
IMPROVING THE RELIABILITY OF

MICROPROCESSORS UNDER BTI AND TDDB

DEGRADATIONS

by

Lin Li

BS, Beihang University, 2005

MS, Beihang University, 2007

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

PhD in Computer Engineering

University of Pittsburgh

2014

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Lin Li

It was defended on

October 18, 2013

and approved by

Jun Yang, Ph. D., Associate Professor, Department of Electrical and Computer Engineering

Youtao Zhang, Ph. D., Associate Professor, Department of Computer Science

Steven P. Levitan, Ph. D., Professor, Department of Electrical and Computer Engineering

Sangyeun Cho, Ph. D., Associate Professor, Department of Computer Science

Jingtao Wang, Ph. D., Assistant Professor, Department of Computer Science

Dissertation Director: Jun Yang, Ph. D., Associate Professor, Department of Electrical and

Computer Engineering

ii

Copyright c© by Lin Li

2014

iii

IMPROVING THE RELIABILITY OF MICROPROCESSORS UNDER BTI

AND TDDB DEGRADATIONS

Lin Li, Ph.D.

University of Pittsburgh, 2014

Reliability is a fundamental challenge for current and future microprocessors with advanced

nanoscale technologies. With smaller gates, thinner dielectric and higher temperature mi-

croprocessors are vulnerable under aging mechanisms such as Bias Temperature Instability

(BTI) and Temperature Dependent Dielectric Breakdown (TDDB). Under continuous stress

both parametric and functional errors occur, resulting compromised microprocessor lifetime.

In this thesis, based on the thorough study on BTI and TDDB mechanisms, solutions are

proposed to mitigating the aging processes on memory based and random logic structures

in modern out-of-order microprocessors.

A large area of processor core is occupied by memory based structure that is vulnerable

to BTI induced errors. The problem is exacerbated when PBTI degradation in NMOS is as

severe as NBTI in PMOS in high-κ metal gate technology. Hence a novel design is proposed

to recover 4 internal gates within a SRAM cell simultaneously to mitigate both NBTI and

PBTI effects. This technique is applied to both the L2 cache banks and the busy function

units with storage cells in out-of-order pipeline in two different ways. For the L2 cache banks,

redundant cache bank is added exclusively for proactive recovery rotation. For the critical

and busy function units in out-of-order pipelines, idle cycles are exploited at per-buffer-entry

level.

Different from memory based structures, combinational logic structures such as function

units in execution stage can not use low overhead redundancy to tolerate errors due to their

irregular structure. A design framework that aims to improve the reliability of the vulnerable

iv

functional units of a processor core is designed and implemented. The approach is designing

a generic function unit (GFU) that can be reconfigured to replace a particular functional

unit (FU) while it is being recovered for improved lifetime. Although flexible, the GFU is

slower than the original target FUs. So GFU is carefully designed so as to minimize the

performance loss when it is in-use. More schemes are also designed to avoid using the GFU

on performance critical paths of a program execution.

Then finally the TDDB reliability issues are analyzed and bit flipping technique is de-

signed in addition to voltage scaling to improve TDDB reliability in memory based and

combinational logic structures, leveraging TDDB’s dependence on bit flipping frequency.

The update counts in multiple units include matrix scheduler, caches and TLBs indicate

significant potential of utilizing bit flipping circuit to mitigate TDDB stress. Although ap-

plying bit flipping technique on entry update improves the reliability under TDDB stress in

most units, ITLB is the only unit that lacks natural frequent update activity. The local write

circuit is a effective and light weight design to proactively boost the bit flipping frequency.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT . xiii

1.0 INTRODUCTION . 1

1.1 Thesis Topic . 1

1.2 Microprocessor Reliability Research Overview 2

1.2.1 Memory based Structure Reliability Improvement 3

1.2.2 Logic Structure Reliability Improvement 3

1.2.3 Aging Induced Reliability Issues . 5

1.2.4 Reliability Design Challenges for Future Technology 6

1.3 Reliability Design in State-of-Art Microprocessor 6

1.4 Chapter Overview . 7

2.0 DEGRADATION MECHANISMS . 10

2.1 Bias Temperature Instability: BTI . 10

2.1.1 NBTI and PBTI . 10

2.1.2 BTI Recovery Modes . 12

2.1.3 BTI Modeling . 14

2.2 Time Dependent Dielectric Breakdown: TDDB 15

2.2.1 Frequency Dependent Stress . 16

2.2.2 TDDB Modeling . 16

2.3 Summary . 17

3.0 PROACTIVE RECOVERY AND 4PR FOR BTI IN SRAM CELLS . 18

3.1 Effect of both NBTI and PBTI . 18

3.2 4PR Recovery Circuit . 22

vi

3.2.1 Existing approach . 22

3.2.2 4T proactive recovery for SRAM cells 23

3.2.3 Further discussions . 26

3.3 Summary . 29

4.0 4PR ON L2 CACHE AND OUT-OF-ORDER ENTRIES 30

4.1 Using a spare bank for 4PR in L2 Cache . 30

4.2 4PR opportunity for Busy FUs . 31

4.2.1 FU Activities . 31

4.2.2 Idle Cycle Analysis . 33

4.2.3 Recovery Opportunities with Latency Overhead 34

4.2.4 Hardware Design for 4PR in Busy FUs 36

4.3 Overhead Analysis . 39

4.3.1 Recovery Control Logic . 39

4.3.2 L2 Cache Recovery Logic . 40

4.4 Simulation and Results . 41

4.4.1 Simulation Setup . 41

4.4.2 Reliability model . 42

4.4.3 Vth shift comparison . 43

4.4.4 Cell failure probability analysis . 45

4.4.5 MTTF improvement . 47

4.4.6 IPC . 48

4.5 Summary . 49

5.0 GENERIC FUNCTION UNIT . 50

5.1 Challenges of Function Unit Reliability . 50

5.2 GFU: Generic Functional Unit . 51

5.2.1 The Overview of GFU Design . 51

5.2.2 GFU/m: A Macro-based GFU . 54

5.2.3 GFU/d: A Replication based GFU . 57

5.2.4 GFU/s: A STT-based Reconfigurable GFU 58

5.2.5 Integrating GFU in the Execution Stage 59

vii

5.3 Reliability-aware Scheduling . 61

5.3.1 Step 1: Determine the FU to Recover 61

5.3.2 Step 2: Minimize Performance Degradation 62

5.3.2.1 Handling GFU/s based Recovery 62

5.3.2.2 Handling GFU/m based Recovery 63

5.3.3 Discussion on OS/Compiler reliability scheduler. 71

5.4 Experimental Methodology . 71

5.4.1 Architecture Modeling . 71

5.4.2 GFU/m Circuit Modeling . 72

5.4.3 Reliability Modeling . 72

5.5 Experimental Results . 73

5.5.1 Hardware Overhead . 73

5.5.2 GFU-introduced Performance Degradation 75

5.5.3 Instruction Steering . 79

5.5.4 Lifetime Improvement . 80

5.6 Summary . 83

5.7 Related Work . 83

5.7.1 Processor Core Logic Reliability . 83

5.7.2 Reconfigurable Function Unit . 85

6.0 BIT FLIPPING IN TDDB RELIABILITY IMPROVEMENT 87

6.1 Matrix-based Scheduler . 88

6.2 Bit flipping Circuit . 91

6.3 Bit Flipping Frequency in Multiple Units 92

6.3.1 Matrix Scheduler . 93

6.3.2 Cache and TLB . 93

6.4 Local Write Circuit for ITLB . 94

6.5 Results . 96

6.5.1 Analysis of Local Write Circuit . 96

6.5.2 LWC Overhead Evaluation . 97

6.5.3 MTTF improvement for Scheduler and L2 Cache 99

viii

6.6 Summary . 99

7.0 CONCLUSION . 101

BIBLIOGRAPHY . 104

ix

LIST OF TABLES

1 Overview of Solutions for BTI and TDDB . 7

2 Recovery Comparison . 28

3 Energy for test 128 bit×256 SRAM bank. 40

4 Processor configurations. 42

5 Detailed FUs in Super-FU block in Fig. 19 from [26] 52

6 Control Signals and Added Overhead for Reconfiguring GFU/m. 56

7 The extra latency of GFU/m. 57

8 Simulation configuration. 72

9 GFU/m Hardware Area/Delay Evaluation . 73

10 Evaluation of DIV, CRC and AES . 75

x

LIST OF FIGURES

1 Three NBTI modes . 11

2 Vth shift rise/drop in stress/recovery . 12

3 TDDB failure distribution . 16

4 Standard 6T SRAM Cell . 19

5 Cell stability . 20

6 Proactive recovery circuits . 22

7 Mode control design . 24

8 Transition between PR and Normal mode . 25

9 BTI proactive recovery strength . 27

10 Idle time percentages for SPEC2000 INT and FP benchmarks 33

11 Idle time distribution . 34

12 Idle time distribution . 35

13 Per-entry based recovery control logic. 37

14 Vth shift for varying signal probability and inactive ratio 43

15 Vth degradation for L2 and FU . 44

16 Failure probability analysis. 46

17 MTTF Improvement . 47

18 Impact of proactive recovery on IPC. 49

19 Intel Nehalem-like core execution units from [11] 52

20 FU usage examples in 3 groups. 53

21 GFU/m Structure . 55

22 Integrating GFU in the execution stage . 60

xi

23 A simple instruction dependency graph . 64

24 Issue Slack . 65

25 Commit Slack . 66

26 Comparisons of Slowdown Cycles and IS1 CS1 Instructions 67

27 CS1/CS2+ instruction count vs distance to ROB tail (INT bmk) in ALU2 . . 68

28 CS1/CS2+ instruction count vs distance to ROB tail (FP bmk) in ALU2 . . 69

29 Normalized IPC when FP Add/Mul/Div gets replaced respectively. 76

30 Normalized IPC when ALU2/0 gets replaced respectively. 77

31 2 ALUs vs 3 ALUs . 79

32 Performance overhead reduction of using instruction steering 80

33 MTTF improvement . 81

34 Wakeup Matrix in [63] . 89

35 Wakeup Matrix Circuit in [63] . 90

36 Bit Flipping Support in Wakeup Matrix Circuit 92

37 Signal Probability in Wakeup Matrix . 93

38 Update Count for Multiple Structures . 94

39 Local Write Circuit . 95

40 Update Activity of ITLB with Local Write Circuit 96

41 ITLB MTTF with Local Write Circuit . 97

42 Comparison of RFW and LW Power in ITLB 98

43 MTTF Improvement for Scheduler and L2 Cache 99

xii

ACKNOWLEDGEMENT

I’m holding my breath writing these words since it’s after years of dedicated work in com-

puter architecture research. This thesis is not possible without generous support from my

advisors, as well as professors in committee and others from the Department of Electrical and

Computer Engineering. Doing research in Ph.D study is a long and lonely journey. It’s long

because one has to master both the breadth of literature and depth of certain field before

truly understand the important problems and whether they are low hanging fruits (usually

they are not since other smart and competitive researchers already took them). It’s lonely

because the further one search and ponder, he will find himself the only one crawling in

tunnel with uncertainties. He has be creative to figure ways out so he is making contribution

at the end of journey.

Thanks to all supports from my advisor Prof. Yang and co-advisor Prof. Zhang who

relentlessly devote their time and effort in guiding me researching frontiers of computer

architecture. Prof. Yang always trusts her students’ potential and gives invaluable advice in

all respects to encourage them to achieve fully, since she is a perfect role model of diligence

and endless pursuit for perfection. In 1:1 and group meetings I learned how to think and

work like a researcher. Prof. Zhang has endless sharp insights and rigorous investigations in

discussions. Without their support this thesis is nowhere close to existence.

I owe my gratitude to professors in committee. Prof. Cho introduced the computer

architecture foundation in my early Ph.D study and has always been very constructive and

nice in all seminars I attend. Prof. Levitan set high standards and guides my work to be

solid and at high level. Prof. Wang shared valuable perspective and suggested revision for

easier access. Their advice and suggestions are essential to this thesis.

xiii

Also I learned a lot from Prof. Levitan, Prof. Jones, Prof. Mickle and Prof. Yang with

which I spent many hours in teaching undergraduate students in labs and lecture classes.

They showed the passion when sharing knowledge as well as the way of thinking to students.

I must thank my colleagues and friends that I have been working with in my course of my

Ph.D study, Xiuyi Zhou, Ping Zhou, Bo Zhao, Yi Xu, Lei Jiang, Vicky Li and Yu Du. I

enjoyed the time spent together discussing research as well as relaxing. I also get a lot of

help from them. With them I’m not lonely any more.

At last and most importantly, many thanks to my wife, Xi Yang and our little son,

Austin. You are always supportive in everyday life for my decision to pursue the Ph.D. I’m

not alone, and this thesis is for also you.

xiv

1.0 INTRODUCTION

1.1 THESIS TOPIC

As technology scales, computer hardware is increasingly susceptible to both soft and hard er-

rors. Soft errors are transient malfunctions (bit flip in memory and timing error in execution

path) due to external random disturbance such as high energy particle strike, temperature

and voltage fluctuations. Soft errors are more likely to happen in smaller gates: it takes less

energy to flip one bit in smaller gates with lower voltage and there are even more multi-bit

soft errors [68], as observed in both memory and execution units. Hard errors are hardware

defects induced both in manufacture and in-field aging. Smaller gates with thinner oxide are

stressed under stronger electrical field and higher power density. Together with temperature,

voltage and process variations, both yield loss and aging problems become increasingly se-

vere. Consequently, reliability caused by both soft and hard errors becomes more important

than ever.

The soft error detection and correction have been studied extensively in past. The

random nature of soft errors makes them correctable by re-execution from checkpoints once

errors are detected [12] in execution path, or by ECC in memory. Although expensive, check-

pointing and re-execution circuits are used in high-end mission critical microprocessors. The

techniques for soft errors are well established and not the topic of this thesis.

The hard error detection and correction are becoming more challenging in scaling tech-

nology. Hard errors include both function faults and parametric faults, and both may occur

in manufacture and in-field use. Defects in manufacture are inevitable and the root cause of

yield loss. Besides function faults, process variation in manufacture also incurs parametric

faults: although circuits are functional, parameters such as performance and power fail to

1

meet target. Both functional and parametric faults in manufacture reduce effective yield

and increase chip cost.

At runtime, circuits degrade under stress of multiple aging mechanisms on gates during

in-field use. Bias Temperature Instability (BTI), Time Dependent Dielectric Breakdown

(TDDB), Hot Carrier Injection (HCI), etc (discussed further in Section 2) are such mech-

anisms. Some mechanisms (TDDB) introduce permanent functional faults, while others

(TDDB and BTI) exacerbate parametric faults, jeopardizing the lifetime of a processor.

New generations of technology with stronger electric field due to thinner dioxide and higher

operating temperature exacerbate the reliability across the entire processor including both

memory and logic structures.

This thesis focuses on aging induced parametric hard errors (BTI) and functional hard

errors (TDDB and BTI). Soft errors and manufacturing time hard errors are not covered.

Based on the unique characteristics of BTI and TDDB, circuit and architectural level tech-

niques are designed to alleviate circuit aging process and improve microprocessor lifetime.

A brief overview of current status in academia and industry is discussed to map the thesis

contribution in general picture of microprocessor reliability.

1.2 MICROPROCESSOR RELIABILITY RESEARCH OVERVIEW

The microprocessor reliability problem has attracted extensive efforts in past decades for

tackling soft and hard errors. Different designs are proposed in memory based and random

combinational units due to different structure and complexity by incorporating redundancy.

Memory based structures are generally regular and it is straight forward to apply minor

redundancy to improve reliability. Random combinational structures such as function units

in execution stage are irregular and low overhead redundancy is generally not practical or

available. This section briefly discusses existing methods that mitigate aging induced errors

in memory based and random combinational circuits.

2

1.2.1 Memory based Structure Reliability Improvement

Memory based structures such as on-chip caches, branch predictors, register files, TLBs are

critical since they store important state information. They occupy large chip area (over 50%)

and are more vulnerable to soft/hard errors. Due to the regular and repetitive structure in

data array, memory units are typically protected by Error Correction Code (ECC) and simple

redundancy (spare bits, lines) from hard errors (both induced in manufacture and in-field

again) and soft errors, at minor to moderate overhead in chip area.

Error correction code (ECC) is widely used to detect and correct soft/hard errors in

memory structures. Single Error Correction Double Error Detection (SECDED) Hamming

code is light weight and effective to detect at most 2 errors and correct 1 error. The SECDED

encoding and decoding add extra cycles in data access, and were traditionally used in lower

memory hierarchy such as L2/L3 and main memory where extra latency is amortized in

overall longer access latency than L1 cache.

Recently, many variants of ECC are proposed in different scenarios. 2-D ECC [34] uses

ECC in columns as well as rows to tolerate more bits in one row or column. Multi-bit

ECC [76] use stronger BCH code such that up to 5 bit errors are correctable in eDRAM

with lower refresh frequency. [84] claims error detection is critical and more frequent but error

correction is less likely and proposes splitting error detection on chip and error correction

off chip.

Besides ECC, another approach to improve memory reliability is adding light weight

redundancy such as extra bits, columns, and rows as backup or spare. The spare components

are reconfigured to replace defective ones in test stage to improve yield. [77] proposes one

method to combine multiple defective lines to form one functional logic line. All above

techniques take advantage of regular memory structure and lightweight error detection and

correction to tolerate errors with minor overhead.

1.2.2 Logic Structure Reliability Improvement

Contrary to the regular memory based structure with mild and effective redundancy, irreg-

ular, non-memory core logic structures impose obstacles to detect and correct errors. They

3

cannot be protected using ECC, as errors manifest as faulty execution rather than faulty

stored bits. Tremendous efforts for improving core logic reliability can be coarsely grouped

to 2 categories: handling soft errors and handling hard errors.

Soft errors in core logic are tolerable by check-pointing and re-execution that is first

proposed in Razor [12]. Shadow latch is used to detect timing errors in execution path, and

the stage with error is re-executed from checkpoints after the pipeline is stalled and flushed.

Although the recovery is expensive in terms of performance due to the pipeline flush and

check-pointing, as long as timing errors are rare, the performance degradation is tolerable

while the performance improvement is significant by eating-up conservative guard-bands and

aggressively running microprocessor faster than specification with increasing minor risk of

errors. Hence, Razor uses minor time redundancy to improve reliability and it usually works

well for soft errors which occur randomly.

However, for hard errors, re-execution does not work since the error tends to happen again

on the faulty hardware and even infinite re-execution could not make it correct. For timing

related parametric errors, reducing the frequency is a remedy by trading off performance.

While for functional hard errors, redundancy of different granularity (core, function unit) is

necessary to improve reliability.

The present multi-core processors provide natural redundancy at the core level. A core

can be disabled if errors are found post fabrication, resulting better yield than abandoning

the entire chip. Considering throwing away faulty cores is too expensive, [55] and [3] try to

salvage and use faulty cores: [55] observes some faulty function units are not frequently used

and it’s safe to run applications that do not utilize the faulty FU on the core; [3] observes a

faulty core is likely to be an animator core in sufficient long period and provides useful hints

to accelerate the execution of normal cores.

In a similar vein, a coarse-grained replication using Triple Module Redundancy (TMR)

is adopted for highly reliable and mission critical systems [2, 6]. Although core-level or

coarse-grained redundancy achieves high fault coverage, they are often over-designed and

unnecessary, as a fault may occur in only one functional unit (FU) and it is unlikely that all

FUs are faulty. Replicating a large area of logic is hence not cost-effective. However, fine-

grained redundancy at the FU level is also challenging as it is difficult to determine which

4

FU is most vulnerable at design time, and which FU is stressed most online. Protecting

irregular logic structure with redundant is not trivial task in terms of complexity and cost.

1.2.3 Aging Induced Reliability Issues

Previous study on microprocessor reliability focus on soft errors and manufacture time hard

errors. Recently with technology scaling aging mechanisms receive a lot of attention and

become emerging sources for reliability problems. Multiple aging mechanisms discussed in

Section 2 stress circuits and finally cause parametric and function errors and compromised

lifetime.

Although existing methods in above discussions could be used to tolerate aging induced

hard errors as well as other errors, they are not quite effective in extending lifetime if only

used after hard errors occur. Many research works take a promising path that proactively

mitigates the degradation on circuits to slow down aging mechanisms, which is also the key

topic of this thesis.

Since aging mechanisms (BTI and TDDB) are highly dependent on voltage and tem-

perature (more details in Chapter 2), circuit level voltage tuning and architectural level

scheduling are straight forward and effective approaches. [70] tried to hide and slow down

aging by 1) steering hot jobs on faster cores and cold jobs on slower cores; 2) changing volt-

age by adaptive scaling voltage (ASV) and threshold voltage by adaptive body bias (ABB).

[32] uses finnier granularity dynamic voltage scaling to slow down NBTI aging in core logic.

Besides circuit level methods, architectural level methods for mitigating NBTI are pro-

posed since threshold voltage degradation caused by NBTI depends on signal probability:

alternating ”0” and ”1” on PMOS is stressed less than always ”0” on PMOS. [1] utilizes

idle cycles to recover NBTI induced degradations by balancing signal probabilities on gates,

which is be quite effective. [16] studies NBTI stress in context of process variation (PV). Due

to PV, some FUs are inherently weaker, slower and vulnerable to NBTI stress. By using the

vulnerable FU less and the robust FU more, the vulnerability difference initially introduced

by PV is evened out in field use and the lifetime is greatly improved.

5

1.2.4 Reliability Design Challenges for Future Technology

Although this thesis focuses on current 28nm technology (High-k and bulk), the 20nm SOC

and 14nm FinFET are coming in following years. [35] discusses the design challenges due to

reliability on VMIN/VMAX, wires and CMOS devices. BTI is still a problem and gets worse

in limiting the VMIN. Also the TDDB is worse since the new effect of TDDB that increases

the sensitivity of 1x BEOL metal pitch to bias-temperature stress finally limits VMAX. For

wires the electro-migration (EM) is also a worse problem with smaller interconnect cross-

sections and higher current. Although the next generation fully-depleted FinFET devices

improve performance at lower voltages, the FinFET device quantization poses challenges

for 6T embedded SRAM memory in that it’s more difficult to balance both write and read

margins. With technology advancing, the reliability keeps challenging for processor designers.

1.3 RELIABILITY DESIGN IN STATE-OF-ART MICROPROCESSOR

Not only in academia, many microprocessor manufactures also become aware of the increas-

ing challenging reliability issues, and reliability features are added in core logic and memory

although more complexity and cost are incurred. In IBM zEnterprise CPU [75], extensive

parity and residue error checking are employed against soft errors, which adds roughly 20

to 25% to core logic area. In Intel Itanium Poulson [60], residue protection and radiation

hardened sequential latches are implemented on key logic and data-path. Despite large area

is devoted to recovery circuits, it is necessary for these high-end processors to guarantee top

level reliability.

Stronger ECCs are also implemented in high-end microprocessors. In Intel Westmere

CPU [64], heavy portion of area is dedicated to ECC. The L3 cache data arrays are strength-

ened with Double Error Correcting, Triple Error Detecting codes (DECTED), and tag arrays

are protected using Single Error Correcting, Double Error Detecting (SECDED) codes. In

Intel Itanium Poulson microprocessor, L3 cache are protected by DECTED, MLI/MLD data

are protected by SECDED code. Even the register file have extensive parity and interleav-

6

Table 1: Overview of Solutions for BTI and TDDB

Degradation Memory based Structure Combinational Logic Structure

BTI 4PR and application GFU

TDDB Voltage⇓, Bit Flip Frequency⇑ Voltage⇓, GFU

ing parity. Niagara T4 use ECC on register files, coherency states and all cache hierarchies.

Although stronger ECCs incur higher complexity, area and cost, it is worthy to implement

to overcome the reliability problems.

State-of-art high-end mission critical processors require reliability aware design and re-

covery, while it’s not common practice yet for commercial processors. With the technology

scaling and increasingly worsen reliability issues, a lightweight and effective reliability aware

design technique is required for commercial processors.

1.4 CHAPTER OVERVIEW

The literature study shows extensive efforts have been invested to mitigating aging in both

memory based and random combinational structures. However, most existing techniques

only target NBTI induced degradation and only natural recovery (to be discussed shortly in

Chapter 2) is exploited to enhance reliability. The recently surfaced and equally important

PBTI becomes another important reliability issue and should be addressed properly. More-

over the faster, more effective proactive BTI recovery is left unnoticed and hardly exploited.

Besides BTI, another important degradation mechanism, TDDB, although a hot topic in

device community, hasn’t received enough attention in circuit and architecture community

so far. This thesis targets in solving the emerging aging induced reliability issues in both

memory based and random combinational structures in modern complex out-of-order cores.

Table 1 illustrates the overview of solutions for BTI and TDDB degradations on memory

based and combinational logic structures. For the BTI stress on memory based structure,

7

4PR, an innovative BTI proactive recovery mode for SRAM cell is implemented in Chapter 3.

And the application of 4PR in cache banks and storage entries of function units in out-of-

order core is elaborated in Chapter 4. For combinational logic units, GFU is carefully

designed and implemented to replace the vulnerable logic unit under recovery with minimal

overhead and it works for both BTI and TDDB stress. The bit flipping technique is designed

to mitigate the TDDB stress on memory based structures.

Chapter 2 studies the characteristics of two dominating aging mechanisms, BTI and

TDDB. A favorable feature of BTI (both PBTI and NBTI) is its recovery mode, i.e, when

the gate is off its shifted threshold voltage induced by BTI stress is partially recovered which

we denote as natural recovery mode. A faster and more effective recovery mode (proactive

recovery) is achieved when reverse bias is applied based on which Chapter 3 further develops

4PR to be used in Chapter 4. For TDDB, the bit flipping frequency dependence makes the

reliability improvement possible: under faster bit switching the TDDB stress is less. This

feature provides the clue to tackle TDDB problem in memory based structure in Chapter 6.

When such features are not practical to use, Chapter 5’s GFU framework resort to shutting

down the FU for natural recovery or stopping stress.

In Chapter 3, an innovative proactive recovery mode, 4PR, is designed. The 4PR is

motivated by the fact that both NBTI and PBTI are important in high-k metal gate tech-

nology. The effect of both NBTI and PBTI on read flip failure, write failure and access time

failure are discussed. Results show PBTI dominates the most likely access time failure and

a 4PR address the requirement by proactively recovering all 4 gates in a 6T SRAM cell.

HSpice simulation shows 4PR is an effective and low overhead circuit technique to improve

BTI reliability.

In Chapter 4, 4PR mode is applied in cache and storage cells in Out-of-Order pipeline. A

spare bank is added in L2 cache to replace the bank under 4PR. However, applying 4PR in

storage cells in pipeline is hard since re-routing the busy function units as register files and

reorder buffers incurs large performance overhead. Inspired by [1], per-entry level idle cycles

are exploited to apply 4PR. Results show there are abundant idle cycles, and combining

effective 4PR, significant reliability improvement is achieved.

8

In Chapter 5, Generic Function Unit (GFU) is designed to utilize natural recovery and

stopping stress to improve the reliability of function units in execution stage. 4PR can not be

easily used for function units due to the irregular structure of combinational logic. Instead

an extra GFU is added to provide fine-grain function unit level redundancy to facilitate using

natural recovery for BTI and stopping stress for TDDB. GFU has high fault coverage due

to its flexibility: it can be configured as most FUs. Depending on different usage FUs are

partitioned into 3 groups and GFU is accordingly designed to cover most FUs in 3 groups.

Also GFU has low area overhead since it only targets 1 or 2 FUs at a time instead of

using spare copies for all FUs which incurs 100% area overhead. An important design issue

is how to reduce the performance overhead when the generally slower GFU is introduced.

Evaluation shows performance overhead is small and further reduced by steering less critical

instructions to GFU. The reliability lifetime improvement is significant for the combinational

logic units.

In Chapter 6, reliability loss due to TDDB stress in processor core is studied with focus on

memory based structures. Although voltage scaling can be applied on many less busy units

to mitigate TDDB stress, some structures on critical path that is used in every cycle can not

use voltage scaling. Scheduler, ITLB and L1 cache are identified to be such structures that

voltage scaling is not feasible due to potentially significant performance overhead. Based on

the frequency dependent TDDB stress, the bit flipping circuit is implemented to increase the

bit flipping frequency as an essential alternative to mitigate TDDB stress. Results show in

many units the entry update activity is sufficiently frequent to utilize the bit flipping circuit.

However, one exception is ITLB in which the natural bit flipping frequency is extremely

slow. Then the local write circuit is designed to enable proactive bit flipping, although the

area overhead is not non-negligible. Evaluations show promising lifetime improvement in

scheduler, cache and ITLB.

9

2.0 DEGRADATION MECHANISMS

In scaled technologies, although transistors are smaller, faster and consume less power, they

tend to suffer intense and severe stress due to thinner gate oxide, stronger electric field, and

higher temperature. Bias Temperature Instability (BTI) and Time Dependent Dielectric

Breakdown (TDDB) are two such degradation mechanisms. BTI stress increases threshold

voltage and hence propagation delay is larger and memory cell is less stable. TDDB stress

gradually increases leakage current and finally gate oxide breaks down such that gates fails

to control channels conductivity. In this chapter we discuss unique characteristics of BTI

and TDDB that are to be used in circuit or micro-architectural level techniques in following

chapters to slow down aging and improve reliability. Although there are other degradation

mechanisms such as Hot Carrier Injection (HCI, not as severe as BTI [49]) and Fowler-

Nordheim tunneling (FN, stress floating gate in FLASH), due to less severity, they are not

discussed further in the thesis.

2.1 BIAS TEMPERATURE INSTABILITY: BTI

2.1.1 NBTI and PBTI

BTI includes NBTI (Negative BTI) on PMOS transistors and PBTI (Positive BTI) on NMOS

transistors. For traditional SiO2 dielectric technology, NBTI has been identified as the

dominant stress mechanism while PBTI is negligible. Efforts have been taken to study NBTI

intensively. These include NBTI modeling [72], studying its impact on circuits [30, 37], and

designing mitigation methods [37] for PMOS gates.

10

D:Vdd

S:Vdd

B:Vdd
G:1

B:Vdd
G:1

+
+
+
+
+
+
+

+

B:Vdd
G:0

S:Vdd

D:Vdd/0

S:0

D:Vdd/0

H

H

H

H

H

H

H
+

+
+
+
+
+

Figure 1: Three NBTI modes: Stress (left), Natural Recovery (middle), Proactive Recovery

(right). PBTI has similar 3 modes. Proactive recovery is both faster and stronger than

Natural Recovery

In sub-45nm technologies, high-κ metal-gate stack is widely used to gain high speed and

low leakage. For example, Intel Westmere-EX Xeon and Itanium Poulson use 32nm high-k

technology. Instead of using silicon dioxide (SiO2) as the dielectric and poly-silicon gate,

the new stack is composed of high-κ material dielectric and the metal gate, with a very thin

layer of SiO2 in between. The high-κ material has higher relative dielectric constant than

that of SiO2. The metal gates are used on top of the high-κ dielectric. With the new stack

structure, scaled gates are less leaky while keeping high performance.

In high-κ metal gate stack, the NBTI occurs in PMOS transistors when the input of the

gate is “0” at elevated temperature, as shown in the leftmost case in Fig. 1. Similarly, the

PBTI occurs in NMOS transistors with the gate input “1”. In short, the gates are stressed

under BTI when ON, for both PMOS and NMOS. Under BTI stress (negative/positive gate-

source bias i.e., Vgs = −/ + Vdd for PMOS/NMOS), a series of physical-chemical processes

are triggered such that 1) positively charged traps are created in interface of SiO2 and SI

near the gate oxide [85] for NBTI; 2) negatively charged traps are created in the added

high-κ dielectrics for PBTI. These traps raise the threshold voltage, which gradually slows

down the gate transition speed and reduces the noise margin of the circuit. Eventually the

circuit will fail as the transistors become too slow to meet the timing or stability requirement.

Studies showed that BTI-induced failure becomes more severe under higher temperature and

stronger electric field [67].

11

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

5

10

15

20

25

30

35

40

Time (years)

V
th

 S
h
if
t
(m

V
)

Figure 2: Vth shift rise/drop in stress/recovery in 3 iterations with 50% signal probability.

This is also called AC stress, compared to continued stress called DC stress

However, the reliability of the high-κ metal gate stack is yet to be solved. For SiO2

dielectric, NBTI in PMOS has been identified as the limiting reliability issue, while the

effect of PBTI in NMOS is negligible. For high-κ metal-gate stack, recent measurements [86]

on Vth shift show that NBTI in PMOS is as severe as that in SiO2/poly-silicon. Moreover,

the effect of PBTI in NMOS is now comparable to NBTI in PMOS. While there are works

on PBTI measurements and modeling [86, 28], only limited attempts have been conducted

to studying the impact of PBTI on circuits and its mitigation methods for high-κ material.

2.1.2 BTI Recovery Modes

Besides stress mode, one key characteristic of BTI is two recovery modes, which have been

investigated to increase the lifetime of transistors. We use NBTI on PMOS as example. The

first recovery mode, referred as Natural Recovery, is shown in the middle case of Fig. 1. It

happens when the input of the gate is “1” with normal Vdd. This is the mild recovery used

in [1]. When the input changes to “1”, the negative bias stress is removed, the traps in the

gate oxide near the interface are healed, and the NBTI degradation on the Vth of PMOS

12

can be recovered partially. Note that when the input switches between logic “0” and “1” on

the gate, the PMOS transistor undergoes an alternation of stress and recovery, as shown in

Fig. 2.

A stronger and faster recovery mode for PMOS transistors, referred as Proactive Recov-

ery, is shown in the last case of Fig. 1. It uses positive voltage bias, i.e., Vgs = Vdd [45]

and forces the gate input to be “1” and S terminal to be “0”. The MOS transistor cannot

enter the strong recovery mode in normal operation since (1) the S terminal of the PMOS is

connected to physical Vdd; (2) even if S terminal can be driven to ground, the gate voltage

is discharged through the preceding PMOS and cannot be kept at “1”. Therefore the cell

circuit needs to be revised properly to enable proactive recovery.

The recovery mechanisms of NBTI used to mitigate the degradation are also observed for

PBTI in high-κ dielectrics in experimental conditions. For example, Vth shift under PBTI is

naturally healed after removing the stress and making Vgate, or Vg = 0V [29, 28], which is

same as “Natural Recovery” in NBTI. Stronger and accelerated recovery is achieved when

an inverse bias (discharge bias in [28, 50]) is applied to Vg.

Thus, the impact of NBTI is determined by the operation of the circuits, and varies with

different applications, or diffident phases in one application. An early analytical study [38]

showed that the NBTI progress is determined by the signal probability of the input signal

being “0”, temperature and supply voltage, but independent of how frequently the transistor

switches between “0” and “1”. As a result, having sustained recovery span is as equally

effective as having interrupted recovery periods as long as their accumulated recovery cycles

are the same.

Both NBTI and PBTI are caused by high temperature, strong electric field, and most

importantly, high stress duty cycles. Typical recovery schemes for NBTI exploit the opportu-

nity to maximize the recovery cycles for PMOS gates [16]. However, in the presence of both

NBTI and PBTI, the duty cycles for NMOS and PMOS are complementary: a gate input

of “1” incurs stress on an NMOS and recovery on PMOS, while a gate input of “0” incurs

recovery on NMOS and stress on PMOS. Therefore, maximizing (natural) recovery cycles for

one type of gate could stress the other gate even more. For SRAM cells, [4, 5] showed that

PBTI has a larger impact than NBTI on the degradation of a SRAM cell under the worst

13

case BTI stress. This has made previously designed NBTI-oriented mitigating techniques

inadequate, and calls for the development of new schemes for high-κ based circuits.

2.1.3 BTI Modeling

Although detailed and accurate BTI modeling and search the root of BTI mechanism are

continued efforts in device and reliability research community, circuit level modeling often

use a simplified model, which just describes the relationship of resulting threshold voltage

shift and parameters such as temperature, voltage and signal probability.

A BTI model [43] shows the relationship of time to failure due to BTI (TFBTI) and

parameters such as temperature and voltage in Equation 2.1([43]). ANBTI is transistor’s

gate-oxide area, T is temperature, Vgs is gate-to-source voltage. Details of temperature

functions B1(T) and other parameters are discussed in [43].

TFBTI = ANBTIV
− 1
β1

gs B1(T) (2.1)

Although reducing temperature and voltage [70] has been demonstrated to be effective

to slow down BTI aging, our techniques focus on proactive recovery during idle cycles. Thus,

we use a more accurate model proposed in [31], in which the Vth shift under AC NBTI stress

is calculated by Eqn (2.2).

∆Vt,AC = KAC · tn = α(S, f) ·KDC · tn (2.2)

Here KDC is the technology dependent constant. α(S) is the AC factor determined by

the signal probability of the cell S (extracted from architectural simulations), independent

of operating frequency f . α(S) is calculated using the multiple cycle stress and recovery

model: the stress phase is modeled by the popular accepted power-law model with the

exponent n = 0.16 for P/NMOS [28, 19]; the recovery phase is modeled according to [72]:

Stress: Vth(t) =
√
K2(t− t0)

1
2 + Vth(0)2 (2.3)

Recovery: Vth(t) = Vth(0)(1−
√
η(t− t0)/t) (2.4)

14

The Vth(t) is Vth at time t when the stress or recover mode begins at t0 with the Vth(0).

The parameters η for P/NBTI under natural and proactive recovery are individually cali-

brated to match the experiment data in [58]. This model would be used in evaluations in

following chapters.

2.2 TIME DEPENDENT DIELECTRIC BREAKDOWN: TDDB

Gate-oxide breakdown is another important failure mechanism in CMOS technologies [43].

TDDB stress experiences 3 stages: soft break down (SBD), wear out (WO) and finally hard

bread down (HBD). When gate is on, SBD happens when two-trap perlocation cluster is

created due to tunneling current flow though gates. SBD could be detected as an abrupt

current increase. Although gate leakage current due to SBD is negligible, it starts the WO

process on percolating path. At operating conditions where the gate leakage current increase

due to SBD is negligible, the WO phase becomes the dominant factor in degradation. At

the end of WO, HDB happens. The gate-voltage controllability is lost which further results

in excessive dissipated energy or even thermal runaway.

In high-κ metal gate technology, TDDB degradation is much worse than traditional poly-

Si technology [61]. In high-κ technology, the runaway phase in WO is much faster than that

in poly-Si technology, resulting greatly reduced reliability margin. Ultra-thin gates with

high-κ dielectric, high temperature and high voltage accelerate the TDDB failure rate and

hence TDDB is also a serious degradation mechanism.

Although TDDB is at least as important as BTI, it received much less attention than BTI.

Unlike the interesting characteristics such as signal probability dependence and proactive

recovery in BTI, people conceived that TDDB is only highly dependent on temperature and

voltage, and circuit techniques to reduce temperature/voltage suffices are used to slow down

aging. However, recent research shows an interesting characteristic of TDDB, Frequency

Dependent Stress, which is to be exploited in this thesis to improve TDDB reliability.

15

2.2.1 Frequency Dependent Stress

Recent experiments [41] show TDDB degradation depends on bit flipping frequency. In

Fig. 3(a) and Fig. 3(b), both poly-Si/SiON and HK/MG suffer less TDDB degradation

under unipolar AC stress over DC stress in accelerated test with 2.9V and 2.3V stress.

The degradation is further reduced when higher AC stress frequency used. For example in

HK/MG, the lifetime improvement is 1.8x/3.5x when frequency increase from 0 to 1Khz and

to 100KHz. According to [41], the frequency dependency is due to that trapped charges

in HK can easily be detrapped once a relaxation bias is applied. This new interesting and

favorable finding motivates circuit and micro-architectural level designs to slow down TDDB

degradation.

(a) Poly-Si/SiON nMOSFET (b) HK/MG

Figure 3: TDDB failure distribution under DC and unipolar AC stress for poly-Si/SiON

(a) and HK/MG (b) [41]. In both cases the unipolar AC conditions exhibit longer time to

breakdown than DC conditions.Vertical axis is accumulative failure probability in Weibull

distribution.

2.2.2 TDDB Modeling

Extensive researches show SBD is Weibull distributed and voltage acceleration accords to

a power law. The time to failure due to TDDB (TFTDDB) under different temperature,

voltage gate area is calculated in Eqn 2.5. ATDDB are transistor’s gate-oxide area, T is

16

temperature, Vgs is gate-to-source voltage. Details of temperature functions B1(T), B2(T)

and other parameters are discussed in [43].

TFTDDB = ATDDB(
F

A
)
− 1
β2

V a+bT
gs B2(T) (2.5)

Eqn. 2.5 with the parameters in [43] shows the strong and sensitive dependence of TDDB

lifetime on supply voltage: reducing 0.1V supply voltage improves the TDDB lifetime by

100x, as confirmed in [61]. Hence less frequently used or less critical function units such

as last level cache would enjoy extended TDDB lifetime by just reducing supply voltage.

However, for frequently used and busy function unit where reducing voltage incurs intolerable

performance loss and temperature is usually high, the bit flipping technique could be used

to improve TDDB lifetime.

However, the frequency dependency is not modeled in Eqn. 2.5 and no available such

models are proposed so far. In evaluations in following chapters we treat Eqn. 2.5 as baseline

lifetime estimations, and use calibrated parameters in Fig. 3 ([41]) to evaluate the benefit of

increasing bit flipping frequency.

2.3 SUMMARY

This chapter discusses BTI and TDDB degradation mechanisms in traditional poly-Si and

latest high-κ technology. BTI, TDDB that were tolerable in traditional technology become a

more serious threat to device, circuit, chip and system reliability. Accurate models show that

temperature, voltage, stress patterns play important role in degradation. Properly adjusting

temperature, voltage, and stress patterns paves a way to alleviate degradation and improve

lifetime of microprocessors. The BTI natural and proactive recovery modes are exploited in

chapter 3 and 4 to improve the SRAM cell based structures, both in cache and in entries in

pipeline such as register file, reservation stations and robs. Increasing bit flipping frequency

is exploited in chapter 6 to improve scheduler and itlb reliability.

17

3.0 PROACTIVE RECOVERY AND 4PR FOR BTI IN SRAM CELLS

In this chapter, a novel design is proposed that mitigates both NBTI and PBTI at the

same time in all 4 transistors of SRAM cell in high-κ technology with which PBTI is as

severe as NBTI. In Section 3.1, it’s identified that for a SRAM cell, while NBTI on PMOS

shows degradations to read static noise margin and read’s statistical stability [31], PBTI on

NMOS is more critical to the cell’s access failure and/or read flip failure. Existing NBTI-

only approaches [65] recover some but not all transistors. Then in Section 3.2, we devise

a proactive recovery technique that recovers all four transistors in a cell simultaneously. A

new recovery mode, 4PR, is introduced in which the inverse bias is created for all four MOS

gates and the voltage level of the internal gate inputs is approximately 0.5Vdd. 4PR helps to

recover all four MOS gates proactively at the same time, with a medium strength but 100%

effective recovery time during the recovery period.

3.1 EFFECT OF BOTH NBTI AND PBTI

The direct consequence of BTI stress is the MOS Vth increase due to the generated traps.

The increased Vth then causes the performance and the reliability of both combinational

circuits and SRAM cells to degrade.

For combinational circuits, the Vth increase in the PMOS/NMOS slows down the low-

to-high/high-to-low transition due to a weaker drive strength. If Vth increases too high, the

transition may fail to meet the timing requirement of the circuit. Previous study has shown

that although the increased delay caused by NBTI is significant for a single gate, its impact

on a combinational circuit is relatively low(3.3% in 3 years [30]). However, considering

18

both NBTI and PBTI, their impact is doubled and a re-evaluation is needed, which is not

covered in this thesis. On the other hand, NBTI in combination with process variation can

severely degrade the reliability of memory cells [30]. Such degradation can greatly reduce the

statistical read stability and read static noise margin of the cell [31]. Therefore, we target

the on-chip SRAM cells and mitigate both their NBTI and PBTI degradations in this work.

PR

NR

PL

NL

blb

q qb

VGnd

VV dd

WL

AXL

bl

AXR

Figure 4: Standard 6T SRAM Cell

Fig. 3.1 shows a conventional 6T SRAM cell. When “1” is stored (q = 1, qb = 0), PR

and NL are under natural recovery, and PL and NR are under stress. When “0” is stored,

PR and NL are under stress, and PL and NR are under natural recovery. As we can see, the

signal probability of the cell determines the Vth shift of the PR-NL pair and PL-NR pair. We

ignore the stress on the access transistor due to its average low duty/busy ratio. We will

assume a cell storing value 0 with q = 0, qb = 1 for the ease of discussion in the remainder

of this section.

Vth variation on gates can lead to the following 3 failure mechanisms in a SRAM cell [51]:

write failure, access failure, and read flip failure. The write failure happens when writing an

inverse value to the SRAM cell cannot finish before the word-line closes and the transaction

rewinds. The access failure happens when the bit-line does not discharge below the sense

amplifier’s trigger threshold such that it fails to sense the correct data. The read flip failure

happens when an inverse value is written in the cell during a normal read operation, since

19

0
0.1

0.2
0.3

0

0.1

0.2

0.3

21

22

23

24

25

26

27

28

PL−NR Vth shift(V)
PR−NL Vth shift(V)

W
ri
te

 t
im

e
 (

p
s
)

(a) Write time (b) Access time (c) Voltage overshoot of q in
read

Figure 5: Cell stability under 1. NBTI only (surface plot) 2. Both NBTI and PBTI (mesh

plot)

the voltage at q (storing a “0”) is driven too high by the pre-charged bit-line and shoots

over the trip point, initiating the flipping process. The SRAM cell fails if any of the above 3

failures occurs. We do not include the hold failure analysis since it is for special operations.

Note that process variations (PV) during fabrication can also lead to Vth shifts which are

additive to BTI degradation induced shifts. We will first discuss BTI effects without PV for

clarity, and later present experimental evaluations with PV for completeness.

To evaluate failures caused by Vth shifts, we measured the write time, access time and

voltage overshoot magnitude at q during a read (which can cause read flip failure) for an

SRAM cell while Vth increases, shown in Figure 5. The dynamic simulation-based failure

criteria is used instead of static criteria such as SNM and WSNM, since RSNM tends to

overestimate the dynamic read failure and WSNM underestimates the dynamic write fail-

ure [33]. In simulating one cell, we used equivalent resistance and capacitance load extracted

from a 128 bit×256 word SRAM bank, to obtain reasonably accurate timing and expedite

the simulation. We will also compare our observations with [4, 5].

In Figure 5, the mesh plot shows results when only NBTI induced Vth shift is considered,

and the surface plot shows the results when both NBTI and PBTI are considered. We do not

put any timing constraints on read or write to show clearer trends with extreme Vth ranges

(0∼300mV) in the figure and no variations on access transistors) for a clear comparison.

20

Note that in reality, Vth is in a much smaller region, e.g. 0∼100mV , but its impact on those

failures still complies with the observations we make.

Fig. 5(a) shows write time variations with Vth increases. The lower the better. The mesh

and surface plots almost overlap since with or without PBTI, the write times only differ by

2ps at most, indicating that PBTI does not have significant impact on write time. In other

words, the NBTI effect on PMOS dominates the write time. Also, the weakened PMOS due

to NBTI further weakens the pull-up strength, which makes the pull-down relatively easier.

This is because the PMOS in an SRAM cell is designed weaker than the NMOS, and is more

sensitive to Vth shifts. As a result, the write time even improves when Vth shifts becomes

larger. This is also observed in [5]: writability is improved under symmetric degradation;

only in worst case write time degrades marginally with PBTI.

Fig.5(b) shows the access time changes. Similar to Fig. 5(a), the lower the value the

better the reliability. The plot clearly shows that when both NBTI and PBTI are considered

(the mesh plot), access time increases quickly. However, if only the NBTI stress is considered

(the surface plot), the changes in access time is not noticeable. This is because the access

time is mainly determined by the driving capability of the pull-down path of the cell which

does not involve the two PMOS. Hence, the degradation in the PMOS has little effect on

the access process. In [4], the read access time is more sensitive to PBTI which plays an

more important role. As we can see, when considering the PBTI stress on NMOS gates, the

access failure becomes a serious reliability problem, which was not surfaced when NBTI was

considered only.

Fig.5(c) shows the voltage overshoot of q in a read operation with respect to Vth. The

higher the worse. Again, we see that the mesh plot rises above the surface plot, meaning that

the read flip failure is more likely to happen when PBTI is counted. Besides PBTI affecting

read stability by raising the voltage overshoot, the NBTI also degrades the read stability by

reducing the flip trip point. In [5], read SNM is more sensitive to PBTI compared to NBTI.

Hence, PBTI worsens the read flip failure that is already threatened by NBTI.

To summarize, the NBTI plays an important role in write time, while the PBTI plays

an important role in access time. The read stability is both affected by NBTI and PBTI.

Among all the failures, the access time failure dominates other SRAM cell failures [51] (in

21

Monte-Carlo simulation). Without considering PBTI, the access reliability would be treated

overly optimistically. Hence, considering both NBTI and PBTI are mandatory to evaluate

the reliability of high-κ metal-gate stack technology.

3.2 4PR RECOVERY CIRCUIT

In this section, we elaborate the 4PR design and compare it with pure natural recovery (a

simple approach that simply turns off the circuit and let all MOS transistors recover) and

the existing approach [65] that proactively recovers NBTI-introduced degradation.

3.2.1 Existing approach

N1

P1

N2

Vdd

Virtual Vdd of right PMOS
Virtual Vdd of left PMOS

WL WL

NL

b̄

NR

P2

AXR
AXL

q

PRPL

qb

b

Figure 6: Proactive recovery circuits (left dash line box) for SRAM cells [65](right dash line

box)

Under normal condition, a SRAM cell only stresses one PMOS-NMOS pair (source =

drain = 1, gate = 0 for PMOS) while having the other pair under natural recovery

(source = gate = 1 for PMOS). The proactive recovery technique proposed in [65] turns

natural recovery into strong recovery (source = 0, gate = 1) to suppress PMOS Vth shift.

22

This is achieved by forcing the virtual power (V Vdd) to ground for the PMOS that is being

recovered. Since the other PMOS is still under stress, the proactive recovery needs to be

applied to two PMOS transistors alternatively, which requires two virtual power lines to

separate the two sides.

To mitigate both NBTI and PBTI, a simple extension of the above scheme is to apply

proactive recovery to one PMOS-NMOS pair, instead of just one PMOS. Take PL-NR pair as

an example: besides driving the virtual power of PL to ground, the virtual ground of NR is

also driven to Vdd. Two virtual ground lines are necessary to separate NR and NL. Hence, the

gate is positively/negatively biased to the source for PL/NR, resulting in proactive recovery

on PL-NR pair. We refer this technique as “Single Pair PR” (“SP PR” for short). Since

PBTI stress on NMOS cannot be neglected when using high-κ technology, we will compare

our scheme to the extended proactive recovery “SP PR” instead of the original one in [65]

in the rest of the discussion.

“SP PR” has two limitations. First, the recovery mode recovers one PMOS-NMOS pair

but stresses the other. Thus, its improvement over pure natural recovery is limited. Second,

this approach connects sources of 4 MOS to 4 virtual source/ground wires, resulting in

increased wiring overhead.

3.2.2 4T proactive recovery for SRAM cells

In this subsection, we discuss the design to recover all 4 transistors in one SRAM cell simul-

taneously (not counting the 2 access transistors), as opposed to only 1 or 2 transistors ([65]

or “SP PR”). In a regular SRAM cell storing a “0”, PL and NR are under natural recovery

while PR and NL are under NBTI and PBTI stress respectively. Storing a “1” incurs the

mirror effect of recovery and stress. By turning all four transistors into a stronger recovery

mode, we tackle both NBTI and PBTI degradation in those 4 transistors, achieving much

higher reliability improvement.

We refer to the new recovery mode as 4T-Proactive-Recovery (4PR) mode. It pulls the

source terminals of the 2 PMOS gates down to ground while pulling the ground terminals

of the 2 NMOS gates up to Vdd. As shown in Fig. 7, the power and ground terminals of

23

T2

T1

T4

Vdd

WL WL

NL

b̄

NR

T3

AXR
AXL

q

PRPL

qb

b

Virtual Gnd of both NMOS

Virtual Vdd of both PMOS

Figure 7: Mode control design: “Normal” when T1 and T4 are on; “4PR” when T2 and T3

are on.

all SRAM cells in a cache bank are connected to virtual power (V Vdd) and virtual ground

(V Gnd). We add a mode control circuit including T3-T4, for V Gnd, and T1-T2, for V Vdd. We

also add drivers to drive T1-T4. The area overhead of these drivers is small since only one

such control circuit is needed per cache bank. Our evaluation also shows that the drivers

and virtual power/ground wires have negligible impact on write time (0.56%), access time

(0.33%) and read stability (0.36%) when Vth degrades from 0 to 100mV . Here we did not

consider PV of drivers since they are less sensitive to PV due to the large size.

By setting different inputs to T1-T4, the SRAM cell can switch between Normal mode

and 4PR mode as follows.

• Normal mode: T1 and T4 are on, T2 and T3 are off, virtual power/ground connects to

physical power/ground.

• 4PR mode: T2 and T3 are on, T1 and T4 are off, virtual power/ground connects to physical

ground/power.

24

The 4PR mode is intuitively errant since in SRAM cell the pull-up PMOS is connected to

ground and pull-down NMOS is connected to power. Fig.8 (left figure) shows the transient

analysis when entering from the Normal mode to the 4PR mode. The Normal mode control

signal “normal” is connected to T1 and T4, and 4PR mode control signal “pr” is connected

to T2 and T3. Initially, the SRAM cell is in Normal mode, storing a “1”. When “normal”

and “pr” commands flip, the cell enters the 4PR mode. With falling “normal” signal, both

V Vdd and q drop. With rising “pr” signal, both V Gnd and qb rise. When q falls and qb rises

such that q − qb < Vth is approached, PL and NR are off, and the cell enters the 4PR mode.

Note that NL and PR are always off during this process. After all 4 transistors are turned

off, the q and qb slowly approach to approximate 0.5Vdd, due to the sub-threshold leakage

discharge of q by PL, and charge of qb by NR. Thus, in the 4PR mode, all the 4 gates are

off, and the internal q and qb reach about 0.5Vdd. Note that we used 45nm high performance

model [8] (lower Vth for MOS) in this study. If the low power model (higher Vth for MOS) is

used, there is a voltage gap between q and qb when they stabilize.

1.2 1.3 1.4 1.5

1.0

.75

.5

.25

0

V
 (

V
)

time (ns)

q

qb

VGnd

VVdd

4.0 4.1 4.2 4.3 4.4 4.5
time (ns)

1.0

.75

.5

.25

0

V
 (

V
) q

qb

VVdd

VGnd

Figure 8: Entering (left) and exiting (right) 4PR mode from the Normal mode. The transi-

tions are fast enough.

Note that we have been using “off” to indicate that the gates are not in the saturation

mode. However, they are not entirely off. In fact, all 4 gates are in the proactive recovery

mode. The “S” and “G” terminals of the two PMOS are 0 and ∼ 0.5Vdd, forming a positive

bias (inverse) of Vgs. The “S” and “G” terminals of the two NMOS are 1 and ∼ 0.5Vdd,

forming the negative bias (inverse) of Vgs. Positive Vgs on PMOS and negative bias Vgs

on NMOS (all are inverse bias) result faster and stronger recovery than natural recovery

25

(Vgs = 0) [29, 28, 50]. Although this recovery strength is weaker than using full inverse bias

(Vgs = Vdd in [65] and Vgs = −1V in [50]), the measured results in [50] indicate that we can

still achieve 89% of Vth shift recovery compared to using full positive bias, while the natural

recovery can only achieve 50%. Moreover, since there are no transistors under stress in our

4PR mode, we can double the recovery time that was achieved in [65]. Also, the concurrent

recovery simplifies the circuit design.

3.2.3 Further discussions

To evaluate the effectiveness of our 4PR, we need to closely examine the recovery characteris-

tics under different magnitudes of discharge bias in real SRAM cell. As mentioned earlier, in

multiple experiments [28, 58, 50, 29] the recovery is accelerated under inverse bias of Vg with

source, drain and substrate terminals grounded. Although the settings (temperature, stress

time, stress voltage, measurement method) of these experiments vary, it is clear that the

inverse bias accelerates the PBTI recovery significantly. In [28], at 104 seconds, applying Vg

of −1.2V results in 43% recovered Vth shift, comparing to 8% for grounded gate. In [58], the

final degradation is reduced by 31%, compared to that after same cycles of alternating stress

and natural recovery. In [50], applying −1.5V bias achieves full recovery, while applying

−0.5V achieves 87% recovery and natural recovery only achieves 48%.

However, in real SRAM cell circuits both the natural recovery and proactive recovery

under 4PR mode differ from those in previous experiments. In natural recovery, inverse bias

occurs at the gate-drain overlap (for NMOS, Vg = Vs = 0, Vd = Vdd), contrary to the setting

of natural recovery in experiments without any bias (for NMOS, Vg = Vs = Vd = 0). In

4PR, a mild inverse bias is forced at the original gate-source overlap (for NMOS, Vg = Vd =

0.5Vdd, Vs = Vdd), which is different from the mild/full inverse bias on both gate-drain and

gate-source ends.

For natural recovery, in [58], the inverse bias at the gate-drain end shows negligible

impact on recovery strength: even raising the Vds from 1.2V to 1.6V only results in limited

improvement of recovered Vth from 3% to 10%. The great diminish is due to the reduced

electrical field in the channel where there is no inverse bias for Vgs or Vgb and consequent

26

(a) PBTI proactive recovery [17] (b) PBTI proactive recovery [50]

Figure 9: BTI proactive recovery strength

reduced electron tunneling current for charge neutralisation. Although inverse Vgd marginally

accelerates recovery, it might be hasty to assume the inverse Vgs bias in 4PR has more impact

on recovery strength than Vgd. Since there are no experiments performed under varying

gate-source bias for authors’ best knowledge, it is hard to quantify the individual impact of

2 inverse biases (Vgs, Vgd) on the detrapping process and the recovery strength. Since 4PR

puts gates into a new recovery state, we conservatively studied two extreme cases to include

possible scenarios where Vgd might play a role.

1. 4PR-best. The first case is that Vgd has little impact on the gate recovery, so only Vgs

dominates the recovery strength, as with all previous researches. The 4PR can achieve

strongest recovery in this case.

2. 4PR-worst. The second case is that Vgd has the same impact on gate recovery, so com-

bined Vgs and Vgd should be used to determine the recovery strength. The 4PR can

achieve weakest recovery in this case.

However, even under the worst case, it is expected that more Vth shift is recovered when

the inverse Vgs bias is applied in experiment of [58] after multiple cycles of stress and natural

27

recovery. Since in real circuits the gate-drain has the inverse bias while the gate-source has

only 0 bias, the recovery on gate-drain is always stronger than gate-source. Therefore, the

accumulated trapped charge in dielectrics at the gate-source end is denser than that at the

gate-drain end. As a result, periodically applying inverse Vgs effectively removes the charges,

compared to the saturated recovery at the gate-drain end.

We list Vgs, Vgd, recovery strength and recovery time for different modes of P/NMOS in

Table 2. Take the NMOS as an example: in the stress mode, Vgs = Vgd = Vdd. In the natural

recovery mode, Vgs = 0 and Vgd = −Vdd. In the “SP PR” mode, Vgs = Vgd = −Vdd. Previous

study [50] has shown that a full inverse bias to the gate results in full recovery of Vth while a

zero bias results in a 50% of recovery. Hence, the recovery strength ratio of Natural vs. SP

PR is 1:2. Regarding recovery time, the SP PR mode dedicates certain percentage of time

for recovery on SRAM cache bank. Within this recovery time, only one PMOS is recovered,

so the total effective recovery time for PMOS gates is 50%. Outside of the proactive recovery

interval, the PMOS still enjoys the natural recovery opportunities. For natural recovery, the

recovery time of any gate in a cell depends on the cell’s signal probability x. Since the

recovery time is limited by the weakest gate in the cell, the effective recovery time is always

less than 50%.

Table 2: Recovery Comparison: the magnitude of Vgs, Vgd, recovery strength and time under

different modes. P represents PMOS. N represents NMOS.

condition Vgs (P/N) Vgd (P/N) strength time

Stress -/+Vdd -/+Vdd N/A 1-x

Natural 0 +/-Vdd 0.5 min(x, 1-x)

SP PR +/-Vdd +/-Vdd 1 50%

4PR-best +/-0.5Vdd 0 0.89 100%

4PR-worst +/-0.5Vdd 0 0.52 100%

The recovery strengths of 4PR-best and 4PR-worst are shown in Table 2. The full

recovery under SP PR mode is normalized as 1. In 4PR mode of an NMOS, Vg = Vd = 0.5Vdd

and Vs = Vdd. Hence, Vgs = −0.5Vdd and Vgd = 0. In 4PR-best, Vgd can be ignored and Vgs

is half of that in SP PR mode. Hence, 4PR can achieve 89% of the recovery strength of SP

28

PR mode, for all 4 gates. The 4PR-worst mode might be weaker than the Natural mode but

due to the effective recovery on gate-source end, the recovery score is 52%.

When it comes to recovery time, the 4PR mode has a clear advantage over all other

modes. As we will explain later, both 4PR and SP PR modes have the same dedicated time

for SRAM bank recovery. During this time, 4PR ensures recovery for all 4 gates while SP

PR provides recovery for only one PMOS gate. Outside this recovery time, both schemes

enjoy natural recovery opportunities.

The last issue is the potential impact of body terminal on the gate recovery. Although

this impact is likely to be small, it can still be easily solved by applying a proper body bias

to cancel its effect on the gate.

3.3 SUMMARY

This chapter analyzes the new reliability problem in SRAM cell when PBTI is as important

as NBTI in high-κ metal gate technology. The analysis shows PBTI introduces the access

time failure and dominates read flip failure, which are more important and were not surfaced

when only NBTI is considered. Hence we design innovative 4PR mode to proactive recover

both NBTI and PBTI in all 4 MOS gates in SRAM cell at the same time. The design of

applying 4PR on cache and storage entries in pipelines are discussed in following chapter4.

29

4.0 4PR ON L2 CACHE AND OUT-OF-ORDER ENTRIES

To take advantage of the 4PR recovery mode, we exploit the opportunities in SRAM cache

and storage cells in out-of-order pipeline respectively. In SRAM L2 cache, we utilize the

spatial redundancy of a spared bank to hold the contents of the bank being proactively

recovered. However, adding spatial redundancy on cells in out-of-order pipeline hurts the

performance significantly since the pipeline is on critical path. Instead, we identify the idle

and inactive cycles of these cells and apply the 4PR mode during the inactive cycles. We

observed that the entries in reservation stations (RS), reorder buffers (ROB) and physical

registers (PR) present on average 43∼76% idle cycles for SPEC2000 benchmark programs.

In this way, we achieved better recovery effect without adding extra backups. A simple, entry

level controller is designed to explore the inactive cycles in entry-level granularity, with <1%

performance and area overhead.

4.1 USING A SPARE BANK FOR 4PR IN L2 CACHE

We apply our proposed recovery technique in L2 cache, similar to the one in [65]. Since

L2 cache is naturally sub-banked, the basic recovery scheme is to recover each bank in

rotation. However, since the bank loses data once entering the recovery mode, we adopt

similar strategy as in [65] to leverage the spare bank for data backup and restore. At any

time, there are 64/32/16 cache banks (3 configurations) in the normal mode and 1 cache

bank, either existing or spare cache bank, in the recovery mode. The recovery cycles varies

from 10K to 5000K cycles.

30

With a spare cache bank, the overheads in our design include area, latency and energy.

The latency and energy overheads come from copy data to/from the spare bank. Alterna-

tively, we can also simply discard the bank’s contents (with dirty lines flush) for recovery and

use the spare to make up for the cache capacity. No data copying is necessary. The latency

and energy overheads come from the cold start of the empty spare bank, which generates

more memory accesses. We will consider the former design in this thesis.

4.2 4PR OPPORTUNITY FOR BUSY FUS

Within a processor core, many critical and busy functional units (FUs) such as RS (reser-

vation stations, or issue queues), ROB (reorder buffers), and PR (physical registers). It is

preferable to apply 4PR recovery for these FUs for two reasons: (1) they are more vulnerable

to BTI-induced failure than other FUs since they are busy and hot in an out-of-order mi-

croprocessor, and BTI effect becomes more severe with higher biased probability and higher

temperature; (2) they are crucial FUs whose reliability degradation may directly fail the

entire chip.

However it is challenging to perform 4PR within the processor core. First, these FUs are

frequently used and thus do not have abundant idle time to perform 4PR at the bank level,

i.e the way to recover L2 cache banks in [65]. Second, there are no spare copies of FUs to store

the old values. To overcome these difficulties, we design a per-buffer-entry level proactive

scheme that exploits the idle time of individual entries, and performs proactive recovery

during their inactive cycles i.e. the contents are no longer used and can be safely discarded.

We next analyze the recovery opportunities in these FUs, and present our hardware design

in the next section.

4.2.1 FU Activities

Let us first analyze the idle and busy cycles of above FUs in different stages of execution:

dispatch, issue, execute, complete and retire (commit).

31

Instructions are fetched and decoded sequentially. Prior to dispatching an instruction

to the out-of-order engine, the hardware has to check resource availability based on three

conditions:

1) is there a free PR to hold the output?

2) is there a free entry in RS to hold the operand tags? and

3) is there a free entry in ROB to hold related information?

If any condition is not satisfied, the instruction is stalled without allocating any entry

in these FUs (PR, RS and ROB). Otherwise the instruction is dispatched, and each FU

allocates a free entry for the instruction. Those entries turn from idle state to busy state.

In the issue and execute stages, all the allocated entries are busy, so recovery is forbidden.

The transition from busy state to idle state is associated with the deallocation of the entries.

In non-speculative execution, the RS entries are deallocated in the complete stage and the

ROB entries are deallocated in the retire stage. A PR is freed only when all the following

three conditions are satisfied:

1) it is not referenced by the register aliasing table (RAT);

2) there is no pending consumer (reader); and

3) there is no unresolved branch instruction.

In case of a mis-speculation, the entries in the RS and ROB on the mis-predicted path

are squashed and deallocated. Also, the newly allocated PRs associated with the squashed

ROB entries are freed. And the RAT is recovered to the state where the mis-prediction

begins. However, no PRs prior to the mis-predicted branch are allowed to be freed because

otherwise, their architectural states would be lost. This corresponds to the third condition

of freeing a PR above.

In summary, when a RS/ROB/PR entry is allocated, it is in the busy state and recov-

ery cannot be performed. Once it is deallocated, it becomes free, and the content can be

discarded for recovery purpose – 4PR destroys the stored information. Therefore, we keep

tracking the entry states and capture the idle cycles to perform 4PR. However, 4PR incurs

delays when driving down and up the virtual Vdd and Gnd of entries. Hence, the idle period

of an entry should be sufficiently long to encompass effective recovery cycles.

32

4.2.2 Idle Cycle Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
% of Proactive Recovery Cycle for SPEC2000INT

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er vp
r

vo
rte

x
Avg

IntRS

IntPR

Rob
Inactive

Idle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
% of Proactive Recovery Cycle for SPEC2000FP

ap
pl
u ar

t

eq
ua

ke

ga
lg
el

lu
ca

s

m
es

a

m
gr

id
sw

im Avg

IntRS

IntPR

FPRS

FPPR

Rob

Figure 10: Idle time percentages for SPEC2000 INT and FP benchmarks; Cumulative Dis-

tribution of idle durations for Rob under SPEC2000 FP benchmarks.

Fig. 10 reports the percentage of time that RS/ROB/PR entries stay idle for SPEC2000

INT and FP benchmark programs. For each stacked bar in the figure, the top line (labeled

as idle) indicates the idle cycle percentage; the lower line (labeled as inactive) indicates the

portion that can be recovered — it will be discussed in 4.2.3. Here we applied round-robin to

allocate buffer entries in each FU. A round-robin allocation scheme favors reliability-aware

designs as it balances the idles cycles over all entries. Our results showed that the entries in

each FU have similar busy/idle cycle distribution and the average is reported in the figure.

The results illustrate that there are plenty of opportunities for 4PR in those FUs. For

example, for benchmark applu, the average idle time per entry accounts for over 90% of

execution time for integer RS (IntRS). From the figure, the average percentages of idle time

for integer RS, integer PR, floating point RS, floating point PR, ROB are: 76% (58% for

SPEC2000 INT), 50% (45% for SPEC2000 INT), 74%, 75%, and 43% (66% for SPEC2000

INT). Our observation is consistent with previous work that shows 54%/69% of idle time for

integer/FP PR [1], despite of different benchmarks and processor configurations used in this

thesis. Notice that we utilize idle cycles at the entry level of those FUs, which gives us more

opportunities than does at the entire FU level. Idle cycles of those entries come from under

utilization of the out-of-order pipeline due to reasons such as cache misses, mis-predictions,

etc.

33

4.2.3 Recovery Opportunities with Latency Overhead

Since performing 4PR incurs extra delay, i.e., it takes several cycles to change an entry to

and from recovering mode, not all idle cycles can be exploited for proactive recovery. In

particular, if the duration of an idle period is smaller than the transition overhead, it might

be not beneficial to apply proactive recovery.

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IntPReg idle cycle distribution of SPEC2K INT

(a) INT bmks on INT PR entries

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IntPReg idle cycle distribution of SPEC2K FP

(b) FP bmks on INT PR entries

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
INTRS idle cycle distribution of SPEC2K INT

(c) INT bmks on INT RS entries

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
INTRS idle cycle distribution of SPEC2K FP

(d) FP bmks on INT RS entries

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROB idle cycle distribution of SPEC2K INT

bzip2

crafty

eon

gap

gcc

gzip

mcf

parser

vpr

vertex

(e) INT bmks on ROB entries

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROB idle cycle distribution of SPEC2K FP

applu

art

equake

galgel

lucas

mesa

mgrid

swim

(f) FP bmks on ROB entries

Figure 11: Idle time distribution of INT and FP benchmarks on different structures.

34

To study the recovery opportunities with transition overhead considered, we plotted

the cumulative percentage distribution of idle periods for multiple FUs in SPEC2000 FP

benchmark programs in Fig. 11 and Fig. 12. We use the results for ROB as example. Here

the x axis is the duration of idle periods spanning from 1 to 128 cycles. We lump sum the

duration beyond 128 cycles to 128, so all curves eventually reaches 1 at 128. In general, the

slower a curve rises, the higher the percentage of longer idle durations. For example, ROB

entries for art and equake tend to have longer idle durations than other programs, which

corresponds to the highest average idle percentage shown in Fig.10(middle). A sharp rise

of the curve indicates high percentages of the corresponding idle periods. For example, the

lucas has a sharp rise for the idle period duration between 6 and 7 cycles, which indicates

∼50% of idle period durations are less than 6 cycles and almost all the rest are 7 cycles.

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FPPReg idle cycle distribution of SPEC2K FP

(a) FP bmks on FP PR entries

0 8 16 24 32 40 48 56 64 72 80 88 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FPRS idle cycle distribution of SPEC2K FP

(b) FP bmks on FP RS entries

Figure 12: Idle time distribution of INT and FP benchmarks on different structures.

Having many short idle durations reduces the recovery opportunities. For example, if

the overhead is 5 cycles in total, then it has no or negative benefit to proactively recover

those idle periods that are less or equal to 5 cycles; and it has small benefits when recovering

the idle periods slightly larger than 5 cycles. In Fig. 10, the lower portion (labeled as

inactive) of each stacked bar indicates the percentage of idle cycles that can be exploited

for recovery. Here we assume the transition overhead is 5 cycles as modeled in 4.2.4. As

an example, for the ROB of lucas, there is little opportunity for proactive recovery, which

gets explained by the sharp rise in Fig. 10(right). From the figure, assuming a fast per-entry

based proactive recovery scheme can be designed, we found that a large amount of idle cycles

35

can be exploited. On average, out of the 43∼76% cycles identified as idle in aforementioned

FUs, 27∼61% cycles can be exploited for proactive recovery.

In Fig. 10 we also see that RS and PR are busier than ROB when running SPEC2000

INT programs; and the ROB is the busiest when running SPEC2000 FP programs. This

is because floating point instructions have longer latencies, and tend to stay in the ROB

waiting for earlier long latency instructions to produce the results.

4.2.4 Hardware Design for 4PR in Busy FUs

To exploit the exposed recovery opportunities in the preceding section, we next present our

hardware design (used as IP block in the EDA flow) details and then model its latency and

area overheads.

To assist the discussion with proactive recovery, we distinguish three states for each

entry in RS/ROB/PR — a busy state indicating the entry has been allocated; a ready state

indicating the entry can be allocated and enter the busy state immediately; an inactive

state indicating the entry is in recovering mode and has to switch to the ready state before

being allocated again. The ready and inactive states correspond to the idle state when no

BTI recovery is considered. Switching from busy to inactive state (i.e. entering recovery),

and from inactive to ready state (i.e. exiting recovery) incur the transition overhead. The

transition between busy and ready states does not incur extra overhead.

Our 4PR is performed at per-entry level. When an entry is marked as inactive, the

virtual power/ground to this entry is driven to physical ground/power. To achieve maximal

recovery, it is preferred to have more idle entries in the inactive state. However, inactive

entries must exit recovery mode before being allocated to instructions. In order to avoid

structural hazards in the dispatch stage, there should be enough ready entries available,

and some inactive entries may have to switch to ready state in advance. This is especially

necessary for multi-issue processors that allocate multiple RS/ROB/PR entries per cycle.

Thus we need to design a control logic to achieve better trade-off between the attainable

reliability improvement and the performance.

36

As shown in Fig. 13, the control logic for enabling per-buffer-entry consists of a power-

down logic, a wake-up logic, and a ready entry counting logic.

Power_down
Ready entry

count tracker

Wake_up

Inactive ptr
Wakeup N

deallocate

power down power on

RS/ROB/PR entries

++

Figure 13: Per-entry based recovery control logic.

Power down logic. When a busy entry is to be deallocated, the power-down logic de-

termines its next state which is either ready or inactive state. An inactive state automatically

triggers 4PR to recover the corresponding entry.

By monitoring the status of each entry, the logic detects its deallocation point as early

as possible such that the recovery benefits can be maximized. For RS and ROB, the logic

monitors the busy bit associated with each entry. The RS entries are deallocated right

after the execution stage, and the ROB entries are deallocated right after the commit stage.

For the PR entries, the logic needs to check the reference bit, the consumer list and the

speculation mode bit. A PR entry can be deallocated only when it is not referred by any

RAT, i.e. there are no pending consumers or unresolved branches.

To determine the appropriate next state, the power-down logic strives to ensure enough

ready entries in each FU such that structural hazards can be avoided and performance loss

can be minimized. It tracks the number of ready entries, and turns the state of a to-be-

deallocated busy entry to ready state if the number is below a threshold. Otherwise the logic

turns the entry to inactive state. The threshold number of ready entries correlates with the

issue width and the transition latency from inactive state to ready state. The reason for the

latter correlation is that inactive entries are forced to switch to ready state in the case if

there are inactive entries, and instructions get stalled due to insufficient ready entries. Since

this transition costs 2 cycles (as discussed in Section IV.C), we found that preparing three

37

times the issue-width of ready entries is sufficient and not too conservative. As an example,

we maintain 12 ready entries in each FU for a 4-issue microprocessor.

An exception occurs when a mis-speculation is detected. At this time, the processor

state is rolled back to the mis-predicted branch, and the corresponding RS and ROB entries

are deallocated. These entries are highly likely to be re-allocated again along the correct

branch path. Hence, they are turned to ready state directly, without additional checks. This

decision favors performance, and also has trivial effect to recovery as the mis-prediction rate

is low.

Wake-up logic. The power-down logic alone cannot maintain sufficient ready entries

all the time since there are times when instructions do not commit for a long time due to a

cache miss. We use the “wake-up” logic to dynamically monitor the number of ready entries.

If the number of ready entries is below the threshold, the wake-up logic will locate several

inactive entries and switch them to ready state. The wake-up logic and power-down logic

work closely to balance the trade-off between attainable reliability and performance.

Ready entry counting logic. When a RS/ROB/PR entry is deallocated, the power-

down logic gets notified. It then queries the ready entry count tracker to decide if it should

apply the proactive recovery to the entry. If no action is taken, the entry is in ready state

by default. The tracker monitors if there are sufficient number of ready entries in each

cycle. If the repository drops below the threshold, a signal is sent to the wake-up logic to

wake up necessary number of inactive entries. Since the entry allocation/deallocation runs

in a circular queue manner, the wake-up logic keeps pointers to the first few inactive entries

for ease of management. The pointers are updated by the power down signal (increment)

and the power on signal (decrement). The ready entry count tracker maintains the current

number of ready entries. The counter is updated when 1) a ready entry is allocated by the

dispatcher (not shown); or 2) the power-down logic leaves a busy entry in the ready state;

or 3) the wake-up logic powers on an entry.

38

4.3 OVERHEAD ANALYSIS

4.3.1 Recovery Control Logic

The latency overhead includes the delay in deciding whether to apply proactive recovery and

the delay of driving the virtual Vdd/Gnd to ground/power. We synthesized the control logic

for all RS/ROB/PR units using 45nm technology. The delays for making power down and

up decisions are 2 and 1 cycles respectively. To quantify the delay of driving the virtual

Vdd/Gnd to ground/power, we built the circuit of the register entry with 4 read ports and 2

write ports using 45nm technology library [15] in Cadence Virtuoso. With proper selection

of the stages and sizes of the buffers, the rising (0→0.95 Vdd) and falling (Vdd→0.01Vdd))

time of virtual Vdd/Gnd for a 64-bit register or ROB entry are 130ps and 130ps respectively

(2 stage buffer). For a 256-bit RS entry [1], the falling and rising time are 150ps and 150ps

respectively (3 stage buffer). That is, it takes 1 cycle for a 2Ghz core to drive the virtual

Vdd/Gnd to ground/power for any single entry in these FUs. The time to drive a single entry

is much faster than that to drive the whole FU as it requires smaller diffusion capacitance

on the gating path and has stronger drive current in NMOS. In summary, it takes 3 and 2

cycles respectively for the transition of entering and exiting the proactive recovery mode.

The area overhead of the per-buffer-entry proactive recovery logic includes the idle de-

tection logic, the buffer to drive the virtual Vdd/Gnd, and the center control logic. The idle

detection logic consists of simple AND gates based on the analysis in Section 4.2.1, with the

state bits from different entries as the input. The buffer logic incurs trivial area overhead

due to the small load of a single entry. The storage cell in 45 nm technology is 1.144µm2, ex-

tracted from CACTI [40]. The buffer area of the 64/256-bit entry is 0.408/1.632µm2, adding

only 0.56% overhead to the design. As for wring, using the similar design of controling the

wordline drivers in [74], the per-entry control is implemented without adding wires in SRAM

arrays. Hence, only wiring the control signals from the control unit to every entry adds the

area outside the SRAM array. Besides the logic, virtual Vdd/Gnd rails are needed, which

often exist [65] or can be minimized with proper layout planning. The area of controller unit

for all FUs is 0.12mm2 (<<1% for most out-of-order processors), and power is 2.677mW .

39

4.3.2 L2 Cache Recovery Logic

We built a 128 bit×256 word bit bank (without considering the peripheral circuitry) using

45nm technology to measure the design overhead, including the power, latency and area.

The power includes mode transition power, data read/write power for backup and restore,

and leakage power. The breakdown of each category is listed in Table 3.

We also measure the latency of mode switches between Normal and 4PR . Based on our

test SRAM bit bank, with a properly designed 5-stage driver, it takes less than 5ns to finish

the transition. Compared to the recovery cycles of 10K to 1000K, the transition overhead

can be omitted.

The area overhead mainly comes from the spare cache bank, virtual Vdd/Gnd wires and

virtual Vdd/Gnd drivers. We use the same spare cache bank and same number of wires for

virtual Vdd/Gnd as in [65]. The only difference is that our design uses two wires for virtual

power and ground, and the previous design uses two wires for left/right side virtual powers.

As shown in [65], the virtual power wires already exist in modern memory designs, so our

wiring requirement does not incur too much overhead. The spare bank’s area overhead is

1/17 at most since there are altogether 17 banks with 1 being the spare. The area of drivers

is roughly proportional to bank size, and is found to be negligible.

Table 3: Energy for test 128 bit×256 SRAM bank.

Dynamic Energy Leakage Power

operation energy(pJ/bit) mode power
(mW)

read 0.043 Normal 1.906

write 0.315 (max) SP PR [65] 1.424

pre-charge 0.78 (read preceded) 4PR 1.409
4.37 (write preceded)

mode switch 100.35 per bank

The mode switch power is incurred on each mode switch: the mode control circuit (with

5-stage drivers for V Vdd and V Gnd) consumes 100.35pJ × 2 = 0.201nJ for the whole bank.

Additional cache bank copy and restore consists of 2×256 reads and writes which amount to

0.421 and 2.399nJ respectively. In summary, the dynamic energy overhead in each recovery

40

transaction is a little over 512 normal reads and 512 normal writes. Consider that this extra

energy is charged on every 104 ∼ 106 cycles, the overall dynamic energy overhead is very

small.

For the leakage power, the test bank under SP PR and 4PR modes consumes 1.424mW

and 1.409mW, respectively. The reduction over the Normal mode (1.906mW) is due to the

reduced VDS of the gates in cut-off mode. For SP PR, the VDS of the MOS under proactive

recovery is 0; for 4PR, the VDS of 4 transistors are ∼ 0.5Vdd.

4.4 SIMULATION AND RESULTS

4.4.1 Simulation Setup

The design is evaluated on an out-of-order processor whose configurations are summarized

in Table. 4. We used a cycle accurate simulator enhanced from Simplescalar Sim-Alpha [10]

to study the recovery opportunity, the 0/1 input distribution and thus signal probability at

runtime, and the performance impact of our design. The original Sim-Alpha simulator used

a unified data structure to model the timing effect of RS, ROB and PR for simplicity. To

accurately characterize these FUs, we modeled them independently following the discussion

in Section 4.2.1. The ROB entries store the instruction order information. The RS entries

track and resolve the operand dependency. The PR entries hold the source operands. We

chose 9 integer (INT) and 8 floating-point (FP) programs from SPEC2000 benchmark suite.

We skipped their warm up phases, and simulated one billion instructions for performance

study.

We built the aforementioned SRAM bit bank circuit based on the PTM 45nm high-

performance model [8] for high-κ metal-gate stack. To measure the failure events discussed

in Section 3.1, we used the metric of dynamic stability through transient analysis in Synopsis

Hspice [33] due to its high accuracy. We built the normal circuit with certain guard-band

according to the specification, and then simulated the circuits with Vth shift. The write time,

access time, voltage overshoot during a read were all measured and summarized in Fig. 5(no

41

Table 4: Processor configurations.

Configuration Parameter

ISA Alpha 21264

Reservation station 60 FP and 60 Integer

Reorder buffer 128

Physical register 128 INT and 128 FP

Load store queue 32

Fetch queue 32

L1 I-cache 32 KB 4way

L1 D-cache 32 KB 4way

L2 unified cache 4MB 8way

PV). The same framework was used in evaluating cell failure stability (Section 4.4.4 with

PV).

Since the degree of stress in the 4 gates of a SRAM cell depends on the stored value, we

extracted the signal probability of sample bits in a 256KB 16-way L2 cache by running the

same SPEC CPU2000 benchmarks on the enhanced Sim-Alpha simulator. We fast-forwarded

the initialization phase, and ran 1 billion instructions of all 17 benchmarks. The extracted

signal probability was used to calculate the Vth degradation by Eqn (2.2) [31].

4.4.2 Reliability model

In order to quantify the reliability improvement after applying the 4PR on busy FUs and

L2 cache, we modeled the Vth shift (threshold voltage shift), MTTF (Mean Time to Failure)

for all the units.

In this section the failures are limited to those due to BTI (both NBTI/PBTI) induced

Vth degradation. In the following discussion, we only focus on the access failure as it is

the dominant effect (as confirmed in Section II). We treat busy FUs and L2 cache banks

differently due to their different ECC configurations. Since there are no ECC bits in busy

FUs, one single bit failure is a hard defect and can not be corrected. We conservatively

assume the first hard bit failure cause the failure of the FU. For L2 cache, we assume the

42

common configuration that 2-bit correction ECC code to enhance the reliability. As a result,

the 3rd bit failure indicates the line failure.

The Vth(t) is calculated in according to Eqn. 2.2 in chapter 2. The parameters η in

Eqn. 2.4 for P/NBTI are individually calibrated to match the experiment data in [58]. For

stronger recovery, both in the single-pair proactive recovery mechanism derived from [65],

denoted as “SP PR”, and our 4PR with stronger and faster recovery, the parameter η is

calibrated by the published data in [29, 50]. For different S, the time for stress and recovery

are different and the final Vth are different. Based on the multiple cycle simulations, the

α(S) is poly-fitted in Matlab.

4.4.3 Vth shift comparison

0.5
0.6

0.7
0.8

0.9
1

0.2

0.4

0.6

0.8

1
10

20

30

40

50

60

70

Signal ProbabilityInactive Ratio

V
th

 s
h
if
t
(m

V
)

Normal

SS−PR

4PR

Figure 14: Vth shift for varying signal probability and inactive ratio

We first compare the effectiveness of the aforementioned schemes in suppressing Vth shifts:

Normal mode, Bal mode in which the bits are flipped to balance the signal probability derived

from [1], SP PR which is the single-pair proactive recovery derived from [65], 4PR-worst and

4PR-best are two extremes of the 4PR. In addition, we also experimented for the “Power

43

Off” scheme which turns off the cache bank and all voltages are 0 such that all 4 gates are

put in a weak-natural recovery mode (Normal recovery still has a bias in Vgd). We include

this case because it is also a practical recovery scheme and natural to apply in reality.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30

40

50

60

Signal Prabability

V
th

 S
h

if
t

(m
v
)

Normal

Bal

SS−PR

PowerOff

4PR

(a) Vth shift for L2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

30

40

50

60

Signal Prabability

V
th

 S
h

if
t

(m
v
)

Normal

Bal

SS−PR

PowerOff

4PR

(b) Vth shift for FUs in Pipeline

Figure 15: Vth degradation for L2 and FU in pipeline. The degradations are different due to

different inactive ratios.

Fig. 14 shows the larger Vth shift (in 10 years) between two NMOS (similar trend for

PMOS) in SRAM cell versus different signal probabilities and inactive ratios. Only Normal,

SS-PR and 4PR are shown. Since only the larger signal probability of two MOS in one cell is

picked, it ranges between 0.5 and 1. The signal probability varies for different benchmarks.

The inactive ratios of busy FUs in pipeline are extracted by our hardware, while that of L2

cache bank is fixed once how many cache banks in rotation are fixed. In Fig. 14, the trend for

all schemes are similar except for Normal : more Vth shift with more stress signal probability

and/or less inactive ratio. In Normal, Vth shift only depends on the signal probability, and

44

is irrelevant of inactive ratios. This is due to the fact that nothing is done to improve the

reliability in inactive cycles. Comparing multiple recovery schemes, our 4PR is strongest.

To better understand the comparison, Fig. 15(b) shows the Vth shifts under varying signal

probability with fixed inactive ratio 24%, and Fig. 15(a) shows that with fixed inactive ratio

6.7% for the L2 cache configured as 16 normal with 1 spare bank. All curves are symmetric

to signal probability of 0.5, because under signal probabilities of α and 1 − α, the Vth shift

of two pairs are symmetric. And the best result happens when the cell stores 0 and 1 in a

50%-50% split in time where stress is perfectly balanced to the two pairs. The largest Vth

shift is always seen in the Normal mode, as no strong recovery mechanism is performed, and

natural recovery alone is inadequate. Then comes the “SP PR”, which are nearly equally

effective with “SP PR” being slightly better for balanced stress and “Power Off” being

slightly better for unbalanced stress. This is not surprising as both techniques intentionally

recover internal MOS gates and “SP PR” uses strong recovery for 1 PMOS-NMOS pair but

“Power Off” uses weaker recovery for all 4 MOS’s. Finally, the 4PR wins over the previous

ones in all data-points even in the worst case since we use stronger recovery (than “Power

Off”) for all 4 MOS’s and longer recovery time than SP PR. For L2 cache on average, 4PR

reduce the Vth shift by 9.5mV and 4mV compared to Normal and “SP PR” in best case.

For configurations of 64/32 banks + 1 spare bank, the reductions are 6.2mV/4.9mV and

3.3mV/2.6mV compared to Normal and “SP PR”. Considering the improvement of lifetime,

1/17 area overhead is tolerable. For busy FUs in pipeline, the results are better since more

inactive cycles are available for recovery on average.

4.4.4 Cell failure probability analysis

In addition to BTI stress induced Vth shifts, process variations (PV) during fabrication also

produces initial Vth shifts. The combined shifts will create cell failure statistically depending

on whether they cancel or enhance each other. We performed Monte Carlo simulation to

evaluate the probability of cell failure after a sustained amount of time (10 years) accounting

for both PV and BTI induced Vth shifts.

45

We first used R [14] to generate initial Vth shifts for cells in all banks under normal

distribution with σ(Vth) = 30mV due to PV. These initial shifts may cause initial cell

failures. Using the access time as the metric of measurement, we found this initial cell

failure probability is 0.598%. Some of these defects can be mitigated by redundant rows in

each cache banks or other failure protection mechanisms. Those that cannot be fixed will

cause yield loss.

0 2 4 6 8 10

0.6

0.7

0.8

0.9

1

1.1

Usage time (years)

F
a
ilu

re
 P

ro
b
a
b
ili

ty
 (

%
)

Normal

SP PR

Power off

4PR worst

4PR best

(a) Failure probability with most imbalanced stress

0 2 4 6 8 10

0.6

0.7

0.8

0.9

1

1.1

Usage time (years)

F
a
ilu

re
 P

ro
b
a
b
ili

ty
 (

%
)

Normal

SP PR

Power off

4PR worst

4PR best

(b) Failure probability with perfectly balanced stress

Figure 16: Failure probability analysis.

Next, we added Vth shifts introduced by BTI stress to the initial shifts, and ran Monte

Carlo simulation to evaluate probability of failure over time. We assumed BTI induced Vth

to be 50mV in the worst case after 10 years as we collected in Fig. 15. We experimented two

extreme signal probabilities: (1) most imbalanced case that stresses only 1 pair of internal

46

gates; and (2) perfectly balanced case that equally stresses both pairs of gates. The results

were summarized in Fig. 16(a) for (1) and Fig. 16(b) for (2) respectively.

The 4PR technique slows down the increase of the cell failure probability, since more

Vth shift is recovered. The cell failure probability after 10 years under most imbalanced

stress reduces from 1.05%/0.93% for Normal/SP PR to 0.87%/0.92% for 4PR-best and

4PR-worst. Under perfectly balanced stress condition, the cell failure probability is reduced

from 0.94%/0.91% for Normal/SP PR to 0.83%/0.86% for 4PR-best and 4PR-worst.

4.4.5 MTTF improvement

0

2

4

6

8

10

M
T

T
F

 n
o
rm

a
liz

e
d

bz
ip
2

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pa
rs

er
vp

rp
vp

rr

ap
pl
u ar

t

eq
ua

ke

ga
lg
e

lu
ca

s

m
es

a

m
gr

id
sw

im av
g

Normal

Bal

SS−PR

PowerOff

4PR

(a) Busy FUs’ MTTF improvement

0

0.5

1

1.5

2

2.5

3

3.5

bz
ip
2

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pa
rs

er
vp

rp
vp

rr

ap
pl
u ar

t

eq
ua

ke

ga
lg
el

lu
ca

s

m
es

a

m
gr

id
sw

im av
g

Normal

Bal

SS PR

PowerOff

4PR

(b) L2 Cache’s MTTF improvement

Figure 17: MTTF Improvement

Then, we calculated the mean-time-to-failure (MTTF) using the Vth shifts in 17 SPEC2000

benchmarks. According to equation 2.2, the time when the Vth shift causes the access timing

failure is calculated for each bit. Then, for the busy FUs in pipeline, the first bit failure

47

cause the function unit failure, since there is no correction circuit such as ECC. For L2 cache,

the lifetime is determined when the 3rd bit in a cache line failed because typically, there are

failure protection mechanisms such as ECC for on-chip L2 cache lines. The results for busy

FUs in pipeline and L2 cache are shown in Fig 17(a) and 17(b). Notice that there are no

large MTTF variations among different benchmarks in L2 cache. There are 2 reasons for

this: 1) cells that tend to fail sooner have extremely imbalanced signal probabilities close

to either 0 or 1; 2) in all benchmarks the inactive ratios are same. In busy FUs, there are

larger variation due to different inactive ratio exploited. Also, the MTTF improvement over

the busy FUs are generally better since more inactive cycles are extracted.

Let’s take L2 cache MTTF improvement as an example. The Bal only improves marginally

(1.21x) over the Normal, due to the mild recovery strength and limited idle cycles for cells

with extreme signal probabilities. The SS PR and PowerOff are neck and neck (1.8x to

1.9x), which is consistent with the Vth shift observations. Our 4PR consistently outperforms

those two techniques and achieves 2.85x MTTF improvement over “SS PR” and “PowerOff”.

These are considerable improvements compared with cell failure probabilities and Vth shift

amount in Fig. 15(a). This is because Vth shift follows power law of time. In the long run,

it take longer and longer time to achieve the same amount of Vth shift. Hence, a slight re-

covery of shift can increase the lifetime significantly. This is where a better recovery scheme

becomes most effective. The MTTF improvements for busy FUs are even better, and our

4PR achieves nearly 6x on average, compared to 3.4x of SS-PR and PowerOff.

4.4.6 IPC

Due to the transition delay to and from 4PR in busy FUs in pipeline, the program per-

formance degrades when insufficient ready entries are maintained in these FUs. Fig. 18

compares the IPCs with and without 4PR. We observed on average 0.5% IPC slowdown

when setting the threshold to be the triple of the pipeline issue width. The exception is a

3.7% slowdown for lucas in which case there is little recovery opportunity and putting entries

into recovery state incurs extra overhead to switch back to ready state.

48

0.5

1

1.5

2

2.5

3

IP
C

bz
ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er vp
r

vo
rte

x

IN
TAvg

ap
pl
u ar

t

eq
ua

ke

ga
lg
el

lu
ca

s

m
es

a

m
gr

id
sw

im

FPAvg

Base

Proactive

Figure 18: Impact of proactive recovery on IPC.

4.5 SUMMARY

This chapter elaborates the micro-architectural and circuit level design of applying 4PR in

L2 cache banks and busy function units to mitigate BTI stress. A spare cache bank is

added to hold the data that are mapped from the bank under 4PR and 4PR is applied in a

round-robin way. For PR, RS and ROB entries in Out-of-Order core, we extract entry-level

idle cycles to apply 4PR, with small area and performance overheads. Despite transition

overhead of 4PR, there are still abundant idle cycles, Compared to the baseline design with

natural recovery, our scheme extends the FU lifetime by 6× and L2 Cache lifetime by 2.85×.

49

5.0 GENERIC FUNCTION UNIT

5.1 CHALLENGES OF FUNCTION UNIT RELIABILITY

As mentioned in Introduction, the SRAM cell based structures are protected from errors

practically by many techniques due to their regular structure. However, irregular, non-

memory core logic structures impose obstacles to detect and correct errors. Although core

level and coarse-grained redundancy techniques are proposed for fault tolerance with high

coverage, they are often over-designed and unnecessary, as a fault may only occur in one

function unit (FU) and it is quite unlikely all FUs need replacement.

However fine-grained redundancy at FU level is also challenging: it is difficult to deter-

mine which FU is most vulnerable at design time. One solution in this direction [22, 23]

attempts to reconfigure the pipelines of each physical core such that all non-faulty FUs from

different cores form functional pipelines, to work around scattered broken FUs in different

cores. Although significant reliability improvement is attainable, this design requires heavy

re-engineering of the interconnection among all cores, as every pipeline stage must be able

to reach the downstream stage in all other cores, which incurs non-trivial area, control and

performance overhead since the inter-stage communication is global and expensive.

Hence this section discusses the Generic Function Unit (GFU) in Section 5.2, a promising

framework for fine-grained FU level, low overhead and high fault coverage reliability improve-

ment on FUs in execution stage. We discuss the how GFU is designed and integrated in the

execution stage of microprocessor. By carefully studying the FUs of the execution stage at

fine granularity, all units are partitioned into 3 groups:

50

• for the frequently used and logic sharable FUs, we design macro-based GFU/m to recover

with low performance overhead;

• for memory structure dominated FUs, we refer to previous designs to mitigate aging

effects;

• for all other FUs, STT-based fully reconfigurable unit is proposed. While it tends to

have large overhead, we recover fine-grained FUs such that each particular FU has low

usage and slowing down its execution tends to incur small performance overhead.

To further reduce the performance overhead, in Section 5.3 instruction steering is de-

signed to dynamically determine the criticality of the instructions and whether to use the

GFU or original FU. By steering the critical uses to fast FU, the performance overhead is

minimized, with a controllable trade-off between reliability improvement and performance

degradation. We simulated the generic functional unit (GFU) and instruction steering (IS)

designs, and compared to other reliability enhancement designs. The results in Section 5.5

using methodology in Section 5.4 show that GFU extends the lifetime of execution stage in

processor core by 2.2x while introducing less than 3% performance overhead.

5.2 GFU: GENERIC FUNCTIONAL UNIT

5.2.1 The Overview of GFU Design

Our basic recovery strategy is to utilize natural recovery on BTI and avoiding stress on

TDDB. Multiple wear-out mechanisms, such as TDDB and BTI, only occur when the logic

circuit is powered on. They are also heavily dependent on the amplitude of the voltage and

the degrees of temperature [43]. The stresses disappear when the circuit is powered off. In

this mode, TDDB-introduced stress stops while there is natural recovery of BTI-introduced

stress on all gates. Although powering off FU is an effective recovery approach, the process

of powering on/off a FU takes hundreds to thousands cycles for voltage to stabilize. Thus, to

prevent introducing high performance overhead, the recovery mode should not be switched

frequently.

51

Int ALU

Shift

FP Mul

Divide

SSE IALU

Int ALU

LEA

FP Add

CINT

Load Store Address Store Data

Shift

Branches

FP Shuffle

SSE IALU

Unified Reservation Station

Int ALU

Figure 19: Intel Nehalem-like core execution units from [11]

In this chapter, we focus on improving the reliability of the function units in execution

stage in modern processors. Such an execution engine, e.g., Intel Nehalem [64, 69], often has

more than 30 functional units (FUs) (shown in Fig. 19 and some super-FUs are elaborated

in Table 5) for executing the large and expanding instruction set. Studies [55] have shown

that only a small number of these FUs are frequently exercised. Fig 20 shows the usage

distribution of one Integer (hmmer at top) and one FP programs (bwaves at bottom) from

SEPC2006 — Int-ALU and Load/Store FUs are most frequently used; FP-ADD and FP-Mult

FUs may also be frequently used in FP programs.

Table 5: Detailed FUs in Super-FU block in Fig. 19 from [26]

ALU ADD, SUB, Logical (XOR, AND, Compare) . . .

IMUL, BitByte (Bit-scan, Bit-test, SET, TEST), Decimal adjust,

CINT String (move, compare, scan, repeat), program control,

flag control, . . .

data transfer, packed arith (add/sub, mul, div, reciprocal,

SSI-I ALU sqrt, max, min), compare, logical, conversion, average, byte mask,

dot product, blending, horizontal search, text processing, ATA, . . .

Based on this observation, we partition these FUs into three groups. The first group

includes four types of FUs: Int-ALU, FP-ADD, Int-MUL and FP-MUL. Int-ALU has three

52

0

10

20

30

A
L
U
0

A
L
U
1

A
L
U
2

IM
U
L

F
M

U
L

F
A
D
D

L
O
A
D

S
T
A

S
T
D

B
R

F
D
IV

F
S
h
f0

F
S
h
f1

S
E
T

B
T
E
S
T

O
T
H
E
R

In
s
tr

u
c
ti
o
n
 c

o
u
n
t
%

hmmer

GFU/d
GFU/m GFU/s

<1.6%

0

10

20

30

A
L
U
0

A
L
U
1

A
L
U
2

IM
U
L

F
M

U
L

F
A
D
D

L
O
A
D

S
T
A

S
T
D

B
R

F
D
IV

F
S
h
f0

F
S
h
f1

B
S
C
A
N

T
E
S
T

O
T
H
E
R

In
s
tr

u
c
ti
o
n
 c

o
u
n
t
%

bwaves

GFU/m
GFU/d

GFU/s

<0.7%

Figure 20: FU usage examples in 3 groups.

copies. Since these FUs are relatively frequently used, any recovery scheme that slows down

their execution tends to incur observable performance degradation. We put them in one

group because part of their ASIC implementation can be shared. The second group includes

frequently-used but SRAM-buffer dominated FUs — load/store, branch, and ROB. Their

interface logic reside in the execution unit. For these FUs, SRAM buffer dominates area

overhead while accessing buffer dominates timing overhead. The third group includes all

other FUs. We isolate and study them at fine-granularity such that most if not all FUs in this

group are less frequently used, e.g., the most frequently used FU is FP-Div that implements

FP division; it has less than 2% usage even in a FP program. In practice, it is also possible

to aggregate several small FUs into a super-FU. For example, several complicated ALU

operations such as complex masking, bit scan, bit testing, and check speculation require

physically different circuits, but can be treated as one CInt FU [69] as shown in Table 5.

Instead, we treat each physically isolated unit as a fine-grained FU in this thesis. As a result,

bit-scan has a much low usage than CInt.

53

According to [55], we estimated the area breakdown of these groups is 20%, 5% and 75%

respectively of the area of whole execution stage (5.70mm2 in one 45nm Nehalem Core).

Here we only consider the interface logic in the second group and ignore the buffer area.

Our generic functional unit (GFU) is designed, by taking advantage of usage and area

characteristics of above three groups, to achieve the best trade-off among redundancy, hard-

ware cost, performance impact, and reliability improvement.

• For FUs in the first group, we use GFU/m, a macro-based reconfigurable FU design

that reuses large logic blocks of Int-ALU, FP-ADD, Int-MUL and FP-MUL. GFU/m helps to

reduce area overhead and minimize performance degradation when adopting redundancy

to improve core reliability.

• For FUs in the second group, we use GFU/d, a design that leverages replication-based

designs in the literature [67] for the interface logic, and sparing lines or ECC for SRAM

buffers [25]. For the area overhead, here we only consider the duplication of the interface

logic.

• For FUs in the third group, we use GFU/s, a STT-based fully reconfigurable FU design

that can be dynamically reconfigured to any FU in this group. GFU/s reduces area

overhead by choosing STT over SRAM, gains flexibility by choosing LUT-based design,

and incurs small performance overhead due to low usage of FUs in this group.

Next, we discuss the details of each GFU strategy.

5.2.2 GFU/m: A Macro-based GFU

In this section we study the structure of four FUs to be covered by GFU/m: integer adder

(Int-Add), integer multiplier (Int-Mul), floating point adder (FP-Add) and floating point

multiplier (FP-Mul). Based on the analysis of redundant structures, we use GFU/m that

can be configured to any of 4 FUs by reusing redundant logic blocks.

Fig. 21(a) shows the original structure of four FUs. The integer adder (Int-Add) is a

widely used and fast 64-bit Kogge-Stone (“ks” in Fig. 21(a)) look-ahead adder that gener-

ates carry in 6 (log2 64) stages. The integer multiplier (Int-Mul) is comprised of “Partial

Product”, “4:2 CSA Wallace” (4:2 compressor based Wallace Tree Carry Save Adder (CSA))

54

and final 128 bit Kogge-Stone adder. “Partial Product” generates 64 partial products from

multiplicand and multiplier. “4:2 CSA Wallace” computes the carry save sum of 64 partial

products in 4 (log2(64/4)) stages. Finally the 128 bit Kogge-Stone adder is used to calculate

final product based on the carry save sum. Considering Int-Add and Int-Mul we observe one

redundant block, since 64 bit Kogge-Stone adder can be formed by slicing part of 128 bit

Kogge-Stone adder.

A
d

d
 S

p
ecific

C
o

m
m

o
n

Backend

A
d

d
 S

p
ecific

C
o

m
m

o
n

Frontend

In
tA

d
d

5
6

k
s

P
artial P

ro
d

u
ct

4
:2

 C
S

A
 W

allce

In
tA

d
d

1
0

6
k

s

IntMul53

M
u

l S
p

ecific

C
o

m
m

o
n

Frontend

M
u

l S
p

ecific

C
o

m
m

o
n

Backend

P
artial P

ro
d

u
ct

4
:2

 C
S

A
 W

allce

In
tA

d
d

1
2

8
k

s

IntMul64IntAdd64ks

Int Add 64bit Int Mul 64 bit FP Add 64 bit FP Mul 64 bit

(a) Structure of original FUs.

In
tA

d
d

6
4

k
s

M
u

l S
p

ecific B
ack

en
d

A
d

d
 S

p
ecific B

ack
en

d

C
o

m
m

o
n

 B
ack

en
d

P
artial P

ro
d

u
ct

4
:2

 C
S

A
 W

allace

M
u

l S
p

ecific F
ro

n
ten

d
A

d
d

 S
p

ecific F
ro

n
ten

d

C
o

m
m

o
n

 F
ro

n
ten

d

In
tA

d
d

1
2

8
k

s R
est

Int Mul Input

Int Add Input

FP Input

In
t o

r F
P

 A
d

d

A
d

d
 o

r M
u

l

Int Add Output

Int Mul Output

In
t o

r F
P

 M
u

l

6
4

b
 o

r 1
2

8
b

 A
d

d

FP Output

Int Mul 64 bit

Int Add 128 bit

(b) Configurable GFU/m structure.

Figure 21: (a) shows the building logic blocks of Int-Add, Int-Mul, FP-Int and FP-Mul. By

connecting different blocks, the GFU/m design in (b) could be configured to any of 4 FUs

by controlling the (de)multiplexers

55

When counting FP-Add and FP-Mul in Fig. 21(a), there are more redundant blocks.

Both FP-Add and FP-Mul are comprised of front-end, mantissa calculation and back-end.

The common front-end units include floating point format unpacking and de-normalized

number detection. The remaining part of front-end is operation specific: for FP-Add, there

are exponent difference calculation, alignment and swapping; for FP-Mul, there are exponent

addiction. The mantissa calculation units are 56 bit integer adder for FP-Add and 53 bit in-

teger multiplier for FP-Mul. In operation specific back-end, there are invert/complement for

FP-Add and simple shifting for FP-Mul. And the common back-end units include normal-

ize number, rounding, exception handling and FP format packing. Based on the structure

analysis, the common front-end and back-end units could be shared by both FP-Add and

FP-Mul. Also, instead of using separate 56 bit integer adder for FP-Add and 53 bit integer

multiplier for FP-Mul in mantissa calculation, Int-Add and Int-Mul could be reused. Hence

there are considerable redundant logic blocks when counting all four FUs.

Table 6: Control Signals and Added Overhead for Reconfiguring GFU/m.

FU Add/Mul Int/FP Mul Int/FP Add 64b/128b Add Overhead

Int-Add NA NA Int 64b 4 (de)Mux

Int-Mul NA Int NA 128b 4 (de)Mux

FP-Add Add NA FP 64b 6 (de)Mux + 64b Add

FP-Mul Mul FP NA 128b 6 (de)Mux + 64b Mul

The GFU/m design is motivated by removing the redundant logic blocks and configuring

minimum set of logic blocks to form any of four FUs. Fig. 21(b) shows the (de)multiplexer-

based configurable design: by properly setting the (de)multiplexers, any of four above FUs

could be configured. Table 6 shows the control signals setting for different reconfigurations.

For example, when “Int Add” and “64b Add” are selected, the “IntAdd64ks” is configured

on the path between “Int Add Input” and “Int Add Output”, forming a 64 bit integer adder.

When “FP Mul” and “128b Add” are selected, the front-end, 128bit integer multiplier and

back-end form a 64 bit floating point adder.

By incorporating simple (de)multiplexers, the modification of GFU/m on original FU is

minimal, while it still incurs overhead. The last column in Table 6 lists factors for added

performance overhead. For Int-Add and Int-Mux, only 4 (de)multiplexers are added on the

56

path. For FP-Add and FP-Mul, besides added 6 (de) multiplexers, larger and potentially

slower mantissa calculation units are used: 64b instead of 56b integer adder for FP-Add, and

64b instead of 53b integer multiplier for FP-Mul. However, the evaluation in Section 5.4.2

shows the performance overhead is minimal, as listed as extra cycles in Table 7 for four FUs.

Comparing to STT-LUT based GFU/s (discussed later), GFU/m has small performance

overhead since it’s built on optimized ASIC design. For area overhead, GFU/m is smaller

than summing up all individual FUs’ area due to removing redundant logic blocks. The

result in Section 5.4.2 shows GFU/m is 65% of area of all FUs.

Table 7: The extra latency of GFU/m.

FU Int-ALU Int-Mult FP-Add FP-Mult

ASIC Latency 1 4 6 8

Extra Latency +1 +2 +2 +2

5.2.3 GFU/d: A Replication based GFU

GFU/d is a combination of previous proposed recovery schemes. The load/store queue,

reorder buffer, and branch predictor are comprised by SRAM-entries and supporting logic.

For SRAM-entries, GFU/d adopts designs such as sparing entries [25] or ECC to improve

reliability. By reconfiguring the interface logic, the sparing entries are used to replace the

faulty entry. Reorder buffers are covered by the simple redundancy and reconfiguration. For

the supporting logic, different schemes are used for different structures. In load/store queue

logic, there are comparators in the CAM structure that supports simultaneous associative

searches to honor memory dependencies and memory consistency models [53]. Similar to

fully associative cache, extra entries with companion comparators could be added as backup

with acceptable area overhead. For branch predictors, supporting logic such as priority

encoders and comparators use structural duplication [67] with 100% area overhead for the

logic. The supporting logic duplication does not incur significant area overhead since it takes

a small area of the whole structure.

57

5.2.4 GFU/s: A STT-based Reconfigurable GFU

To recover FUs in the third group, GFU/s utilizes LUT (lookup table) based reconfigurable

circuit to replicate a FU on demand. While LUT-reconfiguration is widely adopted in previ-

ous FPGA design, the major difference between GFU/s and FPGA-design is that GFU/s is

implemented at fine-grained FU level and targets at redirecting the execution of one instruc-

tion to the reconfiguration unit. The FPGA design, in contrast, often targets at redirecting

a sequence of instructions for performance improvement. As a result, GFU/s incurs perfor-

mance degradation (although small) but greatly improves reliability.

The motivation of adopting STT-based rather than SRAM-based LUT comes from the

area and power advantages that STT provides. Given that STT cell (25F2) is significantly

smaller than SRAM cell (140F2), a STT-based LUT is about 25% of SRAM-based LUT [80].

In addition, STT is CMOS compatible such that STT-based LUT can be seamlessly inte-

grated on chip. For the disadvantages, STT write consumes much high power than that of

SRAM. However, since reconfiguration of GFU/m happens much less frequently, write power

of STT/s during reconfiguration is not a concern.

Replacing one FU using STT-based LUT still incurs large area overhead. Recent study [79]

shows that implementing an out-of-order core using SRAM-based LUT takes 17× area of

original core in ASIC implementation, and different structures have varying area ratio. Al-

though the area ratio of some function units is between only 4.7× to 7× with supporting

DSP and/or memory, we estimate replacing one FU using SRAM-based LUT takes 12× of

the original FU size. Then we evaluate the area overhead of STT-based LUT design. Both

SRAM-based and STT-based LUT design have two parts, logic (22%) and routing resource

(78%). Using STT to replace SRAM cell reduce the logic area by 48% [54]. Routing re-

source (78%) is comprised of memory (35%) and interconnects+buffers+mux (43%) [44].

Using STT to replace memory (35%) in routing resource reduces 26.25% of total FPGA

area. Considering STT replacing the memory both in logic and routing resource, the area

of STT-based LUT design is 36.81% smaller than SRAM-based LUT design (12× of ASIC

design). In summary, we estimate up to 8× area overhead for GFU/s to replace one FU.

58

However, compared to the total area of all FUs (at least 25+ and growing) covered

by GFU/s, the GFU/s area is acceptable. One potential issue is that if the largest FU is

considerably larger than rest FUs, covering it by up to 8× GFU/s incurs intolerable overhead.

We set a limit on the GFU/s size to be as large as 35% of total area of all FUs covered by

GFU/s. If the GFU/s implementation of some FUs exceed this limit, they are not capable

of being covered by GFU/s and we resort to using software emulation to implement the

instruction at a larger performance overhead. Implementing all FUs covered by GFU/s and

evaluating their area are not likely practical workload, and we would design some sample

FUs based on which statistical analysis is performed to evaluate GFU/s coverage.

We estimate the latency of GFU/s is about 2× of original latency (in ASIC design flow)

of each individual FU, based on the performance evaluation of various circuit benchmarks

implemented in both SRAM-based LUT FPGA and ASIC design flows in [39]. Considering

the design space for SRAM-based LUT FPGA is non-trivial, [39] evaluated two representative

options: LUT-only design, and the hybrid design built on LUT, memory and DSP. The

critical path delay of SRAM-based LUT FPGA is 3.2× (LUT-only) or 2.1× (hybrid) of the

delay of corresponding ASIC implementation. Since hybrid design is widely used in current

FPGA, we also adopt it GFU/s design. The latency of GFU/s is expected to be smaller

than SRAM-based LUT design, due to its reduced size and shorter interconnection. Hence

2× is our conservatively estimation.

5.2.5 Integrating GFU in the Execution Stage

To dynamically replace a FU and redirect instructions using that FU to GFU, we need to

integrate GFU in the data-path within the execution stage. As shown in Fig 22, the FUs

of our baseline Intel Nehalem-like core architecture [64, 69] are clustered to use six ports of

the unified reservation stations (URS). Some FUs such as Int-ALU has three copies and is

distributed to use port 0, 1, and 5 respectively.

A naive integration of GFU in the data-path is to add another port to URS, which tends

to incur unpredictable complexity and cost. Instead, our design introduces a reroute logic

that consists of de-multiplexers and a reconfiguration control circuit as shown in the dash-

59

line box in Fig. 22. When an instruction using the being recovered FU is sent from URS

to certain FU cluster via the port, its opcode is compared in parallel by XNOR circuit to

control the de-multiplexers for determining whether the instruction is rerouted to GFU, or

sent to original FU. For example if ALU0 is detected vulnerable by online self-test and Conf

GFU decides recovery on ALU0 is needed, conf0 is set to the opcode that matches that of

the instructions running on ALU0. In this way, all instructions that was scheduled to run

on ALU0 are rerouted to GFU for execution. If none of FUs in Port0 need recovery, conf0 is

set to a code that does not match any instruction running on FUs in Cluster 0. Due to the

space limitation, only configuration signal conf0 controlling Port 0 is shown in Fig. 22, while

the Conf GFU generates control signals for other ports. Although the de-multiplexer is

added on the critical path, its simple structure adds negligible latency overhead after circuit

optimizations such as gate resizing.

Reorder−BufferRegister File

FMUL

ALU0

Self Test Unit

Conf GFU

Datapath

Reconfiguration

Port0 Port1 Port5Port2

Unified Reservation Stations (URS)

GFU...

Reroute to GFU

10 0 10 1

CL2CL1 CL5
CL0

sel sel selconf0 XNOR

other conf o
n

li
n

e
se

lf
 t

es
t

fucode

Figure 22: Integrating GFU (rightmost block in dash-dot line box) in the execution stage by

incorporating de-multiplexer based reroute logic (in right dash-line box) and configuration

logic (in left dash-line box)

60

5.3 RELIABILITY-AWARE SCHEDULING

For GFU/m and GFU/s, only one FU in each group can be recovered at a time. Therefore

we prefer to choose the FU by recovering which we can achieve the largest chip lifetime

improvement. On the other hand, naively choosing one FU (e.g., choosing FP-Mult when

running FP applications) might incur large performance degradation. Therefore, a reliability-

aware FU choosing and instruction scheduling scheme is required to find the best trade-off

between reliability and performance.

In the thesis, a greedy two-step approach is developed to improve hardware reliability

while minimizing performance degradation.

5.3.1 Step 1: Determine the FU to Recover

In the first step, we conduct online monitoring that collects the following information.

• An online self test circuit is integrated to each FU to detect leakage current (due to

TDDB effect) and/or timing margin (due to BTI effect). For the former, [16] proposed

to track TDDB stress using a simple Iddq testing circuit. For the latter, previous studies

have proposed the adoption of a series of delay buffers to capture the timing margin left

in each FU [42, 7].

Note that the timing circuit is only added to the FUs whose BTI stress may fail the FU.

For a simple logic whose slowdown shall not affect cycle time, there is no need to track

its BTI effect. On the other hand, the testing circuit for TDDB is required per FU.

• Several sampling counters are added into the instruction scheduling unit such that they

can record the usage information in the past interval.

Based on the collected run-time information, we develop a simple heuristic to choose the

FU that has the largest value as follows.

MAX∀FUi(
Mi

f(Di+di
Di
× Ui)

) (5.1)

where Mi indicates the timing and leakage current margin left for FUi; Ui indicates the usage

in percentage for the past sampling interval; Di and di are the original latency of FUi and

61

the extra delay due to adopting GFU. Function f(x) normalizes the usage to balance the

weight of reliability and performance degradation. Different performance degradation values

are normalized closer if we weight more on reliability improvement.

When a functional unit FUx is chosen in the first step, we can reconfigure GFU/m (or

GFU/s) to recover FUx, redirect instructions that need FUx to GFU/m (or GFU/s) accord-

ingly, and then power off the original circuit of FUx in the core. Since reconfiguration GFU/s

can take tens of milliseconds or longer, it should not be done frequently. In our design, after

choosing one FU, GFU/m (or GFU/s) will be reconfigured to be a copy of that FU for at

least one hour.

When choosing a FU to recover, we only focus on all original FU, excluding GFU/m

and GFU/s. Shutting down GFU/m and GFU/s for recovery is same as not adding GFU/m

and GFU/s at all. Since GFU is added to improve reliability of original FUs, we assume we

always use it.

5.3.2 Step 2: Minimize Performance Degradation

After having determined the appropriate FU to recover, we focus on minimizing performance

degradation in the second step. Step 1 actually estimates the performance degradation but

it is done very conservatively. In particular, it assumed that each instruction redirection de-

grades the overall performance the same. This is often too conservative as we will elaborate.

5.3.2.1 Handling GFU/s based Recovery Due to different usage frequency and la-

tency overhead, GFU/m and GFU/s are utilized differently in recovering FU. For GFU/s-

based recovery, the unit under recovery is powered off for natural recovery and requesting

instructions are redirected to GFU/s. Although GFU/s unit almost doubles latency, due to

low usage of the replaced FU, the performance impact is small to negligible. The reason that

FU in the third group has low usage is based on our usage-aware grouping that puts low

usage FUs into this group, and also our FU isolation that recognizes FU at fine granularity.

In extreme cases that a FU in this group has extremely high usage, e.g., an attack-

ing/buggy program uses a vulnerable FU FP-Add or FP-Mul intensively, there are two op-

62

tions: 1) leaving it to the OS to reschedule it to another core, or 2) staying but using the

instruction steering design as described next.

5.3.2.2 Handling GFU/m based Recovery For the FUs in the GFU/m group (Sec-

tion 5.2.2), they have relatively high usage. Even though we use fast GFU/m to recover and

there may be multiple copies, we still have observable performance degradation. Such per-

formance degradation might be a big issue when there are tight constraints on performance

degradation, such as in real-time computing. In this Section we discuss how to further reduce

performance overhead by incorporating slower GFU/m, depending on whether the FU has

multiple copies or not. If the FU is unique 1 and its use is quite high in some phases, we use

Switch to Original FU to tradeoff some recovery opportunity for less performance loss. If

the FU has more than one copies, we use Instruction Steering technique to identify critical

instructions and steer them to original FUs, only leaving uncritical instructions running on

slower GFU/m to reduce performance overhead.

Switch to Original FU

Switch to Original FU handles the core case that FU under recovery is frequently used

and considerate performance loss is observed. Switch to Original FU determines whether

to switch back from slower GFU/m to fast original FU under recovery so that performance

loss is avoided at the cost of compromised reliability improvement. Although the GFU/m

configuration is fast (controlling (de)multiplexers, powering on/off original FU and stabilizing

the voltage takes up to hundreds of cycles. Hence we limit epochs (minimum switching

interval) in coarse level (seconds) to prevent frequent switching between original FU and

GFU/m. If in the past epoch, the sampled number of critical uses issued to GFU/m is

above a threshold, then it powers on the FU being recovered for the next epoch, and use

it for all instructions. When the FU being recovered is powered on, it loses the natural

recovery for one entire epoch. Therefore, choosing the proper threshold illustrates a trade-off

between performance degradation and reliability improvement. However, we expect unique

FU configuration is less likely for GFU/m group, since it is logical to use multiple copies

1FP-Mul and FP-Add in Intel Nehelem are unique. However in [20], the Intel Nehelem core has 2 FP-
Add/Mul. Also, in IBM Power 7 there are 2 FP FUs.

63

for frequently used FU (which falls into GFU/m group) when there are more transistors in

future technology generations. [20] use two FP-Add/Mul FUs in the Intel Nehalem core

modeling and IBM Power 7 processor has two FP FUs.

I2

I3

I5 I6 I7

I4

I1

On critical path

Off critical path

Off critical path

cycle 2cycle 1 cycle 3 cycle 4 cycle 5

Figure 23: A simple instruction dependency graph. Both I1 and I4 use a specific FU.

However, I1 is the critical use while I4 is not.

Instruction steering (IS)

I nstruction steering (IS) is developed based on the observation that not all instructions

executed on a specific FU are of the same impact on slowing down performance. If the

instruction is not on critical path, running it on a slower FU has no performance overhead.

Fig 23 illustrates a simple instruction dependency graph. Since instruction I4 does not reside

on the critical execution path, executing it on a slower FU would not generate performance

degradation. On the other hand, instructions I1, I2, I5, I6, I7 are critical, i.e., slowing

down their execution may slow down the program. By identifying the critical instructions

and steering them to original FUs, the performance overhead of using slower GFU/m is

further reduced. Note that Instruction Steering is only feasible when there are multiple

copies of FU, which is probable for FUs in GFU/m.

Instruction Steering relies on lightweight and accurate criticality analysis at run-time.

We find the concepts of instruction slack and criticality proposed in [13] useful in illustrating

how the slower function unit affects the program performance. The results are promising:

doubling the execution latency (FU running at half speed) or delaying 5 cycles of greater than

75% instructions on average for most applications do not affect the performance in execution

stage due to sufficient slacks. However, it is also observed that there is no instruction type

64

which nearly always has slack and it’s necessary to predict criticality. Hence [13] proposes

the history-based predictor to answer the following question “for a dynamic instruction i,

does it have n cycles of slack (where n is the extra latency introduced by GFU/m)?”. In

this section we propose a light-weight heuristic predictor to support Instruction Steering.

Lightweight critical-use detector.

IP1 IC2

IP2 IC3

IC1

cycle 2cycle 1 cycle 3 cycle 4 cycle 5

IS2

IS1

Figure 24: Issue slack is the time slack from the cycle when producer instruction finishes to

the cycle when its first consumer starts execution: the issue slack of IP1 (producer 1) is 2

(to IC2, consumer 2); and the issue slack of IP2 (producer 2) is 1 (to IC2, consumer 2)

An intuitive perspective is used to extract slacks other than the expensive delay-and-

observe approach in [13] and a simple heuristic is proposed to detect critical instructions

with small slacks. We introduce two concepts, issue slack (IS) and commit slack (CS). The

IS of one instruction is the time slack from the cycle when the instruction finishes execution

to the cycle when its first consumer instruction starts execution. In Fig 24, the producer

instruction IP1 has two consumers IC2 (first) and IC1 (second), and the IS of IP1 is 2 (from

cycle 1 to cycle 3). Similarly, the IS of producer instruction IP2 is 1. We classify instructions

to 2 groups: IS1 instruction with 1 cycle issue slack, and IS2+ with more than 1 cycle issue

slacks. If IS2+ instructions (like IP1) run on slower GFU (+1 cycle), its consumers aren’t

delayed since its IS is larger than 1 which could tolerate the extra cycle induced by slower

GFU. On the other hand, if IS1 instructions (like IP2) run on slower GFU (+1 cycle), its first

consumer (IC2 for IP2) is delayed for one cycle. Hence, delaying IS1 (like IP2) instructions

delay its consumers and may affect overall performance. Although delaying IS2+ (like IP1)

instructions does not affect consumers, it may indirectly blocks commit queues.

65

CS1

CS3

I1

I3

I4

I6

cycle 3 cycle 4cycle 2cycle 1

I2

cycle 5

I1 Commit

I2 Commit

CS1 I3 Commit

Figure 25: Commit slack is the time slack from the cycle when instruction is ready to commit

to the cycle when its actually commits: I1 commits 1 cycle after it’s ready, and its CS is 1;

I3 commits 3 cycles after it’s ready, and its CS is 3.

Similarly, the CS is defined as the time slack from the cycle when the instruction is

ready to commit and placed in commit queue to the cycle when the instruction is actually

committed. In Fig 25, I3 has three cycle commit slack (CS2+) as it is ready to commit at

cycle 2 and actually commits at cycle 5. Similarly I1 has one cycle slack (CS1). Due to

in-order commit, I3 cannot commit early as another instruction I2 (ahead of I3 in ROB)

is slow. Such an instruction tends to block more instructions (not just I2) such that I3 at

issuing time would see more instructions in the ROB. On the other hand, I1 does not wait

for anyone such that I1 at issuing time should see less instructions in the ROB. Slowing I1

may quickly accumulate entries in ROB and slows the execution. However, slowing I2 tends

to have local impact such as slowing down I4 but it cannot commit anyway.

Classifying instructions to IS1, IS2+, CS1 and CS2+ provides useful clues to detecting

critical instructions: CS2+ and IS2+ instructions are off critical path; either IS1 or CS1

instructions are candidates on critical path. Our simulation results on replacing ALU2 by

GFU/m show that IS1 instructions take up 10% to 15% of, and CS1 instructions take up

10% to 25% (INT benchmarks) and 1% to 15% (FP benchmarks) of all instructions on one

ALU. This confirms large portion of instructions are off critical path [13]. Further study

66

0

1

2

3

4

5

6

7

8
x 10

7

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

hm
m

er

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

S
lo

w
d
o
w

n
 c

y
c
le

s
 i
n
 i
s
s
u
e
/c

o
m

m
it
 s

la
c
k

Int bmk Slowdown

Slowdown cycles

IS1 uops

CS1 uops

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

bw
av

es
m

ilc

ze
us

m
p

gr
om

ac
s

ca
ct
us

AD
M

le
sl
ie
3d

na
m

d

G
em

sF
D
TD

to
nt

o
lb
m

sp
ec

ra
nd

S
lo

w
d
o
w

n
 c

y
c
le

s
 i
n
 i
s
s
u
e
/c

o
m

m
it
 s

la
c
k

Fp bmk Slowdown

Slowdown cycles

IS1 uops

CS1 uops

Figure 26: Comparisons of slowdown cycles when ALU2 is replaced by GFU/m with 1 extra

cycle latency, and CS1 and IS1 instructions numbers show strong correlation of slowdown

cycles and number of CS1 instructions in both INT and FP benchmarks.

shows that CS1 instructions are more likely to be critical than IS1 instructions. In Fig. 26,

the raw number of CS1 and IS1 instructions in baseline processor core are compared to extra

cycles when ALU2 is replaced by GFU with one extra cycle latency in INT benchmarks. CS1

instructions are generally more than IS1 instructions (especially in perlbench, gcc, h264ref,

astar), and it shows a strong correlation with CS1 instructions and slowdown cycles. The

results are similar in FP benchmarks: although there are much more IS1 instructions than

CS1 instructions, the slowdown cycles are generally closer to number of CS1 instructions.

The fact CS1 instructions are more critical than IS1 instructions are intuitive: 1) CS1

instructions directly blocks the in-order commit queue if slowed down; 2) consumers of IS1

instructions may not be critical instructions. However, portion of IS1 instructions are also

critical when their consumers (for example, load, and other long latency instructions) are

critical, as observed in [13].

A simple heuristic for detecting CS1 instructions is used based on the observation that

the distance to reorder buffer (ROB) tail (where commit happens) strongly correlates with

whether the instruction is CS1 or not: 90% CS1 instructions are within 13 entries range from

ROB tail in almost all INT and FP benchmarks. Fig 27 and Fig 28 show the accumulated

instruction count versus distance to ROB tail for CS1 (square symbol) and CS2+ (circle

67

0
5
0

1
0
0

1
5
0

02468

1
0

x
 1

0
7

rp
e
 a

lu
2
−

−
p
e
rl
b
e
n
c
h

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
b
z
ip

2

0
5
0

1
0
0

1
5
0

05

1
0

1
5

x
 1

0
7

rp
e
 a

lu
2
−

−
g
c
c

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
m

c
f

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
h
m

m
e
r

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
lib

q
u
a
n
tu

m

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
h
2
6
4
re

f

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
o
m

n
e
tp

p

0
2
0

4
0

6
0

8
0

0123
x
 1

0
8

rp
e
 a

lu
2
−

−
a
s
ta

r

Figure 27: CS1/CS2+ instruction count (accumulated count in y axis) and distance to ROB

tail (x axis) in ALU2 with integer benchmarks show most CS1 instructions (in square symbol)

are generally close to ROB tail while the CS2+ instructions have variable distance to ROB

tail.

68

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

2
.5

x
 1

0
8

rp
e
 a

lu
2
−

−
b
w

a
v
e
s

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

2
.5

x
 1

0
8

rp
e
 a

lu
2
−

−
m

ilc

0
5
0

1
0
0

1
5
0

0123
x
 1

0
8

rp
e
 a

lu
2
−

−
z
e
u
s
m

p

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
g
ro

m
a
c
s

0
5
0

1
0
0

1
5
0

05

1
0

1
5

x
 1

0
7 rp

e
 a

lu
2
−

−
c
a
c
tu

s
A

D
M

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
le

s
lie

3
d

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
n
a
m

d

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8 rp

e
 a

lu
2
−

−
G

e
m

s
F

D
T

D

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

x
 1

0
8

rp
e
 a

lu
2
−

−
to

n
to

0
5
0

1
0
0

1
5
0

0

0
.51

1
.52

2
.5

x
 1

0
8

rp
e
 a

lu
2
−

−
lb

m

0
5
0

1
0
0

1
5
0

05

1
0

1
5

x
 1

0
7
rp

e
 a

lu
2
−

−
s
p
e
c
ra

n
d

Figure 28: CS1/CS2+ instruction count (accumulated count in y axis) and distance to ROB

tail (x axis) in ALU2 with floating point benchmarks show CS1 instructions (in square

symbol) are less and generally close to ROB tail while CS2+ instructions have variable

distance to ROB tail.

69

symbol) in ALU2 with SPEC2006 integer and floating point benchmarks. In integer bench-

marks, most CS1 instructions are close to ROB tail. We set the threshold of distance to ROB

tail such that 90% CS1 instructions are included. Although the threshold varies in different

benchmarks, we conservatively set the threshold to be 13. One drawback of the simple heuris-

tic is mispredicting some CS2+ instructions to be CS1 instructions and causes unnecessary

instruction steering. This misprediction is a minor problem since 1) in integer benchmarks

the misprediction rate is relatively low and 2) in floating point benchmarks although the

misprediction rate is high, the absolute count of mispredicted CS1 instruction is small. This

heuristic is also intuitive: the further the instruction is from ROB head when issued, the less

likely it is actually committed soon after ready to commit. The distance to ROB tail could

be simply tracked in existing issue logic and is easy to implement. Comparing to the more

generalized slack predictor approach[13], it does not need additional hardware and thus has

lower hardware overhead. The results show that scheduling detected CS1 instructions to

original FUs reduce the performance overhead, as shown shortly in Section 5.5.3.

• Whether there are some more effective heuristics in detecting CS1 instructions. For

example, instead of using the number of instructions between the current instruction

and re-order buffer queue tail, a potentially more accurate metric would be accumulated

execution latency of the instructions between the current instruction and the re-order

buffer queue tail.

• Whether some IS1 instructions are also critical. We would utilize the history-based

predictor to help identify the critical IS1 instructions. If a large portion of IS1 instructions

are critical in some benchmarks, we would explore heuristics to detect them. For example,

if its consumer is critical or it has many consumers, IS1 instruction may be critical.

• Considering both IS1 and CS1 instructions may be critical, we would hybrid heuristics

to detect both critical IS1 and CS1 instructions.

• Compare our heuristic based critical instruction predictor to the history-based predictor

in terms of accuracy and implementation overhead. We would also use history-based

predictor to predict IS1 and CS1 instructions and evaluate performance when IS1 and

CS1 instructions are detected and saved for original FU.

70

• Besides evaluating the heuristic based predictor on ALU, more evaluations are need on

other FUs, such as FP-Add and FP-Mul. For FP-Add and FP-Mul that have extra 2

cycles latency, we would also consider CS2 and IS2 instructions in addiction to CS1 and

IS1 instructions.

5.3.3 Discussion on OS/Compiler reliability scheduler.

Different from using hardware scheduler to determine when and how to engage GFU to

replace vulnerable FUs, an alternative is using OS or compiler level techniques to offload

heavy activity on vulnerable FUs. For example, OS may put processes with more idle cycles

(usually due to frequent cache misses) on vulnerable cores. Also compiler may schedule less

add instructions on vulnerable adders.

The OS reliability scheduler is a good complementary approach to hardware scheduler.

This is very useful when different processes exercise different FUs, such as mixing INT and

FP processes. However, the compiler approach is less practical since optimized compilations

processors’ vulnerable FUs are varied and changing overtime

5.4 EXPERIMENTAL METHODOLOGY

5.4.1 Architecture Modeling

An Intel Nehalem-like out-of-order core is modeled with parameters in Table 8. Our simula-

tion were performed using a cycle accurate simulator PTLsim [56]. The execution stage area

in one core is 5.72mm2 (2.54mm x 2.25mm), estimated based on the floor-plan in [36] that

has Instruction Decode, Instruction Fetch & L1 I-Cache, L1 D-Cache, TLB, Branch Predic-

tion, L2 D-Cache, Out-of-Order Scheduling & Retirement, Memory Ordering & Execution.

Execution stage is the largest component in core except for L3 cache. It is also dominated

by combinational logic. SPEC2006 CPU benchmark suite (9 integer and 11 floating point

benchmarks) is used to evaluate the performance overhead of our GFU design. The warm

up phase is skipped and 1 billion instructions are simulated to compute the IPC.

71

Table 8: Simulation configuration.

Out-of-order Execution

4-wide fetch/commit, 6-wide issue,
128 ROB, 32 FQ, 48 IQ, 48LQ, 32SQ,

96 Int-PRF, 64 FP-PRF

Memory Hierarchy

L1 I/D-Cache: 32KB, 4/8 way, 64B line size, 3-cycle
L2 Cache: 256KB, 8 way, 64B line size, 10-cycle
L3 Cache: 8MB, 16 way, 64B line size, 30-cycle

Benchmarks

INT: perlbench, bzip2, gcc, mcf, hmmer, libquantum,
h264f, omnetpp, astar

FP: bwaves, milc, zeusmp, gromac, cactuasADM, leslie3d,
namd, GemsFDTD, tonto, lbm, specrand

5.4.2 GFU/m Circuit Modeling

Four individual FUs (Int-Add, Int-Mul, FP-Add and FP-Mul) and GFU/m are modeled in

VHDL files according to the design in Section 5.2.2. Structural style design is used in im-

plementing the 64 bit Int-Add and Int-Mul (double precision). In FP-Add and FP-Mul, the

front-end and back-end units are implemented from fpu double design from opencores [52].

Since the essential mantissa calculation in fpu double uses simple behavioral design that

generate inferior net-list, we replace it with structural design of 56 bit Kogge-Stone integer

adder for FP-Add and 53 bit integer multiplier for FP-Mul. The GFU/m design follows

Fig. 21(b) that is comprised of 64 bit Kogge-Stone integer adder, 64 bit integer multiplier,

front-end and back-end unit and (de)multiplexers. All VHDL design files are synthesized in

Design Compiler [27] and mapped to 45nm FreePDK technology library [15] for area and

delay evaluation that is shown in Section 5.5.1. The layout and its evaluation on area, delay

and power is scheduled for future work.

5.4.3 Reliability Modeling

Two sources, manufacturing time Process Variation (PV) and in-field stress contribute to

wear-out that is represented as diminishing guard-band. The guard-band is the margin

72

between the specified metric and real metric (for example, delay, or frequency). Guard-band

is widely used in manufacturing such that during the warranty period the chip’s real metric

degrades while still within the margin to the specified metric. Due to PV, the guard-band of

each function unit is different. Under the same stress, the function unit with less guard-band

is more vulnerable. We used VARIUS [62] to generate voltage threshold (Vth) and effective

length (Leff) samples and then modeled the critical path delay each function unit. The

guard-band variations were also calculated accordingly. The in-field aging mechanisms, BTI

and TDDB, follow the models presented earlier in Chapter 2.

5.5 EXPERIMENTAL RESULTS

5.5.1 Hardware Overhead

Monitoring BTI and TDDB introduced stress at run-time is required to determine the can-

didate unit under recovery: the most vulnerable FUs. The timing monitor circuit (for BTI)

consists of a series of 12 buffers and latches per FU, and share the pulse generation, delay

calibration and encoder circuit among all FUs [16]. The Iddq test circuit (for TDDB) requires

three transistors per FU. In total, the hardware overhead for testing TDDB and BTI stress

is below 1% of total area of the execution stage.

Table 9: GFU/m Hardware Area/Delay Evaluation

FU Int-Add Int-Mul FP-Add FP-Mul GFU/m with (de)mux

Delay(ns) 1.4 4.32 7.21 10.98 +0.04/+0.06/+0.22/+0.5

cycle 1 4 6 8 +1/+1/+2/+2(conservative)

area(µm2) 2796 88185 33133 106925 122139

The delay, cycle number and area of GFU/m design are listed in Table 9, collected from

Design Compiler reports. The cycle time is set at 1.4ns such that Int-Add finishes in one

cycle 2. The delay overhead of GFU/m when configured to Int-Add or Int-Mul is 0.06ns

and 0.09ns. This is considered within 1 cycle, since configured (de)multiplexers behave as

2Int-Add in commercial processors are faster than 1.4ns due to heavy optimizations.

73

added resistance on the conducting path and the effect on delay is negligible. The delay

overhead of GFU/m when configured to FP-Add and FP-Mul is 0.24ns and 0.53ns, due to

the over-design of mantissa calculation by reusing Int-Add and Int-Mul. Although the delay

overhead is still within 1 cycle, we conservatively assume it’s within 2 cycles with extra

wiring overhead. For the area overhead, the GFU/m is 52.9% of total area of all 4 FUs due

to removing redundant logic blocks. The (de)multiplexers takes 1.82% of GFU/m area.

For GFU/d, the area overhead is 100%. However, GFU/d only serves as the interface

to Load Store Queue and it only takes 5% of total execution unit area. There is negligible

latency and power overhead caused by multiplexers while the function unit itself is identical

to the original one.

For GFU/s, as discussed in Section 5.2.4, due to the uncertainty of individual function

units’ area, the limit of 35% area overhead for GFU/s is imposed. Since 35% area of GFU/s

may not cover some large FU implementation and incur non-perfect coverage, coverage

analysis is performed based on the implementation and evaluation on 3 sample function

units: integer divider, CRC and AES generator for DIV, CRS and AES instructions. The 3

function units are chosen due to their complexity and large area to implement thus provide

an upper bound estimation of GFU/s implementation.

The integer divider design is an implementation of one 53 bit Radix-4 SRT divider (widely

used in commercial processors) generated by tool divgen [47] that is to be used in double

precision floating point divider. The Radix-4 SRT design generates 2 bits of quotient every

cycle and the latency is 27 cycles. The CRC hardware function unit calculates the Cyclic

Redundancy Code (CRC) to check errors in data transmitted over unreliable medium such

as network. The CRC generator design [46]’s core component is the Galois Field Multiplier

that is to be mapped to a netlist of XORs up to 10 levels. The 128 bit key AES cipher [71]

calculates the encrypted code using the 128 bit key to protect sensitive data. The core

components are key expanding unit and 3 permutation units. The operation takes 12 cycles

to finish. All three FUs are implemented in ASIC and FPGA work flows in to compare the

area and latency. The ASIC work flow is same as that in Section 5.4.2. The FPGA work

flow uses the Xilinx ISE 10.1 with target Virtex-5 chip.

74

Table 10: Evaluation of DIV, CRC and AES

Design ASIC FPGA (SRAM-LUT) STT-LUT

DIV 6605um2 29723um2(666 LUT) 20806um2)

CRC 8212um2 29467um2(531 LUT) 20627um2

AES 56417um2 264550um2(694 LUT) 185185um2

DIV 27 cycles 80 cycles 57 cycles

CRC 10 cycles 35 cycles 24 cycles

AES 12 cycles 28 cycles 22 cycles

DIV 1.39mW/0.46uW 7.48mW/2mW 2.41mW/179uW

CRC 803uW/82uW 5.67mW/0.8mW 1.53mW/112uW

AES 1.654mW/273uW 10.52mW/2.7mW 5.32mW/234uW

The area, power and latency are summarized in Table 10. The results for the STT-LUT

is based on the estimation in Section 5.2.4.

Although the area of GFU/s covered units are not random in a certain design (for example

in Nehalem), due to limited access to accurate units area number, it’s assumed the units area

is randomly distributed in different designs, considering varying trade-off decisions made in

architecture and RTL level. For example, some design implements complex and large AES

unit (in recent IBM Power7 micro-processor), while another design may use simple and

small units to carry multiple micro-instructions to implement complex function. As a proof

of concept, two representative distributions are shown in Fig.: 1)optimistic (area is small in

most units), and 2) pessimistic (area is large in most units).

5.5.2 GFU-introduced Performance Degradation

Then the performance degradation is studied when slower GFU replaces original FU that

is under recovery. Fig. 29 shows normalized IPC of measured benchmarks when FP-Add,

FP-Mult, or FP-Div is replaced by GFU/m and GFU/s individually. When replacing FP-

75

Add or FP-Mul, GFU/m is 2 cycles slower than original FU. The results are labeled “fadd

+2” and “fmul+2”. When replacing FP-Div, GFU/s is 20 cycles slower than original FU and

its results are labeled “fdiv+20”. Fig. 30 shows the normalized IPC when ALU-2 (in Port 5)

or ALU-0 (in Port 0) is replaced by GFU/m individually. Since GFU/m is 1 cycle slower than

ALU-2 and ALU-0, the results are labeled “alu2+1” and “alu0+1”. In these experiments, we

did not perform instruction steering. That is, the slowdown indicates the raw performance

impact due to fine-grained adoption of slow GFU.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

perlb
ench

bzip
2

gcc m
cf

hm
m

er

lib
quantu

m

h264re
f

om
netp

p
asta

r

bwave
s

m
ilc

ze
usm

p

gro
m

acs

ca
ctu

sA
DM

lesli
e3d

nam
d

Gem
sF

DTD
to

nto lbm

sp
ecr

and

In
ta

vg

FPavg

N
or

m
al

iz
ed

 IP
C

IPC comparison

fadd +2

fmul +2

fdiv +20

Figure 29: Normalized IPC when FP Add/Mul/Div gets replaced respectively.

From Fig. 29, there are 2 interesting observations:

• Most INT benchmarks are immune to floating point FU latency overhead, even the

FP-Div in GFU/s is 20 cycles slower. The only exception is “hmmer”.

• All FP benchmarks are affected by floating point FU latency overhead. Most benchmarks

are sensitive to FP Adder, FP Multiplier and FP Divider in descending order. Some

exceptions are “zeusmp”, “leslie3d”. In some extreme cases, the IPC loss is as high as

9%, such as FP Adder on “bwaves” and “cactusADM”, FP Divider on “leslie3d”. On

average, the FP Add/Mul/Div slowdown cause total IPC loss of 4.6/2.3/3.2%.

The above observations are closely related to the FU usage. In INT benchmarks where

floating point FUs are lightly used, replacing them with slower GFU causes negligible per-

76

formance loss. All FU usage statistics are collected in PTLsim simulator and that of two

representative benchmarks from INT (hmmer) and FP (bwaves) groups are shown in Fig. 20.

Floating point FUs in most INT benchmarks except for “hmmer” are almost never used but

heavily used in “cactusADM”. In “hmmer” floating point FU slowdown is explained by minor

FU usage.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

perlb
ench

bzip
2

gcc m
cf

hm
m

er

lib
quantu

m

h264re
f

om
netp

p
asta

r

bwave
s

m
ilc

ze
usm

p

gro
m

acs

ca
ctu

sA
DM

lesli
e3d

nam
d

Gem
sF

DTD
to

nto lbm

sp
ecr

and

In
ta

vg

FPavg

IP
C

IPC comparison

Base

alu2 +1

alu0 +1

Figure 30: Normalized IPC when ALU2/0 gets replaced respectively.

Next, we study replacing ALU-0 and ALU-2 that are frequently used FUs in all bench-

marks, with slower GFU. In Fig. 30, on average the IPC loss for ALU-2 in INT benchmarks

is 2.9% and that in FP benchmarks is 1.3%. We also get some observations from Fig. 30:

• When GFU is used to replace ALU-0, the performance overhead is slightly higher than

the case for ALU-2. This is explained by the fact that ALU0 is generally used slightly

more than ALU2 3, shown in Fig 20.

• The variation of performance overhead in INT benchmarks is large. Benchmarks “mcf”,

“libquantum” and “hmmer” are less sensitive to ALU performance loss. Further study

shows they have higher L1 miss rate such that memory accesses take larger portion

of total execution time. As a result, the performance loss is partially hidden in long

3Caused by slightly biased ALU usage in default scheduler in PTLsim simulator

77

latency memory access and their IPC is less sensitive to ALU latency overhead. On the

contrary, “astar” and “h264f” are CPU intensive benchmarks and ALU operations take

larger portion of critical path. Slowing down ALU in those benchmarks incurs larger

performance overhead

• Most FP benchmarks are less sensitive to ALU0/2 latency overhead, such as “bwaves”,

“cactusADM”, “GemsFDTD”, etc. This is due to that in FP benchmarks the critical

path is comprised of many long latency floating point instructions, by which the latency

overhead of ALU is hidden. The effect of long latency floating point instructions is similar

to that of memory accesses in INT benchmarks.

The aforementioned study shows that IPC loss is acceptable if replacing original FU with

GFU/m. Similarly the IPC overhead is also acceptable when GFU/s is used. As shown in

Fig. 29, when FP-Div is replaced by GFU/s that is 20 cycles slower than original FUs, the

performance loss is just 0.04% for INT benchmarks and 3.2% for FP benchmarks.

From brief study we learned that IPC loss is sensitive to FU usage and the existence

of long latency instructions on other FUs. The long latency instructions increase program

execution time and reduces the effective FU usage time. Thus, by replacing lightly used

FU with our GFU, the performance overhead could be well controlled. The FUs’ usage in

processor core are different in different benchmarks and even in difference phases of one

benchmark. Our study shows obvious difference in INT and FP benchmarks: floating point

FUs in INT benchmarks are lightly used and integer FUs such as ALUs are used less in FP

benchmarks than in INT benchmarks. If there is no dedicated GFU/m to recover, we choose

one FU to recover such that performance overhead is minimized by monitoring its activity.

Besides using a slower 3rd ALU for replacement, another option to recovery third ALU

is to shut it down. We evaluate the performance impact of disabling one of the 3 ALUs in

processor pipeline. The results are shown in Fig 31. In each group of the bars, the first bar

shows the base case where all 3 ALUs are available, and the second and third bars show the

normalized IPC when ALU0 or ALU1 is slower. The forth bar shows the average normalized

IPC when one ALU is disabled and only 2 ALUs are available. For integer benchmarks, the

IPC loss on average is almost 9%. For some applications with higher ALU usage such as

“astar” and “h264ref” the IPC loss is 14% and 12%. For floating point benchmarks, the IPC

78

Figure 31: 2 ALUs vs 3 ALUs

loss is mildly at 5% on average. However, for some extreme cases the IPC loss is approaching

10% (namd, GemsFDTD, gromacs). The results show disabling one ALU causes significant

IPC loss in general cases and is considered less effective than our design.

5.5.3 Instruction Steering

The instruction steering is based on CS1 instruction prediction. The predicted non-CS1

instruction are scheduled to GFU, while the predicted CS1 instructions are scheduled to

original FU. However, this simple instruction steering could not recover all performance

overhead, due to non-perfect CS1 prediction rate and minor IS1 impact on performance.

Fig. 32 shows result of applying CS1-prediction based instruction steering. In ideal case the

performance overhead is reduced from 2.9% to 1.4% in INT benchmarks and from 1.25%

to 0.85% in FP benchmarks. For ideal cases we assume when we decide to steer predicted

CS1 instructions from GFU/m to original FU, the original FU is always available. In reality

this assumption does not always hold. If no original FU is available, the predicted CS1 have

to run on slower GRU. The third bar “alu2+1 cs1 Real” show the results in reality is very

close to the ideal case. Hence our CS1-prediction based instruction steering is very simple

and effective in further reducing performance overhead when replacing heavily used intrinsic

redundant FUs with our GFU.

79

0.94

0.95

0.96

0.97

0.98

0.99

1

perlb
ench

bzip
2

gcc m
cf

hm
m

er

lib
quantu

m

h264re
f

om
netp

p
asta

r

bwave
s

m
ilc

ze
usm

p

gro
m

acs

ca
ctu

sA
DM

lesli
e3d

nam
d

Gem
sF

DTD
to

nto lbm

sp
ecr

and

In
ta

vg

FPavg

N
or

m
al

iz
ed

 IP
C

IPC comparison

alu2 +1

alu2 +1 cs1

alu2 +1 cs1 Real

Figure 32: Performance overhead reduction of CS1-prediction based instruction steering in

ideal case, alu2+1 cs1 reduce performance overhead from 2.9% to 1.4% (INT) and 1.25% to

0.85%; in reality, alu2+1 cs1 Real approaches the ideal limit.

5.5.4 Lifetime Improvement

To evaluate the lifetime improvement, we implemented and compared the following schemes.

The vulnerability of FU is determined by process variations (PV) at manufacturing time,

and the dynamic stress due to BTI and TDDB.

• rep1 — We reserve GFU/m (or GFU/s) as a spare unit before the first FU in its group

fails.

• rep2 — We configure GFU/m (or GFU/s) to replace the most vulnerable FU in its group

at the beginning and replace the first appeared failed FU thereafter.

• rr — We reconfigure GFU/m (or GFU/s) to replace all FUs in its group in a round-robin

fashion.

• adap — We reconfigure GFU/m (or GFU/s) to replace the most vulnerable FU in its

group based on online self test.

80

• adap+repl — Similar to adap, but we reconfigure GFU/m (or GFU/s) to replace the

first failed FU in its group.

• dup — Each FU has a duplicated copy. This is using GFU/d for all FUs.

To statistically evaluate the lifetime impact, we generated the floor-plan of 29 FUs, one

added GFU/s, and one GFU/m using VARIUS [62]. Due to process variation, some FUs

are slower and more vulnerable to aging induced failure in some samples. We generated and

evaluated 400 execution stage samples to reduce random odds. In addition, the BTI and

TDDB induced aging effects were calculated according to models in Chapter 2. Different

schemes of using GFU have different net stress and recovery/idle time, hence the aging

progress are different.

In the following discussion, we use GFU/m and GFU/s to recover the first and third

group of FUs. Assuming the lifetimes of FUs in the first and third FU groups are sorted

in ascending order as t1, t2, · · · (with their names denoted as FU1, FU2, · · ·). Hence the first

failed FU stops working at time t1. We also denote the lifetime of GFU as tr.

0.5 sp 0.7 sp 0.95 sp
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

rep1

rep2

rr

adap

adap+rep

dup

Figure 33: MTTF improvement

Fig 33 shows the normalized lifetime of six schemes over the baseline design. Since the

BTI-induced degradation depends on signal probability inside the corresponding FU, x-axis

draws the scenarios with three possible (uniform) signal probability — 0.5, 0.7 and 0.95.

Since we consider both NBTI and PBTI and pick the worst degradation of the two, the

effective signal probability is always larger than 0.5.

81

rep1 replaces FU1 with GFU at t1. After t1, GFU replaces the failed FU to form a

correct core. The core may fail at t1+tr if GFU fails early, or at t2 if FU2 fails early. The

lifetime of rep1 is therefore min(t2, t1 + tr).

rep2 replaces FU1 at the beginning such that the first failure appears at either t2 or

tr. If at t2, then GFU is configured to be FU2. The next failures appears at min(t1+t2,

tr, t3). If the first failures appears at tr, then the next failure appear at min(t2, t1 + tr).

Although rep2 statistically extends lifetime more than rep1 (as shown in Fig 33), it incurs

more performance degradation from the beginning.

rr replaces all FUs in round-robin way from the beginning. For original FUs, the net

recovery/idle time increases and net stress time decreases as GFU replace them. Assuming

GFU does not fail and the lifetime of all original FUs are extended from t1, t2, · · · to t′1, t′2, · · ·

(sorted in ascending order). Hence the lifetime is extended from t1 to t′1.

adap replaces more vulnerable FUs with GFU in more epochs, and less vulnerable FUs

in less epochs. The correlation between recovery time and vulnerability resulting in balanced

final lifetime of several most vulnerable FUs. Fig 33 shows that it achieves better lifetime

than rr.

Ideally, adap extends the lifetime to tx where tr =
∑

(tx − ti) for all ti < tx (i >= 1).

That is, GFU extends the failing time of several most vulnerable FUs to about the same

time. By the time when the first failed FU appear, the next one is very close to fail (assuming

t1 + tr > t2). However, in practice, this is affected by the resolution of the online margin

detector. GFU may be scheduled to recover a non-the-most-vulnerable FU due to imperfect

margin detector. While the margin difference is small, the lifetime difference is actually

large. This is due to the power law of BTI and TDDB degradations: when FU is used more,

it takes much longer time to degrade for same degree. We thus adopted adap+repl that

further extends the lifetime by replacing the first failed FU with GFU. Fig 33 showed that

on average, it achieves more 40% lifetime improvement.

dup prepares a replicated copy for each FU in the core. Since it is impossible to know

which unit is the most vulnerable unit at design time, a safe bet is full redundancy with an

area overhead 100%.

82

The error bars in Fig 33 show the range of 400 samples. As we can see, dup has small error

bar, i.e., it has good ability to tolerate PV and usage differences. adap+repl has relatively

larger error bar than adap, which indicates the variation comes from replacing the failed

FU. That is, the worst FU varies significantly in different samples. On average, adap+repl

improves MTTF to 2.2x on average. This improvement is not only much better than simply

using replacement FU or round-robin usage, but also is close to more area-expensive dup.

5.6 SUMMARY

In this chapter, GFU is designed to significantly improve microprocessor reliability with

modest area overhead and small and controllable performance degradation. By exploiting

the area and usage characteristics of different FUs in modern processor cores, we categorized

three groups of FUs and developed different recovery strategies. GFU/m and GFU/s have

the flexibility to be reconfigured to recover any FU is each group. By recovering at fine-

granularity, GFU/s incurs small to negligible performance overhead. When using GFU/m

to recover frequently used unit, instruction steering is designed to further reduce perfor-

mance overhead. The results from simulations show that the scheme help to reduce the area

overhead but greatly improve the hardware reliability of processor cores.

5.7 RELATED WORK

This section summarize the related work in processor core logic reliability and reconfigurable

function unit.

5.7.1 Processor Core Logic Reliability

Past works on improving core reliability can be grouped into three categories: aging recovery,

handling soft errors and handling hard faults.

83

To combat core logic aging, [32] uses adaptive voltage control. There are several papers

on how to proactively recover core logic. In [1]: idle cycles are utilized to recover NBTI

induced degradations by balancing signal probabilities on gates, which is be quite effective.

[16] studies NBTI stress with process variation. With process variation, some FUs are

inherently weaker, slower and vulnerable to NBTI stress. By using the vulnerable FU less

and the robust FU more, the vulnerability difference initially introduced by PV is evened

out in field use and the lifetime is greatly improved. However, previous recovery techniques

only work for NBTI induced degradation, the solution is still needed for other degradation

mechanisms such as TDDB, HCI, etc.

Soft errors in pipelines are tolerable by check-pointing and re-execution: in [75], the

check-pointing fabric adds roughly 20 to 50% to the digital-logic area; [12] uses shadow latch

to detect the timing errors in execution path, and re-execute the stage with error after the

pipeline is stalled. Although expensive, these techniques work well.

To handle hard errors, disabling faulty cores is common practice to maintain acceptable

yield. Considering throwing away faulty cores is too expensive, [55] and [3] try to salvage

and use faulty cores: [55] observes some faulty function units are not frequently used and it’s

safe to run applications that do not utilize the faulty FU on the core; [3] observes a faulty

core is likely to be an animator core in sufficient long period and provides useful hints to

accelerate the execution of normal cores.

Different from core level, the FU level redundancy has smaller area overhead. FU level

redundancy in [66] and structural duplication in [67] have been proposed to maintain core

functionality. Both use separate micro-architectural spares, such as ALUs to replace the

faulty one. However, the fault coverage by inherent function unit redundancy is limited.

In [55], only 26% area of execution units are covered by inherent redundancy. Without extra

redundancy, inherent redundancy is only applicable to defects in about 10% of core area.

To achieve high fault coverage, simply using spares in core or FU level may incur unnec-

essary high overhead. In FU level, using spare FU for each FU is prohibitively expensive. It

is observed that the cases when all FUs are faulty is extremely unlikely, and it not necessary

nor cost effective to use spares for all FUs. However, it is also hard to determine which

FU is most vulnerable post fabrication or stressed most in field use. Hence, flexibility is

84

desirable for using redundant FU to improve reliability. A reasonable alternative is to use

reconfigurable FU to replace the faulty FU.

5.7.2 Reconfigurable Function Unit

Previously, reconfigurable fabric are used mainly for performance improvement, power saving

and other purposes and are implemented in Field Programmable Gate Arrays (FPGAs).

[59], OneChip [78], Garp [24] are among the earliest works to use reconfigurable FPGA as

coprocessor to accelerate CPU performance. In FPGA-based co-processor, a sequence of

instructions, instead of single instruction, is mapped to hardware and run concurrently to

boost performance. Small kernels in Garp [24] may increase the performance by 10X. Later

works such as OneChip [78], Chimaera [81], Tartan [48] improve performance of FPGA-based

reconfigurable FU. In [57], with board level CPU and FPGA hybrid platform, multiple cache

architecture is proposed to accelerate the FPGA HPC platform. The compiler CHiMPS

automatically allocates and optimizes the on-chip memory as the cache of FPGA. Besides

performance improvement, in [21] the traditional LUT storage, SRAM cells, are replaced

by emerging Spin Torque Transistors (STT), and using STT-based LUT designs replace

multiple components in processor pipeline to reduce power. Similarly in [73], conservation

core is proposed to save energy. Another interesting technique of using FPGA based design

is FlexCore [9], which uses reconfigurable FPGA fabric for monitoring the execution of core.

None of the above techniques focus on reliability improvement by utilizing a reconfigurable

FU.

The reason of not using FPGA-based configurable FU to replace ASIC designed FU

is the large performance gap. Although FPGA-based co-processors boost performance by

exploiting parallelism, when used as an FU in execution stage, the parallelism is lost and

the custom ASIC design FU is still a must. The gap between the FPGA and ASIC design

is still huge [39, 79]: FPGA design is 3X in critical path delay, 17X to 27X in area and 12X

power hungry than ASIC design.

A faster yet less flexible design is combining customized ASIC circuits and reconfigurable

fabric with multiplexers. In recent high-end commercial FPGAs, other than LUTs, Macro

85

circuits such as small adders, shifters and even multipliers (DSP48E in Xilinx FPGAs) are

also basic building blocks of reconfigurable fabric. In [82] and [83], the compound circuits are

are configurable by setting multiplexers to choose from and build different FUs. In the DSP

benchmarks, 1/3 more area is used and 37% more delay is introduced. Although the Macro

based reconfigurable design is studied in context of embedded processor [83], similar idea

could be used in high performance processors: Macro-based RFU is fast enough to replace

customized ASIC FU for improving reliability.

86

6.0 BIT FLIPPING IN TDDB RELIABILITY IMPROVEMENT

Previous chapters study the BTI and TDDB problems in SRAM-based structures and func-

tion units. The fundamental idea is to create and/or exploit recovery opportunities that has

been shown to be effective in improving microprocessor reliability. However, there are other

critical structures with little idle cycles for recovery, such as scheduler in pipeline, DTLB,

ITLB and L1 cache since they are used or accessed very frequently. These critical FUs are

vulnerable under stress, especially TDDB.

TDDB degradation highly depends on temperature and voltage as described in Eqn. 2.5.

It is very sensitive to voltage: experiments in [61] show TDDB lifetime increase to 100x

when gate voltage is reduced by 0.1V in the range of 1.2V to 1.4V . Hence, TDDB lifetime

improvement is a side product of traditional voltage reducing techniques for power saving.

For less critical or less frequently used FUs such as last level cache, reducing voltage is an

effective way to tolerate TDDB stress. However, for critical and busy FUs where reducing

voltage incur intolerable performance loss, TDDB is still an serious reliability problem. In

this chapter, the study shows that 1) reducing voltage can be used in many FUs to tolerate

TDDB, including but not limited to function units in execution stage, lower level cache

hierarchy; 2) some FUs (scheduler, DTLB, ITLB and L1 cache) are vulnerable to TDDB

and hard to tolerate TDDB where reducing voltage is not feasible due to potential large

performance overhead.

As an alternative to reducing voltage, Section 2.2.1 shows significant TDDB reliability

improvement is achieved with increased bit flipping frequency. Inspired by the frequency

dependent TDDB stress, a simple yet effective bit flipping circuit is designed in Section 6.2

for scheduler design. To achieve desirable reliability improvement, the bit flipping circuit is

utilized at target high frequency. Results in Section 6.3 show scheduler, DTLB and L1/L2

87

cache have sufficient updated activities upon which bit flipping circuit could be used to

increase bit flipping frequency. The evaluations of performance, area overhead and reliability

improvement are discussed in Section 6.5.

However, we also find one structure, ITLB, does not have natural high update activities to

utilize the bit flipping circuit for increasing bit flipping frequency, as shown in Section 6.3.2.

Hence we need to design proactive bit flipping scheme for ITLB. One essential requirement

for proactive bit flipping scheme is its low delay overhead, since ITLB is used in almost

every cycle to translate instruction’s virtual address to physical address. In Section 6.4 we

design a promising local write circuit (LWC) to implement proactive bit flipping. Although

LWC has negligible delay overhead, its per-entry area overhead is non-negligible. Luckily,

the number of entries in ITLB is usually not large and the added area by LWC is amortized

when compared to comparators for fully associative searching.

In this chapter, we first briefly study the matrix-based scheduler in Section 6.1. And we

use the entries in scheduler as an example to show how bit flipping circuit is designed in

Section 6.2. Then in Section 6.3 we present results showing many structures have sufficient

natural update activity to utilize the bit flipping circuit. For the ITLB whose natural update

activity fails to meet the target, in Section 6.4 we design a light overhead local write circuit

for proactive bit flipping. Finally the results are presented in Section 6.5.

6.1 MATRIX-BASED SCHEDULER

In this section we introduce the scheduler structure that is not covered in previous chapters.

Scheduler is an large and important unit in Out-of-Order pipelines. In Intel Nehalem mi-

croprocessors, the area of scheduler is 80% of all function units execution stage combined.

The scheduler is responsible for tracking the operands dependencies, waking up ready in-

structions and picking proper instruction for execution stage when resource conflicts occur.

To keep the pipeline busy, it is a busy and hot by itself. The scenario is even worse con-

sidering dynamic circuit structure is often used that incurs more dynamic power and higher

temperature, making scheduler an extremely vulnerable unit under TDDB degradation.

88

Figure 34: Wakeup Matrix in [63]

Although traditionally comparator based schedulers are used, in this section we focus

on the matrix-based scheduler first proposed in [18] and then improved in [63]. Comparator

based schedulers suffer high power and delay due to a large number comparators are used

to compare the broadcast and stored tags. The matrix-based scheduler, as shown in Fig. 34,

replaces large comparators by matrix which stores the dependency and age information

for wake-up and select, resulting smaller, faster and lower power hardware. The advanced

matrix scheduler design is found in recent IBM z196 mainframe processor (dependency and

age matrix schedulers are used).

The dependency matrix for wake-up is used as an example to show how matrix scheduler

works. Fig. 34 shows the operation of dependency matrix. The storage cell in row i and

column j stores the flag whether instruction i depends on instruction j, i.e., instruction j

(producer) generates at least one result to be consumed by instruction i (consumer). In

step (1), instruction A is granted for execution and the dependency of instruction C on A is

cleared in step (2). When all bits in row C are cleared, ready signal is generated and sent to

89

aging matrix for grant signal. The details of similar age matrix for picker is also documented

with detail in [63].

clock

clockgrant

row ready

broadcast(b)

clock

clockalloc valid

data_dep(b)

data_dep

Figure 35: Wakeup Matrix Circuit in [63]

Fig.35 shows the dynamic circuit implementation for cells in dependency matrix. For

dynamic circuit in every cycle there are two phases, precharge and evaluation, controlled

by the clock in Fig.35. The dependency information is initialized by writing data dep into

the cross coupled inverter (similar to SRAM) when alloc valid signal is on in the dispatch

stage. If data dep is “1” (instruction in row i depends on instruction in column j), in the

evaluation stage the row ready signal for instruction in row i is drained to “0”. If there is

any dependency unresolved for instruction in row i, the row ready is evaluated at “0” in

evaluation stage. Hence the row ready signal is the NOR function of all dependency bits.

The dependency bit is cleared by a grant signal generated by the producer at column j, when

the producer is in execution and would generate the result soon. The grant signal drives the

broadcast signal in column j to ground in evaluation and all the dependency bits in column

j are cleared. In matrix scheduler, the dependency information is passed from producer to

consumer by grant, broadcast and row ready signals. Although the matrix scheduler design

has advantages over comparator based scheduler in terms of complexity and area, its power

90

is still large due to the dynamic circuit operations in every cycle, making TDDB a serious

problem.

One note for the scheduler is that the BTI stress is a less severe problem than TDDB.

Although the result in Section 6.3.1 shows severe imbalanced signal probability in matrix, the

degraded cross-coupled inverters (storage cell) have little impact on the overall operations.

This is due to the storage cell no longer drives the bit line by itself as does in cache. Instead in

scheduler it controls the gate terminal of one transistor, which is not affected by the potential

access failure or read failure. Since BTI marginally improves write failure, we don’t treat

BTI as an important problem in scheduler.

6.2 BIT FLIPPING CIRCUIT

In Chapter 2, TDDB stress shows high dependence on flipping frequency and there is the

opportunity to improve TDDB reliability by increase the bit flipping frequency, as an alter-

native to dynamic voltage/temperature management. To proactively increase the bit flipping

frequency, bit flipping circuit is designed in this section. The matrix based scheduler is used

as an example and the design is also applicable to other entry-based structures.

To support bit flipping, one multiplexer is added to control the which node to control

the gate as dependency bit, as shown in Fig. 36. In original design only data dep controls

the gate for draining row ready signal. With adding a pair of multiplexers both data dep

and data dep can be used to control the gate, decided by the flip signal for all bits in one

row: when flip is 1, data dep is used as normal case; otherwise, data dep is used. Note

that one demultiplexer is also added to determine which note to discharge when broadcast

signal comes. By changing the flip signal, even the effective data dep seen by the control

gate remains unchanged for a long time, the physical data dep and data dep experience bit

flipping at desired frequency.

The flipping circuits are applied similarly to other structures, such as branch predictor,

cache, TLB and etc, by adding multiplexers/demultiplexers in read/write path such that

either normal or inverted data are stored and accessed. In a similar way, we toggle the flip

91

clock

row ready

clockgrant
broadcast(b)

clock

alloc valid

data_dep(b)

data_dep

flip

clock

flip

Figure 36: Bit Flipping Support in Wakeup Matrix Circuit

signal when there is a update to the entry. For cache and TLB, the update activities include

read miss, write hit/miss. For branch predictor, the update activities include new branch

decision and target address update on mis-prediction. However, the frequency of transition

between normal and flipped data depends on the frequency of update activity to the entry.

We would study the update activity in multiple structures shortly.

6.3 BIT FLIPPING FREQUENCY IN MULTIPLE UNITS

This section studies the achievable bit flip frequency in matrix scheduler, caches and TLBs.

The bit flipping is performed at every entry update, so the bit flipping frequency is closely

related to entry update frequency: for read access the bit flipping frequency is same as the

entry update frequency; for write access the bit flipping frequency of unchanged bits is same

as the entry update frequency. 1KHz as set as the target for effectively using bit flipping

technique to improve TDDB reliability. The simulation setting is same as in Table 8.

92

6.3.1 Matrix Scheduler

Figure 37: Signal Probability in Wakeup Matrix

Fig. 37 shows the histogram of signal probability of dependency bits in wakeup matrix.

The signal probability has strong bias toward 0: dependency bits are 0 in 98% cycles.

Although the entries in wakeup matrix are updated busily since every dispatched instruction

allocates one entry, the natural bit flipping occurances are extremely rare. This is due to

that the number of true dependency of one instruction (at most 3 in the simulator) is much

smaller than issue queue size. Except for the dependency bits, all other bits keep unchanged

at 0 during the access. This is the typical example that the natural entry update failed to

generate frequent bit flipping despite of frequent entry update and Stale dependency bits

pose a serious threat to matrix scheduler reliability under TDDB stress. Applying the bit

flipping circuit in the design greatly increases the flipping frequency of most bits to entry

update frequency, resulting improved reliability under TDDB stress.

6.3.2 Cache and TLB

The update frequency data are also extracted from architecture simulations. Fig. 38(a) and

Fig. 38(b) show the average update count per line in one second for L2 and L3 caches. The

update frequency L2 is above targeted 1KHz and bit flipping circuit is used to translate it

93

into most bits’ flipping frequency. However, the update frequency for L3 of most benchmarks

are under 1KHz. This is not a big issue since reducing L3 voltage is a practical approach to be

applied in conjunction of bit flipping without introducing noticeable performance overhead.

bzip2 gcc mcf hmmer libquan omnetpp milc cactusADM lbm
10

3

10
4

10
5

L2 update count per line per second

(a) L2 cache update count

bzip2 gcc mcf hmmer libquan omnetpp milc cactusADM lbm
10

1

10
2

10
3

10
4

L3 update count per line per second

(b) L3 cache update count

bzip2 gcc mcf hmmer libquan omnetpp milc cactusADM lbm
10

2

10
3

10
4

10
5

10
6

DTLB update count per entry per second

(c) DTLB update count

bzip2 gcc mcf hmmer libquan omnetpp milc cactusADM lbm
10

0

10
1

10
2

10
3

ITLB update count per entry per second

(d) ITLB update count

Figure 38: Update Count for Multiple Structures

Fig. 38(c) and Fig. 38(d) show the average update count per entry in one second for

DTLB and ITLB. The update frequency for DTLB in most benchmarks is above 1KHz and

bit flipping is applied. However, for ITLB, the update frequency is in the range of 3 to 500.

To meet the 1KHz target, the proactive bit flipping design is introduced.

6.4 LOCAL WRITE CIRCUIT FOR ITLB

Since in ITLB the natural update activities are not frequent enough to improve the bit flip

frequency, a proactive bit flipping technique is designed when there is no natural update

94

activity. One easy and direct method is to read the data out from the entry, apply inversion

operation and then write the inverted data back to the entry. Although simple and effective,

this method incurs performance overhead that may become non-negligible when the target

bit flipping frequency is high. Then we design the low overhead Local Write Circuit (LWC)

to implement fast and energy efficient proactive data flipping.

Wa

LWa

Wb

1 0

off

on

0−−>11−−>0

b bb

q qb

Figure 39: Local Write Circuit

Fig. 39 shows our LWC design that enables SRAM cell (top) to write its inverted data to

its adjacent cell (bottom). For each 6T SRAM cell, we add 4 NMOS gates in the dash-line

box. Two NMOS gates are controlled by complementary nodes to route the data to the

their complementary nodes. And another two NMOS gates controlled by LWa determine

whether the local write operation is enabled. For example, if the top SRAM cell stores “1”

(q = 1, qb = 0), when local write enable signal LWa is asserted, the qb node of top SRAM

cell and q node of bottom SRAM cell are connected and then compete (if q = 1, qb = 0 in

bottom SRAM cell). The result is q of bottom SRAM cell is drained to ground by qb of top

SRAM cell, the qb of bottom SRAM cell is driven to “1” and “0” is written. Two factors

95

determine qb of top SRAM cell drive q of bottom SRAM cell: 1) SRAM cells are designed to

favor larger NMOS for easily draining nodes to ground, and 2) NMOS gate conducts good

“0”s, not good “1”s. Hence the LWC guarantees deterministic operation of writing inverted

data to adjacent cells. The circuit is named “Local Write” since the cell is written by a

local cell, not by global bit lines via enabling access transistors. Since there is no bit line

precharging, the local write operation both fast (< 500ps) and power efficient (4% of global

write).

However, one drawback of LWC is the area overhead. For each 6T SRAM cell, we add

4 NMOS gates. The results show 35% area overhead on the SRAM array. However, consid-

ering the supporting logic such as decoders and comparators in ITLB, the area overhead is

amortized. Also careful layout would optimize area overhead. With the support of LWC,

light weight proactive bit flipping is possible.

6.5 RESULTS

6.5.1 Analysis of Local Write Circuit

bzip2 gcc mcf hmmer libquan omnetpp milc cactusADM lbm
10

0

10
1

10
2

10
3

10
4

ITLB update count per entry per second

Figure 40: Update Activity of ITLB with Local Write Circuit

96

In the simulation a 2GHz processor is used with 196 entries fully associative ITLB. It’s

observed that a line is updated much less than 1KHz on average in most benchmarks. Hence

the local write circuit is integrated in ITLB to proactively increase the flipping activity. A

simple design is set the local write frequency at the targeted 1KHz, no matter what the

natural update frequency is. In our settings this requirement translates into 5.1µs (10.2K

cycles) interval for two local write operations. The update activity on each line is increased

by 1000 times per second, as shown in Fig. 40.

With increased flipping frequency, the ITLB lifetime is increased. Fig. 41 shows the

ITLB lifetime increase. The gcc and omnetpp applications have limited improvement due

to their natural update activity is close to 1KHz. For other applications with very limited

natural update activity such as bzip2 and lbm, the improvement is significant.

6.5.2 LWC Overhead Evaluation

bzip2 gcc mcf hmmer libquan omnetpp milc cactusADM lbm
1

2

3

4

5

6
ITLB lifetime improvement

Figure 41: ITLB MTTF with Local Write Circuit

The power, latency and area of local write circuit design in ITLB is evaluated. The

ITLB has 192 entries and is fully associative. The processor cycle time is 0.5ns in 2GHz

clock. The target flipping frequency of ITLB entries is set to 100KHz in context that ITLB

is vulnerable under high temperature.

97

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

12

14

16

Comparison of power overhead of RFW and LW

IPC

P
e

rc
e

n
ta

g
e

 o
f

p
o

w
e

r
o

v
e

rh
e

a
d

Read Flip Write

Local Write

Figure 42: Comparison of RFW and LW Power in ITLB

Both Read Flip Write (RFW) and Local Write (LW) circuits proactively flip the bits in

ITLB cache lines. However the LC is more power efficient than RFW since the driving inter-

nal node with small capacitance consumes less power than driving bit lines with significantly

larger load in RFW. Fig 42 shows the comparison of power of the two circuits in ITLB.

It’s observed that the percentage of power overhead (in y axis in Fig. 42) depends on IPC.

The power consumer of ITLB is smaller with low IPC applications since less instructions are

fetched after ITLB is accessed. In the simulations the applications have varying IPC ranging

from 0.2 to 1.4 (in x axis in Fig. 42). Across the IPC range the RFW consumes 2.3% to

14.9% and LW consumes 0.1% to 0.64% total power.

The latency overhead of RFW is 2/3 cycles, depending on whether flipping is merged into

read/write stage. The latency overhead of LW is 1 cycles. During RFW or LW is engaged,

the ITLB blocks all accesses to it and cause potential performance loss. In the worst case,

each RFW or LW blocks some accesses. However targeting at 100KHz proactive bit flipping

frequency with 256 entries takes a negligible portion of execution cycles of a 2GHz processors.

In the machine configuration the worst case performance overhead of RFW and LW circuits

are 1.28% and 2.56%.

98

The area overhead of LW is larger than RFW. RFW requires one extra line and flipping

circuit composed of one level XOR gates. LW requires 30% more area in the data lines.

However the data lines only takes less than 20% of total ITLB area that is dominated by

complex comparators. Hence the area overhead of LW is 6% on ITLB and is negligible

considering the whole chip area.

6.5.3 MTTF improvement for Scheduler and L2 Cache

Figure 43: MTTF Improvement for Scheduler and L2 Cache

The reliability of matrix scheduler and L2 cache under TDDB stress is improved by

applying bit flipping circuit during proper entry update activity. Fig 43 shows the MTTF

improvement for scheduler and L2 cache. The matrix scheduler has larger improvement due

to higher bit flipping frequency. The simple bit flipping circuit is a simple and effective

design to improve multiple units’ reliability under TDDB stress.

6.6 SUMMARY

This chapter discuss the TDDB reliability issues in memory based structures. Although

TDDB could be effectively mitigated by reducing voltage or shutting down, some FUs that

99

are always on critical path such as scheduler need alternative to improve TDDB reliability.

The bit flipping circuit is inspired by the interesting characteristic of frequency dependent

TDDB stress. With the results we learned there are sufficient update frequency to utilize

bit flipping circuit to increase the bit flip frequency. Ongoing work is being performed to

further study the designs and evaluations of TDDB reliability improvement.

100

7.0 CONCLUSION

As discussed in Introduction, the circuit reliability is as important as traditional key objec-

tives: timing, power and area in complex and large scale processor design. Investing little

effort in reliability aware design leads to compromised yield and rising cost in manufacture

phase and shortened life time in service phase. It is also an increasingly challenging prob-

lem when technology advances into near future 20nm and 14nm since small nodes are more

vulnerable to manufacturing defects or in-filed disturbances. In spite of massive research in-

terests in reliability aware design, this thesis focuses on aging induced hard errors, especially

the parametric hard errors caused by BTI and functional errors caused by TDDB.

Chapter 2 gives a deep dive into BTI and TDDB mechanisms. For BTI, the faster and

stronger proactive recovery mode lays down the foundation for 4PR discussed in Chapter 3.

For TDDB, the signal probability dependent stress paves the way to the design of bit flipping

circuit in Chapter 6. Fully studying the physics properties of the aging mechanisms enables

follow up research in circuit level and architectural level to exploit the unique characteristics.

The innovative 4PR mode and supporting circuits are designed in Chapter 3 to mitigate

both PBTI and NBTI stress on SRAM cells. The advantage of the 4PR mode are multiple

fold: 1) it works for both NBTI and PBTI on all 4 internal gates; 2) it works for access

failure as well as read-flip failure; 3) the design is light weight in that it doesn’t require extra

power rails as in other designs and it’s easily incorporated in existing power gating logic;

4) the reliability improvement in terms of failure probability and MTTF is significant; 5)

reduce leakage power as a beneficial side effect. The 4PR is also important since SRAM cell

based data array takes a significant if not dominating portion of die area including caches,

queues in out-of-order pipeline, branch predictor queues and store-load queues.

101

Chapter 4 continues the discussion of 4PR mode and studies its application in multiple

structures of processor. Although the SRAM cells are little difference, 4PR application

and supporting circuit are different on L2 entries and core pipeline entries due to different

access pattern and latency requirement. For the L2 cache banks, redundant cache bank is

added exclusively for proactive recovery rotation. For the critical and busy function units in

microprocessors, idle time of busy function units are sufficient for recovery thus exploited at

per-buffer-entry level. In the evaluated L2 cache, the technique effectively slows down the cell

failure probability increase, and achieves 2.85/2.12× (best/worst case) lifetime improvement

over normal designs. For the function units in pipeline, the scheme achieves on average

6/3.45× MTTF (Mean Time To Failure) improvement at the cost of <1% IPC degradation

and <1% area overhead.

Although 4PR effectively mitigates the BTI stress in SRAM based structures that take

a major portion of die area, the combinational logic in function units also need recovery but

it’s not as easy due to irregular structure and lacking redundancy. That’s the motivation to

design GFU framework to tolerate both BTI and TDDB in this thesis. As a reconfigurable

FU, GFU replaces the function of vulnerable FU that is powered off for both BTI and TDDB

recovery. Note that the 4PR is not practical due to irregular structure of combinational logic

in function unit. Since duty cycles and design complexity vary, three configurations, GFU/m,

GFU/d and GFU/s are designed to replace 3 groups of FUs. Since the GFU is reconfigurable

but slower than the original target FUs, it is carefully designed to minimize the performance

loss when it is in-use. Schemes to avoid using the GFU on performance critical paths of

a program execution are used to cover corner cases. The evaluation results show that we

the lifetime of execution stage in processor core is extended by 2.2x and improve yield from

93.9% to 98.16 or 95.69% while introducing less than 4.5% performance overhead.

The last piece in this thesis is solving the TDDB stress in memory based structures in

Chapter 6. The big difference of BTI and TDDB is the BTI causes parametric failure while

the TDDB causes function failure. Previous technique uses voltage scaling on many less

busy units to mitigate TDDB stress, however structures on critical path that are accessed

every cycle require other solutions. Scheduler, ITLB and L1 cache are identified to be

such structures. Based on the frequency dependent TDDB stress, the bit flipping circuit

102

is implemented to increase the bit flipping frequency as an essential solution to mitigate

TDDB stress. Results show in many units the entry update activity is sufficiently frequent

to utilize the bit flipping circuit. However, one exception is ITLB in which the natural bit

flipping frequency is extremely slow. The local write circuit is designed to enable proactive

bit flipping, although the area overhead is not non-negligible. Evaluations show promising

lifetime improvement in scheduler, cache and ITLB.

This thesis thoroughly studies the both the parametric and functional hard errors caused

by aging mechanisms of BTI and TDDB in micro-processors with up to 28nm technology

(High-k metal gate and bulk). By exploiting the unique and beneficial characteristics of

BTI and TDDB, the 4PR and bit flipping are designed to mitigate the stress on memory

based structures that take major portion of the processor die area. The combinational logic

in multiple function units are also covered by GFU design that provides a reconfigurable

redundant function unit to replace original unit when under recovery. The performance/area

overhead are controlled well through careful design. Overall the reliability improvement is

significant and the overhead is negligible in most cases. As the technology advances to 20nm

and 14nm, more aging mechanisms are emerging and reliability is an evolving problem to

researchers to solve.

103

BIBLIOGRAPHY

[1] J. Abella, X. Vera, and A. Gonzalez. Penelope: The NBTI-Aware processor. In MICRO,
pages 85–96, 2007.

[2] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Configurable isolation:
building high availability systems with commodity multi-core processors. In ISCA, pages
470–481, 2007.

[3] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Necromancer: enhancing system through-
put by animating dead cores. In ISCA, pages 473–484, 2010.

[4] A. Bansal, R. Rao, J. Kim, S. Zafar, J. Stathis, and C. Chuang. Impact of NBTI and
PBTI in SRAM bit-cells: Relative sensitivities and guidelines for application-specific
target stability/performance. In Reliability Physics Symposium, pages 745–749, 2009.

[5] A. Bansal, R. Rao, J. Kim, S. Zafar, J. H. Stathis, and C. Chuang. Impacts of NBTI
and PBTI on SRAM static/dynamic noise margins and cell failure probability. Micro-
electronics Reliability, 49(6):642–649, June 2009.

[6] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen.
NonStop advanced architecture. In DSN, pages 12–21, July 2005.

[7] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating online wearout detection.
In MICRO, pages 109–122, 2007.

[8] Y. Cao. Predictive technology model. Website. http://www.eas.asu.edu/~ptm.

[9] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh. Flexible and efficient
Instruction-Grained Run-Time monitoring using On-Chip reconfigurable fabric. In MI-
CRO, pages 137–148, 2010.

[10] R. Desikan, D. Burger, S. W. Keckler, and T. Austin. Sim-alpha: a validated, execution-
driven alpha 21264 simulator. In Technical report TR-01-23, 2001.

[11] M. Dixon, P. Hammarlund, S. Jourdan, and R. Singhal. The next-generation intel core
microarchitecture. Intel Technology Journal, 14(3):8–27, 2010.

104

http://www.eas.asu.edu/~ptm

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge. Razor: A Low-Power pipeline based on Circuit-Level timing
speculation. In MICRO, pages 7–16, 2003.

[13] B. Fields, R. Bodik, and M. D. Hill. Slack: maximizing performance under technological
constraints. In ISCA, page 4758, 2002.

[14] R. foundation. The r project for statistical computing. Website. http://www.

r-project.org.

[15] FreePDK-45nm. A variation-aware design kit for 45nm. Website. http://avatar.

ecen.okstate.edu/projects/scells/OSUFreePDK45/indexframe.html.

[16] X. Fu, T. Li, and J. Fortes. NBTI tolerant microarchitecture design in the presence of
process variation. In MICRO, pages 399–410, 2008.

[17] X. Garros, L. Brunet, M. Rafik, J. Coignus, G. Reimbold, E. Vincent, A. Bravaix,
and F. Boulanger. PBTI mechanisms in la containing hf-based oxides assessed by very
fast IV measurements. In Electron Devices Meeting (IEDM), 2010 IEEE International,
pages 4.6.1–4.6.4. IEEE, Dec. 2010.

[18] M. Goshima, K. Nishino, T. Kitamura, Y. Nakashima, S. Tomita, and S.-i. Mori. A high-
speed dynamic instruction scheduling scheme for superscalar processors. In Proceedings
of the 34th annual ACM/IEEE international symposium on Microarchitecture, MICRO
34, page 225236, Washington, DC, USA, 2001. IEEE Computer Society.

[19] T. Grasser, W. Gos, V. Sverdlov, and B. Kaczer. The universality of NBTI relaxation
and its implications for modeling and characterization. In Reliability physics symposium,
2007. proceedings. 45th annual. ieee international, pages 268–280, 2007.

[20] E. Gunadi and M. H. Lipasti. CRIB: consolidated rename, issue, and bypass. In ISCA,
page 2332, 2011.

[21] X. Guo, E. Ipek, and T. Soyata. Resistive computation: avoiding the power wall with
low-leakage, STT-MRAM based computing. In ISCA, pages 371–382, 2010.

[22] S. Gupta, S. Feng, A. Ansari, B. Jason, and S. Mahlke. The StageNet fabric for con-
structing resilient multicore systems. In MICRO, pages 141–151, 2008.

[23] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. Erasing core boundaries for robust and
configurable performance. In MICRO, pages 325–336, 2010.

[24] J. R. Hauser and J. Wawrzynek. Garp: a MIPS processor with a reconfigurable copro-
cessor. In FPGA, pages 12–21, Apr. 1997.

[25] M. Horiguchi. Redundancy techniques for high-density DRAMs. In , Second Annual
IEEE International Conference on Innovative Systems in Silicon, 1997. Proceedings,
pages 22–29. IEEE, Oct. 1997.

105

http://www.r-project.org
http://www.r-project.org
http://avatar.ecen.okstate.edu/projects/scells/OSUFreePDK45/indexframe.html
http://avatar.ecen.okstate.edu/projects/scells/OSUFreePDK45/indexframe.html

[26] I. Inc. Intel 64 and ia-32 architectures software developer’s manual. 325462-040US,
October 2011.

[27] S. Inc. Design compiler: Early rtl exploration accelerates design schedules. Website.
www.synopsys.com.

[28] D. P. Ioannou, S. Mittl, and G. L. Rosa. Positive bias temperature instability effects in
nmosfets with hfo2/tin gate stacks. IEEE TDMR, 9(2), June 2009.

[29] B. Kaczer, T. Grasser, P. Roussel, J. Martin-Martinez, R. O’Connor, B. O’Sullivan, and
G. Groeseneken. Ubiquitous relaxation in bti stressing–new evaluation and insights. In
Proc. of 46th IRPS, pages 20–27, Phoenix, 2008. IEEE.

[30] K. Kang, S. Gangwal, S. P. Park, and K. Roy. NBTI induced performance degradation
in logic and memory circuits: how effectively can we approach a reliability solution? In
ASPDAC, pages 726–731, Seoul, Korea, 2008.

[31] K. Kang, H. Kufluoglu, K. Roy, and M. A. Alam. Impact of Negative-Bias temperature
instability in nanoscale SRAM array: Modeling and analysis. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 26(10):1770–1781, 2007.

[32] U. R. Karpuzcu, B. Greskamp, and J. Torrellas. The BubbleWrap many-core: Popping
cores for sequential acceleration. In MICRO, pages 447–458, Dec. 2009.

[33] D. Khalil, M. Khellah, N. Kim, Y. Ismail, T. Karnik, and V. De. Accurate estima-
tion of SRAM dynamic stability. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 16(12):1639–1647, 2008.

[34] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe. Multi-bit error tolerant caches
using Two-Dimensional error coding. In MICRO, pages 197–209, 2007.

[35] S. Kosonocky, T. Burd, K. Kasprak, R. Schultz, and R. Stephany. Design in scaled
technologies: 32nm and beyond. In Symposium on VLSI Technology Digest of Technical
Papers, 2012.

[36] R. Kumar and G. Hinton. A family of 45nm IA processors. In ISSCC, pages 58–59,
2009.

[37] S. Kumar, K. Kim, and S. Sapatnekar. Impact of NBTI on SRAM read stability and
design for reliability. In ISQED, pages 6 pp.–218, 2006.

[38] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for negative bias
temperature instability. In ICCAD’06, pages 493–496. ACM, 2006.

[39] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In FPGA, pages
21–30, 2006.

[40] H. Labs. Cacti. Website. http://www.hpl.hp.com/research/cacti/.

106

www.synopsys.com
http://www.hpl.hp.com/research/cacti/

[41] K. T. Lee, J. Nam, M. Jin, K. Bae, J. Park, L. Hwang, J. Kim, H. Kim, and J. Park. Fre-
quency dependent TDDB behaviors and its reliability qualification in 32nm high-k/metal
gate CMOSFETs. In Reliability Physics Symposium (IRPS), 2011 IEEE International,
pages 2A.3.1–2A.3.5. IEEE, Apr. 2011.

[42] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock, J. A. Tierno, and
J. B. Carter. Active management of timing guardband to save energy in POWER7. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-44 ’11, page 111, 2011.

[43] X. Li, J. Qin, and J. B. Bernstein. Compact modeling of MOSFET wearout mecha-
nisms for Circuit-Reliability simulation. IEEE Transactions on Device and Materials
Reliability, 8(1):98–121, Mar. 2008.

[44] M. Lin, A. El Gamal, Y. C. Lu, and S. Wong. Performance benefits of monolithi-
cally stacked 3-D FPGA. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 26(2):216–229, Feb. 2007.

[45] S. Mahapatra. Mechanism of negative bias temperature instability in cmos devices:
Degradation recovery and impact of nitrogen. In Proc. of Int’l Electron Devices Meeting,
pages 105–108, 2004.

[46] J. Maria and N. Serrano. Gbps crc generator in 0.35um cmos technology implemented
with standard cells. Technical Report Version 0.6, Lund Institute of Technology, 2002.

[47] R. Michard, A. Tisserand, and N. V. Arenaire. divgen user’s and reference manual.
Technical Report Version 0.11, CNRS-ENSL-INRIA-UCBL, 2005.

[48] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein, and
M. Budiu. Tartan: evaluating spatial computation for whole program execution. In
ASPLOS, pages 163–174, 2006.

[49] R. Mishra, D. Ioannou, S. Mitra, and R. Gauthier. Effect of Floating-Body and stress
bias on NBTI and HCI on 65-nm SOI pMOSFETs. Electron Device Letters, IEEE,
29(3):262–264, 2008.

[50] J. Mitard, X. Garros, L. Nguyen, C. Leroux, G. Ghibaudo, F. Martin, and G. Reimbold.
Large-Scale time characterization and analysis of PBTI in HFO2/Metal gate stacks. In
Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International,
pages 174–178, 2006.

[51] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure probability and
statistical design of SRAM array for yield enhancement in nanoscaled CMOS. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 24(12):1859–
1880, 2005.

107

[52] opencores.org. The no.1 community within open source hardware ip-cores. Website.
www.opencores.org.

[53] I. Park, C. L. Ooi, and T. N. Vijaykumar. Reducing design complexity of the Load/Store
queue. In Proceedings of the 36th annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 36, pages 411–422, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[54] S. Paul, S. Mukhopadhyay, and S. Bhunia. A circuit and architecture codesign approach
for a hybrid cmos-sttram nonvolatile fpga. Nanotechnology, IEEE Transactions on,
10(3):385 –394, May 2011.

[55] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural core salvaging
in a multi-core processor for hard-error tolerance. In ISCA, pages 93–104, 2009.

[56] PTLsim. X86-64 cycle accurate processor simulation design infrastructure. Website.
www.ptlsim.org.

[57] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P. Sundararajan,
and R. Wittig. Performance and power of cache-based reconfigurable computing. In
ISCA, pages 395–405, 2009.

[58] S. Ramey, C. Prasad, M. Agostinelli, S. Pae, S. Walstra, S. Gupta, and J. Hicks. Fre-
quency and recovery effects in high-k bti degradation. In Proc. of 47th IRPS, pages
1023–1027, Montreal, 2009.

[59] R. Razdan and M. D. Smith. A high-performance microarchitecture with hardware-
programmable functional units. In MICRO, pages 172–180, 1994.

[60] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, and
T. Grutkowski. A 32nm 3.1 billion transistor 12-wide-issue itanium processor for
mission-critical servers. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 84 –86, Feb. 2011.

[61] S. Sahhaf, R. Degraeve, P. J. Roussel, B. Kaczer, T. Kauerauf, and G. Groeseneken. A
new TDDB reliability prediction methodology accounting for multiple SBD and wear
out. IEEE Transactions on Electron Devices, 56(7):1424–1432, July 2009.

[62] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.
VARIUS: a model of process variation and resulting timing errors for microarchitects.
IEEE Transactions on Semiconductor Manufacturing, 21(1):3–13, Feb. 2008.

[63] P. G. Sassone, J. Rupley,II, E. Brekelbaum, G. H. Loh, and B. Black. Matrix scheduler
reloaded. SIGARCH Comput. Archit. News, 35(2):335346, June 2007.

[64] S. Sawant, U. Desai, G. Shamanna, L. Sharma, M. Ranade, A. Agarwal, S. Dakshina-
murthy, and R. Narayanan. A 32nm Westmere-EX xeon enterprise processor. In ISSCC,
pages 74–75, 2011.

108

www.opencores.org
www.ptlsim.org

[65] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston. A proactive wearout recovery ap-
poroach for exploiting microarchitectural redundancy to extend cache sram lifetime. In
Int’l Symp. on Computer Architecture, pages 353–362, 2008.

[66] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger. Exploiting microarchitec-
tural redundancy for defect tolerance. In ICCD, pages 481–488, Oct. 2003.

[67] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting structural duplication
for lifetime reliability enhancement. In ISCA, pages 520–531, 2005.

[68] J. Suh, M. Annavaram, and M. Dubois. Macau: A markov model for reliability evalua-
tions of caches under single-bit and multi-bit upsets. In Proc of HPCA 2012, 2012.

[69] M. E. Thomadakis. The architecture of the nehalem processor and nehalem-ep smp
platforms. Research report, Texas A&M University, 2011.

[70] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multicores. In
MICRO, pages 129–140, 2008.

[71] R. Usselmann. Advanced encryption standard rijndael ip core. Technical Report Version
1.1, ASICS.WS, 2002.

[72] R. Vattikonda, W. Wang, and Y. Cao. Modeling and minimization of pmos nbti effect
for robust nanometer design. In Proc. of Design Automation Conf., pages 1047–1952,
2006.

[73] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor. Conservation cores: reducing the energy of mature
computations. In ASPLOS, pages 205–218, 2010.

[74] Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y. Ng, L. Wei, Y. Zhang, K. Zhang,
and M. Bohr. A 4.0 ghz 291mb voltage-scalable sram design in 32nm high-k metal-gate
cmos with integrated power management. In Proc of ISSCC 2009. ISSCC, IEEE, 2009.

[75] J. Warnock, Y. Chan, et al. A 5.2GHz microprocessor chip for the IBM zEnterprise
system. In ISSCC, pages 70–72, Feb. 2011.

[76] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S.-l. Lu.
Reducing cache power with low-cost, multi-bit error-correcting codes. In Proc of ISCA,
page 8393, 2010.

[77] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S. Lu. Trading off
cache capacity for reliability to enable low voltage operation. In ISCA, pages 203–214,
2008.

[78] R. D. Wittig and P. Chow. OneChip: an FPGA processor with reconfigurable logic. In
FPGA, pages 126–135, Apr. 1996.

109

[79] H. Wong, V. Betz, and J. Rose. Comparing FPGA vs. custom cmos and the impact on
processor microarchitecture. In FPGA, page 514, 2011.

[80] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid cache architecture
with disparate memory technologies. In Proceedings of the 36th annual international
symposium on Computer architecture, pages 34–45, 2009.

[81] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: a high-performance
architecture with a tightly-coupled reconfigurable functional unit. In ISCA, pages 225–
235, 2000.

[82] S. Yehia, N. Clark, S. Mahlke, and K. Flautner. Exploring the design space of LUT-
based transparent accelerators. In CASES, pages 11–21, 2005.

[83] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling specialization and flexibility
through compound circuits. In HPCA, pages 277–288, Feb. 2009.

[84] D. H. Yoon and M. Erez. Memory mapped ECC: low-cost error protection for last level
caches. In ISCA, pages 116–127, 2009.

[85] S. Zafar. Statistical mechanics based model for negative bias temperature instability
induced degradation. Applied Physics, 97(10), May 2005.

[86] S. Zafar, Y. Kim, V. Narayanan, C. Cabral, V. Paruchuri, B. Doris, J. Stathis, A. Cal-
legari, and M. Chudzik. A comparative study of NBTI and PBTI (Charge trapping) in
SiO2/HfO2 stacks with FUSI, TiN, re gates. In VLSI Technology, Digest of Technical
Papers., pages 23–25, 2006.

110

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Overview of Solutions for BTI and TDDB
	2. Recovery Comparison
	3. Energy for test 128_bit256 SRAM bank.
	4. Processor configurations.
	5. Detailed FUs in Super-FU block in Fig. 19 from Inteldevelopmanual2010
	6. Control Signals and Added Overhead for Reconfiguring GFU/m.
	7. The extra latency of GFU/m.
	8. Simulation configuration.
	9. GFU/m Hardware Area/Delay Evaluation
	10. Evaluation of DIV, CRC and AES

	LIST OF FIGURES
	1. Three NBTI modes
	2. Vth shift rise/drop in stress/recovery
	3. TDDB failure distribution
	(a). Poly-Si/SiON nMOSFET
	(b). HK/MG
	4. Standard 6T SRAM Cell
	5. Cell stability
	(a). Write time
	(b). Access time
	(c). Voltage overshoot of q in read
	6. Proactive recovery circuits
	7. Mode control design
	8. Transition between PR and Normal mode
	9. BTI proactive recovery strength
	(a). PBTI proactive recovery garrospbti2010
	(b). PBTI proactive recovery mitardlarge-scale2006
	10. Idle time percentages for SPEC2000 INT and FP benchmarks
	11. Idle time distribution
	(a). INT bmks on INT PR entries
	(b). FP bmks on INT PR entries
	(c). INT bmks on INT RS entries
	(d). FP bmks on INT RS entries
	(e). INT bmks on ROB entries
	(f). FP bmks on ROB entries
	12. Idle time distribution
	(a). FP bmks on FP PR entries
	(b). FP bmks on FP RS entries
	13. Per-entry based recovery control logic.
	14. Vth shift for varying signal probability and inactive ratio
	15. Vth degradation for L2 and FU
	(a). Vth shift for L2
	(b). Vth shift for FUs in Pipeline
	16. Failure probability analysis.
	(a). Failure probability with most imbalanced stress
	(b). Failure probability with perfectly balanced stress
	17. MTTF Improvement
	(a). Busy FUs' MTTF improvement
	(b). L2 Cache's MTTF improvement
	18. Impact of proactive recovery on IPC.
	19. Intel Nehalem-like core execution units from Dixonnehalem2010
	20. FU usage examples in 3 groups.
	21. GFU/m Structure
	(a). Structure of original FUs.
	(b). Configurable GFU/m structure.
	22. Integrating GFU in the execution stage
	23. A simple instruction dependency graph
	24. Issue Slack
	25. Commit Slack
	26. Comparisons of Slowdown Cycles and IS1 CS1 Instructions
	27. CS1/CS2+ instruction count vs distance to ROB tail (INT bmk) in ALU2
	28. CS1/CS2+ instruction count vs distance to ROB tail (FP bmk) in ALU2
	29. Normalized IPC when FP Add/Mul/Div gets replaced respectively.
	30. Normalized IPC when ALU2/0 gets replaced respectively.
	31. 2 ALUs vs 3 ALUs
	32. Performance overhead reduction of using instruction steering
	33. MTTF improvement
	34. Wakeup Matrix in sassonematrix2007
	35. Wakeup Matrix Circuit in sassonematrix2007
	36. Bit Flipping Support in Wakeup Matrix Circuit
	37. Signal Probability in Wakeup Matrix
	38. Update Count for Multiple Structures
	(a). L2 cache update count
	(b). L3 cache update count
	(c). DTLB update count
	(d). ITLB update count
	39. Local Write Circuit
	40. Update Activity of ITLB with Local Write Circuit
	41. ITLB MTTF with Local Write Circuit
	42. Comparison of RFW and LW Power in ITLB
	43. MTTF Improvement for Scheduler and L2 Cache

	ACKNOWLEDGEMENT
	1.0 INTRODUCTION
	1.1 Thesis Topic
	1.2 Microprocessor Reliability Research Overview
	1.2.1 Memory based Structure Reliability Improvement
	1.2.2 Logic Structure Reliability Improvement
	1.2.3 Aging Induced Reliability Issues
	1.2.4 Reliability Design Challenges for Future Technology

	1.3 Reliability Design in State-of-Art Microprocessor
	1.4 Chapter Overview

	2.0 DEGRADATION MECHANISMS
	2.1 Bias Temperature Instability: BTI
	2.1.1 NBTI and PBTI
	2.1.2 BTI Recovery Modes
	2.1.3 BTI Modeling

	2.2 Time Dependent Dielectric Breakdown: TDDB
	2.2.1 Frequency Dependent Stress
	2.2.2 TDDB Modeling

	2.3 Summary

	3.0 PROACTIVE RECOVERY AND 4PR FOR BTI IN SRAM CELLS
	3.1 Effect of both NBTI and PBTI
	3.2 4PR Recovery Circuit
	3.2.1 Existing approach
	3.2.2 4T proactive recovery for SRAM cells
	3.2.3 Further discussions

	3.3 Summary

	4.0 4PR ON L2 CACHE AND OUT-OF-ORDER ENTRIES
	4.1 Using a spare bank for 4PR in L2 Cache
	4.2 4PR opportunity for Busy FUs
	4.2.1 FU Activities
	4.2.2 Idle Cycle Analysis
	4.2.3 Recovery Opportunities with Latency Overhead
	4.2.4 Hardware Design for 4PR in Busy FUs

	4.3 Overhead Analysis
	4.3.1 Recovery Control Logic
	4.3.2 L2 Cache Recovery Logic

	4.4 Simulation and Results
	4.4.1 Simulation Setup
	4.4.2 Reliability model
	4.4.3 Vth shift comparison
	4.4.4 Cell failure probability analysis
	4.4.5 MTTF improvement
	4.4.6 IPC

	4.5 Summary

	5.0 GENERIC FUNCTION UNIT
	5.1 Challenges of Function Unit Reliability
	5.2 GFU: Generic Functional Unit
	5.2.1 The Overview of GFU Design
	5.2.2 GFU/m: A Macro-based GFU
	5.2.3 GFU/d: A Replication based GFU
	5.2.4 GFU/s: A STT-based Reconfigurable GFU
	5.2.5 Integrating GFU in the Execution Stage

	5.3 Reliability-aware Scheduling
	5.3.1 Step 1: Determine the FU to Recover
	5.3.2 Step 2: Minimize Performance Degradation
	5.3.2.1 Handling GFU/s based Recovery
	5.3.2.2 Handling GFU/m based Recovery

	5.3.3 Discussion on OS/Compiler reliability scheduler.

	5.4 Experimental Methodology
	5.4.1 Architecture Modeling
	5.4.2 GFU/m Circuit Modeling
	5.4.3 Reliability Modeling

	5.5 Experimental Results
	5.5.1 Hardware Overhead
	5.5.2 GFU-introduced Performance Degradation
	5.5.3 Instruction Steering
	5.5.4 Lifetime Improvement

	5.6 Summary
	5.7 Related Work
	5.7.1 Processor Core Logic Reliability
	5.7.2 Reconfigurable Function Unit

	6.0 BIT FLIPPING IN TDDB RELIABILITY IMPROVEMENT
	6.1 Matrix-based Scheduler
	6.2 Bit flipping Circuit
	6.3 Bit Flipping Frequency in Multiple Units
	6.3.1 Matrix Scheduler
	6.3.2 Cache and TLB

	6.4 Local Write Circuit for ITLB
	6.5 Results
	6.5.1 Analysis of Local Write Circuit
	6.5.2 LWC Overhead Evaluation
	6.5.3 MTTF improvement for Scheduler and L2 Cache

	6.6 Summary

	7.0 CONCLUSION
	BIBLIOGRAPHY

