combination is

{GS, High}. In this case, the test ordering illustrated in Section 3.2.2.1 may not be appro-

priate since we won’t have sufficient power to reject H
(2)
0 when ∆GA,L and ∆GS ,L both equal

to zero. Other test orderings may work better under this scenario. Simulation and more

discussion will be provided in Section 3.4.

Therefore, the selected ordering should depend on prior knowledge or beliefs of drug

effects and the study objective, and there is no unique test ordering that fits all studies. It is

important that we find the most appropriate test ordering for each study using simulation.

In the following section, we propose general testing schemes and how to develop the decision

rule for each test ordering, and in Section 3.4, we discuss in detail how to choose the test

ordering for each scenario of drug effects with respect to the study objective.

23



3.2.3 General Testing Schemes and Decision Rules

3.2.3.1 Possible Testing Schemes for Two Doses and Two Populations

As mentioned before, the ordering of the testing scheme is flexible. In the two dose

and two population trial setting, there are four combinations of doses and populations, i.e.,

{GA, Low}, {GA, High}, {GS, Low}, and {GS, High}, yielding 4! = 24 possible sets of

hypotheses, each of which is closed under intersection. The null hypotheses of all possible

testing schemes are listed in Table 3 and the alternative hypotheses are the corresponding

one sided alternatives that at least one of the drug effects is/are strictly greater than zero.

We test the 4 hypotheses in each set in a step down manner, and there is a decision rule

for each testing scheme. Hence the strong control of FWER for each family in Table 3 is

guaranteed .

Table 3: All Possible Testing Schemes: 2 by 2 case

H
(4)
0 H

(3)
0 H

(2)
0 H

(1)
0

1 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,L = 0 ∆GA,L = ∆GA,H = 0 ∆GA,L = 0
2 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,L = 0 ∆GA,L = ∆GA,H = 0 ∆GA,H = 0
3 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,L = 0 ∆GA,L = ∆S,L = 0 ∆GA,L = 0
4 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,L = 0 ∆GA,L = ∆GS ,L = 0 ∆GS ,L = 0
5 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,L = 0 ∆GA,H = ∆GS ,L = 0 ∆GA,H = 0
6 ∆GA,L = ∆GA,H = ∆GS ,L = ∆S,H = 0 ∆GA,L = ∆GA,H = ∆GS ,L = 0 ∆GA,H = ∆GS ,L = 0 ∆GS ,L = 0
7 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,H = 0 ∆GA,L = ∆GA,H = 0 ∆GA,L = 0
8 ∆GA,L = ∆GA,H = ∆S,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,H = 0 ∆GA,L = ∆GA,H = 0 ∆GA,H = 0
9 ∆GA,L = ∆GA,H = ∆S,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,H = 0 ∆GA,L = ∆GS ,H = 0 ∆GA,L = 0
10 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,H = 0 ∆A,L = ∆GS ,H = 0 ∆S,H = 0
11 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,H = 0 ∆GA,H = ∆GS ,H = 0 ∆GA,H = 0
12 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GA,H = ∆GS ,H = 0 ∆GA,H = ∆S,H = 0 ∆GS ,H = 0
13 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆S,L = 0 ∆GA,L = 0
14 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,L = 0 ∆GS ,L = 0
15 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆S,H = 0 ∆GA,L = 0
16 ∆A,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,H = 0 ∆GS ,H = 0
17 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,L = ∆GS ,H = 0 ∆GS ,L = ∆GS ,H = 0 ∆GS ,L = 0
18 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,L = ∆GS ,L = ∆GS ,H = 0 ∆GS ,L = ∆GS ,H = 0 ∆GS ,H = 0
19 ∆GA,L = ∆GA,H = ∆S,L = ∆GS ,H = 0 ∆A,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,H = ∆GS ,L = 0 ∆GA,H = 0
20 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,H = ∆GS ,L = 0 ∆GS ,L = 0
21 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,H = ∆GS ,H = 0 ∆GA,H = 0
22 ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,H = ∆GS ,L = ∆GS ,H = 0 ∆GA,H = ∆S,H = 0 ∆S,H = 0
23 ∆GA,L = ∆GA,H = ∆S,L = ∆S,H = 0 ∆GA,H = ∆S,L = ∆S,H = 0 ∆S,L = ∆S,H = 0 ∆S,L = 0
24 ∆GA,L = ∆GA,H = ∆S,L = ∆S,H = 0 ∆GA,H = ∆S,L = ∆S,H = 0 ∆S,L = ∆S,H = 0 ∆S,H = 0

3.2.3.2 General Decision Rules

Decision rules for these testing schemes are not hard to develop. To be general, we follow

the rules described as below:
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1. If H
(4)
0 is accepted, it is indicated that the drug effects on all populations and doses are

zero. Thus we conclude there is no effective dose on either the overall population or the

subpopulation. If H
(4)
0 is rejected, then we move on and test H

(3)
0 .

2. If H
(4)
0 is rejected and H

(3)
0 is accepted, we conclude the dose and population that is

tested in H
(4)
0 but not tested in H

(3)
0 . If H

(4)
0 is rejected and H

(3)
0 is rejected, we continue

to test H
(2)
0 .

3. If H
(4)
0 is rejected, H

(3)
0 is rejected, and H

(2)
0 is accepted, we conclude the dose and

population that is tested in H
(3)
0 but not tested in H

(2)
0 . It is possible that the drug effect

for the dose and population that is tested in H
(4)
0 but not tested in H

(3)
0 is positive, but

we don’t have evidence to conclude it. If H
(4)
0 is rejected, H

(3)
0 is rejected, and H

(2)
0 is

rejected, we continue to test H
(1)
0 .

4. If H
(4)
0 is rejected, H

(3)
0 is rejected, H

(2)
0 is rejected, and H

(1)
0 is accepted, we conclude

the dose and population that is tested in H
(2)
0 but not tested in H

(1)
0 . It is possible that

the drug effect for the dose and population that is tested in H
(4)
0 but not tested in H

(3)
0

is positive. It is also possible that the drug effect for the dose and population that is

tested in H
(3)
0 but not tested in H

(2)
0 is positive, but we don’t conclude them. If H

(4)
0 is

rejected, H
(3)
0 is rejected, and H

(2)
0 is rejected, and H

(1)
0 is rejected, we conclude the dose

and population tested in H
(1)
0 .

3.3 TESTING INDIVIDUAL HYPOTHESES

3.3.1 Data Structure

In the first part of this section, we explicitly describe how the estimates of drug effects are

obtained, and how the test statistics and covariance among the test statistics are computed.

In the second part, we will describe how to perform the hypothesis testing.
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3.3.1.1 Unbiased Estimators of Drug Effects

The estimator of the mean response at each dose in the sub or complimentary populations

is the corresponding sample mean.

µ̂Gl,m = X̄Gl,m, for l = S, S−;m = L,H, c.

Since the proportion, f , of the subpopulation to the true population is assumed known,

we estimate the mean responses in the overall population by the weighted averages,

µ̂GA,m = fX̄GS ,m + (1− f)X̄GS− ,m
, for m = L,H, c.

Then the drug effects ∆Gl,m are estimated by:

∆̂Gl,m = µ̂Gl,m−µ̂Gl,c =

 fX̄GS ,m + (1− f)X̄GS− ,m
− fX̄GS ,c − (1− f)X̄GS− ,c

, l = A;

X̄Gl,m − X̄Gl,c, l = S, S−.

Since, X̄Gl,m is the unbiased estimator of µGl,m for the sub and complimentary population,

we have that,

E(µ̂GA,m) = E[fX̄GS ,m+(1−f)X̄GS− ,m
] = fµGS ,m+(1−f)µGS− ,m = µGA,m, form = L,H, c,

are also unbiased estimators. Therefore, ∆̂Gl,m are unbiased estimators for ∆Gl,m, in that,

E(∆̂Gl,m) = E[µ̂Gl,m − µ̂Gl,c] = µGl,m − µGl,c = ∆Gl,m, for l = A, S;m = L,H.
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3.3.1.2 Test Statistics and Their Covariance

Next, we calculate test statistics for the drug effects ∆ = [∆GA,L,∆GA,H ,∆GS ,L,∆GS ,H ]′.

Since the responses are normally distributed, and the variance is known, Z test statistics are

used. The test statistics of the drug effects at dose for the subpopulation are computed as

ZGS ,m =
∆̂GS ,m√
σ2

(∆̂GS,m
)

=
X̄GS ,m − X̄GS ,c√
σ2

(X̄GS,m−X̄GS,c)

=
X̄GS ,m − X̄GS ,c√
σ2( 1

gN
+ 1

gN
)

=
X̄GS ,m − X̄GS ,c√

2σ2

gN

, (3.5)

for m = L,H.

The test statistics of the drug effects for the overall population are computed as, for

m = L,H,

ZGA,m =
∆̂GA,m√
σ2

(∆̂GA,m
)

=
fX̄GS ,m + (1− f)X̄GS− ,m

− fX̄GS ,c − (1− f)X̄GS− ,c√
σ2
fX̄GS,m+(1−f)X̄G

S− ,m
−fX̄GS,c−(1−f)X̄G

S− ,c

=
fX̄GS ,m + (1− f)X̄GS− ,m

− fX̄GS ,c − (1− f)X̄GS− ,c√
f 2 σ2

gN
+ (1− f)2 σ2

(1−g)N + f 2 σ2

gN
+ (1− f)2 σ2

(1−g)N

=
fX̄GS ,m + (1− f)X̄GS− ,m

− fX̄GS ,c − (1− f)X̄GS− ,c√
2σ2

N
(f

2

g
+ (1−f)2

1−g )
. (3.6)

Since the sample means X̄GS ,L, X̄GS ,H , X̄GS ,c, X̄GS− ,L
, X̄GS− ,H

, and X̄GS− ,c
are mutually

independent (Section 3.1.2), it follows that

cov(X̄Gl,m, X̄Gl′ ,m
′) = 0,

for l, l′ = S, S−; m,m′ = L,H, c; {l,m} 6= {l′,m′}.

The variance of each ZGl,m is 1, and the covariances among the Z’s are computed as,

cov(ZGA,L, ZGA,H) =
f 2var(X̄GS ,c) + (1− f)2var(X̄GS− ,c

)

2σ2

N
(f

2

g
+ (1−f)2

1−g )

=
f 2 σ2

gN
+ (1− f)2 σ2

(1−g)N
2σ2

N
(f

2

g
+ (1−f)2

1−g )
=

1

2
, (3.7)
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cov(ZGA,L, ZGS ,L) =
fvar(X̄GS ,L) + fvar(X̄GS ,c)√

2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=
f σ2

gN
+ f σ2

gN√
2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=

√
1

1 + (1−f)2g
f2(1−g)

, (3.8)

cov(ZGA,L, ZGS ,H) =
fvar(X̄GS ,c)√

2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=
f σ2

gN
gN√

2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=
1

2

√
1

1 + (1−f)2g
f2(1−g)

, (3.9)

cov(ZGA,H , ZGS ,L) =
fvar(X̄S,c)√

2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=
f σ2

gN
gN√

2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=
1

2

√
1

1 + (1−f)2g
f2(1−g)

, (3.10)

cov(ZGA,H , ZGS ,H) =
fvar(X̄GS ,H) + fvar(X̄GS ,c)√

2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=
f σ2

gN
+ f σ2

gN√
2σ2

gN

√
2σ2

N
(f

2

g
+ (1−f)2

1−g )

=

√
1

1 + (1−f)2g
f2(1−g)

, (3.11)
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and

cov(ZGS ,L, ZGS ,H) =
gN

2σ2
var(X̄S,c) =

gN

2σ2

σ2

gN
=

1

2
. (3.12)

Let Z = [ZGA,L, ZGA,H , ZGS ,L, ZGS ,H ]′, so that normality (see Section 3.1.2) yields that

Z ∼MVN (µZ,Σ),

where

µZ =



∆GA,L√
2σ2

N
( f

2

g
+

(1−f)2

1−g )

∆GA,H√
2σ2

N
( f

2

g
+

(1−f)2

1−g )

∆GS,L√
2σ2

gN

∆GS,H√
2σ2

gN


, (3.13a)

Σ =


1 1

2
D D

2

1
2

1 D
2

D

D D
2

1 1
2

D
2

D 1
2

1

 , (3.13b)

where D =
√

1

1+
(1−f)2g

f2(1−g)

.

Under the null hypothesis H
(4)
0 : ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0,

Z ∼MVN (0,Σ).
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3.3.2 Follmann’s test

In this section, we explore the testing method for each of the hypotheses in (3.3) and (3.4).

Based on our testing scheme, the following hypothesis is the general format of each test:

H0 : ∆i = 0 (i = 1, 2, · · · , p),

Ha : ∆i ≥ 0 (i = 1, 2, · · · , p), with strict inequality for at least one value of i,

where we observe a p-dimensional normal random vector for p population and dose combi-

nations with mean [∆1, · · · ,∆p]
′ and known covariance.

The techniques related to test these hypotheses have been extensively considered in the

literature, which considers random samples V1,V2, · · · ,Vn that are independent identically

multivariate normal distributed with means ~ν and covariance Ψ. The parameter space Ω

for ~ν and Ψ is Ω = {νi ≥ 0 for every i, Ψ is positive definite}, and the considered testing

is H0 : ~ν = 0 versus Ha : νi > 0, for some i. For a univariate normal distribution, the

hypothesis reduces to H0 : ν = 0 vs Ha : ν > 0, which is a one-sided one sample Z test for

known variance, and a one-sided one sample t test for unknown variance. In the multivariate

cases, clearly the two sided Hotelling’s T 2 test and the analogue χ2 test for known Ψ are

not appropriate for this one sided hypothesis [20] [42]. To handle the one sided problem,

Kudo [32] derived a likelihood ratio test for the hypothesis with multivariate ”one-sided”

alternative assuming a known covariance matrix. Perlman [45] derived the corresponding

likelihood ratio test assuming an unknown covariance. However, these likelihood ratio tests

are theoretical and very difficult to evaluate for application purposes. Tang, Gnecco, and

Geller [60] proposed an approximation to the likelihood ratio test, which is simpler but still

practically difficult to implement.

Follmann [16] more recently proposed a simpler test (which we term Follmann’s proce-

dure), for the one-sided multivariate test given a multivariate normal population assuming

known covariance matrix. He showed that his procedure protected the type I error rate,

and had comparable power to the exact likelihood test. Follmann [16] also provided tight

bounds on the power of his procedure, which makes calculating power possible. This makes

Follmann’s procedure very useful in our testing procedure.
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Consider random samples V1,V2, · · · ,Vn that are independent identically p-dimensional

multivariate normal distributed with means ~ν and covariance Ψ. Let V̄i be the average of

all values in vector Vi, where i = 1, 2, ..., p. Let V̄ ≡ (V̄1, · · · , V̄p)′. Follmann’s test, when

assuming Ψ is known, rejects at level α as long as a certain quadratic form of the sample

mean vector exceeds a suitable 2α critical value and the sum of all the elements of the mean

vector exceeds zero. Specifically, Follmann rejects H0 if

nV̄′Ψ−1V̄ > χ2
p, 2α and

p∑
i=1

V̄i > 0.

This test procedure is an analogue to a two sided multivariate likelihood ratio test with

the average of the component means greater than zero. Follmann terms this a χ2
+ test.

For each of the hypotheses, we apply Follmann’s procedure to test our drug effects, and

reject the null hypothesis if

Z′Σ−1Z > χ2
p, 2α and

p∑
i=1

Zi > 0.

where Z is given by (3.5) (3.6) and Σ by (3.13).

Again Follmann’s procedure protects the type I error rate at α, so that each hypothesis

in the testing scheme tested is a level α test. It now follows from Section 3.2.1 that our

hypothesis testing scheme using Follmann’s method strongly controls the type I error rate.

Now let’s look at an example of how to apply Follmann’s procedure for an individual

null hypothesis. Suppose we are going to test H
(3)
0 : ∆A,L = ∆A,H = ∆S,L = 0 versus

H
(3)
a : ∆A,L > 0 or ∆A,H > 0 or ∆S,L > 0. From (3.13), we can determine the distribution of

Z3, where Z3 = [ZA,L, ZA,H , ZS,L]′.

µZ3 =



∆A,L√
2σ2

N
( f

2

g
+

(1−f)2

1−g )

∆A,H√
2σ2

N
( f

2

g
+

(1−f)2

1−g )

∆S,L√
2σ2

gN


, (3.15a)

Σ3 =


1 1

2
D

1
2

1 D
2

D D
2

1

 , (3.15b)
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where D =
√

1

1+
(1−f)2g

f2(1−g)

.

Under the null hypothesis,

Z3 ∼MVN (0,Σ3).

Therefore, we can directly apply Follmann’s procedure based on the values of Z3 and

its corresponding covariance matrix Σ3, which is to reject H
(3)
0 when Z′3Σ−1

3 Z3 > χ2
3, 2α

and ZA,L + ZA,H + ZS,L > 0. Similarly, we are able to apply Follmann’s procedure for each

individual hypothesis in our testing scheme.

3.4 SIMULATION STUDIES ON FINDING THE APPROPRIATE TEST

ORDERING

When applying our proposed procedure to clinical trials, one needs to decide which ordering

of the testing scheme to use before starting the trial. The choice of the ordering of the testing

scheme depends on the goal of the study, and requires pilot data or prior beliefs of the drug

effects of each dose on each population. We want to choose an ordering of the testing scheme

so that we can achieve reasonably large probability (power) to conclude the results that are

desired.

The power of our proposed procedure varies with regard to different study goals. In our

setting, power is not a unique probability, but instead depends on what we want to achieve in

a clinical trial. Furthermore, we could look at several powers at the same time. For example,

consider the study goal where our primary goal is to find the largest population that has

at least one dose effective, and our secondary goal is to find the MED for this population.

In addition, suppose we strongly believe that the drug has positive drug effects on both the

overall population and subpopulation for both high dose and low dose. Then we suggest that

we have two powers to look at. The primary power we want to look at is the probability of

concluding the overall population, i.e., Power1 = Prob(concluding{GA, L} or {GA, H}), and

the secondary power is the probability of concluding the low dose for the overall population,

i.e., Power2 = Prob(concluding{GA, L}).
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Clearly there is no general best ordering for any specific study goal. We need to find

the most appropriate test ordering using simulation results based on our prior knowledge

or beliefs of the drug effects, and to compare multiple powers at the same time in order to

choose the test ordering. When more than one power needs to be evaluated, we want all the

powers to be reasonably good.

When applying our proposed design in practice, simulation should be conducted before

the study begins to obtain powers for the relevant subset of the 24 test orderings based on

the prior knowledge or beliefs of the drug effects. Then the powers are compared among

all test orderings, and the test ordering that leads to the desired powers is selected. In

our proceeding example, we first compare the simulated primary powers and find the large

powers. However, it is not certain that the test ordering with the largest primary power

is most appropriate. Instead, we need to also compare the secondary powers. If several

primary powers are comparable, then we want the secondary power to be large as well.

In this dissertation, we show in our simulation study that under the same study goal,

different test ordering should be chosen for different drug effects. We also show that for the

same scenario of drug effects, the appropriate test ordering depends on the study goal.

3.4.1 Selection of Test Ordering Depends on the Prior Beliefs of the Drug

Effects

Suppose the primary goal of the sponsor is to find the largest population where there is at

least one effective dose, and the secondary goal is to find the lowest effect dose for this largest

population. We present simulation results under three scenarios of drug effects for this goal.

In the first scenario, the drug has positive effects for both populations and both doses,

where the high dose has a larger effect size than the low dose and the drug effect size is larger

for the subpopulation than the overall population. The drug effect sizes are listed in Table

4. Suppose f = g = 0.4, then ∆ = [∆GA,L,∆GA,H ,∆GS ,L,∆GS ,H ]′ = [0.22, 0.33, 0.4, 0.6]′.

In the second scenario, only the high dose of the drug has positive effects for both

populations, where the drug effect size of the high dose is larger for the subpopulation than

the overall population and the low dose has little drug effects for both populations. The
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drug effect sizes are listed in Table 5. Again, suppose f = g = 0.4 as in the first scenario,

then ∆ = [∆GA,L,∆GA,H ,∆GS ,L,∆GS ,H ]′ = [0.055, 0.33, 0.1, 0.6]′.

In the third scenario, the drug has positive effects for both populations and both doses.

However, the high dose has larger effect for the overall population than the subpopulation,

while the low dose has larger effect for the subpopulation than the overall population. This

scenario resembles the case where the subpopulation is more sensitive to the low dose of the

drug. The drug effect sizes are listed in Table 6. Again, suppose f = g = 0.4 as in the first

scenario, then ∆ = [∆GA,L,∆GA,H ,∆GS ,L,∆GS ,H ]′ = [0.32, 0.26, 0.5, 0.2]′.

Table 4: Simulation Parameters - Design: ∆’s in Scenario 1

Low High

GA 0.22 0.33

GS 0.4 0.6

GS− 0.1 0.15

Table 5: Simulation Parameters - Design: ∆’s in Scenario 2

Low High

GA 0.055 0.33

GS 0.1 0.6

GS− 0.025 0.15

Simulations are conducted to obtain powers for all 24 test orderings based on each sce-

nario of the drug effects. Each simulation study uses 10,000 iterations. The sample size

chosen for each treatment arm is 200. The results are shown in Tables 7-9. The 24 orderings

are listed in Table 3. The conclusions of all test orderings are listed in the five columns

on the right of the table. For example, under scenario 1 (see Table 7), the five values on

the right of the first row are the probabilities of concluding the corresponding dose and
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Table 6: Simulation Parameters - Design: ∆’s in Scenario 3

Low High

GA 0.32 0.26

GS 0.5 0.2

GS− 0.2 0.3

population when using ordering 1 , i.e., the probability of concluding {GA, L} is 0.57; the

probability of concluding {GA, H} is 0.26; the probability of concluding {GS, L} is 0.04;

the probability of concluding {GS, H} is 0.05; and the probability of concluding no effective

dose on any population is 0.08. The first four columns, “GA, GS, L,H”, are the summary

probabilities of concluding overall population (low dose and high dose), subpopulation (low

dose and high dose), low dose (overall population and subpopulation) and high dose (overall

population and subpopulation), respectively. These probabilities are calculated from the

five columns on the right. For example, under Scenario 1 (see Table 7), the four values on

the left of the first row are the probabilities of concluding the corresponding population or

dose using ordering 1, i.e., the probability of concluding the overall population (“GA”) is

0.83, where P (GA) = P ({GA, L}) + P ({GA, H} = 0.57 + 0.26 = 0.83); the probability of

concluding the subpopulation (“GS”) is 0.09, where P (GS) = P ({GS, L}) + P ({GS, H} =

0.04 + 0.05 = 0.09); the probability of concluding the low dose (“L”) is 0.61, where P (L) =

P ({GA, L}) + P ({GS, L} = 0.57 + 0.04 = 0.61); and the probability of concluding the high

dose (“H”) is 0.31, where P (H) = P ({GA, H}) + P ({GS, H} = 0.26 + 0.05 = 0.31).

The primary power we want to compare for Scenario 1 and Scenario 3 is the proba-

bility of concluding the overall population, i.e., Power1 = Prob(GA) = Prob(concluding

{GA, L} or {GA, H}), and the secondary power can be the probability of concluding the

low dose for the overall population, i.e., Power2 = Prob(concluding {GA, L}). For Scenario

2, since the low dose has little effects on two populations, the primary goal is to conclude

the high dose and the secondary goal is to conclude the overall population for high dose.
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Table 7: Simulation Result: Scenario 1 (∆ = [0.22, 0.33, 0.4, 0.6]′)

ordering GA GS L H GA, L GA, H GS, L GS, H None

1 0.83 0.09 0.61 0.31 0.57 0.26 0.04 0.05 0.08

2 0.83 0.09 0.05 0.87 0.01 0.82 0.04 0.05 0.08

3 0.75 0.17 0.64 0.28 0.53 0.23 0.12 0.05 0.08

4 0.26 0.66 0.64 0.28 0.04 0.23 0.61 0.05 0.08

5 0.85 0.08 0.03 0.89 0.01 0.84 0.02 0.05 0.08

6 0.18 0.74 0.69 0.23 0.01 0.18 0.68 0.05 0.08

7 0.84 0.08 0.58 0.34 0.58 0.27 0.01 0.07 0.08

8 0.84 0.08 0.01 0.91 0.01 0.84 0.01 0.07 0.08

9 0.59 0.33 0.59 0.33 0.58 0.01 0.01 0.32 0.08

10 0.01 0.91 0.01 0.91 0.00 0.01 0.01 0.90 0.08

11 0.87 0.05 0.01 0.91 0.00 0.87 0.01 0.04 0.08

12 0.01 0.91 0.01 0.91 0.00 0.01 0.01 0.90 0.08

13 0.54 0.38 0.65 0.27 0.53 0.01 0.12 0.26 0.08

14 0.05 0.87 0.65 0.27 0.04 0.01 0.61 0.26 0.08

15 0.60 0.32 0.59 0.33 0.58 0.01 0.00 0.32 0.08

16 0.02 0.90 0.01 0.91 0.00 0.01 0.00 0.90 0.08

17 0.02 0.90 0.70 0.22 0.01 0.01 0.69 0.21 0.08

18 0.02 0.90 0.01 0.91 0.01 0.01 0.00 0.90 0.08

19 0.86 0.06 0.03 0.89 0.00 0.86 0.03 0.03 0.08

20 0.20 0.73 0.70 0.22 0.00 0.19 0.69 0.03 0.08

21 0.87 0.05 0.01 0.91 0.00 0.87 0.00 0.04 0.08

22 0.01 0.91 0.01 0.91 0.00 0.01 0.00 0.91 0.08

23 0.01 0.91 0.70 0.22 0.00 0.01 0.70 0.21 0.08

24 0.01 0.91 0.01 0.91 0.00 0.01 0.00 0.90 0.08
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Table 8: Simulation Result: Scenario 2 (∆ = [0.055, 0.33, 0.1, 0.6]′)

Ordering GA L GS H GA, L GA, H GS, L GS, H None

1 0.80 0.09 0.14 0.85 0.08 0.73 0.01 0.13 0.06

2 0.80 0.02 0.14 0.92 0.01 0.80 0.01 0.13 0.06

3 0.78 0.08 0.16 0.86 0.05 0.74 0.03 0.13 0.06

4 0.76 0.08 0.18 0.86 0.02 0.74 0.05 0.13 0.06

5 0.81 0.03 0.13 0.91 0.03 0.78 0.00 0.13 0.06

6 0.73 0.12 0.21 0.82 0.03 0.70 0.08 0.13 0.06

7 0.87 0.09 0.07 0.85 0.08 0.79 0.01 0.06 0.06

8 0.87 0.02 0.07 0.92 0.01 0.85 0.01 0.06 0.06

9 0.10 0.09 0.84 0.85 0.08 0.02 0.01 0.84 0.06

10 0.02 0.01 0.92 0.93 0.00 0.02 0.01 0.91 0.06

11 0.89 0.02 0.05 0.92 0.01 0.88 0.01 0.04 0.06

12 0.02 0.02 0.92 0.92 0.01 0.01 0.01 0.91 0.06

13 0.07 0.08 0.87 0.86 0.05 0.03 0.03 0.84 0.06

14 0.05 0.08 0.89 0.86 0.02 0.03 0.05 0.84 0.06

15 0.10 0.09 0.84 0.85 0.08 0.03 0.01 0.82 0.06

16 0.03 0.01 0.91 0.93 0.00 0.03 0.01 0.90 0.06

17 0.03 0.09 0.91 0.85 0.00 0.03 0.09 0.83 0.06

18 0.03 0.01 0.91 0.93 0.00 0.03 0.00 0.91 0.06

19 0.83 0.01 0.11 0.93 0.01 0.82 0.00 0.11 0.06

20 0.75 0.09 0.19 0.85 0.01 0.74 0.08 0.11 0.06

21 0.88 0.02 0.06 0.92 0.01 0.88 0.01 0.04 0.06

22 0.01 0.02 0.93 0.92 0.01 0.01 0.01 0.92 0.06

23 0.02 0.09 0.92 0.85 0.01 0.01 0.09 0.84 0.06

24 0.02 0.01 0.92 0.93 0.01 0.01 0.01 0.92 0.06
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Table 9: Simulation Result: Scenario 3 (∆ = [0.32, 0.26, 0.5, 0.2]′)

Ordering GA GS L H GA, L GA, H GS, L GS, H None

1 0.83 0.08 0.85 0.06 0.81 0.02 0.04 0.04 0.09

2 0.83 0.08 0.17 0.74 0.13 0.70 0.04 0.04 0.09

3 0.84 0.07 0.85 0.06 0.82 0.02 0.03 0.04 0.09

4 0.06 0.85 0.85 0.06 0.03 0.02 0.81 0.04 0.09

5 0.72 0.19 0.17 0.74 0.02 0.70 0.15 0.04 0.09

6 0.05 0.86 0.83 0.08 0.02 0.04 0.82 0.04 0.09

7 0.81 0.10 0.88 0.03 0.79 0.02 0.09 0.01 0.09

8 0.81 0.10 0.21 0.70 0.12 0.68 0.09 0.01 0.09

9 0.81 0.09 0.86 0.05 0.77 0.04 0.09 0.00 0.09

10 0.59 0.32 0.64 0.27 0.55 0.04 0.09 0.23 0.09

11 0.81 0.10 0.28 0.63 0.19 0.61 0.09 0.01 0.09

12 0.60 0.31 0.28 0.63 0.19 0.41 0.09 0.22 0.09

13 0.87 0.04 0.83 0.07 0.81 0.06 0.03 0.01 0.09

14 0.09 0.81 0.83 0.07 0.03 0.06 0.80 0.01 0.09

15 0.84 0.06 0.84 0.07 0.78 0.06 0.06 0.01 0.09

16 0.62 0.29 0.61 0.29 0.56 0.06 0.06 0.23 0.09

17 0.13 0.78 0.84 0.07 0.06 0.06 0.78 0.01 0.09

18 0.13 0.78 0.62 0.29 0.06 0.06 0.55 0.23 0.09

19 0.72 0.19 0.17 0.74 0.01 0.71 0.16 0.03 0.09

20 0.05 0.86 0.84 0.07 0.01 0.04 0.83 0.03 0.09

21 0.63 0.28 0.27 0.64 0.01 0.62 0.26 0.01 0.09

22 0.42 0.48 0.27 0.64 0.01 0.42 0.26 0.22 0.09

23 0.11 0.80 0.80 0.11 0.01 0.10 0.79 0.01 0.09

24 0.11 0.80 0.58 0.33 0.01 0.10 0.57 0.23 0.09
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Therefore, the primary power we want to look at for Scenario 2 is the probability of conclud-

ing {GA, H} or {GS, H}, i.e., Power1 = Prob(H) = Prob(concluding {GA, H} or {GS, H}).

The secondary power is the probability of concluding the high dose on the overall population,

i.e., Power2 = Prob(concluding {GA, H}). This makes sense because we want to get the

drug approved on the largest population as possible.

Let’s look at the simulation results for each scenario. For Scenario 1, when comparing

the primary power, we find that ordering 21 has the largest primary power, while ordering

1, 2, 5, 7, 8, 11, 19 have comparably good primary power (marked in blue or red in Table 7).

When comparing the secondary power, we find that ordering ordering 2, 5, 8, 11, 19 and 21

(marked in red in Table 7) all have very low secondary power, which means that it is more

likely to conclude for {GA, H} in these orderings. Therefore, in this scenario, ordering 7 is

the most appropriate testing ordering to achieve our study goal, while ordering 1 seems to

be an appropriate testing ordering as well (marked in blue in Table 7). These test orderings

make sense because there is reasonably large drug effects for both low dose and high dose

on the overall population. As a consequence, there is enough power to reject H
(3)
0 , H

(2)
0 and

H
(1)
0 in orderings 1 and 7, and therefore lead to the conclusion of the overall population and

low dose.

Consider the primary power and the secondary power for Scenario 2. The orderings

that have comparably large primary power are marked in blue or red in Table 8. Some of

these test orderings don’t lead to reasonable secondary power (marked in red in Table 8).

Ordering 11 has nice primary and secondary power, and it is considered the most appropriate

test ordering for this scenario and study goal (marked in blue). Orderings 8, 19 and 21 are

also considered appropriate testing orderings in this case (marked in blue in Table 8).

Finally, we look at both primary power and secondary power for Scenario 3. In this case,

it is straight forward that ordering 13 is the most appropriate test ordering (marked in blue

in Table 9). When there is relatively large drug effects for the low dose on the overall and

subpopulation, the power is sufficiently large for rejecting H
(3)
0 , H

(2)
0 and H

(1)
0 in ordering 13

and therefore lead to conclusion of the low dose for the overall population.

In summary, when the prior beliefs of the drug effects vary, the most appropriate test

orderings vary even when the study goal is the same.
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3.4.2 Selection of Test Ordering Depends on the Study Goal

Suppose there are severe adverse effects of the drug at higher doses. Furthermore, suppose

we only consider drug effects as described in Scenario 1 (Section 3.4.1). Suppose that the

study goal were to change. Then which test ordering should we choose? Consider the study

goal where the primary goal is to find the lowest dose which is effective for at least one

population, and the secondary goal is to find the largest population for that lowest dose.

Then the primary power to be considered is the probability to conclude the low dose, i.e.,

Prob(“L”), and the secondary power to be considered is the probability to conclude the

low dose and the overall population, i.e., Prob({GA, L}), since the pharmaceutical company

wants the drug get approved for the largest population. After comparing the primary power

and the secondary power from Table 7, we find that ordering 13 is the most appropriate

ordering with P(“L”)=0.65, and P({GA, L})=0.53.

We can see that under the same drug effects Scenario 1, when the goal of the studies

vary, the most appropriate test orderings also vary even when the prior beliefs of the drug

effects are the same.

The simulation studies are intended to emphasize that there is no general best ordering,

and that simulation studies must be done in the design phase in order to find the best test

ordering for that setting.

3.5 EXTENDING THE 2 POPULATION AND 2 DOSE CASE TO

MULTIPLE POPULATION AND MULTIPLE DOSE CASES

Very often there are three doses considered in clinical trials: Low, Medium and High. But

clearly there can be more than three doses. Also, there might be more than 2 levels of

populations. Wang et al. [68] considered 3 levels of populations, where the populations

are nested. Furthermore, Wang et al. [68] proposed enrichment designs assuming nested

multiple populations. In our design, we also consider nested multiple populations.
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Extending the 2 population and 2 dose case to multiple population and multiple dose

cases is notationally complex, while the idea of the methodologies for the study design and

data analysis are the same. In this section, we will show how to extend our 2 population

and 2 dose case to 3 population and 3 dose case, so that the formulation of the methodology

for even larger numbers of doses and populations could be extended similarly.

Consider two binary indicator I1, I2. The study subjects can be classified into one of the

mutually exclusive subsets I+
1 or I−1 ; or the mutually exclusive sets I+

2 or I−2 . In the study,

we are interested in assessing the drug effects in three populations: the overall population,

the subpopulation with I+
1 , and the subpopulation with I+

1 and I+
2 . For example, the first

classifier could be HER2 protein expression level (over-expression versus normal expression);

and the second classifier could be subject’s menopause status (during or post menopause

versus before menopause). The populations of interest are the overall population, the sub-

jects with HER2 over-expression, and the subjects who over-express HER2 and are during

or after their menopause.

Following Wang et al.’s [68] notation, we denote the three populations of interest by

GA, GS1 and GS2, where GA is the overall population, GS1 is the subpopulation with I+
1 ,

and GS2 is the subpopulation with I+
1

⋂
I+

2 . Denote GS1− as the population with negative

indicator I−1 , which is the complimentary population of GS1. The subpopulation GS1 and

the compliment population GS1− are both nested in GA, i.e., GS1− consists of all subjects

that are contained in GA but not contained in GS1. Denote GS21− as the population with

indicator I+
1

⋂
I−2 in GS1, which is the complimentary population of GS2 within GS1 (Figure

2). Denote the populations by Gl, where l = A, S1, S2, S1−, S21−.

Suppose the true proportion of GS1 out of GA and the true proportion of GS2 out of GS1

are known, as described in Chapter 1, and are denoted by f1 and f2, respectively. Since GS1

and GS1− are mutually exclusive, the true proportion of GS1− out of GA is (1 − f1). Since

GS2 and GS21− are mutually exclusive in GS1, the true proportion of GS2 out of GA is f1f2,

and the true proportion of GS21− out of GA is f1(1− f2).

Suppose in our study design, the proportion of subjects in the sample that will be selected

from GS1 out of GA is g1, and the proportion of subjects in the sample that will be selected

from GS2 out of GS1 is g2, 0 < g1, g2 < 1. Therefore, the proportion of subjects that will
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Figure 2: Depiction of Three Nested Populations

be selected from GS1− is 1− g1, the proportion of subjects that will be selected from GS2 is

g1g2, and the proportion of subjects that will be selected from GS21− is g1(1− g2).

When g1 = f1 and g2 = f2, this indicates that the sample has “true” proportion of sub-

jects that are from each population; g1 > f1 indicates that the subpopulation with I+ (GS1)

is partially enriched with respect to GA; and g1g2 > f1f2 indicates that the subpopulation

with I+
1 and I+

2 (GS2) is partially enriched with respect to GA and also GS1; otherwise, there

is no enrichment.

Suppose there are 3 dose levels of interest, denoted as Low, Medium and High. There is a

control group as well, receiving placebo (or active comparator if we want to show superiority).

Denote the treatments by m, where m = L,M,H, c.

Denote the total sample size for the study by NTotal. Thus, we have stratified sampling,

i.e., g1g2NTotal subjects are sampled from GS2, g1(1−g2)NTotal subjects sampled from GS21− ,

and (1− g1)NTotal subjects sampled from GS1− .

For simplicity, assume that subjects within a population are randomly assigned to high

dose, low dose, or placebo with equal numbers to each treatment. Denote the total number

of subjects receiving each treatment by N , where N = NTotal/4, so that g1g2N subjects in
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GS2 will be assigned to receive high dose, medium dose, low dose, and placebo, respectively;

g1(1 − g2)N subjects in GS21− will be assigned to each dose group; similarly, (1 − g1)N

subjects in GS1− will be assigned to each dose group. Table 10 summarizes the experimental

design with respect to the sample sizes for the stratified sampling.

Table 10: Study Design Sample Sizes: 3 by 3 Case

Doses

Population Low Medium High Control Total

GS1− (1− g1)N (1− g1)N (1− g1)N (1− g1)N (1− g1)NTotal

GS21− g1(1− g2)N g1(1− g2)N g1(1− g2)N g1(1− g2)N g1(1− g2)NTotal

GS2 g1g2N g1g2N g1g2N g1g2N g1g2NTotal

GS1 g1N g1N g1N g1N g1NTotal

GA N N N N NTotal

Note: NTotal is the total sample size; N is the sample size for each dose; g1 is the sampling
proportion of subjects from GS1 out of GA; and g2 is the sampling proportion of subjects from

GS2 out of GS1.

Denote the drug response of each subject in the study byXGl,m,i, where l = S2, S21−, S1−;

m = L,M,H, c; i = 1, 2, · · · , g1g2N , if l = S2; i = 1, 2, · · · , g1(1 − g2)N , if l = S21−;

i = 1, 2, · · · , (1− g1)N , if l = S1−.

Denote by µGl,m the true drug response mean for population l at dose m, where l =

A, S1, S1−, S2, S21−; m = L,M,H, c. Denote by ∆Gl,m the true drug effect of dose m

relative to the control group in population l ,

∆Gl,m = µGl,m − µGl,c,

where l = A, S1, S1−, S2, S21−; m = L,M,H.

Like the 2 population and 2 dose case, we make the following assumptions:

1. All responses XGl,m,i from the mutually exclusive populations are mutually independent.

Thus the sample mean responses X̄GS1− ,L
, X̄GS1− ,M

, X̄GS1− ,H
, X̄GS21− ,L, X̄GS21− ,M ,

X̄GS21− ,H , X̄GS2,L, X̄GS2,M , and X̄GS2,H are mutually independent.
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2. XGl,m,i’s are normally distributed with mean µl,m and a common variance σ2. Due to the

generally sufficiently large sample sizes in each group, we continue to assume throughout

this dissertation that the variance is known, that is,

XGl,m,i ∼ N (µGl,m, σ
2), σ2 is known,

where l = S2, S21−, S1−; m = L,M,H, c; i =


1, 2, · · · , (1− g1)N, if l = S1−;

1, 2, · · · , g1(1− g2)N, if l = S21−;

1, 2, · · · , g1g2N, if l = S2.

We can easily obtain the distributions of sample mean responses for each treatment m,

where m = L,H, c, for the subpopulation and the complimentary population, namely,

X̄GS1− ,m
∼ N (µGS1− ,m

,
σ2

(1− g1)N
),

X̄GS21− ,m ∼ N (µGS21− ,m,
σ2

g1(1− g2)N
),

X̄GS2,m ∼ N (µGS2,m,
σ2

g1g2N
).

3. We assume that the drug has nonnegative effects for all three doses, that is,

∆Gl,m = µGl,m − µGl,c ≥ 0,

where l = A, S1, S2; m = L,M,H.

4. As discussed in Section 1.1.1, we assume that the proportion f1 of GS1 out of GA, and the

proportion f2 of GS2 out of GS1 are known. Therefore, we have that for m = L,M,H, c,

the population mean response for GS1 is

µGS1,m = f2µGS2,m + (1− f2)µGS21− ,m,

and the population mean response for GA is

µGA,m = f1µGS1,m + (1− f1)µGS1− ,m

= f1[f2µGS2,m + (1− f2)µGS21− ,m] + (1− f1)µGS1− ,m
.
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For m = L,M,H, the drug effect for GS1 is

∆GS1,m = f2∆GS2,m + (1− f2)∆GS21− ,m,

and the drug effect for GA is

∆GA,m =f1f2∆GS2,m + f1(1− f2)∆GS21− ,m + (1− f1)∆GS1− ,m
.

When there are three nested populations and three doses in a clinical trial, we are inter-

ested in evaluating the drug effects on nine groups: {GA, Low}, {GA, Medium}, {GA, High},

{GS1, Low}, {GS1, Medium}, {GS1, High}, {GS2, Low}, {GS2, Medium}, {GS2, High}, which

are low dose in the overall population, medium dose in the overall population, high dose in

the overall population, low dose in the population with I+
1 , medium dose in the population

with I+
1 , high dose in the population with I+

1 , low dose in the population with I+
1

⋂
I+

2 ,

medium dose in the population with I+
1

⋂
I+

2 , high dose in the population with I+
1

⋂
I+

2 ,

respectively. Thus we want to construct a testing procedure that tests for the drug effects

∆, where ∆ = (∆GA,L,∆GA,M ,∆GA,H ,∆GS1,L,∆GS1,M ,∆GS1,H ,∆GS2,L,∆GS2,M ,∆GS2,H)′ and

where the testing scheme meets the goals of the company as described in Section 2.1.

Again, we construct the testing scheme under the principle of closed testing procedures.

For the three nested population and three dose case, our testing scheme consists of 9 in-

dividual hypotheses, and therefore there are 9! = 362, 880 in the analogue of the testing

scheme in Table 3 for our 3 × 3 case. We do illustrate one testing scheme as an example.

Due to huge possible test orderings, we do not perform extensive comparative simulations

for 3 population and 3 dose case as we did for Table 7, 8, 9.

Suppose in a clinical trial, our goal is to find the largest population where there is at

least one effective dose and for this population find the Minimum Effect Dose (MED). To
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achieve this goal, we consider the following testing scheme where the null hypotheses are as

follows

H
(9)
0 :∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = ∆GS2,L

= ∆GS2,M = ∆GS2,H = 0, (3.19a)

H
(8)
0 :∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = ∆GS2,L

= ∆GS2,M = 0, (3.19b)

H
(7)
0 :∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = ∆GS2,L = 0, (3.19c)

H
(6)
0 :∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = 0, (3.19d)

H
(5)
0 :∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = 0, (3.19e)

H
(4)
0 :∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = 0, (3.19f)

H
(3)
0 :∆GA,L = ∆GA,M = ∆GA,H = 0, (3.19g)

H
(2)
0 :∆GA,L = ∆GA,M = 0, (3.19h)

H
(1)
0 :∆GA,L = 0, (3.19i)

and where ∆lm is given previously in this section.

Each corresponding alternative hypothesis states that there is at least one positive drug
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effect among the populations and doses considered in the null hypothesis:

H(9)
a :∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M > 0

or ∆GS1,H > 0 or ∆GS2,L > 0 or ∆GS2,M > 0 or ∆GS2,H > 0, (3.20a)

H(8)
a :∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M > 0

or ∆GS1,H > 0 or ∆GS2,L > 0 or ∆GS2,M > 0, (3.20b)

H(7)
a :∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M > 0

or ∆GS1,H > 0 or ∆GS2,L > 0, (3.20c)

H(6)
a :∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M > 0

or ∆GS1,H > 0, (3.20d)

H(5)
a :∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M > 0, (3.20e)

H(4)
a :∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0, (3.20f)

H(3)
a :∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0, (3.20g)

H(2)
a :∆GA,L > 0 or ∆GA,M > 0, (3.20h)

H(1)
a :∆GA,L > 0. (3.20i)

We test the family of hypotheses in a step down manner from the highest level until we

accept one null hypothesis. To be specific, H(9) is tested first. If H
(9)
0 is rejected, then H(8)

is to be tested next; otherwise, stop testing. If H
(8)
0 is rejected, then continue to test H(7);

otherwise, stop testing. Similarly, we continue each individual test in a step down manner

until one hypothesis is accepted or H(1) is rejected. Controlling each individual test at level

α yields overall strong control of type I error at the α-level.

After the hypotheses are tested, we make the conclusions based on the testing results

according to the following rules.

• If H
(9)
0 is true, i.e., ∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = ∆GS2,L =

∆GS2,M = ∆GS2,H = 0, then there is no population that has an effective dose.
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• If H
(9)
0 is false, i.e., ∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M >

0 or ∆GS1,H > 0 or ∆GS2,L > 0 or ∆GS2,M > 0 or ∆GS2,H > 0, and if H
(8)
0 is true, i.e.,

∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = ∆GS2,L = ∆G2,M = 0, then

we conclude ∆G2,H > 0. We thereby establish the largest population that has a positive

dose effect is the subpopulation G2 and the MED for this population is the high dose.

We denote this choice by {G2, High}.

• If H
(9)
0 is false, H

(8)
0 is false, i.e., ∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L >

0 or ∆GS1,M > 0 or ∆GS1,H > 0 or ∆GS2,L > 0 or ∆GS2,M > 0, and if H
(7)
0 is true, i.e.,

∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = ∆GS2,L = 0, then we conclude

∆GS2,M > 0, where it is possible that also ∆GS2,H > 0. We thereby establish the largest

population that has a positive dose effect is the subpopulation GS2 and the MED for this

population is the medium dose. We denote this choice by {GS2, Medium}.

• If H
(9)
0 is false, H

(8)
0 is false, and H

(7)
0 is false, i.e., ∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H >

0 or ∆GS1,L > 0 or ∆GS1,M > 0 or ∆GS1,H > 0 or ∆GS2,L > 0, and if H
(6)
0 is true,

i.e., ∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = ∆GS1,H = 0, then we conclude

∆GS2,L > 0, where it is possible that also ∆GS2,H > 0 and/or ∆GS2,M > 0. We thereby

establish the largest population that has a positive dose effect is the subpopulation GS2

and the MED for this population is the low dose. We denote this choice by {GS2, Low}.

• If H
(9)
0 is false, H

(8)
0 is false, H

(7)
0 is false, and H

(6)
0 is false, i.e., ∆GA,L > 0 or ∆GA,M >

0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M > 0 or ∆GS1,H > 0, and if H
(5)
0 is true, i.e.,

∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = ∆GS1,M = 0, then we conclude ∆GS1,H > 0, where

it is possible that also ∆GS2,H > 0 and/or ∆GS2,M > 0 and/or ∆GS2,L > 0. We thereby

establish the largest population that has a positive dose effect is the subpopulation GS1

and the MED for this population is the high dose. We denote this choice by {GS1, High}.

• If H
(9)
0 is false, H

(8)
0 is false, H

(7)
0 is false, H

(6)
0 is false, and H

(5)
0 is false, i.e., ∆GA,L >

0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0 or ∆GS1,M > 0, and if H
(4)
0 is true,

i.e., ∆GA,L = ∆GA,M = ∆GA,H = ∆GS1,L = 0, then we conclude ∆GS1,M > 0, where

it is possible that also ∆GS2,H > 0 and/or ∆GS2,M > 0 and/or ∆GS2,L > 0 and/or

∆GS1,H > 0. We thereby establish the largest population that has a positive dose effect

is the subpopulation GS1 and the MED for this population is the medium dose. We
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denote this choice by {GS1, Medium}.

• If H
(9)
0 is false, H

(8)
0 is false, H

(7)
0 is false, H

(6)
0 is false, H

(5)
0 is false, and H

(4)
0 is false,

i.e., ∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0 or ∆GS1,L > 0, and if H
(3)
0 is true, i.e.,

∆GA,L = ∆GA,M = ∆GA,H = 0, then we conclude ∆GS1,L > 0, where it is possible that

also ∆GS2,H > 0 and/or ∆GS2,M > 0 and/or ∆GS2,L > 0 and/or ∆GS1,H > 0 and/or

∆GS1,M > 0. We thereby establish the largest population that has a positive dose effect

is the subpopulation GS1 and the MED for this population is the low dose. We denote

this choice by {GS1, Low}.

• If H
(9)
0 is false, H

(8)
0 is false, H

(7)
0 is false, H

(6)
0 is false, H

(5)
0 is false, H

(4)
0 is false,

and H
(3)
0 is false, i.e., ∆GA,L > 0 or ∆GA,M > 0 or ∆GA,H > 0, and if H

(2)
0 is true,

i.e., ∆GA,L = ∆GA,M = 0, then we conclude ∆GA,H > 0, where it is possible that

also ∆GS2,H > 0 and/or ∆GS2,M > 0 and/or ∆GS2,L > 0 and/or ∆GS1,H > 0 and/or

∆GS1,M > 0 and/or ∆GS1,L > 0. We thereby establish the largest population that has a

positive dose effect is the overall population GA and the MED for this population is the

high dose. We denote this choice by {GA, High}.

• If H
(9)
0 is false, H

(8)
0 is false, H

(7)
0 is false, H

(6)
0 is false, H

(5)
0 is false, H

(4)
0 is false, H

(3)
0

is false, and H
(2)
0 is false, i.e., ∆GA,L > 0 or ∆GA,M > 0, and if H

(1)
0 is true, i.e.,

∆GA,L = 0, then we conclude ∆GA,M > 0, where it is possible that also ∆GS2,H > 0

and/or ∆GS2,M > 0 and/or ∆GS2,L > 0 and/or ∆GS1,H > 0 and/or ∆GS1,M > 0 and/or

∆GS1,L > 0 and/or ∆GA,H > 0. We thereby establish the largest population that has a

positive dose effect is the overall population GA and the MED for this population is the

medium dose. We denote this choice by {GA, Medium}.

• If H
(9)
0 is false, H

(8)
0 is false, H

(7)
0 is false, H

(6)
0 is false, H

(5)
0 is false, H

(4)
0 is false, H

(3)
0

is false, H
(2)
0 is false, and H

(1)
0 is false, i.e., ∆GA,L > 0, then we conclude ∆GA,L > 0,

where it is possible that also ∆GS2,H > 0 and/or ∆GS2,M > 0 and/or ∆GS2,L > 0 and/or

∆GS1,H > 0 and/or ∆GS1,M > 0 and/or ∆GS1,L > 0 and/or ∆GA,H > 0 and/or ∆GA,M > 0.

We thereby establish the largest population that has a positive dose effect is the overall

population GA and the MED for this population is the low dose. We denote this choice

by {GA, Low}.

For this illustration, Table 11 summarizes all the possible outcomes and the corresponding
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conclusions.

Similarly as for the 2 population and 2 dose cases, we can obtain unbiased estimators

of the drug effects, as well as the mean and covariance structure of the test statistics (see

Appendix A.1 for details). To test each individual hypothesis, we can again directly apply

Follmann’s procedure. Based on the test results and Table 11, we can make conclusions of

the study.
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4.0 ADAPTIVE DESIGNS

In this chapter, we propose two two-stage adaptive designs extending the non-adaptive de-

signs in Chapter 3. In the first adaptive design, only the total sample size of the second

stage depends on the first stage data. In the second adaptive design, we may further enrich

the subpopulation, as well as increase the sample size, for the second stage.

For illustrative purpose, we again use use the 2 population and 2 dose case.

4.1 ADAPTIVE DESIGN WITH SECOND STAGE SAMPLE SIZE

ADJUSTMENT

4.1.1 The Adaptive Design

Before the study, the testing scheme and the hypotheses test ordering should be determined

based on the study goal and prior beliefs of the drug effects, as in Section 3.4. We pre-specify

the first stage and second stage sampling proportions of subjects from the subpopulation. In

the first stage, we are going to sample N I
Total subjects, where N I

Total is pre-determined. After

Stage I, we examine the first stage data, and the test statistics of the first stage data are cal-

culated. The statistics of stage I are denoted by ZI , where ZI = [ZI
GA,L

, ZI
GA,H

, ZI
GS ,L

, ZI
GS ,H

]′

and they are specified in (3.5) and (3.6). We choose the second stage sample size based on

ZI . In the second stage, we are going to sample N II
Total(Z

I) subjects, where N II
Total(Z

I) is

obtained by the pre-specified adaptation rule given at the beginning of the study. How to

obtain N II
Total(Z

I) is discussed in Section 4.1.4. The statistics of stage II are denoted by

ZII , where ZII = [ZII
GA,L

, ZII
GA,H

, ZII
GS ,L

, ZII
GS ,H

]′. Also we pre-specify a weight, denoted by w,
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where 0 < w < 1, which is used to combine the information from the two stages.

Similar to the non-adaptive design proposed in Chapter 3, we make the following as-

sumptions.

1. The true proportion of the subpopulation to the overall population is known, denoted as

f .

2. We assume that the responses XGl,m,i are normally distributed with mean µGl,m and a

common variance σ2. Assume that the variance is known.

3. We assume that the drug has nonnegative effect for both doses.

4. For simplicity, we assume that subjects within a population are randomly assigned to

high dose, low dose, or placebo with equal numbers in each.

Denote the sampling proportion of subjects from the subpopulation in Stage I by gI , and

let N I = N I
Total/3. Again both gI and N I

Total are determined before the trial starts. The

design of the first stage is the same as the non-adaptive design in Section 3.1.1. Stratified

sampling is used with gIN I subjects from the subpopulation GS being assigned for each

treatment (low dose, high dose, and control), and (1−gI)N I subjects form the complimentary

population GS− being assigned for each treatment (Table 12).

Table 12: First Stage Adaptive Design Sample Sizes: 2 by 2 Case

Doses

Low High Control Total

Subpopulation GS gIN I gIN I gIN I gN I
Total

Complimentary Pop. GS− (1− gI)N I (1− gI)N I (1− gI)N I (1− g)N I
Total

Overall Pop. GA N I N I N I N I
Total

Note: gI is the first stage sampling proportion of subjects from the subpopulation, N I
Total is the

Stage I total sample size, and N I is the Stage I sample size for each dose.

After completion of Stage I experiment, we examine the stage I data, and based on the

information we obtained from stage I, we decide the sample size for stage II: N II
Total(Z

I),

according to the pre-specified adaptation rule. Let N II(ZI) = N II
Total(Z

I)/3. Denote the

sampling proportion of subjects selected from the subpopulation in Stage II by gII , where
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gII is also pre-specified prior to the start of the study. Usually, we want to make gII equal

to gI . However, we want to use different notation in this dissertation in order to point out

that the second stage sampling proportion could be different from the first stage sampling

proportion. Stratified sampling is used again, and the design of the second stage is shown

in Table 13.

Table 13: Second Stage Adaptive Design Sample Sizes: 2 by 2 Case

Doses

Low High Control Total

Subpopulation GS gIIN II(ZI) gIIN II(ZI) gIIN II(ZI) gN II
Total(Z

I)
Complimentary Pop. GS− (1− gII)N II(ZI) (1− gII)N II(ZI) (1− gII)N II(ZI) (1− g)N II

Total(Z
I)

Overall Pop. GA N II(ZI) N II(ZI) N II(ZI) N II
Total(Z

I)

Note: gII is the second stage sampling proportion of subjects from the subpopulation, N II
Total(Z

I)
is the total Stage II sample size, and N II(ZI) is the Stage II sample size for each dose.

At the end of each stage, we collect the response data for Stage I and Stage II re-

spectively, and we compute ZI and ZII , i.e., ZI = [ZI
GA,L

, ZI
GA,H

, ZI
GS ,L

, ZI
GS ,H

]′ and ZII =

[ZII
GA,L

, ZII
GA,H

, ZII
GS ,L

, ZII
GS ,H

]′, using equations (3.5) and (3.6) for Stage I and Stage II data.

We then use these data to obtain the statistics for the final analysis.

4.1.2 The Final Statistics

It follows from (3.5) and (3.6) ZI has a multivariate normal distribution:

ZI ∼MVN (µZI ,


1 1

2
DI DI

2

1
2

1 DI

2
DI

DI DI

2
1 1

2

DI

2
DI 1

2
1

), (4.1)
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where

µZI =



∆GA,L√
2σ2

NI
( f

2

gI
+

(1−f)2

1−gI
)

∆GA,H√
2σ2

NI
( f

2

gI
+

(1−f)2

1−gI
)

∆GS,L√
2σ2

gINI

∆GS,H√
2σ2

gINI


, (4.2)

DI =

√
1

1 + (1−f)2gI

f2(1−gI)

. (4.3)

The distribution of the second stage test statistics ZII depends on the second stage

sample size N II
Total(Z

I) and the second stage sample size depends on the first stage data

through ZI . Consequently, the distribution of ZII depends on the first stage data through

ZI . We calculate the distribution of ZII |ZI , as in equations (3.5), (3.6) and (3.7-3.12).

Conditional on ZI , the responses are normally distributed with known covariance, and the

sample size for the second stage is known. Therefore, ZII |ZI have a multivariate normal

distribution:

ZII |ZI ∼MVN (µZII |ZI ,


1 1

2
DII DII

2

1
2

1 DII

2
DII

DII DII

2
1 1

2

DII

2
DII 1

2
1

), (4.4)

where

µZII |ZI =



∆GA,L√
2σ2

NII (ZI )
( f

2

gII
+

(1−f)2

1−gII
)

∆GA,H√
2σ2

NII (ZI )
( f

2

gII
+

(1−f)2

1−gII
)

∆GS,L√
2σ2

gIINII (ZI )

∆GS,H√
2σ2

gIINII (ZI )


, (4.5)
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DII =

√
1

1 + (1−f)2gII

f2(1−gII)

. (4.6)

So far, we have obtained the distribution of ZI and the distribution of ZII conditional

on ZI . It is important to note that µZII |ZI depends on ZI and cov(ZII |ZI) does not depend

on ZI since DII in (4.6) does not depend on ZI . Next we consider combining the two stages

of data to obtain the final statistics.

The final statistics ZFinal, where ZFinal = [ZFinal
GA,L

, ZFinal
GA,H

, ZFinal
GS ,L

, ZFinal
GS ,H

]′, are calculated

by combining the two stage data using this fixed weight w:

ZFinal
Gl,m

=
√
wZI

Gl,m
+
√

(1− w)ZII
Gl,m

, (4.7)

where l = A, S, m = L,H, and where 0 < w < 1 is the pre-specified weight.

We show in the next subsection that under the null hypotheses, ZFinal and all subsets

of ZFinal are multivariate normally distributed. This property makes the critical values for

Follmann’s test easy to compute. However, under the alternatives, neither the distribution

of ZFinal nor the distribution of any subset of ZFinal is multivariate normal. Instead, they

are mixtures of multivariate normal distributions.

4.1.3 Final Analysis and Strong Control of Type I Error

For the non-adaptive designs, a testing scheme is given in Section 3.2, which is closed under

intersection. Since that testing scheme follows the closed testing procedure, the test strongly

controls Type I error rate, if each individual hypothesis is tested at α level. Furthermore,

Follmann’s test, which is a one-sided multivariate test, can be used to test each individual

hypothesis, which is discussed in Section 3.3.

In our adaptive design, we similarly pre-specify the testing scheme and the ordering

before the study begins, as in the non-adaptive design. Assuming we demonstrate again we

are using a closed testing scheme, then if we could test each individual hypothesis at level α

following the testing order at the end of the study, the Type I error rate would be strongly

protected.
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As we have discussed in the Section 3.2, each testing scheme includes four hypotheses

tests. Since the hypothesis H
(4)
0 : ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0 is included in all

testing schemes, let’s first take a look at the distribution of ZFinal under H
(4)
0 .

Under H
(4)
0 , the distributions of ZI and ZII |ZI become:

ZI ∼MVN (0,
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ZII |ZI ∼MVN (0,
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where DI =
√

1

1+
(1−f)2gI

f2(1−gI )

and DII =
√

1

1+
(1−f)2gII

f2(1−gII )

, as defined in (4.3) and (4.6).

It is obvious that under the null hypotheses H
(4)
0 , ZII is independent of ZI , so that ZII

is multivariate normally distributed unconditionally. Since ZFinal is a linear combination of

ZI and ZII , which are independent and both multivariate normally distributed under H
(4)
0 ,

and the weight w is fixed, ZFinal also has a multivariate normal distribution under H
(4)
0 :

ZFinal ∼MVN (0, cov(ZFinal)),

where

cov(ZFinal) = cov(
√
wZI +

√
1− wZII) = w cov(ZI) + (1− w)cov(ZII)

= w


1 1

2
DI DI

2

1
2

1 DI

2
DI

DI DI

2
1 1

2

DI

2
DI 1

2
1

+ (1− w)


1 1

2
DII DII

2

1
2

1 DII

2
DII

DII DII

2
1 1

2

DII

2
DII 1

2
1

 ,

57



where DI =
√

1

1+
(1−f)2gI

f2(1−gI )

and DII =
√

1

1+
(1−f)2gII

f2(1−gII )

, as defined in (4.3) and (4.6).

The remaining hypotheses in the testing scheme test if subsets of the four drug effects are

all zero. Therefore, for the other hypothesis, the test statistics are a subset of ZFinal, and the

covariance matrix among the test statistics are the corresponding subset of the covariance

matrix cov(ZFinal). We can similarly show that the final test statistics under any possible

individual null hypothesis are multivariate normal.

Since the final statistics ZFinal follow a multivariate normal distribution under H
(4)
0 ,

Follmann’s procedure, which protects the local α level, can be performed on ZFinal. Similarly,

all the other three hypotheses in the testing scheme can be tested using Follmann’s procedure

at the α level. Therefore, using the closed testing schemes (see Table 3) proposed in Section

3.2, the strong control of Type I error rate is guaranteed for the adaptive procedures.

4.1.4 The Adaptation Rule

A variety of methods can be used to determine the second stage sample size. One method

is based on the predictive power [59] [49]. Another method uses the conditional power (CP)

[48]. Conditional power is a popular method that is widely used in adaptive designs. Wang

et al. [68] proposed an adaptive population enrichment design, which built its adaptation

rule based on the conditional power. Wang et al. [68] suggested computing the conditional

power for each population/subpopulation at the end of stage I using the originally planned

second stage sample size. If the conditional power of concluding the overall population is

small, then the subpopulations should be enriched. Wang et al. [68] also suggested increasing

the second stage sample size to a maximum value that the authors had pre-specified.

We can use various methods to develop adaptation rules, and we use the conditional

power in this dissertation for illustrative purposes. Here we give an example of adaptation

rule using the conditional power. After stage I, we conduct simulation studies and choose

the second stage sample size N II
Total(Z

I) so that the conditional power is big (for example,

greater than 0.8) .

As discussed in Section 2.1, the design setting can be applied to achieve various objectives.
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Thus, power is a complex notion in these designs, differing among the study objectives. In

Section 3.4, we described power as the probability of concluding the population and/or

the dose that are desired. The reasonable notions of power corresponding to various trial

objectives are:

1. To find any population where there is at least one dose that is effective,

Power = Prob(Conclude {GA, L} or {GA, H} or {GS, L} or {GS, H}).

2. To find the largest population where at least one dose is effective,

Power = Prob(Conclude {GA, L} or {GA, H}).

3. To find the lowest dose where the dose is effective for at least one population,

Power = Prob(Conclude {GA, L} or {GS, L}).

The conditional power after Stage I is the probability of concluding the desired population

and dose combination/combinations given the first stage data, the postulated effect sizes,

which are denoted as ∆0, where ∆0 = [∆GA,L,0,∆GA,H,0,∆GS ,L,0,∆GS ,H,0]′, and the second

stage sample size. We can also use the estimated effect sizes from the first stage data to

obtain the conditional power using the estimated effect sizes instead of the postulated effect

sizes, ∆̂I = [∆̂I
GA,L

, ∆̂I
GA,H

, ∆̂I
GS ,L

, ∆̂I
GS ,H

]′, from the first stage. However, Bauer and Koenig

[5] pointed out the instability of conditional power when the effect sizes were evaluated based

on the interim observed data. Thus, in our adaptive rule, the conditional power is calculated

conditional on the postulated effect sizes to avoid this instability, i.e.,

CP = Probability(concluding the desired population and dose|∆0, N
II
Total,Z

I). (4.10)

It is very complex to compute the conditional power because the distribution of the final

test statistics is a mixture of normal distributions under the alternative hypothesis. We use

simulation to obtain the conditional power based on the postulated drug effect sizes, ∆0,

varying second stage sample size, and the first stage data, ZI . Then we pick the second
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stage sample size in order to obtain good conditional power, i.e., N II
Total(Z

I) = min(N II
Total :

CP > 0.8). The adaptation rule, especially the simulation steps and rules, are pre-specified.

Simulation studies on how to obtain conditional power and how to obtain N II
Total(Z

I) are

shown in Section 4.3.1.

4.2 THE ADVANCED ADAPTIVE DESIGN

In the second adaptive design, we allow further enriching the subpopulation, as well as

increasing the sample size for Stage II. In comparison to the first adaptive design, this

design is more flexible in allowing partial enrichment of the subpopulation. This leads us to

call it the “advanced adaptive design”.

4.2.1 The Design and the Final Statistics

In Section 4.1, we introduced the adaptive design where the second stage total sample size,

N II
Total(Z

I), depends on the first stage data. However, the sampling proportion of the sub-

population in the second stage, gII , is pre-fixed. In the advanced adaptive design, both

N II
Total and gII are determined based on the first stage data, i.e., N II

Total(Z
I) and gII(ZI).

In the advanced adaptive design, the Stage I study design is the same as the Stage I

study design in our first adaptive design, summarized in Table 12. At the end of Stage I, the

total sample size and the sampling proportion of the subpopulation for the second stage are

determined based on the first stage data through ZI using a pre-specified adaptation rule.

Based on N II
Total(Z

I) and gII(ZI), stratified sampling is used, and our second stage study

design is summarized in Table 14.

Again, there are various adaptation rules that can be used. Here we introduce a simple

adaptation rule as an example, where the second stage total sample size N II
Total and the second

stage sampling proportion of the subpopulation gII are originally planned to be N II
Total,0 and

gII0 , respectively. However, the second stage total sample size and second stage sampling

proportion may be increased to N II
Total,max and gIImax. The adaptation rule says that after
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examining the first stage data, we keep using N II
Total,0 and gII0 if the conditional power is

large (for example, greater than 0.8); otherwise, N II
Total,max and gIImax are used as the second

stage total sample size and sampling proportion of the subpopulation, respectively. All

N II
Total,0 , gII0 , N II

Total,max, and gIImax are pre-specified, so that their values do not depend on

the observed value of ZI . Due to cost and safety reasons, N II
Total,max and gIImax are the allowed

maximum values of sample size and sampling proportion for stage II. How to obtain N II
Total,0

and gII0 will be shown in Section 4.3.2.

Table 14: Second Stage Advanced Adaptive Design Sample Sizes: 2 by 2 Case

Doses

Low High Control Total

GS gII(ZI)N II(ZI) gII(ZI)N II(ZI) gII(ZI)N II(ZI) gII(ZI)N II
Total(Z

I)
GS− [1− gII(ZI)]N II(ZI) [1− gII(ZI)]N II(ZI) [1− gII(ZI)]N II(ZI) [1− gII(ZI)]N II

Total(Z
I)

GA N II(ZI) N II(ZI) N II(ZI) N II
Total(Z

I)

Note: gII(ZI) is the second stage sampling proportion of the subpopulation, N II
Total(Z

I) is the
total sample size in Stage II, and N II(ZI) is the sample size for each dose in Stage II. GS is the
subpopulation, GS− is the complimentary of subpopulation, and GA is the overall population.

At the end of the study, we compute ZI and ZII for stage I and stage II, using equations

(3.5) and (3.6), and the final statistics ZFinal are computed by equation (4.7), where w is

pre-specified.

Next, we investigate the distributions of these test statistics. Again, the first stage test

statistics, ZI , has a multivariate normal distribution, as described in equations (4.1), (4.2)

and (4.3). The second stage test statistics given the first stage data, ZII |ZI , also has a

normal distribution,

ZII |ZI ∼ N (µZII |ZI ,
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), (4.11)
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where

µZII |ZI =



∆GA,L√
2σ2

NII (ZI )
( f2

gII (ZI )
+

(1−f)2

1−gII (ZI )
)

∆GA,H√
2σ2

NII (ZI )
( f2

gII (ZI )
+

(1−f)2

1−gII (ZI )
)

∆GS,L√
2σ2

gII (ZI )NII (ZI )

∆GS,H√
2σ2

gII (ZI )NII (ZI )


, (4.12)

andDII
∗ (ZI) =

√
1

1 + (1−f)2gII(ZI)
f2[1−gII(ZI)]

. (4.13)

Note that in comparison to (4.5), both µZII |ZI and cov(ZII |ZI) in (4.12), (4.13) depend

on ZI . Since ZII are not independent of ZI , the distribution of ZFinal is a mixture of

multivariate normals. We will show in next subsection that even under the null hypotheses,

the distribution of ZFinal is not multivariate normal, which makes the critical values of

Follmann’s procedure difficult to compute.

4.2.2 Final Analysis

Again, the testing scheme and the test ordering are determined before the study based on

the study goal and the prior beliefs about the drug effects. Because the testing scheme is

closed under intersection, we require that each of the individual hypothesis in the testing

scheme be tested at α level in order to control the type I error in the strong sense.

To illustrate an approach to do individual level-α testing, we consider how to test the

null hypothesis H
(4)
0 , i.e., ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0, which is included in every

testing scheme, by investigating the distribution of ZFinal under H
(4)
0 . Under H

(4)
0 , it can be

seen from (4.2) and (4.12), ZI and ZII |ZI both have means 0, that is,

E(ZI) = 0, (4.14)

E(ZII |ZI) = 0. (4.15)
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The distributions of ZI and the conditional distribution of ZII |ZI are multivariate normal,

ZI ∼ N (0,
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ZII |ZI ∼ N (0,
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where DI =
√

1

1+
(1−f)2gI

f2(1−gI )

and DII
∗ (ZI) =

√
1

1+
(1−f)2gII (ZI )

f2[1−gII (ZI )]

are defined in (4.3) and (4.13).

As we indicated, it is obvious that ZII is not independent of ZI . Thus, ZFinal as com-

puted by equation (4.7) doesn’t have a multivariate normal distribution. Therefore, we

cannot directly use Follmann’s procedure for each individual hypothesis, since application

of Follmann’s procedure requires that ZFinal have a multivariate normal distribution. In

Sections 4.2.2.1 - 4.2.2.3, we propose three methods that may be useful for each individual

test.

Note that we will only demonstrate how to test the null hypothesis H
(4)
0 . There are three

more null hypotheses to be tested in each of our proposed testing schemes. Since the other

three hypotheses are testing whether a subset of the drug effect tested in H
(4)
0 are zero, we

can use the same methods to test H
(3)
0 , H

(2)
0 , and H

(1)
0 as we propose for testing H

(4)
0 .

4.2.2.1 Numerical Integration

Due to the simple adaptation rule, in which gII is chosen from two values, gII0 and gIImax,

it is possible to identify the distribution of ZFinal. The cumulative distribution function of
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ZFinal is,

P (ZFinal ≤ c)

=

∫ ∫ ∫ ∫
P (ZFinal ≤ c|ZI)φ(ZI)dZIGA,L

dZIGA,H
dZIGS,L

dZIGS,H

=

∫ ∫ ∫ ∫
P (wZI + (1− w)ZII ≤ c|ZI)φ(ZI)dZIGA,L

dZIGA,H
dZIGS,L

dZIGS,H

=

∫ ∫ ∫ ∫
P (ZII ≤ c− wZI

1− w
|ZI)φ(ZI)dZIGA,L

dZIGA,H
dZIGS,L

dZIGS,H

=

∫ ∫ ∫ ∫
Φ(

c− wZI

1− w
)φ(ZI)dZIGA,L

dZIGA,H
dZIGS,L

dZIGS,H

=

∫ ∫ ∫ ∫
[I{ZI :gII(ZI)=gII0 } + I{ZI :gII(ZI)=gIImax}]Φ(

c− wZI

1− w
)φ(ZI)dZIGA,L

dZIGA,H
dZIGS,L

dZIGS,H

=

∫ ∫ ∫ ∫
{ZI :gII(ZI)=gII0 }

Φ(
c− wZI

1− w
)φ(ZI)dZIA,LdZIA,HdZIS,LdZIS,H

+

∫ ∫ ∫ ∫
{ZI :gII(ZI)=gIImax}

Φ(
c− wZI

1− w
)φ(ZI)dZIA,LdZIA,HdZIS,LdZIS,H .

To accurately evaluate this cumulative density function (cdf) of ZFinal, one needs to

obtain a suitable expression for the multivariate normal cdf and then use four-fold numerical

integration. There is no closed form expression for the actual multivariate normal cdf.

However, the multivariate normal cdf values may be accurately approximated by a variety

of methods, such as Taylor series, asymptotic series and continued fractions [40] [9] [70].

Moreover, numerical integration over four folds can be complex. We are not going to provide

further details of the integration in this dissertation. We only point out that numerical

integration may be a possible solution to this problem with small number of doses and

populations.

4.2.2.2 Approximation to Follmann’s Test

Although the exact distribution of ZFinal is hard to compute, we can obtain its mean

and covariance matrix under the null.

Under the null hypotheses, using (4.7) and (4.15), we easily obtain the conditional mean

of ZFinal given ZI ,

E(ZFinal|ZI) = E[(
√
wZI +

√
1− wZII)|ZI ] = 0. (4.19)
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Thus, the unconditional mean of ZFinal is:

E(ZFinal) = E[E(ZFinal|ZI)] = 0. (4.20)

Under the null hypothesis, using (4.15), we can obtain the covariance of ZI and ZII as

Cov(ZI ,ZII)

= E(ZIZII)− E(ZI)E(ZII)

= E(ZIZII)− E(ZI)EZI [E(ZII |ZI)]

= EZI [E(ZIZII |ZI)]

= EZI [Z
IE(ZII |ZI)]

= 0. (4.21)

Using (4.1), (4.7), (4.11), (4.15), (4.19) and (4.21), we obtain the unconditional covariance

of ZFinal under H
(4)
0 as:

Cov(ZFinal)

= E[Cov(ZFinal|ZI)] + Cov[E(ZFinal|ZI)]

= E[Cov(ZFinal|ZI)]

= E[wCov(ZI) + (1− w)Cov(ZII |ZI)]

= wCov(ZI) + (1− w)E[Cov(ZII |ZI)]

= w(
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where,

DI =

√
1

1 + (1−f)2gI

f2(1−gI)

as defined in (4.3),

D∗ = wDI + (1− w)E(DII
∗ (ZI)),

E(DII
∗ (ZI)) = {P [gII(ZI) = gII0 ]}DI

∗ + {P [gII(ZI) = gIImax]}DII
∗ ,

DI
∗ =

√√√√ 1

1 +
(1−f)2gII0

f2(1−gII0 )

, and DII
∗ =

√
1

1 + (1−f)2gIImax
f2(1−gIImax)

.

Since the adaptation rule is pre-specified, and the distribution of ZI is known, the prob-

abilities P [gII(ZI) = gII0 ] and P [gII(ZI) = gIImax] can be obtained either by mathematical

computation or simulation studies.

Recall that Follmann’s procedure requires data to be from a multivariate normal distri-

bution, and it rejects H
(4)
0 if {ZTΣ−1Z > χ2

p,2α and ΣZ>
i 0}, where the critical value χ2

p,2α is

the 95th percentile of the χ2 distribution with 4 degrees of freedom.

As we know the mean of ZFinal in (4.20) and the covariance of ZFinal in (4.22), with suf-

ficiently large sample size, we are willing to assume that ZFinal is approximately multivariate

normal and use Follmann’s procedure for an approximation. In the following subsection, we

propose a method to improve upon this approximation.

4.2.2.3 Obtaining Critical Values by Simulation in Follmann’s Procedure

We want to propose an approach that is similar to Follmann’s procedure, where we reject

the null hypothesis if {ZFinalTΣFinal−1
ZFinal > c∗ and ΣZFinal

i > 0}. However, instead of

using critical values from χ2 distribution as in Follmann’s procedure, we propose to obtain

the critical values c∗’s from simulation.

Follmann proved in his paper that if the first part ZFinalTΣFinal−1
ZFinal > c∗ is a 2α test,

the overall procedure is an α level procedure with the addition of the constraint ΣZFinal
i > 0

(Theorem 1 [16]). Therefore, simulation studies can be conducted to obtain c∗. Simulation

studies are demonstrated in Section 4.3.2.
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4.3 SIMULATION STUDIES

Monte Carlo simulation studies are conducted in order to examine the operating character-

istics of our proposed adaptive designs. Due to the complexity of the proposed trial designs

and the data analysis methods, the simulation studies in this section are limited and are

included for illustrative purposes.

4.3.1 Simulation Studies for the Adaptive Design with Sample Size Adjustment

In Section 4.1, we proposed an adaptive design where the second stage sample size can be

determined based on the first stage data. In this section, we show one feasible method of

determining the second stage sample size using simulation studies.

Our goal is to find a second stage sample, N II
Total(Z

I), so that the conditional power is

greater than 0.8. We conduct simulation studies to obtain conditional powers for varying

possible second stage sample sizes, N II
Total’s, based on ∆0 and ZI . Then we pick the smallest

sample size such that the conditional power is greater than 0.8, i.e., N II
Total(Z

I) = min(N II
Total :

CP∆0,ZI ,NII
Total

> 0.8).

Due to safety and cost reasons in clinical trials, there may exist limits for the enrolled

number of subjects for the second stage. Denote the minimum second stage sample size by

N II
Total,min. Denote the maximum second stage sample size by N II

Total,max.

For simplicity, we assume that subjects within a population are randomly assigned to

treatment arms with equal numbers in each, i.e., N I = N I
Total/3, N II(ZI) = N II

Total(Z
I)/3,

N II = N II
Total/3, N II

min = N II
Total,min/3, and N II

max = N II
Total,max/3. Our second stage sample

size becomes :

N II(ZI) =

 N II
min, if min(N II : CP∆0,ZI ,NII > 0.8) < N II

min;
min(N II : CP∆0,ZI ,NII > 0.8), if N II

min ≤ min(N II : CP∆0,ZI ,NII > 0.8) ≤ N II
max;

N II
max, if min(N II : CP∆0,ZI ,NII > 0.8) > N II

max.

Simulation studies are conducted and powers are obtained for using N II varying from

N II
min to N II

max. The following are the simulation steps for obtaining power for a specific
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N II , for example N II = N II
∗ . Obtaining powers for other values of N II follows the same

simulation steps.

1. Let N II(ZI)=N II
∗ .

2. Randomly generate ZII from the distribution in equation (4.4), (4.5) and (4.6) using ∆0

and N II(ZI) as defined in step 1.

3. Compute ZFinal from ZI , obtained from the stage I data, and ZII , generated in step 2,

using equation (4.7).

4. Use Follmann’s procedure to test each individual hypothesis following the testing scheme,

and make conclusion for the population and dose.

5. Repeat Step 1-Step 4 for N times. Compute the conditional power.

Simulation studies are conducted for all possible N II ’s. From the results, we can decide

N II(ZI).

Let’s look at an example. Consider a clinical trial where the drug effects (low dose and

high dose) are evaluated on both the overall population, GA, and the subpopulation, GS.

Suppose that the primary goal of the trial sponsor is to find the largest population where

there is at least one effective dose; and the secondary goal is for this largest population find

the minimum effective dose. Suppose that the prior beliefs concerning the drug effect sizes

are listed as in Table 15. Suppose f = g = 0.4, then ∆0 = [∆GA,L,∆GA,H ,∆GS ,L,∆GS ,H ]′ =

[0.18, 0.27, 0.3, 0.45]′.

Table 15: Drug Effects for Simulation Studies for the Adaptive Designs

Low High

GA 0.18 0.27

GS 0.3 0.45

GS− 0.1 0.15

The first stage sample size for each treatment arm is planned to be 150, i.e., N I = 150.

The minimum second stage sample size per each treatment is 50 and the maximum second

stage sample size per each treatment is 150, i.e., N II
min = 50 and N II

max = 150.

68



Before the trial begins, we need to find an appropriate ordering of the testing scheme.

Simulation studies are conducted as for the non-adaptive designs (Section 3.4). Let the

sample size for each treatment arm be N I +
NII
min+NII

max

2
, which equals to 250 in our example.

Each simulation study uses 10,000 iterations. Powers for all 24 test orderings are shown

in Table 16. The corresponding test orderings are listed in Table 3. From the simulation

results, we decide that ordering 1 is the most appropriate ordering and will be used in all

subsequent simulation studies. To be specific, test ordering 1 tests

H
(4)
0 : ∆GA,L = ∆GA,H = ∆GS ,L = ∆GS ,H = 0,

H
(3)
0 : ∆GA,L = ∆GA,H = ∆GS ,L = 0,

H
(2)
0 : ∆GA,L = ∆GA,H = 0,

H
(1)
0 : ∆GA,L = 0;

versus

H(4)
a : ∆GA,L > 0 or ∆GA,H > 0 or ∆GS ,L > 0 or ∆GS ,H > 0,

H(3)
a : ∆GA,L > 0 or ∆GA,H > 0 or ∆GS ,L > 0,

H(2)
a : ∆GA,L > 0 or ∆GA,H > 0,

H(1)
a : ∆GA,L > 0.

Suppose that after stage I, we have observed that ZI = [0.62, 1.71, 1.59, 3.26]′. We

perform simulation studies to obtain conditional power based on ZI for N II ranging from

50 to 150 by 10, i.e., N II = 50, 60, 70, ..., 150. Each simulation study uses 10,000 iterations,

i.e., N=10,000. The simulation results are presented in Table 17. From the results, we can

decide N II(ZI) = 100 in order to achieve 80% power of the study.
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Table 16: Finding the Best Ordering for ∆ = [0.18, 0.27, 0.3, 0.45]′.

Ordering GA GS L H GA, L GA, H GS, L GS, H None

1 0.73 0.09 0.52 0.30 0.48 0.25 0.04 0.05 0.18

2 0.73 0.09 0.05 0.77 0.01 0.72 0.04 0.05 0.18

3 0.68 0.14 0.51 0.31 0.42 0.26 0.08 0.05 0.18

4 0.31 0.51 0.51 0.31 0.05 0.26 0.45 0.05 0.18

5 0.74 0.08 0.03 0.78 0.01 0.73 0.02 0.05 0.18

6 0.24 0.58 0.53 0.28 0.01 0.23 0.52 0.05 0.18

7 0.74 0.08 0.50 0.32 0.48 0.26 0.01 0.06 0.18

8 0.74 0.08 0.03 0.79 0.01 0.73 0.01 0.06 0.18

9 0.51 0.31 0.50 0.31 0.49 0.02 0.01 0.30 0.18

10 0.03 0.78 0.03 0.79 0.01 0.02 0.01 0.77 0.18

11 0.76 0.05 0.02 0.79 0.01 0.75 0.01 0.04 0.18

12 0.03 0.79 0.02 0.79 0.01 0.02 0.01 0.78 0.18

13 0.46 0.36 0.51 0.31 0.42 0.04 0.08 0.27 0.18

14 0.09 0.73 0.51 0.31 0.05 0.04 0.46 0.27 0.18

15 0.52 0.29 0.49 0.32 0.49 0.04 0.01 0.29 0.18

16 0.05 0.77 0.02 0.80 0.01 0.04 0.01 0.76 0.18

17 0.06 0.76 0.54 0.27 0.02 0.04 0.53 0.24 0.18

18 0.06 0.76 0.03 0.79 0.02 0.04 0.01 0.75 0.18

19 0.76 0.06 0.04 0.78 0.01 0.74 0.03 0.03 0.18

20 0.25 0.56 0.54 0.28 0.01 0.24 0.53 0.03 0.18

21 0.76 0.05 0.02 0.79 0.01 0.75 0.01 0.04 0.18

22 0.03 0.79 0.02 0.79 0.01 0.02 0.01 0.78 0.18

23 0.04 0.77 0.54 0.28 0.01 0.03 0.53 0.24 0.18

24 0.04 0.77 0.02 0.80 0.01 0.03 0.01 0.76 0.18
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Table 17: Determining the Second Stage Sample Size

N II CP∆0,ZI ,NII

60 0.72

70 0.75

80 0.77

90 0.78

100 0.80

110 0.81

120 0.83

130 0.84

140 0.85

150 0.86

4.3.2 Simulation Studies for the Advanced Adaptive Design

In Section 4.2, we proposed a more advanced adaptive design where both the second stage

sample size and sampling proportion of the subpopulation can be determined based on the

first stage data. One possible method to find N II
Total(Z

I) and gII(ZI) is to again use the idea

introduced in Section 4.3.1 in order to achieve 0.8 conditional power. However, we suggest

another feasible method in this section to show an alternate way of determining the second

stage sample size and sampling proportion of the subpopulation.

We consider a simple adaptation rule: if the conditional power after stage I is large,

N II
Total,0 and gII0 are used as the second stage sample size and the second stage sampling

proportion of the subpopulation; if the conditional power is small, N II
Total,max and gIImax are

used as the second stage sample size and the second stage sampling proportion of the sub-

population, where N II
Total,0 , N II

Total,max, g
II
0 and gIImax are pre-specified. Due to cost and safety

reasons, N II
Total,max and gIImax are the maximum values allowed by the clinical trials. In this

section, we introduce how to pre-specify N II
Total,0 and gII0 using simulation studies.

71



To determine the values for gII0 and N II
0 , we consider a non-adaptive design with two

stages to approximate the adaptive design. The first stage sample size and sampling propor-

tion are N I and gI , respectively, as in the adaptive design. The second stage sample size is

N II and sampling proportion is gII . Note that N II and gII do not depend on the first stage

data. We perform simulation studies using varying values of N II and gII to obtain powers of

the two-stage non-adaptive design. The final statistics and their distribution under the null

hypothesis are computed from (4.7), (4.20) and (4.22). Then N II
0 and gII0 will be assigned

by the values of N II and gII that provide appropriate power of the trial, i.e., the probability

of concluding any effective dose on any population is greater than 0.8.

However, the final test statistics do not follow multivariate normal distributions, as

indicated in Section 4.2.2. Therefore, before finding N II
0 and gII0 , simulation studies need to

be first performed to find the critical values, c∗’s, for Follmann’s procedure as discussed in

Section 4.2.2.3.

Let N II and gII vary in the range allowed by the trial. We will find a set of critical

values {c∗4, c∗3, c∗2, c∗1} for every possible combination of N II and gII . In this dissertation, we

only focus on describing how to obtain the critical value c∗4 for H
(4)
0 , i.e., ∆GA,L = ∆GA,H =

∆GS ,L = ∆GS ,H = 0, for one possible set of values of N II (for example, N II
∗∗ ) and gII

(for example, gII∗∗). Methods of obtaining the critical values for H
(3)
0 , H

(2)
0 and H

(1)
0 and

for other combinations of N II and gII are similar. In the simulation study, we randomly

generate N values (for example, N = 10, 000) of ZFinalT cov(ZFinal)
−1

ZFinal, and then find

the 100(1− 2α)th percentile of all these values as the critical value c∗4.

The simulation steps to obtain c∗4 for H
(4)
0 for N II

∗∗ and gII∗∗ are described as follows:

1. Randomly generate ZI from the distribution in equation (4.16).

2. Randomly generate ZII from the distribution in equation (4.17) using gII(ZI) = gII∗∗ .

3. Compute ZFinal from ZI and ZII using equation (4.7).

4. Repeat Step 1 - Step 3 for N times. Let c∗ be the 100(1− 2α)th largest number of all the

ZFinalT cov(ZFinal)
−1

ZFinal values.

Then simulation studies are conducted to determine N II
0 and gII0 . The simulation steps

for N II
∗∗ and gII∗∗ are as the following. Obtaining powers for other combinations of N II and
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gII follows the same simulation steps.

1. Randomly generate ZI from the distribution in (4.1), (4.2) and (4.3).

2. Randomly generate ZII from the distribution in (4.11) and (4.13) using N II(ZI) = N II
∗∗

and gII(ZI) = gII∗∗ .

3. Compute ZFinal from ZI and ZII from (4.7).

4. Use Follmann’s procedure, but use the critical values generated by the previous simula-

tion, to test each individual hypothesis following the testing scheme, and make conclusion

for the population and dose.

5. Repeat Step 1 - Step 4 for N times. Compute the power.

Based on the simulation results, we can decide N II
0 and gII0 in order to reach 0.8 power

of the two-stage non-adaptive design. Note that we could have multiple combinations of

N II
0 and gII0 values. Also note that we only use the non-adaptive design to approximate the

adaptive design. Therefore, the unconditional power of the adaptive design is not guaranteed

to reach 0.8.

Let look at an example. Still consider the previous clinical trial. The setting of the

trial is exactly the same as described in Section 4.3.1. The primary goal of the trial

sponsor is to find the largest population where there is at least one effective dose; and

the secondary goal is for this largest population find the minimum effective dose. Sup-

pose f = g = 0.4. The prior belief of the drug effect sizes are listed in Table 15, where

∆0 = [∆GA,L,∆GA,H ,∆GS ,L,∆GS ,H ]′ = [0.18, 0.27, 0.3, 0.45]′. As in Section 4.3.1, ordering

1 will again be used for all simulation studies in this section. Again, for simplicity, we as-

sume that subjects within a population are randomly assigned to treatment arms with equal

numbers in each, i.e., N I = N I
Total/3, N II(ZI) = N II

Total(Z
I)/3, N II

min = N II
Total,min/3, and

N II
max = N II

Total,max/3. The first stage sample size per each treatment is 150, i.e., N I = 150.

Let N II vary from 50 to 120 by 10 and let gII = 0.4, 0.6, 0.8. Simulation studies are

conducted for every combination of indicated values of N II and gII . Each simulation study

uses 10,000 iterations, i.e., N=10,000. The simulation results of critical values are listed in

Table 18.

Simulation studies are then conducted for all indicated sample sizes and sampling pro-
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portions to find the powers. Each simulation study uses 10,000 iterations, i.e., N=10,000.

The results are listed in Table 19. From the results, we can decide N II
0 = 100, gII0 = 0.4,

or N II
0 = 70, gII0 = 0.6, or N II

0 = 64, gII0 = 0.8 (result not shown in Table 19) in order to

achieve 80% power of concluding any effective dose on any population.

Therefore, depending on how much the researchers want to enrich the population, we

can decide the corresponding N II
0 accordingly. For example, if the sampling proportion

of the subpopulation can be enriched to 0.6 in the second stage, our adaptation rule can

be: if the conditional power of concluding any population and dose is greater than 0.8, use

N II
0 = 70, gII0 = 0.4; otherwise, use N II

max, g
II
max.

In the clinical trial, after collecting the first stage data, we obtain the conditional power

based on ZI , N II
0 , gII0 and ∆0 by simulation. The following are the simulation steps to

obtain conditional power after stage I:

1. Randomly generate ZII from the distribution in equations (4.11) and (4.13) using N II
0

and gII0 .

2. Compute ZFinal from ZI and ZII using equation (4.7).

3. Use Follmann’s procedure, but use the critical values in Table 18, to test each individual

hypothesis following the testing scheme, and make conclusion for the population and

dose.

4. Repeat Step 1 - Step 3 for N times. Compute the conditional power.

In this section, we have explicitly explained how to make the adaptation rule before the

study using an example. For other scenarios, the simulation studies will be similar and will

not be shown in this dissertation.
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Table 19: Finding N II
0 and gII0

N II GA GS L H GA, L GA, H GS, L GS, H none Power

gII = 0.4

50 0.61 0.11 0.42 0.30 0.37 0.23 0.04 0.06 0.29 0.71

60 0.62 0.10 0.42 0.30 0.38 0.24 0.04 0.06 0.28 0.72

70 0.64 0.10 0.45 0.29 0.41 0.23 0.04 0.06 0.26 0.74

80 0.67 0.09 0.47 0.30 0.43 0.24 0.04 0.06 0.23 0.77

90 0.69 0.10 0.49 0.30 0.46 0.23 0.04 0.06 0.21 0.79

100 0.71 0.09 0.50 0.30 0.46 0.25 0.04 0.05 0.20 0.80

110 0.72 0.09 0.51 0.30 0.47 0.25 0.04 0.06 0.19 0.81

120 0.74 0.09 0.53 0.30 0.50 0.24 0.04 0.05 0.17 0.83

gII = 0.6

50 0.61 0.14 0.43 0.32 0.37 0.24 0.06 0.08 0.26 0.74

60 0.63 0.14 0.46 0.31 0.40 0.23 0.06 0.08 0.23 0.77

70 0.66 0.14 0.47 0.33 0.41 0.25 0.06 0.08 0.20 0.80

80 0.67 0.14 0.49 0.32 0.43 0.25 0.06 0.07 0.19 0.81

90 0.67 0.14 0.50 0.32 0.44 0.24 0.06 0.08 0.18 0.82

100 0.71 0.14 0.51 0.33 0.45 0.26 0.06 0.07 0.16 0.84

110 0.73 0.09 0.53 0.29 0.49 0.24 0.03 0.05 0.18 0.82

120 0.74 0.09 0.53 0.30 0.49 0.25 0.03 0.06 0.17 0.83

gII = 0.8

50 0.56 0.20 0.42 0.34 0.33 0.23 0.09 0.11 0.24 0.76

60 0.58 0.21 0.43 0.36 0.34 0.24 0.10 0.12 0.21 0.79

70 0.61 0.21 0.47 0.35 0.37 0.24 0.10 0.11 0.18 0.82

80 0.61 0.21 0.48 0.35 0.37 0.24 0.10 0.11 0.18 0.82

90 0.64 0.21 0.50 0.35 0.39 0.24 0.11 0.10 0.15 0.85

100 0.64 0.22 0.50 0.36 0.38 0.26 0.12 0.11 0.14 0.86

110 0.71 0.10 0.50 0.31 0.46 0.25 0.04 0.06 0.19 0.81

120 0.74 0.09 0.55 0.28 0.51 0.23 0.04 0.05 0.17 0.83
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5.0 CLUSTER VALIDATION

5.1 INTRODUCTION

In this chapter, we present auxiliary material concerning studying the population hetero-

geneity among schizophrenia subjects based on post-mortem studies in schizophrenia. Our

previous work identified a subtype of schizophrenia. Here we focus on externally validating

this subtype finding in independent studies.

A review of the previous study is given in Section 5.1 and a description of the motivating

data set is given in Section 5.2. Then two approaches are used to externally validating the

previous LGM cluster finding. The first approach, as discussed in Section 5.3, extends Kapp

and Tibshirani’s [27] classification idea and modifies their approach for cluster validation to

handle our situation. In doing so, we discuss why their ideas cannot be directly applied to

our motivating data set, thereby suggesting a new method for cluster validation. The second

approach again applies the clustering analysis used for the defining data set on the validating

data set and the combination of the defining and validating data sets. The methods and

results are shown in Section 5.4. In Section 5.5, a summary of findings is provided.

5.2 MOTIVATING DATA

In a previous study, Volk et al. [66] identified a subset of schizophrenia subjects that con-

sistently showed the most severe deficits in GAD67, parvalbumin, somatostatin and Lhx6

mRNA transcript levels. Lhx6 plays a critical role in the specification, migration, and matu-

ration of neurons that express parvalbumin or somatostatin. GAD67 is the principal enzyme
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in the Gamma-AminoButyric Acid (GABA) synthesis system. The identification of this

subset of schizophrenia subjects suggested that Lhx6 deficits may contribute to a failure of

some parvalbumin and somatostatin neurons to successfully migrate or develop a detectable

GABA-ergic phenotype (normal GAD67 expression level).

The defining data from the previous study consists of a sample of 42 pairs of schizophrenia

and control subjects, where the 42 schizophrenia subjects were matched individually to one

healthy control subject by gender, as closely as possible for age and post mortem interval.

Samples from subjects in a pair were processed together throughout all stages of the study in

order to control the experimental variation. To account for significant effects of covariates,

somatostatin mRNA levels for each subject were adjusted to the average age at death of all

subjects (47.6 year old) and Lhx6 mRNA levels were adjusted to the average tissue storage

time (121 month) of all subjects. To account for varying scales among the four mRNAs,

standardized mRNA levels of GAD67, parvalbumin, age-adjusted somatostatin, and tissue

storage time-adjusted Lhx6 values were computed for all subjects by subtracting the overall

mean and then dividing by the overall standard deviation. Cluster analysis was conducted

using the standardized GAD67, parvalbumin, age-adjusted somatostatin, and tissue storage

time-adjusted Lhx6 expression levels from each of the schizophrenia and control subjects

(N=84) to determine whether a subset of subjects express these four transcripts in a distinct

pattern. This cluster analysis ignored paring or diagnosis to examine if any cluster exists

for the 84 subjects in the study. The average linkage method was used to cluster all 84

schizophrenia and control subjects (PROC CLUSTER in SAS 9.2; SAS Institute, Cary,

N.C.). To check the robustness of the clustering found by the average linkage method, the

expected maximum likelihood method was also used, and the same clusters were identified.

Two clusters were identified using the defining data. Figure 3 displays the cluster tree

result of the cluster analysis using average linkage method. In one cluster composed of 61

subjects, 22 schizophrenia subjects and 39 control subjects were generally intermixed. How-

ever, the other cluster of 23 subjects was composed mostly of schizophrenia subjects (N=20

subjects), and only a few control subjects (N=3 subjects). This cluster contained 48% of

all schizophrenia subjects (20/42) and only 7% of the entire control subjects (3/42). The

20 schizophrenia subjects in this cluster had lower levels of the four mRNA transcripts rel-
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ative to other the 22 schizophrenia subjects in the intermixed cluster and to the 42 control

subjects (see Volk et al. [66]). This cluster with 20 schizophrenia subjects expressing low

levels of GABA markers was termed the Low-GABA-Marker (LGM) cluster, and the inter-

mixed cluster was consequently termed the non-LGM cluster. The cluster analysis result is

summarized in Table 20.

Figure 3: Two Cluster Identified in Volk et al. (2012)

Table 20: Summary of Clustering Result on the Defining Data (N=84)

Non-LGM Cluster LGM Cluster Total

Schizophrenia Subjects 22 20 42

Comparison Subjects 39 3 42

Total 61 23 84

To validate this LGM cluster finding, a new study was undertaken recently. The vali-

dating data set from the new study consists of the expression levels of the same 4 mRNA

transcripts measured on another 20 matched pairs of schizophrenia and healthy control sub-

jects. We are interested in whether the clusters previously identified in the defining data

set, especially the LGM cluster composed mostly of schizophrenia subjects, are still present
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in the independent new validating data set. Importantly, we want to propose the methodol-

ogy we will use for our assessment in advance of seeing the data to avoid any possibility of

subjective biases.

5.3 CLUSTER VALIDATION USING KAPP AND TIBSHIRANI’S

CLASSIFICATION APPROACH

5.3.1 Literature Review

There are many approaches proposed for validating the clustering analysis methods or the

number of clusters in a single data set. However, the literature is relatively sparse concerning

whether or not a cluster defined in previous data set (or defining data set) is still present

in an independent new data set (validating data set). If the cluster is still present in the

validating data set, this cluster is called “reproducible”, and this means that this cluster

may be biologically significant. Kapp and Tibshirani [27] proposed a general approach for

individually validating clusters. In this section, we focus on reviewing Kapp and Tibshirani’s

approach.

While some of Kapp and Tibshirani’s ideas are applicable, their entire cluster validation

approach cannot be used to solve our problem. We discuss this in detail in Section 5.3.2.

Modifications of their approach motivate our methods introduced in Section 5.3.2.

The procedure Kapp and Tibshirani [27] proposed tests in the validating data set H0:

There is no cluster structure; versus Ha: The previously defined cluster is valid. The proce-

dure first classifies each of the subjects in the validating data set into one of the previously

defined clusters. Then a cluster quality measure is obtained for each cluster. A suitable null

distribution for the cluster quality measure is generated by simulation, and the p value is

calculated based on this distribution.

We introduce each step in detail.
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5.3.1.1 Classification When the validating data set and the defining data set are both

measuring the same variables, it is suggested that the most appropriate approach for cluster

validation analyses is to use a classifier made from the defining data [13] [14] [63]. Kapp and

Tibshirani [27] proposed a classification rule, where the classifier is based on the averages

of all variables over subjects within each cluster in the defining data set, called “centroids”.

Based on the classification rule, each subject from the new data set can be classified into one

of the previously defined clusters, whose centroids are most similar to the subject, with the

possibility of not being able to classify a new subject into any of the previously identified

cluster.

Following the notations used in Kapp and Tibshirani [27], we denote the defining data

set by A, which is an m× n matrix, where m is the number of variables that are measured

and n is the number of subjects in the defining data. Suppose that p clusters were found in

the defining data. Let C be an m× p matrix, and the uth column of C is the averages of the

variables over the defining data in cluster u, where u = 1, 2, · · · , p. The matrix C is called the

centroids matrix. The validating data set is denoted by X, which is an m× q matrix, where

q is the number of subjects in the validating data. A function d(X[, j], C[, u]) measuring

the similarity between the jth subject in the validating data set and the uth centroids of the

defining data is defined and a cutoff value, c, is selected. Kapp and Tibshirani [27] in their

work let the similarity function be Pearson’s correlation. The correlations between a new

subject and all centroids are computed. If the correlations are all smaller than c, then the

subject is classified to a ”below-cutoff” group; otherwise, the subject is classified into the

cluster whose correlation is the largest.

5.3.1.2 Cluster Quality Measure A number of cluster quality measures have been

used within one data set to determine which clustering analysis procedure to use and the

number of clusters present [13] [14] [63]. For independent validations, Kapp and Tibshirani

[27] proposed a new cluster quality measure called In-Group Proportion (IGP), which is

similar to cluster quality measures proposed by Tibshirani and Walther [63] and by Bailey

and Dubes [2]. IGP is defined as “the proportion of (new) observations classified to a cluster

whose nearest neighbor is also classified to the same cluster” [27]. Kapp and Tibshirani term
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the nearest neighbor for subject j to be the subject in the new data set who is most similar,

e.g., most correlated if the “distance function” is Pearson’s correlation, to subject j. The

nearest neighbor of subject j is denoted by jN .

Other cluster quality measures were proposed by Chen et al. [7]. Kapp and Tishirani

[27] compared IGP with four other cluster quality measures, homogeneity score, separation

score, sihouette width, and weighted average discrepant pairs, proposed in Chen et al. [7],

and they showed that IGP was the best measure for the purposes of validating previously

identified clusters in a new data set.

5.3.1.3 Generating the Null Distribution The cluster validation procedure uses the

IGP as the test statistics for the hypotheses H0: there is no cluster structure; versus Ha: the

previously defined cluster is valid. It is important to generate a null distribution of IGPs

and compare the actual IGP obtained from the new data set with the null distribution.

Kapp and Tibshirani [27] proposed four versions of how to generate a null distribution

of IGPs. The basic issue is to conceptually identify a ”least favorable” null distribution for

the composite H0. All of the four methods are based on repeatedly generating new centroid

matrix C∗ that corresponds to clusters that are placed randomly in the data. Therefore, the

clusters defined by C∗ are not likely to be high-quality clusters. There is one version that

they found to have good performance and is widely applicable, and the null distribution

generation takes the following steps: 1) Decompose C by singular value decomposition.

C = UDV T ; 2) Define C1 = CV ; 3) Permute the columns of C1 to obtain C∗1 ; 4) Let

C∗ = C∗1V
T ; 5) Replace Z for C; 6) Calculate an IGP based on the newly generated C∗

using the same classification; 7) Repeat step 1) to 6) for N times, e.g., N = 100, 000, and

the N IGPs build the null distribution.

5.3.1.4 Conclusion and Interpret the Results A high-quality cluster will have IGP

close to 1, when the the subject and its neighbor are classified into the same cluster. There-

fore, the p-value is defined as the proportion of null distribution IGPs that are greater than

the actual IGP. The cluster is concluded valid if p-value is significant.
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5.3.2 Methods

The question arises to whether the cluster validation procedure proposed by Kapp and

Tibshirani is an appropriate procedure to be applied to our motivating data set. There is

a difficulty because Kapp and Tibshirani’s approach proposes to permute the columns of C

when generating the null distribution, as discussed in Section 5.3.1.3, where m is the number

of mRNA’s being studied. In the microarray study, which motivates Kapp and Tibshirani,

there are a larger number of mRNA’s being studied at the same time. Consequently, m is

large and the null distribution will be constructed from a large number, i.e., m!, of possible

values of IGPs, which leads to a good null distribution. However, in our setting, there are

only 4 mRNA’s under consideration; thus, m = 4 and there will be only m! = 4! = 24 possible

values for IGP. This is definitely not very useful when constructing a null distribution. In

addition, in our setting (which Kapp and Tibshirani [27] don’t consider), we need to show

that the diagnostic results for the defined clusters in the validating data set are statistically

similar to the previous Volk et al. [66] diagnostic results.

We extend Kapp and Tibshirani’s idea of defining the clusters in the validation set based

on the clusters from the defining data set. We propose to use the Mahalanobis Distance

as the distance function for classification, instead of Pearson’s Correlation used by Kapp

and Tibshirani [27]. This is because our motivating data has many fewer dimensions than

the microarray data considered by Kapp and Tibshirani, and we believe that Mahalanobis

Distance is a more straight forward measurement of the distance. Also, we define the cut-off

value c to be zero. During classification, the Mahalanobis Distance between a new subject

and each centroid are computed, and the subject is classified into the cluster which is closest

(smallest Mahalanobis Distance) to the subject.

To classify subjects in the validating data set using Kapp and Tibshirani’s idea, we find

the mean of defining data set’s, i.e., from the initial 84 subjects, standardized values of

GAD67, PV, age-adjusted SST and storage time-adjusted Lhx6, within each cluster. To

be consistent, the mRNA levels in the validating data were also adjusted based on the

adjusting slopes obtained from the defining data set and then standardized based on the

new 40 subjects. We then compute the Mahalanobis distance of the standardized mRNA
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levels to each of the two clusters’ mean standardized values for each subject in the validating

data and classify that subject to the cluster with the shortest distance.

Our key issue is to show that the new clusters obtained from the validating data set have

the same diagnostics distributions as the defining LGM cluster.

Assume that the validating data set is a random sample of schizophrenia and control

subject pairs from the same population as the defning data set. To simplify our approach,

we additionally assume that the previously defined two clusters are true LGM and non-LGM

clusters with true proportions of schizophrenia subjects in each cluster. Since the previous

study didn’t consider pairing effect, and instead treated the 84 schizophrenia and control

subjects as independent but did adjust for covariates, we also assume that there is no pairing

effect in our validation study. Hence, we ignore subject parings and treat the 40 subjects in

the validating data as independent.

The previously identified LGM cluster is composed mostly of schizophrenia subjects,

which suggests LGM is a biological subtype of schizophrenia. Because we are assuming that

the validating data is a random sample of schizophrenia and control subjects from the same

population as the defining data, there should be reasonable number of new schizophrenia

subjects classified into the LGM cluster and into the non-LGM cluster. In the validating data

set, we want to test whether LGM is a biological subtype of schizophrenia, i.e., LGM cluster

is composed mostly of schizophrenia subjects, rather than composed of generally intermixed

schizophrenia and control subjects. The hypothesis testing considers H0: The disease status

(schizophrenia/control) and the found cluster type (LGM/non-LGM) are independent; ver-

sus Ha: There is a positive relationship between the disease status of schizophrenia and the

cluster type LGM.

Suppose the validating study consists of N pairs of schizophrenia and control subjects.

The 2N subjects are classified into the LGM cluster or the non-LGM cluster using Kapp

and Tibshirani’s idea only with the Mahalanobis distance, thus yielding our “found” LGM

cluster. Let NLGM subjects be classified into the LGM cluster and NnonLGM subjects be

classified into the non-LGM cluster, where NLGM + NnonLGM = 2N . Denote the number of

schizophrenia subjects that are classified into the LGM cluster by X. The results can be

summarized in the following 2× 2 contingency table (Table 21).
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Table 21: Classification Results for Random Samples

Non-LGM Cluster LGM Cluster Total

Schizophrenia Subjects N −X X N

Control Subjects 2N − (N −X)−X − (NnonLGM −X) NnonLGM −X N

Total NnonLGM NLGM 2N

Visual inspection of this table can provide strong support to the LGM finding based

on the validating data set. However, we also want to formally test this. To understand

the distribution of X under H0: there is no relationship between the disease status and

the cluster type, we consider random samples containing the same 2N subjects’ data as

the validating data set with the disease status of these subjects being randomly assigned,

i.e., N subjects out of 2N are randomly chosen and assumed schizophrenia subjects while

the other N subjects are assumed as control subjects. Then the same classification rule is

applied based on the randomly assigned samples, and the null distribution is based upon the

number of schizophrenia subjects that are classified into the LGM cluster, X, from these

random samples.

For a specific validating data set with N pairs of schizophrenia and control subjects,

we are using the 4 mRNA transcripts of the same 2N subjects and the same classification

rule. Hence, there will always be a fixed number of subjects classified into the non-LGM

cluster and a fixed number of subjects classified into the LGM cluster, i.e., NnonLGM and

NLGM are fixed for a specific validating data set. Thus, the column totals in Table 21 are

fixed. In addition, since we are randomly assigning N schizophrenia subjects and N control

subjects, the row totals in Table 21 are fixed as well. Therefore, the constraints that the

row and column marginal totals are fixed should be imposed. Fisher’s exact test, often used

to test equality of two binomial probabilities with these constraints [35], is consequently an
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appropriate test here. Under H0, X follows a hypergeometric distribution,

P (X = x) =

(
N
x

)(
N

NLGM−x

)(
2N

NLGM

) . (5.1)

The one-sided p-value of this Fisher’s exact test is the probability that the number of

schizophrenia subjects from the validating data set that are classified into the LGM cluster

is greater than or equal to the observed number x. By (5.1), we have

p− value = P (X ≥ x) =

NLGM∑
X=x

(
N
X

)(
N

NLGM−X

)(
2N

NLGM

) . (5.2)

If p-value is smaller than the significance level α/2, we conclude that the LGM clus-

ter is mostly composed of the schizophrenia subjects, and hence we validate the biological

significance of the LGM cluster.

5.3.3 Classification and Cluster Validation Result

Prior to our seeing the new data set we planned to use the general Kapp and Tibshirani

approach [27] using our distance measures (Mahalanobis) and still being aware we would

not be able to use their approach to obtain p-values given the difference between the type of

our data and the micro-array considered by Kapp and Tibshirani. We classified the 40 new

subjects into either the LGM or the non-LGM cluster. The result is that 12 subjects were

classified into the LGM cluster, and 28 subjects were classified into the non-LGM cluster.

There were 11 out of 20 schizophrenia subjects and 1 out of 20 control subjects in the

validation data set being classified by our first method into the LGM cluster.The result is

described in Table 22

Fisher’s exact test with a one-sided alternative was performed to analyze whether the

LGM cluster identified in the validating data set was again composed mostly of schizophrenia

subjects, i.e., test for H0: The disease status (schizophrenia/control) and the cluster type

(LGM/non-LGM) are independent; versus Ha: There is a positive relationship between the

disease status of schizophrenia and the cluster type LGM. The resulting p-value is
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Table 22: Classification Results for the New Data Set

Non-LGM Cluster LGM Cluster Total

Schizophrenia Subjects 9 11 20

Comparison Subjects 19 1 20

Total 28 12 40

p− value = P (X ≥ 11) =
12∑

X=11

(
20
X

)(
20

12−X

)(
40
12

) = 0.0006.

Since this p-value is smaller than 0.025, the defined LGM cluster in the validation data set

was composed mostly of schizophrenia subjects (one-sided p=0.0006). We have statistically

validated the biological significance of the LGM cluster in the new data set.

In addition, following the approach of Volk et al, mRNA levels were compared among

the clusters arising from the validating data set using ANCOVA models. The 11 schizophre-

nia subjects classified to the LGM cluster had significantly lower levels of the four mRNA

transcripts relative to the other 9 schizophrenia subjects in the intermixed cluster and to the

20 control subjects. The result will be included in an upcoming collaborative paper.

5.4 USING CLUSTER ANALYSIS TO VALIDATE THE PREVIOUS

FINDINGS

The second approach directly applies clustering methodology to the validating data set or

the combination of the defining and validating data sets.

5.4.1 On the Validating Data Set N=40

First, we directly apply clustering methodology to the validating data set (N = 40). To be

consistent, the mRNA levels in the validating data were adjusted based on the adjusting
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slopes obtained from the defining data set and then standardized based on the new 40

subjects. The average linkage method is applied based on the standardized values of GAD67,

PV, age-adjusted SST and storage time-adjusted Lhx6 on the schizophrenia and control

subjects in the validating data set.

The clustering analysis on the validation data set led to 8 schizophrenia and no control

subjects in the LGM cluster (see Figure 4, and Table 23). Fisher’s exact test with a one-sided

alternative was performed to analyze whether the LGM cluster identified in the validating

data set was again composed mostly of schizophrenia subjects. The defined LGM cluster in

the validation data set was composed mostly of schizophrenia subjects (one-sided p=0.0016).

In addition, mRNA levels were compared among the clusters arising from the validating

data set using ANCOVA models. The defined LGM cluster of schizophrenia subjects (N=8)

did express significantly lower mRNA levels relative to other schizophrenia and comparison

subjects. Furthermore, all the 8 schizophrenia subjects identified by this approach were also

classified into the LGM cluster in Section 5.3.3.

A cluster analysis on the schizophrenia subjects of the validating data set and on the

pairwise differences [(S-C)/C] of the validating data set led to similar results.

5.4.2 On the Combined Data Set N=124

We also conducted the same cluster analysis, i.e., using average linkage method, based on

the overall 124 subjects to see if the two clusters are still present.

Since some covariates were previously found significantly related to mRNA expression

levels, the covariate effects need to be examined in order to determine whether the 4 mRNA

levels’ adjustments were needed. Two approaches were used to examine the covariates -

age, gender, PMI, PH, RIN, TST, effects and to adjust the mRNA expressions. In the

primary approach, we adjusted the mRNA levels using the slopes estimated from all the

124 subjects. In the secondary approach, we adjusted the mRNA levels using the slopes

previously estimated from the first study with 84 subjects. The two approaches led to

similar results. In this dissertation, we only focus on the methods and results from the

primary approach.
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Figure 4: Clustering Analysis Result on the Validating Data (N=40)
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Table 23: Clustering Analysis Result on the Validating Data (N=40)

Non-LGM Cluster LGM Cluster Total

Schizophrenia Subjects 12 8 20

Comparison Subjects 20 0 20

Total 32 8 40

Since the two studies were conducted separately, there was a concern whether the covari-

ate effects were the same in two separate runs. Significant covariate*run interaction effects

indicated that the covariate effects need to be adjusted differently within each run. Run

effect also needs to be adjusted for the mRNA values.

To account for varying scales among the four mRNAs, standardized values of the adjusted

mRNA levels were computed over all 124 subjects by subtracting the overall mean and then

dividing by the overall standard deviation. Standardized mRNA levels were used to cluster

all 124 subjects using the average linkage method (SAS PROC CLUSTER, SAS, Cary, NC).

The clustering result is presented in the Figure 5 tree dendrogram, where we can see two

distinct clusters from the dendrogram. Cluster 1 (on the left) consisted of 88 subjects (31 S

+ 57 C), which was a general mix of schizophrenia and control subjects, while cluster 2 (on

the right) consisted of 36 subjects (31 S + 5 C), most of which were schizophrenia subjects.

A detailed summary of findings is given in Table 24. For example, the table indicates that

among the 84 “original” subjects, 21 subjects in the new cluster 1 were in the previously

defined LGM cluster and 3 were in the previously defined non-LGM cluster; whereas 58

subjects in the new cluster 2 were in the previously defined non-LGM cluster and 2 were

in the previously defined LGM cluster. Thus, 79 of the 84 subjects in the “original” data

were placed in the same cluster and 5 of 84 in a different cluster by the new clustering of

the entire 124 subjects.

The cluster analysis (average linkage method) showed that there existed an ”LGM”

cluster consisted mostly of schizophrenia subjects (31/36). In addition, mRNA levels were
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Figure 5: Clustering Analysis Result on the Validating Data (N=124)

compared among the clusters arising from the validating data set using ANCOVA models.

The defined LGM cluster of schizophrenia subjects (N=31) had significantly lower mRNA

expression levels relative to other schizophrenia and comparison subjects.

5.5 SUMMARY OF FINDINGS

In summary, we used two approaches and each validated the LGM cluster finding in the

previous study.

The first approach extended Kapp and Tibshirani’s classification approach. Each subject

from the validating data set was classified into either of the previously identified clusters.

Fisher’s exact test was then performed to show that the LGM cluster from the validating

data set was again composed mostly of the schizophrenia subjects.

The second approach applied the average linkage clustering method for the validating

data set (N=40) and the combined data set (N=124). As might be expected, the sec-

91



Table 24: Summary of Findings (N=124)

In 84 subjects In 40 subjects (KT classification) Total

LGM non-LGM LGM non-LGM

S C Total S C Total S C Total S C Total S C Total

Cluster 1 19 2 21 2 1 3 10 1 11 0 1 1 31 5 36

Cluster 2 1 1 2 20 38 58 1 0 1 9 18 27 31 57 88

Total 20 3 23 22 39 61 11 1 12 9 19 28 62 62 124

ond method again produced two clusters with one cluster clearly containing a subset of

schizophrenia subjects with the same types of severe deficits in GAD67, parvalbumin, so-

matostatin and Lhx6 mRNA transcript levels as seen in the defining data set.

Therefore, the LGM subtype finding in schizophrenia population is seen to be a valid

finding in the defining data set and the validating data set.
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6.0 CONCLUSIONS AND FUTURE RESEARCH

6.1 CONCLUSIONS

In this dissertation, we first develop non-adaptive designs and corresponding statistical

methodologies to evaluate the drug effects of two doses on two populations, and to simulta-

neously choose a dose and a population where the drug is beneficial. We propose designs that

partially enrich the subpopulation, and we provid unbiased estimators of the drug effects on

all populations.

When there are multiple doses and multiple populations, the biggest concern is how to

conduct multiple comparisons while controlling the FWER in the strong sense. We propose

testing schemes which are constructed under the principles of closed testing. We show that

all our proposed testing procedures strongly protect FWER.

To accomplish various study goals based on differing prior beliefs of the drug effects, we

establish testing schemes with flexible testing orders. There is no unique testing order that

is appropriate for all study goals and all prior beliefs of the drug effects. We can decide

which ordering to use before the study begins based on the study goal and our prior beliefs

of the drug effects using simulation studies. This flexibility allows us to pick the ordering

that will lead to the largest power, where power is a more generalized concept.

We also propose adaptive designs to add more flexibility to our design. Following Wang

et al. [68], we propose possible adaptation rules in the dissertation based on evaluating the

conditional power after Stage I. Limited simulation studies are conducted to show how to

find appropriate adaption rules.

For each individual hypothesis in the testing scheme, we suggest using Follmann’s testing

procedure if the distribution of test statistics is multivariate normal under the null hypothesis,
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and we also derive alternations of Follmann’s testing procedure when the distribution of test

statistics under the null hypothesis is not multivariate normal.

In Chapter 5, we use two approaches where each validates a Low GABA Marker (LGM)

schizophrenia subset finding that was identified in the previous study in which we were

involved. In our first approach, we extend Kapp and Tibshirani’s idea of defining the clusters

in the validating data set based on the clusters from the defining data set. The second

approach applies the clustering analysis as originally used in the previous study for the

validating data set and the combination of the validating and the defining data sets. Both

the two approaches produce two clusters with one cluster clearly containing a subset of

schizophrenia subjects with the same types of severe deficits in the four mRNA transcripts as

seen in the defining data set. Therefore the LGM subtype finding in schizophrenia population

is seen to be a valid finding in the defining data set and the validating data set.

6.2 FUTURE RESEARCH

In Chapter 3 and Chapter 4, we propose methodologies for simultaneously selecting the

desired population and dose for multiple doses and multiple nested subpopulations. In the

future, we plan to consider parallel subpopulations.

For example, let’s consider 2 doses: low and high; and 3 populations: the overall popula-

tion (GA), subpopulation 1 (GS1), and subpopulation 2 (GS2). The two subpopulations are

nested in the overall population, and they are parallel to each other. The two subpopula-

tions can be overlapped or discrete. In this dissertation, we only introduce discrete parallel

subpopulations (See Figure 6).

We are interested in testing if the there is any positive drug effects, denoted by ∆ as

in previous chapters, on {GA, L}, {GA, H} , {GS1, L} , {GS1, H} , {GS2, L} , {GS2, H},

which are the low dose of the overall population, the high dose of the overall population, the

low dose of the subpopulation 1, the high dose of the subpopulation 1, the low dose on the

subpopulation 2, and the high dose of the subpopulation 2, respectively.

Our previously proposed step down testing scheme will not work for the parallel subpop-
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Figure 6: Discrete Parallel Subopulations

ulations setting since often there is no preference between the two subpopulations. A possible

solution is to use a ”tree” testing scheme constructed under the closed testing scheme. Sup-

pose there is no severe side effects for the high dose on any of these populations and there is

no preference of concluding one of the two subpopulations rather than the other. The goal of

the sponsor is to find the largest population, and then to find the lowest dose for this largest

population. This means, if either the low dose or the high dose of the overall population is

effective, we want to conclude the overall population and then find the MED for the overall

population. If neither dose is effective for the overall population, we want to find if low dose

is effective for either of the two subpopulations. If yes, then we want to conclude low dose

for the subpopulation/subpopulations; otherwise, we want to find out whether the high dose

is effective for any of the two subpopulations.

There can be many possible testing schemes. We only list one here in order to show

the possibility of building a tree testing scheme under the closed testing scheme. The null

hypotheses are
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H
(6)
0 : ∆GA,L = ∆GA,H = ∆GS1,L = ∆GS1,H = ∆GS2,L = ∆GS2,H = 0,

H
(5a)
0 : ∆GA,L = ∆GA,H = ∆GS1,L = ∆GS1,H = ∆GS2,L = 0,

H
(5b)
0 : ∆GA,L = ∆GA,H = ∆GS1,L = ∆GS2,L = ∆GS2,H = 0,

H
(4)
0 : ∆GA,L = ∆GA,H = ∆GS1,L = ∆GS2,L = 0,

H
(3a)
0 : ∆GA,L = ∆GA,H = ∆GS1,L = 0,

H
(3b)
0 : ∆GA,L = ∆GA,H = ∆GS2,L = 0,

H
(2)
0 : ∆GA,L = ∆GA,H = 0,

H
(1)
0 : ∆GA,L = 0. (6.1)

Each corresponding alternative hypothesis states that there is at least one positive drug

effect among the populations and doses considered in the null hypothesis.

There are 6 levels of the null hypotheses, indicated as (6) to (1) in (6.1), where there is a

single hypothesis at level (6), (4), (2) and (1), and two null hypotheses at level (5) and level

(3). We test the family of hypotheses in a step down manner from the highest level until we

accept at least one null hypothesis at one level. We are able to prove this testing scheme

is closed under intersection. There is a one-to-one correspondence decision rule, which is

shown in Table 6.2.

There is a possible ambiguity for the testing schemes. For example, when H(6) is rejected,

we move one level down to test H(5a) and H(5b). There is chance that both H(5a) and H(5b)

could be both accepted, which provides contradictory results to rejecting H(6). This suggests

that in the future we need to modify our testing scheme or make relative assumptions to

deal with this contradiction. This is only a very brief idea of building testing schemes for the

parallel subpopulation settings and clearly much more work remains. In the future, we will

develop methodologies in detail for the study design and data analysis for both non-adaptive

and adaptive designs in order to simultaneously select the desired population and dose for

multiple doses and multiple parallel subpopulations.

96



T
ab

le
25

:
O

u
tc

om
es

of
th

e
P

ro
ce

d
u
re

an
d

D
ec

is
io

n
R

u
le

fo
r

P
ar

al
le

l
S
u
b
p

op
u
la

ti
on

s.

H
(6

)
0

H
(5

a
)

0
H

(5
b
)

0
H

(4
)

0
H

(3
a
)

0
H

(3
b
)

0
H

(2
)

0
H

(1
)

0
∆

G
A
,L

∆
G

A
,H

∆
G

S
1
,L

∆
G

S
1
,H

∆
G

S
2
,L

∆
G

S
2
,H

C
o
n

cl
u

si
o
n

A
C

C
N

T
N

T
N

T
N

T
N

T
N

T
N

T
0

0
0

0
0

0
E

m
p

ty
R

E
J

R
E

J
A

C
C

N
T

N
T

N
T

N
T

N
T

0
0

0
>

0
0

0
{G

S
1
,

H
}

R
E

J
A

C
C

R
E

J
N

T
N

T
N

T
N

T
N

T
0

0
0

0
0

>
0

{G
S
2
,

H
}

R
E

J
R

E
J

R
E

J
A

C
C

N
T

N
T

N
T

N
T

0
0

0
>

0
0

>
0

{G
S
1
,

H
}

a
n

d
{G

S
2
,

H
}

R
E

J
R

E
J

R
E

J
R

E
J

R
E

J
A

C
C

N
T

N
T

0
0

>
0

U
K

N
0

U
K

N
{G

S
1
,

L
}

R
E

J
R

E
J

R
E

J
R

E
J

A
C

C
R

E
J

N
T

N
T

0
0

0
U

K
N

>
0

U
K

N
{G

S
2
,

L
}

R
E

J
R

E
J

R
E

J
R

E
J

R
E

J
R

E
J

A
C

C
N

T
0

0
>

0
U

K
N

>
0

U
K

N
{G

S
1
,

L
}

a
n

d
{G

S
2
,

L
}

R
E

J
R

E
J

R
E

J
R

E
J

R
E

J
R

E
J

R
E

J
A

C
C

0
>

0
U

K
N

U
K

N
U

K
N

U
K

N
{G

A
,H
}

R
E

J
R

E
J

R
E

J
R

E
J

R
E

J
R

E
J

R
E

J
R

E
J

>
0

U
K

N
U

K
N

U
K

N
U

K
N

U
K

N
{G

A
,

L
}

N
o
te

:
A

C
C

=
A

cc
ep

t,
R

E
J
=

R
ej

ec
t,

N
T

=
N

ot
T

es
te

d
,

U
K

N
=

U
n

k
n

ow
n

.

97



APPENDIX

NON-ADAPTIVE DESIGN FOR MULTIPLE DOSES AND TWO NESTED

POPULATIONS

A.1 3 POPULATION AND 3 DOSE CASE

A.1.0.1 Unbiased Estimators of Drug Effects

It is natural to estimate the mean responses at each dose in population GS1− , GS21− and

GS2 by the corresponding sample means.

µ̂Gl,m = X̄Gl,m, for l = S1−, S21−, S2;m = L,M,H, c.

Since f1, the proportion of population GS1 to the overall population GA, and f2, the

proportion of population GS2 to population GS1, are assumed known, we estimate the mean

responses in population GS1 and in the overall population GA by the weighted averages.

For m = L,M,H, c, the estimated mean drug response in population GS1 are

µ̂GS1,m = f2X̄GS2,m + (1− f2)X̄GS21− ,m;

For m = L,M,H, c, the estimated mean drug response in population GA are

µ̂GA,m =f1µ̂GS1,m + (1− f1)µ̂GS1− ,m

=f1[f2X̄GS2,m + (1− f2)X̄GS21− ,m] + (1− f1)X̄GS1− ,m

=f1f2X̄GS2,m + f1(1− f2)X̄GS21− ,m + (1− f1)X̄GS1− ,m
.
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Then for m = L,M,H, the drug effects ∆GS2,m for population GS2 are estimated by

∆̂GS2,m = µ̂GS2,m − µ̂GS2,c = X̄GS2,m − X̄GS2,c;

For m = L,M,H, the drug effects ∆GS1,m for population GS1 are estimated by

∆̂GS1,m =µ̂GS1,m − µ̂GS1,c

=f2X̄GS2,m + (1− f2)X̄GS21− ,m − f2X̄GS2,c − (1− f2)X̄GS21− ,c;

For m = L,M,H, the drug effects ∆GA,m for population GA are estimated by

∆̂GA,m =µ̂GA,m − µ̂GA,c

=f1f2X̄GS2,m + f1(1− f2)X̄GS21− ,m + (1− f1)X̄GS1− ,m

− f1f2X̄GS2,c − f1(1− f2)X̄GS21− ,c − (1− f1)X̄GS1− ,c
.

Since X̄Gl,m is the unbiased estimator of µGl,m on populations GS1− , GS21− , GS2, i.e.,

E(µ̂Gl,m) = E(X̄Gl,m) = µGl,m, for l = S1−, S21−, S2;m = L,M,H, c,

we have,

E(µ̂GS2,m) = E(X̄GS2,m) = µGS2,m,

E(µ̂GS1,m) =E[f2X̄GS2,m + (1− f2)X̄GS21− ,m]

=f2µGS2,m + (1− f2)µGS21− ,m

=µGS1,m,

and

E(µ̂GA,m) =E[f1f2X̄GS2,m + f1(1− f2)X̄GS21− ,m + (1− f1)X̄GS1− ,m
]

=f1f2µGS2,m + f1(1− f2)µGS21− ,m + (1− f1)µGS1− ,m

=µGA,m,

are also unbiased estimators for m = L,M,H, c.

Therefore, ∆̂Gl,m are unbiased estimators for ∆Gl,m, in that,

E(∆̂Gl,m) = E(µ̂Gl,m − µ̂Gl,c) = µGl,m − µGl,c = ∆GA,m,

for l = A, S1, S2;m = L,M,H.
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A.1.1 Test Statistics and The Covariance

Next, we calculate suitable test statistics for the drug effects ∆, where

∆ = [∆GA,L,∆GA,M ,∆GA,H ,∆GS1,L,∆GS1,M ,∆GS1,H ,∆GS2,L,∆GS2,M ,∆GS2,H ]′.

Since the responses are normally distributed, and the variance is known, Z test statistics are

used. The test statistics of the drug effects at dose for population GS2 are computed as, for

m = L,M,H,

ZGS2,m =
∆̂GS2,m√
σ2

(∆̂GS2,m
)

=
X̄GS2,m − X̄GS2,c√
σ2

(X̄GS2,m
−X̄GS2,c

)

=
X̄GS2,m − X̄GS2,c√
σ2( 1

g1g2N
+ 1

g1g2N
)

=
X̄GS2,m − X̄GS2,c√

2σ2

g1g2N

.

The test statistics of the drug effects for population GS1 are computed as, for m =

L,M,H,

ZGS1,m =
∆̂GS1,m√
σ2

(∆̂GS1,m
)

=
f2X̄G2,m + (1− f2)X̄G21− ,m − f2X̄G2,c − (1− f2)X̄G21− ,c√

σ2
f2X̄G2,m

+(1−f2)X̄G
21− ,m−f2X̄G2,c

−(1−f2)X̄G
21− ,c

=
f2X̄GS2,m + (1− f2)X̄GS21− ,m − f2X̄GS2,c − (1− f2)X̄GS21− ,c√

σ2[
2
2

g1g2N
+ (1−f2)2

g1(1−g2)N
+

f2
2

g1g2N
+ (1−f2)2

g1(1−g2)N
]

=
f2X̄GS2,m + (1− f2)X̄GS21− ,m − f2X̄GS2,c − (1− f2)X̄GS21− ,c√

2σ2[
f2
2

g1g2N
+ (1−f2)2

g1(1−g2)N
]

.

The test statistics of the drug effects for the overall population are computed as, for

m = L,M,H,

ZGA,m =
∆̂GA,m√
σ2

(∆̂GA,m
)

=
f1µ̂GS1,m + (1− f1)X̄GS1− ,m

− f1µ̂GS1,m − (1− f1)X̄GS1− ,c√
σf1f2X̄GS2,m

+f1(1−f2)X̄G
S21− ,m+(1−f1)X̄G

S1− ,m
−f1f2X̄GS2,c

−f1(1−f2)X̄G
S21− ,c−(1−f1)X̄G

S1− ,c

=
f1µ̂GS1,m + (1− f1)X̄GS1− ,m

− f1µ̂GS1,m − (1− f1)X̄GS1− ,c√
2σ2[ (f1f2)2

g1g2N
+ [f1(1−f2)]2

g1(1−g2)N
+ (1−f1)2

(1−g1)N
]

.
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Since the sample means X̄GS1− ,L
, X̄GS1− ,M

, X̄GS1− ,H
, X̄GS21− ,L, X̄GS21− ,M , X̄GS21− ,H ,

X̄GS2,L, X̄GS2,M , and X̄GS2,H are mutually independent, it follows that

cov(X̄Gl,m, X̄Gl′ ,m
′) = 0,

for l, l′ = S1−, S21−, S2; m,m′ = L,M,H, c; {l,m} 6= {l′,m′}.

Since ZGl,m’s are standardized scores, the variance of each ZGl,m is 1, and the covariance

are computed in the appendix.

Let Z = [ZGA,L, ZGA,M , ZGA,H , ZGS1,L, ZGS1,M , ZGS1,H , ZGS2,L, ZGS2,M , ZGS2,H ]′. Normality

assumption yields that

Z ∼MVN (µZ,Σ),

where

µZ =



∆GA,L√
2σ2[

(f1f2)2

g1g2N
+

[f1(1−f2)]2

g1(1−g2)N
+

(1−f1)2

(1−g1)N
]

∆GA,M√
2σ2[

(f1f2)2

g1g2N
+

[f1(1−f2)]2

g1(1−g2)N
+

(1−f1)2

(1−g1)N
]

∆GA,H√
2σ2[

(f1f2)2

g1g2N
+

[f1(1−f2)]2

g1(1−g2)N
+

(1−f1)2

(1−g1)N
]

∆GS1,L√
2σ2[

f2
2

g1g2N
+

(1−f2)2

g1(1−g2)N
]

∆GS1,M√
2σ2[

f2
2

g1g2N
+

(1−f2)2

g1(1−g2)N
]

∆GS1,H√
2σ2[

f2
2

g1g2N
+

(1−f2)2

g1(1−g2)N
]

∆GS2,L√
2σ2

g1g2N

∆GS2,M√
2σ2

g1g2N

∆GS2,H√
2σ2

g1g2N



,

Σ =


D1 D12 D13

D21 D2 D23

D31 D23 D3

 ,

101



where

D1 = D2 = D3 =


1 1

2
1
2

1
2

1 1
2

1
2

1
2

1

 ,

D12 = D21 =


d12

1
2d12

1
2d12

1
2d12

d12
1

2d12

1
2d12

1
2d12

d12

 ,

D13 = D31 =


d13

1
2d13

1
2d13

1
2d13

d13
1

2d13

1
2d13

1
2d13

d13

 ,

D23 = D32 =


d23

1
2d23

1
2d23

1
2d23

d23
1

2d23

1
2d23

1
2d23

d23

 ,

d12 =

√√√√ 1

1 + (1−f1)2

f2
1

1

f2
2

1−g1
g1g2

+(1−f2)2 1−g1
g1(1−g2)

,

d13 =

√
1

1 + (1−f2)2

f2
2

g2

1−g2
+ (1−f1)2

(f1f2)2
g1g2

1−g1

,

d23 =

√
1

1 + (1−f2)2

f2
2

g2

1−g2

.

Under the null hypothesis,

Z ∼MVN (0,Σ).
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