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This thesis deals with the development of new reaction methodology, as well as total synthesis of 

natural products. 

Chapter 1 describes readily available rhodium(II) salts catalyzed B-H insertion reactions 

between NHC-boranes (NHC-BH3) and diazocarbonyl compounds (N2CR1COR2). Stable α-

NHC-boryl carbonyl compounds (NHC-BH2-CHR1COR2) are isolated in good yields. The 

reaction is a reliable way to make boron-carbon bonds with good tolerance for variation in both 

the NHC-borane and diazocarbonyl components. It presumably occurs by insertion of a transient 

rhodium carbene into a boron-hydrogen bond of the NHC-borane. Competition experiments 

show that a typical NHC-borane is highly reactive toward rhodium carbenes.  

Chapter 2 describes the synthetic routes towards the synthesis of tulearin A and tulearin 

C. Large scale synthesis of the bottom fragments (C1-C12) and the top fragment (C13-C26) for 

tulearin A was accomplished. Different synthetic routes were tested to accomplish the total 

synthesis of tulearin A. Some major problems toward the total synthesis of tulearin A were 

identified and solved. Meanwhile a novel synthetic route towards the total synthesis of tulearin C 

was developed. New methodologies were applied to make the synthesis more efficient. The total 

synthesis of tulearin C was not accomplished because of the difficulty of removal of the acetate 

protecting group at C17.   
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1.0  INSERTION OF REACTIVE RHODIUM CARBENES INTO BORON-

HYDROGEN BONDS OF STABLE N-HETEROCYCLIC CARBENE BORANES 

1.1 INTRODUCTION 

1.1.1 N-Heterocyclic carbene boranes 

In 1991, Arduengo reported the first isolation and crystal structure analysis of a stable N-

heterocyclic carbene (NHC), 1,3-bis(adamantly)imidazole-2-ylidene 1.1 (Figure 1.1).1 The 

unusual stability of 1.1 and other NHCs is in part a result of shielding of the carbene carbon by 

sterically demanding substituents on the ring. However, more important is the electronic 

stabilization by resonance interaction of the lone pairs of electrons on the nitrogen atoms with 

empty p orbital of the sp2 hybridized carbene. Resonance structures and simplified orbital 

pictures are shown in Figure 1.1. The NHCs are a relatively new class of neutral Lewis bases 

with properties as strong σ-donors and weak π-acceptors. In the last two decades, NHCs have 

become ubiquitous ligands in organometallic chemistry2 and they also act as organocatalysts3,4 in 

the absence of metals. 
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N N N N
N

N
C

R

R1.1
zwitterion resonance structure

1.1
neutral resonance structure  

Figure 1.1 Two resonance structures of diAd-Imd 1.1 and simplified orbital picture 

 

Long before free NHCs were isolated, the first NHC-borane complex was prepared in 

1967 by Bittner.5 In-situ generated isonitrile-triphenylborane complex 1.2 reacts with base and 

acetone to give borate anion 1.3. It was protonated to produce oxazolidin-2-ylidene 

triphenylborane complex 1.4 (Scheme 1.1).  

 

N C BPh3
Ph

Ph 1) PhLi

2)
O O

N
Ph

Ph
BPh3

Li H2SO4

O

H
N

Ph
Ph

BPh3

1.2                                                   1.3                                                1.4  

Scheme 1.1 The synthesis of the first NHC-borane complex 1.4 

 

 Over the next four decades, there were scattered reports that other NHC-boranes were 

prepared, including complexes of oxazole-2-ylidenes and N-substituted imidazoles (Figure 1.2). 

New NHCs were trapped by common boron Lewis acids to obtain new complexes, such as 1,2,4-

triazole-5-ylidene-borane 1.56 and BF3 complexes 1.6a and 1.6b7. Also, NHCs were used to 

stabilize unusual and reactive boron species, for example, borabenzene 1.78 and diborene 1.8.9  
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B
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B B
H

H N
N

N
N

dipp

dipp

dipp

dipp

1.5                                                                1.7                                         1.81.6a X = H
1.6b X = Cl  

Figure 1.2 Representative examples of NHC-borane complexes synthesized before 2007 

 

 Starting in 2007, systematic studies of NHC-boranes blossomed rapidly with the research 

focused on understanding the reactivity of NHC-boranes and on obtaining new functionalized 

NHC-boranes. NHC-boranes are emerging as attractive reagents for radical,10 ionic,11 and 

organometallic reactions12 and as co-initiators for polymerizations.13,14 Meanwhile, much new 

main group chemistry has appeared with unusual NHC-boranes featured both in stable bonding 

patterns and in highly reactive intermediates.  

 The most common way to prepare NHC-boranes is by direct complexation of a stable 

carbene with a borane source. Stable imidazolylidene carbenes are the most common, and they 

are usually generated in situ by the deprotonation of the corresponding imidazolium salt.15 The 

preparation of diMe-Imd-BH3 1.10 shown in Scheme 1.2 is typical. Deprotonation of salt 1.9 

with NaHMDS provides the corresponding carbene. Addition of BH3-THF then evaporation of 

solvent provides complex 1.10 as a white solid in 79% yield. NHC-borane complexes are usually 

purified by crystallization or flash chromatography.  

N

N
Me

Me

H
I 1) NaHMDS, THF

2) BH3-THF N

N
Me

Me

BH3

1.9 1.10, 79%  

Scheme 1.2 Representative synthesis of an NHC-borane 

 3 



 Over the last five years, the Curran and Lacôte groups have prepared a variety of NHC-

boranes,16 and a selection of structures is shown in Figure 1.3. There are imidazolylidene-

boranes bearing alkyl (methyl, 1.10) groups as well as substituted aryl groups (1.11, 1.12). C4- 

and C5-substituents on the imidazolidene ring are readily incorporated (1.13). Additional fused 

rings can be introduced (1.14). Boranes from achiral and chiral Glorius carbenes (1.15, 1.16) as 

well as triazolylidenes (1.17) are also readily accessible.  

 

N

N
R

R

BH3

1.10, R = Me
1.11, R = dipp
1.12, R = mesityl

N

N
Me

Me

BH3

1.13

Me

Me N

N
Me

Me

BH3

N

N
BH3

O

O

iPr

iPr

N

N
BH3

O

O

N

N

N
Me

Me

BH3

1.15 1.16 1.17

1.14

 

Figure 1.3 Examples of NHC complexes of borane 

 

 Complexes of NHC-BH3 are remarkably robust. They are typically white solids that are 

stable to air and water, strong base, and mild acid. They resist dissociation to release reactive 

BH3 even under relatively forcing conditions. They can be treated as if they were standard 

organic compounds. These features make them attractive as the reagents for organic synthesis 

and as the starting points for the preparation of substituted NHC-boranes. 
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1.1.2 Reactivity and functionalization of NHC-boranes 

The first use of NHC-boranes as synthetic reagents was for the radical chain reduction of 

xanthates and related functional groups.10 Representative examples are shown in Scheme 1.3. 

Xanthate 1.18 was reduced to corresponding alkane 1.19 by diMe-Imd-BH3 1.10 in good yield 

(Scheme 1.3a).17 Radical reductions of the halides by 1.10 are limited to alkyl precursors that 

have electron-withdrawing groups near the halides. Thiols were used to accelerate the radical 

hydrogen atom transfer reaction. In this way, adamantyl and aryl halides 1.20 can be reduced 

efficiently (Scheme 1.3b).18   

 

O

S

SMe
BnO

BnO

AIBN or Et3B/air

Benzene

N

N
Me

Me

BH3

1.18                                                                                                  1.19, 77%

1.10

R X R H
Initiator & thiol

Benzene

N

N
Me

Me

BH3

1.10 R =

1.20                                           1.21

O
C8H17

97%                86%                          81%

a)

b)

 

Scheme 1.3 NHC-boranes used in radical reactions 
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 The B-H bonds of NHC-boranes have some hydridic character. So they can also be used 

as ionic reducing agents. Dipp-Imd-BH3 1.11 can reduce aliphatic halides and sulfonates 1.21 

simply by heating (Scheme 1.4a).11 Such reductions occurred in the absence of radical initiators, 

and radical-probe experiments were negative. These experiments support an ionic mechanism. 

Horn and Mayr measured the nucleophilicity parameter (N) of 1.10 and 1.11 and found that both 

were good hydride donors.19 The N value for 1.10 is comparable to that of an anionic reagent 

such as NaCNBH3 and higher than the N values of common neutral hydride donors such as 

silanes, stannanes, dihydropyridines, and amine boranes. Meanwhile, diMe-Imd-BH3 1.10 serves 

as practical hydride donors for the reduction of aldehydes and ketones 1.23 in the presence of 

acetic acid. Primary and secondary alcohols 1.24 were formed in good yields under ambient 

conditions (Scheme 1.3b).20 

 

N

N

iPr
iPr

iPr
iPr

BH3C12H25 X C12H25 H
toluene

heat, 12-24h

+

1.21                        1.11                                               1.22, 60-95%

X = I, Br, OTs, OMs, OTf

N

N
Me

Me

BH3
R1 R2

O

R1 R2

OH

EtOAc, rt H
+

1.23                  1.10                                       1.24, 79-97%

AcOH

a)

b)

 

Scheme 1.4 NHC-boranes used in ionic reactions 
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The study of carbene-boranes as reactants has led to the synthesis of diverse stable 

compounds with unusual boron substituents and bonding patterns. Whenever the needed boranes 

(BH2R, BHR1R2) are available by hydroboration or other means, direct complexation of NHCs 

with substituted boranes can be used to introduce additional boron substituents (Figure 1.4, top 

side).21 However, because trivalent boranes are Lewis acids, many functional groups are not 

compatible. So when R is functionalized, the complexation route is often not practical. 

Functionalization of the parent NHC-BH3 complexes is the other route to obtain substituted 

NHC-boranes (Figure 1.4, bottom side). These NHC-borane complexes can undergo various 

transformations to introduce boron-substituents in place of B-H bonds. Typically, this route is 

more feasible because the precursor complexes with sp3-hybridized boron are stable.  

 

N

N
R

R

BH3

Complexation

Functionalization

-or-

N

N
R

R

BH2R

N

N
R

R

BHR1R2

N

N
R

R

BH2R

BHR1R2

-or- +

 

Figure 1.4 Routes to B-functionalized NHC-boranes 

 

 In the last five years, Curran, Lacôte and coworkers have developed several methods to 

synthesize B- functionalized NHC-boranes from parent NHC-BH3 complexes. NHC-boranes can 

 7 



react with a diverse array of eletrophiles to give substitution products. For example, dipp-Imd-

BH3 1.11 reacts with an assortment of halogenating reagents including N-bromosuccinimide 

(NBS), N-iodosuccinimide (NIS), bromine, and iodine (Scheme 1.5).22 Mono-, di-, and 

trisubstitution reactions are possible, and selectivities are variable.  

 

N

N
dipp

dipp

BH3
Br2

CDCl3, RT N

N
dipp

dipp

BHnBr3-n

1.11 1.25a, n = 2
1.25b, n = 1
1.25c, n = 0

N

N
dipp

dipp

BH3
0.5 equiv I2

C6D6, RT N

N
dipp

dipp

BH2I

1.11 1.26  

Scheme 1.5 Examples of electrophilic halogenation reactions 

 

 Halo- and sulfonate-substituted NHC-boranes 1.27 and 1.28 can undergo nucleophilic 

substitution on boron to give more B-substituted compounds. A diverse collection of substituted 

NHC-boranes 1.29 become available, including boron halides, cyanides, sulfur derivatives, 

azides, isonitriles, isocyanates, nitro compounds, nitrous esters and other derivatives (Scheme 

1.6).22 
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N
dipp

dipp

BH3
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-or-
1 equiv TfOH

N

N
dipp

dipp

BH2X

1.11 1.27, X = I
1.28, X = OTf

nuclephile

DMSO N

N
dipp

dipp

BH2Nu

1.29, Nu = N3, NC, 
CN, NCO, NO2, 
ONO, F, SPh, etc.  

Scheme 1.6 Examples of nuclephilic substitutions of boron triflate and boron iodide 

 

 Reactions of NHC-boryl reactive intermediates, such as boryl radicals, boryl anions and 

borenium ions also offer opportunities to make functionalized NHC-boranes. An NHC-boryl 

anion can be generated in situ by reductive metalation of 1.38 with lithium di-tert-butylbiphenyl 

(LiDBB). The anion 1.41 was trapped by a wide variety of eletrophiles to provide products 1.42, 

including those of acylaction, hydroxyalkylation, alkylation and arylation (Scheme 1.7).23 

 

N

N
dipp

dipp

BH2I
LDBB

THF, −78 °C N

N
dipp

dipp

BH2Li

1.27                                              1.30, in situ                                            1.31a-d

electrophile

N

N
dipp

dipp

BH2EI

NHC B
H2

OEt

O
NHC B

H2

OH

Cl

NHC B
H2

NHC
H2
B CN

1.31a, 68% 1.31d, 51%1.31b, 44% 1.31c, 54%  

Scheme 1.7 Generation and trapping of an NHC-boryllithium reagent 

 

 Because of the relatively low bond dissociation energy of B-H bonds of NHC-borane 

complexes,24 cleavage of the B-H bonds gives an NHC-boryl radical 1.32. Sulfur-substituted 
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NHC-borane 1.33 and 1.34 can be made by radical addition of xanthates17 and disulfides25 

(Scheme 1.8). 

 

N

N
dipp

dipp

BH3
N

N
dipp

dipp

BH2

1.11                                                    1.32

N

N
dipp

dipp

BH2SPh

Initiator

N

N
dipp

dipp

B
H2

1.33, 66%-79%

O SMe

S
R S SMe

O

PhS SPh

1.34, 66%  

Scheme 1.8 Generation of NHC-boryl radical and its reactions with xanthates and disulfides 

 

 NHC-BH3 complexes do not directly hydroborate alkenes; however, this reaction can be 

catalyzed by borenium ions. By treating with triflimide (HNTf2)26 or iodine (I2),27 a borenium ion 

1.35 or a species that reacts like a borenium ion can be formed. The borenium ion 1.35 reacted 

with alkenes 1.36 to form the hydroboration products 1.37 in good yield (Scheme 1.9).   
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BH2
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Scheme 1.9 Generation of borenium ion and hydroboration of alkenes 

 

 By the methods described above, various stable B-functionalized NHC-boranes were 

obtained. The development of these methods has helped to expand our knowledge about NHC-

boranes. At the onset of this project, we wondered whether new B-substituted NHC boranes 

could be made by B-H insertion reactions of reactive carbenes. 

1.1.3 Reactive carbene insertions into X-H bonds 

Transition metal catalyzed insertions of in situ generated carbenes from diazocompounds into the 

element-hydrogen bonds (X-H, X = C, Si, O, N, S, etc.) are efficient tools for the construction of 

carbon-carbon or carbon-heteroatom bonds (Scheme 1.10).28 Benefiting from mild reaction 

conditions and high efficiency, transition metal catalyzed X-H insertion reactions have been 

widely used in organic synthesis.29–37 
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R1 R2

N2
X H

R1 R2

X HMLn
+

1.38                1.39                              1.40  

Scheme 1.10 Transition metal catalyzed X-H insertion reactions 

 

A generally accepted insertion mechanism includes the formation of a metal carbene 

intermediate 1.41 by transition metal mediated decomposition of diazo compound 1.38. The 

reactive eletron-deficient metal carbene 1.41 inserts into an X-H bond of 1.39 to give product 

1.40 (Figure 1.5, part a). The X-H bond insertions can be divided into two types according to the 

polarity of the X-H bond (Figure 1.5, part b): low polarity (X = C, Si) and high polarity (X = O, 

N, S). Insertions of metal carbene into the low polarity bond of C-H or Si-H are proposed by a 

concerted process through transition state A, in which C-C bond (or Si-C bond) formation and C-

H bond formation occur simultaneously with the dissociation of metal catalyst, affording product 

1.40. In contrast, the insertions into more polar X-H bonds, such as N-H, O-H, S-H bonds, are 

conjectured to react in a stepwise process through ylide intermediates C followed by a 1,2-proton 

shift.  

 

 12 



R1 R2

MLn

MLn

X H

R1 R2

X H

R1 R2

N2

N2

1. Concerted mechanism

2. Stepwise mechanism

R1 R2

X H

R1 R2

LnM
H

X

-MLn

R1 R2

MLn
X H

R1 R2

X H
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H
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Figure 1.5 Mechanisms of transition metal catalyzed X-H insertion reactions 

 

 Among these, the insertion of transient carbenes into C-H bonds has been studied most 

because of its potential in forming C-C bonds. Reactions of thermally or photochemically 

generated carbenes have been studied in detail;38,39 however, few of these reactions have shown 

good synthetic potential. Meanwhile, carbene generation can occur from diazoalkanes 

photochemically and thermally40 or by the use of a transition metal. Copper compounds were 

initially used,41–43 but few examples were reported that showed generality or synthetic utility. 

 In late 1970s, Teyssie reported that the intermolecular C-H insertion reactions of ethyl 

diazoacetate with alkanes was catalyzed by dirhodium(II) tetracetate and related rhodium 
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carboxylates (Figure 1.6).44,45 Rh2(tfa)4 and Rh2(9-trp)4 gave higher yield than Rh2(OAc)4. Four 

regioisomers were formed in the insertion reactions with alkane 1.42 and the ratio varied 

depending on the catalysts. These seminal studies demonstrated that the dirhodium 

tetracarboxylates were superior at inducing C-H insertion compared to the older copper catalysts. 

They also showed that the regioselectivity of insertion reactions was influenced by the catalysts.  

 

Me

Me
Me

Rh2(OAc)4                5    8  90   1          - typically low yields
Rh2(tfa)4                   5  25  66   4          - higher yields
Rh2(9-trp)4              18  18  27  37        - highest yields

1.42

 

Figure 1.6 Rh-catalyzed reactions of alkanes with ethyl diazoacetate 

 

 The substrate 1.42 in Figure 1.6 is solvent and was used in large excess. Because metal 

carbenes tended to dimerize and mixtures of C-H insertion products were invariably formed in 

these intermolecular reactions, intermolecular C-H insertions reactions on 1/1 stoichiometries 

were considered to be not synthetically useful for a time. Wenkert46 and Taber47 addressed these 

problems with a series of investigations on the intramolecular version of these reactions. Diazo 

compounds 1.43 undergoes C-H insertion reactions to form five-membered ring ketone 1.44 in 

good yields (Scheme 1.11). These reactions also demonstrated the synthetic advantages of 

dirhodium tetraacetate as a catalyst.  
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O

N2

CO2Me

R

O
CO2Me

R

Rh2(OAc)4

DCM

1.43                                                      1.44, 48-77%  

Scheme 1.11 Intramolecular C-H insertion catalyzed by Rh2(OAc)4 

 

In these early years, the extraordinary preference for the formation of five-membered 

cyclopentanone rings emerged,48 as did regiochemical preference for insertion into a tertiary C-H 

bond over a secondary C-H bond.49 Insertion into a C-H bond of a stereocenter occurred with 

retention of configuration.50 And heteroatoms, such as oxygen and nitrogen, activated adjacent 

C-H bonds for insertion.51  

The reactivity of metal carbenes is defined by the substituents that adorn the carbenes. 

Hence the carbenes have been classified according to the substituents adjacent to the carbene 

center (Figure 1.7).29 The acceptor- and aceeptor/acceptor-carbenes (1.45 and 1.46) are highly 

reactive species because the acceptor groups do not stabilize the highly electrophilic carbene 

center. The majority of synthetically useful C-H functionalizations with these types of metal 

carbenes have been intramolecular versions.33,52,53 The donor group stabilizes the electron-

deficient metal carbene 1.47 through resonance and attenuates its reactivity.54 A variety of 

substituted aryl and vinyl groups can be employed as the donor group,29 and this has allowed the 

intermolecular C-H insertion to evolve from a synthetically limited reaction to broadly useful 

transformation.32  
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Figure 1.7 The three classes of metal carbenes 

 

 Davies embarked on comprehensive investigations of the scope of the intermolecular C-

H insertion reactions.29,31 It was demonstrated that highly regioselective insertion reactions could 

be achieved with aryl- and vinyldiazoacetates in metal carbene reactions.55 By using donor-

acceptor diazo compound 1.49, the C-H insertion product 1.50 was formed in good yield. In 

contrast, by using ethyl diazoacetate 1.51, most of the metal carbenes were dimerized, and only 

10% desired C-H insertion product 1.52 was obtained (Scheme 1.12).56  

 

Ph COOMe

N2 Rh2(OPiv)4
Ph

COOMe+

COOEt

N2 Rh2(OPiv)4
COOMe+

1.48                 1.49                                                            1.50, 94%

1.48                 1.51                                                            1.52, 10%  

 Scheme 1.12 Intermolecular C-H insertion reactions  

 

 Various catalysts have been investigated for the transient carbene insertion reactions of a 

C-H bond. Copper catalysis dominated the literature before the advent of dirhodium 

tetraacetate.42 However, copper catalysts tend to be highly electrophilic. They typically generate 
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metal carbenes that are too reactive to undergo selective C-H activation reactions. Since the 

discovery of dirhodium(II) compounds,57 they have been the most common and most versatile 

catalysts for C-H insertion reactions.28,48 A major factor is due to the dirhodium bridge caged 

within a “lantern” structure, such as Rh2(OAc)4 1.53.58–60 The structure consists of a Rh-Rh 

singly bound cluster surrounded by four acetate ligands, each of which is bonded to both 

rhodium atoms (Figure 1.8). Rhodium carbenes are catalytically generated in situ and the 

carbene itself is never isolated. The mechanism for the generation of the carbene results from σ-

bond formation between the metal and the diazo compound followed by loss of nitrogen to give 

the carbene intermediate as indicated in Figure 1.9.61 In the reactions with diazo compounds, 

only one of the two rhodium atoms functions as a carbene-binding site; the second rhodium atom 

assists the C-H insertion reaction by acting as an electron sink to enhance the electrophilicity of 

the carbene moiety and facilitate cleavage of the Rh-C bond on completion of the reaction. 

  

Rh Rh

O O

O O

O O

O O

Me

Me

Rh Rh

O O

O O

O O

O O

Me
Me

Me
Me

Me
Me

Me
Me

Me

Me

1.53, Rh2(OAc)4                                          1.54, Rh2(esp)2  

Figure 1.8 Representative achiral rhodium(II) catalysts 

 

The intact “lantern” structure is crucial for catalysis. However, direct evidence has been 

provided that the dinuclear Rh catalyst undergoes structural changes within minutes of initiating 

 17 



the reaction. Tetracarboxylate Rh dimers participate freely in ligand exchange reactions. 

Carboxylate detachment from the dinuclear Rh core is thought to be responsible for catalyst 

degradation during the insertion reactions.62,63 In order to avoid the decomposition of the 

catalysts, Rh2(esp)2 catalyst 1.54 was developed (Figure 1.8). The joining of two carboxylate 

ligands through an appropriately spaced linker confers added stability to these complexes 

because the chelate effect disfavors complete ligand dissociation from the metal center.62 

 

Rh Rh
R COR'

N
N

fast
Rh Rh

N
N

COR'

R
Rh Rh

R

COR'

N2

slow

 

Figure 1.9 Mechanism of rhodium catalyzed carbene formation 

 

 Building on initial findings from achiral catalysts, two types of chiral rhodium(II) 

complexes have been developed for enantioselective catalysis in C-H insertion reactions. They 

are rhodium(II) carboxylates64–66 and rhodium(II) carboxamidates.28 The carboxylates are built 

upon N-protected amino acid templates with four carboxylate ligands symmetrically positioned 

around the dirhodium framework. Rh2(S-DOSP)4 1.5567 and Rh2(S-PTAD)4 1.5668 are 

representatives in this category (Figure 1.10). Their reactivities toward diazo decomposition are 

often greater than those of rhodium acetate or rhodium octanoate. And they are optimal for 

intermolecular C-H insertion reactions. By using Rh2(S-DOSP)4 1.55 as the catalyst, donor-

acceptor diazo compound 1.58 inserted into the C-H bond next to the nitrogen atom of Boc 

protected pyrrolidine 1.59 to form product 1.60 in excellent yield and enantioselectivity (Scheme 

1.13, part a).54 The carboxamides are constructed from lactams derived from amino acids. 

Generally they are more rigid than rhodium carboxylates. And they are often the best catalysts 
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for enantioselective intramolecular C-H insertion reactions.33 Rh2(5S-MEPY)4 1.57 are effective 

for highly enantioselective intramolecular insertion reactions of diazoacetamides 1.61 to form γ-

lactam 1.62 (Scheme 1.13, part b).69  

N

O O

Rh Rh

S

C12H25

O O
H

O O

Rh Rh

N

O

O
H
R

R = 1-adamantyl
1.55, Rh2(S-DOSP)4                       1.56, Rh2(S-PTAD)4                 1.57, Rh2(5S-MEPY)4

O N

Rh Rh

COOMe

 

Figure 1.10 Representative chiral rhodium(II) catalysts 

 

 Overall, transient carbene insertions into C-H bonds are powerful reactions to build new 

C-C bonds. Various catalysts have been developed to promote the reactivity and to construct new 

stereogenic centers.  

N

Ph

Ph

O

N2

Ph

N
OPh

Rh2(5S-MEPY)4 1.57

DCM

Ph COOMe

N2 N
H
N

COOMe

Ph

H
+

Boc

1.58 1.59 1.60

1.61 1.62

1) Rh2(S-DOSP)4 1.55
2) TFA

72% yield, 92% de, 94% ee

75% yield, 85% ee

a)

b)

 

Scheme 1.13 Examples of enantioselective C-H insertion reactions 
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1.1.4  Carbene insertions of B-H bonds of borane-Lewis base complexes 

Compared to C-H bond insertion reactions, the literature on reactions of B-H bonds with 

carbenes is sparse. The B-H bonds in free boranes are electron-deficient. So they do not readily 

undergo insertion with electron-deficient Fischer-type metal carbenes.  

Two isolated examples of insertion reactions of electron-rich B-H bonds have been 

reported. Irradiation of ethyl diazoacetate (N2CHCO2Et) gave carbethoxylcarbene (:CHCO2Et), 

which then inserted into the B-H bonds of an o-carborane 1.65 in low yield (Scheme 1.14).70 

Several regioisomers 1.64a-d were found, and the product ratio was determined by GC-MS. No 

C-H insertion products were detected.  

 

CHCOOEt

CH2COOEt

CH2COOEt

CH2COOEt

EtOOCH2C

1.63

1.64a                                             1.64b

1.64c                                             1.64d

stands for CH and other line junctions are BH
 

Scheme 1.14 B-H bond insertion of o-carborane 

 

 Fischer alkynylcarbene complexes 1.65 reacted with NaCNBH3 to produce propagyl 

cyanoborohydrides 1.66 derived from the insertion of the carbene ligand into the B-H bond.71 
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This reaction occurs because of the electrophilicity of alkynylcarbene complexes 1.65 (Scheme 

1.15, part a). No reaction took place if the electrophilicity of the carbene carbon was diminished 

by the presence of a strong electron-donating group. For example, the aminocarbene 1.67 was 

completely unreactive toward NaCNBH3, even when the reaction was carried out at room 

temperature (Scheme 1.15, part b). 

 

R
OEt

Cr(CO)5

R
OEt

B
CN

H
H
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NaCNBH3

MeOH, -20 °C

1.65                                                                 1.66, 47-73%
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R
NHCH2Ph

Cr(CO)5 NaCNBH3

MeOH, -20 °C to rt

1.67

no reaction

a)

b)

 

Scheme 1.15 B-H bond insertion by Fisher alkynylcarbene complexes 

 

Upon formation of complex with an amine or a phosphine, the B-H bond of borane 

becomes more electron-rich. These amine-borane or phosphine-borane complexes provide an 

opportunity to achieve B-H bond insertion with electron-deficient metal carbenes.72–74 One 

example is shown in Scheme 1.16a. Treatment of amine-borane 1.68 with a large excess (40 

equiv) of dichlorocarbene, which was generated by an α-elimination reaction, gave a mixture of 

B-H bond insertion products 1.69a-c. The reaction cannot be stopped after the first insertion for 

all amine- and phosphine-BH3 complexes. The presence of a halogen substituent on boron 

prevented a second insertion of the carbenes. Amine borane complex 1.70 reacted with 

dichlorocarbene to form only the single insertion product 1.71. Meanwhile, the resulting 
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insertion products 1.70 are subject to decomplexation and internal redox reactions (Scheme 1.15, 

part b) and are not especially stable.74 

 

Me3N BH3
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R

H
Cl H
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R
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+
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Et3N BH2Cl
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Et3N BHClCHCl2
1.70 1.71

 

Scheme 1.16 B-H bond insertion of amine- and phosphine-boranes 

 

 The samarium carbenes derived from CH2I2 and CH3CHI2 insert into B-H bonds of 

phosphine-boranes 1.74 to afford phosphine-monomethylborane 1.75 in good yields although P-

H insertions are faster (Scheme 1.17).75 Again, a large excess (7 equiv) of carbene-generating 

reagents have to be used. 

 

P

BH3

R2R1 R3
P

BH2CH2R

R2R1 R3

RCHI2/Sm

R = H or Me
R1, R2, R3 = Cy, n-Pr, i-Pr, Me, Ph, n-Bu

1.74                                       1.75, 59-82%

 

Scheme 1.17 B-H bond insertion of phosphine-boranes with samarium carbenes 
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 In summary, carbene insertions into B-H bonds are rare. The limited examples require a 

large excess of carbene-generating reagents and sometimes produce unstable insertion products. 

Just as rhodium catalysts have dramatically improved intermolecular C-H insertion reactions, we 

hypothesized the B-H insertion reactions can also be promoted by them. 

1.2 RESULTS AND DISCUSSION 

1.2.1 Reaction design 

Compared with amine-boranes, NHC-boranes are a unique class of borane-Lewis base 

complexes because of their stability. Because NHC-boranes are good hydride donors19 we 

hypothesized that they would also be good carbenophiles, reacting especially with transient 

electrophilic76 carbenes 1.78 or metal carbenes 1.79 by direct B-H insertion (Scheme 1.18). 
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Scheme 1.18 Proposed B-H bond insertion of NHC-boranes 
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 The products of such reactions are unknown α-NHC-boryl carbonyl compounds 1.77 

with new B-C bonds. These are interesting because these might rearrange by 1,3-boryl shift to 

boron enolates or behave as nucleophiles themselves on carbon or oxygen.77 By developing 

rhodium catalyzed B-H bond insertion reactions of transient carbenes, a new class of B-

functionalized NHC-boranes could be synthesized. And this new methodology might be a 

reliable way to make B-C bonds.  

1.2.2 Survey of reaction conditions 

We began the study with the reactions of diMe-Imd-BH3 1.10 and commercially available ethyl 

diazoacetate 1.51. The common catalyst for C-H insertions Rh2(OAc)4 1.5358 was tested first. In 

a typical experiment, a slight excess of diazoacetate 1.51 (1.2 equiv) was added by syringe pump 

over 4 h to a solution of diMe-Imd-BH3 1.10 (1 equiv) and Rh2(OAc)4 1.53 (1 mol%) in 

dichloromethane at 40 °C (Table 1.1, entry 1). The 11B NMR spectrum of the crude product 

showed a large triplet –28.3 ppm (77%), which we assigned to the insertion product 1.80. There 

was also a smaller doublet at –20.3 ppm (17%), which we assigned to the double insertion 

product 1.81, along with an even smaller quartet from remaining 1.10 (–37.5 ppm, 6%).  

Purification of the crude product by flash chromatography with 1/1 hexane/ethyl acetate 

provided pure insertion product 1.80 in 62% yield. The resonances for the CH2 group adjacent to 

boron and carbonyl group were shielded in both the 1H (1.62 ppm, broad) and 13C (24.4 ppm, q, 

JCB = 32 Hz) NMR spectra. The signal of this CH2 group in the boron-decoupled 1H NMR 

spectra is a clear triplet. And the ester carbonyl carbon of 1.80 resonated at 181.1 ppm in 13C 

NMR spectrum. Meanwhile, the stretch of the carbonyl group on IR showed at 1651 cm-1, which 
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is also shifted by the boron atom. These observations all support that insertion product 1.80 is an 

α-NHC-boryl acetate (C-B bond) and not an NHC-boryl enol (O-B bond). 

In contrast to the convenient isolation of monoinsertion product 1.80, the very polar 

double insertion product 1.81 did not emerge from the column even when 100% ethyl acetate 

was used as eluent. It is also possible that the double insertion product 1.81 eventually 

decomposes on the column. This would probably give the corresponding imidazolium salt, which 

is also very polar. The yield of 1.81 was estimated at 14% based on the 11B NMR spectrum of 

the crude product.  

 

Table 1.1 Results of representative initial experiments with NHC-borane 1.10 and ethyl diazoacetate 1.51 

Catalyst

DCMN

N
Me

Me

BH3

1.10                       1.51                                                    1.80                                  1.81

H COOEt

N2

N

N
Me

Me

BH2

O

OEt+
N

N
Me

Me

BH
COOEt

+
COOEt

11B NMR                  −28.3, t                              −20.3, d  

  

entry equiv 1.51 catalyst (1%) conv (%)a yield 1.80 (%)b yield 1.81 (%)a 

1 1.2 Rh2(OAc)4 1.53 94 62 14 

2 0.8 Rh2(OAc)4 1.53 75 53 7 

3 3.0 Rh2(OAc)4 1.53 96 40 22 

4 1.2 Rh2(esp)2 1.54 92 62 12 

a Estimated from the 11B NMR spectrum of the crude product; b Isolated by automated flash 

chromatography 
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Next we varied the amount of diazoester 1.51 while keeping the catalyst as Rh2(OAc)4 

1.53. A reaction with slight deficiency of ethyl diazoacetate 1.80 (0.8 equiv) gave 53% 

mononisertion product 1.81 and 7% di-insertion product 1.81 along with 25% recovered 1.10 

(Table 1.1, entry 2). As before, the yield of 1.80 is isolated by flash chromatography, and the 

other yields are estimated by 11B NMR spectroscopy. With excess 1.51 (3 equiv, Table 1.1, entry 

3), there was less 1.80 (40%), more 1.81 (22%), and only a trace of unreacted 1.10 (4%). On the 

basis of the results in Table 1.1, we settled on the use of 1.2 equiv of diazo partner for further 

experiments.  

 Rh2(esp)2 1.5478 was also tested with diMe-Imd-BH3 1.11 and ethyl diazoacetate 1.80 

(Table 1.1, entry 4). It gave similar conversion of diMe-Imd-BH3 1.10 (92%) and same yield of 

single insertion product 1.80 (62%).  

These two catalysts, Rh2(OAc)4 1.53 and Rh2(esp)2 1.54 gave very similar conversion 

and yield in the reaction of diMe-Imd-BH3 1.10 and ethyl diazoacetate 1.51 (compare Table 1.1, 

entry 1and 4). However, when acceptor-acceptor diazo compound 1.82 reacted with diMe-Imd-

BH3 1.10, Rh2(OAc)4 1.53 only gave less than 5% conversion to the insertion product 1.83 

(Table 1.2, entry 1). When Rh2(esp)2 1.54 was applied, we obtained excellent conversion (96%) 

and good yield of insertion product 1.83 (73%) (Table 1.2, entry 2). Similar results were 

obtained in the reaction of donor-acceptor diazo compound 1.49 and diMe-Imd-BH3 1.10. With 

Rh2(OAc)4 1.53 as the catalyst, only 11% diMe-Imd-BH3 1.10 converted to the insertion product 

1.84, which was isolated in 9% yield (Table 1.2, entry 3). In contrast, excellent conversion (98%) 

and good yield of insertion product 1.84 (73%) were achieved with Rh2(esp)2 1.54. Therefore, 

Rh2(esp)2 1.54 was chosen as the catalyst for the following reactions. 
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Table 1.2 Screening catalysts with NHC-borane 1.10 and diazo compound 1.82 and 1.49 

Catalyst

DCMN

N
Me

Me

BH3

1.10

MeOOC COOMe

N2
N

N
Me

Me

BH2

COOMe
COOMe

+

Ph COOMe

N2

or
1.82

1.49 N

N
Me

Me

BH2

COOMe
Ph

1.83

1.84

or

 

 

Because the previous reactions all gave high yields, it is difficult to see the effect of the 

reaction solvents. So reaction solvents were screened in the reaction of diMe-Imd-BH3 1.10 and 

methyl 2-benzyldiazoacetate 1.85. With dichloromethane as the solvent, the reaction gave 1.86 in 

26% yield (Table 1.3, entry 1). The reaction temperature was elevated by switching the solvent 

from dichloromethane (b.p. = 40 °C) to 1,2-dichloroethane (b.p. = 84 °C). However, the insertion 

product 1.86 was obtained with lower conversion (22%) and lower yield (20%) (Table 1.3, entry 

2). With more polar solvent, acetonitrile, no product was formed (Table 1.3, entry 3). Therefore, 

we settled on dichloromethane. 

entry catalyst (1%) diazo compound conv (%)a yield 1.83 or 1.84 (%)b 

1 Rh2(OAc)4 1.53 1.82 <5 N.D.c 

2 Rh2(esp)2 1.54 1.82 96 73 

3 Rh2(OAc)4 1.53 1.49 11 9 

4 Rh2(esp)2 1.54 1.49 98 74 

a Estimated from the 11B NMR spectrum of the crude product; b Isolated by automated flash 

chromatography; c Not determined 
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Table 1.3 Screening solvents with NHC-borane 1.10 and diazo compound 1.85 

Rh2(esp)2

solventN

N
Me

Me

BH3

1.10                            1.85, 1.2 equiv                                               1.86

Bn COOMe

N2

N

N
Me

Me

BH2

COOMe
Bn

+

 

  

Finally, we wanted to find out if the conversion of the reaction could be improved by 

increasing the reaction time. So the reaction with NHC-borane 1.12 and ethyl diazoacetate 1.51 

was used to test this parameter. When the reaction time was doubled from 4 h to 8 h, the 

conversion increased a little from 65% to 71%. But the isolated yield was similar (55% 

compared with 56%). This increase of conversion without a corresponding increase of yield is 

because of more significant formation of the double insertion product 1.88, whose estimated 

yield increased from 6% to 11% (Table 1.4). As a result, 4 h was used as the optimized reaction 

time.  

 

 

 

 

entry solvent conv (%)a yield 1.86 (%)b 

1 dichloromethane 28 26 

2 1,2-dichloroethane 22 20 

3 acetonitrile trace N.D.c 

a Estimated from the 11B NMR spectrum of the crude product; b Isolated by automated flash 

chromatography; c Not determined 
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Table 1.4 Screening reaction time with NHC-borane 1.12 and ethyl diazoacetate 1.51 

Rh2(esp)2

DCMN

N
Mes

Mes

BH3

1.12                   1.51, 1.2 equiv                                               1.87                               1.88

COOEt

N2

N

N
Mes

Mes

BH2

COOEt
+

H N

N
Mes

Mes

BH
COOEt

COOEt
+

 

  

Based on the results in Table 1.1-1.4, we settled on the optimal reaction conditions by 

using a slight excess of diazo compounds (1.2 equiv), 1 mol% Rh2(esp)2 1.54 as the catalyst, 

dichloromethane as the solvent for 4 h reaction time. These conditions were used to study the 

reaction scope. 

1.2.3 Scope studies 

We selected diMe-Imd-BH3 1.10 for the initial survey in part because it offered little opportunity 

for competing bimolecular reaction of the rhodium carbenes with the NHC ring or its 

sbustituents. We first tested the scope of the reactions of diMe-Imd-BH3 1.10 with various 

diazocarbonyl compounds. The results of representative reactions in this series are summarized 

in Table 1.5.  

entry reaction time conv (%)a yield 1.87 (%)b yield 1.88 (%)a 

1 4 h 65 56 6 

2 8 h 71 55 11 

a Estimated from the 11B NMR spectrum of the crude product; b Isolated by automated flash 

chromatography 
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When more bulky tert-butyl diazoacetate 1.89 was used in the reaction, the conversion 

was 71% and the yield was 58% (Table 1.5, entry 1). As with substrate 1.51, small amounts of 

double insertion products were formed (estimated 11% by 11B NMR spectroscopy) but not 

isolated. Instead of stabilizing by ester groups, diazo compounds 1-diazobutan-2-one 1.91 and 2-

diazo-N,N-dimethylacetamide 1.93 were stabilized by ketone and amide. The conversion of these 

two reactions are 66% and 80%, and the yields are 49% and 55%, respectively (Table 1.5, entry 

2 and 3). Meanwhile, the yields of double insertion products were estimated as 10% and 19% by 

11B NMR spectroscopy. These three single stabilized diazo compounds all gave similar results to 

ethyl diazoacetate 1.51 (compare Table 1.5, entry 1-3 with Table 1.1, entry 4).  

The diazocompounds with additional conjugating substituents were also tested. The 

acceptor-acceptor diazo compounds, dimethyl diazomalonate 1.82, produced α-NHC-boryl 

malonate 1.83 in 96% conversion and 73% isolated yield (Table 1.5, entry 4). The estimated 

amount of double insertion product was 9%. Similarly, diazodimedone 1.95 provided 1.96 in 

83% conversion and 60% isolated yield (Table 1.5, entry 5). And no double insertion product 

was observed by 11B NMR spectroscopy. The donor-acceptor precursor methyl 2-phenyl-

diazoacetate 1.49 gave 1.84 in 98% conversion and 74% isolated yield (Table 1.5, entry 6). The 

yield of double insertion product was 9% (estimated by 11B NMR spectroscopy). In these three 

examples, the yield of double insertion products are significantly lower than the previous 

examples. The two large substituents of the diazo compounds helped slow down the second B-H 

insertion reaction. Therefore, diazoesters with additional stabilizing substituents gave better 

conversions and yields. 
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Table 1.5 Scope of the B-H insertion with 1% Rh2(esp)2: variation of the diazo partner 

H COOtBu

N2

1.89                                1.90

N

N
BH2

O

OtBu

H

N2

O
1.91                                1.92

N

N
BH2

O

H

N2
N

O
1.93                                1.94

N

N
BH2

O

N

MeOOC COOMe

N2

1.82                                1.83

N

N
BH2

COOMe

O O

O O
N2

N

N
BH2

O
O

O

O

Ph COOMe

N2

1.49                                1.84

N

N
BH2

O

OMe

Ph

Bn COOMe

N2

1.85                                1.86

N

N
BH2

O

OMe

Bn

entry              diazo partner                      product                        conv.a             yieldb

1                                                                                                71%                58%

2                                                                                                66%                49%

3                                                                                                80%                55%

4                                                                                                96%                73%

5                                                                                                83%                60%

6                                                                                                98%                74%

7                                                                                                28%                26%

COOMe

1.95                                1.96

a Estimated from the 11B NMR spectrum of the crude product
b Isolated by automated flash chromatography  
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 In contrast to the success with additional conjugating substituents, the diazo compound 

bearing an additional alkyl group, methyl 2-benzyldiazoacetate 1.85, gave 1.86 in only 26% 

yield (Table 1.5, entry 7). The main problem here is not the formation of di-insertion product but 

the low conversion; the yield of 1.86 based on recovered starting material is 93% because only 

28% of 1.10 was consumed. However, methyl (Z)-3-phenylacrylate 1.97 was observed in 1H 

NMR spectrum of the crude product. Therefore, the reason of the low conversion of 1.10 is the 

competitive reaction of β-hydride elimination of methyl 2-benzyldiazoacetate 1.85.79 

Ph COOMeCOOMe
Ph

N2

N

N
Me

Me

BH3

1.10

N

N
Me

Me

BH2

COOMe
Bn

1.86                                                              1.85                                                       1.97

Rh2(esp)2 1.54 Rh2(esp)2 1.54

 

Scheme 1.19 Side reaction of methyl 2-benzyldiazoacetate 1.85 

 

 We next varied the structure of the NHC-carbene partner while holding the diazo partner 

as ethyl diazoacetate 1.11. The standard conditions were used with the Rh2(esp)2 catalyst, and the 

results are summarized in Table 1.6.  

 The B-H bond in triazolylidene borane 1.17 is more electron-deficient because of the 

more electron withdrawing 1,2,4-triazole ring. Conversion was 72% and isolated yield of 

monoisertion product 1.98 was 52% (Table 1.6, entry 1). Minor amounts of di-insertion products 

was formed (11% estimated yield). Both the convertion and yield were lower than the ones with 

diMe-Imd-BH3 1.10.  The results of benzimidazolylidene borane 1.14 was similar to 

dimethylimidazolylidene 1.10. The reaction of NHC borane 1.14 and ethyl diazoacetate 1.51 

gave 80% conversion and 60% isolated yield of monoinsertion products 1.99 (Table 1.6, entry 
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2). And minor amounts of di-insertion products were formed (19% isolated yield). The similar 

results (compare Table 1.6, entry 1 and 2 with Table 1.1, entry 4) are because of the comparable 

steric effect of the substituents on the heterocycles of the NHC-borane partner.  

 With bulkier substrates dimesitylimidazolylidene borane 1.12, the conversion of NHC-

borane was a bit lower (65%). The isolated yield of monoinsertion product 1.87 (60%) 

approached the conversions of the precursors (Table 1.6, entry 3). The reaction of tricyclic 

borane 1.15 and ethyl diazoacetate 1.51 gave 66% conversion and 60% isolated yield of 

monoinsertion product 1.100 (Table 1.6, entry 4). And with enantiopure tricyclic borane 1.16, 

the conversion was 66% and the isolated yield of monoinsertion product 1.101 was 59% (Table 

1.6, entry 5, enantiopure). In all these three examples (Table 1.6, entry 3-5), only 5-6% of the di-

insertion product was detected in the 11B NMR spectrum of the crude product. Therefore, 

although the conversions of these reactions were lower with the bulkier substituents on the 

imidazole ring of NHC, the formation of the di-insertion products were also diminished. In the 

case of the very hindered dipp borane 1.11, conversion was 65% and isolated yield of 

monoinsertion product 1.102 was 63%. And there was no resonance at all for the di-insertion 

product in the 11B NMR spectrum of the crude product (Table 1.6, entry 6a). 

 These results suggest that the only significant competing pathway for B-H insertion to 

1.11 is reaction of the rhodium carbene with itself or its precursor. This in turn suggests that 

higher yields might be obtained by increasing the amount of the diazo precursor. This approach 

failed with the smaller NHC-borane 1.10 because of the di-insertion product was formed 

competitively (Table 1.1, entry 3). In contrast, a reaction of dipp-Imd-BH3 1.11 with 3 equiv of 

ethyl diazoacetate 1.51 gave complete conversion of 1.11, and isolated yield of insertion product 

1.102 increased from 63% (Table 1.6, entry 6a) to 96% (Table 1.6, entry 6b).  
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Table 1.6 Scope of the B-H insertion with 1% Rh2(esp)2: variation of the NHC-borane partner 

entry           NHC-BH3                          product                      conv.b               yieldc

1                                                                                          72%                  52%

2                                                                                          80%                  60%

3                                                                                          65%                  56%

4                                                                                          66%                  60%

5                                                                                          66%                  59%

6a                                                                                         65%                 63%

6ba                                                                                      100%                 96%N

N
dipp

dipp

BH3

1.11                              1.102

N

N
dipp

dipp

BH2
COOEt

N

N

N
BH3

1.17                                1.98

N

N

N
BH2

COOEt

N

N
BH3

1.14                               1.99

N

N
BH2

COOEt

N

N
Mes

Mes

BH3

1.12                              1.87

N

N
Mes

Mes

BH2
COOEt

N

N
BH3

O

O

1.15                              1.100

N

N
BH2

O

O COOEt

N

N
BH3

O

O

i-Pr

i-Pr
1.16                              1.101

N

N
BH2

O

O

i-Pr

i-Pr

COOEt

a 3 equiv of ethyl diazoacetate 1.51
b Estimated from the 11B NMR spectrum of the crude product
c Isolated by automated flash chromatography  
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1.2.4 Formation of unsymmetrical double insertion products 

Although we did not isolate di-insertion products in the scope study, we know that they were 

formed from the 11B NMR spectra of crude products. Instead of making symmetrical double 

insertion products, we investigated the formation of the unsymmetrical double insertion products 

by treatment of the monoinsertion products from one diazo compound with a second, different 

diazo compound, as shown in Scheme 1.20. Reaction of insertion product 1.81 with methyl 2-

phenyldiazoacetate 1.49 (2 equiv) provided separable diastereomers of the double insertion 

product 1.103 in 70% combined yield. The diastereomer ratio is 56/44, which was determined by 

separating the two pure diastereomers. These diastereomers arise because the boron atom and 

one of the adjacent carbon atoms in 1.103 are both stereogenic centers. The phenyl substituent in 

this product is important for the purification since related diesters lacking it (for example, 1.81) 

did not reliably come off the column.  

Back-to-back reaction of benzimidazolylidene borane 1.14 with two different diazo 

compounds gave a chiral product 1.104 whose only stereocenter is at boron. A first reaction with 

diazoamide 1.94 and Rh2(esp)2 1.54 gave the monoinsertion product, which was isolated in 62% 

yield. Then a second reaction with tert-butyl diazoacetate 1.90 (2 equiv) and the same catalyst 

was followed to give 1.104 in 71% isolated yield.  

The two enantiomers of 1.104 were stable on both silica gel and on an (S,S)-Whelk-O1 

column with chiral stationary phase. A small amount of the racemate (22 mg) was preparatively 

resolved on the chiral column to give about 10 mg each of the two component enantioners in 

high enantiopurity. Optical rotations were –34.0 (first eluting enantiomer) and +33.8 (both c = 1, 

CHCl3). However, the pure enantiomers are not crystalline, and the absolute configuration could 

not be solved. To the best of our knowledge, this is the first example of isolation and 
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characterization of stable enantiomers of a chiral carbene-borane whose only stereocenter is on 

boron.  
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Scheme 1.20 Stepwise and one-pot formation of double insertion products 

 

Finally, a sequential one-pot reaction was also successful. First, ethyl diazoacetate 1.51 

(1.2 equiv) was added by syringe pump over 4 h to benzimidazolylidene borane 1.14 (1 equiv) 

and 1 mol% Rh2(esp)2 at 40 °C. Like some of the other reactions, the color of the mixture 
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gradually changed from green to orange. Just as the first syringe pump stopped, a second was 

started and tert-butyl diazoacetate 1.90 (2 equiv) was added, again over 4 h at 40 °C. Although 

the mixture remained orange, TLC analysis showed that the second insertion was progressing 

during the second syringe pump period. Standard workup and chromatography gave diester 

1.105 in 55% isolated yield. This experiment shows that it is not necessary to isolate the single 

insertion products on the way to double insertion.  

1.2.5 Preliminary results of asymmetric B-H insertion reactions 

As mentioned before, double insertion product 1.103 has two diastereomers because of the 

stereogenic centers of the boron atom and one of the adjacent carbon atoms. Therefore, it 

provides an opportunity to pursue the asymmetric version of B-H insertion reactions. In order to 

simplify the situation, we decided to investigate the two stereogenic centers separately. We 

targeted to synthesize the enantiomers with carbon or boron stereogenic centers.  

 First, we examined the B-H bond insertion reactions to construct carbon stereogenic 

centers. Preliminary results are shown in Scheme 1.21. In the first approach, a diazoester with a 

chral auxillary was used. (–)-Menthyl diazoacetate 1.106 was treated with diMe-Imd-BH3 1.10 

and the standard Rh2(esp)2 catalyst to provide 1.107 as an 81/19 mixture of diastereomers in 61% 

conversion and 60% isolated yield. We have not yet succeeded in separating these diastereomers, 

so their configurations are unassigned. Meanwhile, reactions with chiral Rh(II) catalysts were 

also tested. Several chiral Rh(II) catalysts have been developed for carbene insertion reactions of 

C-H bonds. Therefore, we selected commercially available catalyst Rh2(S-DOSP)4 1.55 in our 

reactions. The donor-acceptor precursor methyl 2-phenyldiazoacetate 1.49 and diMe-Imd-BH3 

1.10 were reacted with the chiral catalyst 1.55 to afford the chiral insertion product 1.84 in 84% 
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conversion and 82% isolated yield. In contrast to Rh2(esp)2 catalyst, we have to use freshly 

distilled DCM to obtain good conversion. The two enantiomers of 1.84 were resolved on the 

chiral (S,S)-Whelk-O1 column (25% isopropanol in hexane). The major peak was at 31.2 min 

and the minor peak showed up at 27.4 min. And the enantiomer ratio was measured as 69/31 

based on the peak areas of the two separated enantiomers of 1.84.   
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Scheme 1.21 Asymmetric B-H bond insertion reactions to build carbon stereogenic center 

 

 In contrast to building carbon stereogenic centers, catalytic asymmetric reactions for 

constructing boron stereogenic centers have never been reported in the literature. By inserting a 

different single stabilized diazo compound into single substituted NHC-boranes, it is possible to 

obtain the chiral double substituted NHC-boranes whose only stereogenic center is on boron. 
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Two examples are shown in Scheme 1.22. Reaction of monoinsertion product 1.108 with tert-

butyl diazoacetate 1.90 (2 equiv) catalyzed by chiral Rh2(S-DOSP)4 1.55 provided the chiral 

double insertion product 1.104 in 33% isolated yield (37% conversion). The enantiomer ratio 

was measured to be 56/44 by the chiral (S,S)-Whelk-O1 column. We initially attributed the low 

enantiomeric excess to the similarity of the two substituents on boron. So a more sterically 

hindered single substituted NHC-borane 1.109 was tested. With the same chiral catalyst, ethyl 

diazoacetate 1.51 was inserted into the B-H bond of NHC-borane 1.109. Double substituted 

NHC-borane 1.110 was obtained in 20% yield (21% conversion). However, based on the 

analysis of the chiral (S,S)-Whelk-O1 column, the insertion product 1.112 was almost racemic (e. 

r. = 51/49).  
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Scheme 1.22 Asymmetric B-H bond insertion reactions to build boron stereogenic center 

 

 Shortly after we reported our rhodium catalyzed carbene insertion into B-H bonds of N-

heterocyclic carbene boranes, Zhou reported a similar copper-catalyzed reaction with amine- or 
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phosphine-borane adducts and diazo compounds.80 In their cases, with the chiral ligand 1.114, 

Cu(MeCN)4PF6 catalyzed the reaction of diazo compound 1.111 and phosphine-borane 1.112 to 

form the insertion product 1.113 with excellent yield (96%) and high enantioselectivity (92% 

e.e.) (Scheme 1.23). The preliminary experiments of asymmetric B-H insertion reactions with 

rhodium catalysts only gave poor to moderate enantioselectivity. However, by screening reaction 

conditions, it may be possible to afford high enantioselectivity. For example, many chiral Rh(II) 

catalysts are available for screening. By using different NHC-boranes with different steric and 

electronic environment, higher selectivity could be expected. Meanwhile, changing the ester 

groups on the diazo partner is another route for optimization.  
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Scheme 1.23 Copper catalyzed enantioselective B-H insertion reaction by Zhou 

1.2.6 Competitive rate experiments 

The NHC-rings and N-substituents of the precursors in Table 1.6 and Scheme 1.19-1.21 contain 

various potential sites for reactions of rhodium carbenes, including aromatic rings and activated 

C-H bonds. However, side products from reaction at sites other than boron have so far not been 
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isolated. This implies that the B-H bonds of these NHC-boranes are very reactive toward 

rhodium carbenes. This notion is also supported by the good yields obtained without large 

excesses of reagents and by the scope of the different diazo compounds that can be used.  

 

Ph COOMe

N2

+
Rh2(S-DOSP)4 1.55H

R3

R1

R2 H
R6

R4

R5

R3

R1

R2 Ph

CO2Me

R6

R4

R5 Ph

CO2Me
+

N
Boc

O
Ph Ph2tBuSi H

1 0.66 0.078 0.011 1700

2700 24,000 24,000 28,000

1.49

1.115                1.116                                                        1.117                          1.118

k(relative)

k(relative)  

Scheme 1.24 Davies C-H insertion reactivity scale 

 

To better address the relative reactivity of NHC-boranes, we tapped into a scale put forth 

by Davies and co-workers (Scheme 1.24).54 The scale is for reactions between various 

carbenophiles and methyl 2-phenyl-diazoaccetate 1.49 catalyzed by Rh2(S-DOSP)4 1.55. From 

these data, it is clear that these C-H insertions display remarkable selectivity. Reactions with 

THF and N-Boc-pyrrolidine are more favorable than reactions with cyclohexane by factors of 

1700 and 2400, respectively. C-H insertion of THF is about 10 times less favorable than Si-H 
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insertion or cyclopropanation of styrene. And the best substrate for C-H insertion is 1,4-

cyclohexadiene, which reacts 28,000 times faster than cyclohexane.  

 We used the Rh2(esp)2 catalyst for internal consistency, so we cannot place our results 

quantitatively on the Davies scale. We started competition experiments with diMe-Imd-BH3 1.10 

and THF, whose CH2O groups are considered to be activiated toward C-H insertion of Rh-

carbenes. But in the preliminary reactions of methyl 2-phenyl-diazoacetate 1.49, diMe-Imd-BH3 

1.10 and THF, the THF insertion product was hardly formed at all even when THF was used in 

50-fold excess over 1.10. The THF did not interfere with the B-H insertion reaction, and 1.84 

was the major product as usual. This implies that THF can be used as solvent or cosolvent in the 

B-H insertion reactions. 

 We then moved directly to the top of the Davies reactivity scale with 1,4-cyclohexadiene 

and styrene. Competition of 1 equiv of 1,4-cyclohexadiene and 1 equiv diMe-Imd-BH3 1.10 

again provided 1.84, this time with a little of the cyclohexadiene C-H insertion product. Finally, 

competition of a 10-fold excess of 1,4-cyclohexadiene with diMe-Imd-BH3 1.10 provided the B-

H insertion product 1.84 and the C-H insertion product 1.120 in a ratio of about 1.2/1, which was 

measured by the integration in the 1H NMR spectrum of crude products.  

 Likewise, reaction of diMe-Imd-BH3 1.10 and styrene in a 1/1 ratio gave 1.84 with only a 

small amount of the styrene cyclopropanation product. Competition of 1 equiv of diMe-Imd-BH3 

1.10 with 10 equiv of styrene gave 1.84 and 1.121 in about a 1/1 ratio. 

 These results show that diMe-Imd-BH3 1.10 is about 10-12 times more reactive than 1,4-

cyclohexadiene and styrene, and it is over 100 times more reactive than THF towards reactive 

rhodium carbenes. Accordingly, the B-H bonds in diMe-Imd-BH3 1.10 are much more reactive 

than typical activated C-H bonds in bimolecular insertion reactions with rhodium carbenes. In 
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conclusion, NHC-boranes are highly reactive carbenophiles toward electrophilic rhodium 

carbenes. 
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Scheme 1.25 Competition experiments of NHC-borane 1.10 with THF, 1,4-cyclohexadiene and styrene 
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1.2.7 Isotope effect experiments 

Finally, we conducted simple experiments to estimate the kinetic isotope effect in a typical B-H 

insertion reaction. Also, Rh2(S-DOSP)4-catalyzed reactions of labeled and unlabeled substrates 

with methyl 2-phenyl-diazoaceate 1.49 by Davies was used for comparison. In a competition of 

cyclohexane with cyclohexane-d12, the kinetic isotope effect was about 2. And it was about 3 

with THF and THF-d8 (Scheme 1.26).54 
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Scheme 1.26 Davies C-H insertion isotope effect results 

 

 Before the competition experiment of the insertion reaction, a control experiment was 

conducted with diMe-Imd-BH3 1.10, diMe-Imd-BD3 1.126 (>95% D) and Rh2(esp)2 1.54 but 

lacking the diazoester (Scheme 1.27). During the reaction, H/D exchange occurred over 2 h at 40 

°C. DiMe-Imd-BHD2 1.127 and diMe-Imd-BH2D 1.128 were detected by 11B NMR because the 

multiplicities changed due to the differences in spin and coupling constant (J) between H and D. 

However, it was hard to quantitate accurately because of overlapping. No exchange occurred 

without the catalyst. We propose that the catalyst, which is a Lewis acid, react with the NHC-
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borane, perhaps by direct hydride transfer. During this process, a small amount of a borenium ion 

(NHC-BH2
+) or its reactive equivalent was formed.81 This could catalyze the H/D exchange by 

reversible hydride/deuteride transfer.26  
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Scheme 1.27 Competition experiment to estimate the isotope effect 

 

 By running the control experiment at rt for 10 min, no H/D exchange was observed. 

Therefore, we conducted the competition experiment by rapidly adding a solution of 0.5 equiv of 

the methyl 2-phenyldiazoacetate 1.49 to a CD2Cl2 solution of the catalyst and 1 equiv each of 

diMe-Imd-BH3 1.10 and diMe-Imd-BD3 1.126 (Scheme 1.27). The expected insertion products 

1.84 and 1.129 were formed after 5 min in a ratio of about 4.5/1. The unreacted boranes at this 

point were mostly (>90%) diMe-Imd-BH3 1.10 and diMe-Imd-BD3 1.129, and the exchanged 
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products diMe-Imd-BH2D 1.127 or diMe-Imd-BHD2 1.128 were not detected in the 11B NMR 

spectrum (<10%). Therefore, the kinetic isotope effect of B-H bonds is about 4.5. This means 

that B-H bond cleavage is likely to be involved in the rate-limiting step.  

1.2.8 Mechanism 

Based on all these data, a consistent picture of the B-H insertion reactions of rhodium carbenes is 

formed. By analogy with Si-H and C-H bond insertion reactions, we propose a B-H bond 

insertion mechanism shown in Figure 1.11. Diazo compound 1.49 reacted with Rh2(esp)2 to give 

intermediate I. After releasing a molecule of nitrogen, the rhodium carbene II was formed. Then 

it inserted into the B-H bond of the NHC-borane 1.10 through a concerted transition state to form 

insertion product 1.84 and the catalyst.  

The rhodium-carbene C-H insertion reactions are thought to be concerted but not 

synchronous.33,36,82 Therefore, the B-H insertions may be similar. In the transition state, because 

of the large isotope effect, the hydride abstraction by the rhodium carbene to form the new C-H 

bond is advanced. And the following C-B bond formation lags. In this view, it is reasonable to 

consider the transition state as having the character of two reactive species: an NHC-borenium 

ion and a rhodium enolate. After passing the transition state, these two components collapse 

quickly by B-alkylation to form the product 1.84 and return the catalyst.  
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Figure 1.11 Proposed mechanism 

 

 Compared to most C-H bonds, the B-H bonds of NHC-boranes are relatively weak (BDE 

< 85 kcal/mol).13,14,24 And they are considered as good hydride donors.19 These electronic effects 

explain why they are such reactive carbenophiles toward electrophilic rhodium carbenes. 

However, steric effects may also be important because the second insertion to NHC-BH2R is 

slower than the first to NHC-BH3. And when large N-substituents were introduced on NHC 

parts, the conversion of the insertion reactions dropped significantly and little double insertion 

products were observed. 
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1.3 CONCLUSIONS 

A rhodium (II) salt catalyzed B-H bond insertion reaction between NHC-boranes and 

diazocarbonyl compounds is described in this chapter. By using this method, stable α-NHC-boryl 

carbonyl compounds are synthesized in good yield. It provides a reliable way to make 

organoboron compounds with boron-carbon bonds from stable NHC-borane complexes. A large 

number of the NHC-boranes and diazo carbonyl components were tolerated in this reaction. 

More hindered NHC-boranes give better yields of monoinsertion products because the primary 

products are not subject to a competing second insertion. These newly formed organoboron 

compounds may be further used in the subsequent reactions, such as Suzuki-Miyaura coupling 

reactions. It is also potent to asymmetrically construct new carbon and boron stereogenic centers 

in this reaction.  

The mechanism of this reaction was also briefly investigated. These first reactions of 

stable carbene-boranes with transient metal carbenes suggest that NHC-boranes are good 

carbenophiles. It encourages further study of their reactions with other types of reactive 

carbenes. 

1.4 EXPERIMENTAL 

General information: All reactions were performed in oven-dried glassware under an argon 

atmosphere, except where noted. Chemicals and solvents were purchased from commercial 

suppliers and used as received, excepting as follows. Dichloromethane, THF, ether, and toluene 

were dried by passing through an activated alumina column. 
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All reactions were followed by TLC to completion, unless stated otherwise. TLC analysis 

was performed by illumination with a UV lamp (254 nm) or staining with PMA and heating. All 

flash chromatography was performed by Combiflash Rf machine with pre-packed silica gel 

columns purchased from Teledyne Isco Inc. 

1H NMR spectra were measured on a Bruker Avance 400 MHz and 500 MHz instruments 

in CDCl3, and chemical shifts were measured relative to the TMS peak (δ 0.00). The following 

abbreviations were used to describe coupling: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad. 13C NMR spectra were measured on Bruker Avance instruments at 100 

MHz, 125MHz or 175 MHz with chemical shifts relative to residual solvent peak (δ 77.0 

(CDCl3) or 128.06 (C6D6)). The resonances for carbons bonded to boron in the 13C-NMR 

spectrum are typically weak. The NHC-carbene carbon resonance was generally not observed. 

The resonance for CH2 or CH adjacent to boron was observed in some but not all spectra. 11B 

NMR spectra were measured on Bruker Avance 400 MHz and 500 MHz instruments at 128 MHz 

and 160 MHz. The 11B chemical shifts are given relative to BF3·OEt2 (11B = 0 ppm).  

Melting points (mp) were determined with a Mel-Temp II apparatus and are uncorrected. 

IR spectra were recorded as thin films (CH2Cl2) or neat on KBr plates on an ATI Mattson 

Genesis Series FTIR spectrometer. 

High resolution mass spectra (HRMS) were obtained by electrospray ionization (ESI) on 

the Q-Tof Ultima API, Miccromass UK Limited instrument.  

Analytical HPLC analysis was conducted using an (S,S)-Whelk-O 1 column (Pirkle, 250 

mm x 4.6 mm ID) eluting with hexanes:iPrOH at 1.0 mL/min, 10-20 μg per injection. 

Preparatory HPLC resolutions were performed on an (S,S)-Whelk-O 1 column (Pirkle, 25 cm x 
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21.1 mm ID) eluting with hexanes:iPrOH at 7.0 mL/min, 40 mg per injection. All HPLC 

injections were monitored with a Waters model 440 UV detector at wavelength 254 nm. 

General procedure for reactions in Tables 1.1-1.6: The NHC-BH3 (1.0 equiv) and the 

Rh2(esp)2 (0.01 equiv) were dissolved in dry DCM (2 mL) under argon. The solution was dark 

green. The reaction mixture was heated to reflux. A solution of the diazo compound (1.2 equiv) 

in dry DCM (2 mL) was added via syringe pump over a period of 4 h. The color of the solution 

turned to orange. After 4 h, the solvent was removed and the crude 1H and 11B NMR spectra 

were recorded. The mixture was concentrated and purified by flash chromatography to give the 

pure product.  

 

N

N
BH2

O

OEt

1.80  

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (1.80): Reaction 

of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 mg, 0.45 mmol), Rh2(esp)2 

(3.4 mg, 0.0045mmol) and ethyl 2-diazoacetate (1.51) (0.080 mL, 0.54 mmol) according to the 

general procedure afforded 54.7 mg (62%) of product 1.80, isolated as colorless oil: 1H NMR 

(400 MHz, CDCl3) δ 6.82 (s, 2H), 3.93 (q, J = 7.2 Hz, 2H), 3.75 (s, 6H), 1.62 (br, 2H), 1.14 (t, J 

= 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 181.1, 120.3, 58.8, 35.9, 29.7, 24.4 (q, JBC = 32 

Hz), 14.5; 11B NMR (128 MHz, CDCl3) δ –28.3 (t, JBH = 90 Hz); IR (film) 2923, 2853, 2305, 

1651, 1574, 1461 cm–1; HRMS (ESI) m/z (2M+ – H) calcd for C18H33B2N4O4 391.2682, found 

391.2676. The estimated yield of the double insertion product (11B NMR (160 MHz, CDCl3) δ   

–20.3 (d, JBH = 91 Hz)) is 12%. 

 50 



N

N
BH2

O

OtBu

1.90  

(2-(tert-Butoxy)-2-oxoethyl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (1.90): 

Reaction of (1,3-dimethyl-1H–imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 mg, 0.45 mmol), 

Rh2(esp)2 (3.4 mg, 0.0045mmol) and tert-butyl 2-diazoacetate (1.89) (76.8 mg, 0.54 mmol) 

according to the general procedure afforded 58.5 mg (58%) of product 1.90, isolated as colorless 

oil: 1H NMR (400 MHz, CDCl3) δ 6.82 (s, 2H), 3.78 (s, 6H), 1.57 (br, 2H), 1.30 (s, 3H); 13C 

NMR (175 MHz, C6D6) δ 180.3, 119.5, 76.3, 35.5, 28.6, 26.0 (br); 11B NMR (128 MHz, CDCl3) 

δ –28.4 (t, JBH = 88 Hz); IR (film) 2973, 2928, 2333, 1691, 1481 cm–1; HRMS (ESI) m/z (2M+ – 

H) calcd for C22H41B2N4O4 447.3314, found 447.3333. The estimated yield of the double 

insertion product (11B NMR (160 MHz, CDCl3) δ –20.3 (d, JBH = 88 Hz)) is 11%. 

 

N

N
BH2

O

1.92  

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-oxobutyl)dihydroborate (1.92): Reaction of (1,3-

dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 mg, 0.45 mmol), Rh2(esp)2 (3.4 

mg, 0.0045mmol) and 1-diazobutan-2-one (1.91) (53.0 mg, 0.54 mmol) according to the general 

procedure afforded 39.7 mg (49%) of product 1.92, isolated as colorless oil: 1H NMR (500 MHz, 

CDCl3) δ 6.82 (s, 2H), 3.72 (s, 6H), 2.50 (q, J = 7.5 Hz, 2H), 1.87 (br, 2H), 1.01 (t, J = 7.5 Hz, 

3H) ; 13C NMR (175 MHz, CDCl3) δ 219.8, 120.4, 36.0 (br), 35.9, 34.3, 8.8; 11B NMR (160 

MHz, CDCl3) δ –28.3 (t, JBH = 90 Hz); IR (film) 3130, 2936, 2312, 1661, 1575, 1483 cm–1; 
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HRMS (ESI) m/z (2M+ – H) calcd for C18H33B2N4O2 359.2790, found 359.2802. The estimated 

yield of the double insertion product (11B NMR (160 MHz, CDCl3) δ –20.7 (d, JBH = 88 Hz)) is 

10%. 

 

N

N
BH2

O

N

1.94  

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(dimethylamino)-2-oxoethyl)dihydroborate 

(1.94): Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 mg, 0.45 

mmol), Rh2(esp)2 (3.4 mg, 0.0045mmol) and 2-diazo-N,N-dimethylacetamide (1.93) (61.1 mg, 

0.54 mmol) according to the general procedure afforded 48.3 mg (55%) of product 1.94, isolated 

as white solid: 1H NMR (400 MHz, CDCl3) δ 6.80 (s, 2H), 3.73 (s, 6H), 3.12 (s, 3H), 2.86 (s, 

3H), 1.68 (br, 2H); 13C NMR (100 MHz, CDCl3) δ 181.5, 120.3, 38.2, 35.7, 35.2; 11B NMR (128 

MHz, CDCl3) δ –29.1 (t, JBH = 87 Hz); IR (film) 3031, 2927, 2324, 1604, 1469, 1396 cm–1; 

HRMS (ESI) m/z (M+ – H) calcd for C9H17BN3O 194.1465, found 194.1463. The estimated yield 

of the double insertion product (11B NMR (128 MHz, CDCl3) δ –22.0 (d, JBH = 87 Hz)) is 19%. 

 

N

N
BH2

COOMe

1.83

COOMe

 

(1,3-Dimethoxy-1,3-dioxopropan-2-yl)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate 

(1.83): Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 mg, 0.45 

mmol), Rh2(esp)2 (3.4 mg, 0.0045mmol) and dimethyl 2-diazomalonate (1.82) (110.7 mg, 0.54 
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mmol) according to the general procedure afforded 78.9 mg (73%) of product 1.83, isolated as a 

light yellow oil: 1H NMR (400 MHz, CDCl3) δ 6.87 (s, 2H), 3.74 (s, 6H), 3.55 (s, 6H), 3.08 (br, 

1H); 13C NMR (100 MHz, CDCl3) δ 174.5, 120.8, 51.1, 44.0 (br), 36.0; 11B NMR (160 MHz, 

CDCl3) δ –25.5 (t, JBH = 94 Hz); IR (film) 3170, 3132, 2952, 2326, 1741, 1576, 1486, 1437, 

1375 cm–1; HRMS (ESI) m/z (M+ – H) calcd for C10H16BN2O4 239.1203, found 239.1217. The 

estimated yield of the double insertion product (11B NMR (160 MHz, CDCl3) δ –17.7 (d, JBH = 

91 Hz)) is 9%. 

 

N

N
B
H2

1.96

O

OO

O

 

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-

yl)dihydroborate (1.96): Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate 

(1.10) (50.0 mg, 0.45 mmol), Rh2(esp)2 (3.4 mg, 0.0045mmol) and 5-diazo-2,2-dimethyl-1,3-

dioxane-4,6-dione (1.95) (91.9 mg, 0.54 mmol) according to the general procedure afforded 68.1 

mg (60%) of product 1.96, isolated as yellow solid: 1H NMR (500 MHz, CDCl3) δ 6.92 (s, 2H), 

3.84 (s, 6H), 1.68 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 161.8, 161.0, 121.5, 110.9, 103.8, 

36.6, 27.0; 11B NMR (160 MHz, CDCl3) δ –18.7 (t, JBH = 93 Hz); IR (film) 3174, 3145, 3001, 

2958, 2407, 1722, 1668, 1576, 1485 cm–1; mp 193-195  C̊ (decomposition). There is no double 

insertion product appeared in the 11B NMR spectrum. 
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N

N
BH2

O

OMe

Ph

1.84  
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-methoxy-2-oxo-1-phenylethyl)dihydroborate 

(1.84): Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 mg, 0.45 

mmol), Rh2(esp)2 (3.4 mg, 0.0045mmol) and methyl 2-diazo-2-phenylacetate (1.49) (95.1 mg, 

0.54 mmol) according to the general procedure afforded 86.0 mg (74%) of product 1.84, isolated 

as white solid: 1H NMR (500 MHz, CDCl3) δ 7.26–7.28 (m, 2H), 7.14-7.17 (m, 2H), 7.02-7.05 

(m, 1H), 6.78 (s, 2H), 3.62 (s, 3H), 3.47 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 179.8, 145.4, 

127.6, 127.6, 123.9, 120.4, 50.8, 46.0 (br), 35.7; 11B NMR (160 MHz, CDCl3) δ –23.2 (t, JBH = 

91 Hz); IR (film) 3170, 3133, 3058, 3019, 2950, 2921, 2342, 2310, 1703, 1599, 1578, 1485, 

1453, 1431 cm–1; mp 137-139 C̊; HRMS (ESI) m/z (M+) calcd for C14H19BN2O2 258.1540, found 

258.1533. The estimated yield of the double insertion product (11B NMR (160 MHz, CDCl3) δ –

14.1 (d, JBH = 96 Hz)) is 9%. 

 

N

N
BH2

O

OMe

Bn

1.86  

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(1-methoxy-1-oxo-3-phenylpropan-2-yl)dihydro-

borate (1.86): Reaction of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 

mg, 0.45 mmol), Rh2(esp)2 (3.4 mg, 0.0045mmol) and methyl 2-diazo-3-phenylpropanoate 

(1.85) (102.7 mg, 0.54 mmol) according to the general procedure afforded 31.8 mg (26%) of 

product 1.86, isolated as colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.18-7.20 (m, 5H), 6.80 (s, 

2H), 3.74 (s, 6H), 3.38 (s, 3H), 3.11 (dd, J1 = 14.0 Hz, J2 = 10.0 Hz, 1H), 2.72 (dd, J1 = 14.0 Hz, 
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J2 = 14.5 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 181.9, 128.5, 127.9, 125.0, 120.4, 50.3, 39.1, 

36.0, 29.7; 11B NMR (160 MHz, CDCl3) δ –25.1 (t, JBH = 88 Hz); IR (film) 2922, 2299, 1694, 

1482, 1437, 1352 cm–1; HRMS (ESI) m/z (2M+ – H) calcd for C30H41B2N4O4 543.3308, found 

543.3309. There is no double insertion product. 

 

N

N

N
BH2

COOEt

1.98  

(1,4-Dimethyl-1H-1,2,4-triazol-4-ium-5-yl)(2-ethoxy-2-oxoethyl)dihydroborate (1.98): 

Reaction of (1,4-dimethyl-1H-1,2,4-triazol-4-ium-5-yl)trihydroborate (1.17) (50.0 mg, 0.45 

mmol), Rh2(esp)2 (3.4 mg, 0.0045 mmol) and ethyl 2-diazoacetate (1.51) (0.080 mL, 0.54 mmol) 

according to the general procedure afforded 46.1 mg (52%) of product 1.98, isolated as a 

colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.89 (s, 1H), 3.97 (s, 3H), 3.94 (q, J = 7.0 Hz, 2H), 

3.79 (s, 2H), 1.64 (br, 2H), 1.14 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 180.6, 141.3, 

59.0, 38.1, 33.7, 23.0 (br), 14.4; 11B NMR (160 MHz, CDCl3) δ –28.6 (t, JBH = 90 Hz); IR (film) 

2924, 2343, 1683, 1552, 142, 1258 cm–1; HRMS (ESI) m/z (2M+ – H) calcd for C16H31B2N6O4 

393.2593, found 393.2600. The estimated yield of the double insertion product (11B NMR (128 

MHz, CDCl3) δ –20.7 (d, JBH = 91 Hz)) is 11%. 
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N

N
BH2

COOEt

1.99  

(1,3-Dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (1.99): 

Reaction of (1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)trihydroborate (1.14) (50.0 mg, 0.31 

mmol), Rh2(esp)2 (2.3 mg, 0.0031 mmol) and ethyl 2-diazoacetate (1.51) (0.055 mL, 0.37 mmol) 

according to the general procedure afforded 45.8 mg (60%) of product 1.99, isolated as a white 

solid: 1H NMR (500 MHz, CDCl3) δ 7.40-7.47 (m, 4H), 3.98 (s, 6H), 3.91 (q, J = 7.0 Hz, 2H), 

1.73 (br, 2H), 1.04 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 180.7, 133.2, 124.2, 

110.8, 58.8, 32.2, 14.3; 11B NMR (160 MHz, CDCl3) δ –28.1 (t, JBH = 90 Hz); IR (film) 2923, 

2308, 1691, 1468, 1395 cm–1; mp 67-70 ̊C; HRMS (ESI) m/z (M+-1) calcd for C13H19BN2O2 

245.1461, found 245.1457. The isolated yield of the double insertion product (11B NMR (128 

MHz, CDCl3) δ –20.0 (d, JBH = 91 Hz)) is 19%. 

 

N

N
Mes

Mes

BH2
COOEt

1.87  

(1,3-Dimesityl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (1.87): Reaction 

of (1,3-dimesityl-1H-imidazol-3-ium-2-yl)trihydroborate (1.12) (50.0 mg, 0.16 mmol), Rh2(esp)2 

(1.2 mg, 0.0016 mmol) and ethyl 2-diazoacetate (1.51) (0.028 mL, 0.19 mmol) according to the 

general procedure afforded 36.2 mg (56%) of product 1.87, isolated as a colorless oil: 1H NMR 

(500 MHz, CDCl3) δ 6.98 (s, 4H), 6.95 (s, 2H), 3.82 (q, J = 7.0 Hz, 2H), 2.34 (s, 6H), 2.12 (s, 

12H), 1.03 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 181.0, 139.2, 135.0, 134.3, 129.1, 
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121.3, 58.5, 21.1, 17.8, 14.4; 11B NMR (160 MHz, CDCl3) δ –27.2 (t, JBH = 85 Hz); IR (film) 

2923, 2854, 2343, 1697, 1489, 1443, 1380 cm–1; mp 179-181 ̊C (decomposition); HRMS (ESI) 

m/z (2M+-1) calcd for C50H65B2N4O4 807.5186, found 807.5178. The estimated yield of the 

double insertion product (11B NMR (160 MHz, CDCl3) δ –19.8 (br)) is 4%. 

 

N

N
BH2

O

O COOEt

1.100  

(2-Ethoxy-2-oxoethyl)(3,3,7,7-tetramethyl-2,3,7,8-tetrahydroimidazo[4,3-b:5,1-

b']bis(oxazole)-4-ium-5-yl)dihydroborate (1.100): Reaction of (3,3,7,7-tetramethyl-2,3,7,8-

tetrahydroimidazo[4,3-b:5,1-b']bis(oxazole)-4-ium-5-yl)trihydroborate (1.15) (50.0 mg, 0.23 

mmol), Rh2(esp)2 (1.7 mg, 0.0023 mmol) and ethyl 2-diazoacetate (1.51) (0.041 mL, 0.28 mmol) 

according to the general procedure afforded 42.5 mg (60%) of product 1.100, isolated as a 

colorless oil: 1H NMR (500 MHz, CDCl3) δ 4.49 (s, 4H), 4.01 (q, J = 7.0 Hz, 2H), 1.73 (s, 6H), 

1.62 (br, 2H), 1.20 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 180.6, 123.3, 87.7, 62.6, 

58.6, 26.2, 14.5; 11B NMR (160 MHz, CDCl3) δ –28.0 (t, JBH = 88 Hz); IR (film) 2978, 2933, 

2336, 1693, 1559, 1430 cm–1; HRMS (ESI) m/z (2M+ – H) calcd for C30H49B2N4O8 615.3731, 

found 615.3728. The estimated yield of the double insertion product (11B NMR (160 MHz, 

CDCl3) δ –20.2 (d, JBH = 90 Hz)) is 6%. 
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1.101  

((3R,7R)-3,7-diisopropyl-2,3,7,8-tetrahydroimidazo[4,3-b:5,1-b']bis(oxazole)-4-ium-5-yl)(2-

ethoxy-2-oxoethyl)dihydroborate (1.101): Reaction of ((3R,7R)-3,7-diisopropyl-2,3,7,8-

tetrahydroimidazo[4,3-b:5,1-b']bis(oxazole)-4-ium-5-yl)trihydroborate (1.16) (50.0 mg, 0.20 

mmol), Rh2(esp)2 (1.5 mg, 0.0020 mmol) and ethyl 2-diazoacetate (1.51) (0.036 mL, 0.24 mmol) 

according to the general procedure afforded 39.6 mg (59%) of product 1.101, isolated as a 

colorless oil: 1H NMR (400 MHz, CDCl3) δ 4.74-4.81 (m, 4H), 4.63-4.65 (m, 2H), 3.93-4.02 (m, 

2H), 2.70-2.76 (m, 2H), 1.65 (br, 2H), 1.21 (t, J = 7.2 Hz, 3H); 1.00 (d, J = 6.8 Hz), 0.81 (d, J = 

6.8 Hz); 13C NMR (100 MHz, CDCl3) δ 181.1, 123.6, 61.3, 58.8, 29.1, 18.8, 14.5, 14.3; 11B 

NMR (128 MHz, CDCl3) δ –27.4 (t, JBH = 88 Hz); IR (film) 2965, 2876, 2324, 1743, 1692, 

1464, 1437, 1406, 1374 cm–1; HRMS (ESI) m/z (2M+ – H) calcd for C34H57B2N4O8 671.4357, 

found 671.4349. The estimated yield of the double insertion product (11B NMR (160 MHz, 

CDCl3) δ –19.6 (d, JBH = 90 Hz)) is 6%. 

 

N

N
DiPP

DiPP

BH2
COOEt

1.102  

(1,3-Bis(2,6-diisopropylphenyl)-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-

oxoethyl)dihydroborate (1.102): Reaction of (1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-3-
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ium-2-yl)trihydroborate (1.11) (50.0 mg, 0.12 mmol), Rh2(esp)2 (1.0 mg, 0.0012 mmol) and 

ethyl 2-diazoacetate (1.51) (0.021 mL, 0.14 mmol) according to the general procedure afforded 

36.9 mg (63%) of product 1.102, isolated as a white solid: 1H NMR (500 MHz, CDCl3) δ 7.44-

7.47 (m, 2H), 7.25-7.28 (m, 4H), 6.99 (s, 2H), 3.78 (q, J = 7.0 Hz, 2H), 2.58 (sep, J = 6.5 Hz, 

4H), 1.31 (d, J = 7.0 Hz, 6H), 1.15 (d, J = 7.0 Hz, 6H), 0.99 (t, J = 7.0 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ 180.6, 145.4, 134.0, 130.1, 123.9, 122.3, 58.3, 28.7, 25.2, 22.7, 14.3; 11B NMR 

(160 MHz, CDCl3) δ –26.8 (t, JBH = 86 Hz); IR (film) 3138, 2963, 2928, 2870, 2350, 1691, 1467, 

1422, 1384, 1363 cm–1; mp 169-172 ̊C (decomposition); HRMS (ESI) m/z (2M+ – H) calcd for 

C62H89B2N4O4 977.7070, found 975.7049. There is no double insertion product. 

 

N

N
BH

COOEt

Ph
COOMe

1.103  

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)(2-methoxy-2-oxo-1-

phenylethyl)hydroborate (1.103): The (1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-

oxoethyl)dihydroborate (1.81) (38.0 mg, 0.19 mmol, 1.0 equiv) and the Rh2(esp)2 (1.4 mg, 

0.0019 mmol, 0.01 equiv) were dissolved in dry DCM (2 mL) under argon. The solution was 

dark green. The reaction mixture was heated to reflux. A solution of methyl 2-diazo-2-

phenylacetate (1.49) (66.7 mg, 0.38 mmol, 2.0 equiv) in dry DCM (2 mL) was added via syringe 

pump over a period of 4 h. The color of the solution turned to be orange. After 4 h, the solvent 

was removed and the crude 1H NMR and 11B NMR was taken. The mixture was concentrated 

and purified by flash chromatography (Hex:EA = 1:2) to give two diastereomers as colorless oil. 

Diastereomer A (25.6 mg, 0.075 mmol, 39%): 1H NMR (400 MHz, CDCl3) δ 7.18-7.20 (m, 2H), 
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7.06-7.10 (m, 2H), 6.90-6.99 (m, 1H), 6.58 (s, 2H), 3.87 (qd, J1 = 7.2 Hz, J2 = 2.0 Hz, 2H), 3.62 

(s, 3H), 3.47 (s, 6H), 1.98 (br, 1H), 1.75 (br, 2H), 1.03 (t, J = 7.2 Hz); 13C NMR (100 MHz, 

CDCl3) δ 179.4, 178.6, 144.0, 127.5, 127.5, 124.2, 121.0, 58.7, 50.8, 49.0 (br), 36.4, 28.0 (br), 

14.4; 11B NMR (128 MHz, CDCl3) δ –16.4 (d, JBH = 96 Hz); IR (film) 2950, 2377, 1703, 1482, 

1453, 1434, 1363 cm–1; HRMS (ESI) m/z (M++H) calcd for C18H26BN2O4 345.1980, found 

345.1974. Diastereomer B (20.1 mg, 0.059 mmol, 31%): 1H NMR (400 MHz, CDCl3) δ 7.25-

7.27 (m, 2H), 7.11-7.19 (m, 2H), 6.99-7.02 (m, 1H), 6.73 (s, 2H), 3.74-3.85 (m, 2H), 3.40 (s, 

3H), 3.24 (br, 1H), 1.53 (br, 2H), 0.97 (t, J = 7.2 Hz); 13C NMR (100 MHz, CDCl3) δ 179.5, 

178.9, 143.3, 128.5, 127.6, 124.4, 121.2, 58.6, 50.6, 49.0 (br), 36.7, 26.5 (br), 14.3; 11B NMR 

(128 MHz, CDCl3) δ –16.5 (d, J = 95 Hz); IR (film) 3134, 2950, 2376, 1703, 1598, 1577, 1481, 

1453, 1432 cm–1; HRMS (ESI) m/z (M++H) calcd for C18H26BN2O4 345.1980, found 345.1990. 

 

N

N
BH

COOtBu

N

O

1.104  

(2-(tert-Butoxy)-2-oxoethyl)(1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-

(dimethylamino)-2-oxoethyl)hydroborate (1.104): Reaction of (1,3-dimethyl-1H-

benzo[d]imidazol-3-ium-2-yl)trihydroborate (1.14) (200.0 mg, 1.25 mmol), Rh2(esp)2 (9.5 mg, 

0.013 mmol) and 2-diazo-N,N-dimethylacetamide (1.94) (169.7 mg, 1.50 mmol) according to the 

general procedure afforded 189.0 mg (62%) of (1,3-Dimethyl-1H-benzo[d]imidazol-3-ium-2-

yl)(2-(dimethylamino)-2-oxoethyl)dihydroborate, isolated as a white solid: 1H NMR (400 MHz, 

CDCl3) δ 7.36-7.44 (m, 4H), 3.96 (s, 6H), 3.16 (s, 3H), 2.87 (s, 3H), 1.68 (br, 2H); 13C NMR 

(100 MHz, CDCl3) δ 180,9, 133.2, 124.0, 110.8, 38.2, 35.2, 32.0; 11B NMR (128 MHz, CDCl3) δ 
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–28.8 (t, JBH = 87 Hz); IR (film) 2923, 2851, 2101, 1643, 1405, 1174 cm–1; mp 117-120 ˚C; 

HRMS (ESI) m/z (M+-1) calcd for C13H20BN3O 244.1621, found 244.1619. 

The (1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-(dimethylamino)-2-

oxoethyl)dihydroborate (47.0 mg, 0.24 mmol, 1.0 equiv) and the Rh2(esp)2 (1.8 mg, 0.0024 

mmol, 0.01 equiv) were dissolved in dry DCM (2 mL) under argon. The solution was dark green. 

The reaction mixture was heated to reflux. A solution of tert-butyl 2-diazoacetate (1.90) (0.067 

mL, 0.48 mmol, 2.0 equiv) in dry DCM (2 mL) was added via syringe pump over a period of 4 h. 

The color of the solution turned to be orange. After 4 h, the solvent was removed and the crude 

1H NMR and 11B NMR was taken. The mixture was concentrated and purified by flash 

chromatography (pure acetone) to give the product 1.104 (61.0 mg, 0.17 mmol, 71%) as 

colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.37-7.46 (m, 4H), 3.98 (s, 6H), 3.13 (s, 3H), 2.79 

(s, 3H), 2.05 (br, 1H), 1.73 (br, 3H), 1.09 (s, 9H); 13C NMR (175 MHz, C6D6) δ 179.0, 178.3, 

133.5, 123.7, 110.9, 76.7, 37.9, 34.9, 32.3, 30.0 (br), 28.3; 11B NMR (128 MHz, CDCl3) δ –20.8 

(d, JBH = 92 Hz); IR (film) 2926, 2854, 2390, 1699, 1613; HRMS (ESI) m/z (M+ – H) calcd for 

C19H29BN3O3 358.2302, found 358.2300. 

 The two enantionmers were separated by chiral HPLC ((S,S)-Whelk-O column, 

hexane/iPrOH = 40:60). First eluting enatiomer A: [α]D
25 = –34.0 (c = 1.13, CHCl3).  Second 

eluting enatiomer B: [α]D
25 = +33.8 (c = 1.12, CHCl3).  
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1.105  

(2-(tert-Butoxy)-2-oxoethyl)(1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-ethoxy-2-

oxoethyl)hydroborate (1.105): (1,3-Dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)trihydroborate 

(7)  (50 mg, 0.31 mmol, 1.0 equiv) and the Rh2(esp)2 (2.3 mg, 0.0031 mmol, 0.01 equiv) were 

dissolved in dry DCM (2 mL) under argon. The solution was dark green. The reaction mixture 

was heated to reflux. A solution of ethyl 2-diazoacetate (1.51) (0.050 mL, 0.37 mmol, 1.2 equiv) 

in dry DCM (2 mL) was added via syringe pump over a period of 4 h. Then a solution of tert-

butyl 2-diazoacetate (1.90) (0.10 mL, 0.62 mmol, 2.0 equiv) was added via syringe pump over a 

period of 4 h. The reaction mixture turned brown. After the addition was complete, the solvent 

was removed and crude 1H and 11B NMR spectra were taken. The mixture was concentrated and 

purified by flash chromatography (Hex:EA = 2:1) to give the product 1.105 (61.4 mg, 0.17 

mmol, 55%) as colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.41-7.48 (m, 4H), 4.01 (s, 6H), 3.83 

(q, J = 6.4 Hz, 3H), 1.84 (br, 1H), 1.77 (br, 3H), 1.12 (s, 9H), 0.95 (t, J = 6.4 Hz, 3H); 13C NMR 

(100 MHz, C6D6) δ 179.0, 178.6, 133.7, 124.2, 111.2, 77.0, 58.9, 32.6, 30.0 (br), 28.6, 14.9; 11B 

NMR (128 MHz, CDCl3) δ –20.1 (d, JBH = 92 Hz); IR (film) 2974, 1697, 1464, 1390, 1364; 

HRMS (ESI) m/z (M+ + H) calcd for C19H30BN2O4 361.2299, found 361.2287. 
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1.107  

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-(((1S,2R,5S)-2-isopropyl-5-methylcyclohexyl) 

oxy)-2-oxo-1-phenylethyl)dihydroborate (1.107): The (1,3-dimethyl-1H-imidazol-3-ium-2-

yl)trihydroborate (1.10) (50.0 mg, 0.45 mmol) and Rh2(esp)2 (3.4 mg, 0.0045mmol)  were 

dissolved in dry DCM (2 mL) under argon. The solution was dark green. The reaction mixture 

was heated to reflux. A solution of (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl 2-diazo-2-

phenylacetate (1.106) (162.2 mg, 0.54 mmol) in dry DCM (2 mL) was added via syringe pump 

over a period of 4 h. The color of the solution turned to be orange. After 4 h, the solvent was 

removed and the crude 1H and 11B NMR spectra were recorded. The mixture was concentrated 

and purified by flash chromatography to afford 103.2 mg (60%) of product 1.107, isolated as 

white solid: 1H NMR (500 MHz, CDCl3) δ 6.94-7.32 (m, 5H), 6.74 (s, 0.38H), 6.72 (s, 1.62H); 

13C NMR (125 MHz, CDCl3) δ 179.1, 171.1, 146.0, 145.8, 129.1, 128.4, 127.6, 127.4, 126.8, 

123.6, 122.6, 120.3, 72.5, 72.2, 47.2, 47.0, 41.3, 41.0, 36.2, 35.6, 34.4, 34.2, 31.4, 31.3, 26.1, 

26.0, 23.5, 23.3, 22.7, 22.1, 21.9, 21.0; 11B NMR (160 MHz, CDCl3) δ –23.2 (t, JBH = 90 Hz); IR 

(film) 3169, 3134, 3056, 3022, 2954, 2869, 2349, 2308, 1699, 1597, 1575, 1485, 1453, 1406 cm–

1; mp 89-92 C̊; HRMS (ESI) m/z (M+) calcd for C23H35BN2O2 382.2792, found 382.2790. There 

is no double insertion product. 
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Procedure for reaction (2) in Scheme 1.21:  

 

Ph

N2

O

OMe

Ph

BH2

O

OMe

N

N

N

N
BH3

Rh2(S-DOSP)4 1.55

DCM

1.49

1.84, 82% yield (98% brsm)
         e.r. = 69/31

1.10

 

 

The (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (50.0 mg, 0.45 mmol) and the 

Rh2(S-DOSP)4 (1.55) (8.5 mg, 0.0045 mmol) were dissolved in dry DCM (2 mL) under argon. 

The solution was dark green. The reaction mixture was stirred at rt. A solution of methyl 2-

diazo-2-phenylacetate (1.49) (95.1 mg, 0.54 mmol) in dry DCM (2 mL) was added via syringe 

pump over a period of 4 h. After 4 h, the solvent was removed and the crude 1H and 11B NMR 

spectra were recorded. The mixture was concentrated and purified by flash chromatography to 

give 95.3 mg (82%) of the pure product (1,3-Dimethyl-1H-imidazol-3-ium-2-yl)(2-methoxy-2-

oxo-1-phenylethyl)dihydroborate (1.84). The characterization data is the same as previous 

synthesized compound. The two enantionmers were separated by chiral HPLC ((S,S)-Whelk-O 

column, hexane/iPrOH = 20:80). The ratio of integrations of the two peaks is 69/31. 
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Procedure for reaction (1) in Scheme 1.22:  

 

N

N
BH

COOtBu

N

O

1.108                                                             1.104, 33% (89% brsm), e.r. = 56/44

N

N
BH2

H COOtBu

N2

O

N
Rh2(S-DOSP)4 1.55

DCM

1.90

 

 

The (1,3-dimethyl-1H-benzo[d]imidazol-3-ium-2-yl)(2-(dimethylamino)-2-

oxoethyl)dihydroborate (1.108) (47.0 mg, 0.24 mmol, 1.0 equiv) and Rh2(S-DOSP)4 (1.55) (4.5 

mg, 0.0024 mmol)  were dissolved in dry DCM (2 mL) under argon. The solution was dark 

green. The reaction mixture was heated to reflux. A solution of tert-butyl 2-diazoacetate (1.90) 

(0.067 mL, 0.48 mmol, 2.0 equiv) in dry DCM (2 mL) was added via syringe pump over a period 

of 4 h. The color of the solution turned to be orange. After 4 h, the solvent was removed and the 

crude 1H NMR and 11B NMR was taken. The mixture was concentrated and purified by flash 

chromatography (pure acetone) to give the product 1.104 (28.4 mg, 0.079 mmol, 33%) as 

colorless oil. The characterization data is the same as previous synthesized compound. The two 

enantionmers were separated by chiral HPLC ((S,S)-Whelk-O column, hexane/iPrOH = 40:60). 

The ratio of integrations of the two peaks is 56/44. 
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Procedure for reaction (2) in Scheme 1.22:  

 

N

N
BH

COOEt

1.109                                                             1.110, 20% (98% brsm), e.r. = 51/49

N

N

H COOEt

N2

DCMBH2
-

1.51
Rh2(S-DOSP)4 1.55

 

 

The (1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2,3-dimethylbutan-2-yl)dihydroborate (1.109) (58.2 

mg, 0.30 mmol, 1.0 equiv) and Rh2(S-DOSP)4 (1.55) (5.7 mg, 0.0030 mmol)  were dissolved in 

dry DCM (2 mL) under argon. The solution was dark green. The reaction mixture was heated to 

reflux. A solution of ethyl 2-diazoacetate (1.51) (0.089 mL, 0.60 mmol, 2.0 equiv) in dry DCM 

(2 mL) was added via syringe pump over a period of 4 h. The color of the solution turned to be 

orange. After 4 h, the solvent was removed and the crude 1H NMR and 11B NMR was taken. The 

mixture was concentrated and purified by flash chromatography to give the product 1.110 (16.8 

mg, 0.06 mmol, 20%) as colorless oil: : 1H NMR (400 MHz, CDCl3) δ 6.79 (ABq, 2H, ΔδAB = 

0.012, JAB = 2.0 Hz), 3.94 (s, 3H), 3.84 (q, J = 6.8 Hz, 2H) 3.79 (s, 3H), 1.67-1.76 (m, 2H), 1.36 

(sep, J = 6.8 Hz, 2H), 0.98 (t, J = 6.8 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H), 

0.74 (s, 3H), 0.55 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 181.4, 121.1, 121.0, 58.2, 37.8, 37.4, 

37.0, 26.6, 24.9, 18.9, 18.1, 14.4; 11B NMR (128 MHz, CDCl3) δ –16.3 (d, JBH = 87 Hz); IR 

(film) 3121, 2951, 2857, 2353, 1694, 1472cm–1; HRMS (ESI) m/z (M+) calcd for C15H28BN2O2 

279.2238, found 279.2229. The two enantionmers were separated by chiral HPLC ((S,S)-Whelk-

O column, hexane/iPrOH = 20:80). The ratio of integrations of the two peaks is 51/49. 
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Procedure for the competition reactions of NHC-borane 1.10 with THF, 1,4-cyclohexadiene 

and styrene: A solution of methyl 2-diazo-2-phenylacetate (1.49) (20.0 mg, 0.11 mmol, 0.5 

equiv) in DCM (2 mL) was added to a stirred solution of Rh2(esp)2 (3.4 mg, 0.0045 mmol, 0.02 

equiv),  (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate (1.10) (25.0 mg, 0.23 mmol, 1.0 

equiv) and THF (0.93 mL, 11.5 mmol, 50 equiv) or 1,4-cyclohexadiene (0.21 mL, 2.3 mmol, 10 

equiv) or styrene (0.28 mL, 2.3 mmol, 10 equiv) in DCM (2 mL) via syringe pump over 2 h at rt. 

The solvent was removed in vacuo and crude 1H-NMR was taken to calculate the ratio of (1,3-

dimethyl-1H-imidazol-3-ium-2-yl)(2-ethoxy-2-oxoethyl)dihydroborate (1.84) and methyl 2-

phenyl-2-(tetrahydrofuran-2-yl)acetate (1.119) or methyl 2-(cyclohexa-2,5-dien-1-yl)-2-

phenylacetate (1.120) or methyl 1,2-diphenylcyclopropanecarboxylate (1.121).  

 

Procedure for kinetic isotope studies: (1,3-Dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate 

(1.10) (2.6 mg, 0.024 mmol, 1 equiv) and (1,3-dimethyl-1H-imidazol-3-ium-2-yl)trihydroborate 

(1.126-d3) (2.7 mg, 0.024 mmol, 1 equiv) were dissolved in CD2Cl2 (0.75 mL) in a NMR tube. 

The 11B-NMR spectrum was taken to determine the initial retio of the two substrates. Then 

Rh2(esp)2 (0.2 mg) and a solution of methyl 2-diazo-2-phenylacetate (1.49) (2.1 mg, 0.012 

mmol, 0.5 equiv) in CD2Cl2 (0.25 mL) was added. 11B-NMR was taken after 5 min to calculate 

the ratio of (1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-methoxy-2-oxo-1-

phenylethyl)dihydroborate (1.84) and (1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-methoxy-2-oxo-

1-phenylethyl)dihydroborate (1.129). 
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2.0  PROGRESS TOWARDS THE TOTAL SYNTHESIS OF TULEARINS 

2.1 INTRODUCTION 

2.1.1 Total synthesis of marine macrolides 

Nature has stocked the sea with enormously rich sources of structurally diverse, often highly 

complex secondary metabolites.83 These marine natural products exhibit a variety of biological 

activities including cytotoxicity, neurotoxicity, antiviral, and antifungal activities.84 Among these 

fascinating structures, a prominent category are the marine macrolides (macrocyclic lactones). 

These are highly oxygenated and stereochemically elaborate polyketides which have a 

macrocyclic lactone as a conformational constraint.85,86 Many marine macrolides have potent cell 

growth antiproliferative properties and are considered as promising lead compounds for the 

development of new anti-cancer chemotherapeutic agents.87 

Three remarkable marine macrolides are shown in Figure 2.1. Spongistatins, isolated 

from East Indian Ocean Perifera Spongia sp., are bis-spiroacetal-containing marine macrolides 

with captivating structures.88 They stand out as the most potent cancer cell growth inhibitory 

agents tested to date in the U.S. National Cancer Institute’s primary panel of 60 human 

carcinoma cell lines having low nanomolar or picomolar GI50 values across the board.89 

Dictyostatin, isolated from a marine sponge of the genus Spongia sp., is a 22-membered 
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macrolide that displays low nanomolar growth inhibitory activity against a number of human 

cancer cell lines.90,91 Leucascandrolide A, isolated from the New Caledonian calcareous sponge 

Leucascandra caveolata, is an 18-membered macrolide which exhibited in-vitro cytotoxicity 

against KB throat epithelial carcinoma and P388 murine leukemia cell.92  
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Figure 2.1 Representative marine macrolides 

 

Because of the low natural abundance of these marine macrolides as well as the 

unacceptable ecological impact of large-scale isolation of the producing organism, the total 

synthesis of marine macrolides becomes necessary for further biological evaluations and possible 

future clinical use. Meanwhile, the impressive structures themselves challenge contemporary 
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organic synthesis with regard to both strategy and methodology for their total synthesis. For 

example, highly stereoselective reactions need to be applied in order to control a variety of 

stereocenters in the molecules. Mild reaction conditions are necessary for these kinds of highly 

oxygenated fragile structures. Efficient coupling reactions are needed for the combination of 

large fragments at the late stage of synthesis. At the same time, synthesis is also important for 

structural elucidation, especially for the determination of the full absolute configuration. 

2.1.2 Tulearins 

Tulearins are a representative family of marine macrolides that were isolated by Kashman and 

coworkers in 2008. Bioguided (brine shrimp test) separation of the CHCl3/CH3OH (1:1) extract 

of Madagascar Fascaplysinopsis sp. sponge collected in Salary Bay north of Tulear provided 6.6 

mg of 18-membered macrolactone, tulearin A 2.1, a yield of 0.019 wt % (Figure 2.2).93 Two 

additional tulearins were also isolated in very small quantity and designated as tulearin B 2.2 and 

C 2.3 (Figure 2.2).94 
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Figure 2.2 Structures of tulearin A, B and C 
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The effect of tulearin A 2.1 on cell proliferation was determined in two different human 

leukemic cell lines, K562 and UT7, using the colorimetric methylthiazole tetrazolium bromide 

(MTT) assay. After 3 days of culture in the presence of 0.5 μg/mL of 2.1, ~60% of proliferation 

of K562 cells and ~35% of proliferation of UT7 cells were inhibited.93  

The molecular formula of tulearin A 2.1 was assigned as C31H53NO6 with six degrees of 

unsaturation or rings based on the HR-ESIMS (QqTOF) molecular ion peak (m/z calcd 558.3771, 

found 558.3757, [M + Na]+). With 1D and 2D NMR data, tulearin A 2.1 was identified to consist 

of an E,E Δ18,20-diene, a nonconjugated E alkene (C12, C13), four oxygenated-methine (C3, C8, 

C9, and C17), a lactone (C1), five methyl groups (C26, C27, C28, C29, and C30) and a 

carbamate ester. The coupling constant (J = 15.5 Hz) between H20/H21 and the NOEs between 

H18/H20 and between H30/H21 established the E,E configuration of Δ18,20-diene. The E 

geometry of isolated double bond between C12 and C13 was assigned based on the line shape 

simulation.93  

The complete 2D structure of tulearin A 2.1 was assigned by COSY and HMBC 

correlations. It is a 2,4,15,19-tetramethylated hexaeicosanoic polyketide acid forming an 18-

membered lactone (from C1 to C17), carrying on the macrolide chain, having two hydroxyls (on 

C3 and C9) and one carbamate (on C8).93 Particularly, the carbamate group is rare in nature. 

Only about 150 natural products with carbamate group(s) are listed in the Beilstein database. 

Among them, less than 20 compounds belong to macrolides, for example, palmerolide A,95 

geldanamycin96 and saxitoxin.97 

When tulearin A 2.1 was treated with a mixture of aqueous ammonia/MeOH (1:1), a less 

polar compound 2.4 was afforded as colorless crystals in 83% yield. Compound 2.4 gave crystals 

suitable for X-ray diffraction analysis, confirming its structure and establishing the relative 
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configuration of all seven chiral centers of tulearin A 2.1. Using the modified Mosher’s method, 

the absolute configuration of C9 was assigned as S. Hence, based on the X-ray structure, the 

absolute configuration of 2.1 is 2R,3R,5S,8S,9S,15R, and 17S as shown in Figure 2.2.94  

2.1.3 Previous synthetic studies of Tulearins 

In 2009, a stereoisomer 2.5 of tulearin A 2.1 was synthesized by Cossy, Curran and co-workers 

(Scheme 2.1).98 The stereoisomer 2.5 was connected by three fragments, acid 2.8 (C1–C12), 

vinyl iodide 2.10 (C13–C19), and stannane 2.13 (C20–C26). Acid 2.8 was synthesized from 

starting material sulfone 2.6 and aldehyde 2.7 in 10 steps. The stereocenters at C2 and C3 were 

obtained by Crimmins syn aldol reaction, and the stereocenters at C8 and C9 were generated 

from Sharpless asymmetric dihydroxylation reaction. Vinyl iodide 2.10 was obtained from (S)-

citronellal 2.9 in 11 steps. The stereocenter at C17 was formed by Noyori asymmetric reduction. 

These two parts were brought together by esterification with a yield of 74%. Ring-closing 

metathesis was used to afford the macrocycle 2.12 in 43% yield (E/Z = 1.9/1). The carbamate 

was installed at the C8 position in two steps. Then Stille coupling was used to introduce the side 

chain to give compound 2.15 in 31% yield. The TBS group was removed by TBAF in 19% yield 

to provide one stereoisomer 2.5 of tulearin A 2.1. 

Several drawbacks compromise the efficiency of this route. In particular, the RCM 

reaction that is used to construct C12/C13 double bond only gives a E/Z selectivity of 1.9:1 in 

43% yield. Stille coupling of stannane 2.13 with corresponding vinyl iodide only gives 31% 

yield. Meanwhile, the 1H-NMR and 13C-NMR spectra of the final product 2.5 have unidentified 

peaks, suggesting that the sample was not pure. 
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Scheme 2.1 Summary of Cossy and Curran’s total synthesis of one isomer of tulearin A 
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The first total synthesis of tulearin C was reported by Fürstner and co-workers in 2011.99 

The top fragment 2.17 and the bottom fragment 2.18 were synthesized from the common starting 

material dimethyl 3-methylglutarate 2.16 in 9 steps and 14 steps, respectively. The two 

fragments were coupled together by esterification in 98% yield. Then the key alkyne metathesis 

was used for ring closure. Macrocycle 2.20 was obtained with excellent yield. The total synthesis 

of tulearin C 2.3 was accomplished through three subsequent conversions in 43-60% yield. In 

this way, the E/Z selectivity issue during the ring-closing reaction was solved. But as the two 

hydroxyl groups at C8 and C9 are not differentiated, the synthetic route cannot be used to finish 

the total synthesis of tulearin A 2.1. 
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Scheme 2.2 Fürstner’s total synthesis of tulearin C 
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Another synthetic route has been developed to construct the C1-C18 macrolactone core 

by Yadav (Scheme 2.3).100 The strategy is similar to Cossy and Fürstner’s total synthesis. Top 

fragment 2.22 and bottom fragments 2.24 were synthesized from commercially available starting 

material 2.21 and 2.23 in 8 steps and 14 steps respectively. The two fragments were connected 

together by esterification. Ring-closing metathesis was applied to finish the macrolactone core 

synthesis of tulearin C.   
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Scheme 2.3 Yadav’s synthesis of macrolactone core of tulearin C 
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2.1.4 Synthetic plan of tulearin A 

Because of the interesting biological activities and the novel skeleton of tulearins, we set out to 

develop a more efficient and versatile route to synthesize any stereoisomer or analog of tulearin 

A. These compounds could be used in biological activity tests to provide information about 

structure activity relationship (SAR).  

There are several challenges for this total synthesis. First, the existence of carbamate 

group in natural products is quite rare, and there are few methods to install it at late stage of total 

synthesis. Second, most stereocenters in this molecule are not adjacent. It is difficult to use 

substrate control methods, which have proved to be quite efficient in total synthesis of 

macrolides, to introduce stereocenters. Third, the E,E Δ18,20-diene moiety with the C-17 allylic 

hydroxy group is chemically sensitive. Therefore no harsh conditions, especially acid conditions, 

are feasible after introducing this moiety.  

The retrosynthetic analysis of tulearin A 2.1 is shown in Figure 2.3. The macrocycle can 

be synthesized by Yamaguchi lactonization. Julia-Kocienski olefination was used to couple 

BOM protected sulfone 2.28 and PMB protected aldehyde 2.29 to form the precursor of the 

macrolactonization.  
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Figure 2.3 Retrosynthetic analysis of tulearin A 

 

As shown in Figure 2.4, the C13-C26 fragment 2.28 can be synthesized by Julia-

Kocienski olefination between sulfone 2.30 and aldehyde 2.31 followed by desilylation and 

sulfone formation. Aldehyde 2.31 can be formed from aldehyde 2.32 by Wittig olefination 

followed by DIBAL-H reduction and Swern oxidation. Aldehyde 2.32 can be generated from 

aldehyde 2.33, which is from commercially available (R)-5-methoxy-3-methyl-5-oxopentanoic 

acid 2.34, using a Brown allylation to construct the C17 stereocenter.  
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Figure 2.4 Retrosynthetic analysis of sulfone 2.28 

 

 The C1-C12 fragment 2.29 can be obtained from aldehyde 2.35 by Masamune anti aldol 

reaction (Figure 2.5).101 Aldehyde 2.35 is a key intermediate in Cossy’s synthesis,98 and it can be 

synthesized from (S)-citronellal 2.9 in 10 steps (22% yield). 
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Figure 2.5 Retrosynthetic analysis of aldehyde 2.29 
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2.1.5 Dr. Sui’s progress toward the total synthesis of tulearin A 

Dr. Bin Sui’s synthesis of sulfone 2.28 started from commercially available enantiomerically 

pure half-ester 2.34. Selective reduction of acid in 2.34 provided a crude alcohol, which was 

protected with TBS group to give ester 2.36 in 84% yield over two steps.102 Ester 2.36 was then 

reduced to an alcohol by DIBAL-H. Subsequent Swern oxidation of this alcohol afforded 

aldehyde 2.33 in 68% yield over two steps (Scheme 2.4). 
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Scheme 2.4 Synthesis of aldehyde 2.33 

 

Alkene 2.37 was synthesized by Brown asymmetric allylation from aldehyde 2.33 with 

moderate selectivity (d.r. = 13:1).103 The two diastereomers could not be separated at this step 

and were used together in the following reactions. Compound 2.37 was treated with benzyl 

chloromethyl ether (BOMCl) and Hünig’s base to give protected ether 2.38. The terminal double 

bond of 2.38 was isomerized by treatment with second-generation Grubbs catalyst resulting in 

the formation of allylic ether 2.39 in 88% yield.104 After the double bond of 2.39 was oxidatively 

cleaved with ozone, aldehyde 2.32 was obtained in 74% yield. Next 2.32 was subjected to Wittig 

olefination with commercially available ylide 2.40 to afford an (E)-α,β-unsaturated ester, which 

was immediately reduced by DIBAL-H to provide alcohol 2.41 in 87% yield over two steps. 

After the Swern oxidation, the aldehyde 2.31 was obtained in 91% yield (Scheme 2.5). 
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Scheme 2.5 Synthesis of aldehyde 2.31 

 

Julia-Kocienski olefination105 was used to couple sulfone 2.30 and aldehyde 2.31. The 

conjugated diene 2.42 was obtained in 79% yield with E/Z ratio of 7:1. After removal of TBS 

group of 2.42 with TBAF and careful purification to remove the C17 diastereomer and the Z-Δ20 

isomer, the target E,E-1,3-diene 2.43 was obtained in 70% yield as a single isomer. The alcohol 

2.43 was converted to the sulfide by Mitsunobu reaction (1-phenyl-1H-tetrazole-thiol, 

diisopropyl azodicarboxylate, and Ph3P). The sulfide was oxidized with H2O2 in the presence of 

catalytic amount of (NH4)6Mo7O24 in ethanol to afford sulfone 2.38 in 82% yield over two 

steps.106 Thus, fragment C13–C26 2.38 was gained in 10.2% over 15 steps (Scheme 2.6). 
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Scheme 2.6 Synthesis of C13-C26 fragment sulfone 2.28 

 

The synthesis of aldehyde 2.29 is summarized in Scheme 2.7. The key intermediate 2.35 

can be synthesized in 22% over 10 steps followed by Cossy’s synthetic route.98 Aldehyde 2.35 

was subjected to Masamune’s anti aldol reaction to afford the desired product in 80% yield with 

d.r. of 13:1.101 After protection of the free alcohol at C3 with TBSOTf in 92% yield, the double 

bond was oxidatively cleaved with ozone to provide aldehyde 2.29 in 90% yield. Thus, the C1–

C12 fragment 2.29 was obtained in 14.4 % yield over 13 steps. 
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As shown in Scheme 2.8, the top fragment sulfone 2.28 and the bottom fragment 

aldehyde 2.29 were coupled by Julia-Kocienski olefination in 52% yield with excellent E 

selectivity.105 However, when compound 2.46 was treated with BF3•Et2O in CH2Cl2/Me2S (2/1) 

at −78 °C to deprotect the BOM group,107 the alcohol 2.47 was isolated in less than 10% yield. 

The major product was an unidentified compound without the E,E Δ18,20-diene moiety. 
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Scheme 2.8 Efforts towards synthesis of tulearin A 

 

Dr. Bin Sui made significant progress, but several problems still need to be solved in 

order to accomplish the total synthesis of tulearin A. First, because of the low yield of the 

deprotection of BOM group, efficient methods are needed to remove this protecting group. 
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Otherwise, another protecting group should be used so that it can be removed under mild 

conditions. Second, the linear synthetic sequence of the top fragment is too long. A more 

convergent synthetic route should be developed in order to make the synthesis more efficient. 

Third, the selectivities of the asymmetric Brown allylation used to create the C17 stereocenter 

and the Julia-Kocienski olefination used to form C20/C21 double bond are moderate. As a result, 

purification of the product became an issue, especially for large-scale synthesis.  

2.2 RESULTS AND DISCUSSION 

2.2.1 Large-scale synthesis of the bottom fragment (C1-C12 fragment) of tulearin A 

The large-scale synthesis of aldehyde 2.29 followed Dr. Bin Sui’s synthetic route, as shown in 

Scheme 2.9. Sulfone 2.6 was obtained by substitution of ethyl 4-bromobutyrate 2.48 with 1-

phenyl-1H-tetrazole-5-thiol (PTSH), followed by oxidation with H2O2 in the presence of 

catalytic amount of (NH4)6Mo7O24 in ethanol in 90% yield over two steps.106 Protection of the 

free hydroxyl group in commercially available (S)-citronellol 2.49 with a TBS group followed by 

ozonolysis of the double bond afforded the known aldehyde 2.7 in 93% yield over two steps.108  

Julia-Kocienski olefination between aldehyde 2.7 and sulfone 2.6 was performed by 

treating with KHMDS in DME at –70 °C to give alkene 2.50 in 90% yield with good E 

selectivity (E/Z = 20:1).105 The selectivity was determined by 1H-NMR analysis of the crude 

product, and the Z isomer was separated by column chromatography. Sharpless asymmetric 

dihydroxylation109 of alkene 2.50 with AD-mix-α and methanesulfonamide in t-BuOH/H2O (1:1) 

at 0 °C for 96 h gave rise to a diol that spontaneously cyclized to form the five-membered 

 83 



lactone 2.51 in 89% yield. Thus, the two hydroxyl groups (C8 and C9) were differentiated in 

preparation for later introduction of the carbamate group at C8. The stereochemistry of C8 and 

C9 was assigned as 8S and 9S based on the Sharpless AD model.110  
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Scheme 2.9 Synthesis of C1-C12 fragment aldehyde 2.29 

 

The free hydroxyl group at C8 in lactone 2.51 was protected with a PMB group by 

treating it with 4-methoxylbenzyl-2,2,2-trichloroacetimide 2.52 in the presence of lanthanum 
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triflate to give lactone 2.53.111 The lactone 2.53 was directly reduced by DIBAL-H at –78 °C and 

the resulting hemiacetal was treated with methyltriphenylphosphonium bromide 2.54 and n-BuLi 

to provide alkene 2.55 in 60% yield over three steps. Protection of the free hydroxyl group at C9 

in alkene 2.55 as a TBS ether gave the fully protected alkene 2.56 in 98% yield. The primary 

TBS group at C3 in alkene 2.56 was deprotected selectively with Oxone to give alcohol 2.57 in 

92% yield.112 The free hydroxyl group in alcohol 2.57 was then oxidized with Dess-Martin 

periodinane (DMP) to afford aldehyde 2.35 in 86% yield.  
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 85 



Abiko chiral auxiliary 2.44 was chosen to construct the final two stereocenters and 

conditions were used to provide the anti aldol product.101 Chiral auxiliary 2.44 was treated with 

dicyclohexylboron triflate ((c-hex)2BOTf) and triethylamine (Et3N) to give an enolate 

intermediate that was reacted with aldehyde 2.35 to afford the aldol product 2.45 in 85% yield 

with good diastereoselectivity (d.r. = 13:1) based on analysis of 1H-NMR spectra. The 

stereochemistry at C2 and C3 was assigned by Abiko’s model as 2R and 3R.113 After protection 

of the free hydroxyl group at C3 as TBS ether in 92% yield, the double bond was oxidatively 

cleaved with ozone to provide the aldehyde 2.29 in 90% yield. Thus, the C1-C12 fragment 2.29 

was obtained in 24.4% yield over 13 steps in gram scale. This work shows that the synthetic 

route to the bottom fragment is practical and scalable.  

2.2.2 New synthetic route for top fragment (C13-C26 fragment)  

2.2.2.1 Attempts for removal of BOM group at C17 

As shown in Dr. Bin Sui’s work (Scheme 2.8), when the advanced intermediate 2.46 was treated 

with BF3•Et2O in CH2Cl2/Me2S (2/1) at −78 °C, alcohol 2.47 was isolated in less than 10% yield. 

Therefore, suitable conditions are needed to remove the BOM group without touching the PMB 

group. However, after literature searching, only the strong Lewis acid  BF3 and potential 

reducing reagent lithium 4,4'-di-tert-butylbiphenylide (LiDBB) can potentially be used. To study 

whether the BOM ether at C17 can be cleaved in the presence of the E,E Δ18,20-diene moiety 

under these conditions, a model study was applied to BOM ether 2.42. When this was subjected 

to the same conditions as before (BF3•Et2O, CH2Cl2/Me2S = 2:1, −78 °C),107 only 18% target 

product 2.58 was isolated, and 50% starting material 2.42 was recovered. When ethanethiol was 

used instead of dimethyl sulfide,114 the substrate 2.42 decomposed quickly. Meanwhile, 
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treatment of 2.42 with lithium 4,4'-di-tert-butylbiphenylide (LiDBB) in THF at −78 °C for 5 

min115 gave a crude product that lacked signal of the diene moiety in 1H NMR spectrum. 
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Scheme 2.11 Deprotection of BOM Group 

 

Based on these results, we decided to replace the BOM group at C17 by another 

protecting group that can be removed under milder conditions. The acetate group is a potential 

candidate because it can be removed when the chiral auxiliary is cleaved. In Dr. Bin Sui’s 

synthetic route, it is difficult to change the BOM group because it was installed at early stage. 

Accordingly, we designed a more convergent and more stereoselective synthetic route to form 

C13-C26 fragment. 

2.2.2.2 Retrosynthetic analysis of synthesis of sulfone 2.59 

As shown in scheme 2.12, sulfone 2.59 can be synthesized by asymmetric Nozaki-Hiyama-Kishi 

(NHK) reaction between aldehyde 2.33 and vinyl iodide 2.61 followed by introducing protecting 

groups, desilylation and sulfone formation. With the key intermediate 2.60, it is easier to try 

different protecting groups. Vinyl iodide 2.61 can be formed by zirconium catalyzed AlMe3 

addition to alkyne 2.62.116 Enyne 2.62 can be generated by Sonogashira coupling from vinyl 

iodide 2.63, which can be obtained from commercially available 1-heptyne 2.64.117    
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Figure 2.6 Retrosynthetic analysis of sulfone 2.59 

 

2.2.2.3 Synthesis of sulfone 2.59 

The synthesis of vinyl iodide 2.61, shown in scheme 2.13, started from commercially available 

compound 1-heptyne 2.64. This was treated with DIBAL-H at 40 °C in heptane to form the vinyl 

aluminum compound, which was quenched by I2 at –50 °C in THF to afford vinyl iodide 2.63.117 

Sonogashira coupling between vinyl iodide 2.63 and ethynyltrimethylsilane 2.65 catalyzed by 

Pd(PPh3)4 and CuI with Hünig’s base (N,N-diisopropylethylamine, DIPEA)118 gave TMS-

protected enyne 2.66. Then this was treated with potassium carbonate in methanol to remove 

TMS group to produce enyne 2.62, which was purified by distillation in 67% yield over three 

steps. Enyne 2.62 was subjected to trimethylaluminum (AlMe3) addition which was catalyzed by 

bis(cyclopentadienyl)zirconium(IV) dichloride (ZrCl2Cp2) and promoted by water to give vinyl 

 88 



iodide 2.61 in 86% yield.116 The E,E Δ18,20-diene moiety was formed as a single isomer, and the 

route was scaled up to provide about 10 g of vinyl iodide 2.61. 

 

C5H11 IC5H11

1. DIBAL-H, heptane, 40 °C

2. I2, THF, -50 °C

Pd(PPh3)4, CuI
DIPEA

DMF, rt

TMS C5H11

TMS

C5H11

AlMe3, Cp2ZrCl2, H2O
then I2 C5H11 I

2.64                                                               2.63                                                           2.66

2.62, 67% (3 steps)                                                 2.61, 86%

2.65

K2CO3

MeOH

 

Scheme 2.12 Synthesis of vinyl iodide 2.61 

 

Aldehyde 2.33 was obtained through Dr. Bin Sui’s synthetic route described in Scheme 

2.4. When Nozaki-Hiyama-Kishi reaction (CrCl2, NiCl2)119 was used to couple aldehyde 2.33 

and vinyl iodide 2.61, only trace amount of the expected alcohol 2.60 or 2.67 was isolated. When 

aldehyde 2.33 was treated with vinyllithium reagent which derived from lithium-halogen 

exchange of vinyl iodide 2.61 and t-BuLi at –78 °C,120 the coupled product 2.60 and its C17 

diastereomer 2.67 were synthesized in a ratio of 1.1:1 as determined by 1H-NMR analysis. The 

two diasteromers 2.60 and 2.67 can be separated by column chromatography. The isolated yields 

of 2.60 and 2.67 were 38% and 35%, respectively. So no further improvement was made to 

increase the diastereoselectivity of the coupling reaction between vinyl iodide 2.61 and aldehyde 

2.33. 
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Scheme 2.13 Coupling reactions between vinyl iodide 2.61 and aldehyde 2.33 

 

The configuration of C17 in alcohol 2.60 was determined by two methods. Alcohol 2.60 

was protected by benzyloxymethyl chloride (BOMCl) with Hünig’s base (N,N-

diisopropylethylamine, DIPEA) in CH2Cl2 to afford the BOM ether 2.42 in 97% yield. In Dr. Bin 

Sui’s synthetic route, the stereocenter at C17 in the same compound 2.42 was assigned by the 

model of asymmetric Brown allylation.103 The new sample shared the same analytical data (1H-

NMR, 13C-NMR and optical rotation) with Dr. Bin Sui’s compound 2.42. 
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Scheme 2.14 Determination of stereochemistry at C17 

 

Meanwhile, the stereocenter of C17 in alcohol 2.60 was confirmed with Mosher ester 

method in order to make sure the Brown’s model was valid. When undesired alcohol 2.67 was 

treated with (S)- and (R)- MTPACl (structures shown in scheme 2.15), the corresponding Mosher 

esters 2.68 ((R)-MTPA) and 2.69 ((S)-MTPA) were obtained. The chemical shift differences of 

the protons on C13, C18, C20, C21, C22 and C30 are listed in Table 2.1. The absolute 

configuration was assigned as R in the diastereomer 2.67 by applying the advanced Mosher 

rule.121  
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Table 2.1 1H NMR chemical shift of (S)- MTPA 2.68 and (R)- MTPA 2.69 in ppm, solvent CDCl3 

OTBS

OR

182022

21
30

13

2.68 R = (R)-MTPA, 83%
2.69 R = (S)-MTPA, 84%  

Atom No. 18 30 20 21 22 13 

δ((S)-MTPA) 5.114 1.886 5.973 5.751 2.092 3.615 

δ((R)-MTPA) 5.263 1.897 6.026 5.769 2.103 3.562 

Δ((S)-(R)) -0.149 -0.011 -0.053 -0.018 -0.011 +0.053 

 

 

With a confident assignment of the stereochemistry, alcohol 2.60 was acetylated to give 

the acetate-protected 2.70 by using Ac2O, Et3N and DMAP in DCM in 74% yield. Meanwhile, 

the diastereomer 2.67 was transferred to the same compound 2.70 by Mitsunobu reaction with 

AcOH, diisopropyl azodicarboxylate (DIAD), and Ph3P to invert the stereocenter at C17 in 86% 

yield. HF/Pyridine in THF was used to remove TBS group of compound 2.70 to form alcohol 

2.71 in 98% yield. Alcohol 2.71 was converted to sulfide 2.72 by Mitsunobu reaction with 1-

phenyl-1H-tetrazole-thiol (PTSH), diisopropyl azodicarboxylate (DIAD), and Ph3P in 95% yield. 

The sulfide 2.72 was oxidized with H2O2 in the presence of catalytic amount of (NH4)6Mo7O24 in 

ethanol to afford sulfone 2.59 in 70% yield.106 
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Scheme 2.15 Synthesis of C13–C26 fragment sulfone 2.59 

 

The synthesis of C13-C26 fragment sulfone 2.59 was accomplished in 22% yield over 13 

steps. The longest linear synthetic route takes 9 steps, which is 6 steps shorter than Dr. Bin Sui’s 

route.  Meanwhile, the protecting group at C17 was introduced after the carbon skeleton was 

constructed. The E,E Δ18,20-diene moiety is formed as a single isomer. The single isomer 2.59 

with the correct C17 stereocenter configuration was synthesized in gram scale. 
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2.2.3 Coupling two fragments and following reactions toward the total synthesis of 

tulearin A 

As shown in Scheme 2.17, acetate-protected top fragment 2.59 and aldehyde 2.29 were coupled 

by Julia-Kocienski olefination by treating with KHMDS in DME at –70 °C to afford the coupled 

product 2.73 in 85% yield with excellent E selectivity, which was assigned by the analysis of 1H-

NMR spectrum. When the coupled compound 2.73 was subjected to LiOH•H2O in THF/H2O = 

2/1 at room temperature for seven days,101 the chiral auxiliary was not hydrolyzed.  When 2.73 

was treated with a stronger base (n-Bu4NOH, H2O2) in DME,122 acid 2.74 was not formed. In 

these reactions crude 1H-NMR spectra and TLC analysis showed decomposition of the substrate. 
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Scheme 2.16 Efforts toward the total synthesis of tulearin A with PMB group at C8 
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Based on the difficulties of removal of the chiral auxiliary under basic conditions, 

reduction conditions such as DIBAL-H were considered as alternatives (Scheme 2.17). Coupled 

compound 2.75 was treated with excess DIBAL-H in DCM at –78 °C to reduce the ester to 

primary alcohol, as well as to deprotect the acetate group at C17 to give alcohol 2.75 in 92% 

yield. Then the bulk oxidant (TEMPO, PhI(OAc)2)123 was used in order to control the selectivity. 

The primary alcohol 2.76 was oxidized selectively under this condition to form aldehyde 2.77 in 

74% yield. However, when aldehyde 2.77 was treated with NaClO2, NaH2PO4 and 2-methyl-2-

butene in t-BuOH/H2O,124 the 1H-NMR spectrum of the crude products showed decomposition 

of the starting material. A possible reason is that the reactive byproduct HOCl reacts with the E,E 

Δ18,20-diene moiety of the substrate instead of the scavenger, 2-methyl-2-butene.  

 

OAc

O

C5H11

OAc
R'O TBSO

OTBS

DIBAL-H

DCM

OH

HO

C5H11

OH

TBSO
OTBS

TEMPO
PhI(OAc)2

DCM

OH

O

C5H11

OH

TBSO
OTBS

NaClO2
NaH2PO4

t-BuOH/H2O

2.75                                                                            2.76, 99%

2.77, 56%

decomposition

N

Ph
Me

SO2MesBn

R' =

 

Scheme 2.17 Removal the chiral auxiliary by reduction 
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Meanwhile, a model reaction was tested with 2.73 to find out whether the PMB group at 

C8 can be removed at later stage of the total synthesis (Scheme 2.18). Because of the existence 

of E,E Δ18,20-diene moiety, DDQ cannot be used to remove the PMB group. Therefore, advanced 

intermediate 2.73 was treated with weak Lewis acid MgBr2.125 The 1H-NMR spectrum of the 

crude product shown E,E Δ18,20-diene moiety was absent while PMB group was present. This 

suggested that under Lewis acid conditions, the PMB group at C8 is more stable than the E,E 

Δ18,20-diene. Therefore, PMB group at C8 is not a suitable protecting group when the E,E Δ18,20-

diene moiety exists.  
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Scheme 2.18 Model study of removing C8 PMB group  

 

Therefore, it is necessary to remove the chiral auxiliary before coupling with the fragile 

top fragment. Meanwhile, TES group was chosen as the protecting group at C8 because 1) the 

conditions required to remove TES group are relatively mild, and 2) the TES group is orthogonal 

to TBS groups so it can be removed selectively.126 By using the previous methods, advanced 

intermediate 2.78 with TES protecting group at C8 was synthesized. Modification of the bottom 

fragment is shown in Scheme 2.20. Newly synthesized bottom fragment 2.78 with TES 

protecting group at C8 was treated with excess DIBAL-H to give alcohol 2.79 in 90% yield. 

TEMPO and PhI(OAc)2 were used to oxidize alcohol 2.79 to aldehyde 2.80 in 79% yield.123 
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Aldehyde 2.80 was further oxidized to acid 2.81 in 80% yield.124 Acid 2.81 was converted to 

methyl ester 2.82 quantitatively by treating with TMSCHN2.127 With ester 2.82 in hand, model 

reactions were set up to test the reaction conditions of hydrolyzing the methyl ester after 

coupling with the top fragment 2.59. Again, when ester 2.82 was subjected to LiOH•H2O in 

THF/H2O = 2/1 at room temperature, no desired acid 2.81 was formed. TMSOK128 was able to 

hydrolyze methyl ester 2.82 to acid 2.81. However, a mixture of the two diastereomers of acid 

2.81 with 1/1 ratio was observed in 13C NMR spectrum. The methyl group at C2 position was 

isomerized due to the basic conditions.  
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Scheme 2.19 Modification of bottom fragment 
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As a result, a new protecting group for the acid is needed. The TCE (2,2,2-trichloroethyl) 

group was chosen (Scheme 2.21).129 Esterification of acid 2.81 and 2,2,2-trichloroethan-1-ol 

gave ester 2.83 in 81% yield. The terminal double bond was oxidatively cleaved with ozone to 

provide the aldehyde 2.84 in 85% yield. Top fragment 2.59 and aldehyde 2.84 was coupled by 

Julia-Kocienski olefination by treating with KHMDS in DME at –70 °C to afford the coupled 

product 2.85 in 78% yield. The coupled compound 2.85 was subjected to Zn dust in AcOH to 

afford acid 2.86 in 75% yield.129  
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Scheme 2.20 Modified end-game synthetic route 
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 At this point, we had only small amounts of acid 2.86 and efforts were switched to 

another project. However, acid 2.86 is a promising intermediate to finish the total synthesis. With 

acid 2.86 in hand, the acetate group will be hydrolyzed to give alcohol 2.87. Lactonization of 

corresponding acid and alcohol will provide macrocylic product 2.88.130 TES group will be 

removed using described method (HF·Pyr),126 the alcohol will be converted to carbamate 2.89. 

Finally, globe desilylation will give the tulearin A (Scheme 2.22).98  
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Scheme 2.21 Proposed synthesis of tulearin A 
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2.2.4 Retrosynthetic analysis of tulearin C 

Although the first total synthesis of tulearin C was reported by Fürstner and co-workers in 

2011,99 the synthetic route is relatively long. The longest linear route took 19 steps to finish the 

total synthesis. Therefore, based on our experience towards the total synthesis of tulearin A, we 

plan to develop a more efficient synthetic route to accomplish the total synthesis of tulearin C. 

Tulearin C is simpler to make than tulearin A because selective alcohol protection is not needed. 
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Figure 2.7 Retrosynthetic analysis of tulearin C 
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The retrosynthetic analysis of tulearin C 2.3 is shown in Figure 2.7. The macrocycle can 

be synthesized by transesterification from precursor 2.90 bearing a β-lactone moiety.131 Julia-

Kocienski olefination105 was used to couple sulfone 2.59, which is a common intermediate in 

total synthesis of tulearin A, and aldehyde 2.29 with β-lactone to form the precursor of the 

transesterification.  

As shown in Figure 2.8, the C1-C12 fragment 2.91 can be synthesized by acyl halide-

aldehyde cyclocondensation132 from aldehyde 2.92 followed by ozonolysis. Aldehyde 2.92 can 

be formed by Julie-Kociensky olefination105 between sulfone 2.94 and aldehyde 2.95 followed 

by Swern oxidation.133 Sulfone 2.94 can be synthesized from pent-4-en-1-ol 2.96. Aldehyde 2.95 

can be generated from commercially available (S)-citronellol 2.49.  
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Figure 2.8 Retrosynthetic analysis of aldehyde 2.91 
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2.2.5 Progress toward the total synthesis of tulearin C 

Sulfone 2.94 was obtained by Mitsunobu reaction of pent-4-en-1-ol 2.96 with 1-phenyl-1H-

tetrazole-5-thiol (PTSH), diisopropyl azodicarboxylate (DIAD), and Ph3P followed by oxidation 

with H2O2 in the presence of catalytic amount of (NH4)6Mo7O24 in ethanol in 79% yield over two 

steps.106 Protection of the free hydroxyl group in commercially available (S)-citronellol 2.49 with 

a TES group followed by ozonolysis of the double bond afforded aldehyde 2.95 in 76% yield 

over two steps.  

Julia-Kocienski olefination105 between aldehyde 2.95 and sulfone 2.94 was performed by 

treating with KHMDS in THF at –78 °C to give alkene 2.93 in 88% yield with excellent E 

selectivity, which was assigned by the analysis of 1H-NMR spectrum of alkene 2.93. Sharpless 

asymmetric dihydroxylation of alkene 2.93 with AD-mix-α and methanesulfonamide in t-

BuOH/H2O (1:1) at 0 °C for 24 h selectively formed the diol 2.97 at more electron rich olefin 

moiety in 52% yield.134 Meanwhile, 40% alkene 2.93 was recovered after the reaction. The 

stereochemistry of C8 and C9 was assigned as 8S and 9S based on the Sharpless AD model.110 

The two hydroxyl groups in diol 2.97 were both protected with TBS to give fully protected 2.98. 

Swern oxidation was used to convert the TES protected alcohol 2.98 to aldehyde 2.92 in one step 

in 60% yield.133  
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Scheme 2.22 Synthesis of aldehyde 2.92 

 

Trans-selective catalytic asymmetric [2+2] cyclocondensation of propionyl bromide and 

aldehyde 2.92 was used to form β-lactone 2.99 by the catalysis of Lewis acid 2.100 in 57% yield 

with good diastereoselectivity (d.r. = 10:1) based on analysis of 1H-NMR spectra.132 The 

stereochemistry at C2 and C3 was assigned by Peters’ model as 2R and 3R. Then the terminal 

double bond was oxidatively cleaved with ozone to provide the aldehyde 2.91 in 80% yield. 
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Scheme 2.23 Synthesis of C1-C12 fragment 2.91 

 

As shown in Scheme 2.24, acetate-protected top fragment 2.59 and aldehyde 2.91 was 

coupled by Julia-Kocienski olefination by treating with KHMDS in DME at –70 °C to afford the 

coupled product 2.90 in 74% yield with excellent E selectivity,105 which was assigned by the 

analysis of 1H-NMR of advanced intermediate 2.90. When the coupled compound 2.90 was 

subjected to LiOH•H2O in THF/MeOH/H2O = 1/1/1 at room temperature for 30 min, the β-

lactone was opened to give 2.101 with the acetate group intact. Therefore, new protecting group 

was needed for the top fragment.  
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Scheme 2.24 Efforts toward the total synthesis of tulearin C 

 

The new TES protected sulfone 2.102 need to be prepared to solve this problem. At this 

point, we do not have time to prepare this new top fragment and we were focused on another 

project. However, this is a promising route to accomplish the total synthesis. Sulfone 2.102 will 

be coupled with aldehyde 2.91 by Julia-Kocienski olefination to form coupled intermediate 

2.103.105 TES group at C17 will be selectively removed by using HF·Pyr to form 2.104.126 The 

transesterification of β-lactone 2.104 will happen with Otera’s catalyst to close the 

macrocycle.131 Finally, global desilylation of macrolactone 2.105 will give the tulearin C 

(Scheme 2.25).  
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Scheme 2.25 Proposed synthesis of tulearin C 
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2.3 CONCLUSIONS 

A new route to the synthesis of tulearin A was investigated. Large scale synthesis of the bottom 

fragment (C1-C12) was accomplished through Dr. Bin Sui’s synthetic route. Synthesis of the top 

fragment (C13-C26) was modified, and it can now be synthesized in 22% yield over 13 steps 

totally and 9 linear steps. 

Different synthetic routes were tested to accomplish the total synthesis of tulearin A, and 

the major problems toward the total synthesis of tulearin A were identified.  The E,E Δ18,20-diene 

moiety is sensitive in acidic conditions. Basic hydrolysis of the ester group at C1 will epimerize 

the methyl group at C2. As a result, a new strategy was developed to take a detour. With the 

current route, the total synthesis of tulearin A could in principle be completed in 5 steps from 

advanced intermediate 2.86. 

Meanwhile, a new route was developed towards the total synthesis of tulearin C. The 

synthesis of bottom fragment 2.91 was achieved in 17% yield over 8 linear steps highlighting the 

catalytic asymmetric [2+2] cyclocondensation to form the β-lactone moiety. However, the total 

synthesis of tulearin C was not finished because of the difficulty of removal of the acetate 

protecting group at C17. Our observations suggest that, with new TES protected top fragment, 

the total synthesis of tulearin C could be finished from advanced intermediate 2.91 in 3 steps.  

 

 

 107 



2.4 EXPERIMENTAL 

General Information: 

All reactions were performed under an atmosphere of argon unless otherwise noted. 

Reaction solvents were freshly dried either by distillation or by passing through an activated 

alumina column. THF and toluene were freshly distilled from Na/benzophenone. Methylene 

chloride and Et2O were dried by activated alumina according to literature. All other reagents 

were purchased commercially and used without further purification unless stated otherwise. 

Reaction mixtures were magnetically stirred and reaction progress was monitored by TLC with 

0.25 mm E. Merck precoated silica gel plates. Flash chromatography was performed with silica 

gel 60 (particle size 0.040–0.063 mm) supplied by Sorbent Technologies or by combiflash.  

Products and reactions are analyzed by 1H NMR, 13C NMR, COSY, FT-IR, high and low 

resolution mass spectroscopy, and HPLC. NMR spectra were taken on a Bruker WH-300, IBM 

AF-300, a Bruker AvanceTM 400 NMR, a Bruker AvanceTM 600 NMR, and a Bruker AvanceTM 

700 NMR spectrometer. Spectra were recorded at room temperature in the indicated deuteriated 

solvents and chemical shifts were reported in parts per million (ppm) downfield relative to TMS 

using the residual solvent proton resonance of CDCl3 (7.26 ppm) or central CDCl3 carbon peak 

(77.0 ppm) as the internal standard. In reporting spectral data, the following abbreviations are 

used: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintuplet, m = multiplet, dd = 

doublet doublet, dt = doublet triplet, td = triplet doublet, qd = quartet doublet, ddt = doublet 

doublet triplet, dtd = doublet triplet double. Infrared spectra were taken on a Mattson Genesis 

Series FTIR using thin film on NaCl plate. Peaks are reported in wave numbers (cm–1). Low 

resolution mass spectra were obtained on Fision Autospec. High resolution mass spectra were 
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obtained on a V/G 70/70 double focusing machine and were reported in units of m/z. Optical 

rotations were measured on a Perkin-Elmer 241 polarimeter at the Na D-line (λ = 589 nm) using 

a 1 dm cell. HPLC analyses were performed on a Waters 600 E system with a Waters 2487 dual 

λ absorption detector. 

 

O

O
S N

N
NN

O O

2.6  

Ethyl 4-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)butanoate (2.6): K2CO3 (18.8 g, 135.3 mmol) 

was added to a stirred solution of ester 2.48 (10.7 mL, 71.2 mmol) and PTSH (14.0 g, 78.8 

mmol) in acetone (120 mL) at rt. After stirring vigorously at 40 °C for 3 h and at rt for 16 h, the 

precipitate was filtered and washed with acetone. The filtrate was evaporated to give brown oil, 

which was dissolved in DCM and H2O. The organic layer was separated and washed with H2O, 

dried over Na2SO4, and concentrated under vacuum. The crude product was used in next step 

without further purification. 

 A solution of (NH4)6Mo7O24·4H2O (18.54 g, 15.0 mmol) in 30% H2O2 (116.2 mL) was 

added to a solution of the above sulfide (21.93 g, 75.0 mmol) in EtOH (300 mL) at 0 °C. After 

12 h stirring at rt, a yellow solid had crashed out of the mixture. The mixture was poured into 

brine and extracted with Et2O (3 × 150 mL). The combined organic layers were washed with 

brine, dried over Na2SO4, and concentrated in vacuo to reveal a sludgy yellow and white 

biphasic residue. The residue was purified by flash chromatography (hexane:EtOAc = 7:1) to 

give the title compound 2.6 (21.84 g, 90%) a colorless oil, which was solidified under vacuum to 

get white solid: m.p. 63–66 °C; 1H NMR (300 MHz, CDCl3) δ 7.70–7.68 (m, 2H), 7.65–7.60 (m, 
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3H), 4.16 (q, J = 7.2 Hz, 1H), 3.89–3.84 (m, 2H), 2.56 (t, J = 6.9 Hz, 1H), 2.34–2.25 (m, 2H), 

1.27 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 171.6, 153.2, 132.9, 131.4, 129.6, 125.0, 

60.8, 54.9, 31.8, 17.7, 14.1; IR (film) 3054, 2986, 1731, 1421, 1344, 1265, 1156, 1041, 909, 740; 

MS (EI) m/z 325 (M+ + 1); HRMS (ESI) m/z (M+ + 1) calcd for C13H17N4O4S 325.0971, found 

325.0984. 

 

O
TBSO

2.7  

(S)-6-((tert-Butyldimethylsilyl)oxy)-4-methylhexanal (2.7): TBSOTf (8.96 mL, 39.0 mmol) 

was added to a solution of (S)-citronellol 2.49 (5.48 mL, 30.0 mmol) and 2,6-lutidine (5.55 mL, 

45.0 mmol) in DCM (60 mL) at 0 °C dropwise. The resulting mixture was stirred for 2 h at 0 °C. 

The reaction was quenched with saturated aqueous NH4Cl (50 mL). The organic layer was 

separated, and the aqueous layer was extracted with DCM (3 × 75 mL). The combined organic 

layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was 

used in next step without further purification. 

 Ozone was bubbled through a solution of the above TBS ether (7.33 g, 30.0 mmol) in 

DCM/MeOH (v/v = 1:1, 90 mL), containing pyridine (0.6 mL) at −78 °C until blue color appear. 

Excess of ozone was purged out of flask with argon before Me2S was added dropwise at −78 °C. 

The reaction was slowly warmed to 20 °C overnight. The mixture was concentrated under 

vacuum. The residue was purified by flash chromatography (hexane:EtOAC = 20:1) to give the 

title compound 33 (7.12 g, 93%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 9.78 (t, J = 2.1 

Hz, 1H), 3.69–3.60 (m, 2H), 2.47–2.38 (m, 2H), 1.72–1.32 (m, 5H), 0.91–0.88 (m, 12H), 0.04 (s, 

6H); IR (film) 3020, 2958, 1721, 1521, 1472, 1215, 1091, 929, 770. 
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O

O
TBSO

2.50  

(S,E)-Ethyl 10-((tert-butyldimethylsilyl)oxy)-8-methyldec-4-enoate (2.50): A solution of 

KHMDS (3.12 g, 15.6 mmol) in DME (30 mL) was added to a solution of sulfone 2.6 (5.46 g, 

16.8 mmol) in DME (60 mL) at −70 °C (isopropyl ether/dry ice). The resulting orange solution 

was stirred for 30 min before a solution of aldehyde 2.7 (2.94 g, 12.0 mmol) in DME (30 mL) 

was added dropwise. After stirring for 1 h at −70 °C, the mixture was warmed to rt slowly during 

the overnight stirring (some white precipitate was observed). The reaction was quenched by 

adding water, the organic layer was separated, the aqueous layers were extracted with Et2O (3 × 

100 mL). The combined organic layers were deried over Na2SO4 and concentrated under 

vacuum. The residue was purified by flash chromatography (hexane:Et2O = 40:1) to give the title 

compound 2.50 (3.68 g, 90%) as a colorless oil: [α]D
25 = −0.86 (c =1.24, CHCl3); 1H NMR (300 

MHz, CDCl3) δ 5.51–5.35 (m, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.69–3.60 (m, 2H), 2.38–2.27 (m, 

4H), 2.03–1.94 (m, 2H), 1.60–1.49 (m, 2H), 1.39–1.10 (m, 3H), 1.25 (t, J = 7.2 Hz, 3H), 0.91–

0.88 (m, 12H), 0.05 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.2, 131.8, 127.8, 61.4, 60.2, 39.8, 

36.8, 34.4, 29.9, 29.0, 27.9, 25.9, 19.5, 18.3, 14.2, −5.3; IR (film) 3020, 1726, 1520, 1424, 1216, 

1035, 929, 756; MS (EI) m/z 327 (M+ − CH3); HRMS (ESI) m/z (M+ − CH3) calcd for 

C18H35O3Si 327.2355, found 327.2350. 
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TBSO O

O

OH

2.51  

(S)-5-((1S,4S)-6-((tert-Butyldimethylsilyl)oxy)-1-hydroxy-4-methylhexyl)dihydrofuran-

2(3H)-one (2.51): AD-Mix-α (28.2 g) and MeSO2NH2 (1.92 g, 20.1 mmol) were added to a 

solution of alkene 2.50 (6.90 g, 20.1 mmol) in the solution of t-BuOH/H2O (v/v = 1:1, 100 mL) 

at 0 °C. The resulting orange solution was stirred at 0 °C for 96 h (the color was changed from 

orange to yellow). The reaction was quenched with solid Na2SO3 (30.0 g) and warmed to rt over 

an hour. The mixture was extracted with EtOAc (3 × 100 mL). The combined organic layers 

were washed with KOH (2M aq), brine, dried over Na2SO4, and concentrated in vacuo. 

Purification by flash chromatography (hexane:EtOAc = 2:1) to give the title compound 2.51 

(5.91 g, 89%) as a colorless oil: [α]D
25 = +16.6 (c = 0.94, CHCl3); 1H NMR (300 MHz, CDCl3) δ 

4.45–4.38 (m, 1H), 3.71–3.60 (m, 2H), 3.59–3.51 (m, 1H), 2.67–2.48 (m, 2H), 2.31–2.04 (m, 

2H), 1.89 (d, J = 5.7 Hz, 1H), 1.63–1.32 (m, 7H), 0.91–0.88 (m, 12H), 0.05 (s, 6H); 13C NMR 

(75 MHz, CDCl3) δ 177.5, 83.0, 73.6, 61.1, 39.7, 32.7, 30.3, 29.2, 28.6, 25.8, 23.9, 19.4, 18.2, 

−5.4; IR (film) 3020, 2957, 1772, 1521, 1474, 1423, 1216, 1085, 928, 755; MS (EI) m/z 331 (M+ 

+ 1); HRMS (ESI) m/z (M+ − C4H9) calcd for C13H25O4Si 273.1522, found 273.1509. 
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TBSO O

O

OPMB

2.53  

(S)-5-((1S,4S)-6-((tert-Butyldimethylsilyl)oxy)-1-((4-methoxybenzyl)oxy)-4-

methylhexyl)dihydrofuran-2(3H)-one (2.53): p-Methoxybenzyltrichloroacetimidate (7.11 mL, 

34.8 mmol) and lanthanum triflate (0.51 g, 0.87 mmol) were added to a solution of alcohol 2.51 

(5.75 g, 17.4 mmol) in toluene (150 mL) under argon at rt. The reaction mixture was stirred for 

overnight and then concentrated in vacuo. In order to precipitate tricholoracetamide, the residue 

oil was taken up in 3:1 cyclohexane/DCM and filtered. The remaining oil was purified by flash 

chromatography (hexane:EtOAc = 4:1) to yield a clear oil that was still contaminated with some 

tricholoroacetamide. The precipitation procedure was repeated three more times to yield almost 

pure product (still has some impurities). The product was used in next step without further 

purification. 

 

TBSO O

OPMB

HO

 

(5S)-5-((1S,4S)-6-((tert-Butyldimethylsilyl)oxy)-1-((4-methoxybenzyl)oxy)-4-

methylhexyl)tetrahydrofuran-2-ol:  DIBAL-H (22.4 mL, 1.0 M in hexane, 22.4 mmol) 

was added to a solution of lactone 2.53 (7.77 g, 17.2 mmol) in DCM (150 mL) at −78 °C. After 1 

h, TLC indicated the reaction was complete. The reaction was then quenched by the addition of 

saturated aqueous potassium sodium tartrate, and warmed to rt and stirred. After an addition 2 h, 
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the reaction mixture was clear and extracted with DCM (3 × 150 mL). The combined organic 

layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was 

purified by flash chromatography (hexane:EtOAc = 4:1) to give the title compound as a yellow 

oil. The product is still contaminated with some impurity. The product was used in the next step 

without further purification. 

 

TBSO

OPMB

HO

 

(5S,6S,9S)-11-((tert-Butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)-9-methylundec-1-en-

5-ol (2.55): n-BuLi (29.4 mL, 1.6 M in hexane, 47.1 mmol) was added to a suspension of 

MePPh3Br (17.4 g, 48.8 mmol), which was heated to 120 °C for 2 h under vacuum before used 

in the reaction, in THF (100 mL) at −78 °C. The resulting yellow solution was warmed to rt and 

stirred for another 40 min. The above lactol (7.35 g, 16.2 mmol) in THF (60 mL) was added to 

the above solution causing the mixture to become sloppy. The new suspension was heated to 60 

°C. After 1.5 h, the TLC indicated the reaction was complete. The mixture was cooled to rt and 

quenched by saturated NH4Cl solution. The mixture was extracted with Et2O (3 × 100 mL) and 

combined organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. 

The yellow residue was purified by flash chromatography (hexane:EtOAc = 9:1) to give the title 

compound 2.55 (4.69 g, 60% over three steps) as a colorless oil: [α]D
25 = +10.2 (c = 0.71, 

CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.26 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2 H), 5.86–

5.80 (m, 1H), 5.05–4.96 (m, 2H), 4.60–4.40 (m, 2H), 3.81 (s, 3H), 3.68–3.60 (m, 2H), 3.55–3.51 

(m, 1H), 3.24 (q, J = 6.0 Hz, 1H), 2.28 (d, J = 4.8 Hz, 1H), 2.26–2.22 (m, 1H), 2.15–2.11 (m, 
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1H), 1.63–1.52 (m, 6H), 1.42–1.32 (m, 2H), 1.23–1.18 (m, 1H), 0.91–0.88 (m, 12H), 0.05 (s, 

6H); 13C NMR (150 MHz, CDCl3) δ 159.3, 138.5, 130.5, 129.5, 114.8, 113.9, 72.1, 72.0, 61.3, 

55.3, 39.9, 32.7, 32.2, 30.0, 29.7, 27.6, 26.0, 19.6, 18.3, −5.3; IR (film) 3019, 2930, 1515, 1472, 

1423, 1213, 1081, 928, 767, 699. 

 

TBSO

OPMB

TBSO

2.56  

(5S,6S,9S)-5-(But-3-en-1-yl)-6-((4-methoxybenzyl)oxy)-2,2,3,3,9,13,13,14,14-nonamethyl-

4,12-dioxa-3,13-disilapentadecane (2.56): TBSOTf (3.0 mL, 13.0 mol) was added to a solution 

of alcohol 2.55 (4.5 g, 10.0 mmol) and 2,6-lutidine (1.84 mL, 15.0 mmol) in DCM (100 mL) at 0 

°C. The resulting mixture was stirred for 2 h at rt. Saturated NH4Cl solution was added to quench 

the reaction. The organic layer was separated, and the aqueous layer was extracted with DCM (3 

× 75 mL). The combined organic layers were washed with brine, dried over Na2SO4, and 

concentrated in vacuo. The residue was purified by flash chromatography (hexane:EtOAc = 

30:1) to give the title compound 2.56 (5.50 g, 98%) as a colorless oil: [α]D
25 = −25.1 (c = 1.36, 

CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.25 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2 H), 5.86–

5.75 (m, 1H), 5.06–4.93 (m, 2H), 4.53–4.42 (m, 2H), 3.80 (s, 3H), 3.79–3.73 (m, 1H), 3.67–3.56 

(m, 2H), 3.29–3.22 (m, 1H), 2.23–2.13 (m, 1H), 2.05–1.92 (m, 1H), 1.74–1.26 (m, 9H), 0.89 (s, 

9H), 0.88 (s, 9H), 0.90–0.85 (m, 3H), 0.04 (s, 6H) 0.02(d, J = 9.3 Hz, 6H); 13C NMR (75 MHz, 

CDCl3) δ 159.1, 139.0, 131.0, 129.3, 114.3, 113.7, 82.2, 72.0, 71.6, 61.4, 55.2, 40.0, 33.9, 30.3, 

30.2, 29.4, 26.0, 25.8, 19.6, 18.3, 18.0, −4.4 (d), −5.3; IR (film) 3020, 2955, 2930, 1611, 1513, 
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1471, 1424, 1216, 1083, 929, 771; HRMS (ESI) m/z (M+ + Na) calcd for C32H60O4NaSi2 

587.3928, found 587.3969. 

 

HO

OPMB

TBSO

2.57  

(3S,6S,7S)-7-((tert-Butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)-3-methylundec-10-en-

1-ol (2.57): Oxone (2.02 g, 3.3 mmol) was added to a solution of TBS ether 2.56 (1.70 g, 3.0 

mmol) in MeOH (60 mL) and 3 drops of H2O at rt. After 2 h, TLC indicated the reaction was 

complete, saturated NaHCO3 solution was added to the mixture, which was extracted with DCM 

(3 × 75 mL). The combined organic layers were washed with brine, dried over Na2SO4, and 

concentrated in vacuo. The crude product was purified by flash chromatography (hexane:EtOAc 

= 4:1 to 1:1) to give the title compound 2.57 (1.13 g, 92%) as a colorless oil: [α]D
25 = −37.6 (c = 

0.95, CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.25 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2 H), 

5.89–5.75 (m, 1H), 5.06–4.93 (m, 2H), 4.54–4.41 (m, 2H), 3.81 (s, 3H), 3.79–3.75 (m, 1H), 

3.70–3.60 (m, 2H), 3.28–3.23 (m, 1H), 2.19–2.16 (m, 1H), 2.06–1.92 (m, 1H), 1.74–1.16 (m, 

10H), 0.88 (s, 9H), 0.90–0.85 (m, 3H), 0.02(d, J = 9.6 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 

159.2, 138.9, 131.0, 129.4, 114.3, 113.7, 82.0, 71.9, 71.6, 61.2, 55.3, 39.0, 33.8, 30.3, 29.5, 25.8, 

25.7, 19.5, 18.0, −4.4 (d); IR (film) 3020, 2958, 1611, 1514, 1424, 1216, 1037, 929, 756; HRMS 

(ESI) m/z (M+ + Na) calcd for C26H46O4NaSi 473.3063, found 473.3029. 
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OPMB

TBSO

2.35  

(3S,6S,7S)-7-((tert-Butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)-3-methylundec-10-

enal (2.35): DMP (0.565 g, 1.34 mmol) was added to a suspension of alcohol 2.57 (300.0 mg, 

0.66 mmol) and NaHCO3 (308.0 mg, 3.66 mmol) in DCM (8.0 mL) at rt under argon. The 

resulting light yellow solution was stirred for 2 h at rt. Saturated NH4Cl solution was added to 

quench the reaction. The organic layer was separated, and the aqueous layer was extracted with 

DCM (3 × 25 mL). The combined organic layers were washed with brine, dried over Na2SO4, 

and concentrated in vacuo. The yellow residue was purified by flash chromatography 

(Hex:EtOAc = 20:1 to 15:1) to give the title compound 2.35 (258 mg, 86%) as a colorless oil: 

[α]D
25 = −42.6 (c = 0.85, CHCl3); 1H NMR (300 MHz, CDCl3) δ 9.71 (t, J = 2.7 Hz, 1H), 7.24 (d, 

J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2 H), 5.85–5.75 (m, 1H), 5.06–4.94 (m, 2H), 4.54–4.40 (m, 

2H), 3.81 (s, 3H), 3.79–3.76 (m, 1H), 3.29–3.23 (m, 1H), 2.37 (ddd, J = 16.5, 5.4, 1.8 Hz, 1H), 

2.23–2.15 (m, 2H), 2.03–1.96 (m, 2H), 1.72–1.58 (m, 2H), 1.49–1.24 (m, 4H), 0.94 (d, J = 6.6 

Hz, 3H), 0.88 (s, 9H), 0.03 (d, J = 9.3 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 202.6, 159.2, 

138.8, 130.8, 129.3, 114.3, 113.7, 81.7, 71.9, 71.3, 55.1, 50.9, 33.6, 30.2, 30.1, 28.0, 25.8, 19.7, 

17.9, −4.5 (d); IR (film) 3020, 1721, 1611, 1514, 1424, 1216, 1037, 929, 757; HRMS (ESI) m/z 

(M+ + Na) calcd for C26H44O4NaSi 471.2907, found 471.2860. 
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2.45  

(2R,3R,5S,8S,9S)-(1R,2S)-2-(N-Benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl 

9-((tert-butyldimethylsilyl)oxy)-3-hydroxy-8-((4-methoxybenzyl)oxy)-2,5-dimethyltridec-

12-enoate (2.45): Et3N was added to a solution of (1R,2S)-ester 2.44 (291 mg, 0.60 mmol) in 

DCM (2.5 mL) at rt under argon. After the solution was cooled to −78 °C, a solution of (c-

Hex)2BOTf (1.34 mL, 1.0 M solution in THF, 1.34 mmol) was added dropwise over 20 min. The 

resulting solution was stirred at −78 °C for 2 h. a solution of aldehyde 2.35 (227 mg, 0.51 mmol) 

in DCM (1.5 mL) was added dropwise. The reaction mixture was stirred for 1 h at −78 °C and 

was warmed to rt over 1 h, then quenched by addition of pH=7 buffer (2.0 mL). The mixture was 

diluted with MeOH (10.2 mL) and 30% H2O2 (1.0 mL) was added carefully. The whole mixture 

was stirred vigorously overnight and then was concentrated. The residue was partitioned between 

DCM and H2O. The aqueous layer was extracted with DCM (3 × 50 mL). The combined organic 

layers were washed with H2O and brine, dried over Na2SO4, and concentrated under reduced 

pressure. The crude product was purified by flash chromatography (hexane:EtOAc = 5:1) to give 

the title compound 2.45 (400 mg, 85%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 

7.30–7.17 (m, 12H), 6.87–6.85 (m, 6H), 5.84–5.78 (m, 2H), 5.03–4.95 (m, 2H), 4.77–4.42 (m, 

4H), 4.14–4.09 (m, 1H), 3.80 (s, 3H), 3.76–3.75 (m, 1H), 3.71–3.70 (m, 1H), 3.25–3.24 (m, 1H), 

2.45 (s, 6H), 2.41–2.38 (m, 1H), 2.28 (s, 3H), 2.20–2.17 (m, 1H), 2.02–1.96 (m, 1H), 1.70–1.66 

(m, 2H), 1.63–1.57 (m, 1H), 1.44–1.36 (m, 3H), 1.21–1.10 (m, 2H), 1.18 (d, J = 7.0 Hz, 3H), 

1.10 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.85 (d, J = 6.3 Hz, 3H), 0.03 (d, J = 25.2 Hz 6H); 13C 
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NMR (175 MHz, CDCl3) δ 174.6, 159.1, 142.5, 140.3, 138.9, 138.5, 138.1, 133.3, 132.1, 131.0, 

129.4, 128.4, 128.3, 127.9, 127.7, 127.2, 114.4, 113.7, 82.2, 78.1, 72.0, 71.6, 70.9, 56.7, 55.3, 

48.2, 46.3, 41.7, 34.8, 30.3, 30.2, 29.0, 25.9, 25.7, 22.9, 20.9, 18.7, 18.0, 14.0, 13.5, −4.4 (d). 

 

OPMB

TBSO
OTBS

O O

Ph
N

Bn
MesO2S

 

(2R,3R,5S,8S,9S)-(1R,2S)-2-(N-Benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl 

3,9-bis((tert-butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)-2,5-dimethyltridec-12-

enoate: TBSOTf (0.14 mL, 0.59 mol) was added to a solution of alcohol 2.45 (420 mg, 0.45 

mmol) and 2,6-lutidine (0.09 mL, 0.68 mmol) in DCM (2.5 mL) at 0 °C. The resulting mixture 

was stirred for 2 h at rt. Saturated NH4Cl solution was added to quench the reaction, the organic 

layer was separated, and the aqueous layer was extracted with DCM (3 × 15 mL). The combined 

organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The 

residue was purified by flash chromatography (hexane:EtOAc = 10:1) to give the title compound 

(432 mg, 92%) as a colorless oil: [α]D
25 = +10.4 (c = 0.96, CHCl3); 1H NMR (600 MHz, CDCl3) 

δ 7.33–7.12 (m, 12H), 6.88–6.84 (m, 6H), 5.84–5.78 (m, 1H), 5.77 (d, J = 5.4 Hz, 1H), 5.04–

4.95 (m, 2H), 4.77–4.42 (m, 4H), 4.14–4.10 (m, 1H), 4.01–3.98 (m, 1H), 3.80 (s, 3H), 3.77–3.74 

(m, 1H), 3.24–3.21 (m, 1H), 2.53–2.50 (m, 1H), 2.45 (s, 6H), 2.28 (s, 3H), 2.22–2.16 (m, 1H), 

2.02–1.96 (m, 1H), 1.68–1.66 (m, 1H), 1.59–1.55 (m, 1H), 1.46–1.37 (m, 3H), 1.34–1.26 (m, 

2H), 1.20 (d, J = 7.2 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H), 0.88 (s, 9H), 0.87 (s, 9H), 0.65 (d, J = 6.6 

Hz, 3H), 0.04 (s, 6H), 0.02 (d, J = 18.0 Hz, 6H); 13C NMR δ (150 MHz, CDCl3) 172.1, 159.1, 
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142.4, 140.3, 138.9, 138.3, 138.2, 133.2, 132.1, 131.1, 129.3, 128.4, 128.2, 127.9, 127.7, 126.5, 

114.3, 113.7, 82.4, 77.9, 72.1, 71.5, 70.6, 56.6, 55.3, 48.1, 46.1, 40.0, 34.9, 30.3, 30.2, 28.8, 25.8, 

22.9, 20.9, 18.9, 18.0, 17.9, 9.8, −4.4 (d), −4.6 (d); IR (film) 3020, 1604, 1515, 1424, 1216, 

1042, 929, 763; HRMS (ESI) m/z (M+ + Na) calcd for C60H91NO8NaSi2 1064.5902, found 

1064.5920. 

 

OPMB

O

TBSO
OTBS

O O

Ph
N

Bn
MesO2S

2.29  

(2R,3R,5S,8S,9S)-(1R,2S)-2-(N-Benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl 

3,9-bis((tert-butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)-2,5-dimethyl-12-

oxododecanoate (2.29): The above olefine (432 mg, 0.42 mmol) was taken up in DCM/MeOH 

(v/v = 1: 1, 5 mL) followed by the addition of pyridine (0.51 mL, 4.2 mmol) and SUDAN III 

(indicator, ~1 mg) at rt under argon. The solution was cooled to −78 °C, and a stream of O3 was 

lightly bubbled through the solution until the pink color was disappear (a light yellow color 

persisted). The DMS was added slowly. The reaction mixture was slowly warmed to rt. After 

stirring for overnight, the mixture was concentrated under the vacuum. The residue was purified 

by flash chromatography (Hex:EtOAc = 7:1) to give the title compound 2.29 (260.0 mg, 90%) as 

a colorless viscous oil: 1H NMR (500 MHz, CDCl3) δ 9.75 (t, J = 1.5 Hz, 1H), 7.32–7.12 (m, 

12H), 6.88–6.84 (m, 6H), 5.77 (d, J = 5.5 Hz, 1H), 4.76–4.42 (m, 4H), 4.16–4.10 (m, 1H), 4.01–

3.98 (m, 1H), 3.80 (s, 3H), 3.79–3.76 (m, 1H), 3.25–3.22 (m, 1H), 2.53–2.50 (m, 2H), 2.44 (s, 

6H), 2.28 (s, 3H), 1.99–1.92 (m, 1H), 1.64–1.56 (m, 2H), 1.44–1.26 (m, 5H), 1.20 (d, J = 7.5 Hz, 
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3H), 1.07 (d, J = 7.5 Hz, 3H), 0.87 (s, 18H), 0.65 (d, J = 6.5 Hz, 3H), 0.03 (d, J = 5.5 Hz, 6H), 

0.01 (d, J = 11.5 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 202.7, 172.1, 159.2, 142.5, 140.3, 

138.3, 138.2, 133.1, 132.1, 130.8, 129.3, 128.4, 128.2, 127.9, 127.7, 126.5, 113.7, 82.2, 77.9, 

72.2, 71.1, 70.5, 56.5, 55.3, 48.1, 46.1, 40.7, 39.9, 34.8, 28.8, 25.8, 25.7, 23.5, 22.9, 20.9, 18.8, 

18.0, 17.9, 13.9, 9.7, −4.4 (d), −4.7. 

 

OTBS

O

MeO

2.36  

(R)-Methyl-5-(tert-butyldimethylsilyloxy)-3-methylpentanoate (2.36): A solution of 

BH3•SMe2 (9.4 mL, 2 M solution in THF, 18.8 mmol) was added to a solution of (R)-5-methoxy-

3-methyl-5-oxopentanoic acid 2.34 (1.72 mL, 12.5 mmol) in THF (60 mL) at 0 °C under Ar. The 

solution was stirred for 2 h at rt, followed by addition of H2O. The mixture was extracted with 

EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried over Na2SO4, 

and concentrated in vacuum. The crude product was used without further purification.  

A solution of the crude alcohol in dry DMF (30 mL) was treated with imidazole (2.38 g, 

34.9 mmol) and TBDMSCl (2.19 g, 14.5 mmol) overnight at rt. The mixture was extracted with 

hexane (3 × 50 mL). The combined organic solution was washed with brine, dried over Na2SO4, 

and concentrated under vacuum. The residue was purified by flash chromatography 

(hexane/EtOAc = 30:1) to give the title compound 2.36 (2.74 g, 84% over two steps) as colorless 

oil: [α]D
25 = +1.4 (c = 1.10, CHCl3); 1H NMR (300 MHz, CDCl3) δ 3.68–3.62 (m, 2H), 3.66 (s, 

3H), 2.40–2.05 (m, 3H), 1.62–1.40 (m, 2H), 0.96 (d, J = 6.3 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H); 

13C NMR (75 MHz, CDCl3) δ 173.5, 61.0, 51.3, 41.5, 39.4, 27.3, 25.9, 19.8, 18.3, −5.4; IR (film) 
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3020, 2957, 2931, 1730, 1521, 1473, 1434, 1216, 1086, 1030, 929, 836, 756; MS (EI) m/z 245 

(M+ − 1); HRMS (ESI) m/z (M+ − CH3) calcd for C12H25O3Si 245.1573, found 245.1572. 

 

OTBSHO

 

(S)-5-(tert-Butyldimethylsilyloxy)-3-methylpentan-1-ol: DIBAL-H (25.8 mL, 1.0 M solution 

in hexane, 25.8 mmol) was added to a solution of ester 18 (2.68 g, 10.3 mmol) in DCM (50 mL) 

at 0 °C dropwise in 10 min. After 20 min, the mixture was poured into a rapidly stirred mixture 

of saturated aqueous potassium sodium tartrate (50 mL) and Et2O (25 mL). The resulting mixture 

was stirred vigorously for 1 h, at which time the organic layer was clear. The organic layer was 

separated, and the aqueous layer was extracted with Et2O (3 × 50 mL). The combined organic 

layers were dried over Na2SO4 and concentrated in vacuo. The residue was purified by flash 

chromatography (hexane/EtOAc = 4:1) to give the alcohol (2.21 g, 92.4%) as colorless oil: [α]D
25 

= +2.6 (c = 1.13, CHCl3); 1H NMR (300 MHz, CDCl3) δ 3.75–3.59 (m, 4H), 1.78–1.32 (m, 5H), 

0.92 (d, J = 6.6 Hz, 3H), 0.89 (s, 9H), 0.05 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 61.3, 60.8, 

39.8, 29.7, 26.4, 25.9, 19.9, 18.3, −5.4; IR (film) 3020, 2958, 2931, 1521, 1473, 1424, 1216, 

1086, 1048, 929, 837, 757. 

  

OTBSO

2.33  

(R)-5-(tert-Butyldimethylsilyloxy)-3-methylpentanal (2.33): A solution of DMSO (2.0 mL, 

28.5 mmol) in DCM (15 mL) was added to a solution of oxalyl chloride (1.6 mL, 19.0 mmol) in 

DCM (75 mL) at −78 °C. After 15 min, a solution of above alcohol (2.21 g, 9.5 mmol) in DCM 

(15 mL) was added dropwise. The resulting solution was stirred for 15 min at the same temp and 
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Et3N (6.6 mL, 47.5 mmol) was added. The reaction was maintained at −78 °C for 15 min, then 

warmed to 0 °C for 30 min stirring. The reaction was quenched with H2O (30 mL) and the 

mixture allowed to warm to rt. The mixture was diluted with DCM and organic layer was 

separated. The aqueous layer was extracted with DCM (3 × 50 mL). The combined organic 

layers were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The 

residue was purified by flash chromatography (hexane/EtOAc = 20:1) to give title compound 

2.33 (1.62 g, 74%) as colorless oil: [α]D
25 = +0.7 (c = 0.3, CHCl3); 1H NMR (300 MHz, CDCl3) δ 

9.74 (t, J = 2.1 Hz, 1H), 3.65 (td, J = 6.3, 1.5 Hz, 2H), 2.47–2.37 (m, 1H), 2.29–2.16 (m, 2H), 

1.61–1.42 (m, 2H), 0.97 (d, J = 6.3 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 6H); 13C NMR (75 MHz, 

CDCl3) δ 202.9, 60.8, 50.9, 39.5, 25.9, 29.1, 20.0, 18.3, −5.4; IR (film) 3426, 3020, 1642, 1521, 

1475, 1423, 1216, 1032, 929, 726; MS (EI) m/z 231 (M+ + 1); HRMS (ESI) m/z (M+ + 1) calcd 

for C12H27O2Si 231.1780, found 231.1779. 

 

2.62  

(E)-Non-3-en-1-yne (2.62): DIBAL-H (69.0 mL, 1.0 M Solution in hexane, 69.0 mmol) was 

added to a solution of 1-heptyne 2.64 (5.4 g, 65.0 mmol) in heptane (14 mL) while maintaining 

the temperature below 40 °C. When the initial exothermic reaction had subsided, the reaction 

mixture was heated for 2 hr at 50 °C. The heptane was then removed in vacuum and residue was 

diluted with THF (30 mL). Iodine (18.2 g, 69.0 mmol) in THF (30 mL) was added to this 

vinylalanane solution at -50 °C. After allowing the reaction mixture to warm to room 

temperature, saturated aqueous potassium sodium tartrate (200 mL) was added, then the mixture 

was vigorously stirred until it was clear. The mixture was extracted by pentane (3 × 200 mL). 
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The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in 

vacuum. The crude (E)-1-iodohept-1-ene (14.0 g, 62 mmol) was used without further 

purification. 

 CuI (2.38 g, 12.5 mmol) and DIPEA (21.7 mL, 125 mmol) were added to a solution of 

crude (E)-1-iodohept-1-ene (14.0 g, 62 mmol) and trimethylsilylacetylene (13.3 mL, 93.7 mmol) 

in dry DMF (100 mL) at room temperature. The reaction mixture was degassed 5 times by 

freeze-pump-thaw cycles. Then Pd(PPh3)4 (3.61 g, 3.12 mmol ) was added and the degasification 

was repeated twice. The reaction mixture was stirred at room temperature for 5 h was directly 

extracted with pentane (3 × 200 mL). The combined pentane layers were washed with brine, 

dried over Na2SO4, and concentrated in vacuum. The crude (E)-trimethyl(non-3-en-1-yn-1-

yl)silane was used without further purification. 

 K2CO3 (17.9 g, 130 mmol) was added to a solution of crude (E)-trimethyl(non-3-en-1-yn-

1-yl)silane (12.6 g, 65 mmol)  in dry MeOH (150 mL). The reaction mixture was stirred at room 

temperature for 2 h. Then water was added and the aqueous layer was extracted with pentane. 

The combined organic layers were washed with brine, dried over Na2SO4, and concentrated in 

vacuum. The crude product was purified by reduced pressure distillation (20 mmHg, bp 54 °C to 

60 °C) to give the title product 2.62 (5.40 g, 68% over three steps) as colorless oil: 1H NMR (300 

MHz, CDCl3) δ 6.27 (dt, J = 15.9 Hz, 6.9 Hz, 1H), 5.46 (tdd, J = 15.9 Hz, 3.6 Hz, 1.5 Hz, 1H), 

2.79 (d, J = 2.1 Hz, 1H), 2.12 (qd, J = 6.9 Hz, 1.5 Hz, 2H), 1.58-1.20 (m, 6H), 0.90 (t, J = 6.9 Hz, 

3H).  
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I

2.61  

(1E,3E)-1-Iodo-2-methylnona-1,3-diene (2.61): Cp2ZrCl2 (4.15 g, 17.6 mmol) was taken up in 

DCM (120 mL) followed by the addition of Me3Al (54.5 mL, 2.0 M solution in hexane, 109 

mmol) at –23 °C under argon. H2O (0.95 mL, 52.7 mmol) was added slowly. After an addtional 

20 min of stirring, enyne 2.62 was cannulated in DCM (50 mL). After 10 min, the reaction was 

quenched with saturated K2CO3 solution (10 mL) and 10 min later Na2SO4 (20 g) was added to 

dry the solution. The mixture was filtered and the filtrate was concentrated in vacuum. The crude 

product was purified by flash chromatography (pure pentane) to give the title product 2.61 (8.00 

g, 86%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 6.18 (s, 1H), 6.15 (d, J = 17.4 Hz, 1H), 

5.77 (dt, J = 15.6 Hz, 6.9 Hz, 1H), 2.07 (q, J = 6.9 Hz, 2H), 1.95 (s, 3H), 1.45-1.20 (m, 6H), 0.91 

(t, J = 6.9 Hz, 3H). 

 

C5H11 OTBS

OH
2.60  

(3R,5S,6E,8E)-1-((tert-Butyldimethylsilyl)oxy)-3,7-dimethyltetradeca-6,8-dien-5-ol (2.60): t-

BuLi (11.3 mL, 1.7 M solution in pentane, 19.2 mmol) was added to a solution of vinyl iodide 

2.61 (3.81 g, 14.4 mmol) in dry Et2O (50 mL) at –78 °C under argon dropwise. After stirring the 

reaction mixture at 0 °C for 30 min, it was cooled to –78 °C and a solution of aldehyde 2.33 

(2.22 g, 9.62 mmol) in dry Et2O (20 mL) was cannulated. After additional 1 h stirring at –78 °C, 

the reaction was quenched by saturated NH4Cl solution and the mixture was warmed to rt. The 

organic layer was separated, and the aqueous layer was extracted with Et2O (3 × 100 mL). The 

combined organic layers were washed with brine, dried over Na2SO4 and concentrated under 
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reduced pressure. The residue was purified by flash chromatography (hexane/EtOAc = 8:1) to 

give the title compound 2.60 (1.36 g, 38%) as a colorless oil (the upper spot): [α]D
25 = −13.4 (c = 

1.16, CHCl3); 1H NMR (300 MHz, CDCl3) δ 6.03 (d, J = 15.6 Hz, 1H), 5.68 (dt, J = 15.6 Hz, 6.6 

Hz, 1H), 5.34 (d, J = 8.7 Hz, 1H), 4.57 (dt, J = 13.5 Hz, 5.1 Hz, 1H), 3.69-3.60 (m, 2H), 2.09 (q, 

J = 6.9 Hz, 2H), 1.79 (d, J = 0.9 Hz, 3H), 1.75–1.69 (m, 1H), 1.59–1.53 (m, 1H), 1.50–1.38 (m, 

3H), 1.34–1.21 (m, 6H), 0.94 (d, J = 6.6 Hz, 3H), 0.91-0.86 (m, 12H), 0.04 (s, 6H); 13C NMR 

(75 MHz, CDCl3) δ 135.1, 134.1, 132.6, 130.5, 66.6, 61.3, 45.0, 40.2, 32.8, 31.4, 29.2, 26.3, 

26.0, 22.5, 19.8, 18.3, 14.0, 12.9, –5.3; IR (film) 3364, 2956, 2928, 2857, 1463, 1386, 1254, 

1095, 1006, 964, 837, 776. 

 

C5H11 OTBS

OH
2.67  

(3R,5R,6E,8E)-1-((tert-Butyldimethylsilyl)oxy)-3,7-dimethyltetradeca-6,8-dien-5-ol (2.67): t-

BuLi (11.3 mL, 1.7 M solution in pentane, 19.2 mmol) was added to a solution of vinyl iodide 

2.61 (3.81 g, 14.4 mmol) in dry Et2O (50 mL) at –78 °C under argon dropwise. After stirring the 

reaction mixture at 0 °C for 30 min, it was cooled to –78 °C and a solution of aldehyde 2.33 

(2.22 g, 9.62 mmol) in dry Et2O (20 mL) was cannulated. After additional 1 h stirring at –78 °C, 

the reaction was quenched by saturated NH4Cl solution and the mixture was warmed to rt. The 

organic layer was separated, and the aqueous layer was extracted with Et2O (3 × 100 mL). The 

combined organic layers were washed with brine, dried over Na2SO4 and concentrated under 

reduced pressure. The residue was purified by flash chromatography (hexane/EtOAc = 8:1) to 

give the title compound 2.67 (1.24 g, 35%) as a colorless oil (the lower spot): 1H NMR (300 

MHz, CDCl3) δ 6.04 (d, J = 15.6 Hz, 1H), 5.68 (dt, J = 15.6 Hz, 6.6 Hz, 1H), 5.31 (d, J = 8.7 Hz, 
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1H), 4.55 (dt, J = 15.3 Hz, 6.9 Hz, 1H), 3.69-3.60 (m, 2H), 2.09 (q, J = 6.9 Hz, 2H), 1.80 (d, J = 

1.2 Hz, 3H), 1.75–1.69 (m, 1H), 1.59–1.53 (m, 1H), 1.50–1.38 (m, 3H), 1.34–1.21 (m, 6H), 0.94 

(d, J = 6.6 Hz, 3H), 0.91-0.86 (m, 12H), 0.04 (s, 6H) ; 13C NMR (75 MHz, CDCl3) δ 135.5, 

134.1, 132.3, 130.5, 66.6, 61.3, 44.9, 39.8, 32.8, 31.4, 29.2, 26.3, 26.0, 22.5, 20.4, 18.3, 14.0, 

13.0, –5.3. 

 

C5H11 OTBS

BOMO
2.42  

(5S,7R)-7,11,11,12,12-Pentamethyl-5-((1E,3E)-2-methylnona-1,3-dien-1-yl)-1-phenyl-2,4,10-

trioxa-11-silatridecane (2.42): BOMCl (0.019 mL, 0.12 mmol) was added to a solution of 

alcohol 2.60 (18.6 mg, 0.05 mmol) and DIPEA (0.026 mL, 0.15 mmol) in DCM (2 mL) at rt 

under argon. The resulting mixture was stirred overnight. The mixture was poured into brine and 

extracted with Et2O (3 × 10 mL). The combined organic layers were dried over Na2SO4 and 

concentrated in vacuum. The crude product was purified by flash chromatography 

(hexane/EtOAc = 20:1) to give a colorless oil 2.42 (0.024 g, 97%): 1H NMR (500 MHz, CDCl3) 

δ 7.35–7.32 (m, 4H), 7.30–7.27 (m, 1H), 6.06 (d, J = 15.5 Hz, 1H), 5.67 (dt, J = 15.5, 7.0Hz, 1H), 

5.21 (d, J = 9.0 Hz, 1H), 4.74–4.50 (m, 5H), 3.69–3.63 (m, 2H), 2.11 (q, J = 7.0 Hz, 1H), 1.81–

1.79 (m, 1H), 1.79 (d, J = 1.0 Hz, 3H), 1.72–1.64 (m, 1H), 1.62–1.55 (m, 1H), 1.41–1.22 (m, 

8H), 0.94 (d, J = 6.5 Hz, 3H), 0.90–0.88 (m, 4H), 0.89 (s, 9H), 0.04 (s, 6H); 13C NMR (125 

MHz, CDCl3) δ 138.1, 136.6, 134.0, 130.3, 130.2, 128.4, 127.9, 127.6, 91.6, 69.9, 69.5, 61.3, 

43.4, 40.4, 32.9, 31.5, 29.2, 26.0, 22.6, 19.5, 18.3, 14.0, 13.0, −5.3. 
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OTBS

OO

PhMeO
F3C

2.68  

(R)-(3R,5R,6E,8E)-1-((tert-Butyldimethylsilyl)oxy)-3,7-dimethyltetradeca-6,8-dien-5-yl 

3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (2.68): (S)-3,3,3-Trifluoro-2-methoxy-2-

phenylpropanoyl chloride ((S)-MTPACl, 0.012 mL, 0.067 mmol) was added to a solution of 

alcohol 2.67 (8.2 mg, 0.022 mmol) in pyridine (0.5 mL). The reaction mixture was stirred at rt 

for 1 h. Then the mixture was purified by flash chromatography (hexane/EtOAc = 10:1) directly 

to give a colorless oil 2.68 (11.6 mg, 90%): 1H NMR (300 MHz, CDCl3) δ 7.48-7.45 (m, 2H), 

7.39-7.36 (m, 3H), 5.97 (d, J = 15.6 Hz, 1H), 5.90-5.82 (m, 1H), 5.75 (dt, J = 15.6 Hz, 6.9 Hz, 

1H), 5.11 (d, J = 9.3 Hz, 1H), 3.84-3.57 (m, 2H), 3.54 (s, 3H), 2.09 (q, J = 6.9 Hz, 2H), 1.89 (d, J 

= 0.9 Hz, 3H), 1.72-1.55 (m, 5H), 1.47-1.22 (m, 6H), 0.92-0.87 (m, 15H), 0.02 (s, 6H). 

  

OTBS

OO

PhMeO
F3C

2.69  

(S)-(3R,5R,6E,8E)-1-((tert-Butyldimethylsilyl)oxy)-3,7-dimethyltetradeca-6,8-dien-5-yl 

3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (2.69): (R)-3,3,3-Trifluoro-2-methoxy-2-

phenylpropanoyl chloride ((R)-MTPACl, 0.012 mL, 0.067 mmol) was added to a solution of 

alcohol 2.67 (8.2 mg, 0.022 mmol) in pyridine (0.5 mL). The reaction mixture was stirred at rt 

for 1 h. Then the mixture was purified by flash chromatography (hexane/EtOAc = 10:1) directly 

to give a colorless oil 2.69 (11.6 mg, 90%): 1H NMR (300 MHz, CDCl3) δ 7.52-7.49 (m, 2H), 
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7.38-7.34 (m, 3H), 6.03 (d, J = 15.6 Hz, 1H), 5.96-5.88 (m, 1H), 5.77 (dt, J = 15.6 Hz, 6.9 Hz, 

1H), 5.26 (d, J = 9.3 Hz, 1H), 3.65-3.57 (m, 2H), 3.53 (s, 3H), 2.10 (q, J = 6.9 Hz, 2H), 1.90 (d, J 

= 0.9 Hz, 3H), 1.72-1.55 (m, 5H), 1.47-1.22 (m, 6H), 0.92-0.87 (m, 15H), 0.02 (s, 6H). 

 

C5H11 OTBS

OAc
2.70  

(3R,5S,6E,8E)-1-((tert-Butyldimethylsilyl)oxy)-3,7-dimethyltetradeca-6,8-dien-5-yl acetate 

(2.70):  

From (3R,5S,6E,8E)-1-((tert-Butyldimethylsilyl)oxy)-3,7-dimethyltetradeca-6,8-dien-5-ol (2.60): 

DMAP (38 mg, 0.31 mmol), Pyridine (0.44 mL, 5.45 mmol) and Ac2O (0.44 mL, 4.69 mmol) 

was added to a solution of alcohol 2.60 (0.576 g, 1.56 mmol) in DCM (10 mL) at 0 °C under 

argon. After stirring the reaction mixture at rt overnight, it was quenched by pH = 7 buffer (10 

mL).  The organic layer was separated, and the aqueous layer was extracted with Et2O (3 × 10 

mL). The combined organic layers were washed with brine, dried over Na2SO4 and concentrated 

under reduced pressure. The residue was purified by flash chromatography (hexane/EtOAc = 

20:1) to give the title compound 2.70 (474 mg, 76%) as a colorless oil. 

From (3R,5R,6E,8E)-1-((tert-Butyldimethylsilyl)oxy)-3,7-dimethyltetradeca-6,8-dien-5-ol 

(2.67): Ph3P (599 mg, 2.28 mmol) and AcOH (0.13 mL, 2.28 mmol) were added to a solution of 

alcohol 2.67 (766 mg, 2.08 mmol) in THF (10 mL). After 5 min, the solution was cooled to 0 °C, 

DIAD (0.45 mL, 2.28 mmol) was added dropwise and the mixture was stirred for 1 h and 

warmed to rt. After stirred for overnight, the mixture was quenched with saturated NaHCO3 

solution. The aqueous layer was extracted with EtOAc (3 × 20 mL). The organic layers were 

combined, washed with brine, dried over Na2SO4, and concentrated under vacuum. The residue 
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was purified by flash chromatography (hexane:EtOAc = 20:1) to give the title compound 2.70 

(725 mg, 85%) as a colorless oil. 

[α]D
25 = +11.9 (c = 1.08, CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.01 (d, J = 15.6 Hz, 1H), 5.75-

5.65 (m, 2H), 5.20 (d, J = 9.2 Hz, 1H), 3.66-3.57 (m, 2H), 2.08 (q, J = 6.8 Hz, 2H), 2.00 (s, 3H), 

1.84 (d, 0.9 Hz, 3H), 1.60-1.52 (m, 2H), 1.42-1.23 (m, 9H), 0.93-0.82 (m, 15H), 0.03 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ 170.3, 137.5, 133.8, 131.2, 127.7, 69.9, 60.9, 42.0, 40.0, 32.8, 31.4, 

29.1, 26.1, 25.9, 22.5, 21.4, 19.7, 18.3, 14.0, 13.1, −5.3; IR (film) 2956, 2928, 2857, 1738, 1462, 

1369, 1240, 1097, 1014, 964, 899, 836, 809, 776; HRMS (EI) m/z (M+) calcd for C24H46O3Si 

410.3216, found 410.3212. 

 

C5H11 OH

OAc
2.71  

(3R,5S,6E,8E)-1-hydroxy-3,7-dimethyltetradeca-6,8-dien-5-yl acetate (2.71): A buffered 

solution of pyridinum hydrofluoride (5.4 mL, stock solution prepared from 1 mL of pyridinum 

hydrofluoride, 2 mL of pyridine, and 8 mL of THF) was added to a solution of TBS ether 2.70 

(426 mg, 1.08 mmol) in THF (5 mL) at 0 °C under argon. After stirring 5 h at rt, TLC showed 

the reaction was complete. The reaction was quenched by the addition of pH = 7 buffer (10 mL). 

The aqueous layer was extracted with EtOAc (3 × 20 mL). The organic layers were combined, 

washed with brine, dried over Na2SO4, and concentrated under vacuum. The residue was purified 

by flash chromatography (hexane:EtOAc = 2:1) to give the title compound 2.71 (314 mg, 98%) 

as a colorless oil: [α]D
25 = +27.2 (c = 1.5, CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.01 (d, J = 

15.6 Hz, 1H), 5.76-5.67 (m, 2H), 5.22 (d, J = 9.2 Hz, 1H), 3.72-3.59 (m, 2H), 2.07 (q, J = 6.8 

Hz, 2H), 2.00 (s, 3H), 1.83 (d, J = 0.8 Hz, 3H), 1.68-1.48 (m, 4H), 1.41-1.23 (m, 7H), 0.92 (d, J 
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= 6.0 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 170.6, 137.6, 133.6, 

131.4, 127.4, 69.7, 60.6, 42.3, 39.7, 32.8, 31.4, 29.1, 26.0, 22.5, 21.3, 19.8, 14.0, 13.0; IR (film) 

3416, 2957, 2927, 2858, 1735, 1457, 1372, 1241, 1056, 1016, 964; HRMS (EI) m/z (M+) calcd 

for C18H32O3 296.2351, found 296.2338. 

 

C5H11 S

OAc N N
N

N
Ph

2.72  

(3S,5S,6E,8E)-3,7-Dimethyl-1-((1-phenyl-1H-tetrazol-5-yl)thio)tetradeca-6,8-dien-5-yl 

acetate (2.72): Ph3P (257 mg, 0.98 mmol) and PTSH (183 mg, 1.02 mmol) were added to a 

solution of alcohol 2.71 (264 mL, 0.89 mmol) in THF (5 mL). After 5 min, the solution was 

cooled to 0 °C, DIAD (0.19 mL, 0.98 mmol) was added dropwise and the mixture was stirred for 

1 h and allowed to warm to rt. After stirred for overnight, the mixture was quenched with pH = 7 

buffer. The aqueous layer was extracted with EtOAc (3 × 20 mL). The organic layers were 

combined, washed with brine, dried over Na2SO4, and concentrated under vacuum. The residue 

was purified by flash chromatography (hexane:EtOAc = 8:1) to give the title compound 2.72 

(386 mg, 95%) as a colorless oil: [α]D
25 = +27.8 (c = 1.38, CHCl3); 1H NMR (400 MHz, CDCl3) 

δ 7.62-7.54 (m, 5H), 6.03 (d, J = 15.6 Hz, 1H), 5.79-5.68 (m, 2H), 5.23 (d, J = 9.2 Hz, 1H), 3.52-

3.33 (m, 2H), 2.11 (q, J = 7.2 Hz, 2H), 2.02 (s, 3H), 1.87 (d, J = 1.2 Hz, 3H), 1.71-1.59 (m, 4H), 

1.43-1.27 (m, 7H), 1.02 (d, J = 6.0 Hz, 3H), 0.91 (t, J = 6.8 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) δ 170.3, 154.3, 137.8, 133.7, 133.6, 131.6, 130.0, 129.8, 127.2, 123.8, 69.4, 41.5, 36.0, 

32.8, 31.5, 31.0, 29.1, 29.0, 22.5, 21.3, 19.4, 14.0, 13.2; IR (film) 2956, 2926, 2856, 1731, 1597, 

1501, 1461, 1385, 1241, 1087, 1015, 965, 761; HRMS (ESI) m/z (M+ + Na) calcd for 

C25H36N4O2NaS 479.2457, found 479.2491. 
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C5H11 S

OAc N N
N

N
PhO O

2.59  

(3S,5S,6E,8E)-3,7-Dimethyl-1-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)tetradeca-6,8-dien-5-yl 

acetate (2.59):  A solution of (NH4)6Mo7O24·4H2O (80 mg, 0.065 mmol) in 30% H2O2 

(0.5 mL) was added to a solution of sulfide 2.72 (148 mg, 0.324 mmol) in EtOH (3 mL) at 0 °C. 

After 3 h stirring at rt, a yellow solid had crashed out of mixture. The mixture was poured into 

brine and extracted with Et2O (3 × 20 mL). The combined organic layers were washed with 

brine, dried over Na2SO4, and concentrated in vacuum to reveal a sludgy yellow and white 

biphasic residue. The residue was purified by flash chromatography (hexane:EtOAc = 7:1) to 

give the title compound 2.59 (111 mg, 70%) as a colorless oil: 1H NMR (600 MHz, CDCl3) δ 

7.73-7.67 (m, 2H), 7.66-7.61 (m, 3H), 6.07 (d, J = 15.6 Hz, 1H), 5.66 (dt, J = 15.0 Hz, 7.8 Hz, 

1H), 5.60 (dt, J =  9.0 Hz, 6.6 Hz, 1H), 5.30 (d, J = 9.0 Hz, 1H), 3.84-3.72 (m, 2H), 2.17-2.15 

(m, 1H), 2.10-2.06 (m, 1H), 2.04 (s, 3H), 2.02-1.99 (m, 1H), 1.84 (d, J = 0.6 Hz, 3H), 1.82-1.77 

(m, 2H), 1.72-1.66 (m, 1H), 1.55-1.50 (m, 1H), 1.34-1.26 (m, 6H), 1.00 (d, J = 6.0 Hz, 3H), 0.89 

(d, J = 6.6 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 170.5, 153.4, 136.6, 136.3, 133.0, 129.8, 

128.8, 127.2, 125.1, 71.3, 54.3, 40.0, 34.9, 32.5, 31.6, 28.1, 24.8, 22.6, 21.4, 19.1, 14.0, 13.2. 
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OPMB

O

C5H11

OAc
O TBSO

OTBSN
MesO2S Bn

Ph

2.73  

(2R,3R,5S,8S,9S,12E,15R,17S,18E,20E)-(1R,2S)-2-(N-Benzyl-2,4,6-

trimethylphenylsulfonamido)-1-phenylpropyl 17-acetoxy-3,9-bis((tert-

butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)-2,5,15,19-tetramethylhexacosa-12,18,20-

trienoate (2.73): A solution of KHMDS (43.0 mg, 0.216 mmol) in DME (1 mL) was added to a 

solution of sulfon 2.59 (112 mg, 0.230 mmol) in DME (2 mL) at −70 °C. The resulting orange 

solution was stirred for 30 min. A solution of aldehyde 2.29 (150 mg, 0.144 mmol) in DME 

(0.5+0.25 mL) was added to the above solution dropwise. The reaction mixture was stirred for 1 

h at −70 °C and warmed to rt slowly. After the mixture was stirred for overnight, H2O was added 

to quench reaction. The organic layer was separated, the aqueous layer was extracted with Et2O 

(3 × 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

(hexane:EtOAc = 10:1) to give the title compound 2.73 (160 mg, 85%) as a colorless oil: 1H 

NMR (300 MHz, CDCl3) δ 7.35–7.11 (m, 10H), 6.89–6.83 (m, 6H), 6.02 (d, J = 15.3 Hz, 1H), 

5.76 (d, J = 5.1 Hz, 1H), 5.74-5.68 (m, 2H), 5.45-5.35 (m, 2H), 5.25 (d, J = 9.3 Hz, 1H), 4.76 (d, 

J = 16.5 Hz, 1H), 4.53 (d, J = 16.5 Hz, 1H), 4.50 (d, J = 11.4 Hz, 1H), 4.41 (d, J = 11.4 Hz, 1H), 

4.15–4.10 (m, 1H), 4.01-3.98 (m, 1H), 3.81 (s, 3H), 3.78–3.73 (m, 1H), 3.27–3.20 (m, 1H), 

2.53–2.50 (m, 1H), 2.45 (s, 6H), 2.29 (s, 3H), 2.12–2.06 (m, 4H), 1.98–1.90 (m, 1H), 1.90–1.83 

(m, 1H), 1.81–1.80 (m, 3H), 1.76–1.56 (m, 4H), 1.46–1.35 (m, 6H), 1.35–1.26 (m, 8H), 1.21 (d, 
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J = 6.6 Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H), 0.93–0.87 (s, 24H), 0.65 (d, J = 6.0 Hz, 3H), 0.06–0.00 

(m, 12H). 

 

OAc

O

C5H11

OAc
O TBSO

OTBSN
MesO2S Bn

Ph

2.75, 87%
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+

 

Scheme 2.26 Synthesis of compound 2.75 

 

(2R,3R,5S,8S,9S,12E,15R,17S,18E,20E)-(1R,2S)-2-(N-Benzyl-2,4,6-

trimethylphenylsulfonamido)-1-phenylpropoxy)-3,9-bis((tert-butyldimethylsilyl)oxy)-

2,5,15,19-tetramethyl-1-oxohexacosa-12,18,20-triene-8,17-diyl diacetate (2.75): 1H NMR 

(600 MHz, CDCl3) δ 7.34-7.12 (m, 8H), 6.89-6.84 (m, 4H), 6.04 (d, J = 15.6 Hz, 1H), 5.78 (d, J 
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= 4.8 Hz, 1H), 5.77-5.69 (m, 3H), 5.41-5.35 (m, 2H), 5.22 (d, J = 9.0 Hz, 1H), 4.77-4.72 (m, 

2H), 4.54 (d, J = 16.8 Hz, 1H), 4.14-4.12 (m, 1H), 4.00-3.98 (m, 1H), 3.70-3.64 (m, 1H), 2.52-

2.48 (m, 1H), 2.46 (s, 6H), 2.30 (s, 3H), 2.12–2.06 (m, 4H), 1.98–1.90 (m, 1H), 1.90–1.83 (m, 

1H), 1.81–1.80 (m, 3H), 1.76–1.56 (m, 4H), 1.46–1.35 (m, 6H), 1.35–1.26 (m, 8H), 1.21 (d, J = 

6.6 Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H), 0.93–0.87 (s, 24H), 0.65 (d, J = 6.0 Hz, 3H), 0.06–0.00 (m, 

12H); 13C NMR (150 MHz, CDCl3) δ 172.1, 170.7, 170.4, 142.5, 140.3, 138.3, 138.2, 137.4, 

133.7, 133.2, 132.1, 131.8, 131.3, 128.4, 128.3, 127.9, 127.8 127.3, 126.5, 77.9, 76.4, 71.6, 70.5, 

70.0, 56.6, 48.1, 46.1, 41.5, 40.1, 39.9, 34.2, 32.9, 31.9, 31.5, 29.7, 29.5, 29.2, 28.8, 28.7, 25.8, 

25.7, 23.0, 22.7, 21.4, 21.2, 20.9, 19.6, 18.8, 18.0, 14.2, 14.1, 14.0, 9.7, –4.5, –4.6. 

 

OH

HO

C5H11

OH

TBSO
OTBS

2.76  

(2S,3R,5S,8S,9S,12E,15R,17S,18E,20E)-3,9-Bis((tert-butyldimethylsilyl)oxy)-2,5,15,19-

tetramethylhexacosa-12,18,20-triene-1,8,17-triol (2.76): DIBAL-H (0.29 mL, 1.0 M in 

hexane, 0.29 mmol) was added to a solution of ester 2.75 (36 mg, 0.029 mmol) in DCM (1 mL) 

at −78 °C. After 1 h, the reaction was quenched by the addition of saturated aqueous potassium 

sodium tartrate, and warmed to rt and stirred. After an addition 2 h, the reaction mixture was 

clear and extracted with DCM (3 × 10 mL). The combined organic layers were washed with 

brine, dried over Na2SO4, and concentrated in vacuo. The residue was purified by flash 

chromatography (hexane:EtOAc = 8:1) to give the title compound 2.76 (20 mg, 99%) as a 

colorless oil: 1H NMR (600 MHz, CDCl3) δ 6.06 (d, J = 15.6 Hz, 1H), 5.71 (dt, J = 15.6 Hz, 7.2 
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Hz, 1H), 5.42-5.36 (m, 2H), 5.31 (d, J = 9.0 Hz, 1H), 4.60 (dd, J = 15.6 Hz, 7.2 Hz, 1H), 3.87-

3.82 (m, 2H), 3.56-3.51 (m, 2H), 3.45-3.42 (m, 1H), 2.13-2.00 (m, 6H), 1.82 (s, 3H), 1.90-1.81 

(m, 1H), 1.72-1.68 (m, 3H), 1.56-1.38 (m, 15H), 1.06 (d, J = 6.6 Hz, 3H), 0.92-0.88 (m, 24H), 

0.11 (s, 6H), 0.09 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 135.6, 134.0, 132.3, 131.4, 130.7, 

128.8, 74.8, 74.7, 72.7, 66.7, 64.9, 44.3, 42.3, 40.1, 38.5, 33.7, 33.2, 32.8, 31.4, 29.6, 29.2, 29.1, 

28.2, 25.9, 22.5, 20.1, 19.9, 18.1, 18.0, 14.4, 14.0, 12.9, –4.1, –4.3, –4.5, –4.6. 

 

OH

O

C5H11

OH

TBSO
OTBS

2.77  

(2S,3R,5S,8S,9S,12E,15R,17S,18E,20E)-3,9-Bis((tert-butyldimethylsilyl)oxy)-8,17-

dihydroxy-2,5,15,19-tetramethylhexacosa-12,18,20-trienal (2.77): PhI(OAc)2 (4.8 mg, 0.015 

mmol) and TEMPO (0.2 mg, 0.0014 mmol) were added to a solution of the alcohol 2.76 (9.9 mg, 

0.013 mmol) in DCM (0.5 mL) at 0 °C under argon. The reaction mixture was stirred at 0 °C for 

8 h. Saturated Na2S2O3 solution was added to quench the reaction. The organic layer was 

separated, and the aqueous layer was extracted with DCM (3 × 10 mL). The combined organic 

layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was 

purified by flash chromatography (hexane:EtOAc = 7:1) to give the title compound 2.77 (5.3 mg, 

56%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 9.74 (s, 1H), 6.06 (d, J = 15.6 Hz, 1H), 

5.72 (dt, J = 15.6 Hz, 7.2 Hz, 1H), 5.41-5.34 (m, 2H), 5.30 (d, J = 7.2 Hz, 1H), 4.65 (dd, J = 15.6 

Hz, 7.2 Hz, 1H), 4.12-4.07 (m, 1H), 3.56-3.51 (m, 1H), 3.45-3.42 (m, 1H), 2.56-2.50 (m, 1H), 

2.13-2.00 (m, 6H), 1.82 (s, 3H), 1.72-1.68 (m, 2H), 1.56-1.38 (m, 15H), 1.06 (d, J = 6.8 Hz, 3H), 
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0.92-0.88 (m, 24H), 0.11-0.05 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 204.8, 135.6, 134.0, 

132.3, 131.4, 130.7, 128.8, 74.8, 72.7, 66.7, 64.9, 44.3, 42.3, 40.1, 38.5, 33.7, 33.2, 32.8, 31.4, 

29.6, 29.2, 29.1, 28.2, 25.9, 22.5, 20.1, 19.9, 18.1, 18.0, 14.4, 14.0, 12.9, –4.1, –4.3, –4.5, –4.6. 

 

OTES

TBSO
OTBS

O O

Ph
N

Bn
MesO2S

OH

TBSO
OTBS

O O

Ph
N

Bn
MesO2S

TESOTf
2,6-lutidine

DCM

2.78, 76%  

Scheme 2.27 synthesis of compound 2.78 

 

(2R,3R,5S,8S,9S)-(1R,2S)-2-(N-Benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl 

3,9-bis((tert-butyldimethylsilyl)oxy)-2,5-dimethyl-8-((triethylsilyl)oxy)tridec-12-enoate 

(2.78): 1H NMR (400 MHz, CDCl3) δ 7.35–7.11 (m, 8H), 6.89–6.83 (m, 4H), 5.85-5.82 (m, 1H), 

5.80-5.74 (m, 1H), 5.02 (d, J = 17.2 Hz, 1H), 4.97 (d, J = 10.0 Hz, 1H), 4.76 (d, 16.4 Hz, 1H), 

4.53 (d, 16.4 Hz, 1H), 4.15-4.05 (m, 1H), 4.05-4.00 (m, 1H), 3.56-3.44 (m, 2H), 2.53–2.50 (m, 

1H), 2.45 (s, 6H), 2.28 (s, 3H), 2.22–2.16 (m, 1H), 2.02–1.96 (m, 1H), 1.68–1.66 (m, 1H), 1.59–

1.55 (m, 1H), 1.46–1.37 (m, 3H), 1.34–1.26 (m, 2H), 1.20 (d, J = 7.2 Hz, 3H), 1.07 (d, J = 7.2 

Hz, 3H), 1.00-0.85 (m, 27H), 0.68-0.54 (m, 9H), 0.13 (s, 3H), 0.10 (s, 3H), 0.07 (s, 3H), 0.06 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ 172.1, 142.4, 140.2, 138.5, 138.3, 138.2, 133.1, 132.1, 

128.3, 128.2, 127.8, 127.7, 127.2, 127.1, 126.4, 114.5, 77.8, 76.3, 71.5, 70.4, 56.5, 48.0, 46.0, 

39.8, 34.1, 31.1, 31.0, 29.7, 28.7, 25.8, 25.7, 25.6, 22.9, 22.8, 21.1, 20.8, 18.7, 18.0, 17.9, 13.9, 

9.7, –4.6, –4.7. 
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OTES

OH

TBSO
OTBS

2.79  

(2S,3R,5S,8S,9S)-3,9-Bis((tert-butyldimethylsilyl)oxy)-2,5-dimethyl-8-

((triethylsilyl)oxy)tridec-12-en-1-ol (2.79): DIBAL-H (0.37 mL, 1.0 M in hexane, 0.37 mmol) 

was added to a solution of ester 2.78 (95 mg, 0.092 mmol) in DCM (1 mL) at −78 °C. After 1 h, 

the reaction was quenched by the addition of saturated aqueous potassium sodium tartrate, and 

warmed to rt and stirred. After an addition 2 h, the reaction mixture was clear and extracted with 

DCM (3 × 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, 

and concentrated in vacuo. The residue was purified by flash chromatography (hexane:EtOAc = 

10:1) to give the title compound 2.79 (50 mg, 90%) as a colorless oil: 1H NMR (400 MHz, 

CDCl3) δ 5.87-5.77 (m, 1H), 5.02 (d, J = 17.2 Hz, 1H), 4.95 (d, J = 10.2 Hz, 1H), 3.89-3.80 (m, 

2H), 3.59-3.47 (m, 3H), 2.68 (br, 1H), 2.28-2.18 (m, 1H), 2.03-1.90 (m, 1H), 1.78-1.68 (m, 2H), 

1.62-1.50 (m, 4H), 1.42-1.34 (m, 4H), 1.07 (d, J = 6.8 Hz, 3H), 0.96 (t, J = 8.0 Hz, 9H), 0.88-

0.86 (m, 21H), 0.62-0.53 (m, 6H), 0.08-0.04 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 139.1, 

114.3, 76.1, 75.2, 75.0, 64.8, 42.2, 38.2, 33.9, 30.8, 29.5, 29.4, 27.0, 25.9, 20.2, 18.0, 14.8, 6.9, 

5.2, -4.0, -4.3. 
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OTES

TBSO
OTBS

O

2.80  

(2R,3R,5S,8S,9S)-3,9-Bis((tert-butyldimethylsilyl)oxy)-2,5-dimethyl-8-

((triethylsilyl)oxy)tridec-12-enal (2.80): PhI(OAc)2 (49 mg, 0.17 mmol) and TEMPO (3 mg, 

0.02 mmol) were added to a solution of the alcohol 2.79 (42 mg, 0.066 mmol) in DCM (2 mL) at 

0 °C under argon. The reaction mixture was stirred at rt overnight. Saturated Na2S2O3 solution 

was added to quench the reaction. The organic layer was separated, and the aqueous layer was 

extracted with DCM (3 × 5 mL). The combined organic layers were washed with brine, dried 

over Na2SO4, and concentrated in vacuo. The residue was purified by flash chromatography 

(hexane:EtOAc = 20:1) to give the title compound 2.80 (33 mg, 79%) as a colorless oil: 1H NMR 

(400 MHz, CDCl3) δ 9.76-9.75 (m, 1H), 5.89-5.79 (m, 1H), 5.04 (d, J = 17.2 Hz, 1H), 4.97 (d, J 

= 10.2 Hz, 1H), 4.10-4.04 (m, 1H), 3.60-3.50 (m, 2H), 2.55-2.48 (m, 1H), 2.29-2.23 (m, 1H), 

2.06-1.93 (m, 1H), 1.78-1.18 (m, 9H), 1.14 (d, J = 6.8 Hz, 3H), 0.98 (t, J = 8.0 Hz, 9H), 0.88-

0.86 (m, 21H), 0.62-0.53 (m, 6H), 0.08-0.04 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 204.8, 

139.1, 114.3, 76.0, 74.9, 71.3, 52.0, 42.3, 37.1, 34.7, 32.7, 31.9, 30.8, 30.0, 29.7, 29.4, 27.2, 25.8, 

22.7, 19.7, 18.0, 14.1, 10.0, 6.9, 5.1, -4.0, -4.2. 
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OTES

TBSO
OTBS

OHO

2.81  

(2R,3R,5S,8S,9S)-3,9-Bis((tert-butyldimethylsilyl)oxy)-2,5-dimethyl-8-

((triethylsilyl)oxy)tridec-12-enoic acid (2.81): NaH2PO4•H2O (7.6 mg, 0.055 mmol), 2-methyl-

2-butene (0.058 mL, 0.55 mmol) and sodium chlorite (7.8 mg, 0.069 mmol) was added to a 

solution of aldehyde 2.80 (17 mg, 0.027 mmol) in  t-BuOH (1 mL) and H2O (0.3 mL) at 0 °C. 

The reaction mixture was stirred at room temperature for 2h. Saturated NaSO3 was added to 

quench the reaction. The organic layer was separated and the aqueous layer was extracted with 

Et2O (3 × 10 mL). The combined organic layers were dried over Na2SO4, filtered and 

concentrated in vacuo to afford the crude product, which was purified by flash chromatography 

(hexane:EtOAc = 10:1 to 5:1) to give the title compound 2.81 (17 mg, 99%) as a colorless oil: 1H 

NMR (400 MHz, CDCl3) δ 5.87-5.77 (m, 1H), 5.02 (d, J = 17.2 Hz, 1H), 4.95 (d, J = 10.2 Hz, 

1H), 3.93-3.89 (m, 1H), 3.58-3.47 (m, 2H), 2.71-2.65 (m, 1H), 2.28-2.19 (m, 1H), 2.04-1.90 (m, 

1H), 1.71-1.09 (m, 9H), 1.14 (d, J = 6.8 Hz, 3H), 0.96 (t, J = 8.0 Hz, 9H), 0.92-0.88 (m, 21H), 

0.62-0.53 (m, 6H), 0.08-0.04 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 178.3, 139.0, 114.3, 76.0, 

74.7, 72.6, 52.1, 42.4, 37.3, 34.5, 32.3, 31.8, 30.8, 30.0, 29.6, 29.4, 27.1, 25.8, 22.5, 19.5, 18.0, 

14.3, 10.1, 6.8, 5.1, -4.0, -4.3. 
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OTES

TBSO
OTBS

OMeO

2.82  

Methyl (2R,3R,5S,8S,9S)-3,9-bis((tert-butyldimethylsilyl)oxy)-2,5-dimethyl-8-

((triethylsilyl)oxy)tridec-12-enoate (2.82): Trimethylsilyldiazomethane (0.025 mL, 2.0 M in 

Et2O, 0.050 mmol) was added to a solution of acid 2.81 (10.6 mg, 0.017 mmol) in benzene (2 

mL) and MeOH (0.5 mL) dropwise. The reaction mixture was stirred at rt for 2 h. TLC shows 

the reaction was complete. Then the solvent was evaporated and the mixture was purified by 

flash chromatography (Hex:EA = 20:1) to give the title compound 2.82 (10.7 mg, 99%) as a 

colorless oil: 1H NMR (400 MHz, CDCl3) δ 5.82 (ddt, J1 = 17.1 Hz, J2 = 10.3 Hz, J3 = 6.6 Hz, 

1H), 5.02 (dq, J1 = 17.1 Hz, J2 = 1.7 Hz, 1H), 4.94 (dq, J1 = 10.3 Hz, J2 = 1.7 Hz, 1H), 1H), 4.09-

4.05 (m, 1H), 3.66 (s, 3H), 3.56-3.48 (m, 2H), 2.69-2.63 (m, 1H), 2.28-2.18 (m, 1H), 1.99-1.90 

(m, 1H), 1.75-1.12 (m, 9H), 1.10 (d, J = 6.8 Hz, 3H), 0.95 (t, J = 8.0 Hz, 9H), 0.88-0.84 (m, 

21H), 0.58 (q, J = 8.0 Hz, 6H), 0.08-0.04 (m, 12H). 

 

OTES

TBSO
OTBS

OOCl3C

2.83  

2,2,2-Trichloroethyl (2R,3R,5S,8S,9S)-3,9-bis((tert-butyldimethylsilyl)oxy)-2,5-dimethyl-8-

((triethylsilyl)oxy)tridec-12-enoate (2.83): DCC (0.522 g, 2.53 mmol) and DMAP (31 mg, 

0.253 mmol) was added to a solution of acid 2.81 (1.065 g, 1.68 mmol) and 2,2,2-
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trichloroethanol (0.24 mL, 2.53 mmol) in DCM at rt. The reaction mixture was stirred overnight, 

concentrated in vacuo, diluted with hexanes, and the DCU precipitate was removed by Buchner 

filtration. The mother liquor was concentrated in vacuo and the product was purified by flash 

chromatography on silica gel (Hex: EA = 20:1) to yield the title compound 2.83 (1.043 g, 81%) 

as colorless oil: 1H NMR (500 MHz, CDCl3) δ 5.87-5.78 (m, 1H), 5.02 (d, J = 17.2 Hz, 1H), 4.94 

(d, J = 10.2 Hz, 1H), 4.73 (d, J = 12.0 Hz, 2H), 4.17-4.14 (m, 1H), 3.59-3.48 (m, 2H), 2.82 (dq, 

J1 = 7.0 Hz, J2 = 4.5 Hz, 1H), 2.27-2.18 (m, 1H), 2.01-1.90 (m, 1H), 1.75-1.52 (m, 4H), 1.42-

1.16 (m, 5H), 1.19 (d, J = 6.8 Hz, 3H), 0.96 (t, J = 8.0 Hz, 9H), 0.92-0.88 (m, 21H), 0.62-0.53 

(m, 6H), 0.08-0.04 (m, 12H); 13C NMR (125 MHz, CDCl3) δ 172.4, 139.1, 114.3, 76.0, 75.1, 

74.9, 74.0, 71.0, 46.0, 40.5, 35.4, 35.0, 30.8, 29.7, 29.5, 29.2, 27.6, 27.3, 26.0, 25.9, 25.8, 25.8, 

19.3, 18.0, 10.5, 6.9, 5.2, -4.0, -4.6. 

 

OTES

O

TBSO
OTBS

OO

2.84

Cl3C

 

2,2,2-Trichloroethyl (2R,3R,5S,8S,9S)-3,9-bis((tert-butyldimethylsilyl)oxy)-2,5-dimethyl-12-

oxo-8-((triethylsilyl)oxy)dodecanoate (2.84): The alkene 2.83 (190 mg, 0.25 mmol) was taken 

up in DCM/MeOH (v/v = 1: 1, 5 mL) followed by the addition of pyridine (0.1 mL, 1.25 mmol) 

and SUDAN III (indicator, ~1 mg) at rt under argon. The solution was cooled to −78 °C, and a 

stream of O3 was lightly bubbled through the solution until the pink color was disappear (a light 

yellow color persisted). The DMS was added slowly. The reaction mixture was slowly warmed 

to rt. After stirring for overnight, the mixture was concentrated under the vacuum. The residue 
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was purified by flash chromatography (Hex:EtOAc = 10:1) to give the title compound 2.84 (161 

mg, 89%) as a colorless viscous oil: 1H NMR (500 MHz, CDCl3) δ 9.76 (s, 1H), 4.72 (d, J = 12.0 

Hz, 2H), 4.17–4.15 (m, 1H), 4.01–3.98 (m, 1H), 3.59–3.51 (m, 2H), 2.81 (dq, J1 = 7.0 Hz, J2 = 

4.5 Hz, 1H), 2.57–2.50 (m, 1H), 2.43-2.34 (m, 1H), 2.02-1.95 (m, 1H), 1.68–1.51 (m, 4H), 1.40–

1.04 (m, 5H), 1.18 (d, J = 7.5 Hz, 3H), 0.95 (t, J = 8.0 Hz, 9H), 0.92-0.88 (m, 21H), 0.62-0.53 

(m, 6H), 0.08-0.04 (m, 12H); 13C NMR (125 MHz, CDCl3) δ 202.8, 172.4, 95.0, 75.8, 74.8, 74.0, 

70.8, 46.0, 41.2, 40.3, 35.4, 29.1, 27.4, 26.0, 25.8, 23.2, 22.9, 19.2, 18.0, 10.4, 6.9, 5.1, -4.1, -4.5. 

 

OTES

TBSO
OTBS

C5H11

OAc

O

O

Cl3C

2.85  

2,2,2-Trichloroethyl (2R,3R,5S,8S,9S,12E,15R,17S,18E,20E)-17-acetoxy-3,9-bis((tert-

butyldimethylsilyl)oxy)-2,5,15,19-tetramethyl-8-((triethylsilyl)oxy)hexacosa-12,18,20-

trienoate (2.85): A solution of KHMDS (32 mg, 0.16 mmol) in DME (1 mL) was added to a 

solution of sulfon 2.59 (85 mg, 0.17 mmol) in DME (2 mL) at −70 °C. The resulting orange 

solution was stirred for 30 min. A solution of aldehyde 2.84 (95 mg, 0.12 mmol) in DME 

(0.5+0.25 mL) was added to the above solution dropwise. The reaction mixture was stirred for 1 

h at −70 °C and warmed to rt slowly. After the mixture was stirred for overnight, H2O was added 

to quench reaction. The organic layer was separated, the aqueous layer was extracted with Et2O 

(3 × 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

(hexane:EtOAc = 20:1) to give the title compound 2.85 (108 mg, 84%) as a colorless oil: 1H 
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NMR (500 MHz, CDCl3) δ 6.01 (d, J = 15.6 Hz, 1H), 5.74-5.68 (m, 2H), 5.40-5.33 (m, 2H), 5.24 

(d, J = 9.0 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.68 (d, J = 12.0 Hz, 1H), 4.17–4.14 (m, 1H), 

3.51-3.47 (m, 2H), 2.81 (dq, J1 = 6.9 Hz, J2 = 4.4 Hz, 1H), 2.20-2.00 (m, 6H), 2.00 (s, 3H), 1.83 

(s, 3H), 1.69-1.47 (m, 9H), 1.44-1.24 (m, 12H), 1.18 (d, J = 6.9 Hz, 3H), 0.95 (t, J = 8.0 Hz, 9H), 

0.89-0.85 (m, 24H), 0.62-0.53 (m, 6H), 0.08-0.04 (m, 12H); 13C NMR (125 MHz, CDCl3) δ 

172.4, 170.4, 136.6, 133.7, 132.2, 131.1, 128.3, 127.8, 95.0, 73.9, 71.9, 70.8, 69.6, 59.1, 41.8, 

40.3, 35.3, 32.8, 31.6, 30.6, 29.7, 29.5, 29.1, 27.2, 25.9, 25.8, 22.5, 21.3, 21.0, 19.1, 18.0, 17.4, 

14.2, 14.1, 13.7, 13.0, 6.9, 5.1, -4.0, -4.5. 

 

OTES

TBSO
OTBS

C5H11

OAc

O

HO

2.86  

(2R,3R,5S,8S,9S,12E,15R,17S,18E,20E)-17-Acetoxy-3,9-bis((tert-butyldimethylsilyl)oxy)-

2,5,15,19-tetramethyl-8-((triethylsilyl)oxy)hexacosa-12,18,20-trienoic acid (2.86): Zn dust 

(96 mg, 1.46 mmol) was added portionwise to a solution of ester 2.85 (15 mg, 0.0146 mmol) in 

AcOH (1 mL). The reaction mixture was stirred vigorously under nitrogen for 4 h. After 

filtration and solvent removal, the residue was taken up in AcOEt and washed with 5% aqueous 

KHSO4 solution and saturated aqueous NaCl solution. Then it was dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

(hexane:EtOAc = 10:1) to give the title compound 2.86 (10.0 mg, 75%) as a colorless oil: 1H 

NMR (400 MHz, CDCl3) δ 10.08 (br, 1H), 6.02 (d, J = 15.6 Hz, 1H), 5.74-5.56 (m, 2H), 5.42-

5.34 (m, 2H), 5.24 (d, J = 9.0 Hz, 1H), 3.94-3.84 (m, 1H), 3.51-3.47 (m, 2H), 2.68 (dq, J1 = 7.1 
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Hz, J2 = 3.0 Hz, 1H), 2.36-2.28 (m, 1H), 2.20-1.87 (m, 5H), 2.00 (s, 3H), 1.83 (s, 3H), 1.69-1.47 

(m, 9H), 1.44-1.24 (m, 12H), 1.18 (d, J = 6.9 Hz, 3H), 0.95 (t, J = 8.0 Hz, 9H), 0.89-0.85 (m, 

24H), 0.62-0.53 (m, 6H), 0.08-0.04 (m, 12H). 

 

S
O2

N
N

NN

Ph
2.94  

5-(Pent-4-en-1-ylsulfonyl)-1-phenyl-1H-tetrazole (2.94): Ph3P (11.54 g, 44 mmol) and PTSH 

(8.20 g, 46 mmol) were added to a solution of alcohol 2.96 (4.1 mL, 40 mmol) in THF (80 mL). 

After 5 min, the solution was cooled to 0 °C, DIAD (8.7 mL, 44 mmol) was added dropwise and 

the mixture was stirred for 1 h and allowed to warm to rt. After stirred for overnight, the mixture 

was quenched with saturated NaHCO3. The aqueous layer was extracted with EtOAc (3 × 100 

mL). The organic layers were combined, washed with brine, dried over Na2SO4, and 

concentrated under vacuum. The residue was purified by flash chromatography (hexane:EtOAc = 

8:1) to give 5-(pent-4-en-1-ylthio)-1-phenyl-1H-tetrazole (8.87 g, 90%) as a colorless oil: 1H 

NMR (400 MHz, CDCl3) δ 7.60-7.54 (m, 5H), 5.79 (ddt, J1 =17.0 Hz, J2 =  10.3 Hz, J3 = 6.6 Hz, 

1H), 5.09-5.01 (m, 2H), 3.40 (t, J = 7.3 Hz, 2H), 2.22 (dt, J1 =7.2 Hz, J2 =  6.8 Hz, 2H), 1.94 (tt, 

J1 =7.3 Hz, J2 =  6.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 154.3, 136.8, 133.7, 130.1, 129.8, 

123.8, 115.9, 32.6, 32.4, 28.2. 

A solution of (NH4)6Mo7O24·4H2O (10.565 g, 8.55 mmol) in 30% H2O2 (170 mL) was added to a 

solution of 5-(pent-4-en-1-ylthio)-1-phenyl-1H-tetrazole (10.529 g, 42.7 mmol) in EtOH 420 

mL) at 0 °C. After 3 h stirring at rt, a yellow solid had crashed out of mixture. The mixture was 

poured into brine and extracted with Et2O (3 × 500 mL). The combined organic layers were 

washed with brine, dried over Na2SO4, and concentrated in vacuum to reveal a sludgy yellow 
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and white biphasic residue. The residue was purified by flash chromatography (hexane:EtOAc = 

7:1) to give the title compound 2.94 (10.4 g, 88%) as a colorless oil: 1H NMR (400 MHz, CDCl3) 

δ 7.70-7.57 (m, 5H),  5.76 (ddt, J1 =17.0 Hz, J2 =  10.3 Hz, J3 = 6.7 Hz, 1H), 5.13-5.08 (m, 2H), 

3.75-3.71 (m, 2H), 2.27 (dt, J1 =7.0 Hz, J2 =  7.0 Hz, 2H), 2.08 (tt, J1 =7.2 Hz, J2 =  6.8 Hz, 2H); 

13C NMR (100 MHz, CDCl3) δ 153.4, 135.6, 133.0, 131.4, 129.7, 125.0, 117.1, 55.2, 31.8, 21.1. 

 

O
TESO

2.95  

(S)-4-Methyl-6-((triethylsilyl)oxy)hexanal (2.95): A solution of (S)-citronellol 2.49 (5.5 mL, 

30 mmol) in dry DCM (60 mL) was treated with imidazole (2.65 g, 39 mmol) and TESCl (6.0 

mL, 36 mmol) overnight at rt. The mixture was quenched by saturated NaHCO3. The aqueous 

layer was extracted with EtOAc (3 × 60 mL). The organic layers were combined, washed with 

brine, dried over Na2SO4, and concentrated under vacuum. The residue was purified by flash 

chromatography (hexane:EtOAc = 20:1) to give (S)-((3,7-dimethyloct-6-en-1-

yl)oxy)triethylsilane (7.3 g, 90%) as colorless oil: 1H NMR (400 MHz, CDCl3) δ 5.12-5.08 (m, 

1H), 3.69-3.58 (m, 2H), 1.99-1.91 (m, 2H), 1.68 (d, J = 0.8 Hz, 3H), 1.60 (s, 3H), 1.62-1.52 (m, 

2H), 1.39-1.31 (m, 2H), 1.19-1.10 (m, 2H), 0.96 (t, J = 7.9 Hz, 9H), 0.88 (d, J = 6.6 Hz, 3H), 

0.60 (q, J = 7.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 131.1, 124.9, 61.2, 40.0, 37.2, 29.2, 

25.7, 25.5, 19.6, 17.6, 6.79, 4.44. 

The above olefine (4.058 g, 15 mmol) was taken up in DCM/MeOH (v/v = 1: 1, 120 mL) 

followed by the addition of pyridine (6.1 mL, 75 mmol) and SUDAN III (indicator, ~1 mg) at rt 

under argon. The solution was cooled to −78 °C, and a stream of O3 was lightly bubbled through 

the solution until the pink color was disappear (a light yellow color persisted). The DMS was 
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added slowly. The reaction mixture was slowly warmed to rt. After stirring for overnight, the 

mixture was concentrated under the vacuum. The residue was purified by flash chromatography 

(Hex:EtOAc = 10:1) to give the title compound 2.95 (3.080 g, 84%) as a colorless oil: 1H NMR 

(400 MHz, CDCl3) δ 9.78 (t, J = 1.8 Hz, 1H), 3.70–3.59 (m, 2H), 2.51-2.37 (m, 2H), 1.72-1.33 

(m, 5H), 0.96 (t, J = 7.9 Hz, 9H), 0.90 (d, J = 6.4 Hz, 3H), 0.59 (q, J = 7.9 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 202.7, 60.7, 41.6, 39.6, 29.2, 29.0, 19.3, 6.8, 4.4. 

 

TESO

2.93  

(S,E)-Triethyl((3-methylundeca-6,10-dien-1-yl)oxy)silane (2.93): A solution of KHMDS 

(0.863 g, 4.33 mmol) in DME (5 mL) was added to a solution of sulfone 2.94 (1.284 g, 4.62 

mmol) in THF (10 mL) at −78 °C. The resulting yellow solution was stirred for 30 min before a 

solution of aldehyde 2.95 (0.705 g, 2.88 mmol) in DME (5 mL) was added dropwise. After 

stirring for 1 h at −78 °C, the mixture was warmed to rt slowly during the overnight stirring 

(some white precipitate was observed). The reaction was quenched by adding water, the organic 

layer was separated, the aqueous layers were extracted with ethyl acetate (3 × 20 mL). The 

combined organic layers were deried over Na2SO4 and concentrated under vacuum. The residue 

was purified by flash chromatography (hexane:Et2O = 20:1) to give the title compound 2.93 

(0.752 g, 88%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 5.87-5.76 (m, 1H), 5.41-5.40 

(m, 2H), 5.01 (dd, J1 = 17.2 Hz, J2 = 1.8 Hz, 1H), 4.95 (dd, J1 = 10.2 Hz, J2 = 1.8 Hz, 1H), 3.69-

3.58 (m, 2H), 2.14-1.92 (m, 6H), 1.63-1.51 (m, 2H), 1.41-1.31 (m, 2H), 1.22-1.13 (m, 1H), 0.96 
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(t, J = 7.9 Hz, 9H), 0.87 (d, J = 6.6 Hz, 3H) 0.60 (q, J = 7.9 Hz, 6H); 13C NMR (100 MHz, 

CDCl3) δ 138.5, 130.9, 129.3, 114.4, 61.1, 39.9, 37.0, 33.9, 32.0, 30.0, 29.2, 19.5, 6.8, 4.4. 

 

TESO HO

OH

2.97  

(5S,6S,9S)-9-Methyl-11-((triethylsilyl)oxy)undec-1-ene-5,6-diol (2.97): AD-Mix-α (19.5 g) 

and MeSO2NH2 (1.323 g, 13.9 mmol) were added to a solution of alkene 2.93 (4.126 g, 13.9 

mmol) in the solution of t-BuOH/H2O (v/v = 1:1, 100 mL) at 0 °C. The resulting orange solution 

was stirred at 0 °C for 24 h (the color was changed from orange to yellow). The reaction was 

quenched with solid Na2SO3 (21 g) and warmed to rt over an hour. The mixture was extracted 

with EtOAc (3 × 100 mL). The combined organic layers were washed with KOH (2M aq), brine, 

dried over Na2SO4, and concentrated in vacuo. Purification by flash chromatography 

(hexane:EtOAc = 5:1) to give the title compound 2.97 (2.392 g, 52%, 87% based on recovery of 

starting materials) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 5.85 (ddt, J1 = 17.1 Hz, J2 = 

10.3 Hz, J3 = 6.7 Hz, 1H), 5.07 (dq, J1 = 17.1 Hz, J2 = 1.6 Hz, 1H), 5.02 (dq, J1 = 10.3 Hz, J2 = 

1.6 Hz, 1H), 3.71-3.60 (m, 2H), 3.45-3.41 (m, 2H), 2.31-2.10 (m, 2H), 1.61-1.25 (m, 9H), 0.96 

(t, J = 7.9 Hz, 9H), 0.90 (d, J = 6.5 Hz, 3H), 0.60 (q, J = 7.9 Hz, 6H); 13C NMR (100 MHz, 

CDCl3) δ 138.4, 115.0, 74.6, 74.0, 61.0, 39.9, 32.7, 30.9, 30.0, 29.4, 19.6, 6.8, 4.4. 
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TESO TBSO

OTBS

2.98  

(5S,6S,9S)-5-(But-3-en-1-yl)-6-((tert-butyldimethylsilyl)oxy)-13,13-diethyl-2,2,3,3,9-

pentamethyl-4,12-dioxa-3,13-disilapentadecane (2.98): TBSOTf (4.8 mL, 22.5 mol) was 

added to a solution of alcohol 2.87 (2.127 g, 6.43 mmol) and 2,6-lutidine (3.4 mL, 29.0 mmol) in 

DCM (20 mL) at 0 °C. The resulting mixture was stirred for 2 h at rt. Saturated NH4Cl solution 

was added to quench the reaction. The organic layer was separated, and the aqueous layer was 

extracted with DCM (3 × 20 mL). The combined organic layers were washed with brine, dried 

over Na2SO4, and concentrated in vacuo. The residue was purified by flash chromatography 

(hexane:EtOAc = 20:1) to give the title compound 2.98 (3.417 g, 95%) as a colorless oil: 1H 

NMR (400 MHz, CDCl3) δ 5.82 (ddt, J1 = 17.1 Hz, J2 = 10.2 Hz, J3 = 6.6 Hz, 1H), 5.01 (dq, J1 = 

17.1 Hz, J2 = 1.7 Hz, 1H), 4.94 (dq, J1 = 10.2 Hz, J2 = 1.7 Hz, 1H), 3.68-3.48 (m, 4H), 2.27-2.17 

(m, 1H), 2.04-1.91 (m, 1H), 1.75-1.50 (m, 4H), 1.43-1.13 (m, 5H), 0.96 (t, J = 7.9 Hz, 9H), 0.89-

0.87 (m, 21H), 0.59 (q, J = 7.9 Hz, 6H), 0.06-0.04 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 

139.1, 114.3, 75.7, 74.8, 61.2, 40.1, 34.3, 30.8, 29.5, 29.5, 27.0, 25.8, 25.7, 19.5, 18.0, 6.8, 4.4, -

4.1, -4.5. 

 

 

 149 



O TBSO

OTBS

2.92  

(3S,6S,7S)-6,7-Bis((tert-butyldimethylsilyl)oxy)-3-methylundec-10-enal (2.92): A solution of 

DMSO (0.065 mL, 0.91 mmol) in DCM (2 mL) was added to a solution of oxalyl chloride (0.052 

mL, 0.61 mmol) in DCM (1 mL) at −78 °C. After 15 min, a solution of compound 2.98 (0.17 g, 

0.30 mmol) in DCM (2 mL) was added dropwise. The resulting solution was stirred for 15 min at 

the same temp and Et3N (0.26 mL, 1.8 mmol) was added. The reaction was maintained at −78 °C 

for 15 min, then warmed to 0 °C for 30 min stirring. The reaction was quenched with H2O (5 

mL) and the mixture allowed to warm to rt. The mixture was diluted with DCM and organic 

layer was separated. The aqueous layer was extracted with DCM (3 × 10 mL). The combined 

organic layers were washed with brine, dried over Na2SO4 and concentrated under reduced 

pressure. The residue was purified by flash chromatography (hexane/EtOAc = 20:1) to give title 

compound 2.92 (80 mg, 60%) as colorless oil: 1H NMR (500 MHz, CDCl3) δ 9.75 (t, J = 2.4 Hz, 

1H), 5.85-5.77 (m, 1H), 5.03-4.99 (m, 1H), 4.97-4.93 (m, 1H), 3.67-3.49 (m, 2H), 2.25-2.18 (m, 

2H), 2.07-1.92 (m, 2H), 1.74-1.15 (m, 9H), 0.89-0.86 (m, 21H), 0.06-0.04 (m, 12H); 13C NMR 

(125 MHz, CDCl3) δ 202.9, 139.1, 114.4, 75.5, 74.7, 61.2, 51.0, 40.1, 34.3, 30.8, 29.5, 29.5, 

27.0, 25.8, 25.7, 19.5, 18.0, -4.1, -4.5. 
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TBSO

OTBS

O

O

2.99  

(3R,4R)-4-((2S,5S,6S)-5,6-Bis((tert-butyldimethylsilyl)oxy)-2-methyldec-9-en-1-yl)-3-

methyloxetan-2-one (2.99): Aldehyde 2.92 (0.120g, 0.27 mmol), propionyl bromide (0.29 mL, 

3.3 mmol) and diisopropylethylamine (0.24 mL, 1.4mmol) was added to a mixture of complex 

2.100 (47 mg, 0.057 mmol) in DCM (3 mL) successively −70 °C. The resulting heterogeneous 

mixture was stirred at −70 °C for 24 h. The reaction mixture was poured into buffer pH=7 and 

organic layer was separated. The aqueous layer was extracted with DCM (3 × 10 mL). The 

combined organic layers were washed with brine, dried over Na2SO4 and concentrated under 

reduced pressure. The residue was purified by flash chromatography (hexane/EtOAc = 50:1 to 

30:1) to give title compound 2.99 (77 mg, 57%) as colorless oil: 1H NMR (500 MHz, CDCl3) δ 

5.81 (ddt, J1 = 17.2 Hz, J2 = 10.2 Hz, J3 = 6.6 Hz, 1H), 5.02 (dq, J1 = 17.2 Hz, J2 = 1.7 Hz, 1H), 

4.94 (dq, J1 = 10.2 Hz, J2 = 1.7 Hz, 1H), 4.26-4.23 (m, 1H), 3.58-3.53 (m, 1H), 3.50-3.47 (m, 

1H), 3.20 (dq, J1 = 7.5 Hz, J2 = 4.0 Hz, 1H), 2.25-2.18 (m, 1H), 1.99-1.86 (m, 2H), 1.73-1.52 (m, 

5H), 1.42-1.19 (m, 4H), 1.38 (d, J = 7.5 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.88 (s, 9H), 0.87 (s, 

9H), 0.06-0.03 (m, 12H); 13C NMR (125 MHz, CDCl3) δ 172.1, 139.0, 114.4, 78.3, 75.5, 74.6, 

65.8, 51.2, 41.4, 34.3, 31.9, 30.7, 30.0, 29.4, 26.9, 25.8, 19.2, 18.0, 15.2, 12.4, -4.1, -4.5. 
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2.91  

(4S,5S,8S)-4,5-Bis((tert-butyldimethylsilyl)oxy)-8-methyl-9-((2R,3R)-3-methyl-4-oxooxetan-

2-yl)nonanal (2.91): The olefine 2.99 (48 mg, 0.096 mmol) was taken up in DCM/MeOH (v/v = 

1: 1, 2 mL) followed by the addition of pyridine (0.039 mL, 0.48 mmol) and SUDAN III 

(indicator, ~1 mg) at rt under argon. The solution was cooled to −78 °C, and a stream of O3 was 

lightly bubbled through the solution until the pink color was disappear (a light yellow color 

persisted). The DMS was added slowly. The reaction mixture was slowly warmed to rt. After 

stirring for overnight, the mixture was concentrated under the vacuum. The residue was purified 

by flash chromatography (Hex:EtOAc = 20:1) to give the title compound 2.91 (38 mg, 80%) as a 

colorless oil: 1H NMR (700 MHz, CDCl3) δ 9.78 (t, J = 1.6 Hz, 1H), 4.26-4.23 (m, 1H), 3.57-

3.55 (m, 1H), 3.53-3.51 (m, 1H), 3.21 (dq, J1 = 7.5 Hz, J2 = 4.0 Hz, 1H), 2.57-2.52 (m, 1H), 

2.42-2.37 (m, 1H), 2.01-1.96 (m, 1H), 1.90-1.86 (m, 1H), 1.66-1.54 (m, 5H), 1.43-1.41 (m, 1H), 

1.39 (d, J = 7.5 Hz, 3H), 1.33-1.28 (m, 4H), 0.95 (d, J = 6.7 Hz, 3H), 0.88 (s, 9H), 0.87 (s, 9H), 

0.05-0.04 (m, 12H) ; 13C NMR (175 MHz, CDCl3) δ 202.7,172.0, 78.2, 75.4, 74.4, 65.8, 51.3, 

41.5, 41.2, 34.4, 30.0, 29.7, 26.9, 25.8, 22.8, 19.2, 18.0, 15.3, 12.4, -4.1, -4.6. 
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2.90  

(6E,8E,10S,12R,14E,18S,19S,22S)-18,19-Bis((tert-butyldimethylsilyl)oxy)-8,12,22-trimethyl-

23-((2R,3R)-3-methyl-4-oxooxetan-2-yl)tricosa-6,8,14-trien-10-yl acetate (2.90): A solution 

of KHMDS (41 mg, 0.21 mmol) in DME (1 mL) was added to a solution of sulfon 2.59 (108 mg, 

0.22 mmol) in DME (2 mL) at −70 °C. The resulting orange solution was stirred for 30 min. A 

solution of aldehyde 2.91 (74 mg, 0.15 mmol) in DME (0.5+0.25 mL) was added to the above 

solution dropwise. The reaction mixture was stirred for 1 h at −70 °C and warmed to rt slowly. 

After the mixture was stirred for overnight, H2O was added to quench reaction. The organic layer 

was separated, the aqueous layer was extracted with Et2O (3 × 10 mL). The combined organic 

layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The 

crude product was purified by flash chromatography (hexane:EtOAc = 20:1) to give the title 

compound 2.90 (83 mg, 74%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 6.01 (d, J = 15.7 

Hz, 1H), 5.76 (d, J = 5.1 Hz, 1H), 5.74-5.68 (m, 2H), 5.45-5.35 (m, 2H), 5.25 (d, J = 9.3 Hz, 

1H), 4.25-4.22 (m, 1H), 3.54-3.47 (m, 2H), 3.21-3.17 (m, 1H), 2.00 (s, 3H), 2.21-1.82 (m, 6H), 

1.82 (s, 3H), 1.69-1.19 (m, 18H),  (m, 4H), 1.98–1.90 (m, 1H), 1.90–1.83 (m, 1H), 1.81–1.80 (m, 

3H), 1.76–1.56 (m, 4H), 1.46–1.35 (m, 6H), 1.37 (d, J = 7.5 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 

0.93 (d, J = 6.6 Hz, 3H), 0.93–0.87 (m, 21H), 0.05–0.03 (m, 12H); 13C NMR (125 MHz, CDCl3) 

δ 172.0, 170.4, 137.1, 135.0, 131.8, 128.7, 127.8, 125.0, 78.2, 75.6, 74.7, 71.4, 60.3, 53.4, 51.2, 

41.4, 34.9, 34.3, 33.8, 31.6, 31.4, 30.0, 29.6, 29.1, 27.0, 25.8, 24.7, 22.5, 21.3, 21.0, 19.4, 19.2, 

18.0, 14.2, 14.0, 13.1, 12.4, -4.1, -4.5. 
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2.101  

(2R,3R,5S,8S,9S,12E,15R,17S,18E,20E)-17-Acetoxy-8,9-bis((tert-butyldimethylsilyl)oxy)-3-

hydroxy-2,5,15,19-tetramethylhexacosa-12,18,20-trienoic acid (2.101): LiOH•H2O (5 mg, 

0.12 mmol) was added to a solution of compound 2.90 (9 mg, 0.012 mmol) in THF/MeOH/H2O 

(0.5 mL each) at 0 °C. The reaction mixture was stirred for 1h. The TLC showed a more polar 

spot was formed. The reaction was quenched by pH = 7 buffer and organic layer was separated. 

The aqueous layer was extracted with DCM (3 × 10 mL). The combined organic layers were 

washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The crude 

product was purified by prep TLC to give the title compound 2.101: 1H NMR (500 MHz, CDCl3) 

δ 6.01 (d, J = 15.7 Hz, 1H), 5.76 (d, J = 5.1 Hz, 1H), 5.74-5.68 (m, 2H), 5.45-5.35 (m, 2H), 5.25 

(d, J = 9.3 Hz, 1H), 3.78-3.70 (m, 1H), 3.55-3.47 (m, 2H), 2.52-2.43 (m, 1H), 2.00 (s, 3H), 2.21-

1.82 (m, 6H), 1.82 (s, 3H), 1.69-1.19 (m, 18H),  (m, 4H), 1.98–1.90 (m, 1H), 1.90–1.83 (m, 1H), 

1.81–1.80 (m, 3H), 1.76–1.56 (m, 4H), 1.46–1.35 (m, 6H), 1.37 (d, J = 7.5 Hz, 3H), 1.25 (d, J = 

6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.93–0.87 (m, 21H), 0.05–0.03 (m, 12H). 
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