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THE DIAGNOSTICITY OF ARGUMENT DIAGRAMS

Collin F. Lynch, PhD

University of Pittsburgh, 2014

Can argument diagrams be used to diagnose and predict argument performance?

Argumentation is a complex domain with robust and often contradictory theories about

the structure and scope of valid arguments. Argumentation is central to advanced problem

solving in many domains and is a core feature of day-to-day discourse. Argumentation is

quite literally, all around us, and yet is rarely taught explicitly. Novices often have dif-

ficulty parsing and constructing arguments particularly in written and verbal form. Such

formats obscure key argumentative moves and often mask the strengths and weaknesses of

the argument structure with complicated phrasing or simple sophistry. Argument diagrams

have a long history in the philosophy of argument and have been seen increased application

as instructional tools. Argument diagrams reify important argument structures, avoid the

serial limitations of text, and are amenable to automatic processing.

This thesis addresses the question posed above. In it I show that diagrammatic models

of argument can be used to predict students’ essay grades and that automatically-induced

models can be competitive with human grades. In the course of this analysis I survey analyt-

ical tools such as Augmented Graph Grammars that can be applied to formalize argument

analysis, and detail a novel Augmented Graph Grammar formalism and implementation used

in the study. I also introduce novel machine learning algorithms for regression and tolerance

reduction. This work makes contributions to research on Education, Intelligent Tutoring

Systems, Machine Learning, Educational Datamining, Graph Analysis, and online grading.
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1.0 INTRODUCTION

Can argument diagrams be used to diagnose and predict argument performance?

1.1 OVERVIEW

In this thesis I will answer the question stated above. As I will describe below Argumentation

is an essential component of advanced problem solving and essential to many educational

domains including STEM fields. Argumentation is also difficult both for novice arguers and

for existing intelligent tutoring technologies due to its complex and often implicit struc-

ture. Previous researchers have approached instruction in argumentation through the use

of argument diagrams, graphical models that reify the semantic structure of arguments in a

visual form. While such methods have their adherents their performance has been mixed.

Moreover, it has not yet been shown that the argument diagrams themselves are diagnos-

tic or can be used to evaluate novice arguers. In order to address this crucial question I

focus on two important sub-questions: whether expert human grades of argument diagrams

are both reliable and valid, and whether those diagrams can be graded automatically via

empirically-valid rules and predictive models.

These questions were addressed in a grading and machine-learning study conducted in the

context of a Psychological Research Methods course at the University of Pittsburgh. Students

in the course were given a novel argument diagramming ontology implemented in the LASAD

diagramming toolkit that was designed to reify the key features in written research reports.

They were then tasked with reading and diagramming existing arguments and planning their

own written arguments for class assignments with the toolkit. The students’ diagrams and

1



subsequent essays were then graded using a parallel grading rubric defined for this study.

This rubric contains both specific structural questions focused on key aspects of the argument

and more general gestalt questions that address the argument persuasiveness, coherence, and

quality. In parallel with this grading process I defined a set of novel diagram rules using

Augmented Graph Grammars. These rules were designed to detect important components

of the argumentation structure as well as violations of argumentative norms. These rules

were then used as the basis for a set of regression models designed to predict essay grades

from the diagram features.

As I describe in my analysis some of the expert diagram and essay grades are reliable.

Of these reliable grades all but one are valid predictors of subsequent student performance.

Therefore argument diagrams can be graded by expert graders. I also show that the a-priori

diagram rules do correlate with the reliable essay grades and are thus empirically valid. I

then show that the induced regression models can be used to predict the reliable grades and

that these models are competitive with the expert human graders. Therefore in answer to the

primary research question argument diagrams can be used to predict argument performance.

In addition to the above conclusions this work makes contributions to research on educa-

tion by demonstrating the utility of argument diagrams for undergraduate writing courses.

It also contributes to the literature on Intelligent Tutoring Systems (ITS) by showing that

it is possible to develop empirically-valid diagnostic rules for argument diagrams and that

those rules can form the basis for predictive models. It also further demonstrates the utility

of weak-theory-scaffolding in ill-defined domains. This work makes other contributions to the

literature on Educational Datamining (EDM) by highlighting the potential for diagnostic re-

gression for argument diagrams, and to the domain of graph analysis and machine learning

through the development of a robust Augmented Graph Grammar engine AGG. Finally this

work makes a further technical contribution in the development of the SNG online grading

toolkit which was instrumental to the data collection process.
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1.2 INTRODUCTION

Argumentation is central to advanced problem solving, particularly in ill-defined domains

where problem solvers must frame or recharacterize the problems to make them solvable and

then defend those characterizations [73, 125, 140]. Attorneys articulate legal rules that, if

accepted, will advance their clients’ interests and then defend said rules by citing relevant

precedents. Empirical researchers identify hypotheses, support them by citing relevant lit-

erature, and test them by experiment. Policy makers, architects, theoreticians, and even

artists use arguments in their work to frame ill-defined problems, reify open-textured con-

cepts, and anticipate potential critiques [126]. Even traditionally well-defined domains such

as mathematics and physics involve a form of argumentation (i.e. proofs [61]). According to

G.H. Hardy the complexity of the proof is integral to what makes a theorem beautiful [43].

Argumentation is an exercise in structured persuasion. At a general level advocates

make claims (e.g. “The sky changes outside the cave”), and support these claims through

the application of argument schema such as a citation of sources (e.g. “Hippocrates dictates

that our fingernails should be even with the length of our fingers” [119]) or of counterfac-

tual conditionals [98] (e.g. “Suppose that the Federation supported the Rebellion; then the

Enterprise would destroy the Death Star.”). The validity of the argument is often domain

specific based upon accepted standards of proof and debate. Hypothetical cases and norma-

tive principles, for example, are standard in legal argument but may be unacceptable in some

theoretical work. Skill in argumentation has been included in the Common Core Standards

[114]. Argument instruction appears in a number of sections within the proposed standards,

a notable example is shown in Table 1.1 (pp. 4).

When addressing complex or, worse yet, wicked problems, solvers cannot simply state

a solution, they must justify it [22]. They must use argument both to convince others to

accept what they have provided as a solution to the problem at hand, and for many domains,

convince them to implement it, thus ignoring competing proposals. In Voss’ study of policy

making, the researchers found that expert problem solvers not only justified their solutions

but constructed their justifications during the problem-solving process [126]. The importance

of justification has also been highlighted in well-defined domains by other authors including
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Aleven et al. [3], Conati & VanLehn [21], and Chi et al. [15] who found that asking students

to justify their solutions improves performance.

Despite its importance and structured nature, argumentation is not always taught ex-

plicitly, even in domains such as law where its centrality is widely acknowledged. Students

typically receive instruction in argumentation through authentic practice such as writing or

reading essays and in-class debate, “...that ritual of fire charitably known as the Socratic

method...” [2]. As a consequence, students risk getting “lost in the text,” distracted by

lower level grammatical issues and writing or speaking styles, thus failing to identify the

underlying argument structure. Similarly, students’ actual knowledge of argumentation is

often masked by their level of development of oral or writing skills, or lack thereof, which

can limit the effectiveness of expert or peer review.

Table 1.1: A segment of the Common Core Standards on Argumentation for English Lan-

guage Arts & Literacy drawn from the common core draft (see [114]).

Argumentation is listed in the proposed Common Core Standards under reading and

writing skills for grades 6-12. 12th graders are expected to:

Write arguments to support claims in an analysis of substantive topics or texts, using
valid reasoning and relevant and sufficient evidence.

a Introduce precise, knowledgeable claim(s), establish the significance of the
claim(s), distinguish the claim(s) from alternate or opposing claims, and cre-
ate an organization that logically sequences claim(s), counterclaims, reasons, and
evidence.

b Develop claim(s) and counterclaims fairly and thoroughly, supplying the most
relevant evidence for each while pointing out the strengths and limitations of both
in a manner that anticipates the audiences knowledge level, concerns, values, and
possible biases.

c Use words, phrases, and clauses as well as varied syntax to link the major sections
of the text, create cohesion, and clarify the relationships between claim(s) and
reasons, between reasons and evidence, and between claim(s) and counterclaims.

d Establish and maintain a formal style and objective tone while attending to the
norms and conventions of the discipline in which they are writing.

e Provide a concluding statement or section that follows from and supports the
argument presented.
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Arguments are not always made explicitly but are implicit in the style of presentation,

the order of claims made, or the tone of the presentation. The logic of an argument is often

encoded in domain-specific ways which students must be taught [63], or are left implicit

[2]. As a consequence, arguments are often difficult to detect and argumentation, as a skill,

difficult to acquire. Novice arguers often face difficulty in processing and making arguments,

sometimes missing or omitting crucial argument moves. Law students, for example, often

fail to recognize the key legal criteria being applied in a case while science students often fail

to identify or articulate clear and testable hypotheses.

In recent years diagrammatic models of argument have been growing in prominence as

theoretical models, practical tools, and educational interventions. These models are designed

to make argument schema explicit, reifying the essential claims and structured relationships

among them. These models represent persuasive arguments as a graph consisting of content

nodes linked by relational arcs representing logical connections, support, opposition, or argu-

mentative schema. In Toulmin diagrams, for example, specialized nodes represent a claim,

the data on which the claim rests, as well as the warrant that validates this connection.

Additional nodes include the backing for a warrant, and the rebuttal. A classic Toulmin

diagram as described by [118] is shown in Figure 1.1 (pp. 6).

Other diagrammatic models of argument include the box and line structures of Vorobej

[124], the weighted proofs of Carneades [37], and the Test-Hypo-Fact structure used in

LARGO (described below). Reed, Walton & Macagno [96] present a historical overview of

argument diagrams describing their ongoing use in legal argument, evidentiary arguments,

philosophical logic, and Artificial Intelligence (AI).

Proponents of these models point to their potential to scaffold students’ comprehension.

Diagrammatic models, they claim, reify essential argumentative concepts and relationships

or other opaque features of dialogue, making them explicit to novice arguers [4]. They can

also help to highlight interconnections between cases, a goal cited by Spiro [112]. Suthers

[117] cites two specific benefits of representational notations generally that are applicable to

diagrammatic models of argument: constraints which limit the objects that can be expressed;

and salience which makes specific objects or relations explicit. Harrell and Wetzel [46] in
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Data
Harry was born in Bermuda.

Claim
So presumably Harry is a British Subject.

Unless

Rebuttal
Both parents were aliens/

he has becoma a 
naturalized American/...

Since

Warrant
A man born in Bermuda

will generally be a 
British Subject.

On account of

Backing
The following statutes and legal provisions

Figure 1.1: A Sample Toulmin diagram presenting an argument over the citizenship of a

British subject born in Bermuda. The diagram includes an initial datapoint “Harry was born

in Bermuda.” This is in turn linked to a claim “So presumably Harry is a British Subject.”

This relatinship is supported by an existing warrant which provides a grounding for the

relationship between the data and the claim and a rebuttal which includes counterarguments.

turn cite Schema theory (see [101]) in arguing that argument diagrams serve to reduce the

cognitive load associated with processing individual argument schema and thus make them

easier to acquire. Thus it is argued that novice diagrammers will focus on the key argu-

mentation concepts and this will, in turn, improve their ability to both recognize argument

structures and employ them (e.g. [69]).

Equally important, argument diagrams are amenable to computer processing. Textual

documents have a number of basic features that can be used for automatic evaluation such

as wordcount, sentence length, and more complex measures such as the automatic coherence

measures used in Coh-Metrix [38]. While these structural features are often useful they
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are not directly connected to the semantics of the argument being represented. Argument

diagrams, by framing the structure in terms of argument components better link the simple

syntactic features of the structure to the semantic features of the argument itself.

Scheuer et al. [104] survey a wider range of argument diagramming systems. They note

the advantages cited by researchers including the ability of diagrams to make arguments more

readable and to force arguers to make their contributions more explicit and comprehensible.

On the other hand, they also note that diagrams, as stated by Buckingham Shum et al., risk

increasing the students’ cognitive load while feeling ‘unnatural’ or unintuitive [110].

It is not yet clear how well these promises and perils have been realized. Prior work on

the use of argument diagrams has shown that they provide benefits for comprehension. Less

work has been done on the effect of using argument diagrams, either to annotate existing

arguments or to generate novel ones, has had on the students’ ability to produce arguments.

Similarly, little work has been done on the extent to which diagrammatic models of argument

can be used to assess students’ comprehension of argumentation and their ability to make

novel arguments.

1.3 RESEARCH QUESTIONS

Do student-produced diagrams reliably encode pedagogically-relevant information that is of

interest to domain experts? Can the diagrams be used to provide empirically valid assessment

and guidance? And can we take advantage of the diagram structure to provide automatic

assessment even on realistic open-ended tasks. In order for argument diagrams to be widely

accepted in educational practice, these questions must be addressed. Novel educational

interventions are justified by the extent to which they may be used to diagnose current and

improve future performance of pedagogically relevant skills. And educators have no reason

to incorporate new techniques unless they improve instructional outcomes or facilitate more

opportunities for intervention and guidance.

While argument diagrams have been used in ITSs such as LARGO [91] or Belvedere

[117], they have been promoted chiefly as pragmatic or effective interventions that improve
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student performance not diagnostic ones. Much like a cricket player cross-training with

a soccer game the practice is helpful but doesn’t necessarily show off your bowling. This

question of diagnosticity is important, however, for both theoretical and practical reasons. If

one of the primary benefits of argument diagramming is the reification of argument structures

then the diagram should reflect natural practice. If, however they are not diagnostic, then

explicit scaffolding is not a useful explanation. Similarly, if the diagrams are not diagnostic

then it will be difficult to convince often skeptical domain experts to use them in place of

traditional representations. And finally, ITS designers have traditionally been focused on

developing transferable interventions where the advice given by a system, such as showing the

correct physics principle, transfers directly to offline practice. If the structure of argument

diagrams cannot be connected to traditional essays then the motivation for hinting explicit

process models is not as clear.

This we need to be able to convince educators, through scientific argument, that the

quality of student-produced diagrams is indicative of students’ understanding of real-world

argumentation. We must also convince them that this quality is consistent with their own

pedagogical goals. We must also convince educators that the act of drawing diagrams,

and feedback that the students receive, will improve their subsequent ability to make well-

reasoned essay arguments or engage in oral debate. In short we must convince skeptical

domain experts that both the assessment of arguments and argument skills transfer out of

the diagram context and into the “real world.”

With that in mind this thesis addresses two general questions:

Qh Can student-produced argument diagrams be assessed reliably by human graders and
are those assessments valid predictors of future performance?

Qa Can argument diagrams be analyzed automatically to diagnose students’ argumentation
skills and to predict future performance on “real-world” tasks?

As will be discussed in Chapter 2 (pp. 11) previous researchers have tested the educa-

tional utility of argument diagrams with mixed success. Most of this work has focused on

the use of argument diagrams for reading or domain comprehension. This work has been

driven by the a-priori assumption that diagrams encode pedagogically relevant information
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or that (as with note-taking [122]) the act of constructing diagrams aids in problem solving.

To date, little work has been done on the use of argument diagrams to diagnose student

performance.

The present research makes two crucial extensions of prior work. First, rather than

testing students’ general understanding of argumentation, it focuses on their specific ability

to compose their own arguments, in this case written research reports in which students

describe hypotheses and empirical studies designed to test them (see Chapter 3 (pp. 27)).

Second, rather than focusing solely on general graph features, such as node or edge counting,

my research focuses on complex a-priori rules and induce predictive linear models.

This work makes contributions to the study of argument diagrams by expanding our un-

derstanding of their potential applications. It contributes to education by demonstrating the

utility of argument diagramming as a graded instructional intervention. It also contributes

to the literature on educational datamining by exploring and testing analytical methods for

ill-defined domains. Finally it contributes to the literature on Intelligent Tutoring Systems

(ITS) and AI in Education by identifying mechanisms for the automatic evaluation and di-

agnosis of student argumentation skills, methods which are suitable for incorporation into

existing tutoring technologies.

1.4 OUTLINE

The discussion of this work will be divided into four parts. Chapters 2 and 3 survey relevant

prior work and describe the study context.

In Chapter 4 I address question Qh and describe studies of reliability and validity con-

ducted with human graders. It will be demonstrated that both criteria are met. Student-

produced argument diagrams can be graded reliably and those grades are valid predictors

of students’ argumentation abilities. While the research does not demonstrate a perfect cor-

relation between students’ diagram and essay grades, the observed relationships are strong

enough for practical use.

Chapters 5 (pp. 61) - 7 (pp. 97) focus on question Qa. They describe methods for
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the automatic analysis of argument diagrams using augmented graph grammars and the

automatic induction of complex predictive models from a-priori rules. They also discuss the

individual empirical validity of the rules and the predictive quality of associated models.

As the reported analyses show, some but not all of the rules are significant predictors of

student performance while more complex models can provide strong overall predictions of

student quality. These results are positive and are consistent given the low-level nature of

the individual rules and the complex open-ended structure of the diagrams.

Finally Chapter 8 (pp. 131) presents overall conclusions and future applications of this

work as well as an extended discussion of challenges for agreement.
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2.0 BACKGROUND

This chapter will present an overview of relevant prior work. It will begin by discussing

general studies of argumentation and use of argumentation systems in education. It will then

summarize prior work on the use of argument diagrams as educational interventions (Section

2.2) and survey the ways in which prior researchers have analyzed student-produced diagrams

(Section 2.3). The discussion will focus in detail on two diagramming tools: LARGO (Section

2.4), and LASAD (Section 2.5). The chapter will then conclude with a brief introduction to

graph grammars (Section 2.6) and diagnostic rule induction (Section 2.7).

2.1 ARGUMENTATION

Argumentation is an essential aspect of many domains. While it may rarely be taught

explicitly it has received a great deal of recent interest in education generally and in AI and

Education in particular. Due to the complex and open-ended structure of argumentation

much of the non-graphical work has been focused on scaffolding the process (e.g. [106]) and

the use of expert systems (e.g. [39]).

In recent years a great deal of research has also been invested in automatic essay analysis

(e.g. [30]) and guidance (e.g. [99, 28]). This work has focused on evaluating the essay text

using coherence metrics and other Natural Language Processing (NLP) techniques. This

work has chiefly grown out of large-scale courses and automated educational assessment.

While these techniques have shown success, they are focused primarily on the textual and

syntactic aspects of written arguments such as verbal style and tone rather than the deeper

domain-specific semantic relationships that are the subject of this thesis. Therefore they are
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limited in their ability to provide the deep semantic and structural guidance that students

often require.

2.2 EDUCATIONAL IMPACT

The use of argument diagrams as educational tools has been approached by a number of

authors including Ashley [4], Pinkwart et al. [91], Suthers [117], Carr [14], Easterday [33],

Chryssafidou [19, 20], and Harrell [46]. In turning to diagrams the authors noted their

benefits in reifying opaque arguments and scaffolding student behavior. Despite the promise

of diagrams as educational tools, the results of prior research have been somewhat mixed.

In a survey by van den Braak et al [12] the authors examined four sets of studies by Carr

[14], Suthers [117], Schank & Leake [102] and van Gelder [123]. The study domains ranged

from legal argumentation [14] to scientific research [117]. The studies examined a variety of

outcome measures, as well, ranging from improvements in critical thinking [123] to increased

argument complexity [14, 20]. Despite promising trends reported in some of the studies, the

authors remain skeptical, having identified a number of methodological limitations such as

absent control conditions, self-selected conditions, or small sample sizes that prevented them

from drawing definitive conclusions that argument diagrams contribute to learning.

In [14], for example, Carr sought to test the impact of diagramming on written legal ar-

guments and legal comprehension. Students participating in the study were directed wither

to diagram planned arguments in QuestMap a graphical tool or to plan them as normal in

text. The students were permitted to self-select which tool they would use. The author

evaluated the students using an in-class assignment grade and written essays. The essays

were annotated using a Toulmin model and the resulting diagrams were evaluated for com-

plexity and compared to existing expert diagrams. Ultimately, while Carr found qualitative

improvement by the students he found no significant difference between the conditions. The

absence of true random assignment or clear guidelines for the text group makes it difficult

to draw general conclusions from this work.
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In [104] Scheuer et al. drew similar conclusions to van Den Braak et al. Here the

authors sought to determine whether argumentation systems (including those that involve

or support diagrammatic models of argument): help students to make arguments (scaffolding

effect); help students to comprehend domain topics (arguing to learn); and help students

to acquire general argumentation skills (learning to argue). While they found promising

research supporting the first effect, the authors found no significant support for arguing to

learn, and inconsistent results supporting the premise of learning to argue.

They did, however, detail interesting evidence supporting the contention that the format

of an external representation can affect students’ learning. They noted that studies which

compared alternate visualizations such as diagrams and tables (e.g. [117] & [109]) supported

the contention that the form of the representation and interaction affects student behavior

and learning gains. Representations that provide more structure prompt students to use the

structure which in turn leads to more elaborated arguments and argumentative discourse.

This is related to a second finding that “micro scripts” which structure the students process,

(e.g. instructing students in constructing and responding to arguments) encourages them

to engage in better quality argumentation. Although, they focus on group, not individual

work, these results are consistent with Hypothesis Ha.

For the present discussion the most relevant individual work is that of Pinkwart et al.

[91, 92, 86, 4, 89], Easterday [33], and Chryssafidou [19, 20]. The work of Pinkwart et al. is

focused on LARGO, an ITS for legal argumentation designed to teach students the process of

making arguments with legal tests and hypothetical cases via a legal argument diagram [91].

Students use the system to diagram oral argument transcripts taken from the U.S. Supreme

Court via a graphical diagramming language that reifies the tests, hypothetical cases, and

facts in the argument as well as the relationships between them such as distinguished-from

and modified-to. When using the system students are guided via a set of diagnostic patterns

based upon a process model of legal argumentation described in [4, 89]. A LARGO screenshot

is shown in Figure 2.1.
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Figure 2.1: A Sample LARGO screenshot. The left-hand column contains the text transcript,

advice buttons, and drawing palette. The right-hand side shows the diagramming panel. The

highlighted text in the transcript is linked to the selected node.

As described in [91], LARGO has been deployed in a series of studies conducted at the

University of Pittsburgh’s School of Law. In these studies students, ranging from first to

third-year students, made use of the system to diagram a set of oral arguments drawn from

the domain of personal jurisdiction. In some, but not all of these studies, we drew a compar-

ison between the task of annotating cases using the diagrammatic model and more standard

text-based note-taking.
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The primary goal of these studies was to test the effect of diagramming on students’

ability to comprehend arguments (scaffolding) and to make novel arguments (learning to

argue). The results of these studies were inconclusive. In some studies students using the

diagramming system outperformed their text peers [86], while in others they did not [92].

As described in the next subsection, this data was used in our earlier efforts to examine the

diagnosticity of argument diagrams. That is, can the argument diagrams be used to diagnose

students’ understanding of arguments and their ability to produce novel arguments as in the

written essays?

Easterday et al. [33, 32] tested the impact of causal diagrams on argument comprehen-

sion. They performed a series of studies in which students were tasked with reading and

responding to arguments in a policy debate. The students were split into three conditions

Text, Diagram and Tool. The Text group acted as the control condition and was assigned

to read the written articles in their original form. The Diagram group was supplied with

both the original text and an expert-drafted argument diagram and was instructed to study

both. And finally the Tool group was instructed to read the text and produce their own

parallel diagram. The authors found that the diagram students outperformed the text group

on basic comprehension tasks while the tool condition was not significantly different from

either group. However, on a subsequent transfer task (reading a new article presented only

as text) both the diagram and tool conditions outperformed the text group, suggesting that

some essential lessons were transferred. Thus the work of Easterday et al. supported both

the scaffolding effect defined by Scheuer et al. and the concept of learning to argue.

Unlike Pinkwart et al. and Easterday et al., Chryssafidou focused on the impact of di-

agrammatic argument models on argument making, specifically essay writing. In [19], she

described Dialectic, a prototype tutoring system designed to teach paper writing through

the use of argument diagrams. Like Belvedere and LARGO, Dialectic provides advice to

students based upon an argumentation model. The model in question is a dialogue model

that guides students to balance arguments and counterarguments when planning for paper

writing.
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In [20] Chryssafidou & Sharples present a comparison study in which students were

either tasked with using Dialectic to plan their essay argument or with performing the same

diagrammatic planning with pencil and paper. Thus the primary difference between the two

groups was the absence of automatic advice. In lieu of random assignment the authors chose

to assign weaker students to the computer condition in order to balance performance. The

absence of truly equivalent conditions and clear results makes it difficult to assess the impact

of the diagrams used in this work on students’ learning.

However, in contrast to most of the work cited above, Chryssafidou & Sharples grade

student essays not only at a gestalt level but structurally as well. Like Carr, they manu-

ally annotated the argument structure of each essay using an annotation model defined by

Crammond [26, 27]. This rubric, like that of Toulmin, Rieke, & Janik [121, 120], renders

a structured schema-based model of the argument which can then be analyzed for features

such as the argument depth, complexity, and the presence of specific nodes.

The results presented by Chryssafidou and Sharples in [20] were somewhat inconclusive.

Both groups improved on their essays as measured by the structural grading methodology.

However each group appeared to improve differently. The pen and paper group expanded

their use of counterarguments and refutations while the computer group expanded their use

of supporting nodes. Additionally the authors note that the computer group changed their

‘style’ between the pre- and post-essays possibly masking the improvement in a strict node

count. These results must be taken with a grain of salt, however, as she also reports a pre-

test difference between the groups. In personal communications, Chryssafidou has stated

that additional analyses are ongoing.

In more recent work Harrell and Wetzel conducted a series of studies on the use of

argument diagrams to teach students argumentation and argument comprehension. In [45,

44], Harrell described a series of studies conducted in the First-Year Writing courses offered

at Carnegie Mellon University. First-year writing is an introductory course in writing, and

by extension critical thinking, offered to incoming freshmen. In it the students are instructed

in argument processing and argument comprehension and are tasked with evaluating existing

written arguments as well as producing their own.
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In some years of the course the students were given instruction in argument diagramming

where they used an existing diagramming toolkit or pencil and paper to read and diagram

existing arguments for comprehension purposes. In other years the instruction was given

“in the traditional manner.” The performance of the students was assessed via pre- and

post-tests that were given before and after the interpretation and argumentation section. In

these studies Harrell found that all students improved in their critical thinking and argument

comprehension skills and that students who were taught argument diagramming improved

more than their non-diagramming peers. She also found that students who had low incoming

competence gained more from the use of diagrams than higher-performing students. Harrell

argued, citing Schema Theory, that the use of argument diagrams helped to reify argument

schema for student comprehension.

In [46] Harrell and Wetzel discuss an extended meta-study of eighty-one students across

seven sections of the interpretation and argumentation section. In these sections students

were given pre- and post-tests that included two short writing assignments where they are

tasked with reading a short argumentative piece and crafting a written response. The written

problems were independently graded both for the quality of the argument itself, based upon

the presence of crucial features, and for features of student comprehension, notably their

coverage of crucial features of the target argument. In this study the authors found that

students who were taught argument diagramming showed generally higher gains in both

comprehension and argumentation skills over the course of the section. In particular they

found strong gains in the quality of the authors’ metacommentary which they cite as the

language the authors use to make their arguments clear to users (see [50]).

These results are similar to and consistent with the benefits of argument diagramming re-

ported by Pinkwart et al. in [93, 87, 91] and by Easterday in [33, 32]. In the LARGO work we

found that diagramming aided subsequent argument comprehension, particularly for poorly-

prepared students. Similarly Easterday found that diagrams, both student-constructed and

instructor-provided, aided in later comprehension. Unlike the prior work, Harrell and Wetzel

did not study comprehension of the diagrammed arguments only long-term comprehension

ability. Moreover, unlike the work of Chryssafidou et al. and the present study the authors

did not examine the use of diagrams to produce novel arguments only to annotate existing
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ones, nor did they consider the structure or quality of the student-produced diagrams.

2.3 VISUAL REPRESENTATIONS OF ARGUMENTATION

As noted above prior work such as that of Suthers has compared the effect of alternate

representations on student performance. In [117], Suthers describes a study of collaborative

development of evidentiary reasoning in science. Students were assigned to use a diagram-

matic representation from Belvedere (see [115]), a matrix layout encoded decisions in a

two-dimensional form, and a word processor. This work, while informative, did not involve

a direct comparison between specific diagrams only general conditions. Similarly, while the

work of Chryssafidou involved a form of structured analysis including node counting and link

measures similar to diagram analysis, that analysis was applied to expert-annotated student

essays, not to student-produced essay diagrams.

In recent work McLaren, Scheuer, & Miks̆àtko [79, 80, 81] developed tools designed to aid

teachers in analyzing and guiding classroom discussion conducted via a graphical argument

model and studied the automatic detection of crucial discussion components. This work,

however, was not focused on drawing automatic connections between diagram structures and

individual student learning, but on aiding an expert in searching, monitoring, and guiding

group discussion. Indeed, of the work cited above, only Carr [14] provides any analysis of

the change in student diagrams noting the increase in complexity over time for both groups.

Diagram analysis has also been the subject of prior work in psychology. Chi & Koeske

[16] for example, used an expert-authored semantic network to represent a child’s knowledge

of dinosaurs as evidenced by their answers to interview questions. The authors performed a

manual analysis of the diagrams to determine the complexity of the child’s knowledge as well

as to assess how well structured it was. This analysis included counting the number of links

drawn from each dinosaur to other neighbors as well as the connections within and between

groups of dinosaurs. While these are not argument diagrams they are relevant to this type

of analysis as it shows a connection between graphical representations and knowledge.
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Automated or guided diagram analysis has become increasingly important in machine

learning (e.g. [23]). Joyner, et al. [53, 51], for example, present SubdueGL a grammar-

induction algorithm designed to identify frequent subgraphs. An empirical comparison of

graph classification algorithms is presented by Ketkar [55]. Further work in [52, 59] has

extended these lines of research.

2.4 LARGO DIAGNOSTICITY ANALYSES

The LARGO evaluations reported above were focused on testing the value of LARGO as a

learning intervention. Students used the system to annotate cases and the effect of their work

was tested on a multiple-choice post-test covering general argumentation skills, argument

comprehension, and response. In addition to these evaluations my colleagues and I have

begun to investigate the diagnosticity of the oral argument diagrams drawn from the prior

studies [75, 70, 67, 5, 72]. In [75] we tested the diagnosticity of individual diagram features

such as the number of arcs drawn between nodes and the number of nodes produced. We

also tested the predictiveness of the hand-tooled diagnostic patterns used in LARGO’s help

system. We found that some of these features correlated with students’ incoming aptitude

(as represented by their LSAT score), and with their position in law school, in this case 1st

year vs. 3rd year, but not with their overall learning gains.

In [70] we continued this line of research focusing on the utility of the diagnostic patterns

used in the LARGO help system both individually and as a basis for graph classification.

For this study, rather than considering diagrams by student groups, we binned the diagrams

by the students’ post-test performance into above-median and below-median respectively.

Our analysis showed that three of the diagnostic features were individually predictive of stu-

dents’ performance. Two represented failure to link nodes to the text and were significantly

correlated with poor performance. The remaining feature, being prompted to revise the

statement of a legal test based upon others’ feedback, correlated with good performance.

We then applied both genetic programming [95] and C4.5 [8] to the construction of

decision trees designed to classify student diagrams by post-test performance. The best
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trees produced by both algorithms successfully classified roughly 80% of training cases and

100% of the test cases. Due to the small amount of available data, however, we were not able

to perform a statistical comparison of the results. In this work we focused solely on classifying

diagrams according to the students’ overall performance or their incoming aptitude. We did

not, for example, focus on correlating diagram features or diagnostic patterns with specific

skills such as the students’ ability to draw analogies and distinctions or pose novel legal tests

and hypotheticals.

While this prior work has shown some successes at establishing a link between diagram-

matic representations and student performance, it is not definitive. The investigation of the

graph features and a-priori rules showed inconsistent predictiveness. Moreover, in neither

study did we test students’ ability to make novel complex arguments as is done here. Rather

the graded performance data used in both cases covers solely students’ general argument

comprehension and their ability to comprehend novel arguments.

We have recently begun investigating the potential for manual diagram grading. In [71]

we report on an expert grading agreement study. For this work we selected a sample of 198

diagrams drawn from our prior LARGO studies. These diagrams were individually graded

by a pair of expert law school faculty according to a grading metric that included both

gestalt quality grades as well as specific grades reflecting the students’ comprehension of key

aspects of the domain model such as tests and hypothetical cases. As we report in the paper

we found substantial agreement between the faculty members leading us to conclude that

reliable manual grading of student diagrams is possible. Due to the ordinal nature of the

ranking we measured agreement using Spearman’s ρ with the minimum correlation of 0.7.

Graphical and tabular representations of the agreement are shown in Figure 2.2 and Table

2.1.
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Figure 2.2: Per-case inter-grader agreement results drawn from [71]. Each plot shows the

raw data for a single case with a fitted simple linear model (see [29]). The model values are

specified in Table 2.1 (pp. 22).
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Table 2.1: Per-case inter-grader ranking agreement drawn from [71]. The gestalt ranking is

a nonparametric measure of score agreement computed using Spearman’s ρ [29, 137]. The

slope and intercept scores are for a simple linear model of the form yb = α + βxA + ε (see

[29, 133, 34]) computed between the scores. The models in question are plotted in Figure

2.2 (pp. 21).

Gestalt Ranking ρ Overall Grade

Slope Intercept

Case Name ρ p-value est. p-value est. p-value

Asahi 0.71 p < 0.001 0.32 p < 0.001 0.92 p < 0.001

Burger King 0.73 p < 0.001 0.30 p < 0.001 0.88 p < 0.001

Burnham 0.7 p < 0.001 0.57 p < 0.001 2.85 p < 0.001
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2.5 LASAD

LASAD is a web-based successor to the LARGO system designed to support flexible peer-

collaboration and argument diagramming [65, 13, 64]. Unlike LARGO, LASAD is designed to

instantiate a variety of additional annotation and diagramming tasks, such as collaborative

diagramming, and supports the introduction of flexible diagram ontologies. Introductory

materials for LASAD are included in Appendix A (pp. 156).

An argument diagram ontology is a syntax describing the node and arc types usable in the

diagram as well as basic features of each component. In LARGO, for example, the ontology

specified the test, hypothetical, and fact nodes as well as the basic relationship arcs such as

modified-to and distinguished-from. These items were specified in code within the LARGO

system while in LASAD they can be specified using dynamic XML. A screenshot of LASAD

in action is shown in Figure 2.3. LASAD was employed in this study for diagramming and

data collection as will be described in Chapter 3.

In a recent series of studies Loll and Pinkwart tested the impact of LASAD’s collaboration

features and flexible ontologies on scientific argumentation [64]. Students in their studies

worked either collaboratively or individually using the system to draft scientific arguments

about the use of biofuels, among other topics. The authors hypothesized that manipulating

the diagramming ontology from simple to complex would affect students’ performance with

more complex ontologies leading to more complex arguments. Ultimately they were unable

to support or oppose this hypothesis but did conclude, consistent with findings by Suthers,

that increased complexity of ontologies can lend itself to increased student errors (see [116]).

Thus it is necessary to make representations parsimonious or risk reducing the quality of

information they encode.
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Figure 2.3: A LASAD Screenshot showing a basic argument diagram (right) and associated

text transcript (left). The highlighted transcript text is linked to components of the diagram

and selecting the text will flag the appropriate element.
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2.6 GRAPH GRAMMARS

In LARGO, help is implemented by means of Graph Grammars [89, 4] which provide a

set of a-priori rules that implement the LARGO argument model and test each graph for

adherence to the model or deviations from it. A Graph Grammar, as described by Rekers

and Schürr [97], is a formal grammar whose atomic components are graphs, and where the

rules or productions transpose one graph to another.

In LARGO, augmented graph grammars were used to describe the argument model and

to provide hints by means of grammar productions. These productions either matched legal

modifications to the diagram, such as adding a fact node, or matched problematic graph

states, such as the absence of a link between a hypothetical node and the transcript or

matched pedagogically interesting patterns of argument warranted feedback and reflection.

When the production rules are applied they would trigger a feedback message specified in

part by the right-hand side of the production. The details of this application can be found

in [89, 4]. These grammars were entirely defined by hand as guided by a domain expert.

Thus all of the feedback resulting from the grammars was hand-tooled. Previous systems

employing diagrammatic models of argument have used expert solutions [115] or hand-tooled

graph grammars [85, 89] to provide guidance. LASAD is also equipped with an optional rule-

based help system [105]. LASAD’s system is constricted using the Jess rule engine for Java

[94] but is formally equivalent to the augmented graph grammars defined for LARGO. Like

LARGO it uses pre-compiled rules equipped with hand-authored hint messages.

In the current research these LASAD graphs will be analyzed by means of an augmented

graph grammar engine developed by the author and described in detail in Appendix F

(pp. 223). This engine uses a rule-based description that represents complex node and arc

structures complete with type, directionality, and subfields as well as field contents. While

the rules used by this system are compatible with the rules of LASAD’s AFEngine the

AGG graph engine is more suited to offline processing, supports non-LASAD diagrams, and

can pave the way for subsequent research on rule induction. This implementation will be

discussed in greater detail in Chapter 5 (pp. 61).
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2.7 DIAGNOSTIC RULE INDUCTION

The induction of novel diagnostic rules and guidance is a major focus in educational datamin-

ing. Previous work in this area has included the development of detectors for gaming [7],

and the induction of pedagogical tutorial guidance [17]. In recent work by Stamper et al.

[113] and Nkambou et al. [83] the goal has been to extract automatic guidance for students

in otherwise open domains. The goal of these projects was to induce automatic detectors

for desired or prohibited student behaviors in otherwise open domains.

As described in later sections, the work described here is closer to the work of McLaren

et al. [79, 81], related work by Harrer et al. for logfile analysis [47], Cluster Analysis work

by Gross et al. [41, 42], and the work discussed in Lynch et al. [70, 68]. Here the goal is to

support experts in identifying salient behaviors, test the validity of their assumptions using

data, and to extract meaningful classifiers. Unlike McLaren et al. this research began with

a set of hand-tooled rules and then focused on validating their utility and combining them

to form a reliable model. However, in both cases there is interest in validating the intuitions

by testing with real data.

2.8 CONCLUSIONS

As I have shown above, argument diagrams, and argumentation in general, are of interest

to researchers in AI and Education. The results of this work, however, have been mixed.

Researchers have shown that argument diagrams, whether instructor-provided or student-

generated, can be useful scaffolds for argument comprehension and there exist promising

results indicating that features of the diagram ontology do affect student performance. Ar-

gument diagrams, however, have shown limited success as planning tools and little work has

been done on the use of student-produced diagrams for assessment. General techniques for

diagram analysis and model production exist and have been applied to group discussions

with some success. Therefore research questions Qh and Qa are both promising and open.
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3.0 DATA COLLECTION

This chapter describes the type of scientific argumentation that is the focus of this thesis,

namely empirical research reports (see Section 3.1). It also describes the diagramming on-

tology used (see Section 3.2), and shows sample texts (see Section 3.3). Finally, it gives an

overview of the course context in which the data was gathered (Section 3.4).

3.1 SCIENTIFIC ARGUMENTATION

Science is about communication. We science and scientific discourse can be viewed as as

an extended form of argument in which the interlocutors articulate general research ques-

tions and advance defensible answers to those questions in the form of testable hypotheses,

empirical research, and sound theory. The hypotheses, in particular, must be: appropri-

ate, relevant, and logically sound. The importance of argument in scientific research is a

particular focus of Greene who notes, “The greatest advancements in science are realized

through constructing convincing arguments, especially ones that resolve debatable research

issues.”[40]

Written research reports can thus be viewed as individual argumentative moves or self-

contained arguments that both respond to and advance argumentative claims. In typical

research reports, the core of this argument is presented in the introduction section where

the authors state their general research questions and make broad claims, cite the relevant

background literature, describe their process (at a high level), state their specific hypotheses,

and draw connections between them. Their goal in doing so is to convince the reader that:
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• The work is relevant to the world;

• The research question is novel, open or unanswered;

• The hypotheses are appropriate for the question;

• The hypotheses are testable; and

• The methodology is sound.

Much of this argument is made through appropriate use of citations. It is through cita-

tions that the authors highlight key support for or opposition to their hypotheses and contrast

their work with prior research. This process of comparison and evaluation is discussed in

detail by Beech who states that authors should take care to note and reconcile inconsistent

findings in prior literature [9]. He further advises authors to note methodological problems

with prior studies, and to articulate extensions or improvements that may be made. The

importance of conflicts is also discussed by Greene who characterizes the identification and

refutation of potential counterarguments as a central rhetorical goal [40].

All of the above requirements are meant to be addressed in the introduction. A reader

should study the introduction to obtain an overview of the author’s argument and to deter-

mine if the criteria have been met. The author’s goal is to convince the reader to accept it

as a sound and relevant piece of research, to make them willing to say: “Yes I’ll buy that.”

3.2 RESEARCH METHODS ONTOLOGY

As previously noted, argumentation is often implicit or difficult to detect and the rhetorical

components of argument are often hidden from the reader or listener. One of the primary

goals of scientific writing courses or methodological courses such as Research Methods (see

below) is to train students to recognize and frame these components. In most courses this

is carried out through a combination of example-based training with students reading and

analyzing arguments and reification in lectures or other contexts. In [40], for example,

the author characterizes arguments using a Toulmin-based approach where he focuses on

scientific claims, the warrants backing those claims and the data that support them. This
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is a structure similar to one of the diagramming ontologies used in [64]. In that study they

also made use of the higher-level structures employed in Belvedere [116, 117].

Toulmin models are generally simpler and more domain-general than other argument

ontologies. This simplicity has the advantage of reducing some types of user errors [64].

Simpler models, however, may be unsuited to educational contexts where students struggle

with the basic argument structures and face difficulty translating from high-level hypothe-

ses to more abstract components such as warrants and backing. Therefore, a higher-level,

more task-specific, model of argumentation was chosen for this study. This model reifies the

arguments using four specific components, represented as nodes, and connects them using

four distinct types of argumentative relations, represented as arcs. I defined it in collab-

oration with Dr. Melissa Patchan and Dr. Chris Schunn at the University of Pittsburgh

based upon an analysis of prior student work and reviewed by experienced instructors. It

was also tested and refined during a pre-study conducted in the Fall of 2010, discussed below.

Examples of the four node types are shown in Figure 3.1 (pp. 32). They are:

Claims represent general research questions raised by or claims made by the author of the

argument. Claims can be used to encapsulate any rhetorical point that is important

for later discussion, e.g. “Argumentation is Central to problem solving, particularly in

ill-defined domains.”. The claim node itself has a single text field making it a simple

free-text component.

Citations encapsulate literature references or other relevant materials. Citation nodes have

two subfields one to represent the source or citation id, e.g. “Voss et al. 1983”, and the

other to include a short summary of the cited materials, e.g.: “In Voss’ study of policy

making they found that expert problem solvers not only justified their solutions but

constructed their justifications during the problem-solving process” (see discussion in

[126]). Ideally the short summative text should make clear why the citation is relevant

and state what conclusions the author draws from it.

Hypotheses nodes represent a formal empirical hypothesis that can be tested empirically,

preferably by the current study. The node itself represents the hypotheses as logical if-

then rules with optional alternative outcomes. This logical structure is spread over two
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required fields, the conditional or ‘IF’ field and the consequent or ‘THEN’ field, and one

optional field the alternative or ‘OTHERWISE’ field. Thus this is the most complex of

the nodes but it aligns with the structure used in the target courses and helps to scaffold

the process of framing and defending it, e.g.:

If : “Student diagrams adequately represent argumentation skills.”
Then: “The diagrams can be used to provide automatic guidance.”
Otherwise: “Argument diagrams may not be worthwhile as a tutoring technology.”

Current Study nodes provide a mechanism to describe the structure of the current study

and to highlight key features of the methodology. This is particularly important when

those features are used to distinguish the study from other prior work, e.g. “In this study

I will use the RM Ontology to frame student arguments as opposed to a Toulmin model.”.

Examples of the four relation types can be found in Figure 3.2 (pp. 33). They are:

Supporting (+) indicates when a source node such as a citation provides support for the

claims, study design, or hypothesis located in the target node. The arc contains a single

text field that is be used to state the reason or explanation for the supporting relationship,

e.g. citing a prior study that supports the current hypothesis. A supporting arc is shown

connecting from Node3 to Node 2 in Figure 3.2 (pp. 33) (a).

Undefined (?) indicates that the relationship between the two nodes is indeterminate or

merely factual and thus does not advance or diminish the claim being made. As before

the arc has a single text field for the reason, e.g. “[Webster 1956] provides definition of

term ’relevant’ for [claim of dragnet relevance].” A sample undefined arc connects from

Claim #10 to Claim #2 in Figure 3.2 (pp. 33) (a).

Opposing (-) indicates that a citation, claim, or hypothesis opposes the target item. As

before a single reasons field is given, e.g. “[64] indicates that simpler ontologies are less

error-prone than more complex ones.”. A sample opposing arc is shown in Figure 3.2

(pp. 33) (b) connecting from Citation #6 to Hypothesis node #25.

Comparison (∼) is used to draw analogies and distinctions between nodes. This is fre-

quently used to explain the differences between opposing citations or to highlight simi-

larities between cited work and the current study. Comparison nodes are defined by a
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flexible list of Analogy and Distinction fields, each of which should contain a specific point

of comparison, e.g. “Previous studies on the use of argument diagrams in education did

not attempt to diagnose students performance using the diagram structure.”. A sample

comparison arc is shown in Figure 3.2 (pp. 33) (b) connecting citation nodes #8 and #6.

The model does not include a specific node type for Research Questions. While I con-

sidered including it, I rejected it on the advice of the course instructors who advocated for

a simpler ontology. In lieu of that explicit scaffold, students were instructed to represent

research questions via a claim node with its contents framed as a question. This node in turn

was to be connected to the hypothesis and other relevant claims making it central to the

diagram structure. Similarly issues such as the novelty of the study as a whole are handled

by drawing explicit comparisons between a current study node and cited materials.

This ontology was encoded in LASAD for use in the course both in annotation tasks

and for original argument planning. It forms the basis of the later analytical rules. Sample

written introductions and their associated diagrams can be found below.
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Claim Citation

Hypothesis Current Study

Figure 3.1: Component node types for the SciIntro ontology as they appear in the LASAD

diagramming system.
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(a)

(b)

Figure 3.2: Relational arc types for the SciIntro Ontology as they appear in the LASAD

diagramming system. Supporting and Undefined arcs are shown in (a) while Comparison,

Opposing, and Supporting arcs are shown in (b).
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3.3 SAMPLE INTRODUCTORY ESSAYS

This section contains two sample introductory essays along with their associated diagrams.

Both were taken from the course dataset described below. Sample Essay A and its associated

diagram were graded highly by both graders. Both are relatively detailed and have a clear

narrative and logical flow. Sample Essay B and its diagram, however, were graded poorly.

The logical flow of the argument is unclear and the citations have no connection to the

primary hypothesis. Both the essays and the diagrams are typical of the dataset.

3.3.1 Sample Essay A

Effect of Symbol Use on Behavioral Compliance of an Instructional Sign

People, especially university students, see a variety of visual stimuli on a daily basis (from
fliers to banners to endorsements) and learn to tune out excess information. The purpose of
a sign is to inform, but if the language of the sign is not understood, pertinent information
will be lost. This is especially important if the sign contains a warning of any kind, but is
equally relevant in all situations; the assumption is that signs will only be present if they
contain information that is necessary for the population to know. It will be beneficial to
understand all aspects of attention capture and maintenance, the general effectiveness of
symbols on signs, and the previous research involving the use of symbols.

To fully understand what would make a sign more efficient, it is necessary to under-
stand the nature of attention, specifically as it relates to words and images. According to a
study led by Wogalter and Leonard (1999), there are two stages of attention: the capture
stage and the maintenance stage. The stimuli must stand out from its environment enough
that it will be noticed by others - capturing attention. For optimal attention capture, a
sign’s contributing parts should complement each other in such a way as to be obvious and
clear. Then, the maintenance stage will hold ”attention while and until information from
the warning is extracted.”

But how do symbols aid the process of attention capture and maintenance? The
advantage of symbols is that they transcend the language barrier, and can convey their
intended meaning universally. Symbols are also useful in communication with anyone who
is unable to read for a variety of reasons (Wolff and Wogalter, 1998). Research has shown
that ”warnings with pictorial symbols are rated more noticeable than warnings without
them” (Friedmann, 1988). Symbols are more likely to capture attention because they are
more familiar, and those with greater contrast have been shown to be observed and inter-
nalized faster than those that blend into the rest of the sign (Friedmann, 1988).

The symbols that stand out are especially useful in warning signs, where the infor-
mation must be communicated clearly and efficiently so that the population remains safe.
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Survey research has shown that ”the likelihood of noticing a warning varies inversely with
the amount of familiarity with the product”; therefore, a new sign or symbol on a familiar
door will be more likely to be noticed than a sign that is always present (Friedmann, 1988).

In a study conducted by Kline and Beitel (1994), eleven sets of push/pull door signs
(with a variety of modalities consisting of text-only, symbol-only and text-symbol combina-
tions) were compared for their effectiveness. This ”effectiveness” was determined through
a ranking system that took into account the conspicuity of the sign, the reaction time of
subjects to the sign, the subject’s perception of the meaning of the sign, and the preference
of the subject. The sign with the highest rating was one of mixed modality with a symbol
of a hand pushing a door and the word ”Push.” (Kline and Beitel, 1994) This sign has
the qualities of being easy to understand (simple text) and universally understood (simple
symbol).

Another example that highlights the effectiveness of the inclusion of symbols on signs
is a study by Wogalter (1997) entitled ”Effectiveness of elevator service signs.” In this study,
the signs asked participants to refrain from using the elevator in the event that they would
only have to walk up one flight of stairs in order to provide efficient elevator service to the
rest of the population. Three signs that contained black and white words-only instructions
were compared with a colored sign that contained words and symbols. The syntax of the
text was varied on each of the signs, with some containing more or less instruction. The
presentation, arrangement and font sizes were used to emphasize specific words on the sign.
It was found that word order did not have a significant effect on compliance, as the three
word-only signs were rated similarly. However, the presence of color and symbol (in addition
to words) significantly increased the level of compliance from participants. (Wogalter 1997)

This specific study will analyze the effects of symbols on subject compliance to door
signs. By comparing a sign that contained words only to a sign that contained the same
words and a symbol, the direct effects of the symbol will be more observable. It is predicted
that the presence of a symbol on the sign will increase the compliance rate of subjects to
the instructions given.
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3.3.2 Sample Essay B

The Effects of Visual Stimuli on Adults Attention Span Processes

Paradigms have been studied and replicated where the participant is more obedient or
attentive when there wasn’t anyone around than when others were present (Dambrun &
Valentine, 2010). Depending on the participants sense of authority of the victim predicted
their behavioral outcome of whether or not to obey. Other studies have shown that different
types of hand gestures given to a receiver can highly affect the receiver’s evaluation of the
message’s persuasiveness, effectiveness, and speaker’s competence (Maricchiolo, Bonaiuto,
& Ficca, 2009). This study infers that depending on the participant’s evaluation of the
sign will determine whether or not they pay attention to it.

Pinel, Long, and Crimin (2010) found, based on previous research by Asch (1951),
which participants who previously shared a specific moment with another participant were
less likely to conform than with participants who did not. They were also more likely to
conform in public than in private. This study illustrates the level of attention of the partic-
ipant regarding other participants. To be less likely to conform, the participant must have
noticed whether or not others are present and how familiar their surroundings are.

Another study conducted by Tajfel (1978) noted that there is a propensity to socially
differentiate than conform. This ultimately signifies that instead of people conforming to
the directions of the sign, they will be more likely to ignore it, or differentiate from it. An
alternative study examined the relationship between self-report and social skills (Tanimura
& Watanabe, (2008). This study focused on the ability of the participant’s attentiveness
towards his or her social ability. This represents the degree to which the participant would
have paid attention to the sign. The ability of the participant to accurately evaluate him
or herself would be precursor knowledge of how the participant would react to the sign. If
they are socially comfortable and not susceptible to embarrassment, then he or she may
stop and turn around to look. On the other hand, if they are vulnerable to embarrassment
then they may just ignore the sign and keep walking.

Many case studies have shown that certain attention processes are required for ev-
eryday tasks, such as walking through a door. The researcher’s purpose of this study was
to determine whether or not an individuals’ attention span would be sharper during the
day or at night. If they are more keen to their surroundings at night, then night time is a
possible route for studying or handling a majority of complex tasks and vice-versa.
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3.4 STUDIES

For the purpose of this study I conducted two in-class experiments. The first was a pre-study

experience conducted in one section of the Research Methods (RM) course at the University

of Pittsburgh during the Fall of 2010 in collaboration with Dr. Melissa Patchan. Research

Methods is a weeder course for all psychology majors and is required or encouraged for

students majoring in Economics, Anthropology, and other social sciences. Students must

complete the course in order to declare a major in Psychology. The course covers the re-

search process from articulating hypotheses through study design, data collection, statistical

evaluation, and writing. The course also includes segments on scientific ethics and reading

scientific papers. The goal of the course is to train students in scientific comprehension and

to make them good ‘consumers’ of science.

The Pre-study was a qualitative study designed to test the LASAD software and the

argumentation ontology. The study took place in a single section of the Research Methods

course offered at the University of Pittsburgh. Students were briefly introduced to LASAD

and asked to diagram a single argument within it. Due to the small sample size the data

was not used for any substantive analysis and only used for user experience testing and later

grading as will be described in Subsection 4.3.1. The study led to functional improvements

both in the software and the diagramming process, but no major substantive changes in the

ontology.

The primary data collection phase was again in RM during the Spring of 2011. All

of the discussion below and the experimental data came from this second round. The 2011

Spring course consisted of a single large-format lecture course with separate lab sections. The

course enrollment at the time of data collection was 207. All of the relevant diagramming

and authoring work was done in the lab section. There were a total of nine lab sections and

the students were largely divided equally between them.

Within each lab section the students were required to complete two research projects

including identification of a research topic, defining a hypothesis, collecting data, and writing

up a research report. The first three phases were carried out collectively with the whole
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lab working together to select the topic, frame the hypothesis and collect the data. The

students were then required to carry out the writing either individually or as a team. This

included selecting the appropriate background literature, framing of the research question,

interpretation of the data and discussion of the results. A representative assignment sheet

for this project can be found in Appendix B (pp. 181). Data collection for this thesis was

integrated into these research and writing assignments.

For each assignment the study process consisted of three phases: introduction, diagram-

ming, and writing. The students were introduced to LASAD and the diagramming ontology

through a lecture and a guided reading task where they were asked to read one or more

appropriate research papers and annotate the arguments made in the introduction section

using LASAD. The introductory materials supplied to the students can be found in Ap-

pendix A (pp. 156). The papers being annotated were section-specific and were chosen by

the Teaching Assistants or the course instructor.

During the diagramming phase the students were required to plan their own research

paper by drafting a LASAD diagram. They carried this process out contemporaneously

with data collection and background research as well as other course activities and were

encouraged to update the diagram as they collected their source materials and structured

their underlying claims. Once the diagram was complete they then wrote their research

paper and submitted an initial draft for instructor review. The students were able to access

their diagram during the writing process. If the students worked as a team then they were

required to collaborate on both the diagram and essay components and to submit one of

each per team.

Over the course of the study I collected one or more reading diagrams for each student

in the course and paper planning diagrams and essays for each student and student author

that completed them. All nine sections completed the paper planning diagrams and essays

for the first assignment. However for the second writing assignment the sections varied

with some TAs giving conflicting instructions to the students or making the assignment

optional without informing the instructors. Due to intra-section variations I opted to focus

my analysis on the first assignment. This one was handled consistently across the sections

and all of the students were required to participate. From this process I collected a total
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of 132 original diagrams and 125 essay drafts. After filtering out degenerate essays and

diagrams and dealing with dropouts this resulted in a total of 119 gradable diagrams and

125 gradable essays. After purging duplicates, using the “Best Foot Forward” principle,

and incomplete submissions I obtained 105 unique diagram-essay pairs, 74 of which were

authored by a team with the rest being completed by individuals. All subsequent analyses

described here will be based upon this set.

3.5 CONCLUSIONS

In this chapter I presented an overview of argumentation in empirical research reports.

I further described the role that key components of the argument play in conveying the

authors’ specific goals. I then described an argument diagramming ontology tailored to the

domain and included two sample arguments with associated diagrams. I then concluded by

describing the data collection process and the Research Methods course at the University of

Pittsburgh in which the study took place.
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4.0 QH HUMAN-GRADING

Qh Can student-produced argument diagrams be assessed reliably by human graders and
are those assessments valid predictors of future performance?

4.1 INTRODUCTION

The focus of this chapter is on Qh. In it I will discuss what it means for an educational

activity, object, or test to be valid and reliable and will articulate specific, testable null

hypotheses that address the substance of Qh (see Section 4.2). This will be followed by

a description of a grading study conducted to test these hypotheses (see Section 4.3) and

presentation of the results. The results will be separated into discussions of reliability (see

Section 4.4) and validity (see Section 4.5). The discussion will conclude with a summary of

broad conclusions and applications (see Section 4.6).

4.2 RELIABILITY AND VALIDITY

In order for a graded activity to be pedagogically useful it should be both reliable and valid.

A graded activity is reliable if multiple suitably-trained graders can assess it independently

and obtain comparable results or if a single grader can re-grade it and obtain the same results

[10]. The former definition is known as inter-rater reliability while the latter is intra-rater

reliability. Inter-rater reliability is essential to the development of educational assessments.

If an artifact cannot be graded reliably by multiple graders or a rubric cannot be applied
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consistently then we have no guarantee that it measures persistent and transferable skills

and no reason to believe that the assessment provided can predict future performance. High

scoring students may simply have drawn a credulous jury.

As noted in Section 2.4 I have previously addressed inter-rater reliability of argument

diagrams in [71]. The focus of that study, however, was conducted with LARGO diagrams.

Unlike the present study students using LARGO annotate shared argument transcripts to

prepare for a comprehension assignment. Therefore the reliability measure was based upon

representational diagrams that covered the same underlying arguments and thus should share

a structure. In the present assignment the arguments were open-ended and unique to each

author while in the prior work the students were annotating a single shared argument thus

the problem differs substantially.

I define a rubric or assignment as valid if it is predictive of or correlated with future

performance on other relevant activities. If, for example, the students’ graph grades are

correlated with their future essay grades then the diagramming assignment is a valid predictor

of their future writing performance. If the graph grades have no bearing on their essay grades

however, then the exercise is invalid and there would be little point in spending time on it.

Validity is a prerequisite for predicting transfer of skills to novel tasks and domains. It is

particularly important when we consider the role of instructors in advising students on one

activity with the goal of improving future work.

The problem of validity is coupled with the problems of translation and transfer. In the

present context students are being asked to apply their skills at argumentation and their

understanding of concepts such as “hypothesis” to construct argument diagrams. They are

then expected to apply those same skills when drafting an essay, translating the argument

from the diagram form to a written document and applying the same concepts in a novel

form. Thus an exercise such as argument diagramming will only be valid if the skills it

measures are transferable from the exercise domain to the target domain.

While previous researchers have sought to connect diagram usage to student performance

none have conducted a systematic study of diagram assessment. Apart from [20] and [14] the

authors have not reported on any rigorous annotation or grading of the essays and diagrams.
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Nor have they drawn formal connections between detailed measures of diagram quality and

subsequent essay performance. The only work conducted on that topic to date, [68], focused

solely on automatic grading and a single gestalt assignment grade. While this supports us

in our belief that the diagrams can inform subsequent grades it does not show that the

diagrams are useful to human reviewers or that they can be used to provide more detailed

predictions.

Consider the diagram-essay pair shown in Subsection 3.3.2 (pp. 37). The diagram shown

in Figure 3.4 (pp. 38) has several clear issues. Hypothesis node #21 is disconnected from the

rest of the graph and the remainder of the diagram consists only of a single star shape with

arcs going from the central claim node to the citations. Nor has any attempt been made to

compare the citations to one-another or to break the primary claim up into smaller claims.

Therefore it seems likely that there are regularities that an expert instructor could recognize.

In order for the argument diagrams to meet the above criteria the following null hypotheses

must be false:

Hh1: Student-produced argument diagrams can not be reliably graded by human graders.

Hh2: Student-produced argumentative essays can not be reliably graded using a parallel
grading rubric by human graders.

Hh3: Human-assigned diagram grades are not valid predictors of parallel essay grades.

Hh4: Human-assigned diagram grades are not valid predictors of their gestalt essay grades.

These hypotheses were tested in a pair of studies focused on inter-rater reliability and

validity. Both were conducted using a custom parallel grading rubric that is described in the

next section. I will address the grading process and the hypotheses below.

4.3 GRADING

The diagramming ontology described in Section 3.2 (pp. 28) was designed to reify the

key argumentation features present in research reports. My goal in designing this parallel

structure was, in part, to ensure that the students could transfer the argumentation skills

from one format to the other thus making the diagramming task a valid one. In order to test
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the extent of this transfer and the validity of the task as a whole I defined a pair of parallel

grading rubrics one intended for use on diagrams and the other for essays. Each rubric has

14 questions covering specific features and gestalt qualities of the elements. Each question

or grade is paired with a comparable peer in the matching rubric.

4.3.1 Rubric

A short summary of the rubric questions is shown in Figure 4.1 (pp. 46). As that table

illustrates questions G/E.01 - G/E.11 focus on specific subsets of the argument such as

the research question or the citations. Questions G/E.12 (Arg-Coherent), G/E.13 (Arg-

Convincing) and G/E.14 (Arg-Quality) are gestalt questions that cover the argument as a

whole. All but G/E.14 are graded on a scale from (-2 - 2) in increments of 0.5. Questions

G/E.02 (RQ-Link) and G/E.05 - G/E.11 allowed for an additional “N/A” value indicating

that the question does not apply. G/E.14 (Arg-Quality) is graded on an 11-point scale (-5

- 5) again in 0.5 increments. A detailed summary of the questions along with keypoints for

each of the grade values can be found in Appendix C (pp. 187).

The rubrics were initially developed based upon a qualitative analysis of the diagrams

collected during the pre-study described in Section 3.4 (pp. 39). I then tested the draft rubric

with a short pre-grading study using the same data. In this pre-grading process a pair of

experienced TAs graded a sample of the diagrams independently of one-another and then

met to discuss issues and differences. Both TAs had been involved in the course and were

experienced with LASAD. Based upon the results of this process the rubrics were extended

with additional questions and better-specified grading criteria to produce the final form used

here.

4.3.2 Grading Process

The final grading itself was carried out by two independent graders. The primary grader

was a Ph.D. student in Anthropology at the University of Pittsburgh who had previously

served as a TA and grader for the RM course in 2012. During that year LASAD was again

used and she led her students in comparable assignments to the ones used in the present
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G/E.01 (RQ-Quality) Did the author clearly state a research question?
G/E.02 (RQ-Link) Was the research question, if stated, clearly relevant to and connected

to the rest of the diagram/essay?
G/E.03 (RQ-Support) Did the author include relevant citation nodes or cite relevant back-

ground literature related to the research question?
G/E.04 (Hyp-Testable) Did the author include one or more testable hypothesis nodes in

the diagram or articulate a testable hypothesis or hypotheses in the essay?
G/E.05 (Hyp-Link) Were the hypothesis nodes / hypotheses relevant and clearly connected

to the research question?
G/E.06 (Cite-Conclusions) Did the author include clearly state the conclusions that he or

she drew from the cited works in the citation nodes or essay?
G/E.07 (Cite-Reasons) Did the author include relevant summaries of the cited works and

make clear hpow they connect to the remainder of the argument via text or arcs?
G/E.08 (Claim-Support) Did the author adequately support his or her claims via citations

either textually (in the essay) or by drawing paths from the citation nodes to the claims
(in the diagram)?

G/E.09 (RQ-Open) Did the author defend the opnenness of their research question by
including similar research that disagrees about the hypothesis?

G/E.10 (Hyp-Open) Did the author defend the openness of their hypotheses by citing work
that disagrees about it and clearly delinating the differences?

G/E.11 (Study-Novel) Did the author defend the novelty of their study by drawing explicit
comparisons between their work and prior work and noting relevant distinctions?

G/E.12 (Arg-Coherent) Did the author develop a single coherent argument?
G/E.13 (Arg-Convincing) Did the author present a convincing argument?
G/E.14 (Arg-Quality) Please rate the overall quality of the diagram / essay based upon

the organization, coherence, and completeness?

Figure 4.1: Summary of the Research Methods Grading Rubric. Detailed information can

be found in Appendix C
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study. As such she was experienced with the domain, the student body, the assignment, and

LASAD. In addition to her existing experience with LASAD she was given a pre-training

memo describing the goals of the grading process and instruction in the specific grading

rubric. This memo can be found in Appendix D (pp. 210). She was also given instruction in

the use of SNG a web-based grading toolkit that I developed for the purpose of this thesis

(see Appendix E (pp. 215)).

The primary grader was given the task of grading the full set of diagrams and essays

collected from the study including all planning diagrams and essays generated during assign-

ments 1 and 2. This was a superset of the 105 unique pairs that I use for analysis below.

The total number of diagrams and essays graded can be found in Table 4.1. All of the essays

and diagrams were anonymized before being provided to her and the orders were randomly

shuffled so that diagrams and essays could not be matched up. The essays were embedded

within the web-based grading tool SNG and were graded entirely in that tool. The diagrams

were posted for access in LASAD with grades being entered via SNG. In the pre-grading

study the diagrams were viewed as static images however the graders found this format to

be confining and expressed a preference for a dynamic format.

After conducting her initial training the primary grader was given samples of diagrams

and essays from a prior year for discussion. She then proceeded to grade the diagrams and

essays in batches. For the most part she did so independently, communicating only when she

had technical questions. No ongoing guidance was required nor did I seek to influence her

Table 4.1: Individual grading assignment totals listed by grader.

Grader Assignment Diagrams Essays

Primary Validation 105 105

Reliability

Training 1 10 10

Training 2 10 10

Reliability 30 30
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grade assignments. The full grading process for both the diagrams and essays required one

full year once training was completed. As I will discuss below her graph and essay grades

will form the basis of the validity analysis and subsequent model induction.

The reliability grader was an experienced Ph.D. Candidate and TA at Stanford Uni-

versity. She had completed an undergraduate degree in Psychology at Carnegie Mellon

University where she completed a Research Methods course. She had also served as a TA

for related courses at Stanford. As such she was experienced with the nature of the course

and with the type of writing assignment. She was given pre-training on LASAD in addition

to the grading memo and SNG manual. She was also given the opportunity to review some

of the assignments from a prior year before grading. Both graders were hired separately and

neither one had occasion to interact with the other.

The reliability grader was assigned the task of producing a set of independent grades

to compare with the primary graders’ results. The grader was given initial instruction in

LASAD, SNG and the assignment. She then graded a set of 10 randomly selected diagram

and essay pairs. I then compared these grades to those of the primary grader and discussed

the differences with her. She then conducted a second round of training grading with 10

diagrams and essays and again compared the results. After the second round of training she

was assigned a final round of 30 diagram/essay pairs and graded them independently. The

complete process took roughly 3-4 months. An overview of the assignments was shown in

Table 4.1 (pp. 47).

The diagram-essay pairs were chosen from the set of 105 covered by the primary grader.

As with the primary grader the diagrams and essays were graded anonymously and inde-

pendently of one-another. The grader was not informed that the diagrams and essays were

matched sets and graded the diagrams and essays in separate batches. As with the pri-

mary grader this process was carried out online using SNG for the essays and questions and

LASAD for the diagram display.
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4.3.3 Grading Results

An overview of the grading results for the primary grader can found in Table 4.2 (pp. 51).

As that table shows the grader ranked the diagrams relatively low with 10 of the 14 diagram

grades having a negative average score as compared to two of the essay grades. Moreover,

a visual inspection of the grade histograms for the diagrams found that 6 of the 14 had an

unbalanced distribution with almost all of the students receiving the same score. The number

of items receiving the majority score for each diagram and essay is indicated by the ‘#M’

column. As that column shows in four cases (G.01 (RQ-Quality), G.02 (RQ-Link), G.05

(Hyp-Link), & G.09 (RQ-Open)) more than 80 of the 105 diagrams received the same grade

while for two grades (G.10 (Hyp-Open), & G.11 (Study-Novel)) a majority of the 105 were

assigned the same grade. This only occurred for two of the essay grades: E.09 (RQ-Open)

& E.10 (Hyp-Open). As the table shows the remaining scores, while well-distributed, are

frequently skewed with the graph grades being positively skewed (mean and median closer

to the minimum score than the maximum) and the essay grades were frequently negatively

skewed (mean and median closer to the max score). This skewness does not affect the

calculations described below.

Table 4.3 (pp. 52) contains the same type of overview for the reliability grader. In this

case 9 of the diagram grades had a negative mean score and the same 6 had unbalanced

distributions with four of the six (G.01 (RQ-Quality), G.02 (RQ-Link), G.05 (Hyp-Link),

G.09 (RQ-Open) & G.11 (Study-Novel)) having more than 20 diagrams assigned to the

majority class and one, G.10 (Hyp-Open), with more than half. For the essay grades five of

the six had more than 20 essays assigned to the majority class (G.01 (RQ-Quality), G.02

(RQ-Link), G.05 (Hyp-Link), G.09 (RQ-Open) & G.10 (Hyp-Open)) and one with half G.13

(Arg-Convincing).

For the most part the distribution of minimum, median, mean, maximum, and standard

deviation scores was similar between the primary and reliability graders. In both cases the

students scored worse on the diagrams in general. While somewhat disappointing this is

not entirely surprising as students carried out the diagramming and essay writing serially.

Therefore I would expect that the essay would score marginally higher than the diagram if
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only due to refinement. The primary issue of concern is the unbalanced score distributions,

particularly on questions relating to the research question and the novelty of the argument.

It is possible that these scores reflect the students’ correct performance or the limitations of

the ontology. I will address this point more fully in Subsection 4.5.1 (pp. 57).

4.4 RELIABILITY HH1 & HH2

4.4.1 Primary Results

As indicated by [10] there are a number of competing definitions of reliability. For the

present study my goal was to show that, given suitable training, the diagrams and essays

can be reliably graded obtaining consistent scores. Therefore I conducted a direct comparison

between the graph and essay grades assigned by the reliability grader and those of the primary

grader. The raw results and comparison calculations are shown in Table 4.4 (pp. 53).

Due to the discrete ordinal structure of the grades I tested the level of agreement using

Spearman’s Rank Correlation Coefficient (ρ). ρ is a nonparametric test of correlation that

ranges from -1 to 1 with larger values indicating stronger relationships and the sign indicating

the direction [29, 130, 137]. Unlike Pearson correlation or similar parametric measurements

ρ is less sensitive to the exact shape of the correlation and does not require an exact linear

relationship.

As Table 4.4 (pp. 53) shows the graders obtained marginally-significant ρ scores ranging

from 0.41 to 0.72 for all but two of the graph grades. For grades G.12 (Arg-Coherent)

and G.13 (Arg-Convincing) the scores were marginally-significant (ρ = 0.32, p < 0.09) and

(ρ = 0.3, p < 0.1) respectively. Given the strong agreement on the diagram grades it is clear

that they can be graded reliably given suitable training. Therefore the null hypothesis Hh1

does not hold in general.

This conclusion, however comes with some caveats. The diagram correlations are non-

parametric therefore they monotonically correlate but this does not mean that they are

exact. Moreover the correlations, while significant, are not perfect indicating that there are
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some real deviations between the graders. As I will discuss in Chapter 8 (pp. 131) these

differences may stem from real disagreements about the meaning of the structural concepts

or the argument model. Nevertheless the correlations are cause for satisfaction but may not

generalize to all cases.

For the Essay grades the answers were more problematic with statistically-significant

scores ranging from 0.42 to 0.6 on 7 of the 14 grades and a marginally significant (ρ =

0.35, p < 0.06) on E.08 (Claim-Support). The remainder of the grades did not find significant

agreement. The unreliable grades were: E.02 (RQ-Link), E.03 (RQ-Support), E.05 (Hyp-

Link), E.06 (Cite-Conclusions), E.09 (RQ-Open), and E.11 (Study-Novel). Of these all of

them are focused on the relationships between the argument components.

These structural relationships are difficult for novice arguers and can easily be lost in the

essay format while the diagrams were explicitly designed to reify them. Moreover the relevant

textbooks such as [9] and [40] and the course lectures discuss individual argumentation

components in detail. Thus there is relatively widespread agreement on how individual

components such as hypotheses and citations should be framed in research reports and the

students received explicit instruction on how to do so, more than they received on the logical

relationships.

Therefore it seems likely that the low reliability on these scores can be attributed to

the lack of clear guidance on how such relationships should be expressed in an essay, and

the lack of clear conventions for the graders. In the absence of such guidance the students

either failed to include the relationships, already encoded in their diagrams, in the essays

or did so inconsistently. In the absence of clear conventions the graders could not obtain

agreement. Thus it is clear that agreement is possible but not for all of the criteria. Therefore

hypothesis Hh2 is rejected in general but clearly some of the essay grades were not reliable.

This reliability has important consequences that I will discuss below.

Moreover the important caveats discussed above continue to apply. These correlations are

nonparametric and are consequently less sensitive to direct disagreements. Thus while these

results are sufficient to establish general reliability they should not be read as guaranteeing

complete agreement.
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4.4.2 Reliability Filtering

In order for any statistical analysis to be useful it is necessary to ensure that the manually-

assigned grades are sufficiently reliable. In the remainder of this thesis I will be using the

manually-assigned graph grades solely to predict the essay grades as discussed in Chapter 7

(pp. 97). As noted above the graders found statistically-significant or marginally-significant

agreement for all of the diagram grades. Therefore they are sufficiently reliable for use as

predictive variables.

The reliability of the essay grades are a more complex issue. In general 7 of the 14 essay

grades were reliable: E.01 (RQ-Quality), E.04 (Hyp-Testable), E.07 (Cite-Reasons), E.10

(Hyp-Open), E.12 (Arg-Coherent), E.13 (Arg-Convincing), and E.14 (Arg-Quality). There

was also marginally-significant agreement on 1: E.08 (Claim-Support). The relevant ρ scores

are shown in Table 4.5 (pp. 56), third column.

However, given the fact that this work focuses on paired diagrams and essays individual

essay reliability is a minimum standard. For the present analysis I will set a higher threshold

for reliability of the essay grades that incorporates the reliability of the associated graph

grades. This paired reliability will be estimated as a multiple of the statistically-significant ρ

scores for the corresponding grades of the form (τ = (ρgi & ρei)). Thus the threshold value

for E.14 (Arg-Quality) is τE.14 = (0.51 ∗ 0.56) = 0.29. Correlations that are not statistically-

or marginally-significant will not be used.

Therefore an essay grade will be considered reliable if and only if the graders found

statistically-significant or marginally-significant agreement on both the relevant graph and

essay grades G.x and E.x and if the combined reliability score τE.x meets or exceeds 0.2.

This calculation is shown in Table 4.5 (pp. 56). As shown there only 5 of the 14 grades

meet these standards: E.01 (RQ-Quality), E.04 (Hyp-Testable), E.07 (Cite-Reasons), E.10

(Hyp-Open), and E.14 (Arg-Quality). Therefore I will focus on these grades as dependent

variables for the remainder of this thesis.
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Table 4.5: Reliability Filter calculations including ρ scores and τE.x scores for the manually-

assigned graph and essay grades. Bold scores represent statistically-significant ρ values while

italics represent marginally-significant results.

Name
Reliability ρ

τE.x Decision
Graph Essay

01 RQ-Quality 0.66 0.42 0.28 Keep

02 RQ-Link 0.64

03 RQ-Support 0.44

04 Hyp-Testable 0.5 0.62 0.31 Keep

05 Hyp-Link 0.68

06 Cite-Conclusions 0.63

07 Cite-Reasons 0.59 0.6 0.35 Keep

08 Claim-Support 0.41 0.35 0.14

09 RQ-Open 0.5

10 Hyp-Open 0.72 0.55 0.4 Keep

11 Study-Novel 0.72

12 Arg-Coherent 0.32 0.5 0.16

13 Arg-Convincing 0.3 0.46 0.14

14 Arg-Quality 0.51 0.56 0.29 Keep

56



4.5 VALIDITY: HH3 & HH4

For the present purposes there are two relevant measures of validity: direct correlation of

paired grades of diagrams and essays, and correlation with gestalt scores. For the former

we test whether the corresponding question grades in the paired rubrics are correlated that

is, whether G.01 (RQ-Quality) is significantly correlated with E.01 (RQ-Quality). For the

latter the question is whether the individual graph grades are significantly correlated with

the reliable gestalt essay grade E.14 (Arg-Quality). That is, do the graph features correlate

in any way with the overall essay quality. I will discuss both definitions below focusing

solely on the five reliable essay grades. As before I will rely on Spearman’s ρ as a measure

of correlation.

4.5.1 Direct Validity

As shown in Table 4.6 (pp. 57) statistically significant positive correlations were found

between the graph and essay grades for 4 of the 5 reliable questions G/E.04 (Hyp-Testable),

G/E.07 (Cite-Reasons), G/E.10 (Hyp-Open), and G/E.14 (Arg-Quality). In all cases the

correlations were positive and ranged from ρ = 0.254 for question G/E.12 (Arg-Coherent)

to ρ = 0.443 for question G/E.07 (Cite-Reasons). Interestingly G/E.01 (RQ-Quality) had

a strongly unbalanced distribution with the primary grader scores having median scores of

-2 and 0.5 for G.01 and E.01 respectively (see Table 4.2 (pp. 51)). This was not the

case for three of the other four scores where the graph grade median was closer to that of

Table 4.6: A listing of the direct validity comparison results including ρ and p-values (n=105).

Questions Speaman’s ρ sig

G.01/E.01 (RQ-Quality) r=-0.102 p<0.299
G.04/E.04 (Hyp-Testable) r=0.254 p<0.009
G.07/E.07 (Cite-Reasons) r=0.443 p<0.001
G.10/E.10 (Hyp-Open) r=0.254 p<0.009
G.14/E.14 (Arg-Quality) r=0.331 p<0.001
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the essay grades. Only G/E.14 was similarly unbalanced with relative median scores of

-1.75 and 3.25 respectively While the direct correlations are not maximal (ρ = 1) they

are relatively strong particularly for G/E.07 (Cite-Reasons), and G/E.14 (Arg-Quality).

Therefore while it appears that the unbalanced results may have adversely impacted the

direct validity calculations it is also apparent that the parallel rubrics do correlate with one-

another making the some of the paired grades directly valid. Thus Hh3 is rejected. These

nonparametric correlations give us reason to believe that performance is, in fact, predictive.

It is important to note, however, that they should not be read as showing that diagram

performance improves writing only that performance is correlated across the board.

4.5.2 Gestalt Validity

As shown in Table 4.7 (pp. 58), statistically significant positive correlations were found

between grades G.04 (Hyp-Testable), G.07 (Cite-Reasons), G.10 (Hyp-Open), and E.14 (Arg-

Quality). G.01 (RQ-Quality) was, again, uncorrelated. As above these results are not exact

but show general performance agreement and are conditioned by the fact that the gestalt

grades were assigned by the same grader as the individual grades. Indeed the grader was

encouraged by the structure of the assignment to consider the specific components and then

the gestalt grades thus this level of agreement was expected and is satisfying. Therefore

most of the reliable graph grades also satisfy a test for gestalt validity and Hh4 is rejected.

Table 4.7: Gestalt Validity Comparisons using Spearman’s Rho. This lists direct nonpara-

metric correlations between the reliable graph grades and E.14 (Arg-Quality).

Questions Names ρ Sig

G.01-E.14 (RQ-Quality – Arg-Quality) r=-0.075 p<0.449

G.04-E.14 (Hyp-Testable – Arg-Quality) r=0.237 p<0.015

G.07-E.14 (Cite-Reasons – Arg-Quality) r=0.419 p<0001

G.10-E.14 (Hyp-Open – Arg-Quality) r=0.237 p<0.015
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4.5.3 Summary & Analysis

As noted above the grade pair G/E.01 (RQ-Quality) was neither directly valid nor did it

have gestalt validity. The remaining four reliable pairs, G/E.04 (Hyp-Testable), G/E.07

(Cite-Reasons), G/E.10 (Hyp-Open), & G/E.14 (Arg-Quality) however were both reliable

and valid.

Interestingly, the four valid reliable grades can be readily classified by the most relevant

argument component. Grade G/E.07, focuses on the students’ use of citations and their

connection with other features. Grades G/E.04 & G/E.10 deal primarily with hypotheses.

And G/E.14, of course, deals with the gestalt quality. By contrast grade G/E.01 focuses

on the central research question and had an unbalanced distribution. As with the essay

reliability it is possible that this lack of validity can be attributed to the structure of the

diagrams and to the lack of instructional support.

Research questions are an essential part of a well-written research report. They serve

to generalize the research connecting it to larger problems and provide a basis to discuss

the openness of the research more broadly. As I noted in Section 3.2 research questions are

not represented directly in the diagramming ontology but via a precisely-formatted claim

node. Expressing the novelty of the study requires a similarly complex process. Students

were instructed to defend the novelty of their study by generating a current study node that

summarized their study methodology and other key features of the work and then to draw

comparison arcs between this node and the citations. They were then instructed to use these

arcs to state distinctions between their work and the cited works. Thus there was no single

node used to defend the full novelty of the study and, as I will discuss in later chapters, the

students made little use of the current study nodes and comparison arcs.

While this was discussed with the students during the LASAD introduction subsequent

discussions with the TAs indicated that they did not reinforce the concepts of novelty and

comparison of related citations nor did they support students in the inclusion of research

questions or current-study nodes in their diagrams. Most chose instead to focus students

attention on the use of hypothesis statements, citations, and the connections between them.

In the absence of explicit framing by the diagramming ontology and persistent guidance
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from the primary point of contact, the TAs, it is unsurprising that most of the students

omitted research questions from their diagrams. It is also unsurprising that they did not make

efforts to distinguish their study from prior work at that time. The resulting unbalanced

distribution is thus unable to reflect the real variation in the associated essay grades. The

one valid yet unbalanced grade G.10 (Hyp-Open) was only marginally so and thus variable

enough to apply.

4.6 CONCLUSIONS

Having individually rejected all four of the null hypotheses introduced in Section 4.1 it is

clear that the general question Qh holds true. The diagrams can be reliably graded by human

graders and the resulting grades are significantly correlated with the subsequent essay grades.

Indeed it appears that the reification offered by the diagrams makes them easier to grade

reliably than the comparable essays. Therefore the argument diagrams are valid structures

for argument planning and a viable target for intervention by expert instructors so long

as an appropriate set of rubrics is used. Clearly the parallel rubrics designed here were

appropriate in general. These conclusions, however, are conditioned by the limits both on

both the reliability and validity results that I discussed above. Based upon these limitations

it is not clear that all of the grades are suitable targets for automated analysis. I will address

this point again in Section 5.5.
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5.0 QA AUTOMATIC GRADING

Qa Can argument diagrams be analyzed automatically to diagnose students’ argumentation
skills and to predict future performance on “real-world” tasks?

5.1 INTRODUCTION

In this part of the thesis I will focus on question Qa. Having shown that argument dia-

grams can be evaluated reliably by human graders and that the resulting grades are valid

predictors of subsequent performance, it remains to be seen whether or not the diagrams

can be subjected to automatic analysis. Such analysis is useful if it is possible to define a

graph model, such as graph rules or neural networks, that can be used to diagnose individual

student problems by identifying specific conceptual errors or problematic structural features

that correlate with future performance. For the present study I will focus on specific a-priori

graph rules. Such rules can be used as the basis for direct feedback or other student guid-

ance. An individual rule or graph structure that has been shown to correlate with future

behavior is empirically-valid. Automatic analysis is also useful if we can use it to reliably

predict student performance. Reliable predictive models, if available, can then be used to

rank student diagrams and to flag students who require additional support. Thus Qa can be

broken down into two specific null hypotheses:

Ha1: It is not possible to define empirically-valid diagram rules that correlate with students’
novel written argumentation ability.

Ha2: Automatic features of student diagrams can not be used to predict students’ novel
written argumentation ability.
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The remainder of this chapter will focus on background material relevant to Ha1 & Ha2.

This will include: a brief discussion of relevant prior work in Section 5.2, an introduction to

Augmented Graph Grammars (Section 5.3), a summary of the rules used in the present work

(Section 5.4), and a detailed discussion of the graph and essay grades used for automatic

analysis (Section 5.5). The two hypotheses will then be addressed in the following chapters

with Ha1 being tested in Chapter 6 and Ha2 in Chapter 7.

5.2 PRIOR WORK

As I discussed in Section 2.2 several existing argumentation systems such as LARGO, [91,

88, 90], LASAD [103], and Belvedere [117] employ graph grammars or other rules to provide

automated graph analysis. The rules are used to trigger automatic guidance such as hint

messages and to enforce higher-level semantic and syntactic constraints and to address the

more complex (mis)uses of the graph structures such as those shown in Figure 3.4 (pp. 38).

In LARGO, for example, students were instructed to draw arcs representing logical rule

modification from one legal test node to another, not from a legal test to a current fact

situation. Rules were encoded for the help system to flag when a student did so and to

provide on-demand advice against it. Similar techniques have been used in other systems.

Scheuer et al. survey such established advice techniques in [105]. In systems such as LARGO

the rules are only used to provide at-will advice, not to impose hard syntactic constraints.

In general, the rules used are, like the ontologies, defined a-priori by domain experts

based upon normative rules of argumentation and current pedagogical goals. The help rules

used in LARGO were defined by Kevin Ashley, an experienced law professor, based upon

a process model of argument and then encoded directly into the system [4, 6]. One key

advantage of pedagogically-driven, at-will guidance of this type is that it can be tuned to

the level of complexity desired by the instructors and students but can also be safely ignored

by more experienced users. This latter feature was particularly desirable in LARGO as the

students were tasked with diagramming existing dialogues that did not always conform to the

ideal model. This makes such rules ideally-suited to open-ended tasks such as argumentation
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and to ill-defined domains [74].

While such rules have strong pedagogical support, little work has been done to empiri-

cally validate them using student data or to assess their individual role in subsequent student

performance. For the present discussion a rule is empirically-valid if it correlates with subse-

quent measures of student performance. Thus, if a rule is designed to detect problems with

an argument diagram the rule would be empirically valid if violations of the rule correlate

with poorer scores on subsequent arguments. Thus empirical validity is defined relative to

a given task and grading metric. In general it is assumed that rules with strong pedagogi-

cal support are empirically valid but this is not always tested directly. Crucially, empirical

validity is not necessarily the same as predictiveness. As with the inter-grader reliability

and validity discussed in Chapter 4 the goal is to demonstrate that the rules correlate with

desired behavior but not necessarily that an individual rule can be used to accurately predict

subsequent performance.

In a prior study my colleagues and I used decision trees to predict students’ post-test

performance based upon features of their LARGO diagrams [70]. The features used in that

study were the LARGO help rules themselves. Comparisons were made based upon the rule

counts with the goal of classifying students into good and poor performers, that is, above and

below the mean score on a subsequent test of argument comprehension. In the course of that

study we found that some of the graph features were individually and collectively predictive

and that both C4.5 and Genetic Programming yielded successful decision trees. A decision or

comparison tree is a rule-based classifier that operates by recursively partitioning cases based

upon variable values [56]. Each internal node in the tree represents a feature variable with

the outgoing paths representing possible values of the target variable. Leaf nodes encode

possible classifications. The induced trees in this study succeeded in accurately classifying

100% of the test cases. Interestingly the study also found that one of the error rules was,

in fact, positively correlated with student performance. The rule was a more complex error

and as such was only triggered by advanced students.

In a more recent study reported in [68] we compared open-ended student-produced ar-

gument diagrams with diagrams produced by a domain expert. The comparison was made

based upon the order, size, density, and other basic graph features. No attempt was made
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to combine features as in [70]. The individual features were also used to predict students’

subsequent performance on a writing assignment for which the diagram served as an out-

line. The study found that some features, notably the length of the summative text in the

citations, was predictive of subsequent performance and served to distinguish student from

expert diagrams. These features, however, were simple graph components and did not in-

clude any complex a-priori semantic rules as we use here. Moreover the final grade being

predicted was a single letter grade that covered the entire assignment, including the writing

quality, argument, scope of cited materials, and communication. As such it was driven by

many factors beyond the written argument quality.

Thus while these studies have been successful and appear to support general question

Qa, neither one was directed to the specific question at hand. The study reported in [70]

focused on representational note-taking diagrams drawn from a set of shared transcripts and

argument comprehension scores as an outcome measure. In [68], by contrast, no complex

rules of the type described below were tested and the outcome measure was an overall grade,

not just an argumentative one. The present study extends the prior work by focusing on

open-ended argument diagrams and on argument-specific grades.

5.3 AUGMENTED GRAPH GRAMMARS

As noted previously, Augmented Graph Grammars are a rule formalism for classification and

mining. For the present work I elected to implement all of the graph analysis rules using

this formalism. These rules, described below, were designed a-priori with the guidance of

domain experts and examination of prior data. The rules were not used to provide help to

the students during the course of the study but were solely used for the analyses described

below. In Section 2.6 (pp. 25) I briefly introduced Graph Grammars, a formal production

grammar defined over graphs and subgraphs. Basic graph grammars represent formal graph

productions that are analogous to context-free string grammars (see [111]) and were defined

by Rekers and Schürr [97] in terms of individual productions.
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Figure 5.1: A simple augmented graph grammar rule that detects paired counterarguments.

The rule shows a single parent node related to two citation nodes that both disagree and

are compared via a comparison arc. The rule depends in turn upon two recursive rule

productions shown in Figure 5.2 (pp. 79) and Figure 5.3 (pp. 80)

Graph grammars represent rules as graph structures of the type shown in Figure 5.1 (pp.

65) making them a natural representation for graph matching and classification. As with

standard string grammars (see [111]) they can be used to match corresponding graphs by

recursive matching (e.g. [146]) where the nodes and arcs within the rules are matched to

components of the target diagram subject to the constraints of arc direction and type or

content constraints. Graph grammars allow for recursive rule productions of the type shown

in Figures 5.2 - 5.3 which map variable nodes and arcs, identified by capitalized names, to

appropriate subgraphs.

Graph Grammars can be evaluated using standard graph-matching algorithms such as

tree-search and, while arbitrary graph matching is NP-Hard, some heuristic restrictions such

as layered graph grammars make the search process tractable. In the present case rules such

as the one shown in Figure 5.1 are matched to diagrams like the one shown in Figure 5.4 (pp.

81). The matching is completed in a top-down manner with the code first matching rule

node p to hypothesis node #2 in the diagram. It would then map rule node a to citation
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node #15 and rule node b to citation node #6. Having mapped the two nodes the mapper

would automatically map rule arc c to the comparison arc #21 and then recursively map

the two production arcs O and S. Arc O would be mapped using case Op3 to the single

opposing arc #16 while rule arc S would require a recursive application of subrules Sp1 and

Sp2 to cover arcs #19 and #21.

Basic graph grammars such as those defined by Rekers and Schürr and in [51] are focused

on fixed diagrams with a limited alphabet of node and arc types. Augmented graph gram-

mars, by contrast, allow for the use of an argument ontology with complex element types

that include subsidiary features such as textual fields. The LARGO process model was

initially defined in terms of graph grammars before being implemented in Java [89]. The

augmented graph grammars used here allow for named textual fields, and access functions

as well as the basic types and directional information. Formally, these additional features

impose additional complex constraints on the nodes and arcs to be matched in the rules as

well as shared constraints that cover subgraphs. An named production of the type used in

this study is shown in Figures 5.5 (pp. 82) - 5.6 (pp. 83). This is a typical example of

an Augmented Graph Grammar structure. As with the grammars defined by Rekers and

Schürr, the formalism used here makes some restrictive assumptions such as a requirement

that the productions be “expansive” or layered. A more detailed discussion of the formal

structure can be found in Appendix F (pp. 223).

Graphs that can be collapsed according to a given set of productions are thus matches

for the language of graphs described by it. I define a set of one or more named graph

productions as a graph rule, and any subgraph that can be collapsed by a given rule is a

feature. In the discussion below, I will refer to simple and complex graph features. These

are, in turn, defined by appropriate rules. The production shown in Figures 5.5 (pp. 82) -

5.6 (pp. 83) therefore represents a single self-contained graph rule.

I have developed an augmented graph grammar engine called AGG. This engine imple-

ments the augmented graph grammar formalism described in Appendix F (pp. 223). With

the exception of the chained features, all of the complex feature rules listed below were im-

plemented using this engine. In general, Augmented Graph Grammars have proven to be a
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and robust formalism for the definition of graph rules and rule analysis, but some tuning for

efficiency is required.

5.4 GRAPH FEATURES AND GRAPH GRAMMARS

The present analysis is concerned with computable features of the argument diagrams. For

analytical purposes the features were divided into two classes: simple features such as the

number and type of components present, and complex features such as disjoint subgraphs

and chained counterarguments. I will describe these two types below.

5.4.1 Simple Features

The 34 simple graph features are basic graph-theoretic structures (see [11]) that are relevant

to all graphs. The simple features fall into four types: Size and Density, Ontology, Textual,

and Visual. I will describe each class in turn and illustrate them with reference to the

example shown in Figure 5.7 (pp. 84).

Size and Density such as the order of the graph (number of nodes) and size (number of

arcs); the average number of child nodes or neighbors of a given node, and so on.

• Order: The number of nodes in the graph. Figure 5.7 has 5.

• Size: The number of arcs in the graph. Figure 5.7 has 4.

• Average/Min/Max Children: The average, minimum, or maximum number of

child nodes in graph. A child node is a node that has an arc to a parent. For

undirected nodes the child status is based upon the order in which the arc was

drawn. In Figure 5.7 claim node #4 has 4 children, 3 of which are shown.

• Average/Min/Max Children Ignore Empty: Average number of nonempty

child nodes. Nodes are empty if they have no text in the field(s). Figure 5.7 contains

no empty nodes.

• Average/Min/Max Parents: average number of parent nodes in graph. Node 16

in Figure 5.7 has 1 parent.
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• Average/Min/Max Parents Ignore Empty: Average number of nonempty par-

ent nodes over the whole diagram.

• Average/Min/Max Degree (δ - ∆): Average number of neighbor nodes for a

graph over the whole diagram (both parent and child). Node 4 has a degree of 5

while node 16 has δ = 2.

Ontology Element the presence and number of specific ontology features such as the num-

ber of citation and current-study nodes as well as the number of supporting and opposing

arcs.

• Elt Claim: Number of claim nodes in the graph.

• Elt Citation: Number of citation nodes in the graph.

• Elt Hypothesis: Number of hypothesis nodes in the graph.

• Elt CurrStudy: Number of currstudy nodes in the graph.

• Elt Supporting: Number of supporting nodes in the graph.

• Elt Opposing: Number of opposing nodes in the graph.

• Elt Undefined: Number of undefined nodes in the graph.

• Elt Comparison: Number of comparison nodes in the graph.

Textual Features focus on the content of the nodes and arcs, specifically the length of

student summaries and other info on a per-field basis.

• Avg/Min/Max Field Sent Len: The length of the fields in terms of sentences.

In Figure 5.7 every visible node and arc has a field sentence length of 1.

• Minus citation Avg/Min/Max FieldSentLen: The length of text fields in terms

of sentences minus all citation nodes. This measurement was developed based upon

the work reported in [68] and is intended to test the distinct influence of the, often

more detailed, citation nodes.
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Visual Features focus on layout issues such as the number of overlapping nodes and cross-

ing arcs or general messiness. The importance of these features was suggested by both

student reviewers and graders who consistently cited messiness as a problem when ex-

amining diagrams.

• Crossed Arcs: Number of arcs that cross one-another in the diagram.

• Overlapping Nodes: Number of node boxes that overlap in the diagram.

• Visual Messiness: CrossedArcs + Overlapping Nodes.

5.4.2 Complex Features

In systems like LARGO and Belvedere help is driven by complex pattern-matching rules

designed to detect diagram features that violate the argument process model (see [4]) or

other higher-level semantic constraints (e.g. a citation supporting another citation). These

rules are typically drafted by a domain expert and used without any independent empirical

validation. A similar development process was taken here. The 43 complex features represent

violations of the argumentative norms (e.g. unfounded claims), or pedagogically important

features (e.g. paired counterarguments), and were identified with the help of psychology

domain experts including the course instructors for Research Methods. Rules to match the

features were then implemented as augmented graph grammars. The rules were not used

to provide help to the students during the data collection phase of the study but are being

used for that purpose in subsequent courses.

A number of the rules overlap or cover similar features. Some, for example, are designed

to accept arcs of any direction while other rules make the more restrictive requirement of

directed versions. The overlapping rules were designed to test the impact of arc direction on

the results.

The complex features can be classified into the following types: Chained, Single Compo-

nent, Node/Arc Pair, Text Field, Triplet, Grounding, & Disjoint Subgraph. I will summarize

each type below along with selected grammar examples and pseudocode for some of the rel-

evant rules.
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Chained Features are specifically focused on the use of counterarguments to present com-

plex support and opposition structures. Unlike the other complex feature rules these

were not implemented as graph grammars.

• Paired Counterarguments: Paired counterarguments are a graphical structure

representing disagreement over a node. The structure consists of a single subject

parent node and two disputants or child nodes one of which is connected to the

parent via a supporting arc and the other via an opposing arc. A corresponding

graph-grammar rule can be seen in Figure 5.8 (pp. 85) (Paired). A structure of this

type can be seen in Figure 5.7 consisting of node #4 (subject), node #28 (supporting

disputant via arc #29), and node #16 (opposing disputant via arc #17).

During the instruction phase of the 2011-PittRM study, students were shown exam-

ples of paired counterarguments and were instructed to use them to represent dis-

agreement. They were further instructed to use the comparison arc to draw analogies

and distinctions between the children if they were citation or current study nodes.

• Chained Argument Nodes: Chained counterarguments are an alternative argu-

mentation structure consisting of a chain of three nodes. A root subject node with

an opposing child node which is itself opposed by a subsequent child node. A graph-

grammar rule for this feature can be seen in Figure 5.8 (Chained). No examples of

this feature are shown. This structure was not described to students during the 2011

RM study. However, the domain experts identified it as an important argumenta-

tive structure and it was included in the instructional materials during a subsequent

study.

Single Component Features focus on the existence or absence of a single feature. As

such they are similar to the simple ontology features described above. They also include

negated rules that record the nonexistence of a given component and complex components

such as the Research Question. It also includes some simple rules that duplicate the

simple ontology features. These were developed for validation purposes. They can be

grouped into three groups shown below.
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• The R01p* Has (CurrStudy/Hypothesis/Claim/Cite) rules replicate the simple on-

tology node features exactly, recording the presence of basic ontology items and were

reimplemented for testing purposes.

• R01pd Has RQ tests for the existence of a “Research Question,” that is, a claim

node with the text inside of it framed as a question. For the present this detector

simply checks for a nonempty node that ends with a ‘?’. Pseudocode and a graph

grammar structure are shown in Figure 5.9 (pp. 85). Clearly this framing has some

weaknesses that could be rectified with further conditions, but is consistent with,

the instructions supplied to the students.

• R01n* No (CurrStudy/Hypothesis/Claim/Cite/RQ) rules check for the nonexistence

of a basic ontology item and are binary with 1 indicating the item is not present or

0 if it is. This is simply a negation of the existing R01p rules. By definition these

rules are binary values as shown in the pseudocode below:

R01n NoCurrstudy : If there exists no Current Study node in the graph then return

1 else return 0.

Node/Arc Pair Features focus on an individually desirable or undesirable node and arc

relationships such as non-citation node with no inbound arc. These represent argumen-

tative structures that the students were instructed to avoid but were not forced to do

so.

• R02: NonCurrStudy w/o outlink : A non-current study node without any outgoing

arc. This is problematic as the designated role of the current study node is to

state features of the study (e.g. a focus on college students) that serve to frame

the hypothesis, support claims, or distinguish it from other prior work. As such it

should not be isolated but should be, at least, connected to one other part of the

argument.
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(Pseudocode) Count the number of nodes N in the graph such that: (1) N is not

a current study node; and (2) there is no directed arc
−−−−−→
e(N,X) from N to another

node X in the graph.

• R02a: NonHypo w/o outlink : A non-hypothesis node without an outgoing arc. Ci-

tations, claims, and current study nodes are introduced to frame the discussion and

to support or oppose the working hypothesis. As such all of them should have an

outgoing arc.

• R02b: NonHypo/Claim w/o outlink : A non-hypothesis or Claim node without an

outgoing arc. This is a subset of the feature rule above, targeting only hypothesis

and claim nodes.

• R02c: NonHypo/RQ w/o outlink : A non Hypothesis or research question node with-

out an outgoing arc. A subset of the feature above targeting only hypothesis and

research question nodes.

• R03: Noncite w/o inlink : A non-citation node without any incoming arc. Citations

are used to provide evidence that supports or opposes other components. As such it

is appropriate for them to have only outgoing arcs. It is not necessarily appropriate

for any other type of node.

• R03b: Noncite/CurrStudy w/o inlink : A node that is neither a citation nor a current-

study node without an incoming arc. This is a refinement of the rule above that also

ignores current study nodes.

• R08: Unsupported Hypo: A hypothesis node without any incoming supporting arcs.

Students are expected to present some claims and citations that support their hy-

potheses rather than simply stating them in isolation. This confirms that they have

provided some form of support for it.
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(Pseudocode) Count the number of nodes H in the graph such that: (1) H is a

Hypothesis node; and (2) there are no incoming Supporting arcs
−−−−→
s(∗, H) coming to

H from another node.

• R08: Unopposed Hypo: A hypothesis node without any opposition arcs inbound.

If a hypothesis has no opposition then it is not open or in doubt. Students were

instructed to find at least one opposing citation and this tests for the presence of an

opposition arc to the hypothesis.

• R10a: Hyp/Claim comp: A hypothesis node compared to a claim node. Compar-

ison arcs should be used to differentiate opposing citations or to draw distinctions

between citations and the current study nodes. This rule tests for violations of that.

In the preliminary study we observed students using the comparison arcs incorrectly

despite instructions to the contrary.

(Pseudocode) Count all pairs of nodes H & C such that: (1) H is a Hypothesis node;

and (2) C is a Claim node; and (3) there exists a Comparison arc m(H,C) between

them.

• R10b: CurrStudy/CurrStudy comp: A pair of current study nodes with a compari-

son arc between them. As with R10a this is designed to detect improper use of the

comparison arcs.

• R10c: Claim comp: A Claim node with a comparison arc to it. This is a less sensi-

tive rule that tests for one half of the feature covered in R10a.

• R10d: Hypothesis comp: A hypothesis node with a comparison arc to it. Again, this

is a less sensitive rule that tests for a subfeature of the one covered in R10a.
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• R12: Undefined Cite Claim: Use of an undefined node to connect a citation or

claim node to any node type. During the pre-study we found that students who

used undefined nodes frequently appeared to be uncertain in their later conclusions.

This rule was introduced to detect cases where a student appears to be unclear as

to whether the source claim or citation backs its target. In the 2011 study the

students were encouraged to use the undefined relationship for factual sources and

definitions. In subsequent studies use of the undefined arc was generally discouraged.

(Pseudocode) Count all pairs of nodes C & O such that: (1) C is a Citation or Claim

node; and (2) there exists an Undefined arc u(C,O) between them.

Text Field Features match empty required text fields within the nodes and arcs. The

nodes and arcs are structural components and, absent containing text, have no semantic

content.

• R04a Empty Node Fields : Any node with an empty text field.

(Pseudocode) Count all nodes N such that: one or more of the required text fields

in N is empty.

• R04b Empty Arc Fields : Any arc with an empty text field.

Triplet Features reflect the existence or nonexistence of relationships between two nodes.

• R05: Hypo Supports Cite: hypothesis node with a supporting arc to a citation. In

general the hypothesis nodes should not have any outgoing arcs, particularly to ci-

tations.

(Pseudocode) Count all pairs of nodes H & C such that: (1) H is a Hypothesis node;

and (2) C is a Citation node; and (3) there exists a Supporting arc
−−−−−→
s(H,C) from H

to C.
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• R05a: Hypo Opposes Cite: hypothesis node with an opposing arc to a citation.

• R05b: Hypo To Cite: hypothesis node with any arc to a citation. This rule will

cover both R05 and R05a.

• R06: Uncompared Cite & CurrStudy : citation node that has not been compared to

any current study node. As noted in Section 3.2 the comparison arc is designed to

state analogies and distinctions between two components, primarily citations and

current study nodes. During the course of the study the students were encouraged

to draw analogies and comparisons for all citations and required to do so for all

opposing citations. This rule tests for the existence of a pair of nodes, one cite one

current study, that are not connected by a comparison arc.

• R06a: Uncompared CurrStudy & Cite: current study node that has not been com-

pared to any citation. This is the logical inverse of R06, designed to detect isolated

current study nodes.

• R07: Uncompared Opposition: two citation nodes that disagree about a shared hy-

pothesis or claim node and are not connected via a comparison arc. As per the

discussion above, this tests for the required case of two opposing citations that have

no comparison arc between them.

(Pseudocode) Count the set of all nodes Ci, Cj, & O such that: (1) Ci is a Citation

node; and (2) Cj is a Citation node; and (3) O is a Hypothesis or Claim node; and

(4) there exists a supporting path from
−−−−−−−−→
Supp(Ci, O) from Ci to O; and (4) there

exists an opposing path
−−−−−−−→
Opp(Cj, O) from Cj to O.

Supporting Paths
−−−−−−−−−→
Supp(N0, Nj) are directed paths

−−−−−−→
s(N0, N1), . . . ,

−−−−−−−→
s(Nj−1, Nj) such

that every arc
−−−−−−−−→
s(Nx, Nx+1) in Supp is a supporting arc from Nx to Nx+1.

75



An Opposing Path
−−−−−−−−→
Opp(N0, Nj) is a directed path

−−−−−−→
e(N0, N1), . . . ,

−−−−−−−→
e(Nj−1, Nj) such

that an odd number of arcs on the path
−−−−−−−−→
e(Nx, Nx+1) are Opposing arcs, and all the

remaining arcs are Supporting arcs.

• R07b: Undistinguished Opposition: A comparison arc exists between disputant pairs

but no distinction is specified to explain the disagreement. That is given a pair of

opposing citations with a comparison arc does that arc have a distinction stated in

the distinction field or not?

• R07u: Undir Uncompared Opposition: This is a generalization of R07 which permits

undirected paths. In R07 the supporting and opposing paths must be directed from

the citation nodes to the shared claim or hypothesis. Here the direction of the in-

terim arcs on each path is immaterial, only their type. This was added to test for

cases where students were confused about the direction of the arcs but not their role.

That is, the rule no longer requires that the arcs in the supporting and opposing

paths proceed from Nx to Nx+1 but permit reversed arcs along the path as well.

This rule was added to account for cases where the students had drawn citations

that disagree but had done so with some directional error in the paths. These were

added based upon the observation of student directionality errors in the pre-study.

• R07ub: Undef Undistinguished Opposition: An undirected generalization of R07b.

Grounding Features deal with the extent to which claims are ‘grounded’ or ‘founded’ in

a citation. Unfounded claims have no connection to a citation and thus no basis in the

literature. Similarly Ungrounded Hypotheses are those that have no path to a citation

and thus are not based upon the relevant literature.

• R11: Ungrounded Hypo Claim: A hypothesis node which is supported by a claim

node that is itself unfounded. Thus it tests for claims that are used to support hy-

potheses but themselves have no indicated basis in the literature.
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(Pseudocode) Count the set of all nodes N such that: (1) N is a Hypothesis or Claim

node; and (2) there does not exist a node C such that: (2a) C is a Citation Node;

and (2b) there exists a Supporting Path
−−−−−→
S(C,N) from C to N

• R11a: Ungrounded Hypo: A hypothesis that is not grounded in the literature via

directed paths (of any type) from a citation. This includes neighboring claims nodes

that are themselves unfounded.

• R11b: Unfounded Claim: A claim node that is not connected in some way to a

citation node, via supporting, opposing, or undefined paths from the citation to the

claim. This uses the path construct so the claims can be supported by citations via

intermediary claims.

• R11u: Undef Ungrounded Hypo Claim: This is a generalization of R11 that allows for

undirected paths, thus incorporating cases where the direction of the arcs is wrong.

• R11ua: Undef Ungrounded Hypo: This is a generalization of R11a for undirected

paths.

• R11ub: Undef Unfounded Claim (neg): This is a generalization of R11b for undi-

rected paths.

Disjoint Subgraph R13: Disjoint Subgraphs : In order for an argument to be coherent it

must be the case that each piece of it relates to the others. Absent such a connection

there is little reason to believe that the arguments form a coherent whole. This rule

counts the number of disjoint nodes in the graph. This rule can range as high as |Gn|2
2

.

(Pseudocode) Count the set of all node pairs N & M such that: there does not exist an

undirected path P (N,M) between N and M .
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5.5 RELIABILITY

In order for the empirical validation to be useful it is necessary to ensure that the manually-

assigned grades are sufficiently reliable. In the present analysis I will be using the manually-

assigned graph grades as independent variables along with the features to predict the essay

grades. As before it is necessary to show that all of these features are sufficiently reliable. The

graph features are calculated automatically from the individual graphs. As such they have

100% test-retest reliability. The reliability of the diagram and essay grades was previously

discussed in Section 4.4 (pp. 50). For the analyses reported here I will continue to use the

filtering discussed there. More specifically, all of the diagram grades will be used in the

predictive models while I will focus on five of the essay grades: E.01 (RQ-Quality), E.04

(Hyp-Testable), E.07 (Cite-Reasons), E.10 (Hyp-Open), and E.14 (Arg-Quality).

5.6 CONCLUSION

This chapter framed the null hypotheses Ha1 and Ha2 and described the augmented graph

grammar framework that I will use to address them. The chapter further described the

specific graph features of interest to this analysis and sets the thresholds used for reliability

of the graph and essay grades. In the following two chapters I will build upon this work and

analyze the two hypotheses by means of a direct comparison study and a greedy modeling

process.
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a

b

S(Scontext)
a

b

c

Sq(SP1)

{
q.Type = “Supporting′′

}

a

b

q(SP2)

{
q.Type = “Supporting′′

}
Scontext ⇒ SP1

[2,∗]
| SP2

−−−→
S(i, c) define a supporting path as a right-recursive production that maps variable

length paths of parallel directed supporting arcs.

Figure 5.2: A simple recursive rule production that defines a supporting path in an argument

diagram.
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a

b

O(Ocontext)

a

b

c

SO(OP1)

a

b

c

Sq(OP2)

{
q.Type = “Opposing′′

} a

b

q(OP3)

{
q.Type = “Opposing′′

}
Ocontext ⇒ OP1

[2,∗]
| OP2 | OP3

−−−→
S(i, c) define an opposing path as a right-recursive production that maps to an

opposing path preceded by a supporting path (Op1), an opposing arc followed by a

supporting path (Op2) or a single opposing arc (Op3).

Figure 5.3: A simple recursive rule production that defines an opposing path in the diagram.
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Figure 5.4: A sample argument subgraph that matches the recursive rule shown in Figure

5.1

.
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Figure 5.7: Reference argument diagram segment drawn from a student-produced argument

used in the study.
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p

a b

s o

c

(ParedWcomp)


c.Type = “Comparison′′

s.Type = “Supporting′′

o.Type = “Opposing′′


p

a b

s o(Paired)

s.Type = “Supporting′′

o.Type = “Opposing′′



r

a

b

oo(Chained)

{
o.Type = “Opposing′′

}

Figure 5.8: Augmented Graph Grammar examples for the Chained rules including Paired

Disagreement both with and without a comparison arc, and Chained Disagreement.

q(R01pd)q.Type = “Claim′′

q.Text[−1] = “?′′



Count the number of all nodes C in

the graph such that: (1) C is a

Claim node; and (2) The summary

text of C ends with a ’?’ character.

Figure 5.9: An example Augmented Graph Grammar rule for evaluation in this case: R01pd

Has RQ.
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6.0 HA1 EMPIRICAL VALIDITY

Ha1: It is not possible to define empirically-valid diagram rules that correlate with students’
novel written argumentation ability.

6.1 INTRODUCTION

The focus of this chapter is on the empirical validation study conducted to test hypothesis

Ha1. As noted in Section 5.2 previous studies have tested the relationship between graph

features and subsequent comprehension measures as well as gestalt scores. The focus here is

on the use of individual graph features to assess students’ specific argumentation abilities.

The study conducted here is a data analysis study that draws on the simple and complex

graph features described in Section 5.4 and the reliable essay grades described in Section

5.5. The study will be described briefly in the next section along with a listing of the results.

Analysis of the results by feature type will be presented in Sections 6.3 (pp. 87) & 6.4 (pp.

94). I will present my overall conclusions in Section 6.5.

6.2 RESULTS

For the individual empirical validation I performed a series of pairwise comparisons linking

each of the independent features to the essay grades. Prior to performing these comparisons

I normalized each of the essay grades to a range of (0− 1) based upon the observed values.

I then calculated the total scores for each of the features per diagram and generated three
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distributions: raw scores; log of the raw scores; and a binary distribution where the score

was 0 if the raw count was 0 or 1 otherwise. For each distribution I then calculated a direct

comparison with the target essay variables using Spearman’s ρ [29, 137].

I report the statistically- and marginally-significant predictive results for the simple fea-

tures in Table 6.1 (pp. 88) and Table 6.2 (pp. 89). None of the complex textual or visual

features were individually significant. The comparison results for the remaining complex fea-

tures can be seen in Table 6.3 (pp. 90), Table 6.4 (pp. 91), and Table 6.5 (pp. 92). I omitted

results for the positive individual counts R01p: * as those mirror the Elt * simple features.

For each feature I report only the strongest statistically-significant or marginally-significant

relationship if any with the highest |ρ|.

6.3 ANALYSIS: SIMPLE FEATURES

As Tables 6.1 - 6.5 illustrate a number of the features were predictive. The strongest rank

correlation was ρ = 0.383 between the existence of a hypothesis node (Elt hypothesis (bi-

nary)) and the manually assigned grade for the testable hypothesis (E.04 (Hyp-Testable)).

This was also the only simple feature to be significantly correlated with the overall grade E.14

(Arg-Quality) at ρ = 0.228. This result is positive and confirms that the graph measures are

capturing the central role that hypotheses play in this type of argument. The correlation

between the amount of opposition (Elt opposes (log)) and E.10 (Hyp-Open), which grades

the extent to which the author has defended the openness of his/her hypothesis (ρ = 0.264)

is similarly positive, as is the correlation between the number of citations (Elt citation (log))

and E.10 (Hyp-Open) (ρ = 0.213). In both cases this is consistent with the instructions

given to the students and with the expectations of the course instructors.

Several of the other correlations or absent correlations, were more surprising. I am

surprised by the absence of any significant correlation between the visual features and the

grades. It is not understatement to say that “messiness” was frequently cited by students,

TAs, and the graders as a problem that adversely impacted their work and peace of mind.

Several advocated for the addition of normalization features to the system that would restrict
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diagram design or provide automatic cleanup. Still others questioned the utility of the project

given the difficulty of producing and analyzing argument diagrams. Moreover there is some

support in the literature for the belief that visual or structural features of the diagramming

tool will affect performance [117]. Therefore either the problem was overstated or the simple

structural methods did not adequately capture the concept.

It is also notable that no statistically-significant correlation was found between the

amount of text contained in the node and arc fields and the grades. In the study reported

in [68] my colleagues and I found that the amount of text included in the diagram fields,

particularly the citation nodes, was both a significant predictor of the overall grade and could

be used to distinguish student diagrams from those of an expert. I therefore expected it to

be meaningful here. The difference however, may be explained by the assignment context.

The study reported in [68] took place in a law school course where students were tasked

with researching an area of law and drafting an argument for a real case. Law is a scholarly

pursuit with a strong emphasis on citing existing works and students are encouraged not only

to cite all relevant law but to quote from it as required. The quality and comprehensiveness

of the cited works was a factor in the students’ final grades. Legal citation is described as “a

fine art”1 and is central to legal education. This lends itself to larger more complex citation

nodes. In Research methods, by contrast, students are encouraged to summarize the relevant

works briefly and were given a fixed number of required citations, which encouraged them

to focus on other things.

The remaining simple feature correlations are less specific. For example, Graph Size is

significantly correlated with E.07 (Cite-Reasons). This grade reflects whether or not the

students explain why the cited works are relevant to their argument and the quality of that

explanation. While this is a clear correlation it does not lend itself to precise advice. We

can, for example, encourage students to flesh out anemic diagrams but it does not necessarily

allow us to tell them what specific part of the diagram should be expanded. Therefore it

may be difficult for novice students to act on the advice given in a useful way.

1Professor Kevin D. Ashley, University of Pittsburgh, private communication
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6.4 ANALYSIS: COMPLEX FEATURES

The number of paired counterarguments (PairedCounterarg) was positively correlated with

the openness of the hypothesis (E.10 (Hyp-Open)) at ρ = 0.323. This was consistent with

the directions given to the students who were told to represent disagreements in this way.

Similarly the absence of a hypothesis (R01na: NoHypothesis (bin)) was negatively correlated

with: the testability of the hypothesis (E.04 (Hyp-Testable), ρ = −.383), the presence and

quality of reasons for the cited works (E.07 (Cite-Reasons), ρ = −0.166), and the overall

quality of the argument (E.14 (Arg-Quality), -0.228).

Negative correlations were found between the presence of a non-hypothesis node without

an outgoing arc (R02a: NonHypoWoOut (log)) and E.07 (Cite-Reasons); and between the

presence of a non-hypothesis or research question node without an outgoing arc (R02c:

NonHypoRQwoOut (log) and E.07 (Cite-Reasons). They were also found between the number

of ungrounded hypothesis nodes using undirected paths (R11ua: Undef Ungrounded Hypo

(log) and both the presence and quality of reasons for the citations (E.07 (Cite-Reasons))

and argument quality (E.14 (Arg-Quality)).

The remaining rules are, if anything, more surprising as they include wholly counterin-

tuitive results such as the positive correlations between: the number of empty text fields in

the nodes (R04a: EmptyNodeFields (log) & E.07 (Cite-Reasons) (ρ = 0.173); the presence

of disjoint subgraphs (R13: Disjoint Subgraphs (bin)) & E.04 (Hyp-Testable) (ρ = 0.183);

and the amount of uncompared opposing citations (R07* (log)) and E.10 (Hyp-Open).

These results indicate the limits of direct nonparametric measures of validity. In the case

of R02a: NonHypoWoOut for example it seems likely that the correlations with E.07 (Cite-

Reasons) are an artifact of the data. Students who performed better generally were also

more apt to state reasons than students who did not, hence the correlation. In the case of

R07* by contrast, the results run counter to our expectations. In this case, however, I think

that it reflects persistent student limitations. Students were instructed to use opposing arcs

to explain their arguments and the results indicate that some of the higher-scoring students

did so. As shown in Table 6.2, Elt opposes was positively correlated with E.10 (Hyp-Open) as

was PairedCounterarg. Both such features are subsumed by the R07* rules and it appears
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that few if any of the students included the comparison arcs necessary to distinguish the

PairedCounterarg case from the R07* cases. Thus the uncompared rules are, in effect,

matching the same subgraphs as the PairedCounterarg rule and covering the same cases.

In future analyses of this type, it may be necessary to condition the more complex rules

on the smaller ones. That is, one could look at the empirical validity of the R07* rules on

only those cases where opposing arcs have already been included. Collecting sufficient data

for such a case, however, may be prohibitively expensive.

6.5 CONCLUSIONS

The goal of this chapter was to frame the discussion of QuestionQa and to address Hypothesis

Ha1 in detail. Necessary background for the general hypothesis was presented in Sections

5.1 (pp. 61) - 5.5 (pp. 78). The individual empirical validation was discussed in Section 6.1.

As discussed above several of the graph features were correlated with one or more of the

essay grades. These results contradict null hypothesis Ha1 and provide a basis to develop

empirically-validated guidance for future students.

Those correlations, however, were not always consistent with the a-priori assumptions

that motivated their construction. Likewise some of the anticipated features (e.g. the messi-

ness and text criteria) were not significantly correlated with the final grades despite user

reports and prior research. Some of these results are due to assignment-specific differences

that warrant a comparison with novel datasets. The others are driven both by the complex-

ity of the rules and some limitations of the dataset which is, after all, not an exploratory

coverage of the design space but a representation of real students who are receiving specific

guidance. Therefore Ha1 does not hold.

In this case, as in the Validity assessment reported in Chapter 4 the correlations come

with some caveats. First and foremost, the results are nonparametric correlations and are

frequently of relatively low strength (e.g. ρ = 0.171). Therefore this empirical validity should

not be read as predictive validity, only as a conclusion that the rules themselves do correlate

with the behaviors whether desired or undesired. Secondly, as noted above, some of the
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correlations violated our a-priori pedagogical assumptions. It is possible that these cases

indicate artifacts of the data or advanced rules that require lower-level performance which

results in the improvement. This requires further analysis. And finally the performance is

based upon hand-tooled rules and states nothing about whether better rules could be chosen

or whether these correlations generalize to other assignments or domains.
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7.0 HA2 MODEL PREDICTION

Ha2: Automatic features of student diagrams cannot be used to predict students’ novel
written argumentation ability.

7.1 INTRODUCTION

While previous chapters have shown that some of the diagram features are correlated with

students’ essay grades, these individual correlations we observed were nonparametric rela-

tionships and, as such, could not be used for robust grade prediction. Such robust prediction,

however, is important for use of diagrams in the real world. In an educational setting auto-

mated advice and automated grading are useful particularly for immediate homework-helper

interventions. Absent a direct connection between the advice given and subsequent perfor-

mance, however, it can be difficult to integrate such a system into the classroom setting. If

the diagramming system can also be used to predict future performance and to rank students

generally, then it is possible for instructors to deploy it both for immediate guidance and to

flag students who require individual attention or additional practice.

This chapter will focus on hypothesis Ha2. My goal will be to develop a reliable model

that predicts students’ essay grades based upon their diagram features. The analysis con-

ducted here will use the same feature and score data described in Chapter 5 with the same

normalization and filtering. The next section will describe the basic model induction process

and present some relevant background information on linear models. Section 7.3 will then

describe the specific study methods. This will be followed by a statement of the results

(Section 7.4) to be followed by analysis and conclusions as well as implications for future
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research (Section 7.5).

7.2 LINEAR REGRESSION & MODEL INDUCTION

The present goal is to develop a predictive model that estimates students’ essay performance

based upon features of their planning diagrams. In [70] we opted to discretize the resulting

grade splitting students by median grade and then applied a decision-tree classification.

While that approach can readily split up the students, it is relatively insensitive and is

unsuitable for the current dataset. As noted in Subsection 4.3.3 (pp. 49) the raw essay

grades are negatively skewed. While this poses no problem for the nonparametric statistics

used previously, it would complicate any classifier approach making the classes unbalanced

and inconsistent.

Therefore the present work will treat this as a regression problem. The graph features

will be treated as numeric counts and will be combined using standard linear regression

models (see Subsection 7.2.1) and later Generalized additive models (see Subsection 7.4.4).

As will be discussed below, both models are robust well-known methods that can be readily

inspected by domain experts for subsequent analysis. They also have well-known training

methods that could in theory be used to train them directly using the full space of graph

features. Such models, however, would be prone to over-fitting and would be less informative

than more parsimonious approaches.

Therefore for the purposes of this thesis, I will take a two-pass approach to prediction

based upon linear regression models. Candidate models will be generated using a greedy

generation approach and then trained using standard methods for later evaluation. The

remainder of this section will summarize the theory and training of standard linear models.

It will then describe comparative evaluation metrics for models (Subsection 7.2.2) and con-

clude with a discussion of the greedy generation process used to define the model structure

(Subsection 7.2.3).
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7.2.1 Standard Linear Regression Models

Linear regression models are theoretically-grounded robust models, widely used in psychol-

ogy, the social sciences, and other empirical domains. They are additive models that repre-

sent the relationship between one or more independent variables x0, . . . xn (sometimes called

the input or explanatory variables) and one or more dependent variables (sometimes called

the output or conditional variable) yj [29, 34, 133]. When a model contains only one in-

dependent variable it is referred to as Simple Regression, while models with more than one

independent variable are called Multiple Regression models. In the present work multiple re-

gression models with a single dependent variable will be used. They can be defined formally

as:

yi = α + β0x0 + β1x1 + β2x2 + . . . βnxn + εi (7.1)

where α defines the Intercept Point or base value of the model; each βk is a coefficient that

defines the strength and the sign of the relationship between the independent variable xk

and the dependent variable y; and the error term εi defines the error term specific to the

data term yi.

Linear models are advantageous as they provide a clear and comprehensible model for the

empirical relationship between the variables with the magnitude and sign of each βk serving

to indicate the magnitude and polarity of the relationship. Given suitable data the unknown

values α, βk, and εi, can be efficiently estimated using the Least-Squares Regression (also

known as the Method of Least-Squares or Ordinary Least Squares). Least-squares regression

operates by solving for the values above such that the sum of squared residual errors is

minimized.

Given a predetermined set of variables, Least-Squares estimation is a robust and poten-

tially optimal method for linear models. The appropriateness and efficiency of the algorithm,

however, rests on seven assumptions shown below [34, 133]:

Linearity: The independent variables are linearly related to the dependent variable with
constant individual effects represented by the βk values. For generalized additive mod-
els (see [141, 54]) this assumption is relaxed to an assumption of Additivity (see: Section
G.1 (pp. 247)).
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Independence: The samples were taken independently and thus any error terms εi and
εj 6=i are independent of one another as are the errors across the dependent variables
yj and yk (see: Section G.2 (pp. 248))

Variability: The individual independent variables are non-constant (see: Section G.2 (pp.
248)).

Non-Multicollinearity: The independent variables are independent and not collinear.
That is, no variable xi is dependent on other variables x0, . . . , xm 6=i, . . . , xn (see (see:
Section G.3 (pp. 248)).

Homoscedasticity: The variance of the error terms εi is constant for all observations.
That is, the error variance is not affected by the independent variables (see Section
G.4).

Normally-Distributed Errors: (aka Normality) The error terms of the model are normally-
distributed: ε ∼ N(0, σ2ε ) (see Section G.5).

Weak Exogeneity: The independent variables are error-free either because they are set
by experimental condition (dividing students by age) or because they can be measured
without error. As such they do not introduce a significant source of error into the
model (see: Section G.6).

If the assumptions of Linearity, Independence, and Homoscedasticity are met then according

to the Gauss-Markov theorem the least-squares estimator will be the most efficient unbiased

linear estimator available [34]. If the additional assumption of Normally-Distributed Errors is

met then the theorem states that least squares regression will be the most efficient estimator

over all unbiased estimators even nonlinear ones. I describe these assumptions in more detail

in Appendix G (pp. 246) and I will address them in the analysis and results sections below.

It is important to note that this list does not include a requirement that the data itself be

normally distributed. While it is commonly assumed that data must be normally-distributed

to use linear models this is not, in fact, a requirement. In order to conduct tests of statis-

tical significance it is necessary to make general distributional assumptions about the data.

When calculating f-scores, p-values or confidence intervals it is necessary to assume that the

independent variables are drawn from a normal distribution or another fixed distribution if

Generalized Linear Models are used (see [34, 141]). When using empirical model evaluation

such as RMSE, as I do here, such assumptions are not required. For more discussion (see

Section G.7 (pp. 251)).

100



7.2.2 Model Evaluation

There exist several alternative methods to rank and evaluate linear models. Typical eval-

uation metrics focus on the f-score and p-values which evaluate the statistical significance

of the fit. As noted above that is unsuitable in this case because the essay grades are not

normally-distributed. Alternative empirical methods include the Adjusted-R2 (R̄2) score

[130, 49], Akaike Information Criterion (AIC) [48], Bayesian Information Criterion (BIC)

[48], and the Root Mean Squared Error (RMSE) [135, 48]. R̄2 is routinely used in empiri-

cal research and is robust but is not always optimal for model comparison. AIC and BIC,

by contrast, explicitly penalize larger models and permit us to compare disparate models

easily, the reported values, however, are not reflective of the actual grades. Moreover, both

depend upon log-likelihood calculations which make assumptions about the underlying error

distribution [48]. As I noted above in the discussion of homoscedasticity this is not always a

safe assumption to make. Therefore I will make use of RMSE here. RMSE strictly relies on

the observed errors and reports expected error scores in the range of the original variables.

Penalization of larger models is handled by reality and the cross-validation process itself.

Therefore this measure is robust in the face of unreliable data.

RMSE is a global estimate of model stability or reliability (see [135]) and is defined as:

RMSE =

√
SSE

n
=

√∑
(ŷi − yi)2
n

(7.2)

where SSE is the sum of squared error of the model taken over the population. Thus RMSE

is an empirical measurement of the distance between the observed value yi and the model

prediction ŷi. RMSE has the distinct advantage of summarizing the model error in the

same units and range as the output variable. Therefore it can be used for both absolute

model evaluation and relative comparisons. Unlike other measures, however, RMSE does

not penalize models for increased complexity and thus is not robust against over-fitting. For

this reason RMSE is often calculated in Cross-Validation (CV) studies of the type described

here.

Cross-validation is an empirical method used to test the generality of a given model when

no separate testing or validation data is available. In a cross-validation study the training
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data is partitioned into subsets and the model is iteratively trained on all but one of the bins

with the remainder being used as a test set [48]. In studies of this type the RMSE scores

are collected over the test iterations and thus represent the performance of the model on

the unseen data. Therefore these estimates are robust against over-fitting for the α and βk

values.

For the present work two types of cross-validation will be used. During the generation

process discussed in Subsection 7.2.3 10-fold cross-validation with balanced random assign-

ment will be used. Balanced random assignment partitions the dataset by rank, in this case

the essay scores. The goal of this process is to ensure that each partition contains the same

distribution of scores thus avoiding biased or unrepresentative samples. Balanced random

assignment is frequently performed in study design where the goal is to generate equivalent

participant groups.

Once the final models are generated they will be compared using Leave-One-Out cross-

validation. In this form the model is tested once for each record in the dataset. On each

iteration it is trained on all of the remaining records. Leave-one-out cross-validation is often

more accurate than 10-fold as each training iteration takes advantage of almost all of the

available data. It also guarantees, in this case, that models which are trained independently

have covered the same training data. This additional training, however, is costly. With

the present dataset that would increase the time per iteration by an order of magnitude.

Therefore the leave-one-out cross-validation will only be used to evaluate the final models

for comparison in Sections 7.4 & 7.5.

One disadvantage of the raw RMSE score is that it penalizes all errors equally. While

that is desirable in most contexts, it is not necessarily appropriate here. In an educational

context the cost of ignoring a student who needs help can be high relative to the cost of

burdening an already successful student with excess advice. Thus when training a predictor

model there may be a practical advantage to biased error detection. With that in mind we

defined the Conservative Mean Squared Error (CMSE) as follows:

CMSE =

√∑
e(ŷi−yi)(ŷi − yi)2

n
(7.3)
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This score will penalize over-estimations of students’ performance more than any underes-

timations, thus catching the lost at the risk of annoying the found. In the analyses below,

both RMSE and CMSE will be reported for the resulting models.

7.2.3 Model Generation

While Least-squares regression is a robust mechanism for model fitting it does not support

model construction. In psychology and other research domains where linear models are used,

the sets of independent and dependent variables are typically specified a-priori in order to

test an existing hypothesis. In the present context, however, the goal is to search for useful

predictive models, if any, within an existing space of variables. Search within the space of

variables is handled by the greedyLM algorithm shown in Algorithm 7.1 (pp. 118).

This is a simple greedy-search algorithm (see [25, 131]) over the space of independent

variables that assumes a fixed dependent variable. It begins by considering all single-variable

models (∀xj : yi = βjxj + α) and greedily expands upon the best one by adding additional

independent variables until no improvement is made or the space of variables is exhausted.

The algorithm is restricted to each iterative choice and does not reconsider any decisions.

As shown in the pseudocode, the models are ranked using RMSE under cross-validation.

The algorithm also uses a p-value test to filter unacceptable models. While the estimated

p-values cannot be trusted for hypothesis testing they will also be used as a heuristic to

narrow the search space. On the first round, models are rejected unless the reported p-value

is less than or equal to 0.5. It then drops to 0.1 for the second round and 0.05 for all rounds

thereafter. This decay parameter was incorporated into the model after initial testing showed

that early round models could not meet the higher standard. The greedyLM algorithm is

guaranteed to complete with a worst case running time of O(|Predictors|).

This algorithm is similar to the Forward Stepwise Selection approach described in [48].

That too is a greedy constructive algorithm. However, in lieu of the p-threshold and RMSE

scoring it relies entirely on comparing the individual F -scores. That approach, while useful,

relies on the assumption of normally-distributed data. I have also tested variants of the

greedyLM algorithm that use R̄2, AIC, and BIC scores. For the present I will focus solely
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on the RMSE version.

As constructed the algorithm has three inductive biases (see [82]). First it retains the

assumption of linearity discussed above. Second it selects solely for constructive models.

That is, it assumes that the best model with n independent variables can be made by

extending the best model containing n − 1 such variables. And finally it assumes that the

p-values, while unreliable for hypothesis tests will not rule out any optimal models. That is

there exist no optimal models of size n > 2 with p-values greater than 0.05.

7.3 METHODS

In the present analysis I will test the validity of hypothesis Ha2 by inducing predictive linear

models for the five reliable essay grades based upon the predictive graph features. The

greedyLM algorithm was also applied to induce models from the manually-assigned graph

grades for comparison purposes. The models will be contrasted with the baseline grades

calculated by computing the most frequent score for the associated essay and for models

induced from the graph grades. For each of the final induced models the RMSE and CMSE

scores calculated under leave-one-out cross-validation will be reported, and the models will

be compared based upon those results.

7.3.1 Graph Feature Sets

The actual model-induction process was based upon four sets of features: Total, Intervention,

Intuitive, and Intuitive-NoP. The sets are described in Table 7.1 (pp. 119). I will use

these names when referencing the induced models below. These separate feature sets were

formed to test the predictive utility of relevant subsets of the full feature space. As noted

in Chapter 5, the complex graph features were developed with a-priori assumptions about

their impact on students’ work. Most of the features were designed with a-priori intuitive

notions about the relationships. Most were assumed to be negative and some of them (e.g.

R08: Unsupported Hypo) were designed to support immediate feedback.
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As noted in the previous chapter, the complex features were defined based upon an a-

priori model of argumentation and assumptions about the relationship between the rules and

subsequent performance. For some (e.g. the presence of a non-hypothesis node without an

outgoing arc R02a: Non-Hypo w/o Out) the empirical results validated those assumptions.

For others (e.g. the use of a comparison arc between a hypothesis and a claim node R10a:

Hypo Or Claim Comp) they did not, showing instead that the features were positively

correlated with performance.

In the present analysis four sets of features will be considered. The sets are summarized

in Table 7.1 (pp. 119). Of these sets two are restricted to features where the empirical

results validated the a-priori assumptions. One set includes all features for which some form

of descriptive advice can be defined and the remainder covers all of the simple and complex

features. When forming these sets the individual feature results were used to select the best

distribution for later comparison (raw, bin, or log). For statistically-significant features the

best match was chosen. For the others a qualitative evaluation was made. Thus each feature

used in this analysis is unique.

7.3.2 Tolerance Reduction

While the raw feature sets were logically sound, they were also multicollinear. As noted

above, multicollinearity can reduce the performance of a model by making it prone to over-

fitting. With that in mind I filtered each of the datasets using a simple greedy approach based

upon the approach described in [108] and the heuristic threshold defined in [1]. Pseudocode

for this greedy approach is shown in Algorithm Algorithm 7.2 (pp. 120). The algorithm

relies on the concept of variable Tolerance discussed in detail in Section G.3 (pp. 248) and

has a guaranteed worst-case bound of O(|IndependentV ars|). This process was handled

manually for the present work but can be easily implemented for later use. The number of

variables removed from each set is shown in Table 7.1 (pp. 119).

As noted in Subsection 7.2.1 multicollinear data may contain many overlapping collinear

subsets. Therefore while the greedy approach has been effective in the present study it is

not guaranteed to be optimal.
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7.4 RESULTS

In this section I report on the results of the induced models and the basic comparisons.

When referring to the models I will name them by their source and type. The baseline grade

predictions (see Subsection 7.4.1 will be labeled as Baseline-* (e.g. Baseline-E.01 ) while the

direct and manual grade models (see Subsection 7.4.2) will be labeled Direct-* and Manual-

* respectively (e.g. Manual-E.14 ). Similarly, the induced linear models (see Subsection

7.4.3) will be designated by the feature set and type thus “Intervention-Full-E.14 ” denotes

the induced linear model for E.14 (Arg-Quality) drawn from full Intervention dataset while

“Intuitive-Trimmed-E.01 ” denotes the model for E.01 (RQ-Quality) drawn from the trimmed

Intuitive dataset. The Generalized Additive Models (see Subsection 7.4.4) will be denoted

similarly, e.g. “Intuitive-NoP-Trimmed-GAM-E.01 ”.

7.4.1 Baseline

The RMSE and CMSE scores for the baselines are shown in Table 7.2 (pp. 121). These

scores were not calculated under cross-validation as they are a constant prediction. As the

table shows the results are relatively poor for the baseline scores with RMSE scores ranging

from 0.23 almost 1/4 of the score range for Baseline-E.04 (Hyp-Testable) to 0.46 (nearly 1/2

of the range) for Baseline-E.10 (Hyp-Open). With the surprising exception of Baseline-E.10

the CMSE scores were far higher than the corresponding RMSE.

When examining the RMSE and CMSE scores, it is important to bear in mind that

the scores have been normalized based upon the minimum and maximum observed values

as shown in Table 7.3. Thus an RMSE score of 0.3 on questions E.01 (RQ-Quality), E.04

(Hyp-Testable), and E.10 (Hyp-Open) reflects an error rate of 1.2 points on the original range

of -2 to 2.

7.4.2 Graph to Essay Grades

As discussed above, the direct correlation between the graph and essay grades in Section 4.5

(pp. 57). Table 4.6 (pp. 57) showed that 9 of the 14 graph grades were correlated with the
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associated essay grade at a statistically significant level. That table, however was focused

solely on nonparametric correlations. Table 7.4 (pp. 122) shows an updated parametric

analysis with the mean and standard deviation for the paired graph and essay grades as well

as RMSE and CMSE scores for a simple linear model of the form:

ei = α + βigi + εi (7.4)

This model was evaluated using leave-one-out cross-validation. As the table illustrates the

direct graph grades were better predictors than the most-frequent-essay-grade baseline for

all but Direct-E.04 (Hyp-Testable). For that model both the RMSE and CMSE scores were

close. This result further strengthens the validity arguments made previously.

Similar performance results for the induced models based upon the diagram grades are

shown in Table 7.5 (pp. 122). The individual features present in the models can be found in

Table H1 (pp. 254). As the tables show the resulting models were mixed. For Direct-E.01

(RQ-Quality) and Direct-E.04 (Hyp-Testable) the single grade models outperformed more

complex alternatives and other grades. While for Direct-E.07 (Cite-Reasons), Direct-E.10

(Hyp-Open) and Direct-E.14 (Arg-Quality) the induced models outperformed the single-

grade results indicating that the addition of other graph grades added useful information. In

each case, however, the improvement was small suggesting that the added information was

marginal at best.

7.4.3 Induced Feature Models

As described above predictive models were induced for the reliable essay grades based upon

the separate feature sets. Two induction passes were used, one on the raw feature-sets before

tolerance trimming, and the other on the trimmed sets. The overall RMSE and CMSE scores

for the raw and trimmed results are shown in Table 7.6 (pp. 123). As shown here eight models

were induced for each of the essay grades. Four of these models were drawn from the raw

feature sets before trimming took place and four were drawn from the later trimmed sets.

More detailed summaries of the raw and trimmed models can be found in Tables H2 (pp.

255) - H11 (pp. 264).
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The induced models can be compared via their RMSE and CMSE scores. As expected,

the larger feature sets improved the performance of the models with the Total models out-

performing their smaller peers. Interestingly the tables also show that the effect of trimming

the datasets was inconsistent across questions. On E.04 (Hyp-Testable) and E.07 (Cite-

Reasons) the models drawn from the trimmed feature-sets generally performed worse than

their raw counterparts both in terms of the RMSE and CMSE scores. On the remaining

questions the trimmed models generally outperformed their raw peers or were competitive

with them. Thus it is apparent that the trimming process removed some information of value

to questions E.04 and E.07 while reducing noise for the remaining models. The implications

of these results will be discussed in more detail below.

While these models are useful and sufficient to address the primary hypothesis of this

chapter it has not yet been shown that they are optimal and meet all of the assumptions of

the Gauss-Markov theorem. For the trimmed models it is possible to guarantee that all of

the assumptions hold save for homoscedasticity and normality. If it can be shown that these

hold, then we may reasonably interpret the performance of the trimmed models as a lower

bound on the RMSE scores of the linear models containing these features. Absent those

assumptions, however, it is possible that alternative unbiased estimators could yield better

performance.

There are a variety of tests that could be applied to check the assumptions of homoscedas-

ticity and normality. As these tests are model-specific they must be calculated after the

model is trained. In the present context the first can be tested directly via the Breusch

& Pagan (BPCW) test, also known as the Cook-Weisenberg test [34, 129]. This tests the

null hypothesis that the model results are homeostatic. Therefore p-values above 0.05 give

one no reason to reject the assumption. P-values at or below the threshold will cause one

to conclude that it does not. Similarly, the assumption of normality can be tested via the

Shapiro-Wilk (SW) test of normality. This too, tests the null assumption that the hypothesis

holds (i.e. that the residuals are normally-distributed) and p-values below 0.05 cause one to

reject that [136, 100].
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While these tests are useful, they are no substitute for plots. A p-value of 0.02 will

not, after all, demonstrate why the residuals are not normal. It will only tell us that they

are not. With that in mind, statisticians often recommend testing the results visually by

plotting the studentized residuals against the dependent variables and by plotting histograms

of the observed errors. Plots of this type paired with results of the BPCW and SW tests are

shown in Figures 7.1 (pp. 124) and 7.2 (pp. 125). These figures focus solely on the models

for question E.14 (Arg-Quality) induced from the tolerance trimmed Intervention and Total

feature sets: Intervention-Trimmed-E.14 and Total-Trimmed-E.14. These two results were

chosen as they were the best performing of the full set.

As the figures show, the models fail on both assumptions. The tests themselves return

p-values well below the threshold and a visual glance of the plots highlights the problems.

In both cases the studentized residuals are close to the horizontal where there are positive

errors and far below it for negative errors. Similarly the error histograms both show neg-

ative skew. All of these problems can likely be attributed to the distribution of the raw

score variable. The negative skew of the score variable is clearly mirrored by the error dis-

tribution and may explain the split on the studentized residuals between a large number of

smaller positive residuals and a few extreme negative errors. Consequently the assumptions

of homoscedasticity and normally-distributed errors do not hold and thus the criteria for the

Gauss-Markov theorem is not met. Therefore while these models can be used for prediction,

they are not guaranteed to be optimal.

7.4.4 Generalized Additive Models (GAMs)

As I showed in Subsection 7.5.1 (pp. 112), it is possible to induce predictive feature models

that are competitive with manually-assigned graph grades. However these models rest on

the strong assumption of linearity. This assumption has been treated as an inductive bias

of the generation procedure but it has not been shown independently and visual inspection

of the raw feature scores suggests that some may not have a linear relationship with the

output variables. One option is to use generalized additive models (GAM) which relax this

assumption in favor of a general assumption of additivity. GAMs are a semi-parametric
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analogue to linear regression [34, 141, 54] of the form:

yi = α + β0x0 + . . .+ βjxj + fj+1(x(j+1)) + . . .+ fn(xn) + εi (7.5)

This form is similar to the one shown in Equation 7.1 where as before: yi is the dependent

variable; {x0, . . . , xn} is the set of independent variables; α is the offset or intercept ; and εi

is the error term. In this model, however, the independent variables fall into two classes:

{x0, . . . , xj} are the parametric terms and are connected with the dependent variable via a

static coefficient as in general linear regression; {x(j+1), . . . , xn} are the nonparametric terms

and are connected via nonlinear smoothing functions. These are local regression or mapping

functions fn such as splines that are used to modify the impact of the independent variable

over the range of xn or yi.

One of the simplest smoothing functions is to take a weighted average of local yi values

around a given datapoint for xm and then to fit a static βv value to it. Thus in lieu of

a single static βm coefficient one would have a set of static coefficients for each value of

xm. Then when applying the model for prediction we would choose the appropriate local

coefficient based upon the independent variable’s value. More complex smoothing functions

are possible such as local polynomial regression and splines which I will employ here.

As with least-squares regression, when GAMs are fitted using Generalized Cross-Validation

(GCV) (see [141]) they remain sensitive to the assumptions of independence, weak exo-

geneity, multicollinearity, and homoscedasticity. Distributional assumptions as discussed in

Subsection 7.2.1 are only required if we wish to carry out statistical hypothesis tests or to

calculate significance.1 Unlike linear models, however, GAMs relax the assumption of lin-

earity in favor of a more general assumption of additivity. Thus the functional influence of

each independent variable x∗,m is no longer a constant value, but it is still assumed that

the relative influence of distinct variables x∗,p, and x∗,q can be expressed by an additive

relationship fp(xi,p) + fq(xi,q) independent of their specific values. GAMs thus have the

advantage of being both robust in the face of locally nonlinear relationships and of being

interpretable. GAMs can be extended to include more complex multi-argument terms of the

form fpq(xi,p, xi,q), however, I do not do so here.

1Professor Simon N. Wood, University of Bath, United Kingdom, personal communication.
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While GAMs have a number of advantages over standard linear models they are sub-

stantially more complex. Fitting the models requires iterative estimation via algorithms

such as GCV and backfitting (see [141, 48]) which are more computationally intensive than

ordinary least-squares regression. As such they are impractical for use in the greedy model-

construction procedure that I discuss below. Therefore, for the purposes of the present work,

I will use the GAMs as a post-hoc extension to the induced models with the goal of testing

whether relaxing the additivity assumption for a given linear model will improve the overall

performance. I will make use of the mgcv package for GAMs authored by Simon Wood

[143, 142] in the R statistical language [29]. This implementation fits GAMs using penalized

regression splines via the GCV algorithm.

For the present analysis I tested the reliability of the GAM model and the impact of re-

laxing the linearity assumption by training analogous models for the questions. These models

used the same feature sets as the best models drawn from the Intervention and Trimmed

feature-sets. They were then trained using generalized cross-validation and evaluated for

RMSE and CMSE. The scores are shown in Table 7.7 (pp. 126).

As the table shows, the additional complexity of the GAM model did not result in

improved performance. While the models were not substantially worse than the linear models

they were not an improvement either. Part of this problem may lie in the fact that the GAMs

were based upon the induced linear models rather than being induced as GAMs. It is possible

that a GAM-based induction process would select other, more advantageous features. It is

more likely, however, that the additional sensitivity of the GAM model makes them prone to

over-fitting and thus less robust in the face of cross-validation. Therefore the linear models

are preferred.
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7.5 ANALYSIS AND CONCLUSIONS

7.5.1 Ha2 Primary Hypothesis

The primary goal of the present discussion was to address Ha2 and determine whether or not

automatic features can be used to predict subsequent argumentation scores. That hypothesis

was tested via a machine-learning study in which predictive linear models were induced from

the diagram features and compared with baseline grades and predictive models based upon

the manually-assigned graph grades. Linear models were chosen as they provide a robust and

well-supported formalism for regression problems and can be inspected by domain experts.

Said models, however, rely on the restrictive inductive bias of linearity. Therefore alternative

generalized additive models were also tested. These models were compared via their RMSE

and CMSE scores as calculated under leave-one-out cross-validation.

As the prior tables have shown, the feature models were competitive with the models

based upon student grades and both outperformed the baseline scores. In addition to collect-

ing the RMSE and CMSE scores, the cross-validation analysis also collected the raw squared

error scores (ŷi − yi). Therefore it is possible to perform a pairwise t-test to assess whether

the differences are significant. Table 7.8 (pp. 127) shows the RMSE and CMSE scores for

the relevant models.

As the table shows the best possible predictor was the linear models induced from the

diagram features. This in turn appeared to outperform the comparable diagram grades

and both beat the baseline. The induced models were also competitive with the best linear

model, performing comparably to the grade-based model and beating both the more sensitive

GAM and the direct grade (on RMSE, not CMSE). This analysis, while useful, is qualitative.

Appropriate statistical comparisons of the models are shown in Table 7.9.

This table lists the results for two-sample Wilcoxon signed rank tests calculated over the

three classes of models: Baseline, Manual Grade (either the direct grade or best model), and

the Total-Trimmed models. The Wilcoxon test is a nonparametric test for two population

means akin to a t-test [29, 138]. Unlike the standard t-test, however, it does not assume

that the samples are normally distributed. The comparisons shown in Table 7.9 were based
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upon the squared errors (ŷi − yi)2 collected during leave-one-out cross-validation. The non-

parametric test is insensitive to the distribution of the errors and the absolute value of the

scores. This test was chosen after evaluation of the error distributions showed that they

were non-normal. The test was calculated as an unpaired comparison as the focus is not on

absolute improvement on every score but improvement of the overall performance. Because

multiple comparisons were run, the p-values of the models were corrected on a per-question

basis via Holm Correction (see [29, 132]).

As the table shows, the differences between the models were statistically- or marginally-

significant for questions E.10 (Hyp-Open) and E.14 (Arg-Quality). On E.10 both the Manual

grade and the Total-Trimmed model differed from the baseline to a marginally significant

degree. Moreover, they differed from each other to a statistically-significant degree as well.

All of this is consistent with the observed RMSE scores which dropped significantly from

0.4627 for the manual grade to 0.3159 for the linear model. On E.14 both the manual grade

and the feature model differed from the baseline but did not significantly differ from one-

another. It is important to note, however, that these are overall changes. As noted above

the tests were calculated in an unpaired form due to the focus on overall improvement not

improvement on each item. If paired tests are used and we ask about improvement on every

item then the results are not significant, suggesting that the improvement is not uniform but

trades some additional errors for other substantive improvements. Therefore, while expert

grades are clearly more detailed, the Total-Trimmed induced feature models are competitive

and the null assumption of Ha2 is consequently rejected. This rejection is qualified by the

fact that the predictive models had an RMSE of ≥ 0.2 for all of the relevant grades. Thus

the predictions are not exact.

The fact that the Total-Trimmed models are competitive with the manual grades is both

positive and surprising. The primary threshold of comparison was the most frequent grade.

I had anticipated that the manual grades would obtain a substantial advantage because

of the text. While the graph grammars are complex they make no substantive analysis of

the text embedded within the diagrams. Even though the ontology was designed to reify

the all important argument structure, the overall quality of the essay also depends upon
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the students’ ability to frame the text of a hypothesis or claim. Poor framing can and

should doom an essay even if the diagram structure holds, and the graders reported that

they considered the textual content of the nodes during grading as they were asked. It

is therefore surprising that the human graders did not perform noticeably better than the

automatic approach.

This lack of advantage may be explained by several factors. Firstly, it is possible that

there exists a ceiling effect for the information contained in the graphs. That is the 0.2

RMSE is simply the best that could be achieved given the amount of effort students spent

on the later writing. Secondly, it is possible that the collaborative aspects of the assignment,

where the class worked together to define the research study and even the hypothesis before

diagramming took place, served to standardize the framing used in the key nodes and arcs

to set a threshold for quality. As a consequence the textual content conveyed no meaningful

unique information. Finally, it is possible that the textual information does convey additional

pedagogical information but that the graders too ignored it, focused on different features of

the argument, or were merely unable to synthesize the information effectively.

In future work, it may make sense to test these hypotheses by conducting more detailed

data analyses and additional grading. If, for example, the textual information is relevant

to the quality estimation then it would be expected that feature-based models of the graph

grades will perform no better than the essay models or be similar to them. If, however the

textual features are not as relevant and the explanation is information loss or other changes,

then feature-based models of the graph grades would perform better than the essay mod-

els or differ substantially. This would be a surprising result but one that merits further study.

It is also surprising that the CMSE scores were not vastly improved under the induced

models or grades. Their performance, while better than the baseline, was consistent with

the change in RMSE suggesting that the induced models performed better overall but did

not systematically underestimate scores to do it. In future work it may make sense to focus

on inducing models via CMSE to test their overall behavior.
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7.5.2 Model Inspection

Total-Trimmed-E.14 (Arg-Quality), the best induced model, is shown in Table 7.10 (pp. 129)

with its coefficient values. It is relatively parsimonious relying on only 9 of the 61 available

features. As noted above, the model was generated in a greedy manner focusing on the most

predictive item first and thus, while it is difficult to interpret the coefficients in isolation, it

is interesting to note which features made the cut and how they are weighted.

The first point of note is the α value which is 0.82. This puts the base score for the

trained model just below the most common score value of 0.85. The next feature is a binary

value indicating the presence or absence of a comparison arc, Order Elt Comparison bin. If

a single comparison arc is present in the diagram then 0.1776 will be added to the base score.

This is consistent with the positive nonparametric correlation shown in Table 6.2 (pp. 89).

The model, then, has strong negative coefficients for rules R01na and R11ua in binary form.

This is also consistent with prior analyses and with their a-priori interpretations.

The strong negative coefficient for Order MaxParents IgnoreEmpty log, the maximum

number of nonempty parent nodes in the diagram, is harder to interpret. At face value this

coefficient (-0.3369 1/3 a full score) is selecting for graphs with a small number of parents,

possibly graphs with parent-free nodes. However it is not entirely surprising. In any non-

circular graph this number will be 0. Therefore this is selecting, in a roundabout way, against

cyclical graphs where every node has a parent and thus at least one node is the child of its

own child. Deeper analysis would be required to determine how often this is the case.

Deeper analysis may also be required for the otherwise sensible negative coefficient for

R10c. The remaining coefficients, however, are wholly counterintuitive. According to our

domain experts disjoint graphs are an error a-priori. However, in this case the coefficient

for the model gives R13 a positive coefficient of 0.1646. The absent cite and the remaining

coefficients function similarly.

Ultimately the individual coefficients are, like the individual analyses discussed in Chap-

ter 5 a suggestive but not definitive result. Some but not all of the coefficients are consistent

with our expectations. While the models suggest future hypotheses for analysis, the impact

of the individual coefficients is not clear. For a better assessment of the individual rules’
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impact we should focus on the nonparametric correlations in Chapter 6 (pp. 86).

7.5.3 Multicollinearity

The relative assumptions of linear regression are often ignored in practice. This is true both

for the efficiency assumptions such as homoscedasticity and the hypothesis-testing assump-

tion of normal data. For the purposes of the present analysis, however, it was important to

address these assumptions and to note their effect on the generality and reliability of the

resulting models. In this respect violations of the non-multicollinearity assumption are a

primary issue.

As noted in Subsection 7.2.1 multicollinear datasets can have unstable β coefficients

and thus be prone to inflated variance and over-fitting (see also Section G.3 (pp. 248)). I

therefore expected that the multicollinear feature sets would have higher RMSE and CMSE

scores than trimmed datasets and should trim whenever possible in machine learning. I also

expected that trimming the feature-set would result in smaller, more parsimonious models.

These assumptions were tested by performing a filtering process on the datasets and inducing

models for both the raw and trimmed data. The resulting models were compared in Table

7.6 (pp. 123). A more detailed comparison of the top tier models for E.14 (Arg-Quality) is

shown in Table 7.11 (pp. 130).

Interestingly, while the Total-Trimmed-E.14 model is more parsimonious, the predicted

relationship between the addition of multicollinear terms (in the Raw dataset) and the RMSE

and CMSE scores did not entirely hold. If we consider the Total dataset which had the highest

number of such terms, 16 of 77 having been removed, then it is apparent that the added

information of the extra terms outweighed the cost of over-fitting. In the overall comparison,

shown in Table 7.6 (pp. 123), the raw models had comparable RMSE and CMSE scores or

even outperformed the trimmed feature set. This improved performance may be explained

in part by the use of RMSE as a target for the greedy induction in greedyLM. That alone,

however does not provide a full explanation. Given the strong theoretical support for the

problems of multicollinearity, this empirical evidence should not be read as positive proof

that multicollinear terms can be ignored. However, it is apparent that in an empirical
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context they may not pose an existential crisis and that case-by-case testing is warranted.

This should be explored in more detail in future work.

7.5.4 Greedy Induction

In the course of this analysis two greedy algorithms were introduced, GreedyLM and Greedy-

Tol shown in Algorithms 7.1 (pp. 118) and 7.2 (pp. 120) respectively. The former was used

to search for optimal (as measured by RMSE score) linear models while the latter performed

a greedy tolerance reduction of the feature space. Both algorithms make strong assumptions

about the structure of the space being searched and it was an open question whether or not

they would function adequately here.

The empirical results described above validate the use of these algorithms. While we did

not induce optimal models or identify the minimum possible tolerance reductions, it does

appear that the algorithms worked in the present case. Subsequent analysis will be required,

however, to determine whether their success was grounded in the particulars of this feature

space or whether other better models can be found through exhaustive methods. Given the

structure of the graph grammars with deliberately isomorphic features, it does seem likely

that the space was an easy one for tolerance trimming. It is not clear whether this made the

process of identifying linear models easier. In either case later comparisons with brute-force

methods may be desirable but depend upon substantial computing power and patience.
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Algorithm 7.1 Greedy Induction Model:

greedyLM(OutputVar, Predictors, Partitions, DataFrame)

1: UpdateF lag ← TRUE;

2: BestP ← ∅;

3: BestLM ← ∅;

4: PThresholds← [0.5, 0.1, 0.05];

5: while (UpdateF lag = TRUE) do

6: OldP ← BestP ;

7: UpdateF lag ← FALSE;

8: NewPredictors← (Predictors−BestP );

9: ThresholdIdx← min((len(PThresholds)− 1), len(OldP ));

10: PThreshold← PThresholds[ThresholdIdx];

11: for i = 0 to len(NewPredictors) do

12: CurrP ← NewPredictors[i]

13: NewModel← lm(OutputV ar ∼ OldP + CurrP,DataFrame);

14: if (pV al(NewModel) ≤ PThreshold) then

15: if (BestLM = ∅)∨(rmse(BestLM,Partitions) < rmse(NewModel, Partitions))

then

16: BestP ← (OldP + CurrP );

17: BestLM ← NewModel;

18: UpdateF lag ← TRUE;

19: end if

20: end if

21: end for

22: end while

23: return BestLM;
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Table 7.1: Individual Feature Sets.

Total: (77 predictors; 16 trimmed due to multicollinearity) The Total set contains

every one of the basic graph features and graph rules discussed in Chapter 5

(pp. 61).

Intervention: (43 complex features; 5 simple features; 6 trimmed due to multi-

collinearity) The Intervention set contains only the hand-tooled graph rules and

the graph features (e.g. Paired Counterarguments) that may be appropriate for

student intervention. These are chiefly specific rather than aggregate features.

It makes sense, for example, to direct students to generate a research question

node or to add grounding to an ungrounded hypothesis. It does not make sense,

however, to advise them to raise and lower the average degree of the graph.

Intuitive: (15 complex features; 3 simple features; 1 trimmed due to multicollinear-

ity) The Intuitive set is a subset of the Intervention set containing only the rules

and features that matched our intuitive assumptions about their performance.

Thus rules such as R07 UncomparedOpp were omitted from the set.

Intuitive-NoP: (11 complex features; 1 trimmed due to multicollinearity) The

Intuitive-NoP set is a subset of the Intuitive set that omits all positive node

rules. Positive node rules such as R01 HasHypothesis track the occurrence

of the beneficial graph nodes such as hypothesis nodes, citation nodes, and

so on. The remaining features in this set are negative features such as

R11us Undef Ungrounded Hypo, complex features such as Paired Counterar-

guments, or arc counts such as the number of supporting or opposing arcs.

119



Algorithm 7.2 Greedy Tolerance Testing and Reduction:

greedyTol(DependentVar, IndependentVars, Data)

1: CurrV ars← IndependentV ars;

2: while TRUE do

3: MinV ar ← CurrV ars[0];

4: MinTol ← (1−R2
MinV ar);

5: for xi ∈ CurrV ars[1 :] do

6: if (1−R2
x∗,i

) < MinTol then

7: MinV ar ← xi;

8: MinTol ← (1−R2
x∗,i

);

9: end if

10: end for

11: if MinTol > 0.01 then

12: return CurrV ars;

13: else

14: CurrV ars← CurrV ars−MinV ar;

15: end if

16: end while
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Table 7.2: Baseline scores using the most-frequent essay grade as score. The table reports

the most frequent baseline value as well as the RMSE and CMSE scores for the baseline

values on a per-question basis. When referenced in the text these models will be called

Baseline-*.

Question Baseline Value RMSE CMSE

E.01 (RQ-Quality) 0.75 0.3437 0.4626

E.04 (Hyp-Testable) 0.75 0.2372 0.285

E.07 (Cite-Reasons) 0.666 0.2697 0.2909

E.10 (Hyp-Open) 0 0.4627 0.318

E.14 (Arg-Quality) 0.85 0.2445 0.3254

Table 7.3: Normalization table showing the minimum and maximum observed values for the

essay grades coupled with the normalization formula used and the equivalent raw score value

of the benchmark error rate of 0.3.

Predictors Min Max f(xraw)→ xnorm Raw (0.3) equivalent

E.01 (RQ-Quality) -2 2 (xraw + 2)/4 1.2

E.04 (Hyp-Testable) -2 2 (xraw + 2)/4 1.2

E.07 (Cite-Reasons) -1 2 (xraw + 1)/3 0.9

E.10 (Hyp-Open) -2 2 (xraw + 2)/4 1.2

E.14 (Arg-Quality) -5 5 (xraw + 5)/10 3
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Table 7.4: Direct Graph/Essay Baseline Scores with RMSE and CMSE values. Calculations

via leave-one-out cross-validation. Mean and σ2 values are included to compare the scores

while the RMSE and CMSE values are shown on an individual basis. When referenced in

the text these will be named Direct-G/E*.

Graph Grade Essay Grade Scores

Question Mean σ2 Mean σ2 RMSE CMSE

G/E.01 (RQ-Quality) 0.1405 0.2945 0.5929 0.3072 0.3106 0.3592

G/E.04 (Hyp-Testable) 0.5798 0.2947 0.7667 0.2377 0.2322 0.2828

G/E.07 (Cite-Reasons) 0.5321 0.2763 0.6936 0.2697 0.2475 0.2754

G/E.10 (Hyp-Open) 0.3026 0.3017 0.2988 0.355 0.3389 0.3316

G/E.14 (Arg-Quality) 0.4105 0.2759 0.7386 0.2186 0.2135 0.2565

Table 7.5: Model results for the prediction of reliable essay grades from the graph grades.

Italicized models are cases where the individual graph grade was the best performing model.

The scores were calculated using leave-one-out cross-validation.

Question RMSE CMSE

E.01 (RQ-Quality) 0.3106 0.3592

E.04 (Hyp-Testable) 0.2322 0.2828

E.07 (Cite-Reasons) 0.2447 0.2701

E.10 (Hyp-Open) 0.334 0.333

E.14 (Arg-Quality) 0.2062 0.2410
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Table 7.6: RMSE and CMSE scores for the induced feature models linking graph features

to essay grades. RMSE and CMSE calculated via leave-one-out cross-validation. The scores

are grouped on a per-question basis with the models and model values listed by featureset.

Raw Featureset Trimmed Featureset

Grade Predictors RMSE CMSE RMSE CMSE

E.01
Intuitive-NoP 0.3108 0.3604 0.3104 0.3535

Intuitive 0.3014 0.3396 0.3014 0.3396

(RQ-Quality)
Intervention 0.2924 0.3248 0.2907 0.3208

Total 0.2902 0.3199 0.2896 0.3257

E.04
Intuitive-NoP 0.219 0.2726 0.2202 0.2747

Intuitive 0.2194 0.2747 0.2194 0.2747

(Hyp-Testable)
Intervention 0.2099 0.2411 0.211 0.2557

Total 0.207 0.2492 0.2119 0.254

E.07
Intuitive-NoP 0.2642 0.2979 0.2667 0.3042

Intuitive 0.2489 0.2752 0.2477 0.2736

(Cite-Reasons)
Intervention 0.241 0.2627 0.2371 0.262

Total 0.227 0.2401 0.2434 0.26

E.10
Intuitive-NoP 0.358 0.3401 0.3582 0.3401

Intuitive 0.3228 0.3168 0.3288 0.3284

(Hyp-Open)
Intervention 0.3235 0.323 0.3229 0.3121

Total 0.3217 0.3279 0.3159 0.3282

E.14
Intuitive-NoP 0.2148 0.2609 0.2148 0.2609

Intuitive 0.2126 0.2547 0.2143 0.2569

(Arg-Quality)
Intervention 0.2122 0.2473 0.2126 0.251

Total 0.2079 0.2415 0.2065 0.2369
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Breusch-Pagan: p < 0.0017 Shapiro-Wilk: p < 2.434e− 07

Figure 7.1: Error plots, histogram distribution and statistical tests for the assumptions of

Homoscedasticity and Normality for the Intervention-Trimmed-E.14 model induced for E.14

(Arg-Quality) from the Tolerance-trimmed Intervention featureset.
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Breuch-Pagan: p < 0.0005 Shapiro-Wilk: p < 1.003e− 05

Figure 7.2: Error plots, histogram distribution and statistical tests for the assumptions of

Homoscedasticity and Normality for the Total-Trimmed-E.14 model induced for E.14 (Arg-

Quality) from the Tolerance-trimmed Total featureset.
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Table 7.7: RMSE, and CMSE scores for the top-tier Generalized Additive Models defined

from the Trimmed Intervention and Total featuresets. Scores calculated by leave-one-out

cross-validation.

Predictors RMSE CMSE

E.01 (RQ-Quality)
Intervention 0.2907 0.3208

Total 0.2896 0.3257

E.04 (Hyp-Testable)
Intervention 0.211 0.2557

Total 0.2123 0.2545

E.07 (Cite-Reasons
Intervention 0.24 0.2643

Total 0.2425 0.2564

E.10 (Hyp-Open)
Intervention 0.3192 0.315

Total 0.3203 0.3361

E.14 (Arg-Quality)
Intervention 0.2108 0.247

Total 0.2089 0.2401
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Table 7.8: RMSE/CMSE score comparisons for Baseline essay grades, Manual grader-

assigned grades (direct or best model), and the Total-Trimmed diagram feature models.

Scores calculated using Leave-one-out cross-validation. For statistical comparisons see Table

7.9.

Grade Class RMSE CMSE

E.01
Baseline 0.3437 0.4626

Manual 0.3106 0.3592

(RQ-Quality)
Total-Trimmed LM 0.2896 0.3257

Total-Trimmed GAM 0.2896 0.3257

E.04
Baseline 0.2372 0.285

Manual 0.2322 0.2828

(Hyp-Testable)
Total-Trimmed LM 0.2119 0.254

Total-Trimmed GAM 0.2123 0.2545

E.07
Baseline 0.2697 0.2909

Manual 0.2475 0.2754

(Cite-Reasons)
Total-Trimmed LM 0.2434 0.26

Total-Trimmed GAM 0.2425 0.2564

E.10
Baseline 0.4627 0.318

Manual 0.3389 0.3316

(Hyp-Open)
Total-Trimmed LM 0.3159 0.3282

Total-Trimmed GAM 0.3203 0.3361

E.14
Baseline 0.2445 0.3254

Manual 0.2135 0.2565

(Arg-Quality)
Total-Trimmed LM 0.2065 0.2369

Total-Trimmed GAM 0.2089 0.2401
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Table 7.9: Wilcoxon Signed Rank Test results for comparison of the Baseline, Manual grade

(direct or grade model) and Total-Trimmed models summarized in Table 7.8. Test statistics

and p-values calculated using unpaired Wilcoxon tests. P-values were corrected using Holm

correction for multiple tests. (see [29, 138, 132])

Grade Pair W p-value

E.01
Baseline Manual 5113 1

Baseline Total-Trimmed 5311 1

(RQ-Quality) Total-Trimmed Manual 5774 1

E.04
Baseline Manual 5435 1

Baseline Total-Trimmed 5602 1

(Hyp-Testable) Total-Trimmed Manual 5499 1

E.07
Baseline Manual 5859 0.861

Baseline Total-Trimmed 6035 0.703

(Cite-Reasons) Total-Trimmed Manual 5738 0.861

E.10
Baseline Manual 4599 0.071

Baseline Total-Trimmed 4595 0.071

(Hyp-Open) Total-Trimmed Manual 6769 0.013

E.14
Baseline Manual 4411 0.037

Baseline Total-Trimmed 4400 0.037

(Arg-Quality) Total-Trimmed Manual 5501 0.98
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Table 7.10: Coefficient values for Total-Trimmed-E.14 (Arg-Quality) the best induced model

from the trimmed Total featureset.

Dataset # Predictors RMSE CMSE

Trimmed 61 0.2065 0.2369

xi Name β value

α (Intercept) 0.8204

+ Order Elt comparison bin 0.1776

+ Rule R01na NoHypothesis bin -0.1379

+ Rule R11ua Undef Ungrounded Hypo bin -0.1941

+ Order MaxParents IgnoreEmpty log -0.3369

+ Rule R13 DisjointSubgraphs log 0.1646

+ Rule R01nc NoCite bin 0.2479

+ Order MinChildren IgnoreEmpty log 0.1222

+ Order MinDegree 0.0479

+ Rule R10c Claim Comp bin -0.0866
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Table 7.11: Comparison of the best linear models Total-Raw-E.14 and Total-Trimmed-E.14

induced from the Raw and Trimmed Total featuresets for E.14 (Arg-Quality).

Dataset # Predictors RMSE CMSE

Trimmed 61 0.2126 0.251

E.14 ∼ Order Elt comparison bin +Rule R01na NoHypothesis bin
+Rule R11ua Undef Ungrounded Hypo bin +Order MaxParents IgnoreEmpty log
+Rule R13 DisjointSubgraphs log +Rule R01nc NoCite bin
+Order MinChildren IgnoreEmpty log +Order MinDegree
+Rule R10c Claim Comp bin

Raw 77 0.2065 0.2369

E.14 ∼ Order Elt comparison bin +Order MaxParents IgnoreEmpty log
+Order Elt hypothesis log +Rule R11ua Undef Ungrounded Hypo bin
+Order MaxChildren IgnoreEmpty log +Order PairedCounterarg
+Rule R01na NoHypothesis bin +Order MaxChildren log
+Order MaxParents log +Rule R01pa HasHypothesis log
+Rule R12 UndefinedCiteClaim bin +Rule R10c Claim Comp bin
+Rule R04a EmptyNodeF ields +Order AvgChildren IgnoreEmpty log
+Order MinChildren IgnoreEmpty log +Rule R08 Unopp Hypo log
+Rule R10a Hypo or Claim Comp bin
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8.0 ANALYSIS & CONCLUSIONS

8.1 CONCLUSIONS

Can argument diagrams be used to diagnose and predict argument performance?

Yes

As I noted in Chapter 1 argument diagrams have a long history in philosophy and AI

(e.g. [120, 124, 37, 128]). Yet despite serious research over the years their performance as

educational tools has been mixed. Prior research has shown that diagrams can be used to

communicate information to students but the effect of diagrams either as static communi-

cation tools or exercises has been inconsistent. Some researchers (e.g. [33]) have found that

diagrams can help students to recognize key features of a domain or to transfer argument

recognition skills, particularly for poor-performing students [92]. Yet other researchers have

shown little to no effect from argument use (e.g. [14, 12]). Moreover, no researchers to-date

have shown a clear structural connection between student-produced argument diagrams and

subsequent performance nor have they convinced educators generally that such diagrams can

encode pedagogically useful information.

All of this has been problematic for advocates of argument diagrams. Proponents of such

diagrams, myself included, have long argued that argument diagrams have distinct advan-

tages. Argument diagrams can reify important structural concepts, thus helping students to

focus on crucial features (see [69]). They can be flexible and open-ended, thus allowing for

realistic argumentation even in ill-defined domains (see [76, 74]). And they can be readily

evaluated using AI techniques (see [68, 90]). Yet none of these has been shown to hold

consistently.
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In order for an educational intervention to be useful, it should meet standards of reliability

and validity. That is, the argument diagram structure should encode pedagogically useful

information that can be graded reliably by domain experts and the grading should be a valid

predictor of student’s subsequent performance. If automatic grading of the diagrams can be

equally reliable and valid, the structure will be more applicable in real-world tasks. My goal

in this thesis was to address these criteria by answering the following questions:

Qh Can student-produced argument diagrams be assessed reliably by human graders and
are those assessments valid predictors of future performance?

Qa Can argument diagrams be analyzed automatically to diagnose students’ argumentation
skills and to predict future performance on “real-world” tasks?

To that end I broke question Qh into the four hypotheses Hh1 − Hh4 shown below which

addressed the reliability and validity of human grading for both the diagrams and argumen-

tative essays.

Hh1: Student-produced argument diagrams cannot be reliably graded by human graders.

Hh2: Student-produced argumentative essays cannot be reliably graded using a parallel
grading rubric by human graders.

Hh3: Human-assigned diagram grades are not valid predictors of parallel essay grades.

Hh4: Human-assigned diagram grades are not valid predictors of their gestalt essay grades.

Question Qa was similarly broken down into two hypotheses Ha1 and Ha2, which addressed

the utility of automatic grading rules both individually and via trained models.

Ha1: It is not possible to define empirically-valid diagram rules that correlate with stu-
dents’ novel written argumentation ability.

Ha2: Automatic features of student diagrams can not be used to predict students’ novel
written argumentation ability.

Student-produced argument diagrams and essays were collected from 178 students in

Research Methods taught at the University of Pittsburgh. Those items were graded using

a parallel rubric designed to focus on key components of the argument as well as its overall

quality. Hypotheses Hh1 − Hh4 were addressed via a pair of reliability and validity studies
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discussed in Chapter 4. Likewise hypotheses Ha1 & Ha2 were addressed via statistical eval-

uations of graph features, discussed in Chapter 5, and regression model induction discussed

in Chapter 7.

As I discuss in those chapters, all six of the null hypotheses were falsified with some

caveats. Therefore, student-produced argument diagrams and essays can be graded reliably

by domain experts and used as valid predictors of students’ subsequent essay grades. Au-

tomatic graph grades can also be used as valid predictors of subsequent essay performance.

Moreover, the automatic grading achieves levels of performance that are competitive with the

human graders despite the fact that the graph grammars were limited to structural features

of the diagrams and ignored the essay components.

Thus the answers to the question presented at the outset is yes.

While the above research was successful, it was not perfect. In the next section I will

discuss some of the challenges of the grading model and focus on one graded pair that was

problematic for the human graders. I will then discuss some of the immediate applications

of these rules for education (see Section 8.3) and then conclude with a discussion of the

applications of this work to various research fields along with future extensions (see Section

8.4 and Section 8.5).

8.2 GRADING CHALLENGES

Agreement between the two experimental graders was generally strong on the diagramming

task with statistically- or marginally-significant agreement on all 14 diagram grades. For the

essays it was weaker with statistically-significant agreement on 7 of the 14 grades including

the gestalt grades E.12 (Arg-Coherent), E.13 (Arg-Convincing), and E.14 (Arg-Quality) (see

Table 4.4 (pp. 53) in Chapter 4 (pp. 42)). Despite this general agreement, however, some

difficult cases exist. One such example is highlighted here to illustrate future changes that

may be required. The paired diagram shown in Figure 8.1 (pp. 139) and essay shown in

Tables 8.2 (pp. 142) - 8.3 (pp. 143) were drawn from the graded dataset covered by both
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graders. This pair was difficult for the human graders. In particular, the graders differed

widely on the overall quality of the diagram (G.14 (Arg-Quality)) with the primary grader

giving it a score of -2.5 and the reliability grader 3.5 on a scale of -5 to 5. They generally

agreed, however, on the quality of the essay (E.14 ) with the primary grader assigning it a

score of 0.5 and the reliability grader assigning a score of 0 on the same scale. The best

fitted linear feature model (Total-Trimmed-E.14 ) of the set trained in Chapter 7, trained as

it was on the grade features and the essay grade, predicted an essay score of 2.5.

8.2.1 Diagram Analysis

As noted above the diagram posed a problem for reliability. The primary grader spotted a

number of issues with the diagram and generally graded it lower than the reliability grader

across the board. The spread between the two graders is shown in Table 8.1. As the table

shows the graders differed by as much as 1.5 points (on a scale of -2 to 2) on most of the

questions.

As the table shows the graders disagreed about the appropriate use of citations in the

diagram and the role that they played in the argument (questions G.03 (RQ-Support), G.06

(Cite-Conclusions), G.07 (Cite-Reasons), & G.08 (Claim-Support)). They also disagreed

on issues of novelty and openness (G.10 (Hyp-Open), G.11 (Study-Novel)) as well as issues

of gestalt quality (G.12 (Arg-Coherent), G.13 (Arg-Convincing), & G.14 (Arg-Quality)).

Interestingly the graders agreed on important components of the argument such as the

quality of the research question and the testability of the hypothesis (G.01 (RQ-Quality), &

G.04 (Hyp-Testable)).

This disagreement may be due to differences in training or to ambiguities in the structure

of the diagram. While citation #33 (see Figure 8.2) is described correctly and, based upon

the semantic content, appears to have been used to provide a definition, the student has

linked it incorrectly with a supporting arc from the claim to the citation. Citation #5

by contrast is provided with a short description and linked to the remaining components

via supporting arcs, but it is not clear whether it is providing a definition for the claims

being made or a form of support as the arcs give small exemplary notes but provide no
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Table 8.1: Per-grader grade scores and value spread for the example diagram.

Grade
Range Grades

Min Max Primary Reliability

G.01 (RQ-Quality) -2 2 -2 -2

G.02 (RQ-Link) -2.5 2 -2.5 -2.5

G.03 (RQ-Support) -2 2 0 2

G.04 (Hyp-Testable) -2 2 1 1.5

G.05 (Hyp-Link) -2.5 2 -2.5 -2.5

G.06 (Cite-Conclusions) -2.5 2 -0.5 1.5

G.07 (Cite-Reasons) -2.5 2 0 1.5

G.08 (Claim-Support) -2.5 2 -1.5 0.5

G.09 (RQ-Open) -2.5 2 -2.5 -2.5

G.10 (Hyp-Open) -2.5 2 -2 0

G.11 (Study-Novel) -2.5 2 0 2

G.12 (Arg-Coherent) -2 2 -0.5 1.5

G.13 (Arg-Convincing) -2 2 0 1.5

G.14 (Arg-Quality) -5 5 -2.5 3.5
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argumentative content. Thus, while the diagrams reify important aspects of the argument

they are not fixed and it is possible that this ambiguity was read differently by the graders.

More serious issues exist, however, with citation #30 and citations #27 & #5 (see Figure

8.2). Citation #30 is, apparently, being used to provide a qualification to the central claim by

noting that people engage in unintentional mimicry. This is an important point and clearly

relevant to their central research question (and subsequent hypotheses though no such link is

drawn). However, the student drew a comparison arc to connect the two. As such he or she

has chosen to express the disagreement in a way that violates our argument model. Ironically

the opposite issue is apparent with citations #27 & #5 where the diagram author(s) included

conflicting citations but used an opposing arc to state a basis of disagreement. The author(s)

also failed to connect citation #27 directly to the remainder of the argument, thus leaving

unclear how the distinction will play out.

The students’ use of arcs was also somewhat inconsistent generally. Supporting arc #8

(see Figure 8.2) is being used to state a claim rather than an argumentative relationship,

while the remainder of the arcs are used to characterize the functional role of the relationship

(e.g. supporting arc 12 “Example of 1 study” (see Figure 8.3)). The student also failed

to include arcs where arcs should be used such as to note the relationships between the

unfounded claim #7 (see Figure 8.2) and any backing information.

Despite the features described above, however, there exists a chain of reasoning within

the diagram. The bottom half of the diagram (claim #9 to hypothesis #24 Figure 8.3)

is structured as a rhetorical chain or linear outline that moves from one citation through

descriptions of the current study to the hypotheses. In that respect it is more akin to a

classical textual outline than the nonlinear argumentation structure that was desired. In my

own review of the diagrams, it appears that more than one student author similarly opted

not to produce a structured representation of the argument but to generate what appears

to be a semi-ordered representation of their written plan. More thorough study is required

to determine if this is consistently true or if the ordering is itself indicative of the essay

structure.
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It will be necessary to follow up with the graders in order to determine why their inter-

pretations of the argument differed. Nevertheless, the issues with the diagram pose some

suggestions for future work and highlight some limitations. Specific rules designed to de-

tect disconnected citations and improper use of comparison arcs already exist. Other rules

may be defined, for example, to encourage additional text in the arcs and to flag direct

connections between current study nodes.

These changes, however, are unlikely to address the full set of problems. Consider the

semantic problems with supporting arc #8. While the structural isolation of claim #7 could

be flagged, the fact remains that the content of the arc is framed as a claim and does not make

clear how the claim relates argumentatively to the rest of the diagram. Similar problems

exist with the content of other arcs and the framing of the citations. Problems of this type

are semantic and are, ultimately, about the relationships between the texts within the boxes

rather than the structural components of the argument and the diagrammatic relationships

between them. As such they may require the application of NLP techniques or may be better

solved by means of expert guidance or peer review or through advanced semantic analysis.

If such analysis is automated however, it often requires substantial bodies of text in order

to make comparisons. Such text may not always be available.

8.2.2 Essay Analysis

While the graders did agree on the overall quality of the essay shown in Tables 8.2 - 8.3,

they disagreed on a number of the features. Focusing solely on the reliable items (see Section

5.5), they disagreed on E.01 (RQ-Quality) (0 vs. -2), E.04 (Hyp-Testable) (-1 vs. -2), E.07

(Cite-Reasons) (1.5 vs 0.5), & E.10 (Hyp-Open) (-2 vs. -2.5). Thus while the primary grader

was more negative about the diagram she was more positive about the essay.

The two most disparate grades were E.01 and E.04 which focus on the research ques-

tion and the hypothesis. While the associated diagram contained a single central claim, it

contained no apparent research question. No such question was apparent in the essay text

either. Thus the grades for E.01 assigned by the reliability grader were consistent with my

own assessment. The primary grader, however, was more generous. That generosity may be
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explained by the fact that she had taught a section of the course and thus was more generous

to the students on their framing.

While the level of the disagreement on E.04 is relatively slight, it may be explained in

part by the students’ writing. In the diagram the author included two hypothesis nodes

(#23 & #24 see Figure 8.3) which received relatively high scores from the graders. The

nodes are odd in that they reflect both outcomes of the boolean variable but they are stated

in clear language. The essay appears to include two similar statements, as well, at the end of

paragraphs 3 and 4 respectively (see Table 8.3). This contradicts the assignment instructions

that called for a single statement. Oddly enough this framing does not differ substantively

from the framing used in the diagram, which suggests that the graders’ disagreement stems

from differing assumptions about the writing and a much higher standard for framing within

the essay than within the diagram. Again, however, follow-ups with the graders would be

required to confirm this.

8.2.3 Example Discussion

Ultimately this example illustrates some of the major challenges that should be addressed

in future work. Despite the reification many of the issues with the diagrams are textual and

semantic, not syntactic. This means that the framing serves to restrict the problems but

does not solve them. Moreover the students’ use of the diagrams, while inconsistent with

our instructions, may not be wholly irrational. In this case, the student opted to use the

diagram, somewhat consistently, to describe the order of his or her paper and spent less

time considering the argumentative interrelationships. Thus we gave them a screwdriver

and they, maddeningly, used it as a chisel, serviceable but still not desirable. In such cases,

interventions should be carefully tailored not to reject such nonconforming activities entirely

but to help students incorporate the desirable argumentative structures required.

Another issue faced by this work lies simply with the essays and with consistency. The

graders were generally in agreement but differed on this particular case. The nature of their

assumptions differed, however, from diagrams to essays and was likely informed by their

experience. The primary grader had taught the course and worked with both diagrams and
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Figure 8.1: A difficult-to-grade diagram drawn from the graded dataset. This diagram is

paired with the sample essay shown in Tables 8.2 (pp. 142) - 8.3 (pp. 143)
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Table 8.2: Part 1 of a sample complex essay drawn from the graded dataset. This was easy

for grader agreement but difficult for prediction and is paired with the diagram shown in

Figure 8.1 (pp. 139)

The Influence of a Confederate’s Action on the Subsequent Response of Participants
The social issue of conformity is prevalent in many societies. It refers to the influence
that an individual or group has on another. These influences can affect the behaviors,
actions, and attitudes of those who are being conformed. The act of conforming can be
either conscious or unconscious and is often a result of the desire for social acceptance.
According to Johnston (2002), even the idea of another person merely practicing a specific
behavior makes an individual more inclined to mimic that same behavior. Conformity and
imitation go hand in hand as a result of the inevitable impact of mimicry. This increase
in mimicry can develop commonalities in social behavior, leading to conformity. Finally,
this results in the initiation of social norms that become particular to a community. Social
norms define the adaptive behavior of individuals in certain situations based on what is
approved or disapproved in that particular situation (Reno, Cialdini, & Kallgren, 1993).

The act of physically imitating another individual is often referred to as behavioral
mimicry. This includes similar hand gestures, facial expressions, postures, and other
mannerisms that are observed (Yabar, Johnston, Miles, & Peace, 2006). Previous
research has suggested that there is higher tendency to imitate those with whom an
individual more frequently associates himself or herself (Bovard, 1953). The reasoning
behind this may be attributed to the desire to feel more united with the general population.
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Table 8.3: Part 2 of a sample complex essay drawn from the graded dataset. This was easy

for grader agreement but difficult for prediction and is paired with the diagram shown in

Figure 8.1 (pp. 139)

The Influence of a Confederate’s Action on the Subsequent Response of Participants
(cont).

With the size of a University campus, it is not possible for each student to have a defined
relationship with one another. However, the population has a connection based on their
role as students. The effect of association was demonstrated in previous studies. It was
found that mimicry was greater among members of the same group (Yabar, Johnston,
Miles, & Peace, 2006; Chartrand & Bargh, 1999). In the current study, the affiliation as
students develops social norms within the campus, resulting in the tendency to act similarly
to achieve social acceptance. In the class study, the target population was individuals in
a University campus. The study observed the action of a student immediately following
a confederate who either accepted or did not accept a flyer. If a student’s action im-
itates that of the confederate, this may suggest conformity by means of behavioral mimicry.

Our study is a continuation of previous research that has tried to define reasons for
conformity. By observing the response of students, the influence that peers have on
one another in terms of behavioral characteristics can potentially be determined. This
study aims to connect the behavior of a confederate with that of the subject immediately
following, such that when a confederate accepts a flyer, the immediate subject will also
accept a flyer.
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essays while the reliability grader had trained with the finished diagrams but not used them

in a classroom setting. As a consequence it seems that the primary grader was inclined to be

far more negative about the diagrams and somewhat more positive about the essays. This

varying experience may also explain why the level of agreement for the essays was so poor.

Despite the fact that the research reports were the same and their training very similar, the

graders may have fallen back on differing experiences to make their essay decisions. Any

subsequent graded use therefore must address these problems in the design of appropriate

training. These considerations also limit the generality of the conclusions drawn.

8.3 AUTOMATED ADVICE

Having shown the challenges of diagram analysis I will now discuss the direct applications of

the rule induction. The diagram shown in Figure 8.4 (pp. 145) was previously discussed in

Subsection 3.3.2 (pp. 37). As noted there the diagram was graded poorly. Interestingly, some

of the salient problems with the diagram are amenable to automated analysis. For example,

the diagram has an isolated hypothesis node which would trigger rules R02a: NonHypo w/o

outlink, R11a: Ungrounded Hypo, and R13: Disjoint Subgraphs. The diagram has opposition

but, due to the arc direction, has no paired or chained counterarguments. The diagram has

no current study node which would trigger rule R01n*.

Having shown that some of these rules are individually predictive in Chapter 6 they can

then be used to provide direct advice to the student authors or to guide reviewers as I will

discuss below. In the former case it would be necessary to augment the existing system

with help messages associated with the rules and to provide these rules to the students as

guidance. As will be discussed in Subsection 8.4.2 work of this type is already underway.

Alternatively, these rules can be used to highlight key sections of the diagram for expert

instructors or peer reviewers who will be tasked with providing direct advice to the diagram

authors. As will be discussed in Subsection 8.4.2 this has distinct advantages and is also

being tested presently.
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Finally these rules can also, as noted previously, be used for automatic ranking. In a

large-scale course it is not possible to provide detailed expert instruction to every student.

However through automated rules of the type induced in Chapter 7 it may be possible to sort

students for advice and then to present that information in an instructor dashboard. This

would enable instructors to get a broad view of the course both by indicating the number of

students succeeding and failing overall and by summarizing the most common errors. If, for

example, most of the student diagrams trip rule R11a: Ungrounded Hypo then the instructor

can focus their discussion on hypothesis statements and their connection to the literature. I

will return to these points below.

8.4 CONTRIBUTIONS

This work makes research contributions to a number of domains including education, in-

telligent tutoring, and graph analysis. This work has also made technical contributions

in the form of novel machine learning algorithms, and analysis tools. I will discuss these

contributions individually below.

8.4.1 Education

The primary contributions of this thesis have direct relevance to education. In collabora-

tion with Dr. Melissa Patchan and Dr. Chris Schunn, have developed a novel structural

ontology and graphical representation for written scientific arguments. This representation,

described in Section 3.2 (pp. 28), was specifically tuned to the types of arguments present

in undergraduate research reports. This structure was encoded in the LASAD argument di-

agramming system and was used as a pre-writing exercise to support students in developing

written research reports.

I have also shown that argument diagrams can be reliable and valid predictors of student

performance on subsequent authentic tasks. As such they can be useful educational tools

both as a vehicle for evaluation and intervention. Moreover, as the results of the reliability
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analysis demonstrate (see Table 4.4) the diagrams can be graded more reliably than essays for

argumentative features and the diagram grades are, in turn, predictive of the essay grades.

The reification provided by argument diagrams is therefore beneficial for both students and

instructors.

8.4.2 Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITSs) have shown success in many fields including physics,

mathematics, and chemistry. To date ITSs have been less successful in more open-ended or

ill-defined [73, 74] domains such as writing, design, or public policy. In recent years, however,

there has been increased interest in these areas in work such as that of Easterday et al. [33],

Roscoe et al. [99], and Chryssafidou & Sharples [20]. The present work also contributes to

this research by demonstrating the utility of argument diagrams as pedagogical diagnostic

tools. This work also highlighted a process for iterative evaluation of rules in an ill-defined

domain through the use of exploratory data. This iterative evaluation is useful both to

support automated diagram assessment, and to assess the empirical validity of the individual

rules or constraints which allows us to assess the benefits of weak theory scaffolding. This

procedure can be applied in other similar tutoring contexts, even those that do not use

diagrams.

Argumentation is an open-ended domain and one that is problematic for expert systems.

Rather than build a tutoring system with ‘correct’ rules predefined it is possible to first

define a help-free system of the type used in the 2011 Study. Rules can then be articulated

by domain experts and tested against the existing data as was done in Chapters 5 and 7.

Expert-defined rules that have empirical validity can then be incorporated into subsequent

versions of the system or used to refine existing assumptions. These sets can then, in turn, be

used to collect additional data which are available for subsequent refinement. In this way we

start with an “exploratory” dataset that can function as a testbed for iterative improvement.

This is not the first time that this approach has been taken. A similar approach was taken in

[17] where the authors sought to iteratively refine pedagogical policies in a physics tutoring

system. This approach has also been used to generate procedural knowledge in an ill-defined
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domain in [83] and to test and generate hints in [113]. Thus the present use contributes to

this extant literature.

This kind of approach is well suited to online tutoring systems and large-scale systems. In

domains of this type it is not always ideal or even possible to articulate expert-defined rules

for every error. Nor can all problems be anticipated in an open and uncontrolled domain.

Through iterative extraction, however, it is possible to update systems and even to validate

expert assumptions about good behavior.

The challenges of this approach were highlighted in Chapter 5. The individual rules,

despite being relevant in context, were not always significantly correlated with performance.

This issue is, in part, a problem of data. While the amount of data collected from the course

was sufficient for present purposes, it is relatively small by machine learning standards.

Additional data will increase the sensitivity of the approach. The issue is also partially

a problem of grading. While the four detailed reliable target grades (E.01 (RQ-Quality),

E.04 (Hyp-Testable), E.07 (Cite-Reasons), & E.10 (Hyp-Open) see Section 5.5) represented

a range of features, they do not cover all of the pedagogically relevant aspects of the essays,

and the single gestalt grade (E.14 (Arg-Quality)) used in may simply be insensitive to the

problems addressed by an individual rule. Thus additional grading may be required.

When taking an approach of this type, however, it is also necessary to select an appropri-

ate standard for empirical validity. For the present work I chose statistically- or marginally-

significant correlation with the gestalt grade E.14. Lower standards, via higher p-values,

may also be appropriate given the limitations of available data. It may also be appropriate

to consider a role in a combined model of the type induced in Chapter 7. As noted, some of

the graph features that formed the predictive model were not individually valid. While this

work does not definitively settle the question of an appropriate standard, it does highlight

the utility of such an approach.

This work also contributes to future work on peer-review by demonstrating the devel-

opment of flexible ranking models that can be used to guide peer selection. In recent years

there has been increased interest in the use of peer-review for writing education. Systems

such as Comrade [35] and SWoRD [18] have been used in argumentation courses such as
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Research Methods, History, and Human-Computer Interaction, to leverage peer comments

in writing education. LASAD diagrams have been used for peer review both on Writing for

Biology and in subsequent RM courses at the University of Pittsburgh. In the most recent

studies the students were provided with automated advice based upon the complex features

described in Subsection 5.4.2 (pp. 69). My colleagues and I are currently testing the impact

of peer review on diagrams and subsequent essays.

Peer reviewers, like expert graders, can bring semantic understanding to bear on the

analysis of diagrams allowing them to identify textual problems of the type described in

Subsection 8.2.1. Peer reviewers, however, are not experienced graders and may face difficul-

ties in identifying salient diagram issues or in providing constructive advice. Prior research

at the grade-school level has shown that peer tutoring can be supported by expert systems

that are trained to advise the advisors [127]. The models described in the present work can

be used to support peer tutoring both by highlighting key features of the diagram that re-

quire grader attention and by ranking student diagrams to ensure that students are receiving

advice from appropriate peers.

8.4.3 Educational Data Mining

This work makes three primary contributions to Educational Data Mining (EDM) in the area

of applications. First and foremost it demonstrates that data mining and machine learning

can be fruitfully applied in the semi-structured domain of argument diagrams and that said

analysis can be used as a valid predictor of subsequent written essay performance. While

educational data mining has been exploding in recent years, most of that growth has been

in formal or well-defined domains such as math and physics or in classification tasks such as

gaming detection. This work demonstrates that EDM can be applied in more open-ended

areas such as writing and note-taking and in ill-defined domains where some scaffolding or

weak-theory structuring has been done [74].

Secondly this work has demonstrated the potential of hybrid models that combine a-

priori augmented graph grammars and linear regression. Little EDM work has been done

to date on argument mining (see [70]). This work, therefore, serves both to introduce Aug-
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mented Graph Grammars to the EDM community and to demonstrate their utility in realistic

educational applications.

Finally, the iterative refinement via empirical validation discussed above is relevant both

to ITSs and EDM. In the context of an intelligent tutoring system, empirical validation

can be used to test individual rule additions and to confirm the utility of the advice. This

approach is also ideally suited to large-scale class domains such as MOOCs where data is

collected en-masse. Such domains can be viewed, if we choose to do so, as a single large

ITS where student data from each iteration of the course is analyzed to refine the results

for subsequent evaluation and automatic advice. While prior work on iterative refinement

in EDM has been discussed above this is the first such work to focus on argumentation and

writing.

8.4.4 Graph Analysis & Linear Regression

Graph analysis has always been a fundamental area of computer science (see [111, 11, 57]). In

recent years graph analysis has become a major focus of analytical work with applications in

social networks [78], biomedical analysis [84], educational data mining [113, 89], and others.

Classic graph grammars of the type defined by Rekers & Schürr [97] have been instrumental

to this work. As I noted previously, however (see Section 5.3) static graph grammars of this

type have limitations when dealing with open-ended or complex data.

Current research problems, such as the analysis of flexible argument diagrams or in-

terconnected document collections, are suited to more complex rules that incorporate both

graphical connections and content analysis. The work described here contributes to research

on graph analysis by highlighting one such problem, argument diagrams, and demonstrating

that augmented graph grammars can be fruitfully applied to it. This work also extends

the literature on graph grammars by presenting the augmented graph grammar library in

Appendix F and showing a novel application of augmented graph grammars to open-ended

argument mining.

While the immediate focus of this work has been on the use and success of augmented

graph grammars for hand-tooled rules, the AGG library can readily serve as a basis for
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subsequent work on grammar induction. While prior work has been done on induction of

more restrictive grammars [24, 60, 59, 58] no work has been done to date on the induction

of complex grammars of the type used here. As such this work represents a contribution to

the generality of graph grammar techniques.

This work has also contributed techniques to machine learning for linear regression.

Chapter 7 presents two greedy algorithms for the induction of linear regression models

(greedyLM Algorithm 7.1) and non-multicollinear sets (greedyTol Algorithm 7.2). While

neither of these algorithms is wholly novel they are themselves important extensions of prior

work, particularly the heuristic approach taken in GeedyLM.

More to the point, in designing these algorithms I addressed issues of the assumptions

encoded in linear regression, in particular the problem of multicollinearity. As discussed

in Subsection 7.5.3 (pp. 116), multicollinear models are unstable and prone to overfitting

under linear regression. This led me to hypothesize that multicollinear datasets with greedy

induction would produce more error prone models than non-multicollinear sets. As noted

in Subsection 7.5.3, however, that was not the case. Rather the raw data had lower or

comparable RMSE and CMSE scores than the trimmed datasets suggesting that the use of

RMSE as a greedy induction target may, at least in this case, obviate the need for subsequent

reductions.

8.4.5 Technical Contributions

In addition to the research contributions discussed above this work has also made three

technical contributions. In addition to the induction algorithms greedyLM (Algorithm 7.1)

and (greedyTol (Algorithm 7.2). This work has led to the development of the AGG aug-

mented graph-grammar library (see Appendix F (pp. 223)), and the SNG grading toolkit

(see Appendix E (pp. 215)). These tools were instrumental to the completion of this thesis

and will form the basis for future work in rule induction and online evaluation. I also plan

additional analyses of the collected data.
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8.5 FUTURE WORK

In addition to the concrete contributions described above this work both raises interesting

research questions in several domains and will form the basis for future work.

8.5.1 Education

This work highlights a role for argument diagrams in education, even in absence of additional

AI support or tutoring. More work remains to be done however. Two immediate extensions

exist for the present work. The first goal is to test the connection between argument diagrams

and long-term performance. While this work has shown validity for the diagrams, it has

not yet been shown whether students’ argument diagrams predict their performance on

subsequent essays or exams. The distinction is a crucial one. If the diagram grades can

only be used to predict the students’ current essay grades, then they are useful as a gage of

argument quality but not necessarily a gage of long-term argument comprehension or written

argumentation ability. If, however, the grades are reliable predictors over a longer term then

they may serve as more robust measures and even as independently-graded activities rather

than assignment-specific interventions. Some data of this type has been collected from the

2011 course and analyses will take place in future work.

The second task is to assess the impact of argument diagramming on essay structure.

While Chryssafidou & Sharples [20] and Carr [14] reported some qualitative differences be-

tween diagramming and non-diagramming conditions, no systematic analysis has yet been

made. Ideally such comparisons would be made within a course using a within-subjects

design or other balanced assignment that allows us to compare the effect of diagramming on

students while controlling for course, instructor, and time. However such ideal conditions

are not always feasible with real students. As an alternative approach it may be possible

to compare essays gathered from the present study to that of other, non-diagram years, or

to perform the same cross-section comparison within a course, say from Assignment 2. A

sampling of papers from 2010 has already been collected but not yet been graded. I have

also collected papers and some grades from the second course assignment where some sec-
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tions opted out. I am examining this data to assess its suitability. In either case, while the

comparisons would suffer from confounds due to course variation, the analysis would still be

informative.

8.5.2 Intelligent Tutoring Systems

The first and most immediate extension of this work is to conduct a subsequent diagram-

ming study in the same course context where rule-based help is available. Such a study

would function both as an additional empirical validation of the rules, and the advice based

upon them, and as a vehicle for additional data collection. It would allow us to collect addi-

tional diagram data that is conditioned on the existing rules which would, in turn, support

subsequent analysis, as with the bootstrapping approach discussed above.

Research that builds upon this study is already being conducted at the University of

Pittsburgh. In subsequent studies, my colleagues and I have modified the diagramming

ontology to respond to instructor feedback, added automatic advice based upon the rules

tested here, and subjected diagrams to peer review adding an additional round of user

feedback. These studies have been designed to test the impact of the ontology features on

student performance and to collect additional data that now incorporates the empirically-

validated rules. Additional work is also being done to link the diagram structure to the

feedback offered, thus allowing us to localize some of the most relevant features.

In the long run it would be worthwhile to integrate this kind of diagramming component

into a writing tool. While the present line of work focuses on guiding students to produce the

diagram and then the essay, the fact of the matter is that students will alter their argument

as they write and may be more comfortable producing text in parallel with the argument.

A number of the study participants commented on their desire for a method to map text

easily from one form to the other.

Providing students with both a diagrammatic and written format may aid them in draft-

ing and editing their arguments. However, the use of a dual format should be controlled

lest one overloads the students. If, for example, users are able to produce an argumentative

diagram and then to link said diagram to an essay, this would help them to focus on smaller
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structured outlines and then to fill in the text as needed. This dual-representation format

would also allow the tutoring system to leverage both representations when providing guid-

ance, potentially allowing the techniques described here to be efficiently combined with the

approaches taken by [99]. These issues were addressed in part in [68] as were features of the

translation but more work remains to be done.

8.5.3 Graph Analysis & Linear Regression

While the augmented graph-grammars proved useful in the present work they face some

limitations of efficiency and flexibility. Rules such as R13 Disjoint Subgraphs are inefficient

as implemented and the present structure of rules such as paths do not take full advantage of

existing graph theory. Moreover the present rules do not test the full limitations of the field

semantics as they engage in limited textual analysis. Future work with the graph grammars

will focus on: improving the efficiency of the implementation; testing theoretical concerns

regarding the assumptions; exercising the limits of the textual analysis; and automatically

inducing predictive subgraphs rather than relying solely on a-priori definition. Given the

demands of data-intensive machine learning, and the comparatively large search space, how-

ever, this work would likely require both the collection of additional data and continued

involvement of domain experts.

In future work I will also test the generality of the machine learning results and of the

conclusions described in Subsection 8.4.4 regarding the relationship between multicollinearity

and RMSE. In order to test the generality of these results, however, they should be tested in

other datasets including some artificial datasets where the level of multicollinearity can be

controlled and where subsequent independent validation can take place above and beyond

cross-validation.
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8.6 CLOSING

The process of this research has been, at times, as fast as an ice age and felt as easy as

balancing on top of a quail’s egg. But ultimately the results are both timely and promising.

Argument diagrams have a long history some of which, perhaps, has been spent as a solution

looking for a problem. However ultimately they are pedagogically useful. While this study

does not show that diagramming improves writing, it does show that diagrams can serve as

a reliable vehicle to critique writing and to predict future performance, a vehicle that allows

for both automatic assessment and expert evaluation. More remains to be done including

determining whether or not the automatic and expert assessment can complement each other.
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APPENDIX A

LASAD MATERIALS

This appendix includes introductory materials to the LASAD system that were provided to

the instructors, students, and graders. The first document was a written howto document

provided in paper form to all study participants. The document was also used as a reference

point for system help. The slides were presented as part of an in-class introduction to the

students.
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Introduction to the LASAD System.
Collin Lynch. (collinl@pitt.edu)

02/16/11

As you were shown in your classes LASAD is an on-line tool designed to facilitate the production of 
argument diagrams both as annotations of existing texts and when planning your own writing.  You will 
receive specific assignments from your instructor or via a separate e-mail.  In this document you will be 
shown the basics of LASAD for argument diagramming including logging in, creating diagrams, and 
annotating cases.  

Logging in:

To use LASAD open any standard web browser and go to the URL provided in your class.  There you 
will get the login screen shown below.

Go ahead and enter the user-name and password that you were provided into the browser as shown, and 
hit return to login.  If you enter incorrect login information a message will pop up in the lower right 
corner of the screen informing you of the error.  
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Once you login to LASAD you will be provided with the following browser panel:

For the purposes of the study you should select a map from the "Join a prior session..." panel at the 
bottom left-hand corner of the screen.  These sessions are user-specific so you will be working 
independently.  For the present work you should not opt to "Join an active session..." or "Create a new 
session from a template..."  Picking a map will cause the Map Details to appear on the right-hand side 
of the window.  The maps are assignment-specific and your instructor will tell you what map to work 
on for each assignment.  

Once you pick a map click on the "Join" button at the bottom of the right-hand side to start work.  
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Annotation tasks:

The bulk of your homework assignments will be annotation tasks in these tasks you will open up a map 
that has a set transcript associated with it.  When you login to a map of this type you will see the 
transcript on the left-hand side of the screen and have a workspace on the right as shown below.  

The transcript is a series of numbered lines each of which corresponds to a single sentence in the initial 
text.  Both the workspace and the transcript can be scrolled independently to provide space.  
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Author Diagrams:

Some of your assignments will involve author diagrams where you use the tool to plan your 
diagramming tasks.  For these tasks you will have a screen with no transcript as shown below. As 
described below you will create nodes without a transcript connection by right-clicking on the diagram 
panel.  
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Argument Diagrams.

Diagrammatic models of argument are graphical representations of arguments.  These range from very 
simple "box and line" models, which solely represent text and immediate relationships between them, 
to more complex formalisms with specific construction rules.  Here we employ a relatively simplified 
model that focuses attention on key parts of the arguments made in empirical work.  Here we have four 
node types:

Claims: represent general research questions raised by or claims made  
by the author of the argument such as those shown at right.  
Claims can be used to encapsulate any rhetorical point that is  
important for later discussion.

As shown at right the claim node consists of a single text block 
and an optional link to the transcript.  I will discuss the linking 
in more detail below.  

Citations: represent literature references or links to other related 
work.  This includes references to scholarly works such as 
published papers as well as other sources such as personal 
communication.

Again see the image at right.  As shown here citations contain two text fields, one for the 
actual citation name, and the other for a summary of the citation if one is provided.  It is 
good form when citing a source to provide at least a brief description of it including 
essential features such as the methodology employed so that your readers can judge the fitness 
of the citation in your work.  Citations, as with all other nodes may also be linked to the 
transcript.  

Hypothesis:  Hypothesis nodes represent a formal empirical hypothesis that 
is or can be tested by some empirical study.  The level of formality 
desired by your instructor is task-specific but the hypothesis itself is 
a pseudo-logical node as shown at right.  

Hypotheses are expressed as if-then rules with the hypothesis node 
containing fields for 'If' and 'Then' clauses.  The third "Otherwise" 
clause is optional and may be added or removed by selecting the [+] 
button in the node's titlebar.  It can be removed by the [-] button.

Current Study: The current study nodes offer an opportunity to make 
short comments about the structure of the current study.  This is 
not about stating your methods section but more about 
referencing important characteristics of the current study when 
comparing the planned study to prior literature.  Like the claim 
nodes a current study node consists of a single text field and 
optional transcript link.
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Nodes can be added to the transcript in three distinct ways.  First, and foremost, a node may be 
generated by highlighting a portion of the transcript as shown below.  The user can then click on the 
highlight and by "dragging" it into the diagram workspace they will be asked if they want to generate a 
new node as shown in the image below.  

Releasing the mouse will bring up a selection menu from which you can 
choose the type of node to be created.  The resulting node will be linked to 
the specified portion of the transcript as represented by the line reference at 
the bottom of the node.  Transcript links can be used to scroll automatically 
to the selected line.  

Unlinked nodes can be added by right-clicking on the diagram space to generate a new node.  On Macs 
this can be accomplished by using a two-finger click or via the Add menu at the top of the panel.    This 
brings up the same addition menu as shown above.  Unlinked nodes behave the same as others save 
that they do not contain a reference to the transcript and one cannot be added.  

During annotation tasks you should use the highlighting method to maintain the connection to the text. 
During the authoring tasks, right-clicking is the best method for node addition.  
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Once nodes are created you can draw arcs between them.  The Intro system defines four types of arcs, 
each representing a different type of relationship:

(+) Supporting Arcs: indicate a supportive relationship with one node (the tail node) supporting the 
root node.  An example of this relationship drawn from an argument diagram is shown in the 
figure below.  The green arc drawn from citation node #3 in the lower-left to claim node #2 
in the upper right represents the citation #3 being used to support claim #2.  

At the center of the green supporting arc is a text field indicating the reason why #3 supports 
#2.  When forming your argument it is important to think not just about what facts you have 
on your side but why those facts or sources support the claims being made and to make that 
clear to the readers.  That is the function of this field.  

(?) Undefined Arcs: represent a factual or topical relationship between two nodes that is neither 
positive or negative.  In the figure below such an arc is shown connecting from claim #10 to 
claim #2 on the right-hand side.  Here the rationale in the text-box still expresses why the 
relationship exists but with no polarity.  During annotation tasks the content of the arcs should 
be drawn from the text itself while during authoring tasks you are free to specify as desired.  

(-) Opposing Arcs: represent the opposite polar case from support.  Here the tail node is opposing or 
undercutting the content of the head node.  An example of this is shown in the figure below 
where citation #6 opposes hypothesis #25 citing the fact that the materials used are 
dangerous thus reducing the likelihood of the hypothesis holding true.  

(~) Comparison Arcs: represent a means of drawing analogies and distinctions between two nodes, 
particularly between two citations or between citations and descriptions of the present study.  
When presenting literature in your introductory section, particularly literature that relates 
differently to shared neighbors as is the case here (citation #8 support the hypothesis while 
citation #6 opposes it).  In this case we draw a comparison between the citations.  
Comparison arcs contain, at minimum, two text fields one for analogies or similarities 
between the studies, and the other representing distinctions between them.  Additional fields 
can be added through use of the [+] button on the titlebar of the box located at the center of 
the arc.  This button will become visible when the mouse is over the box.
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In the example shown above the two studies are similar in that both acknowledge the potential danger 
of mercury and other materials.  Yet they differ in that Madsen claims to draw a specific link between 
the MMR vaccine and autism while Bale states that no such link has been proven.  Identifying such 
comparisons and presenting them in your literature review helps to ensure that your readers see why 
you cite apparent conflicts and how you plan to resolve them.  

Drawing Arcs: in order to draw an arc between two boxes you should click on one of the four anchor 
nubs located on the sides of your designated tail node.  Then, holding down the mouse you can drag the 
resulting line until it impacts your target node.  Once that is done you will be presented with an arc-
type menu (shown at right) similar to the node selection menu.  Selecting the arc sets the type.

You can reverse the direction of an arc. with the reversal button located on the titlebar of the arc box. 
This button will appear when the mouse hovers over the titlebar of the arc.  The button is shown below:

The [+] button which appears on the arcs when the mouse hovers over them is shown below.  This is a 
general addition feature that can also be used to add optional features to the hypothesis node though a 
similar "mouse-aware" button.  
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Deleting contributions: all items in the space can be removed by clicking on the [x] button located in 
the upper-right hand corner of each node or arc title pane.  

Saving Diagrams:

Your work on LASAD is saved as you work so you do not need to take any special steps to save it.  As 
long as you login to the same server each time your work will remain.  

Closing LASAD:

When you are done working with a map you can close it by clicking on the [x] at the top of the map tab 
as shown below.  This will bring up a popup asking you if you wish to close the map.  Clicking yes will 
close it.  Your work is saved automatically to the server as you work and can be reloaded by following 
the same initial loading steps.  

In order to close the system clock the [Logout] button located on the bottom right-hand corner of the 
window as shown below.
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System Information.

LASAD is an entirely web-driven application and, as such, stores your work on the server.  You will 
not need to extract or print-out your diagrams for the course and you will be able to login multiple 
times using the user-name and password provided to retrieve them.  

LASAD is written in JavaScript and thus is cross-platform compatible.  However prior students have 
reported that the system is slower when being accessed through Internet Explorer.  We thus encourage 
you to consider Firefox or other alternate browsers.  

Some users have reported that, when a node is deleted the "System Resources" panel will expand into 
the field of view.  This panel does not serve a purpose in the present system and thus 
can be ignored.  It can be collapsed by clicking on the collapse button: 

For further information you can contact me via e-mail:  collinl@pitt.edu
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Diagramming with LASAD

Collin Lynch

Intelligent Systems Program & LRDC
University of Pittsburgh, 
Pittsburgh, Pennsylvania.

02/2011

  

Scientific Argument
● Science is about communication.

● State clear research questions.
● Advance defensible answers to the questions.

● Structure:

● Identify open research questions.
● Identify relevant research hypotheses.
● Make general research claims.
● Defend those claims as being: 

– appropriate, 

– relevant, 

– logically sound.
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Structure.

● Abstract: Why read this paper.

● Introduction:   What is in this paper.

● Methods: What will/did I do.

● Results: What did I find.

● Conclusions: What do I think about that.

  

Introduction.

●  State your general research questions & claims.

●  Cite the relevant background literature.

●  Describe your work (at a high level).

●  State your research hypotheses.

●  Draw connections between them.

● Paper Order: Claims; Citations; Work; Hypotheses.

● Work Order:  Claims; Hypotheses; Citations; Revise; 
Work.

168



  

Introduction (Argument)

● Your work is relevant to the world.

● Your research question is novel, open or unanswered.

● Your hypotheses are appropriate for the question.

● Your hypotheses are testable. 

● Your methodology is sound.

● Drawing analogies and distinctions between your work 
and the work of others. 

  "Yes I'll buy that."   Reading, & Writing.

  

Example: Kim et al.

● Claims & Questions: 
● Gender differences in psychopathology patterns are 

well-documented.
● Research on early childhood might provide 

important information regarding initial contributions 
of various factors involved in these gender 
differences. 

● However, existing studies have mostly focused on 
school-age children and adolescents, with little 
study of younger children.

PARENTING AND PRESCHOOLERS' SYMPTOMS AS A FUNCTION OF CHILD 
GENDER AND SES

Hyun-Jeong Kim; David H. Arnold; Paige H. Fisher; Alexandra Zeljo
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Example: Kim et al.
● Citations:

● Boys show more frequent externalizing disorders than girls 
beginning at a fairly early age; studies suggest that gender 
differences in externalizing problems emerge sometime 
during the preschool years, eventually becoming two to 
three times more common in males than females (Keenan & 
Shaw, 1997).

● This hypothesis is consistent with previous findings (Arnold 
et al., 1993; Baumrind, 1966).

● Keenan and Shaw (1997) hypothesized that girls’ 
internalizing behaviors are, in part, socialized through 
parental, teacher, and peer influences based on female 
stereotypes.

 

  

Example: Kim et al.
● Discussion of the study: 

● In the present study we investigated the relation of 
lax and overreactive parenting to psychopathology 
in girls and boys.
 

● We assume that externalizing behaviors of boys are 
more congruent with parents’ gender stereotypes, 
so that parents would tend to be lax in response to 
boys’ externalizing behaviors.
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Example: Kim et al.

● Hypotheses:

● First, we predicted a relation between externalizing 
behaviors and lax parenting of boys. 

● Second, for similar reasons, we predicted that 
internalizing behaviors would be related to lax 
parenting of girls.  

  

LASAD
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LASAD

Reading:  Read and annotate the argument 
structure in existing papers.

Outlining: Prepare your introductory 
argument before writing it.

Reviewing:   Annotating the argument in your 
peers' work.
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LASAD
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APPENDIX B

CLASS ASSIGNMENT

This chapter contains a representative copy of the class assignment provided to the students.

This focuss solely on the essay criteria and includes additional information above and beyond

the contents of the introduction.
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PSY 0035:  Research Methods

Assignment 7: Observational Study Paper
General Overview of the Assignment

ASSIGNMENT 7 DUE:   

Draft = 20 points

LENGTH:  Approximately 8-10 pages 

MUST INCLUDE (in this order):
Title Page   
Abstract  
Introduction  
Method  
Results  
Discussion  
References  
Table  
Figure Caption & Figure  

OTHER REQUIREMENTS:

 Your paper must have at least five (5) references from PsycINFO.  You may use instructor-
provided references for two (2) of your references, but you will need to find three (3) more 
references on your own. You need to turn in complete copies of the articles or chapters that you 
use for references with your paper.  If you use a book you just need to turn in the relevant pages 
(e.g., a copy of a chapter) and the title page. 

 Discuss at least one study or theoretical position that conflicts with a hypothesis.  Explain why 
some prior work supports and other work opposes this hypothesis. 

 You should NOT wait until the entire study has been completed to begin writing — you should be 
working on sections of the paper throughout the course of this project.  Your lab instructor will 
provide guidelines for submitting drafts.

 You must submit an electronic version of your paper to SWoRD.

 Late papers will not be accepted. 

Page 1 of 5 Revised 11/28/12
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PSY 0035:  Research Methods

Grading Rubric
 

Element of Paper
Max. 

Possible
Points 

Points 
Earned

Abstract:
All required information included?
150 words or less; concise, specific, and accurate?
Appropriate level of detail?

1

Introduction:
Central topic introduced and background information provided?
Brief high-level overview of study design and clear statement of hypotheses? 
Appropriate integration of conflicting research findings into a convincing 
argument for at least one hypothesis?

4

Method:
Participants adequately and accurately described?
Procedures presented accurately and clearly so study can be replicated? 
Appropriate level of detail that excludes inconsequential details

2

Results:
Descriptive statistics reported either in text or table/figure?
Statistical tests reported completely and accurately?
Tables/figures correctly referenced in text?
Results worded so they’re clearly linked to hypotheses/research questions?

2

Discussion:
Main findings summarized?
Results clearly and accurately interpreted?
Current study put into context in relation to previous work?
Strengths/weaknesses, alternative explanations, implications, suggestions for 
future research discussed as needed?

4

Global Writing:
Writing clear and concise, not wordy or confusing?
Ideas well organized, part of a coherent argument, flow together well? 
Tone appropriate for readership of professional psych journal?

3

Technical Writing:
Sentences complete and grammatically correct?
Paper carefully proof-read and spell-checked?

2

APA Style:
Is APA style used correctly for 
the following?

Numbers
Statistics
In-text citations
Paper header
Abbreviations
Section headings
Etc.

Are the following elements formatted 
according to APA style?

Title page
Abstract
Introduction
Method
Results
Discussion
References
Table/Figure

2

Total For Draft 20

Page 2 of 5 Revised 11/28/12
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PSY 0035:  Research Methods

Grading Criteria 

18 - 20 Points:  The paper demonstrates a sophisticated and insightful understanding of the 
assignment.  The content of all sections of the paper is complete and accurate. The writing is clear, 
well organized, and grammatical, and the tone of the language is appropriate for the given audience. 
It has been carefully spell-checked and there are few if any typographical errors. Careful attention 
has been paid to the use of APA style throughout the paper.  Overall, an outstanding effort.

16-17 Points:  The paper demonstrates a clear understanding of the assignment. The content of the 
sections of the paper for the most part is complete and accurate. The writing is usually well 
organized and grammatical. It has been spell-checked and there are few typographical errors. 
Attention has been paid to the use of APA style throughout the paper, although there are occasional 
errors. Overall, a solid, above-average effort.

14-15  Points:  The paper demonstrates a basic understanding of the assignment. The content of 
several sections of the paper is incomplete and inaccurate. The writing is somewhat organized and 
grammatical. It has been spell-checked but typographical errors are relatively common. Some 
attention has been paid to the use of APA style throughout the paper, but errors are frequent. Overall, 
an adequate but unspectacular effort.

12-13 Points: The paper demonstrates only a superficial understanding of the assignment. The 
content of several sections of the paper are seriously incomplete and inaccurate; sections of the paper 
may be missing entirely. The writing is disorganized and ungrammatical. It has not been spell-
checked. Typographical errors are so common as to interfere with a basic understanding the writing. 
Little attention has been paid to the use of APA style. Overall, a substandard effort.

Less than 12 Points:  The paper demonstrates a complete misunderstanding of the assignment 
AND/OR the author clearly did not spend enough time on the paper.  Significant portions of the 
paper are missing. The writing lacks any kind of organization.  No attempt was made to proofread or 
spell-check the paper. No attention has been paid to APA style.  An unsatisfactory effort.
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PSY 0035:  Research Methods

TENTATIVE SCHEDULE:

Note that this order may change slightly depending on your lab's work pace, such as how long your 
data collection takes.

1. Begin a literature search on your class’ topic (Assignment 2)

2. Finalize a general hypothesis and your study design.

3. Narrow literature search, create an argument diagram justifying your hypotheses (Assignment 

4)

4. Gather data, write your Method section

5. Review the argument diagrams submitted by three peers (Assignment 5) 

6. Provide back-evaluations about the helpfulness of your peers’ reviews of your diagram and 

then revise your argument diagram based on their feedback (Assignment 6). 

7. Conduct data analysis, discuss results of study, and create Tables and Figures.

8. Write Title Page, Introduction, Results, Discussion, and Abstract (Assignment 7)

9. Review the papers written by three peers (Assignment 8)

10. Provide back-evaluations about the helpfulness of your peers’ reviews of your paper and then 

Revise your paper based on the feedback provided by your peers (Assignment 9)

Page 4 of 5 Revised 11/28/12
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PSY 0035:  Research Methods

Instructions for using SWoRD to submit your first draft

Save your paper when you are finished 

1) When you are done with your paper, name the file so it can be uploaded.  Also make sure 
you know where your file is saved and that is has the appropriate name.

2) The name of the file should start with the last name of your TF, a hyphen, the code “P1D1” 
without the quotation marks, followed by your Peoplesoft number as in: Jones-P1D1-
9999999.doc

3) Note: .doc, .docx, txt, and .rtf are all adequate file types

Use SWoRD to submit your diagram.

1) Go to the main SWoRD web page: http://sword.lrdc.pitt.edu/sword/
2) Login using the password you created. If you forgot your password, click on the “Login 

Problems” link to reset your password. 
3) From your account Home page click on the Course Name and this will take you to the 

Assignment List page. In the My Submission column click on Upload for the “First Paper 
Draft One.” 

4) Enter a Paper Short Name and click on the Browse button to choose the appropriate file. 
Click the Upload File button. The Assignment List page will come up showing that your 
paper was successfully submitted.

5) A warning about the filename and Paper Short Name: Please make sure that your Paper 
Short Name and the file name do not contain any special characters. SWoRD will not 
recognize them and you’ll get an error when you try to submit your diagram.
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APPENDIX C

GRADING RUBRIC

The grading Rubrics contain a total of 14 questions each covering specific features of the

argument and argumentative skills, such as stating a research question and distinguishing

cited works, and the overall coherence and quality. Each question in the rubric has a number

of the form (E|G).∗ which denotes the rubric it is in (either Essay or Graph, and its index.

It also has a long name and a short descriptive name (e.g. Arg-Coherent). Because the

rubrics are parallel the paired questions are isomorphic. Thus they share the same short

name. When referring to individual questions then I will use both their qualified number

(e.g. E.13 ) and their short name (e.g. Arg-Convincing). When referring to pairs of questions

I will use a combined name (e.g. G/E.11 (Study-Novel)).

All questions were graded using the web-based SNG grading tool and contained three

values:

Value The score which was a scale graded on a range of (-2 – 2 ) in 1
2

point steps with the

optional score of N/A for some questions. For the summative questions E.14 and G.14

(Arg-Quality) the score range was (-5 – 5 ) again in 1
2

point steps.

Free Text For some questions the grader was asked to supply a free-text answer specifying

possible fixes or explaining their score.

Selections For questions with an identification component (e.g. pick the hypothesis) the

grader was asked to select the relevant text or note the individual node and arc IDs.

The question pairs are listed below. The E.01 (RQ-Quality) – 14 (Arg-Quality) questions
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were applied to the essays while the G.01 (RQ-Quality) – 14 (Arg-Convincing) questions

were applied to the diagrams. For both rubrics the questions can be divided into two classes.

Questions G/E.01 (RQ-Quality) – G/E.11 (Study-Novel) are feature questions that focus on

key features of the argument such as the framing of the hypothesis or the support provided

to the research question. Questions G/E.12 (Arg-Coherent), G/E.13 (Arg-Convincing), and

G/E.14 (Arg-Quality) by contrast, are gestalt questions that ask about the argument as a

whole.
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E.01/G.01: Research Question Quality (RQ-Quality)

Range : -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.01 : Did the author clearly state a central research question early in the essay? Please

highlight any research questions found in the text. Could the question be improved in

any way? If so please describe it below.

(-2) No research question was stated.

(0) A research question was stated but not clearly.

(2) The author presents a clearly-framed research question at the start of the essay.

G.01 : Did the author include a central research question in the diagram represented by a

root claim node with its contents framed as a question to which other subquestions or

claims are connected? Can the question be improved in any way? Please add the node

number(s) of the research question nodes below and describe any potential corrections

or improvements.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(-2) No claim node framed as a research question was included.

(0) A claim node exists that is framed as a question but the question, and its relation to

the rest of the diagram, is not clear. Or the author has included single central node

that is being used in lieu of a research question (such as a central Current Study

node) but it is not a claim node or is not framed as a question.

(2) The author includes a single root claim node clearly framed as a research question.
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E.02/G.02: Research Question Link (RQ-Link)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.02 : Was the research question, if stated, clearly relevant to, and integrated into the

essay? That is, did the author reference it, link subsequent claims and hypotheses to it,

or reference its content in the remainder of the essay.

(N/A) No research question stated.

(-2) The research question was disconnected from, irrelevant to, or ignored in the re-

mainder of the argument.

(0) While the research question was relevant to the rest of the argument the author did

not clearly connect their question to the hypotheses or other parts of the essays or

reference it.

(2) The author stated a clear research question that is relevant to their argument and

draws clear rhetorical and thematic links between the research question and their

subsequent claims and hypotheses.

190



G.02 : Was the research question, if included, clearly relevant to, connected to the argument

diagram? That is, did the author draw links between the research question node and

other claims or subclaims in the diagram? Were clear reasons provided for those links

on the arcs themselves? And was the content of the question relevant to the rest of the

argument diagram?

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) No research question node was stated.

(-2) The research question node was disconnected from or wholly irrelevant to the re-

mainder of the argument.

(0) While the research question was linked to other parts of the argument diagram the

author did not provide reasons for the links or did not make clear why the question

was relevant to the remainder of the argument.

(2) The author stated a clear and relevant research question, drew links between that

question node and other important subclaims, and provided clear reasons for the

relationships.
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E.03/G.03: Research Question Support (RQ-Support)

Range : -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.03 : Did the author cite relevant background literature related to the research question?

Is there any literature that is missing that should be included? If so please describe it

below.

(-2) No literature is cited, the literature is unrelated, or the citations make it appear to

be unrelated.

(0) The cited literature appears to be relevant based upon the content of the essay alone

but the citation text does not adequately explain why the author believes it is rele-

vant.

(2) The cited literature is clearly relevant and the citation text makes the relevance

explicit.

G.03 : Did the author include citation nodes that describe relevant background literature

related to the research question based upon the content of the citation nodes? Is there

any literature that is missing that should be included? Or should any of the summaries

be re-framed? If so please describe it below citing the specific node numbers of interest.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(-2) No citation nodes are included in the diagram, or the citations appear to be unre-

lated based upon their descriptions.

(0) The cited literature appears to be relevant based upon the content of the diagram

but the citation summaries do not adequately explain why the author believes it is

relevant.

(2) The cited literature is clearly relevant based upon the summaries presented in the

citation nodes and the summary text makes this relevance explicit.
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E.04/G.04: Testable Hypothesis (Hyp-Testable)

Range : -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.04 : Did the author articulate a testable hypothesis or hypotheses? Please highlight any

hypothesis found in the text. Should the hypotheses be re-framed in any way? If so

please state any corrections below.

(-2) No hypotheses are stated, or the stated hypotheses are not articulated in a way

that can be tested.

(0) It is unclear whether the stated hypotheses are testable.

(2) The stated hypotheses are clear, logical, and can be tested experimentally.

G.04 : Did the author include one or more hypothesis nodes in his or her diagram that are

framed as testable hypotheses? Should the hypotheses be re-framed in any way? If so

please describe how and cite specific node numbers for the hypotheses of interest.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(-2) No hypothesis nodes are included or the hypothesis nodes included are not articu-

lated in a testable way.

(0) It is unclear whether the stated hypothesis node(s) are testable.

(2) The hypothesis node(s) included are clear, logical, and can be tested experimentally.
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E.05/G.05: Hyp Question Link (Hyp-Link)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.05 : Were the hypotheses relevant to and clearly connected to the research question? If

the connections or relevance could be improved please state how.

(N/A) No research question or hypotheses are presented.

(-2) The author did not explain the connection between the research question and hy-

potheses in the essay.

(0) While the author linked the research question and hypotheses in the text, he or she

does not make the basis for the connection clear.

(2) The research questions and hypotheses are clearly stated and the author explains in

the text how they connect to one another.

G.05 : Were the hypothesis node(s) presented relevant to and connected to the research

question node via a path in the diagram? If any improvements could be made either by

the addition of new nodes or by a re-framing of the content please describe it below.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) No research question or hypothesis nodes are included in the diagram.

(-2) The author did not draw any paths from the hypothesis nodes to the question node

in the diagram or the existing paths point the wrong way from the question node to

the hypothesis nodes.

(0) While the author drew a path from the research questions and the hypothesis nodes

in the diagram, he or she did not provide an warrant for each arc in the path or the

warrants were not stated clearly.

(2) The author drew arcs that connected directly from the hypothesis nodes to the

research question node and provided a clear warrant for each arc in the diagram.
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E.06/G.06: Cite Conclusions Stated (Cite-Conclusions)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.06 : When presenting citations did the author explicitly state the conclusions that he or

she drew from the citation and how they related to the present work? Could any of the

citations be improved by a restatement of the conclusions? If so please state them below.

(N/A) No prior work is cited.

(-2) The author did not state the conclusions that he or she drew from the cited work

nor did he or she state how they related to the present work.

(0) While the author states the conclusions that he or she drew from the cited work the

author did not do so clearly nor did the author make the relationship between the

cited work and the present work explicit.

(2) The author explicitly states the conclusions that he or she drew from the cited work

and explicitly states how they relate to the present work.
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G.06 : When presenting citation nodes did the author state the conclusions that he or she

drew from the cited work in the summary field and make clear how the cited work related

to the present work? Could the statements be improved in any way? If so please discuss

them or make other comments with appropriate node numbers below.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) No citation nodes are included in the diagram.

(-2) The author did not state the conclusions that they drew from the cited work in

the summary field of the citation node, nor did he or she explain the relationship

between the cited work and the present work on a path from the citation node to

the other nodes in the diagram.

(0) While the author stated the conclusions that he or she drew from the cited work in

each citation node and drew a path between the citation nodes and other parts of

their diagram their warrants for the relationships in the path were not stated clearly.

(2) The author explicitly stated the conclusions that he or she drew from the work cited

in the citation nodes. He or she also made clear how the cited work relates to the

present work by drawing arcs directly from the citation nodes to other parts of the

diagram and providing explicit warrants for the relationships.
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E.07/G.07: Cite Reasons Stated (Cite-Reasons)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.07 : Did the author clearly summarize the relevant content of and conclusions drawn

in any cited work? Did they clearly state the reasons why the cited work supports,

opposes, or informs upon their claims? And did they clearly distinguish between the act

of summarizing existing work and advancing their own arguments?

(N/A) No prior work cited.

(-2) The author did not summarize prior work; did not clearly state how the cited work

supports, opposes, or informs upon their work; nor did they distinguish between the

reporting and editorializing tasks.

(0) The author summarizes cited works inconsistently; does not consistently state how or

why the work relates to their own argument; or does not clearly distinguish between

summary and argumentation.

(2) The author clearly summarizes the relevant content of each cited work; clearly ex-

plains the works’ relationship to their own arguments; and draws a clear distinction

between presenting summaries of others’ arguments and articulating their own.
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G.07 : Did the author present clear summaries of the cited work in their citation nodes?

Did they clearly state the reasons why the cited work supports, opposes, or informs upon

the neighboring nodes on the arcs themselves? And is there a clear difference between

the content of the summaries and the content of the argumentative arcs?

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) No citation nodes used.

(-2) The author did not include any summaries on the citation nodes; did not link

the citation nodes to the rest of the argument or did not include reasons for the

argumentative relations on the arcs; or did not clearly distinguish between the two.

(0) The author is inconsistent in summarizing the cited works; does not consistently

relate the cited works to other nodes in the argument diagram; does not consistently

give reasons for the relationships; or does not consistently differentiate between sum-

marizing others work and explaining how that work supports, opposes, or informs

upon their arguments.

(2) The author present clear consistent summaries of the relevant features of each cita-

tion in the summary field; they consistently connect the cited works to the rest of

the argument diagram and include reasons for the argumentative relations on each

arc. Moreover the summaries and reasons and clearly distinct from one-another.
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E.08/G.08: Claims Supported (Claim-Support)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.08 : Did the author adequately support his or her claims or subclaims via relevant cita-

tions? Should any citations be added, should any of the included citations be re-framed,

or should the author add any text to make the supporting relationships clear? If so

please explain below.

(N/A) The author cited no prior work or did not articulate any research questions or

claims.

(-2) The author drew no connections between the claims or subclaims and the citations.

(0) While the author drew connections between the citations and claims he or she did

not state clearly whether the cited work supports the claims or why he or she thinks

that it would support them.

(2) The author presents his or her claims and supporting citations clearly and states

explicitly how and why the citations support the claims.
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G.08 : Did the author adequately support his or her claim nodes with relevant citation nodes

by drawing supporting paths from citation nodes to the claim or subclaim nodes and

providing warrants for the supporting arcs? For each claim node there should be a path

with supporting arcs leading from some citation node to the claim node. One citation

node may support multiple claims. Should any citations or relations be added or should

any of the included citations be re-framed to make the supporting relationships clear?

Should any supporting arcs be added or re-framed to make the supporting relationships

explicit? Please explain below.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) The author included no citation nodes or claim nodes in his or her diagram.

(-2) The diagram contains no supporting paths from citation nodes to the claim nodes.

(0) While supporting arcs or supporting paths exist from citation nodes to the claim

nodes the author does not provide an explanation for the supporting relations.

(2) The author drew supporting paths or arcs from the citation nodes to each of the

claim nodes and provides an explanation for the supporting relationship on each

intervening arc stating clearly how and why each source in a citation node supports

the target.
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E.09/G.09: Research Question Open (RQ-Open)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.09 : Did the author defend the open nature of his or her research question by citing

similar work that disagrees about the question or comes to opposing conclusions regard-

ing it? That is, did the author cite work that both supports the research question or

subquestions, and work that opposes the question or subquestions? Please highlight any

citations that disagree in the text and describe that disagreement below.

(N/A) No prior work is cited or no research question is articulated.

(-2) No work is cited that disagrees about any part of the author’s argument.

(0) The author cites work that appears to disagree regarding the central research ques-

tion or subquestions based upon the authors’ statements or the content of the ci-

tations as summarized by the author, but does not explain the implications of this

disagreement and conclusions that he or she draws from the cited work, nor does he

or she draw clear analogies and distinctions between the different citations to explain

the apparent differences.

(2) The author cites two or more pieces of work that clearly and explicitly disagree

about the author’s central research question or subquestions and clearly identifies

and addresses the implications of this disagreement for the author’s proposed study.
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G.09 : Did the author defend the open nature of his or her research question by including

citation nodes that disagree about the research question or come to opposing conclusions

regarding the question or subquestions of it? That is, did he or she include at least

one citation node that is connected to the research question node or a subquestion node

via a supporting path, and one that is connected to the same question node via an

opposing path? Please describe the disagreements that you noted below with specific

node citations.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) No citation nodes are included or no research question is included in the diagram.

(-2) No pair of citation nodes are presented that disagree about any part of the author’s

argument.

(0) The author includes citation nodes that disagree about his or her central research

question or the subquestion nodes. However the author does not include a clear

explanation of the supporting and opposing relationships by providing clear warrants

on the arcs in the paths, nor do they attempt to explain the disagreement by drawing

a comparison arc between the disagreeing nodes.

(2) The author includes two or more citation nodes that disagree about the author’s

central research question or subquestions. The citation nodes are also directly con-

nected to the question node by including clear warrants on each of the supporting

and opposing arcs. And, the author clearly explains the disagreement by drawing

a comparison arc between the citation nodes with clearly specified analogies and or

distinctions noted on it.
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E.10/G.10: Hypothesis Open (Hyp-Open)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.10 : Did the author argue that his or her hypotheses are open questions by citing work

that disagrees about the hypotheses or draws differing conclusions about them? Please

highlight any citations that disagree in the text and describe that disagreement below.

(N/A) No prior work is cited or no hypotheses are articulated.

(-2) No work is cited that disagrees about the author’s hypotheses or the author fails to

make clear the relationship between the cited work and the hypotheses.

(0) The author cites work that appears to disagree about the validity of the stated hy-

pothesis or hypotheses but the connection between the cited work and the hypothesis

or hypotheses is not clear or adequately explained.

(2) The author cites work that clearly disagrees about the validity of the stated hypoth-

esis or hypotheses and explains the implications of the conflicting citations.
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G.10 : Did the author argue that his or her hypothesis nodes are open questions by:

including citation nodes that disagree about them; drawing conflicting paths from the

citation nodes to the hypothesis nodes with clear warrants on the arcs; and drawing a

comparison arc between the citation nodes to explain the disagreement? Please describe

any disagreements below with specific node citations.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) No citation nodes are included in the diagram, or no hypothesis nodes are in-

cluded.

(-2) No pair of citation nodes are presented that disagree about any part of the author’s

argument.

(0) The author includes citation nodes that disagree about his or her hypothesis node(s).

However the author does not clearly explain the supporting or opposing relations by

providing a warrant on the arcs, nor do they attempt to explain the disagreement

by drawing a comparison arc between the disagreeing nodes.

(2) The author includes two or more citation nodes that disagree about the author’s

hypothesis node(s). The citation nodes are also directly connected to the hypothesis

node(s) via clearly-explained supporting and opposing arcs. And, the author clearly

explains the disagreement by drawing a comparison arc between the citation nodes

with clearly specified analogies and or distinctions noted on it.
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E.11/G.11: Current Study Novel (Study-Novel)

Range : N/A -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.11 : Did the author show the novelty of his or her proposed study by drawing explicit

comparisons and contrasts between it and prior work that they had cited? Please high-

light the portion of the text where they discuss the novelty of the work and describe the

distinctions below.

(N/A) The author cited no prior work or does not describe their study.

(-2) The author does not describe his or her own study clearly or draw any connections

between the cited work and their own study.

(0) The author describes his or her proposed study at a high level and cites prior work

but does not draw any clear comparisons between the the proposed study and prior

work.

(2) The author clearly describes his or her proposed study and draws clear and explicit

distinctions between the proposed study and prior work that he or she cites. The

author goes on to explain the similarities and differences between the cited work and

the author’s own proposed study.
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G.11 : Did the author show the novelty of his or her work by including at least one cur-

rent study node that summarizes his or her proposed study or key features of it and

then drawing comparison arc(s) between those nodes and one or more citation nodes to

highlight similarities to and differences from the prior work? Please indicate the nodes

and arcs that show this comparison below and describe any improvements that should

be made.

Please cite the node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(N/A) The author includes no citation nodes or no current study nodes.

(-2) The author does not frame the current study node clearly and does not draw any

paths between the current study node and the citation nodes.

(0) The author includes one or more current study nodes and citation nodes but does

not draw any comparison arcs between the current study and citation nodes or, if

he or she does so, the analogies and distinctions are not stated clearly on the arcs.

(2) The author clearly describes the proposed study in one or more current study nodes.

He or she also draws comparison arcs connecting the current study nodes to cita-

tion nodes describing similar cited work and clearly articulates the analogies and

distinctions drawn between them on the arc.
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E.12/G.12: Argument Coherence (Arg-Coherent)

Range : -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.12 : Did the author present a coherent argument overall in which each element of the

argument is related meaningfully to the others?

(-2) No, the author’s argument is completely unclear and lacks any internal cohesion.

(0) While the author attempts to connect the elements of his or her argument, the

argument lacks sufficient clarity and coherence.

(2) The author presented a clear and coherent argument in which the elements of the

argument are meaningfully related to one-another.

G.12 : Did the author develop a single coherent argument diagram in which each piece of

the diagram is connected to its neighbors either directly or though a valid path where

each arc in the path has a clear warrant?

Please cite any node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(-2) No, the author produced a series of disconnected argument diagrams or pieces of

argument diagrams with no overall coherence.

(0) While the author presented a single coherent diagram he or she: drew incorrect

or nonsensical relations; drew empty or nonsensical nodes; or did not include clear

warrants for the relationships represented by the arcs.

(2) The author defined a single coherent argument diagram with every node well framed

and all of the included arcs have clearly explained warrants.
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E.13/G.13: Argument Convincing (Arg-Convincing)

Range : -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E.13 : Does the author present a convincing argument? That is, after reading the essay are

you willing to accept the author’s general argument in support of his or her proposed

study?

(-2) The argument is wholly unconvincing.

(0) The argument is partially convincing but incomplete.

(2) The argument is complete and convincing.

G.13 : Does the author present a convincing argument in the diagram? That is, after

examining the diagram are you willing to accept the general argument in support of his

or her proposed study represented by the diagram?

Please cite any node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(-2) The argument represented by the diagram is wholly unconvincing.

(0) The argument represented by the diagram is partially convincing but incomplete.

(2) The argument represented by the diagram is complete and convincing.
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E.14/G.14: Overall Quality (Arg-Quality)

Range : -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E.14 : Please rate the overall quality of the argument based upon the organization, coher-

ence, and completeness.

(-5) Poor.

(0) Fair.

(5) Good.

G.14 : Please rate the overall quality of the argument diagram based upon its organization,

coherence, and completeness.

Please cite any node and arc id numbers (located in the top-left of the box) by entering

the number in brackets e.g.: [1], [5], or [6,7].

(-5) Poor.

(0) Fair.

(5) Good.
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APPENDIX D

GRADING MATERIALS

The memo included here was provided to the graders along with the grading rubrics (see

Appendix C (pp. 187)) as an introduction to the grading process. This was supplemented

both by training on LASAD and direct discussion.
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Grading Rubric Proposal.

Collin Lynch

June 29, 2013

1 Grading

As noted by Greene [1] outlining is important when planning a written item with multiple rhetorical goals
like the research introduction. A structural or goal-based outline of the type discussed by Greene can help
to order the material to be presented. By contrast a functional outline of the type used in the LASAD
diagrams can not only help the reader order their material but highlight the, often complex, conceptual or
structural relationships between the components.

In general there are three levels of grading for the types of arguments made in research reports: the
overall rhetorical goals (i.e. did they get the point across or explain the work); the structural criteria (i.e.
did they address appropriate grading criteria, is the discussion connected?); and the basic logic (i.e. did they
present contradictions or otherwise inconsistent claims?). For the present task the grading rubric is focused
on the rhetorical goals and the structural criteria. We will not be focusing on the basic logic.

The grading task involves two parallel rubrics one targeted to the essay grading task and the other tar-
geted to diagrams. Each rubric consists of a set of 11 questions to be graded on a 5 point Likert scale from
-2 to 2, and one overall question to be graded on a 11 point scale from -5 to 5. Ranging in general from -2
being “not at all” or “poorly” to 2 being “very well.” For some of the questions, the binary choice of N/A
is also available. Each question is presented below with a short guide to the anchor values of -2, 0, and 2.
Intermediate scores should be treated as half-way between the states described on the anchor values. In the
case of multiple items, such as the hypotheses or hypothesis nodes the grader should assign an average score.

1.1 Assignment

Before introducing the grading rubrics it is important to describe the general writing and outlining tasks and
to refine our terms. The diagrams and essays to be graded were drawn from one of two assignments. In the
diagramming assignment students were tasked with reading a published research report and diagramming the
argument made in the introduction section. In the planning assignment students were tasked with planning
an argument for their own paper using LASAD and then writing it. In both assignments the diagramming
model and the essential argument instructions were the same.

In the introduction section to a paper the author seeks to present his or her overall argument. He or she
wants to: explain what is in the paper; present their core research questions; make any general claims or
subclaims; articulate testable hypotheses; cite relevant literature; and describe their study at a high level.

A Research Question is a general statement of scientific interest such as “Are people nicer to good-looking
individuals?” Rhetorically these questions can break down into subquestions such as: “Are men nicer to good
looking women?” The general research question is or should be stated at the start of the introduction while
sub-questions are typically used to structure the text and organize paragraphs or subsections. Hypotheses
by contrast are the specific predictions that will be tested by the study being described such as “Men are
nicer than women when talking to ugly people.”

A Claim is a general statement or assertion of fact such as “Gender differences influence social behavior.”
Claims can also be broken down into subclaims such as “Women are meaner than men.” Claims and
subclaims are used to state assumptions, frame the discussion, or make basic assertions relevant to the
argument.

1
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When presenting his or her own research question or subquestions the author should argue that the
question is open or unanswered and relevant to the research community. He or she typically does this
by citing prior studies that disagree or draw conflicting conclusions about the research question and the
hypotheses. In the case above, for example, the author might cite a study which concludes that “...people let
looks guide their social behavior...” and another that concludes “...looks do not matter.” Broadly speaking
these studies disagree about the research question with the former generally supporting it while the latter
opposes it. This disagreement indicates that the question is open and relevant to the research community.

After noting the disagreement, the author should attempt to explain it by drawing analogies between
the studies and highlighting key differences. Both studies are similar in that they focus on affective social
behavior. However, he or she might point out, one study focused exclusively on public actions by college-age
males on campus and the other on public behavior across ages and genders. The author should then go on
to compare the cited work to his or her proposed study, again highlighting similarities and differences, to
defend the novelty of the author’s proposed study and explain how it would address these differences.

When making a claim, by contrast, the author is asserting that it is true. An author should defend the
validity of the claim by citing prior work that supports the claim either theoretically or empirically.

2 Specific Instruction Caveats

During the Spring 2011 study students were instructed to use the “Current Study” node to note relevant
features of the current study (e.g. sampling college students only; testing with warm and cold sensation).
This node was then to be used both to provide support and opposition for claims or additional information.
They were also instructed to draw analogies and distinctions between the current study node and cited nodes
by means of the comparison arc. This arc has fields for citing the analogies or similarities between two nodes
and the differences between them.

Rhetorically the intention was for students to, for example, cite a prior study on the level of haptic
perception in individuals noting that the authors sampled a range of ages. They would then draw a current
study node noting that their study would focus on college age students and control for the temperature of
the object being sensed. They would then draw a comparison arc noting that both studies would focus on
haptic perception, an analogy, but further note that their study would be restricted to college-age students,
and control the temperature of the item being sensed, distinctions.

Please also note that the questions below are meant to cover the whole essay or diagram. As the example
scores should illustrate the authors should receive full scores for well-formed citations, for example, only if
they do so consistently. They should also receive the minimum points if they fail consistently. Thus the
points assigned for a question should cover the entire diagram.

3 Essay Grading

In the initial round the essays will be graded in paper form. When grading questions in the Rhetorical goals
section we ask that the graders highlight some of the segments that correspond to the questions. For the
bulk of the grading, however they will only be asked to assign grades. The grading task itself will proceed
based upon the introduction sections provided to the graders.

When grading the essays the graders will use a form based on the E.* questions listed at the end of this
document.

2
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Figure 1: Example Diagram

4 Diagram Grading

Diagram grading will proceed with the student diagrams in the system. For the purposes of the rubric a few
terms need to be specified. Firstly, in the diagramming language there is no specific node type for research
questions. Both research questions and claims are represented in a claim node, the framing of the contents
(as a question or statement) differentiates the two.

Secondly we should note that the supporting (+), opposing (-) and undefined (?) arcs are all directional.
That is they point from a node A to B. Each of these arcs has a text field on them in which the student can
enter a warrant that justifies the relationship. A warrant in argumentation theory is a reason or explanation
for why the relationship holds. For example, when we claim that male students are more likely to help good
looking female students we may cite a prior study that tested this hypothesis. The warrant in this case, the
reason that the cited work supports our claim, is that the authors tested this claim in their own study and
validated it.

Only the comparison arc is bidirectional and has no warrant, only specialized analogy and distinction
fields. This arc is designed to be used to draw specific comparisons and contrasts between nodes such as
noting the differences between a pair of cited works or analogizing prior citations to the present study. For
some of the grading questions below the directionality of the arcs will not matter. If for example the question
asks about a supporting arc from a citation node to a claim node for example then the students should lose
points if the arcs run in the wrong direction. Similarly paths may also be directional in which case all arcs
should be in the same direction from the source node to the target node.

In a graph a pair of nodes A and B are directly connected if there is an arc from one to the other in the
diagram. In figure 1, for example, citation node 5 is directly connected to claim node 7 via supporting arc
18. The warrant for this citation provided on the arc is “Previous research findings support claim about ID
speech.” A path exists between two nodes if there is a route from one to the other through zero or more
intermediate nodes. A supporting path is a path where each arc in the path is a supporting arc. Citation
node 13, for example, is not directly connected to claim node 7. However there is a supporting path from

3

213



nodes 13 to 7 that includes citation nodes 12 and 5. Similarly there is a supporting path with no intervening
nodes between hypothesis node 15 and claim node 14. No path, however exists between node 13 and any of
the claim nodes in the lower part of the image, nor is there a path from claim node 14 to claim node 31 as
the arc between nodes 14 and 15 points the wrong way from node 15 to node 14 thus violating the path.

Nodes may be central to a diagram or be root nodes if they play a central role in the argument. This
is determined graphically based upon their position in the diagram and relationship to other nodes. In
figure 1, claim node 6 is a root node for the diagram as all nodes in the upper half of the diagram are
connected to it either directly or on a directed path. This is not an ideal structure, however, as node 1
contains the overriding research claim for the study and should therefore be the root node. Similarly in the
lower-half of the diagram claim node 15 is a root node as all other nodes point to it via paths through node 15.

When grading the diagrams the graders will use a form based upon the G.* questions at the end of this
document.

References

[1] Laurence Greene. Writing in the Life Sciences. Oxford University Press: New York, 2009.
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APPENDIX E

SNG MANUAL

The attached manual describes the SNG grading toolkit. This is a web-based grading tool

implemented in Javascript that I developed for the purposes of this thesis. The tool allows

for graders to read and make rudimentary annotations of a text document while answering

free-text and multiple-choice questions.
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Using the SNG System.

Thank you again for agreeing to grade the essays and diagrams for the study.  The grading, as we 
discussed, will take place in an online tool called SNG.  This system has been deployed on a local 
server and will be used to read and grade the essays as well as the diagrams.  The system has been 
setup to save your work as you go along and provides for regular backups of the data.   

This User guide will provide a brief overview of how you work within the system and a guide to its 
components.  As always with any questions just e-mail me (collinl@pitt.edu).

Login

To access SNG go to the url provided in your contact mail.  You will see the following login screen:

Enter the username and password provided in your e-mail and click on the login button:

The initial load time of the system can take a little while so please be patient. 

216



Status Panel

Once the system loads you will see a Status Panel as shown below:

The status panel lists includes three features, the Start Next Task button, the Logout button, and the 
list of tasks.  Clicking on the Start Next Task button will start the next uncompleted task in your list. 
The number indicated in the button is the ID of the next task to be completed.  Once all assigned 
tasks are completed this button will be greyed out.  Clicking on the Logout button will log you out 
of the system.  You should use this button once you are done working.  

The drop-down list provides a drop-down list of the task sets that have been assigned to you.  It is 
color-coded.  The top red element in the tree Unfinished Sets indicates that the task sets below it are 
not complete.  As task sets are completed they will be moved to a new list, not shown, called 
Finished Sets.  

The second layer of the tree, the blue items, are the set names.  Each of these sets will include one 
or two subtrees labelled Unanswered Tasks (red) and Answered Tasks (green).  Expanding these will 
show a list of buttons for the tasks as shown below.  As you can see the topmost unfinished task is 
also the one numbered by the Start Next Task button. Clicking on any one of these buttons will start 
the specified task.  
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Grading Panel

Once we start a task we will be taken to the grading panel shown below:

The panel contains header information across the top indicating the grader and the task being 
worked on.  The essay being graded appears on the left hand side while the list of questions appear 
on the right.  The two buttons at the bottom are used to save answers and close the grading panel 
respectively.  I will discuss them in more detail below.  

Questions: 

The Questions Panel on the right hand side contains a header at the top describing how each 
question should be answered.  As noted the questions all ask for a score value.  Some also prompt 
you to highlight hypothesis statements or other pieces of the essay, and to enter an explanation for 
the scores.  Each question is described in a question box of the type shown below:
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Reading from top to bottom, each question box contains: a question name (top in blue); the question 
text along with example score values; a pulldown menu for the scores; an answer field for the free-
text answer; and a quotation button.  

In order to set the question score you should click on the Score pulldown menu to select the 
appropriate value as shown below.  For the purposes of grading a blank value indicates that you 
have not chosen a score value while a value of N/A means not applicable and is available for some 
questions.
 

The free-text answer field is used for entering an explanation of your chosen score or descriptions 
as shown below:

For some questions you are asked to highlight applicable portions of the text (such as the 
hypotheses) if any.  You can also highlight other sections of the text that you wish to refer to in the 
essay.  The Quote Selected Text button is provided for that purpose.  In order to quote the text you 
should highlight a portion of the text in the essay panel.  As shown below:
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Then click on the Quote Selected Text button to produce a selection in the question box:

The table contains an ID in brackets that you can use in your free text answer when referencing the 
selection.  It then contains the first 25 characters of the selection as a reference as well as Show and 
Delete buttons.  You can add as many selections as you like to the table by making other highlights 
and clicking on the Quote Selected Text button again.  

Clicking on the show button will cause the span of text that you selected to be highlighted in the 
essay field.  Due to interface limitations only one span of text in the essay can show as highlighted 
at a time.  Thus in order to view your selections you should use the show button.  Clicking on the X 
button will remove this entry from the table.  
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For convenience each time that you add an entry to the table a reference to it will be appended to 
the free answer field using the same syntax as the ID.  This is just added as a set of characters so 
you can freely insert them into your answer, change the text, or remove them if they are not 
necessary.  When you delete entries from the table the text is not changed.  

When referring to selections in your answer please use these references as you work as shown 
below:

Saving Answers:

At the bottom left-hand corner of the grading screen there are two buttons: Save Answers and Done. 
Clicking the former will save your answers to the database but allow you to continue working. 
Clicking the latter will save your answers and, if successful, return you to the login screen.  

In order to save the answers and close you must have provided a score for each question.  If you 
click either button and you have not answered all of the questions you will see a message listing the 
questions that remain: 

Once you have successfully answered all of the questions then you will see a success message:
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Status Panel (Again)

Once you have completed all questions and return to the status menu you will see that the task has 
been added to the Answered Tasks sublist and you can move on to the next item.  The Start Next  
Task button will also be updated so clicking on it will take you to the next undone task.  

When you are done working for the time being just click logout and you can close your browser.  

FAQ:

Q: Aaaahh! My browser closed! / The Internet died!  Is my work gone?

A: If you close your browser when you are in the status panel your work has already been saved so 
no data will be lost.  If, however you close your browser when you have a grading panel open then 
only your last saved work will be saved.  In order to reduce excess load the system does not 
maintain a persistent connection and transmit an answer on every mouse-click only when you hit 
the Save Answers or Done buttons.  
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APPENDIX F

AUGMENTED GRAPH GRAMMARS

F.1 INTRODUCTION

Graph grammars are a formalism analogous to string grammars that are used to generate or

modify graphs using existing grammar-based production rules. This library makes use of an

augmented graph grammar formalism that I will define below. I will begin, however, with a

short introduction to graph grammars and a citation of the relevant types.

F.2 BACKGROUND

Graph grammars were initially defined by Rekers and Schürr as a formal grammar whose

atomic components are graphs, and where the rules or productions in the grammar transpose

one graph to another [97]. More formally, they define a graph-grammar as:

Definition 3.6 A graph grammar GG is a tuple (A;P ), with A a nonempty initial graph
(the axiom), and P a set of graph grammar productions. To simplify forthcoming defini-
tions, the initial graph A will be treated as a special case of a production with an empty
left-hand side. The set of all potential production instances of GG is abbreviated with
PI(GG).

And they define grammar productions as:

Definition 3.2 A (graph grammar) production p := (L; R) is a tuple of graphs over the
same alphabets of vertex and edge labels LV and LE. Its left-hand side lhs(p) := L and
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its right-hand side rhs(p) := R may have a common (context) subgraph K if the following
restrictions are fulfilled:

• ∀e ∈ E(K) ⇒ s(e) ∈ V (K) ∧ t(e) ∈ E(K) with E(K) := E(L) ∩ E(R) and V (K) :=
V (L)∩ V (R) i.e. sources and targets of common edges are common verticies of L and
R, too.

• ∀x ∈ L ∩ R ⇒ lL(x) = lR(x) i.e. common elements of L and R do not differ with
respect to their labels in L and R.

Thus a graph grammar in their view is a system of production rules that, as with a for-

mal grammar specifies a set of possible graph transformations. For efficiency reasons Rekers

and Schürr restrict their attention to layered graph-grammars which imposes the additional

restriction that the left hand side of each production rule define a smaller graph than its

right-hand side thus avoiding cyclical derivations1.

The formalism defined by Rekers and Schürr deals with standard context-sensitive gram-

mar. This format assumes that nodes and arcs are drawn from a finite alphabet of types and

contain no complex structure. A richer formalism that deals with extended graph structures

is described by Pinkwart et al. in [89]. Here the author describes a grammar structure

that treats nodes and arcs as complex structures containing both static types and complex

fields. The authors further detail a set of set-theoretic functions over those fields used for

constraint checking. In many respects the formalism that I describe here is consistent with

that formalism save for syntactic changes and the addition of existential rules for paths.

Some of these features can also be found in the existing LASAD AFEngine which makes use

of a CLIPS rule approach [107].

F.3 AUGMENTED GRAPH GRAMMAR FORMALISM.

Roughly speaking the full AGG formalism is a method for defining first-order logic over

graphs and graph components. Formally I view a graph as a set of nodes and arcs with

optional added constraints. Full-fledged graph grammars allow for the construction of ex-

pressions of the form shown in Figures F1 (pp. 234) - F8 (pp. 238).

1For more on Formal grammars see: Sipser “Introduction to the Theory of Computation” [111].
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As these figures illustrate, the graph grammars allow us to specify logical arguments

over the graphs including existential and universal quantification, chaining, and recursive

productions. In the subsequent sections I will explain each of the items in detail building up

to the full grammar expressions. The above expression can also be written in a more textual

syntax as shown below in Figure F4 (pp. 237). This textual format is designed for use with

a grammar compiler which I will address later. In the subsections below I will describe both

formats.

Where this formalism extends beyond the work above is that it allows for scoping and

focuses on the addition of constraints for node features.

F.3.1 Constraints

Constraints represent individual bounds or limits on the node and arc features. Constraints

such as f.Type = Citation are used to specify features of the rich nodes and arcs. As shown

in Figure F5 (pp. 237) these constraints can be atomic focusing on a single node; paired

in which case they deal with a relationship between two elements; or complex where they

combine the first two types.

Syntactically the constraints use a basic s-expression syntax with the individual compo-

nents of the fields specified using a dot-successor format thus:

(<V ar>.< Field >[.<Subfield>...]<Relation><V al>)... (F.3)

Where Var is the variable name, Fields specifies the complex field being denoted, Re-

lation is a binary relation over the items, and Val links to the other values. Subfields are

optional specifiers for more complex access such as specific named fields as shown in fig 1.

Syntactically this is akin to the access of methods in an OO language. Constraint expressions

are specified the same in both formats.

Constraints can also be grouped into blocks as shown in Figure F6 (pp. 237). Block

constraints designate a single variable scope for the subsequent expressions. This format

merely provides additional syntactic sugar above and beyond the current form.
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F.3.2 Graph Schema

A Graph Schema is a graph structure, represented diagrammatically or textually, that spec-

ifies a graph structure. This format includes named nodes and arcs which may in turn be

directed, undirected, or unknown. The function of the graph schema is to form a matching

structure and to designate variables for the nodes and arcs. As shown in Figure F7 (pp.

238) this can be done diagrammatically or with a textual listing of nodes and arcs.

The schema adopt the following syntax conventions:

1. Atomic Elements Lower-case node and arc variables designate atomic elements which

are used in the current class (see below).

2. Production Elements Capitalized variables designate production items which are re-

placed by productions (see below).

3. Negation is specified for the individual items using ¬ symbol to denote explicitly missing

items.

4. * Endpoint For syntactic reasons it is often necessary to specify an arc where we do

not care about the specific node contents. While this can be handled by introducing a

variable with no constraints we can also use * as a stand-in name.

Functionally the schema are, at least at present, subject to the following semantic constraints:

1. Non-repeating All item names are unique within a schema even if subsequent items

match in other details.

2. Isolated Negation As I will detail below chained negation raises complex conditions.

Therefore all negated terms must be isolated that is no negated arc may have a neigh-

boring node that is itself negated, and no negated node may have a negated arc. This

ensures that processing of negation is clearly scoped.

3. Isolated Productions (also known as Grounded Context) As with negation the presence

of neighboring variable productions generates a challenge for the ordering of expansion.

Thus variable nodes and arcs must also be isolated. In future I may consider alternate

productions but that would require other search challenges.
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4. Partitioned Productions As with string grammars each novel element in a production

must map to a novel (as yet unmapped) node or arc. That is, excluding the context nodes

that appear on the left-hand-side of a production (x & y in Figure F2 (pp. 235)) all other

ground nodes appearing only on the right-hand-side of the production (s & o) must match

new nodes that have not been mapped by the containing classes. This is an efficiency

designed to make the mapping search tractable. 2

5. Open Matching Schema are matched only against their context and do not assume

outside elements.

The Schema themselves are composed of atomic- and variable-nodes denoted by the

upper and lower-case letters above. They also admit four arc types illustrated in Figure F8

(pp. 238): directed (e.g. D); unknown direction (UD); undirected (N); and undefined or

unknown (U). Formally speaking a directed arc in a schema will only match a directed arc

in the underlying graph from node a to node b. An unknown-direction arc will match a

directed graph arc either from c to d or from d to c but will not match an undirected arc

between the two. Undirected schema arcs will only match undirected arcs between e and

f. And an unknown arc will match any arc between g and h. While this proliferation of

arc types can complicate the syntax somewhat it does lend itself to easy specification of a

number of graph types.

F.3.3 Graph Classes

A graph classGi = Si+Ci consists of a graph schema paired with a set of optional constraints.

Taken together these specify a class of matching graphs and form the basic component of

the subsequent expressions and productions. The graph classes are the basic unit of graphs

that are dealt with in this formalism. An example of the graph class is shown in Figure F9

(pp. 239).

By default the graph classes are defined within a single graph context and fill the same

syntactic and semantic requirements of the schema above. It is not necessary for all member

2Under other circumstances this might be relaxed to apply only to arcs but for the present it is not
required.
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nodes and arcs to be coupled with existing constraints. However in the absence of a specified

constraint all possible values are acceptable.

F.3.4 Graph Ontology

In grounded graph grammar of the type used by Rekers and Schürr the space of possible node

and arc types is specified by a language
∑

consisting of unique types. Here a more complex

structure is required. Ontologies specify the range of possible node and arc types and, for

each type, list the set of possible fields and the field types. The ontology also specifies the

set of possible relations and comparisons however standard relations (e.g. =) are implied.

I will flesh this out later but in rough terms an ontology is defined as shown in Figure

F10 (pp. 240).

Formally speaking a graph ontology must specify:

• The set of possible node and arc types.

• The available fields and subfields attached to each node and arc type.

• The type of each specified field and subfield.

• The set of field relations usable for constraints on each type.

• The set of operations that can be used on combined fields.

Structurally this means that the ontologies are responsible for complex operations and

must include embedded functional code or draw from a standard set of codes and types. For

the present a standard set dealing with string values will be implemented.

The available types must be drawn from predefined types available in the language or

those added by subclassing. Thus they will be built in by lookup meaning that ultimately a

full compiler will be needed but not yet.

F.3.5 Graph Production

A graph production Cl ⇒ Cr1|Cr2... is a context-sensitive production rule that maps from

one graph class containing a production variable to one or more alternate expansions. An

example production rule is shown in Figure F11 (pp. 241).
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Formally speaking the production rules are replacement operations which expand or

otherwise replace one part of the graph class with other related classes. The rules are

context-sensitive and can include optional non-production nodes and arcs (e.g. h, c, s, x,

& y above) in the schema. Such variables are necessary iff the variable nodes and arcs are

expanded in an existing schema. Thus given the production rule above, and an initial class

shown in the figure below some mapped classes are shown in Figure F12 (pp. 242)

The graph production rules are subject to the following restrictions:

1. Isolated Productions As noted above production variables, like negation, must be

isolated from one-another in the parent graph. This may also be called a Grounded

Neighborhood.

2. Expansive The the left-hand graph class Cl must be a proper subset of each right-hand

class Cri. Thus All nodes and arc variables as well as the constraints must be present

and cannot be rewritten. This is also called LHS-Grounding. In future versions of the

formalism I may consider ∅ productions but not for the present.

Formally speaking there exist two general types of productions: Node Productions where

the central variable is a node which is replaced by a given subgraph; and Arc Productions

which replace a given arc. The former is illustrated in Figure F12 (pp. 242) while the latter

is illustrated below in Figure F13 (pp. 243). At present the formalism is focused on arc

productions and the mapping restrictions below apply differently.

F.3.5.1 Recursive Productions, and Scope The production rules can be recursive

with each of the subgraphs providing a recursive subgraph for expansion. A simple recursive

production for an opposing supporting path was shown in Figure F2 (pp. 235).

The grammars can also be recursive with subgraph expansion taking place with each

item. This recursive expansion can be controlled by means of scoping. In the rules above

an explicit scope for class Cr2 of rule P2 is shown requiring that the production expand at

minimum zero times and at most twice. Thus the production imposes a maximum depth

to the recursive call. This form of scoping is more complex to implement but provides nice

syntactic gains while reducing the complexity of the ruleset.
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F.3.6 Production Mapping

When applying a graph production we face an additional question about how to map the

context class, and thus the context elements for subsequent expansion. In order for the class

to be consistent we must consider all viable mappings from the subclass to the superclass.

That is, given a graph class with an arc class or node class within it we must consider all

possible classes. The rules for mapping are discussed below.

F.3.7 Arc Productions

Arc productions are defined by a context class consisting of a single directed arc with its

attached nodes. One such production is shown in Figure F13 (pp. 243). Unlike ground arcs,

variable arcs can only have one of two orientations. They can either be directed (pointing

from one ground node to another) or of unknown direction (in which case no direction is

specified). The context graphs, by contrast, must always use directed arcs to specify the

variable arc. This is necessary so that we can establish the appropriate mapping if the

parent class specifies a directional relation.

Now, when we consider the mapping process this allows for the following cases illustrated

in Figure F14 (pp. 244). If we were mapping the production class Xcontext from Figure F13

(pp. 243) to class CA then we have two possible mappings for the context nodes: {a : w, b : z}

and {a : z, b : w}. While if we map it against CB there is only one: {a : w, b : z}.

F.3.8 Graph Expression

The final component of the grammar language is the graph expressions represent chained

quantified graph classes of the form:

∀C0 | ∃Ci | ¬∃C2 | ... (F.4)

A sample expression was shown in Figure F1 (pp. 234). Each class is quantified using the

universal or existential quantifiers and chained using a standard pipe which is read as “...such
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that...”. Thus in the example shown in the figure below we assert that for all subgraphs that

match class C0 there is no surrounding class matching C1.

Formally the graph expressions are piped class tests linked by the use of shared variables.

More formally an expression Eg must be expansive or Right-Grounded :

∀Ci>0 ∈ E : Ci−1 ⊆g Ci (F.5)

For the present Right-grounding also requires that the final class in the expression be

an existential (∃) test with optional negation. Thus for an expression containing |Eg| = j

classes the final class Cj−1 can only be scoped as ∃ or ¬∃. Thus the final graph class is a

match that must be valid or not for the expression to hold true.

These requirements are a direct consequence of the use of the augmented graph grammar

for graph matching. In order for the graph to hold it must be the case that the final expression

can be matched.

Mapping for the expressions is a cascading process with some interesting caveats based

upon the RHS. That is, given expressions of the form:

∃Ci|Ej This holds iff ∃Ci mapping over G s.t. the expression Ej holds given the mapping.

¬∃Ci|Ej This holds iff ∀m(Ci, G) that is for all mappings of Ci over G none of them satisfies

Ej.

∀Ci|Ej This holds iff ∀m(Ci, G) it is the case that Ej holds given M.

¬∀Ci|Ej This holds if there exists some mapping m(Ci, G) s.t. Ej does not hold.

This fact of quantification means that finding a “mapping” over an expression means

finding mappings only for the leftmost set of subexpressions that are ∃ or ¬∀. The other

quantifications scope over all cases.

Table F1 (pp. 245) shows the logical breakdown of the cases.
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F.3.9 Text Syntax

Formally speaking a graph schema S is defined by a 2-tuple (SN , SE) of node and arc vari-

ables. While this is conventionally represented in the form of a diagram it can also be shown

as a textual pair as shown in figure Figure F4 (pp. 237). Here lower-case variables are used

to designate non-production nodes and arcs while upper-case items are used to represent pro-

duction variables. In order to represent a class we expand this to a 3-tuple C = (CN , CE, Cc)

of nodes, arcs, and constraints.

In standard graph theory arcs or edges are denoted as e(a, b) for undirected arcs and

e
−−−→
(n,m) for directed arcs. Here I use a similar syntax however the arcs are designated using

their variable name and directionality is indicated through the use of [ notation. Thus:

• a(b, C) denotes an open or unspecified arc connecting nodes b and C.

• D(f, g> denotes a strictly directed arc labeled with the production variable D from nodes

f to g. This is equivalent to D = e
−−−→
(f, g).

• h[I, J ] denotes a strictly undirected arc labeled with the non-production variable h con-

necting production nodes I and J. This is equivalent to h = e(I, J).

I have previously shown how conditions are specified using standard textual notation

above. That is continued here.

As shown in figure 1a productions are generated using the standard pipe syntax and can

be denoted using variables for convenience as shown in the figure below. This is also true

for expressions as shown in Figure F1 (pp. 234).

F.3.10 Future Alternatives

There exist a number of future alternatives that may be considered such as ordered negation.

Here negation is scoped using the lexicographic ordering of the node and arc variables. While

this is doable it could get out of hand with a schema such as the arc shown in Figure F4

(pp. 237) yielding Equation F.6

∃A : ¬∃b(a, y> : ¬∃x(∗, Y ) : ¬∃Y : ... (F.6)
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This this like complex expansion would require additional, and often undesirable, search.

Syntactically the requirements of right-grounding for expressions may impose some limits

on the system that should be avoided. It may be useful to allow ∀ quantified classes at the

right hand side but a clear functional semantics must be defined.

F.4 COMPILATION & EVALUATION

At a basic level classes are used to test for the existence of satisfactory items. Implicitly

all classes represent existentially quantified claims over the transaction context of the form

∃Ci or ¬∃Cj. Therefore any compilation of the expression must perform a complete search

in order to negate by failure. Similarly, universally quantified items represent exhaustive

collections for evaluation. Thus in general the processes will be done in a brute-force manner

as determined by the compiler.

Having said that some search efficiency is potentially useful. Search across the produc-

tions, for example, can proceed in a depth-shy or context-driven manner where we focus on

indexing all possible non-production nodes before considering candidate expansions. When

considering the class C1 shown in Figure F1 (pp. 234), for example, we can first collect all

possible claim nodes and then proceed from there with the search for citations and word-

sets before proceeding with the production rules for B and D. Negation, of course, poses a

challenge because while we can index non-matching nodes or arcs they make the most sense

within the declared context.
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C1 = {(a, c,D,E),

(B(a, c>, q<a,E>, e[c,D], [(¬, ])qDa),

(a.Type = “Claim′′, e.Type = “Claim′′,

c : {field(“Words′′) = {Handedness, ...}, T ype = “Claim′′})} (F.2)

Figure F4: Sample Class 1 represented in textual format.



a.Type = “Claim′′

e.Type = “Claim′′

c

field(“Words′′) = {Handedness, ...}

Type = “Claim′′


x.Type = y.Type


Figure F5: Constraint set example.

c : {field(“Words′′) = {Handedness, ...}, T ype = “Claim′′, x.Type = y.Type}

Figure F6: Constraint group example.
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Figure F7: Graph Schema Examples.

a

b

w(D)

{
Directed

} c

d

x(UD)

{
UnknownDirection

}

e

f

y
(N)

{
Undirected

} g

h

z(U)

{
Unknown

}

Figure F8: An example graph production with subclasses.
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{

Nodes:{

Claim:{

Text(String)

Text.Words(StringSet)

}

Hypothesis: {

If(String)

If.Words(StringSet)

Then(String)

Then.Words(StringSet)

}

}

Arcs:{

Comparison: {

...

Types: { String, StringSet }

...

Figure F10: Sample Ontology Structure
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APPENDIX G

LINEAR REGRESSION

As noted previously in Subsection 7.2.1 (pp. 99) Linear Regression models are robust models

common to many empirical domains. They are linear and additive models that represent

variable relationships with a polynomial of the form:

yi = α + β0x0 + β1x1 + β2x2 + . . . βnxn + εi (G.1)

where α defines the Intercept Point or base value of the model; each βk is a coefficient that

defines the strength and the sign of the relationship between the independent variable xk

and the dependent variable y; and the error term εi defines the error term specific to the

data term yi.

In that subsection I noted that, according to the Gauss-Markov theorem, Least-Squares

regression will produce an optimal model if the following conditions are met [34, 133]:

Linearity: The independent variables are linearly related to the dependent variable with
constant individual effects represented by the βk values. For generalized additive mod-
els (see [141, 54]) this assumption is relaxed to an assumption of Additivity (see: Section
G.1 (pp. 247)).

Independence: The samples were taken independently and thus any error terms εi and
εj 6=i are independent of one another as are the errors across the dependent variables
yj and yk (see: Section G.2 (pp. 248))

Variability: The individual independent variables are non-constant (see: Section G.2 (pp.
248)).

Non-Multicollinearity: The independent variables are independent and not collinear.
That is, no variable xi is dependent on other variables x0, . . . , xm 6=i, . . . , xn (see (see:
Section G.3 (pp. 248)).
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Homoscedasticity: The variance of the error terms εi is constant for all observations.
That is, the error variance is not affected by the independent variables (see Section
G.4).

Normally-Distributed Errors: (aka Normality) The error terms of the model are normally-
distributed: ε ∼ N(0, σ2ε ) (see Section G.5).

Weak Exogeneity: The independent variables are error-free either because they are set
by experimental condition (dividing students by age) or because they can be measured
without error. As such they do not introduce a significant source of error into the
model (see: Section G.6).

More specifically, if the assumptions of Linearity, Independence, and Homoscedasticity

are met then the least-squares estimator will be the most efficient unbiased linear estimator

available [34]. If the additional assumption of Normally-Distributed Errors is met then

least squares regression will be the most efficient estimator over all unbiased estimators,

even nonlinear ones. Crucially this list of assumptions does not include that of normally-

distributed data which is generally, though incorrectly, assumed to be a requirement for

least-squares regression. Distributional assumptions are only required if F -scores, p-values,

or confidence intervals are being calculated [34, 133, 141, 54]. I describe each of these

assumptions in detail below.

G.1 LINEARITY

The assumption that the independent variables are linearly related to the dependent variable

is inherent to the structure of the models and is thus an inductive bias [82]. There are

alternative regression models such as generalized additive models (see. [141, 54]) that relax

this hard bias. However these models can themselves be computationally intensive and prone

to over-fitting. As such I treat it as an assumption of the learning algorithm.
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G.2 INDEPENDENCE & VARIABILITY

The assumptions of independence and variability are features of the data collection. As

described in Chapters Chapter 3, 4, and 5 the diagrams and essays were produced by indi-

vidual authors or unique teams while the grading of the individual items was conducted in

a double-blind manner and the graph features were calculated automatically. Therefore the

data are independent of one-another and the assumption of independence is satisfied. For

the purposes of this analysis I also omitted all constant-valued features from consideration

therefore the assumption of variability also holds.

G.3 NON-MULTICOLLINEARITY

Multicollinearity occurs when there are non-trivial relationships between the independent

variables [36]. Thus given the standard linear model:

yi = α + β0x0 + β1x1 + β2x2 + . . . βnxn + εi (G.2)

It is generally assumed that there exists no strong linear relationship among the independent

variables. That is, it is not possible to train a strong model of the form shown below:

xj = α′ + β′0x0 + . . .+ β′(j−1)x(j−1) + β′(j+1)x(j+1) + . . .+ β′nx(n) + ε′i (G.3)

When such strong relationships exist the individual coefficients in the primary model

βp, . . . βq will be sensitive to minor changes in the data, will be prone to over-fitting, and

will thus be unstable under cross-validation. Such models are often characterized by: in-

flated variance, unexpected regression coefficient valences (e.g. a beneficial variable with a

negative sign), and high overall performance coupled with low partial correlation coefficients

(i.e. high overall predictiveness but with low partial success) [108, 77, 34, 36]. Therefore

multicollinearity poses a threat to the reliability and generality of the models making it im-

possible to use them either to assess the relative impact of individual variables or to operate
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on novel data.

A number of different methods have been proposed to detect multicollinearity, some of

which are formally equivalent. These include: direct testing of individual collinear relation-

ships via Tolerance/VIF tests [108]; calculation of a shared condition number (K) which

estimates instability [34]; and application of exploratory Principal Components Analysis

(PCA) or Factor Analysis [34]. In the current work I make use of the Tolerance/VIF tests

to evaluate individual variables.

The tolerance of a variable xi is defined as:

t(xi) = 1−R2
xi

(G.4)

where R2
xi

is the squared Multiple Correlation for the regression of xi on the other inde-

pendent variables xj 6=i [34, 108, 134]. Crucially: variables with extremely low tolerance are

strongly predicted by their neighbors. While no formal threshold exists Schroeder and others

propose a threshold of t(xi) ≤ 0.01 citing Afifi & Clark [1]. This is the corollary of another

commonly used measure the Variance Inflation Factor (VIF) which is simply the inverse

value:

V IF (xi) =
1

1−R2
xi

(G.5)

Like tolerance, VIF is used for assessing which variables are multicollinear. VIF scores “in

excess of 10” are treated as a sign of multicollinearity [108].

Both the tolerance and VIF thresholds are heuristic measurements that require a mea-

sure of judgment before changes are made. Moreover, while Tolerance and VIF provide

variable-specific measurements, the values depend upon all other variables in the set. Thus

two variables xi and xj with extremely low tolerance may, in fact be cross-correlated and

cannot both be ruled out. As discussed in [36] the relationships between variables can be

complicated with a set of independent variables containing multiple overlapping collinear

subsets. Therefore there is no guarantee that a clean partitioning of the dataset can be de-

fined and trimming individual variables will likely result in some loss of unique information.
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It is important to note that Multicollinearity is a function of the independent variables

and the dataset, not the dependent variables. As such remediation of multicollinearity is

a subject of some debate. Proposals include: centering variables and accepting remaining

problems [145]; pruning low tolerance variables [77]; application of biased methods such as

Ridge Regression [108]; combination of collinear terms via PCA1; and collection of new data

from scratch [34]. In each case the appropriateness of the proposals depends upon the goals

of the analysis.

The goal of the present work is to induce parsimonious models from a larger dataset. As

noted in Chapter 5 overlaps among the diagram features are expected; therefore individual

variable pruning is appropriate. The greedy pruning algorithm used will be described in

Section 7.3.

G.4 HOMOSCEDASTICITY

Homoscedasticity is the assumption that the error variance is constant across all observations

thus:

∀iV (εi|xi,0, . . . xi,n) = σ2
ε (G.6)

where V (a|b) is the variance of a given b [34].

As discussed above, this assumption is of primary concern for the efficiency of the least

squares estimator as per the Gauss-Markov theorem. Both the assumptions of homoscedas-

ticity and normally-distributed errors are frequently ignored in practice. I will discuss tests

for Homoscedasticity in Subsection 7.4.3.

1Professor Chris Schunn, University of Pittsburgh, personal communication
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G.5 NORMALLY-DISTRIBUTED ERRORS

The assumption of normally-distributed errors, frequently referred to by the confusing short-

hand normality, is an assumption that the error terms are normally-distributed:

ε ∼ N(0, σ2
ε ) (G.7)

That is, we assume that the observed values yi are normally distributed around the regression

plane with a mean error of 0 and a fixed σ2. As with Homoscedasticity the assumption of

normally-distributed errors is required to show that the induced models are optimal but is

not required to show that they are appropriate. I will return to this topic in the results

section.

G.6 WEAK EXOGENEITY

Facially, weak exogeneity is an absolute assumption. In most real-world applications of linear

models the measurement is never entirely free of error. Therefore the question is whether

or not the information is sufficiently reliable for present purposes. In this chapter the focus

will be on inducing models that match the automatic graph features described in Section 5.4

to the essay grades. The automatic features were calculated programmatically and as noted

previously have 100% test-retest reliability. As such they introduce no salient measurement

errors.

Similarly, the reliability of the manual grades was dealt with in Section 5.5. As noted

there, all of the graph grades met standards of empirical reliability while five of the essay

grades did so. Again that threshold is sufficient for the present analysis. Therefore, based

upon the thresholds shown in Table 4.5 (pp. 56) I will focus on inducing models for E.01

(RQ-Quality), E.04 (Hyp-Testable), E.07 (Cite-Reasons), E.10 (Hyp-Open), and E.14 (Arg-

Quality).
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G.7 NORMALLY-DISTRIBUTED DATA

One commonly-held assumption that was not discussed above is the assumption of normally-

distributed data. It is commonly assumed that that linear models and least-squares regres-

sion require that both the independent and dependent variables be normally distributed:

∀x∗,m : x∗,m ∼ N(µx∗,m , σ
2
x∗,m) (G.8)

y ∼ N(µy, σ
2
y) (G.9)

Strictly speaking, this is not the case. In order to perform hypothesis testing and to

calculate appropriate p-values for a fitted linear model, the dependent variable(s) must

be normally-distributed. This is not, however, required to fit models using least-squares

regression or for the empirical evaluation of models using RMSE/CMSE as I do here. For

more discussion on the role of distributional assumptions in linear models see the discussion

of Generalized Linear Models in [34, 141].
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APPENDIX H

INDUCED MODEL DETAILS

This appendix contains detailed tables showing the induced models produced during the

feature induction process.
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Table H1: Graph Grade Induced linear models for essay grades Model description and

RMSE/CMSE scores.

Grade RMSE CMSE

E.01 (RQ-Open) 0.3106 0.3592

E.01 ∼ G.01

E.04 (Hyp-Testable) 0.2322 0.2828

E.04 ∼ G.04

E.07 (Cite-Reasons) 0.2477 0.2701

E.07 ∼ G.07 + G.05 + G.10 + G.12 + G.13

E.10 (Hyp-Open) 0.334 0.333

E.10 ∼ G.10 + G.12 + G.06 + G.04 + G.13 + G.03 + G.14 + G.02 + G.05

E.14 (Arg-Quality) 0.2062 0.2410

E.14 ∼ G.07 + G.05
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Table H2: Raw Feature Model RMSE and CMSE scores for E.01 (RQ-Quality)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.3108 0.3614

E.01 ∼ Rule R02c NonHypoRQwoOut log

Intuitive 18 0.3014 0.3396

E.01 ∼ Order Elt comparison bin

Intervention 47 0.2924 0.3248

E.01 ∼ Order Elt comparison bin +Rule R01nb NoClaim bin
+Rule R01pb HasClaim log +Rule R04a EmptyNodeF ields
+Order OverlappingNodes +Rule R06a Curr Uncompared w Cite

Total 77 0.2902 0.3199

E.01 ∼ Order Elt comparison bin +Rule R01nb NoClaim bin
+Order Elt claim log +Rule R04a EmptyNodeF ields
+Order MinDegree +Rule R02c NonHypoRQwoOut log
+Rule R13 DisjointSubgraphs log +Rule R10d Hypothesis Comp bin
+Rule R02a NonHypowoOut log
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Table H3: Raw Feature Model RMSE and CMSE scores for E.04 (Hyp-Testable)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.219 0.2726

E.04 ∼ Rule R01na NoHypothesis bin +Rule R06a Curr Uncompared w Cite

Intuitive 18 0.2194 0.2747

E.04 ∼ Rule R01na NoHypothesis bin +Rule R06a Curr Uncompared w Cite
+Rule R01pb HasClaim log

Intervention 47 0.2099 0.2411

E.04 ∼ Rule R01na NoHypothesis bin +Rule R11ub Undef Unfounded Claim log
+Rule R06a Curr Uncompared w Cite +Rule R05a HypoOpposesCite bin
+Rule R10c Claim Comp bin +Rule R08 Unsupp Hypo log
+Rule R05 HypoSupportsCite +Rule R11 Ungrounded Hypo Claim log
+Rule R01pa HasHypothesis log +Rule R01nb NoClaim bin
+Rule R08 Unopp Hypo log

Total 77 0.207 0.2492

E.04 ∼ Rule R01na NoHypothesis bin +Rule R11ub Undef Unfounded Claim log
+Rule R06a Curr Uncompared w Cite +Rule R05a HypoOpposesCite bin
+Rule R10c Claim Comp bin +Order MinChildren IgnoreEmpty log
+Rule R03 NonCitewoIn bin +Rule R01nd NoRQ bin
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Table H4: Raw Feature Model RMSE and CMSE scores for E.07 (Cite-Reasons)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.2642 0.2979

E.07 ∼ Rule R11ua Undef Ungrounded Hypo bin +Rule R01na NoHypothesis bin
+Rule R02a NonHypowoOut log +Rule R08 Unsupp Hypo log

Intuitive 18 0.2489 0.2752

E.07 ∼ Rule R01pa HasHypothesis log +Rule R11ua Undef Ungrounded Hypo bin
+Rule R02a NonHypowoOut log +Order Elt comparison bin
+Rule R01pc HasCite log +Rule R02b NonHypoClaimwoOut log
+Rule R01pb HasClaim log +Rule R06a Curr Uncompared w Cite

Intervention 47 0.241 0.2627

E.07 ∼ Rule R01pc HasCite log +Rule R02a NonHypowoOut log+
+Order Elt comparison bin +Rule R11b Unfounded Claim log
Order OverlappingNodes +Rule R01pa HasHypothesis log
+Rule R08 Unopp Hypo log +Rule R06a Curr Uncompared w Cite

Total 77 0.227 0.2401

E.07 ∼ Rule R11ua Undef Ungrounded Hypo bin +Order Order log
+Rule R02a NonHypowoOut log +Order Elt comparison bin
+Order OverlappingNodes +Order AvgDegree
+Rule R02b NonHypoClaimwoOut log +Rule R01nb NoClaim bin
+Rule R03b NonCiteOrCurrwoIn bin
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Table H6: Raw Feature Model RMSE and CMSE scores for E.14 (Arg-Quality)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.2148 0.2609

E.14 ∼ Rule R01na NoHypothesis bin +Rule R11ua Undef Ungrounded Hypo bin

Intuitive 18 0.2126 0.2547

E.14 ∼ Order Elt comparison bin +Rule R01na NoHypothesis bin
+Rule R11ua Undef Ungrounded Hypo bin

Intervention 47 0.2122 0.2473

E.14 ∼ Order Elt comparison bin +Rule R10c Claim Comp bin
+Rule R01pa HasHypothesis log +Rule R11ua Undef Ungrounded Hypo bin
+Rule R13 DisjointSubgraphs log +Rule R01na NoHypothesis bin
+Rule R02a NonHypowoOut log +Rule R01nc NoCite bin

Total 77 0.2079 0.2415

E.14 ∼ Order Elt comparison bin +Order MaxParents IgnoreEmpty log
+Order Elt hypothesis log +Rule R11ua Undef Ungrounded Hypo bin
+Order MaxChildren IgnoreEmpty log +Order PairedCounterarg
+Rule R01na NoHypothesis bin +Order MaxChildren log
+Order MaxParents log +Rule R01pa HasHypothesis log
+Rule R12 UndefinedCiteClaim bin +Rule R10c Claim Comp bin
+Rule R04a EmptyNodeF ields +Order AvgChildren IgnoreEmpty log
+Order MinChildren IgnoreEmpty log +Rule R08 Unopp Hypo log
+Rule R10a Hypo or Claim Comp bin
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Table H7: Trimmed Feature Model RMSE and CMSE scores for E.01 (RQ-Quality)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.3104 0.3535

E.01 ∼ Rule R03 NonCitewoIn

Intuitive 18 0.3014 0.3396

E.01 ∼ Order Elt comparison bin

Intervention 47 0.2907 0.3208

E.01 ∼ Order Elt comparison bin +Rule R01nb NoClaim bin
+Rule R01pb HasClaim log +Rule R04a EmptyNodeF ields
+Rule R10c Claim Comp bin +Rule R10d Hypothesis Comp bin
+Rule R02a NonHypowoOut log +Rule R02b NonHypoClaimwoOut log

Total 77 0.2896 0.3257

E.01 ∼ Order Elt comparison bin +Rule R11ub Undef Unfounded Claim log
+Rule R01nb NoClaim bin +Order Elt claim log
+Rule R04a EmptyNodeF ields +Rule R10d Hypothesis Comp bin
+Order MaxParents IgnoreEmpty log +Order AvgParents IgnoreEmpty log
+Rule R10c Claim Comp bin
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Table H8: Trimmed Feature Model RMSE and CMSE scores for E.04 (Hyp-Testable)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.2202 0.2747

E.04 ∼ Rule R01na NoHypothesis bin +Rule R06a Curr Uncompared w Cite
+Rule R01n NoCurrstudy bin

Intuitive 18 0.2194 0.2747

E.04 ∼ Rule R01na NoHypothesis bin +Rule R06a Curr Uncompared w Cite
+Rule R01pb HasClaim log

Intervention 47 0.211 0.2557

E.04 ∼ Rule R01na NoHypothesis bin +Rule R11ub Undef Unfounded Claim log
+Rule R06a Curr Uncompared w Cite +Rule R05a HypoOpposesCite bin
+Rule R10c Claim Comp bin +Rule R02 NonCurrStudywoOut log
+Order Elt supports log +Rule R08 Unopp Hypo log
+Rule R07u Undef UncomparedOpp log +Rule R01nc NoCite bin

Total 77 0.2119 0.254

E.04 ∼ Rule R01na NoHypothesis bin +Rule R11ub Undef Unfounded Claim log
+Rule R06a Curr Uncompared w Cite +Rule R05 HypoSupportsCite
+Rule R02 NonCurrStudywoOut log +Order MaxChildren IgnoreEmpty log
+Order ChainedArgNodes log
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Table H9: Trimmed Feature Model RMSE and CMSE scores for E.07 (Cite-Reasons)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.2667 0.3042

E.07 ∼ Rule R02a NonHypowoOut log +Rule R01na NoHypothesis bin
+Rule R02b NonHypoClaimwoOut log

Intuitive 18 0.2477 0.2736

E.07 ∼ Rule R11ua Undef Ungrounded Hypo bin +Rule R01pa HasHypothesis log
+Order Elt comparison bin +Rule R02a NonHypowoOut log
+Rule R01pc HasCite log +Rule R01pb HasClaim log
+Rule R02b NonHypoClaimwoOut log

Intervention 47 0.2371 0.262

E.07 ∼ Rule R01pa HasHypothesis log +Rule R02a NonHypowoOut log
+Order Elt comparison bin +Rule R06 Cite Uncompared w Curr log
+Order OverlappingNodes +Rule R11b Unfounded Claim log
+Rule R08 Unopp Hypo log +Rule R01pb HasClaim log
+Rule R01nb NoClaim bin +Rule R02b NonHypoClaimwoOut log
+Rule R11ua Undef Ungrounded Hypo bin

Total 77 0.2434 0.26

E.07 ∼ Rule R11ua Undef Ungrounded Hypo bin +Order Elt hypothesis log
+Rule R08 Unopp Hypo log +Order OverlappingNodes
+Rule R06 Cite Uncompared w Curr log +Order Elt comparison bin
+Order MaxParents IgnoreEmpty log +Order MinChildren IgnoreEmpty log
+Rule R11u Undef Ungrounded Hypo Claim log +Order MaxFieldSentLen log
+Rule R01nc NoCite bin +Rule R10c Claim Comp bin
+Rule R04a EmptyNodeF ields +Rule R02a NonHypowoOut log
+Rule R02b NonHypoClaimwoOut log
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Table H10: Trimmed Feature Model RMSE and CMSE scores for E.10 (Hyp-Open)

Dataset # Predictors RMSE CMSE

Intuitive-NoP 11 0.3582 0.3401

E.10 ∼ Rule R03 NonCitewoIn +Rule R06a Curr Uncompared w Cite

Intuitive 18 0.3288 0.3284

E.10 ∼ Order PairedCounterarg +Rule R01pc HasCite log
+Rule R08 Unsupp Hypo log +Order Elt supports log
+Rule R01na NoHypothesis bin +Rule R01pa HasHypothesis log
+Rule R03b NonCiteOrCurrwoIn +Rule R02a NonHypowoOut log

Intervention 47 0.3229 0.3121

E.10 ∼ Order PairedCounterarg +Rule R08 Unsupp Hypo log
+Rule R06a Curr Uncompared w Cite +Rule R01p HasCurrstudy log
+Rule R03b NonCiteOrCurrwoIn bin +Rule R05 HypoSupportsCite
+Rule R10c Claim Comp bin +Rule R03 NonCitewoIn bin
+Rule R05a HypoOpposesCite bin

Total 77 0.3159 0.3282

E.10 ∼ Order PairedCounterarg +Order AvgChildren log
+Order MaxChildren IgnoreEmpty log +Order MinParents IgnoreEmpty log
+Rule R01na NoHypothesis bin +Rule R05b HypoToCite log
+Rule R01nc NoCite bin +Order Minus citation MinFieldSentLen bin
+Order MinFieldSentLen +Rule R07 UncomparedOpp bin
+Rule R01nb NoClaim bin +Rule R11 Ungrounded Hypo Claim log
+Rule R10c Claim Comp bin +Rule R10a Hypo or Claim Comp bin
+Order MaxParents IgnoreEmpty log +Rule R11b Unfounded Claim log
+Order MinDegree +Rule R03b NonCiteOrCurrwoIn bin
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[97] J. Rekers and Andy Schürr. Defining and parsing visual languages with layered graph
grammars. J. Vis. Lang. Comput., 8(1):27–55, 1997.

[98] Nicholas Rescher. Hypothetical Reasoning. Studies in Logic and The Foundations of
Mathematics. North-Holland Publishing Company, Amsterdam, 1964.

[99] Rod D. Roscoe, Erica L. Snow, and Danielle S. McNamara. Feedback and revising in
an intelligent tutoring system for writing strategies. In Lane et al. [62], pages 259–268.

272



[100] Patrick Royston. An extension of shapiro and wilk’s w test for normality to large
samples. Applied Statistics, 31:115–124, 1982.

[101] D. E. Rumelhart. Schemata: The building blocks of cognition. In R. J. Shapiro,
B. C. Bruce, and W. F. Brewer, editors, Theoretical issues in reading comprehension:
Perspectives from cognitive psychology, linguistics, artificial intelligence, and education,
pages 33–58. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1980.

[102] Roger C. Schank and David B. Leake. Creativity and learning in a case-based explainer.
Artif. Intell., 40(1-3):353–385, 1989.

[103] O. Scheuer, S. Niebuhr, T. Dragon, B. M. McLaren, and N. Pinkwart. Adaptive
support for graphical argumentation - the lasad approach. IEEE Learning Technology
Newsletter 14(1), p. 8 - 11, 2012.

[104] Oliver Scheuer, Frank Loll, Niels Pinkwart, and Bruce McLaren. Computer-supported
argumentation: A review of the state of the art. International Journal of Computer-
Supported Collaborative Learning, 5:43–102, 2010. 10.1007/s11412-009-9080-x.

[105] Oliver Scheuer, Bruce McLaren, Frank Loll, and Niels Pinkwart. Automated analy-
sis and feedback techniques to support argumentation: A survey. In Niels Pinkwart
and Bruce M. McLaren, editors, Educational Technologies for Teaching Argumentation
Skills. Bentham Science Publishers, 2012. (in press).

[106] Oliver Scheuer, Bruce M. McLaren, Maralee Harrell, and Armin Weinberger. Will
structuring the collaboration of students improve their argumentation? In Gautam
Biswas, Susan Bull, Judy Kay, and Antonija Mitrovic, editors, AIED, volume 6738 of
Lecture Notes in Computer Science, pages 544–546. Springer, 2011.

[107] Oliver Scheuer, Bruce M. McLaren, Frank Loll, and Niels Pinkwart. An analysis and
feedback infrastructure for argumentation learning systems. In Dimitrova et al. [31],
pages 629–631.

[108] Mary Ann Schroeder, Janice Lander, and Stacey Levine-Silverman. Diagnosing and
dealing with multicollinearity. Western Journal of Nursing Research, 12(2):175–187,
1990.

[109] Baruch B. Schwarz and Amnon Glassner. The role of floor control and of ontology in
argumentative activities with discussion-based tools. I. J. Computer-Supported Col-
laborative Learning, 2(4):449–478, 2007.

[110] S. J. Buckingham Shum, A. MacLean, V. M. E. Bellotti, and N. V. Hammond. Graph-
ical argumentation and design cognition. Human-Computer Interaction, 12(3):267300,
1997.

[111] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
San Francisco, 1997.

273



[112] Rand J. Spiro, Walter P. Vispoel, John G. Schmitz, Ala Samarapungavan, and A. E.
Boerger. Knowledge acquisition for application: Cognitive flexibility and transfer in
complex content domains. In Bruce K. Britton and Shawn M. Glynn, editors, Executive
Control Processes in Reading, pages 177–199. Lawrence Earlbaum Associates, 1987.

[113] John C. Stamper, Michael Eagle, Tiffany Barnes, and Marvin J. Croy. Experimental
evaluation of automatic hint generation for a logic tutor. I. J. Artificial Intelligence in
Education, 22(1-2):3–17, 2013.

[114] Common Core Standards. Common core standards for english language arts & literacy
in history/social studies, science, and technical subjects., 2013. [Online; accessed 01-
2011].

[115] Dan Suthers. Representations for scaffolding collaborative inquiry on ill-structured
problems. Technical report, University of Hawaii, 1998. Presented at the 1998 confer-
ence of the American Educational Research Association, April 1998, San Diego.

[116] Daniel D. Suthers. Representational guidance for collaborative inquiry. In Arguing
to learn: Confronting cognitions in computer-supported collaborative learning environ-
ments, page 2746. 2003.

[117] Daniel D. Suthers. Empirical studies of the value of conceptually explicit notations
in collaborative learning. In Alexandra Okada, Simon Buckingham Shum, and Tony
Sherborne, editors, Knowledge Cartography, pages 1–23. Springer Verlag, 2008.

[118] Olaf Tans. The fluidity of warrants: Using the toulmin model to analyse practical
discourse. In David Hitchcock and Bart Verheij, editors, Arguing on the Toulmin Model:
New Essays in Argument Analysis and Evaluation. Series: Argumentation Library ,
Vol. 10. Springer-Verlag, 2006.

[119] Owen Thomas, editor. Walden and Civil Disobedience: Authoritative Texts, Back-
ground, Reviews and Essays in Criticism. W.W. Norton & Company Inc. New York,
1966.

[120] S. E. Toulmin. The uses of Argument. Cambridge University Press, 1958.

[121] S. E. Toulmin, R. D. Rieke, and A. Janik. An Introduction to Reasoning. New York,
London: MacMillan Publishers, 2nd edition, 1984.

[122] J. Gregory Trafton and Susan B. Trickett. Note-taking for self-explanation and problem
solving. Hum.-Comput. Interact., 16(1):1–38, 2001.

[123] Tim J. van Gelder. A reason!able approach to critical thinking. Principal Matters:
The Journal for Australasian, Secondary School Leaders, pages 34–36, 2002.

[124] Mark Vorobej. A Theory of Argument. Cambridge, 2006.

274



[125] James F. Voss. Toulmin’s model and the solving of ill-structured problems. In David
Hitchcock and Bart Verheij, editors, Arguing on the Toulmin Model: New Essays in
Argument Analysis and Evaluation, pages 303–311. Springer, Berlin, 2006.

[126] James F. Voss, Terry R. Greene, Timothy A. Post, and Barbara C. Penner. Problem
solving skill in the social sciences. The Psychology of Learning and Motivation, 17:165
– 215, 1983.

[127] Erin Walker, Nikol Rummel, and Kenneth R. Koedinger. To tutor the tutor: Adaptive
domain support for peer tutoring. In Woolf et al. [144], pages 626–635.

[128] Douglas N. Walton. Informal Logic: A Handbook for Critical Argumentation. Cam-
bridge University Press, 1989.

[129] Wikipedia. Breuschpagan test — wikipedia, the free encyclopedia, 2013. [Online;
accessed 10-November-2013].

[130] Wikipedia. Coefficient of determination — wikipedia, the free encyclopedia, 2013.
[Online; accessed 27-February-2013].

[131] Wikipedia. Greedy algorithm — wikipedia, the free encyclopedia, 2013. [Online;
accessed 22-December-2013].

[132] Wikipedia. Holmbonferroni method — wikipedia, the free encyclopedia, 2013. [Online;
accessed 16-December-2013].

[133] Wikipedia. Linear regression — wikipedia, the free encyclopedia, 2013. [Online; ac-
cessed 19-October-2013].

[134] Wikipedia. Multiple correlation — wikipedia, the free encyclopedia, 2013. [Online;
accessed 8-November-2013].

[135] Wikipedia. Root-mean-square deviation, 2013. [Online; accessed 24-September-2013].

[136] Wikipedia. Shapirowilk test — wikipedia, the free encyclopedia, 2013. [Online; accessed
6-November-2013].

[137] Wikipedia. Spearman’s rank correlation coefficient — wikipedia, the free encyclopedia,
2013. [Online; accessed 27-February-2013].

[138] Wikipedia. Wilcoxon signed-rank test — wikipedia, the free encyclopedia, 2013. [On-
line; accessed 16-December-2013].

[139] David Wilson and H. Chad Lane, editors. Proceedings of the Twenty-First International
Florida Artificial Intelligence Research Society Conference, May 15-17, 2008, Coconut
Grove, Florida, USA. AAAI Press, 2008.

275



[140] Christopher R. Wolfe. Argumentation across the curriculum. Written Communication,
28(2):193–219, 2011.

[141] Simon N. Wood. Generalized Additive Models: An Introduction with R. Chapman &
Hall, 2006.

[142] Simon N. Wood. Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models. Journal of the Royal Statistical
Society (B), 73(1):3–36, 2011.

[143] Simon N. Wood. mgcv: Mixed gam computation vehicle with gcv/aic/reml smoothness
estimation, 10 2013. [Online; accessed 10-26-2013].

[144] Beverly Park Woolf, Esma Aı̈meur, Roger Nkambou, and Susanne P. Lajoie, edi-
tors. Intelligent Tutoring Systems, 9th International Conference, ITS 2008, Montreal,
Canada, June 23-27, 2008, Proceedings, volume 5091 of Lecture Notes in Computer
Science. Springer, 2008.

[145] Youjae Yi. On the evaluation of main effects in multiplicative regression models. Jour-
nal of the Market Research Society, 31(1):133–138, January 1989.

[146] Chang Hun You, Lawrence B. Holder, and Diane J. Cook. Graph-based data mining in
dynamic networks: Empirical comparison of compression-based and frequency-based
subgraph mining. In ICDM Workshops, pages 929–938. IEEE Computer Society, 2008.

276


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1.1. Sample Common Core Standards on Argumentation
	2.1. Per-case LARGO Agreement Table
	4.1. Per-Grader Assignments
	4.2. Primary Grader Results
	4.3. Reliability Grader Results
	4.4. Reliability Grade Results
	4.5. Grade Filter Table
	4.6. Direct Validity Results
	4.7. Gestalt Validity E.14
	6.1. Empirical Validation: Size and Density Simple Features
	6.2. Empirical Validation: Ontology Simple Features
	6.3. Empirical Validation: Chained & Neg Complex Features
	6.4. Empirical Validation: Textual & Triplet Complex Features
	6.5. Empirical Validation: Ground & Disjoint Complex Features
	7.1. Individual Feature Sets.
	7.2. Baseline: Essay Grade
	7.3. Essay Grade Normalization
	7.4. Direct Graph/Essay Baseline Scores
	7.5. Induced Graph Grade Predictive Model Results
	7.6. Raw and Trimmed Feature Model Scores
	7.7. GAM RMSE and CMSE Scores.
	7.8. Comparison: Model Performance Results
	7.9. Comparison: Model Comparison Stats
	7.10. Trimmed E.14 (Arg-Quality) Coefficients
	7.11. Raw/Trimmed E.14 (Arg-Quality) feature models
	8.1. Grade Spread for Example Diagram
	8.2. Sample Complex Essay (1)
	8.3. Sample Complex Essay (2)
	F1. Graph Expression Scope Values
	H1. Graph Induced Models
	H2. Raw Feature Model E.01 (RQ-Quality)
	H3. Raw Feature Model E.04 (Hyp-Testable)
	H4. Raw Feature Model E.07 (Cite-Reasons)
	H5. Raw Feature Model E.10 (Hyp-Open)
	H6. Raw Feature Model E.14 (Arg-Quality)
	H7. Trimmed Feature Model E.01 (RQ-Quality)
	H8. Trimmed Feature Model E.04 (Hyp-Testable)
	H9. Trimmed Feature Model E.07 (Cite-Reasons)
	H10. Trimmed Feature Model E.10 (Hyp-Open)
	H11. Trimmed Feature Model E.14 (Arg-Quality)

	LIST OF FIGURES
	1.1. Sample Toulmin Diagram
	2.1. LARGO Screenshot
	2.2. Per-case Inter-Grader Agreement Plots
	2.3. LASAD Screenshot
	3.1. Component node types for the SciIntro ontology as they appear in the LASAD diagramming system.
	3.2. Relational arc types for the SciIntro Ontology as they appear in the LASAD diagramming system. Supporting and Undefined arcs are shown in (a) while Comparison, Opposing, and Supporting arcs are shown in (b).
	3.3. Planning diagram associated with the sample essay A.
	3.4. Planning diagram associated with the sample essay B.
	4.1. Grading Rubric Summary
	5.1. Simple Augmented Graph Grammar Rule
	5.2. AGG Supporting Path Rule
	5.3. AGG Opposing Path Rule
	5.4. Sample Argument Subgraph
	5.5. Augmented Graph Grammar Example Supporting Path
	5.6. AGG Example R11: Ungrounded Hypo-Claim
	5.7. Reference Diagram
	5.8. Chained Rules: Augmented Graph Grammar Examples.
	5.9. R01pd_Has_RQ AGG Example
	7.1. Error Plots and Distribution Intervention E.14
	7.2. Error Plots and Distribution Total E.14
	8.1. Complex Grading Pair Sample Diagram
	8.2. Complex Grading Pair Sample Diagram (Top)
	8.3. Complex Grading Pair Sample Diagram (Bottom)
	8.4. Automated Advice Example
	F1. An example graph expression with subclasses.
	F2. An example graph production with subclasses.
	F3. An example graph production with subclasses.
	F4. Sample Class 1 represented in textual format.
	F5. Constraint set example.
	F6. Constraint group example.
	F7. Graph Schema Examples.
	F8. An example graph production with subclasses.
	F9. Graph Class Examples.
	F10. Sample Ontology Structure
	F11. An example graph production with subclasses.
	F12. Graph Expansion Examples.
	F13. Arc production example.
	F14. Variable arc mapping examples.

	LIST OF ALGORITHMS
	1.0 INTRODUCTION
	1.1 Overview
	1.2 Introduction
	1.3 Research Questions
	1.4 Outline

	2.0 BACKGROUND
	2.1 Argumentation
	2.2 Educational Impact
	2.3 Visual Representations of Argumentation
	2.4 LARGO Diagnosticity Analyses
	2.5 LASAD
	2.6 Graph Grammars
	2.7 Diagnostic Rule Induction
	2.8 Conclusions

	3.0 DATA COLLECTION
	3.1 Scientific Argumentation
	3.2 Research Methods Ontology
	3.3 Sample Introductory Essays
	3.3.1 Sample Essay A
	3.3.2 Sample Essay B

	3.4 Studies
	3.5 Conclusions

	4.0 QH HUMAN-GRADING
	4.1 Introduction
	4.2 Reliability and Validity
	4.3 Grading
	4.3.1 Rubric
	4.3.2 Grading Process
	4.3.3 Grading Results

	4.4 Reliability Hh1 & Hh2
	4.4.1 Primary Results
	4.4.2 Reliability Filtering

	4.5 Validity: Hh3 & Hh4
	4.5.1 Direct Validity
	4.5.2 Gestalt Validity
	4.5.3 Summary & Analysis

	4.6 Conclusions

	5.0 QA AUTOMATIC GRADING
	5.1 Introduction
	5.2 Prior Work
	5.3 Augmented Graph Grammars
	5.4 Graph Features and Graph Grammars
	5.4.1 Simple Features
	5.4.2 Complex Features

	5.5 Reliability
	5.6 Conclusion

	6.0 HA1 EMPIRICAL VALIDITY
	6.1 Introduction
	6.2 Results
	6.3 Analysis: Simple Features
	6.4 Analysis: Complex Features
	6.5 Conclusions

	7.0 HA2 MODEL PREDICTION
	7.1 Introduction
	7.2 Linear Regression & Model Induction
	7.2.1 Standard Linear Regression Models
	7.2.2 Model Evaluation
	7.2.3 Model Generation

	7.3 Methods
	7.3.1 Graph Feature Sets
	7.3.2 Tolerance Reduction

	7.4 Results
	7.4.1 Baseline
	7.4.2 Graph to Essay Grades
	7.4.3 Induced Feature Models
	7.4.4 Generalized Additive Models (GAMs)

	7.5 Analysis and Conclusions
	7.5.1 Ha2 Primary Hypothesis
	7.5.2 Model Inspection
	7.5.3 Multicollinearity
	7.5.4 Greedy Induction


	8.0 ANALYSIS & CONCLUSIONS
	8.1 Conclusions
	8.2 Grading Challenges
	8.2.1 Diagram Analysis
	8.2.2 Essay Analysis
	8.2.3 Example Discussion

	8.3 Automated Advice
	8.4 Contributions
	8.4.1 Education
	8.4.2 Intelligent Tutoring Systems
	8.4.3 Educational Data Mining
	8.4.4 Graph Analysis & Linear Regression
	8.4.5 Technical Contributions

	8.5 Future Work
	8.5.1 Education
	8.5.2 Intelligent Tutoring Systems
	8.5.3 Graph Analysis & Linear Regression

	8.6 Closing

	APPENDIX A. LASAD MATERIALS
	APPENDIX B. CLASS ASSIGNMENT
	APPENDIX C. GRADING RUBRIC
	APPENDIX D. GRADING MATERIALS
	APPENDIX E. SNG MANUAL
	APPENDIX F. AUGMENTED GRAPH GRAMMARS
	 F.1 Introduction
	 F.2 Background
	 F.3 Augmented Graph Grammar Formalism.
	 F.3.1 Constraints
	 F.3.2 Graph Schema
	 F.3.3 Graph Classes
	 F.3.4 Graph Ontology
	 F.3.5 Graph Production
	 F.3.5.1 Recursive Productions, and Scope

	 F.3.6 Production Mapping
	 F.3.7 Arc Productions
	 F.3.8 Graph Expression
	 F.3.9 Text Syntax
	 F.3.10 Future Alternatives

	 F.4 Compilation & Evaluation

	APPENDIX G. LINEAR REGRESSION
	 G.1 Linearity
	 G.2 Independence & Variability
	 G.3 Non-Multicollinearity
	 G.4 Homoscedasticity
	 G.5 Normally-Distributed Errors
	 G.6 Weak Exogeneity
	 G.7 Normally-Distributed Data

	APPENDIX H. INDUCED MODEL DETAILS
	BIBLIOGRAPHY

