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OPTIMAL WAVE PROPAGATION-BASED NONDESTRUCTIVE TEST

DESIGN FOR QUANTITATIVE DAMAGE CHARACTERIZATION

Zhanpeng Hao, M.S.

University of Pittsburgh, 2014

Nondestructive testing (NDT) has been widely used for damage identification and inverse

characterization of material properties in several fields of science and engineering, from struc-

tural engineering to medicine. However, there are several common challenges inherent in the

evaluation of structures and systems, including the potential for excessive computational

expense and ill-posedness of the inverse problem. Numerical methods, such as the finite

element method, provide substantial benefits in terms of solution capabilities, but the anal-

ysis for NDT applications in realistic structures often requires substantial computational

time and power. Furthermore, limitations on the quantity and quality of measurement data

can cause the evaluation problem to require even more computational effort and/or lead to

solution non-uniqueness or nonexistence.

The present work introduces a general approach to optimal wave propagation-based

NDT design for damage characterization applications. More specifically, the objective of

this work is to improve the accuracy and efficiency of the damage characterization process

by optimizing the parameters of the NDT, such as the locations of sensors and actuators. The

NDT design approach developed is based on maximizing the sensitivity of the NDT response

measurements to changes in the material properties to be determined by the evaluation, while

simultaneously minimizing the redundancy of response measurements. Two simulated case

studies are presented to evaluate the performance of the optimal wave propagation-based

NDT design approach. Both examples consisted of thin plate structures with a damage

field that was represented by changes in the Young’s modulus distribution throughout the
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structure. In order to provide practical relevance, the NDT method considered was based

on commonly used ultrasonic testing with piezoelectric sensors and actuators. The optimal

NDT designs corresponding to maximized sensitivity and minimized response redundancy

are shown to provide substantially improved evaluation solution efficiency and accuracy for

quantitative damage characterization in comparison to standard approaches.
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1.0 INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

There has been a considerable amount of work on a variety of computational inverse methods

for damage and/or material characterization in various engineering fields ranging from civil,

mechanical, and aerospace engineering to biology and medicine [4, 5, 6, 7, 8]. The basic

idea of inverse characterization is that the responses of the system (e.g., forward model

outputs, such as displacement, strain, and velocity) from various stimuli carry information

about system features that are typically considered known a priori for a forward problem.

For example, a structure’s responses are functions of the material properties (e.g., mass,

stiffness, and damping) of the system, regardless of whether it may be rigid as concrete or a

softer material such as tissue. Consequently, any changes in material properties will produce

changes in the measurable responses, which could then be used in turn to predict these

unknown system properties inversely. Nondestructive testing (NDT) has been employed

to excite and measure system responses in several fields, especially solids and structures.

Based on system responses from NDT, changes in material properties, caused by damage

or otherwise, can be inversely characterized with a variety of methods. A classification for

damage characterization methods was defined in [9] as four levels:

Level 1 Determination if damage is present in the structure.

Level 2 Estimation of the geometric location of the damage.

Level 3 Quantification of the severity of the damage.

Level 4 Prediction of the service life of the system.
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Generally, the inverse problems for damage characterization in structures refer to Level 2

or Level 3, which includes the estimation of damage parameters, such as location, breadth,

length, and depth. In the present work, both the severity and location parameters will be

considered in the damage characterization problem.

One of the typical computational approaches to solve these types of inverse problems is

based on updating structural model parameters (e.g., stiffness, mass, and damping) through

an iterative procedure. Given measurements from some type of NDT performed on the

structure, a computational model is created that predicts the response of the structure from

this NDT with respect to an estimate of the unknown parameters. An optimization problem

is then created to identify the parameter values that minimize the difference between the

responses predicted by the numerical modeling and the measured data from an NDT. There

are a wide variety of applications utilizing computational inverse solution methods such

as this based on different parameters or material properties, different representations of

system responses, and different types of NDT [10, 6, 7, 11, 4]. However, several common

procedures are followed. Firstly, the unknown properties of the system need to be defined

and parameterized. Secondly, an objective function, which represents the difference between

the responses predicted by the computational model and the measured data from the NDT,

is defined to be minimized. In addition, boundary conditions, such as the admissible range

of the unknown properties, needs to be defined. Lastly, numerical algorithms are employed

to perform the optimization to estimate the unknown material properties.

Several issues are present when solving inverse problems for damage and/or material

characterization and have been discussed in many previous studies [12, 13]. One of the im-

portant issues to consider is the ill-posedness common to inverse problems. This can lead

to non-existence of solutions, non-uniqueness of solutions, and solution instability. Relat-

ed to these issues is the limited quantity and quality of measurements in many practical

applications. Many frameworks that have been developed and shown to work well in cer-

tain case studies actually struggle when measurement restrictions exist in practical testing.

Alternatively, an approach to optimize the design of NDT by selecting appropriate control-

lable features, such as actuator location, sensor orientation, location, and frequency, could
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go a long way in relieving some of these issues and improve the solvability of these inverse

problems regardless of the specifics of the solution procedure.

1.2 NONDESTRUCTIVE TESTING

Nondestructive testing has been developed and used for decades in many fields of engineering.

Compared to destructive testing, NDT provides measurement information that can be used

for evaluation of the current condition of test objects without changing or destroying their

current state and serviceability in any way. As one of the fastest growing technologies over

the past 25 years, a large number of different NDT methods have been developed and have

advantages suitable for different applications [14]. NDT has been be used in conjunction

with inverse solution procedures to determine the presence of damage in structures, as well as

estimate the severity and geometric location, leading to the prediction of future performance

and estimation of a structure’s remaining life span. An overview of some major NDT methods

are as follows:

Ultrasonic testing (UT) : Transducer excites the test object with high frequency pulses

that propagate through the object. Any reflections from surfaces or discontinuities are

then collected by the same transducer or other sensors. This method is suitable for

almost all structures and materials and has the ability to also detect small sized defects.

Acoustic emission testing (AE) : When the discontinuities develop a stress wave is gen-

erated and travels through the structures. This method is often applicable to health

monitoring of structural components like bolts and weld connections subjected to load-

ing.

Thermal infrared testing (TIR) : Use thermal detectors such as IR cameras to inspect

the temperature distribution of structure’s surface. The defects in structures where a

change in temperature is related to the thermal conductivity distribution can then be

identified.
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The case studies presented in the current work are based upon inverse characterization of

properties utilizing UT, which is elaborated upon further in the following.

1.3 ULTRASONIC TESTING

Ultrasonic testing has become one of the most important NDT techniques in the fields of civil,

mechanical, and aerospace engineering. The potential of UT for nondestructive evaluation

(NDE) and structure health monitoring (SHM) has been recognized and discussed for as far

back as the 1960s [15, 16, 17]. In UT, an ultrasonic wave, which has a high frequency (i.e.,

larger than 20 kHz), is induced by applying a pulse signal (typically a modulated sinusoidal

tone burst of some limited number of cycles) through an actuator. The propagation of

ultrasonic waves through the test objects or structures is significantly affected by the object’s

geometry and material properties. In addition, structural discontinuities, which could be

damage such as cracks or delamination, or structural boundaries, scatter ultrasonic waves

in all direction. Furthermore, changes in material properties affect the features of the wave

propagation, such as wave speed, magnitude, etc. Sensors, such as traditional piezoelectric

transducers can be employed to collect these responses from the objects or structures being

tested.

1.3.1 Piezoelectric Transducers

The transducer is a critical component of UT. Piezoelectric transducers (PZT), which are

relatively cheap and readily available in small sizes, are the most common transducers used

in practice. A PZT is either bonded or embedded into the structure under consideration.

The basic functionality of a PZT is that it transforms the mechanical deformation to an

electrical signal that can be recorded. The constitutive equation of a PZT can be expressed

as:

ε =
σ

E
+ φδ (1.1)
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and

D = αδ + φσ (1.2)

Where

ε = mechanical strain

σ = mechanical stress

E = Young’s Modulus

φ = piezoelectric strain coefficient

δ = electric field

D = electrical displacement (charge density)

α = dielectric constant

Utilizing the properties of the PZT transformation between the mechanical deformation

and electrical signal, a PZT can be used as both an actuator and a sensor. The capability

of a PZT to convert energy between the electrical and mechanical fields can be represented

by the coupling coefficient (k) as:

k =

√
E

α
φ (1.3)

PZT with larger coupling coefficients are preferred in practice because of their higher effi-

ciency to convert electrical energy into mechanical energy or convert mechanical energy to

electrical energy.

1.3.2 Implementations

Generally, there are three different approaches to UT, which could be employed individually

or collectively: pulse-echo, pitch-catch, and through-transmission [1]. In the pulse-echo

approach, PZT or actuator-sensor pairs are used as actuators to excite the structure with a

restricted bandwidth pulse, while also being used as sensors to receive the echoes of these

pulses reflected by the material discontinuities (e.g., cracks, delaminations, and/or voids)

or the structural boundaries. The signals are then digitized and processed, and with a

controlled center actuation frequency and known wave speed for the test object, the signals

indicating damage can be extracted by applying appropriate filters. A schematic of the

pulse-echo approach is shown in Figure 1.1. In the pitch-catch approach a pulse signal sent
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Figure 1.1: Schematic of Pulse-Echo approach for Ultrasonic Testing [1].

by an actuator propagates at an angle to the surface of the structure and is received by a

sensor placed at some distance away from the actuator. By analyzing the various features of

the collected signal, such as amplitude, transit time, and frequency response, characteristics

of damage, including depths, breadth, and location can be determined. A schematic of

the pitch-catch approach is shown in Figure 1.2. In the through-transmission approach

the actuator and sensor are placed on opposite sides of the test object. This approach is

particularly suitable for NDE of multilayered structures or composite materials. A schematic

of the pulse-echo approach is shown in Figure 1.3.

All three approaches are well-established in NDE and SHM industries and there have

been a large amount of studies on developing these UT methodologies [18, 19, 20, 21, 22, 23].

In every UT approach certain essential steps are followed regardless of the type of test object.

The signal collected by the transducers is used as input for some signal-processing algorithms

to prepare for further processing and/or extract key features. Based on these signals and/or

features, pattern recognition techniques and/or computational inverse solution methods can

be employed to determine the types and severity of damage. A schematic of a UT-NDE

process is illustrated in Figure 1.4 [2].
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Figure 1.2: Schematic of Pitch-Catch approach for Ultrasonic Testing [1].

Figure 1.3: Schematic of Through-Transmission approach for Ultrasonic Testing [1].
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Figure 1.4: Schematic of the process of Ultrasonic Testing for nondestructive evaluation [2].
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1.3.3 Simulation of Wave Propagation

Level 2 and Level 3 NDE damage characterization, which are the determination of the dam-

age location and quantification of the damage severity, can be particularly difficult to achieve

based on limited experimental data and using pattern recognition techniques. In such cases,

capabilities to simulate the wave propagation that occurs from UT can be a great benefit to

the NDE process. Analytical approaches are often unable to provide an efficient prediction

of wave propagation in realistic structures with complex geometries. Therefore, a predictive

simulation is fundamental for effectively applying NDE and SHM. However, the balance of

accuracy and efficiency in simulating Ultrasonic wave propagation in realistic structures is

challenging. The finite element method (FEM) and the boundary element method (BEM)

have often been preferred in previous studies to simulate the wave propagation in structures.

For example, guidelines for modeling guided lamb wave propagation has been provided in

previous studies [24, 3]. In those studies FEM models were built using the commercial soft-

ware ABAQUS/Explicit to simulate lamb wave propagation in thin plate structures. The

central difference method was used for explicit time integration to provide a reasonable

trade-off between computational expense and accuracy. Although explicit integration has

the benefit of relatively low computational cost, instability of the numerical solution might

occur. To try to ensure stability, a limit on the time increment is given as [3]:

4t ≤ 1

20fmax
, (1.4)

where fmax is the maximum frequency of the structure. To simulate the wave propagation

accurately, the element size of the model is also restricted by the wavelength. Moser et al.

recommend a minimum of 20 nodes per wavelength to ensure sufficient spatial resolution as

[25]:

Le ≤
λmin
20

, (1.5)

where Le is the element size and λmin is the minimum wavelength of the structure.

The simulation of the excitation and receiver is an important part of simulating wave

propagation-based NDT. Gresil et al. introduced a way to simulate the excitation of square

and round piezoelectric wafer active sensors (PWAS) for actuation as 12 and 8 self-equilibrating
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Figure 1.5: Comparison of a tone burst signal received from a finite element model using

approximate excitation, as well as analytical and experimental results [3].

forces [3]. In that work a modulated sinusoidal tone burst of some limited number of cycles

was used to simulate the pulse signal. This approximation of the excitation may cause a

relatively small time shift between experimental, analytical, and numerical results. For ex-

ample, Figure 1.5 shows the comparison of the signal received generated by the FEM using

the approximate excitation, an analytical approximation, and experimental results. Addi-

tionally, there are several methods to simulate the PWAS receiver. One approximation could

be recording the in-plane strain at the center of the PWAS [24], since the output signal of

the piezoelectric sensor is directly related to the mechanical strain.

1.3.4 Inverse Problems in Structural Dynamics

1.3.4.1 Inverse Problem Overview: It is always significantly more challenging to solve

an inverse problem than the corresponding forward problem. For instance, inverse problems

in mathematics are uncountable and often have multiple solutions [26]. In structural dy-
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Figure 1.6: Schematic of inverse problems in structural dynamics.

namics, forward problems typically consist of calculating the response, such as displacement,

strain, velocity, etc., of a given structural system knowing the material properties, geometry,

and boundary conditions. In contrast, inverse problems include deducing unknown material

properties, geometry, and/or boundary conditions of a structural system from some set of re-

sponses. Another definition of inverse problems for damage characterization was introduced

in [12]. Inverse problems typically estimate the unknown material properties (such as mate-

rial stiffness distribution) from the system response, while a forward problem measures the

response of the systems with unknown material properties. The NDT techniques described

in the previous sections, such as UT, TIR and AE, are used to obtain the system responses

as would relate to the forward problems and used as input for the inverse problems. Figure

1.6 illustrates the concept of inverse problems in structural dynamics.

A large amount of focus has been placed on different inverse solution methods for ma-

terial characterization or damage identification in various fields [4, 5, 6, 7, 8]. One of the

common computational approaches to solve these inverse problems is based on updating

structural model parameters (e.g., stiffness, mass, and damping) within a representation of

the structural system until the dynamic response experimentally measured for that system is

sufficiently approximated. As described in the previous section, traditional FEM and BEM
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are commonly applied to simulate NDT responses for a variety of systems. The reliability

of these computational inverse solution approaches relies on the accuracy and efficiency of

the computational model representing the physical behavior of the system subject to the

NDT. If an accurate computational representation can be created, an optimization problem

can then be arranged to minimize the difference between the reproduced dynamic responses

from the computational representation and the response experimentally measured from the

NDT.

The modeling assumptions and the parameterization of the unknown fields to be deter-

mined play an important role in this solution process, and there have been a wide variety

of applications that utilize an equally wide variety of modeling approaches and parameter-

izations. For example, for inverse characterization of damage or degradation, the damage

or “unhealthy” features of a structure could be predefined to manifest as changes in the

material properties, such as Young’s modulus, mass, and/or damping. In [4] Gaussian radial

basis functions (GRBF) were used to represent the spatial variation of Young’s modulus in

unhealthy tissue. As such, the spatial distribution of Young’s modulus was expressed as:

E(~x) = Eo +
n∑
i=1

λi exp

(
−‖~x−

~ξi‖2

c2
i

)
, (1.6)

where Eo is the healthy Young’s modulus, ~ξi are the coordinates of the GRBF centers,

c2
i is the parameter that control the size of the GRBFs, λi are the real-valued amplitude

coefficients, and ‖ ·‖ is the standard l2 norm. Notghi et al. also used a GRBF representation

of Young’s modulus distribution for inverse characterization of damage in plate structures

[27].

The objective function that quantifies the error in the computational representation of

the structural system based on different geometric and physical properties of also signifi-

cantly affects the accuracy and efficiency of the inverse solution procedure. Most often these

objective functions are simply defined as some suitable metric norm of the error between the

simulated and the experimental NDT responses. In [4] the inverse problem was cast as an

optimization problem to characterize the Young’s modulus distribution from AE frequency
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responses, the FEM was used to simulate the system’s responses, and the objective function

quantifying the error between the simulated and experimental responses was defined as:

J =

√√√√ l∑
j=1

m∑
k=1

(rExpjk (~xj, ωk)− rFEAjk (~xj, ωk, {c}, {Ê}, {ζ}, {E0}))2, (1.7)

where rExp and rFEA are the experimental and finite element approximated responses, re-

spectively, ωk is the excitation frequency, {c} ad {ζ} are the parameters representing the

size and location of the degradation, respectively, and {Ê} is the Young’s modulus at the

degradation center. A similar relative error norm between experimental and approximate

frequency response was defined and utilized for inverse damage characterization in [27]. Al-

ternatively, a more physical equation (e.g., based on a boundary value problem) is another

option to create as objective function. For instance, in [6] an inverse transient heat conduc-

tion problem was used to identify the unknown thermal properties of a system by minimizing

the following function based on conservation of energy:

J(ρc, λ) =
1

2

∫ tf

0

‖ρcC dθ
dt

+ λKθ(t)− F‖2dt. (1.8)

1.3.4.2 Optimization Approaches: Provided with a suitable objective function, opti-

mization techniques can be used to minimize the objective function and identify an estimate

to the inverse solution. Generally, there are two main categories of optimization techniques,

gradient-based methods [28, 29] and non-gradient-based methods [30, 31, 32], with both hav-

ing certain advantages and shortcomings. Generally, gradient-based methods to minimize a

function can be described as follows:

1. Estimate a starting point (i.e., an initial estimate of the unknown properties), x0, and

set k = 0.

2. Test for convergence - Compute the value of the objective function for xk. If the criteria

for convergence is satisfied (i.e., the error is low enough), the algorithm can STOP and

give xk as the solution. Otherwise, continue to the next step.

3. Determine the next search point - Compute the gradient of the objective function at

current point, xk. Use the gradient to calculate a step size and direction and use this

step information to update the solution estimate.
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4. Update the variables - Set xk+1 to be the current solution estimate and set k = k + 1,

and RETURN to Step 2.

The gradient-based family of methods includes the steepest descent method, the conjugate

gradient method, Newton’s method, modified Newton’s method and trust region methods,

among others. Gradient-based methods typically require a much smaller number of itera-

tions (and therefore computational time) to converge comparing to the non-gradient-based

methods. However, global search capabilities for gradient-based methods is limited and they

are susceptible to premature convergence to local minima. The initial estimate of the solu-

tion will therefore significantly affect the ability of the algorithm to find an accurate solution.

Furthermore, there is added complexity in gradient-based methods due to the need to com-

pute the gradients of the objective function, potentially including first or higher derivatives

of the objective function.

In contrast, non-gradient-based methods typically have a better ability to find global

minima, but require a substantially larger number of iterations than gradient-based methods.

In addition, the gradient of the objective function is obviously not required for non-gradient-

based methods, and typically only evaluation of the objective function itself is necessary.

Grid search methods, stochastic and nonlinear simplex, and genetic algorithms (GA) are

all examples of non-gradient-based approaches. As a non-gradient-based algorithm that has

been employed in several inverse problem solution procedures, the theory of GA will be

briefly presented in the following.

Figure 1.7 illustrates a flowchart for a conventional GA. The fundamental concept of

GA comes from the processes observed in natural evolution. GA, which is classified as

evolutionary algorithms, imitates the evolutionary process of a population, and includes the

core operators of selection, crossover, and mutation to provide solution estimates. These

three basic operators in GA can be described as follows:

Slection : Selection is the process of survival of the fittest. In other words, the individuals

that have a better fitness value (i.e., lower objective function value) will have a higher

possibility to be selected to survive and/or generate offspring. There are several different
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Figure 1.7: Flowchart of a conventional Genetic Algorithm (GA).

15



ways to achieve selection, such as rank selection, tournament selection, elite selection,

and roulette selection. Further discussion of selection techniques are presented in [31].

Crossover : Crossover is the process to combine genetic information from parents to pro-

duce offspring. The objective of this process is to reproduce an “improved” combination

of genetic information. A simple way to achieve this is to copy genetic information

from one part of a parent’s information and copy the rest from the other parent. One

important point is that no new genetic information is created in crossover.

Mutation : Similar to natural mutation, this process randomly modifies some part of the

genetic information of an individual. Mutation decreases the possibility for an entire

population converging to a local solution, as mutation guarantees some amount of genetic

diversity for the next generation. Note that the mutation rate is usually much smaller

than the crossover rate.

In order to combine the benefits and relieve the shortcomings of gradient-based methods

and non-gradient-based methods, sometimes hybrid approaches containing both gradient-

based and non-gradient-based algorithms are used. Examples for damage characterization

problems that utilize various optimization approaches in a wide variety of structures are

presented in previous studies [4, 33, 11, 10]. Although a large amount of work has shown

the ability of these optimization approaches to solve inverse problems in characterization

of structures, there are some common challenges that still exist, particularly the potential

computational expense in practice. The FEM applied to analyze NDT in realistic complex

structures often requires substantial computational time and power. Applying limiting as-

sumptions, such as that only one or a small number of material properties are changed by the

damage, can simplify the optimization process, but in turn can decrease the accuracy of the

inverse solution. Alternatively, designing a NDT that improves the solvability of the inverse

problems can also substantially decrease the cost of the associated optimization process.
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1.4 OPTIMAL NONDESTRUCTIVE TEST DESIGN

Optimal NDT design, including selecting controllable features such as actuator location, sen-

sor orientation and location, and frequency, has the potential to go a long way in overcoming

or at least relieving some of the challenges discussed in inverse damage and/or material char-

acterization using computational inverse mechanics techniques. Furthermore, optimal NDT

design can provide guidance for implementation of specific NDE, helping to answer questions

such as how many sensors are needed to inversely characterize the material properties for a

particular NDT system. In recent years, several optimal NDT design approaches for damage

detection and identification were introduced and developed [34, 35, 36, 37, 27, 38, 39, 40].

However, the vast majority of the existing NDT design approaches focus on optimizing the

number and location of sensors alone.

One essential part of all current methods for NDT design is the definition of an appropri-

ate metric to evaluate the quality of the NDT parameters (e.g., sensor locations), and a wide

variety of metrics have been used. In [38, 39] a methodology to optimize damage detection

and localization applications was introduced based on minimizing the information entropy

with respect to the uncertainty in the model parameters. GA was employed to search for

the “best” locations of sensors with the minimum information entropy. The approach for

optimal sensor allocation proposed in [34] used the probability of damage identification as

the metric to evaluate the sensor allocation. A probability distribution function for the op-

timal sensor allocation was computed based on the weights in a neural network that was

trained to represent the behavior of the SHM system. The determinant of the target mode

information matrix is another option that has be used to measure the quality of a sensor

array [36]. In the process to find the optimal sensors locations, this method iteratively ex-

pands the small initial set of sensors instead of traditionally discarding candidates from a

larger set. For the most part, these previous studies only considered (and many are only

applicable to) the number of the sensors and their distribution as the variables in the NDT

optimization. However, the aspects such as actuator location, direction, frequency, and test

period of a NDT also have significant effect on the quality of the measurement information.

Moreover, the examples presented in most of the current work provided limited support for
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the applicability to general cases. In order words, the techniques were only applicable to the

specific structural systems and property that was discussed.

Raich and Liszkai [40] proposed a multi-objective optimization approach for NDT design

that maximizes the sensitivity of the frequency response collected by sensors to the changes

in the material properties, while also minimizing the number of required sensors. Both lay-

outs of sensors and actuators were optimized in the examples presented. More specifically,

case studies of structural damage characterization in beam and frame structures were pre-

sented to support this method for optimization of frequency response function-based NDT.

The concept of maximizing sensitivity was extended to be applicable to a larger variety of

NDT systems in [27], including solid continua in particular. Furthermore, [27] added in an

objective to minimize the information redundancy collected by all sensors along with maxi-

mizing the sensitivity of the NDT design. Inverse characterization of the Young’s modulus

distribution of beam and thin plate structures was considered with simulated NDT and NDE

problems, and the results further supported the concept of maximizing sensitivity for opti-

mal NDT design. However, both studies applied this concept only in the frequency domain

for frequency response function-based NDT.

In order to further explore the potential of this sensitivity maximization concept for

optimal NDT design, the present work introduces a general approach to optimal wave

propagation-based NDT design for damage characterization applications. More specifically,

the objective of this work is to improve the accuracy and efficiency of the damage characteri-

zation process by optimizing the parameters of the NDT, such as the locations of sensors and

actuators. The NDT design approach developed is based on maximizing the sensitivity of

the NDT response measurements to changes in the material properties to be determined by

the evaluation, while simultaneously minimizing the redundancy of response measurements.

In particular, the concept of maximizing sensitivity with respect to the damage parameters

[27, 40] is extended to wave propagation-based NDT. The forward problem describing the

specific wave propagation-based NDT considered in presented next, followed by the inverse

characterization problem formulation, and then the presentation of the NDT optimization

techniques. Lastly, two simulated case studies are presented to evaluate the performance of
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the optimal wave propagation-based NDT design approach, which is followed by the con-

cluding remarks.
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2.0 FORWARD PROBLEM SIMULATION USING THE FINITE

ELEMENT METHOD

2.1 WAVE PROPAGATION IN ELASTIC SOLIDS

When a deformation wave propagates in a structure oscillations occur in space as well as

in time. While this behavior can be analyzed in either the frequency domain or the time

domain depending on the objectives of the analysis, only transient wave propagation was

considered in this work. Naturally, transient vibration in a structure is generated by some

transient excitation signal, and the nature of this vibration will significantly depend on the

nature of this input signal. Some excitation examples include a transient signal of 5 cycles

of a sine wave at 50 kHz or a 5 cycle tone burst signal with a center frequency of 50 kHz,

which are shown in Figure 2.1a and 2.1b, respectively.

Dispersion was not considered while simulating wave propagation in this work. Therefore,

the transient signal in Figure 2.1a would travel through a structure at constant speed with

the same waveform if the structure were homogeneous and isotropic. Alternatively, the

tone burst signal shown in Figure 2.1b, which contain a narrow band of frequencies, would

propagate through a structure as a group of waves with a group speed. Although the wave

propagation behavior due to a tone burst signal is more complex, the group speed would be

constant as dispersive waves are not considered here. In wave propagation-based UT, tone

burst generators are commonly employed to excite structures, and these tone burst signals

are well accepted in UT applications since they combine the features and benefits of pulse

along with continuous tones.
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(a) (b)

Figure 2.1: Time domain transient signal for (a) 5 cycles of a 50 kHz sine wave and (b) 5

cycles of a tone burst with 50 kHz center frequency.

2.2 FINITE ELEMENT FORMULATION FOR SOLID DYNAMICS

The dynamic systems discussed herein can be described by boundary-value problems (B-

VP), which consist of a system of partial differential equations (PDEs) derived from the

conservation of linear momentum combined with appropriate boundary conditions. In this

work, the body forces that arise from gravity were not considered. Therefore, the governing

equilibrium equations for the BVP can be given as:

ρüx − (
∂σxx
∂x

+
∂σzx
∂z

+
∂σxy
∂y

) = 0,

ρüy − (
∂σyy
∂y

+
∂σzy
∂z

+
∂σxy
∂x

) = 0,

ρüz − (
∂σzz
∂z

+
∂σzy
∂y

+
∂σxz
∂x

) = 0,

(2.1)

or

ρ~̈u(~x, t)−∇ · σ(~x, t) = ~0 in Ω× I, (2.2)

where ρ is the solid mass density, which was assumed to be constant here, ~x denotes the

position vector, t is the time, ~̈u(~x, t) is the acceleration vector, σ(~x, t) is the stress tensor,

Ω is the given solid domain, and I is the time domain. Since the displacements and strains
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generated by an ultrasonic excitation in UT are relatively small, the small strain and de-

formation assumptions can be applied. Therefore, the strain-displacement relationship can

defined as:

ε(~x, t) =
1

2
{∇~u(~x, t) + [∇~u(~x, t)]T}, (2.3)

where ε(~x, t) is the strain tensor. Then, assuming that the structures considered would

behave linearly elasticity, the stress-strain relationship can be written as:

σ(~x, t) = CIV : ε(~x, t), (2.4)

where CIV is the 4th-order elasticity tensor.

Based on Cauchy’s stress principle, the natural (i.e., traction) boundary conditions can

be defined as:

σ(~x, t) · ~n(~x) = ~τ(~x, t) on ΓN × I, (2.5)

where ~n is the unit outward normal vector to the surface, ~τ(~x, t) denotes the traction vector,

and ΓN is the portion of the boundary of the solid with traction specified. In addition, the

essential (i.e., displacement) boundary conditions are defined as:

~u(~x, t) = ~g(~x, t) on ΓD × I, (2.6)

where ~u(~x, t) is the displacement vector and ΓD is the portion of the boundary of the solid

with displacement specified.

Two initial conditions, typically relating to displacement and velocity, are required to

solve the BVP in the time domain (i.e., the initial boundary value problem) and can be given

as:

~u(~x, t0) = ~u0(~x) in Ω (2.7)

and

~̇u(~x, t0) = ~̇u0(~x) in Ω. (2.8)
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The initial displacement and velocity were consistently set to be zero for the present study,

which is often the case.

For the present work the PDEs above were simplified to a two-dimensional (2-D) form

based on the plane stress assumption for the solids considered (note that all case studies

considered herein were thin plates for which plane stress would apply). As such, the stress

components of the structures in the third direction, σzz, σzx, and σzx, were all assumed to

be zero, and the stress-strain relationship could be reduced to 2-D. Thus, the stress-strain

relationship for the nonzero components could be written as:
σxx

σyy

σxy

 =


2µ+ λ λ 0

λ 2µ+ λ 0

0 0 µ



εxx

εyy

2εxy

 , (2.9)

where λ is lamé’s first parameter and µ is lamé’s second parameter (also referred to shear

modulus G). These two parameters can also be expressed in terms of the Young’s modulus

(E) and Poisson’s ratio (ν) for plane stress as:

λ =
Eν

1− ν2
(2.10)

µ =
E

2(1 + ν)
(2.11)

The FEM formulation was developed based on the weak-form Galerkin approach. For

this approach a virtual displacement (i.e., weight function or trial function) vector ~ω(~x, t) is

defined that satisfies homogeneous essential boundary conditions anywhere Dirichlet condi-

tions are specified in the BVP. The dot product can then be taken between the governing

equation (Eqn. (2.2)) and this virtual displacement vector, and through some manipulation,

the weak form of the governing BVP can be derived as:∫
Ω

ρ~ω(~x, t) · ~u(~x, t)dΩ +

∫
Ω

δ~ε(~x, t) · ~σ(~x, t)dΩ

−
∫

ΓN

~ω(~x, t) · ~τ(~x, t)dΓN = 0,
(2.12)

where δ~ε(~x, t) is the virtual strain vector that is derived from the virtual displacement vector.
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The Galerkin FEM approach approximates the displacement and virtual displacement

fields with identical basis functions as:

~u(~x, t) = [N(~x)]{ue(t)} (2.13)

and

~u(~x, t) = [N(~x)]{ωe(t)}, (2.14)

where {ue(t)} and {ωe} are the nodal displacement and nodal virtual displacement vectors

(i.e., coefficient vectors), respectively, and [N(~x)] is the shape function matrix (i.e., matrix

of basis functions). Based on the above expressions, the strain-displacement relationship can

be written as:

~ε(~x, t) = [B(~x)]{ue(t)} (2.15)

and

δ~ε(~x, t) = [B(~x)]{ωe(t)}, (2.16)

where [B(~x)] is the matrix of spatial derivatives of the shape functions.

Eqns. (2.13)-(2.16) can be substituted into Eqn. (2.12) and the arbitrary virtual displace-

ment vector can be eliminated to produce a global linear system of equations as (neglecting

the details of the concepts of elements and assembly here for brevity, and just showing the

quantities as summations over all elements):

[M ]{ü(t)}+ [K]{u(t)} = {F (t)} (2.17)

where

[M ] =
∑

elements

∫
Ωe

ρ[N(~x)]T [N(~x)]dΩe, (2.18)

[K] =
∑

elements

∫
Ωe

[B(~x)]T [C][B(~x)]dΩe, (2.19)
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and

{F (t)} =
∑

elements

∫
Γe
N

[N(~x)]T~τ(~x, t)dΓeN . (2.20)

In the above global system of equations, [M ] is the global mass matrix, {F (t)} is the external

force vector, [K] is the global stiffness matrix and [C] is the elasticity matrix (as shown in

Eqn. (2.9)).

2.3 NUMERICAL TIME INTEGRATION

2.3.1 Explicit Time Integration

To solve the ordinary differential equations with respect to time developed in previous section

(Eqn. (2.17)), a suitable time integration approach is needed. In general, there are two

groups of direct time integration methods that are used to solve transient wave propagation

and structural dynamics problems: explicit and implicit methods [41]. A time integration

method is explicit if the inverse of an effective stiffness matrix is not required, otherwise, the

time integration method is implicit. Both explicit and implicit time integration methods have

their own benefits and shortcomings. Since implicit methods need to calculate an inverse

of the effective stiffness matrix, they require much more computational time and power

compared to explicit methods. However, the size of the integration time step in implicit

methods is unrestricted in terms of stability, and only depends on the physical problem

and desired time resolution for accuracy. Alternatively, explicit methods commonly avoid

calculation of any matrix inverse by using a diagonalized mass matrix (i.e., lumped mass

matrix) instead of a consistent mass matrix (as shown in Eqn. (2.18)), and are therefore

highly computationally efficient. Unfortunately, the solution stability is conditional when

using explicit methods. Therefore, a limitation on the size of the time incrementation based

on the physics of the system is typically enforced to ensure a stable solution. Yet, wave

propagation analysis based on UT naturally requires a relatively small time step (due to the

high frequency of excitation) to accurately resolve the behavior, regardless of the integration
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method. Therefore, it is logical to apply explicit direct time integration for work such as the

current study, for the simulation of high-frequency ultrasonic wave propagation in structures.

The explicit central difference direct time integration method was used to solve the

governing finite element equation described in Eqn. (2.17) for the present work, and is briefly

described in the following. Firstly, applying the central difference method the displacement,

velocity, and accelerations at various times can be related to one another as:

u̇(t+ ∆t
2

) = u̇(t−∆t
2

) + ∆tü(t) (2.21)

and

u(t+∆t) = u(t) + ∆tu̇(t+ ∆t
2

), (2.22)

where t denotes the current analysis time, ∆t is the time step size, and the superscript

references the value of time for a specific field. The governing finite element equations are

then evaluated at time t as:

[M ]{üt}+ [K]{ut} = {F t}, (2.23)

where [M ] is now the lumped mass matrix. Note that there are several methods to lump the

mass matrix into a diagonal matrix, such as physical lumping and row summation methods.

For simplicity, the diagonal mass matrix herein was lumped by a row summation method,

such that ML
ii =

∑n
j=1 M

C
ij , where [ML] is lumped mass matrix and [MC ] is the consistent

mass matrix . Because the displacement at time t is known (given by the initial conditions

at the first step), the acceleration at time t can be calculated from Eqn. (2.23), and then

the displacement and velocity can be updated based on Eqns. (2.21) and (2.22). For the

first time step of the analysis the velocity at time −∆t
2

is unknown, but can be avoided by

updating the velocity for the first step by:

u̇( ∆t
2

) = u̇(0) +
∆t

2
ü(0). (2.24)

26



2.3.2 Stable Time Increment

The conditional stability and stable time increment limitation for explicit time integration

methods were firstly proposed by [42]. To help prevent unstable numerical results, a critical

time increment can be defined as (details for the derivation of the critical time increment

can be found in [43]):

∆t ≤ 2

ω
, (2.25)

where ω is the natural frequency calculated from the following eigenvalue equation:

[K]~x = ω2[M ]~x. (2.26)

In the above equation, [K] and [M ] again denote the global stiffness matrix and mass matrix,

respectively. However, this eigenvalue problem for complex systems can be difficult to solve.

Thus, the critical time increment can be estimated instead by calculating the maximum

eigenvalue of a single element as:

∆t ≤ 2

ωemax
, (2.27)

where ωemax is the maximum element eigenvalue. In addition, as was discussed in the previous

Chapter, the highest frequency of the ultrasonic wave also limits the time incrementation to

ensure accurate resolution of the system responses. Therefore, the time increment for the

simulation of the ultrasonic wave propagation herein was limited by the minimum of the two

requirements (the maximum element eigenvalue and the highest frequency of the ultrasonic

wave). Thus, the smaller time increment calculated between Eqn. (1.4) and Eqn. (2.27) was

set to be the critical time increment.

27



2.4 VERIFICATION OF THE FORWARD MODEL

Before any extensive forward or inverse analyses are performed, it is critical to verify the

accuracy of the simulation tools to be used to estimate the dynamic response of solids. For

the present work the open source finite element library FEniCS [44] was employed to build

a finite element analysis (FEA) software to solve the transient BVP presented above for all

case studies considered. In order to verify the solution (i.e., check that the mathematics

are accurately solved), a two dimension finite element model was built and analyzed using

the FEniCS software developed and compared to the same analysis performed with the

well-developed and trusted commercial finite element software ABAQUS [45].

A 1m× 1m× 0.02m aluminum plate structure was considered here, shown schematically

in Figure 2.2. The bottom boundary of the plate was set to be fixed and the remaining three

sides were free to deform. A 1kPa harmonic load with an excitation frequency of 5kHz

was applied uniformly to the top surface of the plate, and the plane stress condition was

assumed. The plate was discretized by linear triangle elements with a height and width of

2mm. As discussed, explicit time integration was used with a fixed time increment that was

set to satisfy Eqn. (1.4) and Eqn. (2.27).

A comparison of the vertical displacement responses for two representative spatial points

over time from the results of the two finite element softwares (i.e., the one created in FEniCS

and the ABAQUS software) is shown in Figure 2.3a and Figure 2.3b. It can be observed that

the results of the two finite element softwares were nearly exactly the same. Furthermore, the

relative difference for all nodal vertical displacements at every time step between ABAQUS

and the FEniCS software was calculated as 1% based on:

Derror =
1

NtNe

Ne∑
i=1

Nt∑
j=1

∣∣∣∣rABQ(~xei , tj, )− rFEn(~xei , tj)

rABQ(~xei , tj)

∣∣∣∣ , (2.28)

where | · | denotes the absolute value, rABQ(~xei , tj) and rFEn(~xei , tj) denote the ABAQUS and

FEniCS simulated responses, respectively, N e is the total number of elements, and N t is

the total number of time steps. Based on these results, the FEniCS code can be said to be

verified to some extent for the simulation of wave propagation. Since the implementation

of varying parameterizations of material property distributions is considerably easier within
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Figure 2.2: Schematic for the verification example.
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(a)

(b)

Figure 2.3: Comparison of the vertical displacement between ABAQUS (red solid line)

and FEniCS (blue dash line) (a) at coordinate (0.25m,0.25m) and (b) at coordinate

(0.75m,0.75m).
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the FEniCS environment than for ABAQUS (which is relatively important for a material

characterization process), the FEniCS software developed was applied as the primary forward

simulation tool for all of the following case studies.
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3.0 INVERSE CHARACTERIZATION SOLUTION STRATEGY

3.1 INVERSE PROBLEM FORMULATION

As described in the introduction, damage and/or material characterization of structural

components using NDT approaches can be classified as an inverse problem. The inverse

problem herein can be specifically stated as inversely characterizing the material properties

relating to damage (including location and severity) in structural components using the time-

response obtained from UT approaches. As such, once a reliable finite element model is built

to accurately predict the structural behavior of UT (as described in the previous section),

this inverse characterization problem can be cast as an optimization problem to minimize the

difference between the experimental measurements from UT and responses predicted by the

FEA. There are generally three steps to this optimization-based inverse solution approach:

1. Define the parameterization of the damage/material to be determined and identify any

restrictions on these parameters, such as the physically admissible range.

2. Define an objective function that suitably quantifies the difference between the responses

predicted by the numerical model for a given set of damage/material parameters and the

experimentally measured UT data.

3. Employ an optimization algorithms to estimate the set(s) of material parameters that

minimize the objective function.

The objective function that is defined based on some chosen geometric and physical prop-

erties of the structural system considered significantly affects the accuracy and efficiency of

the inverse solution procedure. The basic example that will be considered in the present

work is to simply apply some suitable metric norm to quantify the error between the sim-
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ulated and experimental UT measurements. Thus, assuming that the objective will be to

determine the material stiffness distribution, an objective function for the inverse solution

process can be written as:

J(E(~x)) =

∥∥∥∥∥rExp(~ψ)− rFEM(~ψ,E(~x))

rExp(~ψ)

∥∥∥∥∥ , (3.1)

where rExp(~ψ) and rFEM(~ψ) are the time responses from the UT experiment and the finite

element model, respectively, ~ψ is the set of UT parameters (e.g., the excitation and sen-

sor location, sensor orientation, center frequency of excitation signal, etc. ), and ‖ · ‖ is

some appropriate metric norm that combine each measurement with respect to each time

step into the total error function J(E(~x)). Potential physical restrictions of the parameter

search domain will be discussed further according to specified case studies presented, and

the following will outline details of a potential optimization approach for NDE.

3.2 SURROGATE-MODEL ACCELERATED RANDOM SEARCH

ALGORITHM

In the present work, the surrogate-model accelerated random search (SMARS) optimization

algorithm [13] was used to solve the NDE inverse problems by minimizing Eqn. (3.1). The

SMARS algorithm combines the traditional random search (RS) algorithm with a surrogate-

model (i.e., meta-model) method to accelerate the search while maintaining the ability to

approximate a global solution. Many well developed stochastic search algorithms, such

as GA and the RS algorithm have the potential for global search capabilities, but require

a substantial number of iterations to reach a solution, which in this case means a large

number of numerical analyses. Unfortunately, FEA of realistic structures can easily become

complex and require a high computational expense. Therefore, hybrid algorithms, such as

the SMARS algorithm are often more suitable for these types of inverse problems, since

the local search component (the surrogate-model in this case) can significantly reduce the

computational expense without sacrificing the solution capabilities significantly. The details
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of the RS approach and the surrogate-model method are introduced in the following to better

illustrate the SMARS algorithm.

3.2.1 Random Search Algorithm

In general, the process of the RS algorithm can be simply described as follows [46, 30]: Firstly,

search the solution domain by randomly generating a number of initial sets of parameter

estimates and calculate the value of the objective function for each set; Secondly, based

on the evaluation of the current set of solution estimates, randomly generate new sets of

parameters near (in parameter space) to the current best parameter estimates; The new

best set of parameter estimates is then found with respect to objective function, and the RS

algorithm repeats this process of randomly generating parameter estimates until a stopping

criterion is satisfied.

As a non-gradient-based optimization algorithm, RS algorithm has the potential to es-

timate a global solution. Moreover, the search process of the RS algorithm does not rely

significantly on the size and quality of the initial estimates of parameters. However, the

shortcoming of the RS algorithm is clearly that a large number of evaluations can be re-

quired to achieve convergence to a reasonable solution. Therefore, a pure RS algorithm may

not be suitable when complex numerical models are used within the objective function to be

minimized.

3.2.2 Surrogate-Model Method

The surrogate-model method is based on creating a low-order (i.e., computationally efficient)

replacement (i.e., surrogate) model for the computationally expensive forward model (in

this case finite element model) that can provide estimates of the response of this complex

numerical model in fractions of a second [47, 48]. There are a variety of approaches that

have been used to build these replacement models, including machine learning tools, such

as artificial neural networks and support vector regression. For a basic implementation, the

surrogate-model method generates a set of inputs (i.e., parameter estimates for the inverse

problem) and corresponding outputs (i.e., responses from the numerical model given the
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input parameter estimates). This input-output set is then used to “train” the surrogate

model (applying some form of regression) to learn the relationship between the input and

output and provide a high-speed prediction of the output given new input parameter values.

After training, the surrogate-model is then employed to approximate the system responses

in the optimization solution process (rather than the computationally expensive model). For

example, the surrogate-model objective function, which now measures the difference between

the experimental data and the surrogate-model approximation, can be defined as:

JSM(E(~x)) =

∥∥∥∥∥rExp(~ψ)− rSM(~ψ,E(~x))

rExp(~ψ)

∥∥∥∥∥ , (3.2)

where rSM(~ψ,E~x) is the response computed by surrogate-model.

Since the computational cost of the surrogate model is relatively low, global search algo-

rithms, such as GA, can now be suitable to minimize the surrogate-model objective function

JSM(E(~x)) and estimate a solution. However, although the surrogate-model method relieves

the computational expense of the optimization problem, it is limited by the dataset used for

training. Furthermore, since the dataset used to train the surrogate-model is bounded, the

surrogate-model is only expected to be applicable for local optimization within the range

of this dataset. For the present work, artificial neural networks (ANN) were used in the

SMARS algorithm as the nonlinear mapping tools to build surrogate-models.

3.2.3 SMARS algorithm

Figure 3.1 shows a flowchart of SMARS algorithm that combines a RS algorithm with a

surrogate-model method. The optimization process of the SMARS algorithm can be de-

scribed by the following steps:

Step 1 Define the two stopping criteria for the algorithm, including the solution tolerance

and the maximum number of iterations, and define the initial search boundaries for each

parameter.

Step 2 Randomly generate a set of trial solutions in the initial solution domain and obtain

the corresponding responses with the numerical model.
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Figure 3.1: Flowchart of the surrogate-model accelerated random search algorithm, including

the global search random search algorithm component and the local search surrogate-model

method component.
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Step 3 Evaluate the objective function (Eqn. (3.1)) for the set of trial solutions and find the

current best solution. If either stopping criteria is satisfied, STOP, otherwise, continue

to the next step.

Step 4 Train the surrogate model with a subset of the current set of trial solutions.

Step 5 Find the approximate solution by minimizing the surrogate model error (Eqn. (3.2)).

Step 6 Compute the numerical response (rFEM(~ψ,E(~x))) of the approximate solution and

the corresponding actual error (J(E(~x))). If the stopping criteria is satisfied, STOP,

otherwise, continue to the next step.

Step 7 Add the approximate solution from the surrogate-model into the set of trial solution-

s, and then randomly generate additional trial solutions around two selected solutions

(referred to as “search poles”) from the current set.

Step 8 Compute the numerical response rFEM(~ψ,E(~x)) of the additional trial solutions.

Find the best solution from the current set of trial solutions (including all randomly

generated trial solutions and all surrogate-model approximate solutions) with respect to

J(E(~x)). If either stopping criteria is satisfied, STOP, otherwise, GO TO Step 4.

In Step 5, the subset of trial solutions, which is used to train the ANN surrogate-model,

is defined by specifying a distance around the current best solution in parameter space. In

other words, the ANN is trained to map a smaller window around the current best solution

instead of the entire parameters domain. In addition, a GA is applied to minimize the

surrogate-model error JSM(E(~x)) within this reduced search window in the present work.

As stated previously, although a GA requires a large number of iterations to obtain an

accurate global solution estimate, the computational cost of each iteration using the ANN

surrogate-model is inexpensive, and the entire optimization process with the surrogate model

has relatively low computational expense. Lastly, in Step 7, the two solutions around which

new trial solutions are randomly generated are selected based on the following rules: (1)

Select the best solution of the current set (i.e., the solution with the lowest corresponding

J(E(~x))), and (2) Select the trial solution that is farthest from the first solution in parameter

space, but among the best 20 % of the current set of trial solutions in terms of J(E(~x)).
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4.0 OPTIMIZATION OF NONDESTRUCTIVE TESTING

Regardless of the type of NDT applied or the material properties and geometry of the

structures considered, the quality of the measurement data used to estimate the unknown

parameters significantly affects the accuracy and efficiency of the inverse characterization

process. As discussed in the literature review, the concept of maximizing the sensitivity of

the NDT responses collected with respect to changes in the material properties has been

shown to be applicable to improve the capability of inverse characterization of unknown

material properties for frequency response function-based NDT. The examples discussed

included [40], which employed this concept as an objective along with another objective to

minimize the number of the measurements to optimally determine the location of sensors and

actuators. In addition, [27] presented a similar approach that also maximized the sensitivity

of the response, while also minimizing the redundancy of the testing information to optimally

design NDT. Alternatively, to further explore the potential of this maximum sensitivity

concept, the present work introduces a generalized approach to optimal NDT design in

the time domain for damage and/or material characterization with wave propagation-based

NDT.

Similarly to the previous studies, the maximization of the response sensitivity of transient

NDT responses to changes in material properties (e.g., Young’s modulus) for NDT design

can be based on an objective function of the form:

C(~ψ) =

∥∥∥∥∥∂rSM(~ψ,E(~x), t)

∂E(~x)

∥∥∥∥∥
Ω×I

, (4.1)

where rSM(~ψ,E(~x), t) is the simulated transient NDT responses, ‖ ·‖ is some suitable metric

norm that combines the sensitivity metric of each set of NDT parameters, ~ψ, over the spatial

domain (Ω) and time domain (I).
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By maximizing the above objective function, the total sensitivity of the responses collect-

ed by all sensors can be optimized. However, if the candidate sensor and actuator locations

are continuously or nearly-continuously distributed throughout a structure, then maximizing

Eqn. (4.1) will likely lead to unreasonable layouts of sensors and actuators, specifically in

terms of clustering the sensors in small regions. Notghi et al. addressed this issue by de-

veloping an additional objective function towards reducing the shared information between

different sensors [27]. This concept is also applicable to responses in the time domain, and

therefore, a second objective function that quantifies the redundancy of the testing informa-

tion with respect to NDT parameters can be defined as:

θi,j = arccos

{rFEM(~ψi, E(~x))} · {rFEM(~ψj, E(~x))}∥∥∥rFEM(~ψi, E(~x))
∥∥∥∥∥∥rFEM(~ψj, E(~x))

∥∥∥
 , ∀ i, j ∈ [1, NT ], i 6= j, (4.2)

where NT is the number of combinations of NDT design parameters, such as locations of

sensors and actuators, sensor orientations, excitation frequencies, etc., and ‖.‖ can be defined

such that:

∥∥∥rFEM(~ψi, E(~x))
∥∥∥2

= {rFEM(~ψi, E(~x))} · {rFEM(~ψi, E(~x))}. (4.3)

Using Eqn. (4.1) and Eqn. (4.2), the optimal NDT design problem can be cast as

a multi-objective optimization problem to maximize the sensitivity of the time responses

to changes in the material properties, while simultaneously minimizing the redundancy of

testing information. Thus, to implement the multi-optimization NDT design problem the

two objective functions can be combined in the following form:

Maximize
{~ψk}NT

k=1


C

({
~ψk

}NT

k=1

)
Minimum
i,j∈[1,NT ]

i 6=j

θi,j
. (4.4)

Note that by maximizing the minimum of θi,j among all combinations of parameters the

above problem is effectively maximizing all values of the redundancy metric to minimize the

overall information redundancy of the NDT design.
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One additional note is that the material properties of the structures to be considered, such

as the Young’s modulus distribution, need to be initialized with some value to solve the multi-

objective optimization problem and design the NDT. As described in the previous section,

a “healthy” state of the structural properties is typically required and easily estimated as

a base state in any damage characterization problem. Therefore, the deviations of material

properties in the first objective function (Eqn. (4.1)) can be calculated with respect to this

healthy state of the structure. Thus, this optimal NDT design approach is applicable to a

wide range of damage and/or material characterization problems. Further small details of

the implementation of this design approach for wave propagation-based UT will be discussed

in the following case studies.
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5.0 CASE STUDIES

The NDT design approach based on maximizing the sensitivity of the NDT response to

changes in the material properties while also minimizing information redundancy, was ap-

plied to two simulated case studies to explore the performance, especially for the damage

characterization by wave propagation-based UT. Both examples consisted of aluminum plate

structures with possible damage represented by a change in stiffness distribution. The first

example was a simulated square thin plate which was excited at the center of the surface.

The locations and orientations of four sensors were considered as the optimization param-

eters in the square plate. The second example was a L shape thin plate, and this second

example considered the location of excitation along with the locations and orientations of

sensors as the NDT design parameters. Note that these example damage characterization

problems can also be classified as inverse characterization of the Young’s modulus distribu-

tion, since the damage herein was assumed to only manifest in the Young’s modulus and

not result in changes to other material properties, such as density and damping. The design

parameters in UT, such as locations of sensors and actuators, were firstly optimized by the

proposed design approach. In order to then compare the performance of the Optimal design

to a more standard design, a Control UT with uniformly distributed sensors was created in

each case study. Then, an inverse characterization was applied to solve for example damage

scenarios using both the Optimal design UT and Control UT to shown the capability of the

NDT design method to produce solvable inverse problems.
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5.1 IMPLEMENTATION OF NDT DESIGN AND INVERSE

CHARACTERIZATION STRATEGIES

The optimal NDT design method is potentially applicable to a wide range of inverse char-

acterization problems, including multiple physical properties and NDT types. However, for

context the examples discussed herein were specified for damage characterization of struc-

tures using wave propagation-based UT. In order to reduce the computational cost associated

with this NDT, the structures in both examples were aluminum thin plates, which could be

simulated by two-dimensional models based on the plane stress assumption. The UT herein

employed the pitch-catch methods, which consisted of a piezoelectric transducer (PZT) as

an actuator bonded on the surface of the plate and a set of PZTs as sensors distributed over

the plate to measured the transient response of the structures. Gresil et al. have provided

a guideline to simulate PZT sensors and actuators [24, 3], and the work herein utilized this

basis. The wave excitation of the 4-mm square PZT in the examples was simulated by 12

self-equilibrating forces, as shown in Figure 5.1a, and a 3-cycle tone burst with a center

frequency of 50kHz was used as the excitation signal, as shown in Figure 5.1b. According to

the constitutive property of the piezoelectric material, the PZT sensors were simulated by

measuring the in-plane strain at the PZT location. The time-varying strain measured by the

PZT sensors was directly used to inversely characterize the Young’s modulus distribution in

the structures. As stated, the damage in the structures was simulated as a semi-localized

reduction of the Young’s modulus of the structures. Therefore, the sensitivity of the response

to changes in the Young’s modulus was maximized in Optimal NDT design approach. As

stated, the NDT design approach optimized the NDT parameters including the actuator

location ~xA, as well as the Ns sensors locations {~xSi}NS
i=1, and sensor orientations {~γi}NS

i=1.

In the cases studies, the damage characterization with UT was based on the forward

problem described in Chapter 2. Both the experimental data and the simulated transient

responses were analyzed using the finite element method based on explicit time integration for

dynamic solid mechanics. The healthy (i.e., without Young’s modulus reduction) material

properties of the aluminum thin plates in both example was defined as E = 69GPa, the

Poison’s ratio was defined as ν = 0.3, and the density was defined as ρ = 2700kg/m3. In
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(a)

(b)

Figure 5.1: Schematics of the excitation simulated by (a) 12 self-equilibrating forces and (b)

the time signal of a 3-cycle tone burst with a center frequency of 50kHz .
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an attempt to add realism for these simulated UT examples, a time shift was assumed to

exist between the experimental data (i.e., NDT measurements) and the simulated responses

used in the NDE process. In other words, it was assumed that the starting time of the

NDT was unknown, as would be the case in real tests, and so the transient responses would

need to be aligned in the time domain to make consistent comparison (i.e., to calculate the

measurement error) in the inverse solution process. To make these consistent comparisons in

time, the time point of the first peak of the transient responses was set to be the initial time

t = 0 of each signal (for the NDT signals and all simulated signals during the NDE process).

The signal prior to that first peak were discarded for the damage characterization process,

and a window of 200 time steps of the signals following this new zero-time were used for the

comparisons. In addition, to represent the noise that would be expected in real experiments,

1% Gaussian white noise was added into the NDT responses simulated by the FEA, which

was implemented as:

rExp = rExp0 (1 + 0.01Υ), (5.1)

where rExp0 is the original simulated NDT response and Υ is a normally distributed random

variable with unit variance and zero mean.

5.1.1 Optimal Nondestructive Test Design

As described in Chapter 2, the spatial domain of the structures were discretized into linear

trianglular elements, while the time domains were discretized with suitably small fixed time

steps, and convergence of all models was thoroughly tested. Utilizing the discretization,

the total sensitivity of the NDT responses with respect to the Young’s modulus (i.e., the

implementation of Eqn. (4.1)) was calculated as:

C =

NS∑
i=1

Nt∑
j=1

Ne∑
k=1

Sijk (5.2)

where

Sijk =

∣∣∣∣ rFEM(tj, ~xSi, ~γi, ~xA, Eh)− rFEM(tj, ~xSi, ~γi, ~xA, EDk)
1
2
[rFEM(tj, ~xSi, ~γi, ~xA, Eh) + rFEM(tj, ~xSi, ~γi, ~xA, EDk)]∆E

∣∣∣∣ (5.3)
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In the above equation, Nt is the number of time steps, Ne is the number of elements discretiz-

ing Young’s modulus in space, Eh is the Young’s modulus distribution without any reduction

(i.e., healthy), and EDk is the Young’s modulus distribution with a reduction of ∆E at the

kth element. The sensitivity function C(E(~x)) is the summation of the sensitivity of the

measurements of every sensors with respect to Young’s modulus reduction located in each

element over all time steps. Similarly, the redundancy calculation (i.e., the implementation

of Eqn. (4.2)) was defined in the discretized form as:

θi,j = arccos
Nt∑
k=1

(
{rFEM(tk, ~xSi, ~γi, ~xA, Eh)} · {rFEM(tk, ~xSj, ~γj, ~xA, Eh)}
‖rFEM(tk, ~xSi, ~γi, ~xA, Eh)‖ ‖rFEM(tk, ~xSi, ~γi, ~xA, Eh)‖

)
(5.4)

Lastly, in order to solve the multi-objective optimization problem described by Eqn.

(4.4) to optimally design the NDT, multi-objective Genetic Algorithm (MOGA) [49] was

used. This optimization approach produces a set of solutions (rather than a single solution

that would be typically obtained with single-objective optimization), that are defined as

the set of non-dominated solutions (i.e., none of the solutions have the best value of every

objective functions). However, for implementation obviously only one Optimal NDT design

solution needs to be selected from the solution set. The nearest to optimal point method

for the solution selection was implemented here, which selects the solution with the shortest

distance from a virtual solution that has the “best” values for both objective functions from

the solution set.

5.1.2 Nondestructive Evaluation/Inverse Characterization

Several inverse characterization tests were performed to determine different Young’s modulus

distributions from measurement data simulated with the Optimal NDT designs as well as

the Control NDT designs to explore the potential improvement in the characterization ca-

pabilities with the optimized approach. In order to generate the simulated data the Young’s

modulus distributions were assumed to be semi-localized in nature. More specifically, the

present work utilized a radial basis function (RBF) representation of the semi-localized Y-

oung’s modulus distribution, as was also used for the representation of damage in thin plates

45



in [27]. Thus, the distribution of Young’s modulus in the case studies herein was defined by

a RBF representation as:

E(~x) = Eh

[
1−

ND∑
i=1

Di exp

(
−‖~x−

~ξi‖2

c2
i

)]
(5.5)

where Eh is the healthy Young’s modulus value, ND is the number of RBFs (i.e., damage

regions), ~ξi is the location of the ith RBF center (i.e., damage center), ci is the parameter

that controls the breadth of each damage region, Di is the maximum percent reduction

in Young’s modulus due to each RBF, and ‖ · ‖ is the standard l2 norm. For simplicity

in the following examples the number of damage regions and the healthy modulus were

assumed to be known a priori to be one. The inverse characterization approach discussed

in Chapter 3 was therefore applied to estimate the four parameters describing the Young’s

modulus distribution (ξ1, ξ2, c, and D). For the optimization inverse solution process,

the objective functional used to quantify the difference between the “experimental” (i.e.,

simulated experimental) UT response data and the response predicted by the numerical

simulation given an estimate of the material parameters (i.e., the implementation of Eqn.

(3.1)) was defined as:

J =
1

NtNS

NS∑
i=1

Nt∑
j=1

∣∣∣∣ rExp(tj, ~xSi, ~γi, ~xA)− rFEM(tj, ~xSi, ~γi, ~xA, E(~x))
1
2
[rExp(tj, ~xSi, ~γi, ~xA) + rFEM(tj, ~xSi, ~γi, ~xA, E(~x))]

∣∣∣∣ (5.6)

5.2 EXAMPLE 1 - SQUARE PLATE

The first case study consisted of a 1m×1m×0.02m aluminum plate. The bottom boundary

of the square plate was assumed to be fixed, while all others boundaries were traction free.

In this example, the actuator was assumed to be placed near to the center of the aluminum

plate at a location of XA = 0.52m, YA = 0.52m with respect to the bottom left corner. The

actuator location was chosen to be off-center and not considered as a variable in the NDT

optimization to help ensure that the Optimal NDT design would be nontrivial for this basic

structure geometry. The actuator was simulated to generate a 3-cycle tone burst excitation

signal, as shown in Figure 5.2a, with a center frequency of 50kHz. The total duration of the
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simulated UT was taken as 400 µs, and a 1 µs fixed time increment was used for all FEA,

which satisfied the requirements defined in Eqn. (1.4) and Eqn. (2.27). Four strain sensors

were assumed to be sufficient to inversely determine the Young’s modulus distributions.

Therefore, the NDT parameters to be optimized were the coordinates and the orientation

(either horizontal or vertical) of the four sensors. An important point is that the coordinates

of the sensors were limited as XSi ∈ [0.05m, 0.95m] and YSi ∈ [0.05m, 0.95m] to reduce the

effect from the boundaries, especially the fixed bottom.

After applying the NDT design optimization process, the optimal locations and orienta-

tions of four sensors were determined to be three vertically oriented sensors with XS1 = 0.4m,

YS1 = 0.9m, XS2 = 0.6m, YS2 = 0.8m, and XS3 = 0.9m, YS3 = 0.2m, and one horizontally

oriented sensor with XS4 = 0.6m, YS4 = 0.4m. The Control NDT design used for com-

parison had uniformly distributed sensors with XS1 = 0.25m, YS1 = 0.25m, XS2 = 0.25m,

YS2 = 0.75m, XS3 = 0.75m, YS3 = 0.75m, and XS4 = 0.75m, YS4 = 0.75m, and all were

set to measure the vertical strain. Figures 5.2a and 5.2b illustrate the sensor layouts for

the Control NDT design and the Optimal NDT design, respectively. In addition, Table. 5.1

shows the values of the sensitivity and redundancy objective functions for both UT NDT

designs for this first example. Clearly the sensitivity of the UT with respect to the material

properties was significantly improved by the optimal NDT design approach. Alternative-

ly, the information redundancy objective function for the Optimal design and the Control

design were relatively similar, which is not necessarily surprising since the values are both

relatively high.

Note again that the four sensors were simulated by recording the in-plane strain at all

400 time steps to generate both the simulated experimental data and to predict the response

given damage parameters during the inverse solution process. Figure 5.3 shows an example of

the raw strain signal (prior to removing the time shift) at location, XS = 0.75m, YS = 0.75m,

with the healthy Young’s modulus distribution compared to a Young’s modulus distribution

with a reduction located at εx1 = 0.65m, εy1 = 0.65m. It can be observed that the raw

transient responses are sensitive to the changes in Young’s modulus by comparing the wave

signal propagated after damage to the wave signal with healthy material properties. As

stated previously, to add realism and eliminate a potential time shift, the sets of raw data
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(a)

(b)

Figure 5.2: Schematics of (a) the uniformly distributed sensor locations for the Control

NDT design and (b) the sensor locations obtained by the Optimal NDT design approach,

where “ + ” refers to the horizontal sensor orientation and “× ” refers to the vertical sensor

orientation, for Example 1 - Square Plate.
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Table 5.1: Values of the sensitivity objective function (Eqn. (5.3))and the redundancy

objective function (Eqn. (5.4)) for Optimal NDT and Control NDT.

Sensitivity performance Redundancy perfomance

Optimal NDT 3.28× 106 89.99o

Control NDT 4.88× 105 88.94o

Figure 5.3: Normalized vertical strain signal at location, XS = 0.75m, YS = 0.75m, with

healthy Young’s modulus distribution and Young’s modulus reduction located at εx1 = 0.65m,

εy1 = 0.65m, where red solid line refers to time signal with Young’s modulus reduction and

blue dash line refers to time signal with healthy state.
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Figure 5.4: Normalized vertical strain signal at location, XS = 0.75m, YS = 0.75m, with

healthy Young’s modulus distribution before time shift elimination and after time shift e-

limination where red solid line refers to signal after time shift elimination and blue dash line

refers to raw time signal.

were restricted to 200 time steps (i.e., 200 µs) begining with the moment of the first peak of

each respective response. Figure 5.4 shows an example of the strain signals before and after

this time shift elimination at location, XS = 0.75m, YS = 0.75m, with the healthy Young’s

modulus distribution.

To test the two NDT designs, four different sets of damage parameters were randomly

generated for the plate, and then the inverse characterization process using the SMARS al-

gorithm (introduced in Section 3.1) was applied using the measurement data from each NDT

design in turn. The search limits for each damage parameter for the characterization process

were set as follows: ~ξi ∈ [0, 1] × [0, 1], Di ∈ [0.1, 1]and ci ∈ [0, 0.1]. The stopping criteria

for the SMARS algorithm was set to 400 finite element analyses for each inverse character-

ization trial. Figures 5.5, 5.6, 5.7, and 5.8 show the Target (i.e., simulated experimental)

Young’s modulus distribution, the distribution inversely characterized by the Optimal NDT

design, and the distribution inversely characterized by the Control NDT design for this first
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(a) (b) (c)

Figure 5.5: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 1

- Square Plate with damage location (1).

example for the four different sets of damage parameters, respectively. In order to quantify

and better compare the inverse solutions from both the Control and Optimal NDT designs,

Tables 5.2, 5.3, 5.4 and 5.5 show the Target values for the damage parameters compared to

the inverse solutions for each NDT design, as well as the relative L2-Error and the relative

L∞-Error for the estimated Young’s modulus distributions for the four damage parameter

cases, respectively. Moreover, the mean and standard deviation of the relative L2-Error and

the relative L∞-Error for the estimated Young’s modulus distributions for the four different

damage parameter trials is shown in Table 5.6.

As seen in the comparisons, the inverse characterization of the Young’s modulus distri-

bution from the Optimal NDT were overall substantially more accurate than that estimated

by the Control NDT. Both the Optimal and the Control UT were able to provide relatively

accurate inverse characterization of the Young’s modulus. However, the Optimal NDT pro-

vided a consistently more accurate solution with nearly 50% less in mean error compared to

the Control NDT. Although the Optimal and the Control NDT had a relatively close L2-

Error and L∞-Error with respect to two of the damage parameter trials (Target(2) and (4)),

the estimates of the damage locations by the Optimal NDT were still significantly better for

those cases.
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(a) (b) (c)

Figure 5.6: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 1

- Square Plate with damage location (2).

(a) (b) (c)

Figure 5.7: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 1

- Square Plate with damage location (3).
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(a) (b) (c)

Figure 5.8: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 1

- Square Plate with damage location (4).

Table 5.2: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 1 -

Square Plate with damage location (1).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (1) 0.010 0.60 0.20 0.10 - -

Optimal NDT Design

Solution 0.009 0.46 0.19 0.12 0.025 0.017

Control NDT Design

Solution 0.017 0.70 0.15 0.07 0.055 0.550
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Table 5.3: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 1 -

Square Plate with damage location (2).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (2) 0.010 0.70 0.60 0.80 - -

Optimal NDT Design

Solution 0.020 0.74 0.67 0.81 0.081 0.490

Control NDT Design

Solution 0.028 0.31 0.69 0.94 0.090 0.293

Table 5.4: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 1 -

Square Plate with damage location (3).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (3) 0.010 0.80 0.80 0.10 - -

Optimal NDT Design

Solution 0.008 0.89 0.81 0.10 0.015 0.116

Control NDT Design

Solution 0.020 0.30 0.80 0.05 0.060 0.062
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Table 5.5: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 1 -

Square Plate with one damage location (4).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (4) 0.020 0.60 0.20 0.80 - -

Optimal NDT Design

Solution 0.026 0.62 0.19 0.81 0.025 0.11

Control NDT Design

Solution 0.025 0.59 0.19 0.81 0.020 0.09

Table 5.6: Mean and standard deviation of the relative L2-Error and the relative L∞-Error

of the Young’s modulus distribution for four sets of damage parameters.

L2-Error L∞-Error

Optimal NDT Design

Mean 0.037 0.183

Std. Dev. 0.030 0.210

Control NDT Design

Mean 0.056 0.264

Std. Dev. 0.029 0.226
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Figure 5.9: Schematic of Example 2 - L Shaped Plate and the potential actuator locations

for the Optimal NDT design process.

5.3 EXAMPLE 2 - L SHAPED PLATE

To examine how the optimal NDT design approach would generalize, the second case study

considered a more complex structure than the first example, and consisted of a L shaped

aluminum plate with outer dimensions of 1.2m × 1m and a thickness of 0.02m, as shown

in Figure 5.9. The L shaped plate was taken to be fixed at the bottom with the remaining

boundaries traction free. The actuator and sensors were simulated using the same method

as in the first square plate example. The total duration of the simulated UT was taken as

400µs, and a 0.25µs fixed time increment was used for all FEA. A smaller time increment

was required in this example because of the more complex geometry than the first example.

However, to reduce the computational expense, the sensor data from the FEA was down-

sampled to every 1µs. For this second example the location of actuator was considered as an

optimization parameter with 10 discrete candidate locations, as shown in Figure 5.9. Again,

four strain sensors were assumed to be sufficient to inversely determine the Young’s modulus
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distributions. Therefore, the NDT parameters to be optimized for this second example were

the actuator location and the coordinates and the orientation (either horizontal or vertical)

of the four sensors. The potential locations of the sensors were restricted to be at least 0.1m

away from the fixed bottom boundary and at least 0.05m away from the other boundaries.

After applying the NDT design optimization process, the optimal location of the actuator

was determined to be XA = 0.24m, YA = 0.6m, and the optimal locations and orientations of

four sensors were determined to be three vertically oriented sensors with XS1 = 0.1m, YS1 =

0.9m, XS2 = 0.2m, YS2 = 0.7m, and XS3 = 1.0m, YS3 = 0.2m, and one horizontally oriented

sensor with XS4 = 0.1m, YS4 = 0.2m. The Control NDT design used for comparison again

had regularly distributed sensors all measuring vertical strain with XS1 = 0.2m, YS1 = 0.8m,

XS2 = 0.2m, YS2 = 0.4m, XS3 = 0.4m, YS3 = 0.2m, and XS4 = 0.8m, YS4 = 0.2m. Figures

5.10a and 5.10b show the sensor and actuator layouts for the Control NDT design and the

Optimal NDT design, respectively. In addition, Table 5.7 shows the values of the sensitivity

and redundancy objective functions for both UT NDT designs for this second example.

Similar as before, the improvement of the sensitivity of the system responses to changes

in Young’s modulus for the Optimal NDT design was significant with a nearly twentyfold

increase in the sensitivity metric compared to the Control NDT design. This substantial

improvement in the NDT design is reasonable, largely due to the increased complexity of

the structure and the added benefit of designing the actuator location as well. Again, the

redundancy metrics of both the Optimal NDT design and the Control NDT design were

relatively high, nearly reaching the maximum possible value of 90o.

As before, the potential time shift was eliminated from all response measurements and

a window of 200 µs of each signal was utilized for the inverse process. Again, to test

the performance of the Optimal NDT design compared to the Control NDT design for

damage characterization for the L shaped plate, four different sets of damage parameters

were randomly generated for the plate, and then the inverse characterization process using

the SMARS algorithm was applied using the measurement data from each NDT design

in turn. Due to the increased complexity of this second example, the stopping criteria

for the SMARS algorithm was increased to 600 finite element analyses for each inverse

characterization trial. Figures 5.11,5.12 ,5.13, and 5.14 show the Target Young’s modulus
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(a)

(b)

Figure 5.10: Schematic of (a) the regularly distributed sensor and actuator locations for the

Control design and (b) the sensor and actuator locations obtained for the Optimal NDT

design, where “ + ” refers to the horizontal sensor orientation and “× ” refers to the vertical

sensor orientation, for Example 2 - L Shaped Plate.
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Table 5.7: Values of the sensitivity objective function (Eqn. (5.3))and the redundancy

objective function (Eqn. (5.4)) for Optimal NDT and Control NDT.

Sensitivity performance Redundancy perfomance

Optimal NDT 5.07× 106 89.99o

Control NDT 3.02× 105 89.98o

distribution, the distribution inversely characterized by the Optimal NDT design, and the

distribution inversely characterized by the Control NDT design for this second example for

the four different sets of damage parameters, respectively. To further compare the inverse

solutions from both the Control and Optimal NDT designs, Tables 5.8, 5.9, 5.10, and 5.11

show the Target values for the damage parameters compared to the inverse solutions for each

NDT design, as well as the relative L2-Error and the relative L∞-Error for the estimated

Young’s modulus distributions for the four damage parameter cases, respectively. Lastly,

Table 5.12 shows the mean and standard deviation of the relative L2-Error and the relative

L∞-Error for the estimated Young’s modulus distributions for the four different damage

parameter trials. Although the total number of finite element analyses increased to 600 for

this second example, the overall accuracy of inverse characterization of the Young’s modulus

with both the Optimal NDT design and the Control NDT design decreased. However, similar

to the first example, the distribution of Young’s modulus estimated by the Optimal NDT

design remained consistently more accurate than the Control NDT design with a mean L2-

error near to 6% for the Optimal NDT design compared to 10% for the Control. Moreover,

since the difficulty of the damage characterization problem increased in this second example,

the Optimal NDT design improved the accuracy of the inverse characterization results even

more significantly than was seen in the first example. In particular, the capability of the

Optimal NDT design to determine the damage location was shown to be substantially better

than the Control NDT design, while the results of the Control NDT design also overestimated

the breadth of the damage c1 for all four sets of assumed damage parameters in comparison
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(a)

(b)

(c)

Figure 5.11: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 2

- L shape Plate with damage parameters (1).
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(a)

(b)

(c)

Figure 5.12: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 2

- L shape Plate with damage parameters (2).
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(a)

(b)

(c)

Figure 5.13: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 2

- L shape Plate with damage parameters (3).
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(a)

(b)

(c)

Figure 5.14: Spatial Young’s modulus distribution of (a) Target (b) inverse characterization

by Optimal NDT design (c) inverse characterization by Control NDT design for Example 2

- L shape Plate with damage parameters (4).
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Table 5.8: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 2 -

L shape plate with damage parameters (1).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (1) 0.010 0.70 0.30 0.80 - -

Optimal NDT Design

Solution 0.024 0.68 0.34 0.92 0.084 0.47

Control NDT Design

Solution 0.028 0.81 0.42 0.91 0.153 0.700

Table 5.9: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 2 -

L shape Plate with damage parameters (2).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (2) 0.015 0.70 0.10 0.30 - -

Optimal NDT Design

Solution 0.010 0.70 0.10 0.27 0.041 0.227

Control NDT Design

Solution 0.025 0.54 0.007 0.28 0.060 0.321
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Table 5.10: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 2 -

L shape Plate with damage parameters (3).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (3) 0.010 0.70 0.90 0.20 - -

Optimal NDT Design

Solution 0.019 0.50 0.85 0.22 0.062 0.275

Control NDT Design

Solution 0.023 0.80 0.98 0.19 0.125 0.522

Table 5.11: The solution and the relative L2-Error and the relative L∞-Error of the Young’s

modulus distribution with respect to the expected results estimated by the inverse charac-

terization process in the Optimal NDT design and the Control NDT design for Example 2 -

L shape Plate with one damage parameters (4).

c1 D1 εx1 εy1 L2-Error L∞-Error

Target Value (4) 0.010 0.80 0.50 0.30 - -

Optimal NDT Design

Solution 0.012 0.74 0.56 0.29 0.077 0.362

Control NDT Design

Solution 0.029 0.44 0.52 0.22 0.090 0.438

65



Table 5.12: Mean and standard deviation of the relative L2-Error and the relative L∞-Error

of the Young’s modulus distribution for four damage locations.

L2-Error L∞-Error

Optimal NDT Design

Mean 0.066 0.334

Std. Dev. 0.019 0.107

Control NDT Design

Mean 0.107 0.495

Std. Dev. 0.041 0.160

to the Optimal NDT design. Overall, the Optimal NDT design for wave propagation-based

NDT was shown to provide almost 60% more accurate inverse solutions for the Young’s

modulus distributions compared to the estimates using the Control NDT design.
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6.0 CONCLUSIONS AND FUTURE DIRECTIONS

An optimal NDT design approach for wave propagation-based NDT for damage characteriza-

tion and/or inverse characterization of material properties was presented. The optimal NDT

design approach is based on the concept of maximizing the sensitivity of the NDT measure-

ments to changes in the physical properties of the structure along with an additional design

objective to minimize the test responses redundancy. This multi-objective optimization de-

sign approach was specifically outlined in the context of wave propagation-based NDT, such

as ultrasonic testing. Two simulated case studies of damage characterization with UT were

presented to evaluate the capability of the proposed NDT design method to provide NDT

designs that can be used to accurately characterize damage and/or material properties in

structures. Through the cases studies, the capability of the optimal NDT design method

to improve wave propagation-based NDT by providing significantly higher response sensi-

tivities and lower information redundancy was shown. Furthermore, comparing to more

standard “control” NDT designs, the optimal test method was shown to provide testing

information that led to substantially more accurate and stable results for inverse material

characterization problems.

The potential was shown for the proposed optimal NDT design method to improve the

solvability of inverse problems in basic structures subject to dynamic testing. However,

further work is needed to study the performance of this NDT design approach in more

complex wave propagation-based NDT systems, which may require multiple actuators and

more sensors or have multiple damage locations. In addition, the attenuation of the ultrasonic

wave should be considered in future work as this could have a substantial effect on the

resulting optimal NDT designs and achievable characterization capabilities.
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