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DETECTION OF INFLUENTIAL OBSERVATIONS IN LONGITUDINAL

MULTIVARIATE MIXED EFFECTS REGRESSION MODELS

Yun Ling, PhD

University of Pittsburgh, 2014

The purpose of this dissertation is to detect possible influential observations in the multi-

variate longitudinal data. An influential observation is an observation which has large effect

on the parameter estimation of a given model. Influential observations are important be-

cause: (1) removal of the observation(s) from the data set can substantially change the values

of the estimated parameters; (2) in multivariate longitudinal mixed effect models, influential

observations can affect the population and subject-specific trajectories; (3) influential obser-

vation(s) of one response may affect the predicted effects of the other response within the

same individual; (4) an influential observation may indicate an abnormal or misdiagnosed

subject.

This research was motivated by opthalmological clinical research (glaucoma). In many

ophthalmology studies, both eyes are repeatedly measured. Sometimes, one eye could be

measured by different devices, or, measured for different quantities (retina thickness for dif-

ferent quadrants, OCT, VFI, etc). For example, in one study considered in this dissertation,

multivariate measurements (e.g., Retinal Nerve Fiber Layer (RNFL) thickness and Ganglion

Cell Complex (GCC) thickness) were repeatedly measured on each eye (subject), within each

patient (cluster).

When we detect influential observations for longitudinal ophthamology data, our trajec-

tory model must take into account three kinds of correlations: (1) correlation among different

characterisitcs measured at the same time point within the same eye; (2) correlation among

different time points; (3) correlation between characteristics in the two eyes.
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In the first part of my dissertation, we propose a multivariate conditional version of

Cook’s distance for multivariate mixed effect models. Some research has shown that, in

mixed effect models, influential observations having a large effect on the subject-specific

parameters cannot always be detected by the original Cook’s distance due to large between-

subject variation, the problem of influential observations should be approached conditional

on the subjects. Hence, in the multivariate longitudinal setting, the influential observation

problem should be approached conditional on their subjects and characteristics. Repeated

simulations show that multivariate conditional Cook’s distance successfully detected most

92.5% influential observations, but unconditional Cook’s distance only detected 7.5%.

In the second part we extended the multivariate conditional Cook’s distance to multilevel

multivariate mixed effect model. In this model, there are two levels of random effects to

handle the subject level and cluster level correlations among different time points, and the

residual covariance matrix to handle correlations among different responses. Also, the two-

level multivariate conditional Cook’s distance can be decomposed into six parts, indicating

the influences of fixed effects, 1st and 2nd level of random effects, and the co-variation

between them, respectively. Examples are given to illustrate how the influential observation

in one characteristic changes the effects of both characteristics.

This research has public health implications because the influence of outliers can bias

the results of any longitudinal study in public health. Hence, recognizing observations which

have undue influence on study results ensures that reliable conclusions can be obtained in

medical and public health research settings.
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1.0 INTRODUCTION

1.1 MULTIVARIATE LONGITUDINAL DATA

Two general types of study designs are used for comparing characteristics among humans

or animals in the vast majority of investigations in the health sciences: cross-sectional designs

and longitudinal designs. Individual cross-sectional studies allow comparisons between means

of different age groups but they cannot provide information that integrates the continuum

of time, nor do they provide any information about how individuals or populations change

over time. Longitudinal studies provide a powerful tool to address these problems.

In many medical and epidemiological research studies and clincal trials, individuals are

measured not only repeatedly, but also with respect to several response variables. Hence,

multivariate longitudinal data allow one to study and analyze the joint evolution of multiple

response variables over time. Examples of multivariate longitudinal data analysis include:

the couple-level growth curve analysis in social sciences [1], the joint modeling of CD4 and

CD8 lymphocyte counts in the process of HIV infection [2], and the Consortium for Radio-

logic Imaging Studies of Polycystic Kidney Disease (CRISP) [3]. In the CRISP study, 241

individuals were enrolled and followed for 3 years. MRI was used to monitor the possible

change of the renal structure. In this study, three biological markers (characteristics) were

repeatedly measured: kidney volume (KVS), cyst volume (CVS) and glomerular filtration

rate (GFR). Another example is Xu’s longitudinal study for Neonatal-Pediatric brain tissue

development [6]. The purpose of that study was to jointly study the growth patterns of gray

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes segmented from

longitudinal brain MR images of neonate-pediatric data from birth to 2 years of age.
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1.2 MULTIVARIATE MIXED EFFECT MODEL

It is well known that the longitudinal effect of aging or time is an inherently within-

individual effect, and the true hidden population growth trajectory should be the average of

all individual growth trajectories. However, simple linear regression requires all the subjects

and measurements to be independent, which makes simple linear regression methods unsuit-

able for longitudinal data with repeated measurements, because measurements are almost

always dependent if they are within the same subject.

The use of mixed models [47][48][49] thus arises as a strong tool to address this problem

by providing a general model (fixed effect) as a function of time to explain the underlying

growth process of the population of individuals while at the same time, allowing for each

individual to have his/her own trajectory (random effect). This approach can also be easily

extended to situations where more than one characteristic is being observed at each time

point. The data arising from such situations, referred to as “multivariate longitudinal data”,

are the primary focus of this dissertation.

The random coefficient mixed effect model longitudinal study assumes that the regres-

sion coefficients are a random sample from the whole population of possible coefficients and

allow one to model variations between study units [46]. Also, for multivariate longitudinal

studies, it is common that not all characteristics are measured at all time points. Further-

more, the assessments are not always equally spaced. The use of multivariate mixed effect

models allows one to model a longitudinal process where multiple outcomes are measured

at each time point, and allows one to easily handle missing data. However, the analysis

of multivariate longitudinal process is complicated because (1) the variances of residuals

may be different for different variables; (2) the residuals may be correlated for the same

characteristic measured at different time points (within-characteristic correlation); (3) the

residuals are also correlated among different characteristics measured at a given time point

(inter-characteristic correlation); (4) often, not all variables are measured at all time points,

or the assessments are not always equally spaced, even within one subject [4].

In recent years, many papers have extended the longitudinal (mixed effect) model to

the multivariate case. Reinsel [7][8] developed models for balanced multivariate longitudinal

2



data using a multivariate random-effect model. Shah, et al. [9] suggested an extension

of Reinsel’s work [7][8] to the case of unbalanced data to accomodate the case of arbitrary

measurement time points. In this paper Shah used the EM algorithm for maximum likelihood

estimation of parameters. Morrel, et al., [10], had utilized Shah’s [9] algorithm in a Bayesian

framework to investigate the feasibility of predicting hypertension based on a longitudinal

study of body mass index (BMI), systolic blood pressure (SBP) and triglyceride levels from

the Baltimore longitudinal study of aging[14]. Ibrahim, et al. [15], Xu, et al. [16], Song, et

al. [18] and Tsiatis [19] all extended the longitudinal model to the joint modeling of both

longitudinal and time to event data. Other variants of mixed effect model approaches include

the stochastic mixed effect, state-space model [11], self-modeling regression (SEMOR) [12]

and pairwise fitting [13].

1.3 INFLUENTIAL OBSERVATIONS

Some observations can be very influential on parameter estimation and the removal of

the observation from the data set can substantially change the regression equation. Such an

observation is called an “influential observation” by Belsley, et al [45].

Influential observations are important in data analysis. It is well known that not all

observations in a dataset play an equal role in determining parameter estimates. Suppose

we have a simple linear regression analysis using a dataset that contains N data pairs. We

may think that each pair contributes a weight of 1/N towards the estimation of the model

parameters. But this is not always correct. Sometimes the magnitude of the estimates in

the model may be determined only by a few cases while most other data are essentially

ignored. The reason is that the ordinary least squares (OLS) regression minimizes the sum

of squared error (SSE) so it gives more weight to those observations in which changes in the

parameters produce the largest reductions in the SSE. Those observations have the most

influence. If the observations have a strong influence, then, when they are removed, the

estimated parameters will be changed substantially.

Therefore, it is very important to be aware of particular observations that have unusually

3



large influence on the parameter estimates of the analysis. These observations (1) may

be appropriate and retained in the analysis, (2) may be identified as inappropriate data

and have to be removed from the analysis, (3) may suggest that we need additional data,

(4) may suggest that current model is inadequate, or (5) may indicate data input or data

entry mistakes. However, when interpreting the results, their influence has to be taken into

consideration. Regardless of the final assessment concerning those observations, identifying

them is necessary before intelligent, subject-matter-based conclusions can be made.

In the detection of univariate influential observations, an approach called ‘case deletion’

studies the effect of deleting an observation on the parameter estimates. Cook (1977) [21]

defines a measure of distance between two maximum likelihood estimates, where one is

calculated based on the complete set of observations and the other based on deletion of

a specific observation. Cook (1986) [22] also developed a local influence method for the

analysis of the simple linear regression model. Beckman, Nachtsheim and Cook (1987) [23]

developed the local influence method of Cook (1986) [22] for the analysis of the linear mixed

effect model. Zhu and Ibrahim [36] developed a Bayesian local influence measure method for

joint models for longitudinal and survival data. Although assessments of the influence of a

model perturbation are generally regarded as being useful, a practical and well established

approach to influence analysis in statistical modeling is still based on case deletion methods,

as Lawrance [51] pointed out.

Influence measure extensions to a multivariate case have been suggested by many re-

searchers. Hossain and Naik [31] and Naik [32] extended deletion of single observation in

univariate regression models to the multivariate case. Srivastava and von Rosen [33] de-

veloped a formal test for detecting a single influential observation for a multivariate linear

regression model. Hadi and Simonoff [39] proposed procedures and tests for detection of

multiple influential observations in univariate linear models. However, such methods have

the problem of masking and swamping, where the effect of one outlier masks the effect of

other outliers. Examples of this phenomenon were given by Barnett and Lewis [50]. Weiss

[28] developed a goodness of fit test for multivariate outliers, and the difference between

the multivariate outliers and multiple univariate outliers. Barrett and Ling [24] proposed

general classes of influence measures for multivariate regression based on analogous forms of

4



univariate Cook’s distance. Diaz-Garcia, et al. [30], proposed a generalized Cook’s distance

for elliptical distributions. Altunkaynak and Ekni [26] proposed a three-stage method. In

the first and second stage, the author introduces a linear restriction and a transformation

of the multivariate linear regression model into a restricted multivariate linear regression

model. The restricted model and the full model were used to facilitate the calculation of the

difference between parameter estimates of the multivariate linear regression model and that

of the restricted multivariate linear regression model. The third stage contains the assess-

ment of the influential observations using the generalized Cook’s distance. Chi and Ibrahim

[38] proposed a joint model for multivariate linear mixed effect model and multivariate sur-

vival model. Cerioli [29] developed multivariate outlier tests based on the “high-breakdown”

minimum covariance determinant estimator. This test uses robust estimators of µ and Σ,

and the outliers in y are revealed by their large distance from the robust fit. The author

claims the method has good performance under the null hypothesis of no outliers in the data.

However, their method is only applicable for non-longitudinal multivariate data, and does

not take into account any random effects.

1.4 INFLUENTIAL OBSERVATION FOR LONGITUDINAL DATA

ANALYSIS

Detecting influential observations in longitudinal data analysis is more complicated. In

the multivariate influential observation detection methods described above, influence mea-

sures are constructed to detect influential subjects and observations for the fixed regression

parameters. However, in mixed effect models, these statistics may fail to, or incorrectly de-

tect observations influential due to their omission of variances and covariances of associated

random effects [20]. Banerjee [34][35] noticed that the effectiveness of Cook’s distance is

limited in longitudinal data analysis because it was designed for independent observations

and hence cannot be directly used in the longitudinal setting. Tan, et al., [20] and Ouwens,

et al., [5] showed the advantage of using observation-oriented influence measures instead of

subject-oriented influence measures because the subject-oriented influence measures may fail

5



to or incorrectly detect influential subjects or influential observations, owing to the relative

position of the observations within and across subjects. Tan [20] proposed a conditional

version of Cook’s distance by conditioning on the subjects. Zhu and Ibrahim [37] devel-

oped scaled Cook’s distance to address a fundamental issue, that is, deleting subsets with

different numbers of observations introduces different degrees of perturbation to the current

model fitted to the data and the magnitude of Cook’s distance associated with the degree

of the perturbation. They also proposed a general parametric model for many complex data

structures, including longitudinal data.

1.5 OVERVIEW OF DISSERTATION

There has clearly been a great deal of work done for the detection of multivariate in-

fluential observations and the detection of influential observations in univariate longitudinal

data analysis. However, for the detection of influential observations in multivariate mixed

effect model, no rigorous approach has been developed.

This dissertation will address two of these areas. First, we propose a quantity to measure

the degree of influence by removing a set of observations. If the removal of observations

from the dataset results in a significant change to the parameter estimates for the current

statistical model, and equivalently, generates a large value of this quantity, then the set of

observations should be flagged as influential. In a multivariate longitudinal dataset, “a set of”

observations could be one observation, one characteristic in an individual, or an individual’s

complete set of observations. This quantity will be an extension of Tan’s conditional Cook’s

distance [20] to the multivariate longitudinal case. Second, we will extend this method to

the case of the multilevel multivariate longitudinal dataset. There are two levels of random

effects to handle the subject level and cluster level correlations among different time points.

Also, the multilevel multivariate conditional Cook’s distance can be decomposed into six

parts, indicating the influences of fixed effects, first and second levels of random effects, and

the co-variation between them, respectively. We will derive the influence functions for the

parameter estimates. Influence functions are functions to assess the effect (or “influence”)

6



of removing an observation (or a subset of observations) on the value of a statistic without

having to re-compute that statistic. This part will be an extension to Christensen’s result

[25] to the multilevel and multivariate longitudinal case.

7



2.0 MULTIVARIATE LONGITUDINAL EXTENSION OF COOK’S

DISTANCE

2.1 MODELING TRAJECTORIES OF MULTIVARIATE LONGITUDINAL

OUTCOMES THROUGH MIXED EFFECT MODEL

2.1.1 Univariate Mixed Effect Model

A typical univariate (m = 1) mixed effect model for individual i can be written as:

yi = Xiβ + Zibi + εi

yi ∼ N(Xiβ,ZiGZT
i +Rni

)
(2.1)

where yi is a vector of observations, β is the vector of the fixed effect parameters, bi is the

vector of the random effect parameters.

This model and more general univariate models were proposed by Laird and Ware[42],

Jennrich and Schluchter[40], Laird, Lange and Stram[41], Lindstrom and Bates[43], and

others. Many software packages were developed to fit those linear mixed effect models, such

as SAS PROC MIXED and R packages nlme and lme4, STATA. Those programs are able to

analyze unbalanced longitudinal datasets, in which the measurements are repeatedly taken

at arbitrary set of time points for each individual. Missing data (outcomes) are ignored along

with the corresponding rows of Xi and Zi.

8



2.1.2 Multivariate Mixed Effect Model

2.1.2.1 Model Structure A multivariate normal mixed effects model is proposed to

model the multivariate longitudinal response. The model for the kth characteristic at the jth

time point of ith individual is given as:

yijk = yijk(tij) = xijk︸︷︷︸
1×pk

βk︸︷︷︸
pk×1

+ zijk︸︷︷︸
1×qk

bik︸︷︷︸
qk×1

+εijk (2.2)

Based on 2.2, the model for ith individual at jth time point for all characteristics is given

as:

yij︸︷︷︸
m×1

= Xij︸︷︷︸
m×p

β︸︷︷︸
p×1

+ Zij︸︷︷︸
m×q

bi︸︷︷︸
q×1

+ εij︸︷︷︸
m×1

(2.3)

and the model for ith individual for all variables and time points is given as:

yi︸︷︷︸
mni×1

= Xi︸︷︷︸
mni×p

β︸︷︷︸
p×1

+ Zi︸︷︷︸
mni×q

bi︸︷︷︸
q×1

+ εi︸︷︷︸
mni×1

(2.4)

where the quantities of models 2.2, 2.3 and 2.4 are as follows:

• i = 1, 2, ..., N , number of subjects, total N subjects;

• j = 1, 2, ..., ni, j indicates the indices of repeated measurements for the ith subject. That

is, the ith subject is repeatedly measured ni times.

• k = 1, 2, ...,m, k indicates the indices of characteristics for the ith individual, m indicates

the number of characteristics measured for each individual.

• yijk = yijk(tijk) is the assessment of the kth characteristic of ith subject measured at jth

time point, time tijk;

• yij = [yij1 yij2, ... yijm]T = [yij1(tij) yij2(tij) ... yijm(tij)]
T , is an m× 1 vector;

• yi =
[
yTi1 y

T
i2 . . . yTini

]T
, y =

[
yT1 y

T
2 . . . yTn

]T
• xijk︸︷︷︸

1×pk

= xijk(tijk)︸ ︷︷ ︸
1×pk

is the vector of fixed effect covariates (could be time varing) for the kth

characteristic of the ith individualat at jth time point (time tijk). pk is the number of the

fixed effect parameters for characteristic k.

• βk︸︷︷︸
pk×1

, is a vector of the fixed effects parameters for kth characteristic. In most cases,

p1 = p2 = ... = pm.
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• Xij︸︷︷︸
m×p

= diag
(
xTij1 x

T
ij2 . . . x

T
ijm

)
is a fixed effects design matrix for yij.

• Xi =
[
XT
i1 XT

i2 . . . XT
ini

]T
, X =

[
XT

1 XT
2 . . . XT

N

]T
is the fixed effects design matrix.

• β =
[
βT1 β

T
2 . . . βTm

]T
;

• zijk︸︷︷︸
1×qk

= zijk(tijk)︸ ︷︷ ︸
1×qk

is a potentially time-varyng vector of random effect covariates for the

kth characteristic at time tijk, of the ith individual. qk is the number of the random effect

parameters for characteristic k.

• Zij︸︷︷︸
m×q

= diag
(
zTij1 z

T
ij2 . . . z

T
ijm

)
is a random effects design matrix for yij.

• bik︸︷︷︸
qk×1

vector, is the vector of the random effects parameters for kth characteristic of ith

individual. In most cases, q1 = q2 = ... = qm.

• Zi =
[
ZT
i1 ZT

i2 . . . ZT
ini

]
, Z = diag(ZT

1 ZT
2 . . . ZT

N)T is the random effects design matrix.

• bi =
[
bTi1 b

T
i2 . . . bTim

]T
, b =

[
bT1 b

T
2 . . . bTN

]T
; and

• εij = [εij1 εij2, ... εijm]T , εi =
[
εTi1 ε

T
i2 . . . εTini

]T
.

2.1.2.2 Assumptions The purpose of the model given above is to analyze the multivari-

ate longitudinal data in which a set of m characteristics are repeatedly measured ni times

on the ith individual. To do this, the model has to account for three sources of correlation:

(1) inter-source (different measures at the same visit), (2) intra-source (same measurement

at different visits), and cross correlation (different measurement at different visits).

In our model 2.2, 2.3 and 2.4, we assume εij ∼ N(0,Σm×m), where Σm×m is an un-

structured variance-covariance matrix. In this case, var(εi) ∼ N(0, (Ini
⊗Σ)). The random

effects are distributed as bi ∼ Nq(0,G) independently for i = 1, ..., N . Depending on the

application, we may allow G to be either unstructured or block diagonal with m non-zero

blocks of size qk × qk corresponding to the m characteristics.

Without conditioning on each individual and characteristic, the marginal model of y is:

yi ∼ N(Xiβ, ZiGZT
i + (Ini

⊗Σ))

The multivariate mixed effect models have received much attention in the literature. For

models similar to 2.2, 2.3 and 2.4, Reinsel [8] derived a closed-form estimate with completely
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observed yi and balanced designs. Shah, Laird and Schoenfeld[9] developed an EM algorithm

for bivariate (m = 2) setting, which also took into account the unbalanced design and missing

responses. After Shah, Laird and Schoenfeld’s work, Schafer and Yucel [44] developed a new

EM algorithm for the multivariate mixed effect model with unbalanced missing data using

multiple imputation methods, which is implemented in R package mlmmm. In certain

situations, it may be possible to recast the multivariate model as a univariate one and apply

existing software such as SAS PROC MIXED with a user-specified covariance structure[44].

Fieuws and Verbeke have proposed a pairwise fitting approach for the multivariate mixed

model with a large number of characteristics[13].

2.2 COOK’S DISTANCE

Cook’s distance is based on the concept of the influence function introduced by Ham-

pel [27]. The influence function of the distance measurement was developed by Cook [21].

The concept of Cook’s distance is as follows: Suppose there is a probability density function

of a random vector Y, denoted by p(Y|θ), where θ is the vector of the parameters of the

probability density function. Cook’s distance measures the distance between the maximum

likelihood estimators (MLE) of θ with and without the subset of the data. Let A denotes

the subset of the data to be removed. The new probability density function is denoted by

p(Y(A)|θ). The MLE of θ based on the full dataset Y is θ̂, and the MLE of θ based on the

subsample dataset with A removed, that is, Y(A), is θ̂(A), respectively. Hence, the Cook’s

distance for the subset A, denoted by CD(A), is defined as follows:

CD(A) = (θ̂(A) − θ)TB(θ̂(A) − θ)

where B is a positive definite matrix to be estimated but does not change when the subset

of data is removed.

For multivariate data, longitudinal data, or multivariate longitudinal data, the within

subject observations are correlated. The likelihood function p(Y|θ) has to be able to model
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the correlation structure. Here we set

B = I(θ) = − ∂2

∂θ∂θT
log(p(Y|θ)) (2.5)

which incorporates the correlation structure [37]. Hence, I(θ) denotes the Fisher information

for θ.

In this model θ is the vector of the parameters of the probability density function,

including both fixed effects and random effects. Multivariate influence measures for models

with and without random effects will be developed and compared.

2.2.1 Example: Simple linear regression model

y = Xβ + ε

we have B = XTV−1X, where V = cov(y). The Cook’s distance [21] is:

Cj =
(β̂ − β̂(j))

TXTV−1X(β̂ − β̂(j))

p
=

(ŷ − ŷ(j))
TV−1(ŷ − ŷ(j))

p

where p is the number of predictors.

2.2.2 Multivariate Cook’s Distance

Barrett and Ling [24] generalized the univariate measures of influence to the multivariate

regression model:

Di = [b− b(i)]T [S−1 ⊗ (XTX)][b− b(i)]/p

where S = eTe/(n − p), e = Y − Ŷ = Y − Xβ̂, and p is the number of predictors. “⊗”

indicates the direct product or Kronecker product of two matrices.
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2.2.3 Conditional Cook’s Distance

In the longitudinal context, Cook’s distance is used to identify observations with unusu-

ally large influence on the fixed effects, Xβ. Unfortunately, influential observations on the

subject-specific (random) effects, b, cannot always be correctly detected by Cook’s distance.

For example, non-influential observations are sometimes incorrectly identified as being in-

fluential [20]. Tan, Ouwens and Berger [20] suggested an extension to the Cook’s distance

for univariate longitudinal data. To do so, they condition on removing observations at time

point j which can be written as follows:

Ccondj =
N∑
i=1

((Xiβ̂ + Zib̂i)− (Xiβ̂(j) + Zib̂i(j)))
T ((Xiβ̂ + Zib̂i)− (Xiβ̂(j) + Zib̂i(j)))

σ2{(N − 1)q + p}

where p is the number of fixed effect predictors, q is the number of random effect predictors,

N is the number of total individuals.

2.3 MULTIVARIATE LONGITUDINAL EXTENSION OF COOK’S

DISTANCE

Using a concept similar to Cook’s distance[21] and the conditional Cook’s distance[20],

we propose a multivariate longitudinal extension. Conditioning on all of the individuals and

each characterisitc of the individuals, we have the following likelihood:

L(φ) = |S|−
1
2 exp

[
−1

2
(y −Xβ − Zb)TS−1(y −Xβ − Zb)

]
and its corresponding log-likelihood:

l(φ) = −1

2
log |S| − 1

2
(y −Xβ − Zb)TS−1(y −Xβ − Zb)

where S = diag [In1 ⊗Σ, . . . , InN
⊗Σ].

Here we use φ to denote the vector containing all the fixed and random effects parameters

to be estimated, that is, φ = (βT , bT )T .
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Using model 2.2, 2.3, 2.4 and from 2.5, we have the score function:

∂l(φ)

∂φ
=

 ∂l(φ)
∂β

∂l(φ)
∂b

 =

 −(XTS−1X)β + (y − Zb−Wc)TS−1X

−(ZTS−1Z)b+ (y −Xβ −Wc)TS−1Z


and Fisher Information:

B = I(φ) = − ∂2

∂φ∂φT
l(φ) =

 XTS−1X XTS−1Z

ZTS−1X ZTS−1Z


Then, the conditional Cook’s distance is written as:

CD(A) =
(φ̂(A) − φ̂)TB(φ̂(A) − φ̂)

c

=
1

c

[
(β̂(A) − β̂)T (b̂(A) − b̂)T

] XTS−1X XTS−1Z

ZTS−1X ZTS−1Z

 β̂(A) − β̂

b̂(A) − b̂


=

(β̂(A) − β̂)TXTS−1X(β̂(A) − β̂)

c
+

(b̂(A) − b̂)TZTS−1Z(b̂(A) − b̂)
c

+
2(β̂(A) − β̂)TXTS−1Z(b̂(A) − b̂)

c

= CA1 + CA2 + CA3

(2.6)

where

c = (Nm− 1) q + p

Here p is the total number of fixed effect predictors, that is, p =
∑m

k=1 pk; q is the total

number of random effect predictors, q =
∑m

k=1 qk; m is the number of characteristics for each

individual; and A indicates a subset of the observations. Other quatities include β̂, b̂, and

β̂(A), b̂(A) which are the fitted values of β, b using the samples with and without the subset

of observations, respectively. The subset, A, could be one data point, all observations in one

individual, or some other specified subset.

From Equation 2.6, we see that CD(A) can be decomposed to three parts: CA1, CA2,

and CA3, which are as follows:
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CA1 =
(β̂(A) − β̂)TXTS−1X(β̂(A) − β̂)

c

=
N∑
i=1

(β̂(A) − β̂)TXT
i (Ini

⊗Σ)−1Xi(β̂(A) − β̂)

c

=
N∑
i=1

(β̂(A) − β̂)TXT
i [Ini

⊗Σ−1]Xi(β̂(A) − β̂)

c

=
N∑
i=1

ni∑
j=1

(β̂(A) − β̂)TXT
ijΣ

−1Xij(β̂(A) − β̂)

c

CA1 is the total distance measurement for the fixed (marginal) effect between the com-

plete dataset and the data with subset A removed. The term
(β̂(A)−β̂)T XT

ijΣ
−1Xij(β̂(A)−β̂)
c

is

actually the overall marginal Cook’s distance for the ith subject at the jth time point. It is the

total distance measurement of m characteristics, but only normalizing the residual variance-

covariance matrix, without normalizing the random variance-covariance matrices[20]. If we

assume the residual covariance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m], then the

term can be extracted to
∑m

k=1

(β̂(A)−β̂)T XT
ijXij(β̂(A)−β̂)
cσ2

k
, which is the simple summation of the

distance measurements for all the characteristics. When Σ is NOT diagonal, the total dis-

tance measurement for the fixed (marginal) effect also takes into account the correlations

among all the m characteristics.

Continuing with CA2, we have:

CA2 =
(b̂(A) − b̂)TZTS−1Z(b̂(A) − b̂)

c

=
N∑
i=1

(b̂i(A) − b̂i)TZT
i (Ini

⊗Σ)−1Zi(b̂i(A) − b̂i)
c

=
N∑
i=1

(b̂i(A) − b̂i)TZT
i [Ini

⊗Σ−1]Zi(b̂i(A) − b̂i)
c

=
N∑
i=1

ni∑
j=1

(b̂i(A) − b̂i)TZT
ijΣ

−1Zij(b̂i(A) − b̂i)
c

CA2 is the total distance measurement for the first level (individual level) random effect

parameters between the complete dataset and the data with subset A removed. The term
(b̂i(A)−b̂i)T ZT

ijΣ
−1Zij(b̂i(A)−b̂i)
c

is actually the overall distance measurement of the random effects
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for the ith subject at the jth time point. It is the total distance measurement of m char-

acteristics, normalizing the residual variance-covariance matrix. If we assume the residual

covariance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m], then the term can be reduced

to
∑m

k=1

(b̂i(A)−b̂i)T ZT
ijZij(b̂i(A)−b̂i)
cσ2

k
, which is a simple summation of the distance measurements

for all the characteristics. When Σ is NOT diagonal, the total distance measurement for

the individual level random effect also takes into account the correlations among all the m

characteristics.

Continuing with CA3,

CA3 =
2(β̂(A) − β̂)TXTS−1Z(b̂(A) − b̂)

c

= 2
N∑
i=1

(β̂(A) − β̂)TXT
i [Ini

⊗Σ−1]Zi(b̂i(A) − b̂i)
c

= 2
N∑
i=1

ni∑
j=1

(β̂(A) − β̂)TXT
ijΣ

−1Zij(b̂i(A) − b̂i)
c

CA3 is the distance measure of covariation between the change in the population average pro-

file and the change in the subject-specific profile relative to the population average profile.

The term
(β̂(A)−β̂)T XT

ijΣ
−1Zij(b̂i(A)−b̂i)
c

is actually the overall distance measurement of the co-

variation between the change in the population average profile and the change in the subject-

specific profile relative to the population average profile for the ith subject at the jth time

point. If we assume the residual covariance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m],

then the term can be reduced to
∑m

k=1

(β̂(A)−β̂)T XT
ijZij(b̂i(A)−b̂i)
cσ2

k
, which is a simple summation

of the distance measurements for the covariance of all the characteristics. When Σ is NOT

diagonal, the total distance measurement for the covariance also takes into account the

correlations among all the m characteristics.

Note that the situation here is different from that presented by Tan[20], because we

have multiple characteristics per individual at each time point whereas Tan had only one

characteristic per individual at each time point.
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2.4 SIMULATION STUDY

The purpose of our simulation study is two fold: (1) To demonstrate the conditional and

naive multivariate Cook’s distance for a single realization; and (2) To investigate the ability

of each method to detect a “known” influential observation.

2.4.1 The Model used in the simulation study

The goal of our simulation study is to examine the performance of the multivariate con-

ditional Cook’s distance for detecting influential observations in a multivariate longitudinal

dataset, and compare our results to that of the naive Cook’s distance.

We generated a bivariate longitudinal dataset for our simulation study. The dataset

contains n individuals and each individual has two characteristics, yij1 and yij2, which are

repeatedly measured. The bivariate mixed effect model is:

yij1 = β10 + β11ui1 + β12tij + b1i + εij1

yij2 = β20 + β21ui2 + β22tij + b2i + εij2

(2.7)

where i indicates the individual, i = 1, . . . , N ; j indicates the time point, j = 1, . . . , ni; ni

is randomly sampled from {1, 2, . . . , 9}. The random effects bi = [b1i, b2i]
T , are generated

from a bivariate normal distribution bi =

 bi1

bi2

 ∼ N

0,

 1 0.2

0.2 1

. The fixed

effects design matrix Xij =

 1 ui1 tij 0 0 0

0 0 0 1 ui2 tij

, where tij is the jth time point for

ith individual, and ui1 and ui2 denote baseline covariates for the two characteristics. The

random variables ui1 and ui2 were generated from a bivariate normal distribution, ui = ui1

ui2

 ∼ N

0,

 1 0.8

0.8 1

. tij = log(j), εij =

 εij1

εij2

 ∼ N

0,

 1 0.5

0.5 1

. The

true components of β are [β10, β11, β12, β20, β21, β22]
T = [1, 1, 1, 1, 1, 1]T .

Since our goal of the simulation is only to compare the multivariate conditional Cook’s

distance and the naive multivariate Cook’s distance, the model for this simulation is only
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one-level, and the random effects only contain random intercepts. We generated 50 individ-

uals (N = 50). Without loss of generality, we set the number of measurements of the 50th

individual to be 9. Then we reset b1,50 = 6 for time point 5. Thus, the observation of y1 at

time point 5 of the 50th individual has strong influence due to extreme values of b1i.

We repeated the simulation for 1000 times, we generated 1000 datasets according to 2.7,

and then use our method to detect the “known” influential observation. The result of the

simulation will be discussed in subsections 2.4.2 and 2.4.3.

Since the model of this simulation is a single-level multivariate mixed effect model, we

used R package mlmmm [52] to fit the model. The single-level multivariate mixed effect model

with missing value and correlated error term can also be fitted using SAS PROC MIXED

(SAS version 9.2 or later), the following repeated statement allows one to fit the desired

error structure:

random int_b1 int_b2 /subject=id type=un g gcorr;

repeated var_type /subject=id*visit_order type=un r rcorr;

If we want to fit the single level multivariate mixed effect model with independent errors

structure (Σ is diagonal), just simply change the option to type=vc in the repeated statement

above.

2.4.2 Demonstration of method for one dataset

In this section we illustrate one of the 1000 realizations. Figure 2.1 shows the scattergram

of the relationship between the response [yij1, yij2]
T and the time points. Note that the blue

points indicates y1 and the red points indicates y2. It can be seen that the fifth observation

of y1 (blue point) of individual 50 is an extremely high value. In this simulation dataset the

individuals have at least 1 measurement and 9 at most.
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Figure 2.1: Scattergram of one simulated dataset
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Figure 2.2 shows the multivariate conditional Cook’s distance for all observations. Clearly

the y1 value of the fifth measurement of individual 50 was detected.
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Figure 2.2: Conditional Cook’s Distance for all observations

Figure 2.3 shows the multivariate naive Cook’s distance for all observations. Clearly the

y1 value of the fifth measurement of individual 50 was NOT detected.
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Figure 2.3: Cook’s Distance for all observations

Figure 2.4 shows, for each observation, the relative changes (in percentage) in the esti-

mated fixed effects of y1, β̂10, β̂11, β̂12, the estimated fixed effects of y2, β̂20, β̂21, β̂22, and the

estimated random intercept of the 50th individual, b̂50,1 and b̂50,2. Note that the percentages

of change for b̂50,1 and b̂50,2 were divided by 10 so it can be shown more clearly in the plot.

The actual relative change of b̂50,1,y2 is around 51%, not 5%. The blue points indicates y1

and the red points indicates y2.

21



Relative changes of all parameters

Parameters

P
e
rc

e
n
ta

g
e
 o

f 
C

h
a
n
g
e

β
^

10 β
^

11 β
^

12 β
^

20 β
^

21 β
^

22 b
^

50−1 10 b
^

50−2 10

0

1

2

3

4

5

6

7

(15, 1, y1)

(18, 1, y1)

(15, 1, y1)

(35, 1, y2)

(5, 1, y2)

(34, 1, y2)

(50, 5, y1)

(50,5,y2)

(50, 5, y1)

Figure 2.4: Relative changes for all parameters estimated (in percentage)
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Figure 2.4 indicates that the fifth observation of y1 of the 50th individual (the extreme

observation we made) does not have the largest effect on any of the six fixed effects param-

eters. But it shows that the value of b̂50,1 (the random intercept of y1 of the 50th individual)

is strongly influenced by the fifth observation of y1 of the 50th individual.

Also, Figure 2.4 shows that observations of y1 have much stronger influence on y1’s

parameters (both fixed effects and random effects) than those of y2, and similarly for y2.

This is understandable.

For the random intercept of y2 of the 50th individual, of course one of the observations

of y2 has the largest influence. But it is noticable that, among the observations of y1, the

fifth observation of the 50th individual (the extreme observation we made) has the largest

effect. That is because the two characteristics y1 and y2 are correlated (estimated correlation

coefficient is 0.3904).

2.4.3 Comparing Performance of Methods (1000 realizations)

In order to compare our extended conditional Cook’s distance to that of the unconditional

(original) Cook’s distance, we repeated the simulation 1000 times. Accordingly, we generated

1000 datasets using to the Model 2.7, and then use our method to detect a “known” influential

observation in the 1000 datasets.

For each of the 1000 datasets, a bivariate linear mixed effect model was fitted, and

the model parameters, variance-covariance matrices were calculated. The averages of the

1000 estimated model parameters, random effect variance-covariance matrix (G matrix) and

residual variance-covariance matrix (Σ matrix) are listed below. Table 2.1 shows the average

estimation of the fixed effect parameters and the standard deviations for 1000 simulations.
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Table 2.1: The average estimation of the fixed effect parameters for 1000 simulations

Parameters Estimated value Standard Deviation

β̂10 1.0021 0.0341

β̂11 0.9992 0.0257

β̂12 1.0164 0.0100

β̂20 0.9922 0.0448

β̂21 0.8018 0.0326

β̂22 0.9998 0.0110

The estimated G matrix and its associated correlation matrix, G are:

Ĝ =


b1 b2

b1 0.8996 0.1925

b2 0.1925 1.3020

 Ĝ =


b1 b2

b1 1.0000 0.1778

b2 0.1778 1.0000


We can see the estimated ρ̂G = 0.1778 is close to the true value ρG = 0.20. The model fits

well for the 1000 simulations.

The estimated Σ matrix averaged over the 1000 simulations and the associated correla-

tion matrix are:

Σ̂ =


y1 y2

y1 1.2171 0.4976

y2 0.4976 0.9962

 Σ̂ =


y1 y2

y1 1.0000 0.4519

y2 0.4519 1.0000


We can see the estimated ρ̂R = 0.4519, the true value ρR = 0.50. The model fits well.

Our multivariate conditional Cook’s distance successfully detected the “known” influen-

tial observation in 925 of the 1000 datasets. The original Cook’s distance only detected the

“known” influential observation in 262 of the 1000 datasets. In Table 2.2, a contingency table

for the multivariate conditional Cook’s distance and the original Cook’s distance summarizes

the result from the 1000 simulations.
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Table 2.2: Number of detections for conditional and original Cook’s distance

Original Cook’s D

Conditional Cook’s D No Yes Total

No 75 0 75

Yes 663 262 925

Total 738 262 1000

2.5 APPLICATION

We applied our method to glaucoma clinical data. In this study, patients’ eyes were

repeatedly measured for multiple responses. The purpose of our investigation is to jointly

model the thicknesses of retina nerve fiber layer (RNFL) and retinal ganglion cells complex

(GCC), and find out if there are some abnormal measurements. The dataset is from UPMC

eye center.

The following summarizes some information about the data:

• Total 487 eyes from 256 patients;

• Eyes were divided into three diagnostic groups: healthy(H), glaucoma suspect(GS) and

glaucoma(G);

• There were 97 healthy eyes, 279 glaucoma suspect eyes and 111 glaucoma eyes;

• Patients’ baseline ages (in years) vary from 40.5 to 81.9;

• The follow-up duration (in years) varies from 1.322 to 6.398;

• The outcomes were retina nerve fiber layer (RNFL) thickness and retinal ganglion cells

complex (GCC) thickness;

• There were a total of 5, 994 observations among the 256 patients.

The simultaneous outcomes of RNFL and GCC are typically correlated, and these out-

comes were longitudinally measured.
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Note that in this model, all eyes were assumed to be independent. This assumption is

NOT correct, because two eyes from one patient are typically correlated. But here we just

use the dataset to demonstrate the method. In the next chapter we will show a multilevel

multivariate mixed effect model which takes into account the correlation between both eyes

for each patient.

2.5.1 The Model

We fitted the following bivariate linear mixed effect model:

YRNFL = (β10N + β11GS + β12G+ b10)

+ (β13N + β14GS + β15G+ b11)Fu+ β16Age+ εRNFL

YGCC = (β20N + β21GS + β22G+ b20)

+ (β23N + β24GS + β25G+ b21)Fu+ β26Age+ εGCC

where Age indicates baseline age; Fu indicates Follow-up (in years). We assume that:

• b = [b10, b20, b11, b21]
T ∼ N(0,G),

• ε = [εRNFL, εGCC ]T ∼ N(0,Σ2×2)

Table 3.1 shows the estimated parameters of fixed effects:

Table 2.3: The estimated parameters of fixed effects

β10 β11 β12 β13 β14 β15 β16

111.70 105.38 94.391 −0.0606 −0.676 −0.753 −0.186

β20 β21 β22 β23 β24 β25 β26

107.70 102.48 94.968 −0.972 −0.592 −0.475 −0.221
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The estimated variance-covriance matrices of the random effect (G) is:

Ĝ =



b10 b20 b11 b21

b10 94.507 51.264 −0.965 −0.255

b20 51.264 51.848 −0.0523 −0.258

b11 −0.965 −0.0523 0.904 0.0957

b21 −0.255 −0.258 0.0957 0.744



The correlation matrix of G is:

Ĝ =



b10 b20 b11 b21

b10 1.000 0.732 −0.104 −0.0305

b20 0.732 1.000 −0.00764 −0.0415

b11 −0.104 −0.00764 1.000 0.117

b21 −0.0305 −0.0415 0.117 1.000



The estimated residual variance-covariance matrix is:

Σ̂ =


YRNFL YGCC

YRNFL 13.387 0.292

YGCC 0.292 8.458



Its associated correlation matrix is:

Σ̂ =


YRNFL YGCC

YRNFL 1.0000 0.0274

YGCC 0.0274 1.0000


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2.5.2 The influential observations (observation level)

Using our method, we calculated the observation level conditional Cook’s distance and

the decomposed CA1, CA2 and CA3. “Observation level” means that the subset A to be

removed is the whole observation of the ith subject at jth time point. That is, A contains

both RNFL and GCC values measured at the jth time point for the ith subject.

Figure 3.3 is the illustration of the 10 observations in 10 eyes. and the Table 2.4 contains

a list of the 10 observations with largest value of conditional Cook’s distance. Note that

the blue circles and lines indicate the observed RNFL values and individual fitted regression

lines for RNFL. The blue dotted lines indicate the patient-level fitted regression lines for

RNFL. The light blue lines indicate the marginal fitted regression lines for RNFL. Similarly,

the red cirles, lines and pink lines are for GCC as well.

RNFL avg & GCC avg vs. follow−up(year), obs level
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Figure 2.5: 10 observations with largest conditional cook’s distance in 10 eyes
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Table 2.4: Decomposition of the Conditional Cook’s Distance for the 10 observations with

largest conditional cook’s distance

Condional
Eye ID Follow-up Follow-up Diagonstic Cook SD CA1 CA2 CA3

(in years) (in days) group (×10−3) (×10−3) (×10−3) (×10−3)

2:204:OS 0.5448 199 2 3.597 0.022 3.577 −0.002
2:102:OD 2.0205 738 2 2.645 0.036 2.615 −0.006
2:102:OS 2.0205 738 2 2.321 0.033 2.294 −0.006
3:170:OS 2.9103 1063 3 2.292 0.101 2.240 −0.048
4:174:OS 1.5387 562 3 2.151 0.059 2.102 −0.010
2:191:OS 0.9391 343 3 1.932 0.035 1.905 −0.009
4:91:OS 0.8487 310 2 1.921 0.013 1.908 0.000
4:91:OD 4.8953 1788 3 1.848 0.027 1.811 0.010
2:72:OD 5.5633 2032 2 1.822 0.008 1.807 0.007

2:191:OD 0.9391 343 3 1.767 0.031 1.743 −0.007

2:204:OS:0.54 2:102:OD:2.02 2:102:OS:2.02 3:170:OS:2.91 4:174:OS:1.54
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Figure 2.6: Decomposition of the Conditional Cook’s Distance for the 10 observations with

largest conditional cook’s distance
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Figure 2.6 shows the values of the three decomposition terms of the multivariate condi-

tional Cook’s distance. We notice that for most observations, the distance measurement of

the random effects are much greater than the distance measurement of the fixed effects, that

is, CA2 � CA1. This is obvious because the subject-specific effects are much more sensitive

to the influential observation than the marginal effects. Also, the covariance between the

distance measurements of fixed and random random effects, that is, CA3, is very small. This

is similar to Tan’s [20] conclusion in the univariate case.
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2.5.3 The influential observations (component level)

Using our method, we also calculated the component level conditional Cook’s distance

and the decomposed CA1, CA2 and CA3. “Component level” means that the subset A to be

removed is only one component of the whole observation of the ith subject at jth time point.

That is, A contains only one of the two components, either RNFL or GCC value measured

at the jth time point for the ith subject.

Figure 2.7 illustrates the 10 components in 10 eyes. and the Table 2.5 contains a list of

the 10 components with largest value of conditional Cook’s distance.
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Figure 2.7: 10 components with largest conditional cook’s distance in 10 eyes
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Table 2.5: Decomposition of the Conditional Cook’s Distance for the 10 components with

largest conditional cook’s distance

Follow- Follow- Conditional
up up Diag Cook SD CA1 CA2 CA3

Eye ID Type (years) (days) group (×10−3) (×10−3) (×10−3) (×10−3)

2:204:OS RNFL 0.5448 199 2 3.491 0.0220 3.471 −0.00235
4:174:OD RNFL 1.5387 562 3 2.167 0.0586 2.118 −0.00981
2:102:OD RNFL 2.0205 738 2 2.079 0.0297 2.054 −0.00488

4:91:OS GCC 0.8487 310 2 1.888 0.0129 1.875 0.00570
4:91:OD GCC 4.8953 1788 3 1.848 0.0270 1.811 0.00959
2:72:OD GCC 5.5633 2032 2 1.823 0.0077 1.808 0.00750

2:191:OS RNFL 0.9391 343 3 1.836 0.0314 1.812 −0.00787
2:102:OS GCC 2.0205 738 2 1.808 0.0270 1.786 −0.00544
3:170:OS RNFL 2.9103 1063 3 1.821 0.0838 1.777 −0.00394
2:191:OD RNFL 0.9391 343 3 1.770 0.0292 1.748 −0.00682

2:204:OS:RNFL:0.54 4:174:OS:RNFL:1.54 2:102:OD:RNFL:2.02 4:91:OS:GCC:0.85 4:91:OD:GCC:4.9
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Figure 2.8: Decomposition of the Conditional Cook’s Distance for the 10 components with

largest conditional cook’s distance
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Figure 2.8 shows the values of the three decomposition terms of the multivariate condi-

tional Cook’s distance. Similar to the observation level, for most components, the distance

measurement of the random effects are much greater than the distance measurement of the

fixed effects, that is, CA2 � CA1. This is obvious because the subject-specific effects are

much more sensitive to the influential observation than the marginal effects. Also, the co-

variance between the distance measurements of fixed and random random effects, that is,

CA3, is very small. This is similar to Tan’s [20] conclusion in the univariate case.
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3.0 MULTILEVEL MULTIVARIATE LONGITUDINAL EXTENSION OF

COOK’S DISTANCE

The multilevel multivariate mixed effect model is an extension of models 2.2, 2.3 and 2.4.

The extension is obtained for cases when repeated multivariate measurements on subjects are

further clustered into larger groups. Such designs arise in many applications. An example

is the ophthalmology clinical data. Multivariate measurements (e.g. retina thickness and

mean deviation) were repeatedly measured on each eye (cluster), and each patient (group)

has two eyes (clusters). Another example is in educational studies. Students are repeatedly

taking exams of multiple courses (reading, math, science, etc), with students belonging to

schools, which are in turn clustered within school districts, and so forth.

The extended model will be motivated by the analyses of ophthalmology clinical data.

In ophthalmic data, most of the patients contribute two eyes, and for each eye a set of m

characteristics are repeatedly measured for ni times. Obviously, two eyes from one patient

are dependent, and they are typically highly correlated.

3.1 MULTILEVEL MULTIVARIATE MIXED EFFECT MODEL

The following describes our two-level multivariate mixed effect model. The model for

the observations at jth time point of hth cluster in ith group is:

y(ih)j︸ ︷︷ ︸
m×1

= Xij︸︷︷︸
m×p

β︸︷︷︸
p×1

+ Zij︸︷︷︸
m×q

bi︸︷︷︸
q×1

+ W(ih)j︸ ︷︷ ︸
m×r

cih︸︷︷︸
r×1

+ ε(ih)j︸︷︷︸
m×1

(3.1)
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The model for hth cluster in ith group for all variables and time points is given as:

y(ih)︸︷︷︸
mni×1

= Xi︸︷︷︸
mni×p

β︸︷︷︸
p×1

+ Zi︸︷︷︸
mni×q

bi︸︷︷︸
q×1

+ W(ih)︸ ︷︷ ︸
mni×r

cih︸︷︷︸
r×1

+ ε(ih)︸︷︷︸
mni×1

(3.2)

where:

• h = 1, 2, ..., s, indicates the clusters in each group. There are a total of s clusters in each

group. For example, in the ophthalmic data, h = 1, 2, s = 2, indicating two clusters

(eyes) in each group (patient).

• bi is the group level random effect for the ith group, bi ∼ Nq(0,G1), Zi is the design

matrix of random effects for the ith group. In the ophthalmic data example, bi is the

patient level random effect for the ith patient.

• cih is the cluster level random effect for the hth cluster in the ith group, cih ∼ Nr(0,G2),

Wih is the design matrix of random effects for the hth cluster in the ith group. In the

ophthalmic data example, cih is the eye level random effect for the hth eye of the ith

patient. We assume that cih are independently distributed given bi.

The model for the ith group (patient) is:

yi =


yi1

yi2
...

yis

 =


Xiβ + Zibi + Wi1ci1 + εi1

Xiβ + Zibi + Wi2ci2 + εi2
...

Xiβ + Zibi + Wiscis + εis



=


Xi

Xi

...

Xi

β +


Zi

Zi

...

Zi

 bi +


Wi1 0 . . . 0

0 Wi2 . . . 0
...

...
. . .

...

0 0 . . . Wis




ci1

ci2
...

cis

+


εi1

εi2
...

εis


= (1s ⊗Xi)β + (1s ⊗ Zi)bi + Wici + εi

= X∗
iβ + Z∗

ib
∗
i + εi

(3.3)

where:

• Wi = diag(Wi1, . . . ,Wis)

• X∗
i = 1s ⊗Xi; Z∗

i = [1s ⊗ Zi, Wi].

35



• b∗i =
[
bTi , c

T
i1, c

T
i2, . . . , c

T
is

]T
; c∗i =

[
cTi1, c

T
i2, . . . , c

T
is

]T
.

• b∗i ∼ N(0,G∗). Note that cih are independently distributed given bi. So, we have

G∗ = diag(G1,G2, . . . ,G2).

• Js is the s× s matrix with all entries 1. Is is the s× s identity matrix.

The variance of yi is:

Vi = var(yi) = Z∗
iG

∗Z∗T
i + R∗

i

=


Zi Wi1 . . . 0
...

...
. . .

...

Zi 0 . . . Wis




G1 0 . . . 0

0 G2 . . . 0
...

...
. . .

...

0 0 . . . G2




ZT
i . . . ZT

i

WT
i1 . . . 0

...
. . .

...

0 . . . WT
is



+


Ini
⊗Σ . . . 0
...

. . .
...

0 . . . Ini
⊗Σ



=


ZiG1Z

T
i + Wi1G2W

T
i1 ZiG1Z

T
i . . . ZiG1Z

T
i

ZiG1Z
T
i ZiG1Z

T
i + Wi2G2W

T
i2 . . . ZiG1Z

T
i

...
...

. . .
...

ZiG1Z
T
i ZiG1Z

T
i . . . ZiG1Z

T
i + WisG2W

T
is


+ Is ⊗ (Ini

⊗Σ)

= Js ⊗ (ZiG1Z
T
i ) +


Wi1G2W

T
i1 . . . 0

...
. . .

...

0 . . . WisG2W
T
is

+ Is ⊗ (Ini
⊗Σ)

= Js ⊗ (ZiG1Z
T
i ) +


Wi1 . . . 0

...
. . .

...

0 . . . Wis




G2 . . . 0
...

. . .
...

0 . . . G2




WT
i1 . . . 0

...
. . .

...

0 . . . WT
is


+ Is ⊗ (Ini

⊗Σ)

= Js ⊗ (ZiG1Z
T
i ) + Wi(Is ⊗G2)W

T
i + Is ⊗ (Ini

⊗Σ)
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Without conditioning on each group, cluster and characteristic, the marginal model of y

is:

yi ∼ N(Xiβ, Js ⊗ (ZiG1Z
T
i ) + Wi(Is ⊗G2)W

T
i + Is ⊗ (Ini

⊗Σ))

.

we have following covariances:

cov(yi, bi) = cov ((1s ⊗Xi)β + (1s ⊗ Zi)bi + Wici + εi, bi) = (1s ⊗ Zi)cov(bi, bi)

= (1s ⊗ Zi)G1

cov(yi, ci) = cov ((1s ⊗Xi)β + (1s ⊗ Zi)bi + Wici + εi, ci) = Wicov(ci, ci) = WiG2

Under the assumption of normality, the joint distribution of yi, bi, ci, and εi is multi-

variate normal:
yi

bi

ci

εi

 ∼MVN(µ,Ψ), where: µ =


(1s ⊗Xi)β

0

0

0

, and

Ψ =


Js ⊗ (ZiG1Z

T
i ) + Wi(Is ⊗G2)WT

i + Is ⊗ (Ini
⊗Σ) G1(1s ⊗ Zi)

T G2W
T
i Is ⊗ (Ini

⊗Σ)
(1s ⊗ Zi)G

T
1 G1 0 0

WiG
T
2 0 G2 0

Is ⊗ (Ini
⊗Σ) 0 0 Is ⊗ (Ini

⊗Σ)



3.2 INFLUENCE FUNCTIONS

As was emphasized earlier, influence functions are functions for assessing the effect (or

“influence”) of removing an observation (or a subset of observations) on the value of a statistic

without having to re-compute that statistic. Here, we derive the functions to calculate the

estimation with removal of an observation (or a subset of observation), β(A), b(A), c(A) from

the complete data estimation, β, b, and c.

From 3.3 we have the model for the complete dataset:

y = Xβ + Zb+ εi (3.4)
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where: X =


X∗

1

...

X∗
N

, Z =


Z∗

1 0
. . .

0 Z∗
N

, b =


b∗1
...

b∗N

, ε =


ε1
...

εN

,

b ∼ N(0,G), G = diagN(G∗, . . . ,G∗)

For simplicity of notation, in this section, we use i to denote the ith observation in the

complete dataset, and k to denote the number of observations in the subset of interest.

Hence, the subset A to be removed can be identified as beginning at the ith observation,

having a total of k observations. Thus, A has a cardinality of k.

Without loss of generality, we partition the matrices as if the subset A of observations

to be removed are the beginning k observations; That is, from the 1st to the kth of the total

N observations. Using a similar notation as in [25], we have:

y
N×1

=

 yTi
k×1

y(i)
(N−k)×1

 , X
N×p

=

 XT
i

k×p

X(i)
(N−k)×p

 , Z
N×q

=

 ZT
i

k×q

Z(i)
(N−k)×q

 , (3.5)

and V
N×N

=

 Vii
k×k

VT
i

k×(N−k)

Vi
(N−k)×k

V[i]

(N−k)×(N−k)


We first need to derive AT

(i)V
−1
[i] B(i). If we know ATV−1B, where A and B can be partitioned

in a same way as X and Z above, then

A
N×a

=

 AT
i

k×a

A(i)
(N−k)×a

 , B
N×b

=

 BT
i

k×b

B(i)
(N−k)×b


From the inverse of partitioned matrix, we have:

V−1 =

 Vii ΛT
i

Λi Λ[i]

 =

 (Vii −VT
i V−1

[i] Vi)
−1 −V−1

ii VT
i (V[i] −ViV

−1
ii VT

i )−1

−V−1
[i] Vi(Vii −VT

i V−1
[i] Vi)

−1 (V[i] −ViV
−1
ii VT

i )−1


(3.6)
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ΛT
i = −V−1

ii VT
i (V[i] −ViV

−1
ii VT

i )−1

= −(Vii −VT
i V−1

[i] Vi)
−1(Vii −VT

i V−1
[i] Vi)V

−1
ii VT

i (V[i] −ViV
−1
ii VT

i )−1

= −(Vii −VT
i V−1

[i] Vi)
−1(VT

i −VT
i V−1

[i] ViV
−1
ii VT

i )(V[i] −ViV
−1
ii VT

i )−1

= −(Vii −VT
i V−1

[i] Vi)
−1VT

i V−1
[i] (V[i] −ViV

−1
ii VT

i )(V[i] −ViV
−1
ii VT

i )−1

= −(Vii −VT
i V−1

[i] Vi)
−1VT

i V−1
[i]

This confirms that V is symmetric.

From Woodbury’s formula, we have

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1

and thus

Λ[i] = (V[i] −ViV
−1
ii VT

i )−1

= (V[i] + Vi(−V−1
ii )VT

i )−1

= V−1
[i] −V−1

[i] Vi(−Vii + VT
i V−1

[i] Vi)
−1VT

i V−1
[i]

= V−1
[i] + V−1

[i] Vi(Vii −VT
i V−1

[i] Vi)
−1VT

i V−1
[i]

Letting Si
k×k

= Vii
k×k
− VT

i
k×(N−k)

V−1
[i]

(N−k)×(N−k)

Vi
(N−k)×k

, we have:

V−1 =

 S−1
i −S−1

i VT
i V−1

[i]

−V−1
[i] ViS

−1
i V−1

[i] + V−1
[i] ViS

−1
i VT

i V−1
[i]


Hence,

ATV−1B =
[

Ai AT
(i)

] S−1
i −S−1

i VT
i V−1

[i]

−V−1
[i] ViS

−1
i V−1

[i] + V−1
[i] ViS

−1
i VT

i V−1
[i]

 BT
i

B(i)


=AiS

−1
i BT

i −AT
(i)V

−1
[i] ViS

−1
i BT

i −AiS
−1
i VT

i V−1
[i] B(i) + AT

(i)V
−1
[i] B(i)

+ AT
(i)V

−1
[i] ViS

−1
i VT

i V−1
[i] B(i)

=AT
(i)V

−1
[i] B(i) + (Ai −AT

(i)V
−1
[i] Vi)S

−1
i (BT

i −VT
i V−1

[i] B(i))

=AT
(i)V

−1
[i] B(i) + (Ai −AT

(i)V
−1
[i] Vi)S

−1
i (Bi −BT

(i)V
−1
[i] Vi)

T
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Letting Ãi = Ai −AT
(i)V

−1
[i] Vi and B̃i = Bi −BT

(i)V
−1
[i] Vi,

ATV−1B = AT
(i)V

−1
[i] B(i) + ÃiS

−1
i B̃T

i

Thus, we have:

AT
(i)V

−1
[i] B(i) = ATV−1B− ÃiS

−1
i B̃T

i (3.7)

Letting X̃i = Xi −XT
(i)V

−1
[i] Vi and ỹi = bi − y(i)V−1

[i] Vi, from 3.7,

XT
(i)V

−1
[i] X(i) = XTV−1X− X̃iS

−1
i X̃T

i

XT
(i)V

−1
[i] y(i) = XTV−1y − X̃iS

−1
i ỹi

(3.8)

Define Hii = X̃T
i (XTV−1X)−1X̃i, from 3.8 and applying Woodbury’s Formula,

(XT
(i)V

−1
[i] X(i))

−1 = (XTV−1X− X̃iS
−1
i X̃T

i )−1

=(XTV−1X)−1

+ (XTV−1X)−1X̃i[Si − X̃T
i (XTV−1X)−1X̃i]

−1X̃T
i (XTV−1X)−1

=(XTV−1X)−1 + (XTV−1X)−1X̃i(Si −Hii)
−1X̃T

i (XTV−1X)−1

For complete dataset, the estimated fixed effect parameter vector and random effect

parameter are

β̂ = (XTV−1X)−1XTV−1y

b̂ = GZTV−1(y −Xβ̂)
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Thus, if we remove a subset A from the dataset, the estimated fixed effect parameter

vector β is:

β̂(A) = (XT
(i)V

−1
[i] X(i))

−1XT
(i)V

−1
[i] y(i)

=
[
(XTV−1X)−1 + (XTV−1X)−1X̃i(Si −Hii)

−1X̃T
i (XTV−1X)−1

]
[
XTV−1y − X̃iS

−1
i ỹi

]
=(XTV−1X)−1XTV−1y − (XTV−1X)−1X̃iS

−1
i ỹi

+ (XTV−1X)−1X̃i(Si −Hii)
−1X̃T

i (XTV−1X)−1XTV−1y

− (XTV−1X)−1X̃i(Si −Hii)
−1X̃T

i (XTV−1X)−1X̃iS
−1
i ỹi

=β̂ − (XTV−1X)−1X̃iS
−1
i ỹi

+ (XTV−1X)−1X̃i(Si −Hii)
−1X̃T

i β̂

− (XTV−1X)−1X̃i(Si −Hii)
−1HiiS

−1
i ỹi

=β̂ + (XTV−1X)−1X̃i(Si −Hii)
−1X̃T

i β̂

− (XTV−1X)−1X̃i(Si −Hii)
−1(Si −Hii)S

−1
i ỹi

− (XTV−1X)−1X̃i(Si −Hii)
−1HiiS

−1
i ỹi

=β̂ + (XTV−1X)−1X̃i(Si −Hii)
−1X̃T

i β̂

− (XTV−1X)−1X̃i(Si −Hii)
−1
[
(Si −Hii)S

−1
i ỹi + HiiS

−1
i ỹi

]
=β̂ + (XTV−1X)−1X̃i(Si −Hii)

−1X̃T
i β̂ − (XTV−1X)−1X̃i(Si −Hii)

−1ỹi

=β̂ − (XTV−1X)−1X̃i(Si −Hii)
−1(ỹi − X̃T

i β̂)
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And the estimated random effect parameter vector b is:

b̂(A) = GZT
(i)V

−1
[i] (y(i) −X(i)β̂(A))

=GZT
(i)V

−1
[i]

[
y(i) −X(i)β̂ + X(i)(X

TV−1X)−1X̃i(Si −Hii)
−1(ỹi − X̃T

i β̂)
]

=GZT
(i)V

−1
[i] y(i) −GZT

(i)V
−1
[i] X(i)β̂

+ GZT
(i)V

−1
[i] X(i)(X

TV−1X)−1X̃i(Si −Hii)
−1(ỹi − X̃T

i β̂)

=G(ZTV−1y − Z̃iS
−1
i ỹi)−G(ZTV−1X− Z̃iS

−1
i X̃T

i )β̂

+ GZT
(i)V

−1
[i] X(i)(X

TV−1X)−1X̃i(Si −Hii)
−1(ỹi − X̃T

i β̂)

=GZTV−1y −GZTV−1Xβ̂ −GZ̃iS
−1
i ỹi + GZ̃iS

−1
i X̃T

i β̂

+ GZT
(i)V

−1
[i] X(i)(X

TV−1X)−1X̃i(Si −Hii)
−1(ỹi − X̃T

i β̂)

=b̂−GZ̃iS
−1
i (ỹi − X̃T

i β̂)

+ G(ZTV−1X− Z̃iS
−1
i X̃T

i )(XTV−1X)−1X̃i(Si −Hii)
−1(ỹi − X̃T

i β̂)

=b̂−G
[
Z̃iS

−1
i − (ZTV−1X− Z̃iS

−1
i X̃T

i )(XTV−1X)−1X̃i(Si −Hii)
−1
]

(ỹi − X̃T
i β̂)

=b̂−G
[
Z̃iS

−1
i − ZTV−1X(XTV−1X)−1X̃i(Si −Hii)

−1 + Z̃iS
−1
i Hii(Si −Hii)

−1
]

(ỹi − X̃T
i β̂)

=b̂−G
[
Z̃iS

−1
i (Si −Hii)− ZTV−1X(XTV−1X)−1X̃i + Z̃iS

−1
i Hii

]
(Si −Hii)

−1(ỹi − X̃T
i β̂)

=b̂−G
[
Z̃i − ZTV−1X(XTV−1X)−1X̃i

]
(Si −Hii)

−1(ỹi − X̃T
i β̂)

It is also essential that V−1
[i] be easily computed. A simpler computational formula for

V−1
[i] can be derived. Since VV−1 = I, from 3.5 and 3.6 we have:

 Vii VT
i

Vi V[i]

 Vii ΛT
i

Λi Λ[i]

 =

 I 0

0 I


Then,

ViΛ
T
i + V[i]Λ[i] = I

ViV
ii + V[i]Λi = 0
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From the second of the above two equations,

Vi = −V[i]Λi(V
ii)−1

Substituting into the first of the two equations,

V[i]

[
Λ[i] −Λi(V

ii)−1ΛT
i

]
= I

and

V−1
[i] = Λ[i] −Λi(V

ii)−1ΛT
i (3.9)

In Equation 3.9, we still need to compute the inverse matrix of Vii

k×k
. But, usually the

number of removed observations is much less than the total number of observations, that

is, k � N . That means computing (Vii)−1

k×k
is much more efficient than directly computing

V−1
[i]

(N−k)×(N−k)

.

So, the influence functions for β̂(A) and b̂(A) are:

β̂(A) = β̂ − (XTV−1X)−1X̃i(Si −Hii)
−1(ỹi − X̃T

i β̂)

b̂(A) = b̂−G
[
Z̃i − ZTV−1X(XTV−1X)−1X̃i

]
(Si −Hii)

−1(ỹi − X̃T
i β̂)

V−1
[A] = Λ[i] −Λi(V

ii)−1ΛT
i

We can estimate the parameters β(A) and b(A) after removing subset A without having

to re-fit the multivariate mixed effect model. Here b(A) = [b∗T1(A) . . . b
∗T
N(A)]

T , and b∗i =[
bTi , c

T
i1, c

T
i2, . . . , c

T
is

]T
.
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3.3 MULTILEVEL MULTIVARIATE LONGITUDINAL EXTENSION OF

COOK’S DISTANCE

Similar to the single-level Multivariate conditional Cook’s distance we proposed in previ-

ous chapter, we here propose a multilevel multivariate longitudinal extension. Conditioning

on all of the individuals and each characterisitc of the individuals, we have the following

likelihood:

L(φ) = |S|−
1
2 exp

[
−1

2
(y −Xβ − Zb−Wc)TS−1(y −Xβ − Zb−Wc)

]

and its corresponding log-likelihood:

l(φ) = −1

2
log |S| − 1

2
(y −Xβ − Zb−Wc)TS−1(y −Xβ − Zb−Wc)

where S = diag [Is ⊗ (In1 ⊗Σ), . . . , Is ⊗ (InN
⊗Σ)].

Here we use φ to denote the vector containing all the fixed and random effects parameters

to be estimated, that is, φ = (βT , bT , cT )T . Using model defined by 3.1, 3.2 and from 2.5,

we have the score function:

∂l(φ)

∂φ
=


∂l(φ)
∂β

∂l(φ)
∂b

∂l(φ)
∂c

 =


−(XTS−1X)β + (y − Zb−Wc)TS−1X

−(ZTS−1Z)b+ (y −Xβ −Wc)TS−1Z

−(WTS−1W)b+ (y −Xβ − Zb)TS−1W



and Fisher Information:

B = I(φ) = − ∂2

∂φ∂φT
l(φ) =


XTS−1X XTS−1Z XTS−1W

ZTS−1X ZTS−1Z ZTS−1W

WTS−1X WTS−1Z WTS−1W


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then, the conditional Cook’s distance can be written as

CD(A) =
(φ̂(A) − φ̂)TB(φ̂(A) − φ̂)

c

=
1

c

[
(β̂(A) − β̂)T (b̂(A) − b̂)T (ĉ(A) − ĉ)T

]  XTS−1X XTS−1Z XTS−1W
ZTS−1X ZTS−1Z ZTS−1W
WTS−1X WTS−1Z WTS−1W

 β̂(A) − β̂
b̂(A) − b̂
ĉ(A) − ĉ


=

(β̂(A) − β̂)TXTS−1X(β̂(A) − β̂)

c
+

(b̂(A) − b̂)TZTS−1Z(b̂(A) − b̂)
c

+
(ĉ(A) − ĉ)TWTS−1W(ĉ(A) − ĉ)

c

+
2(β̂(A) − β̂)TXTS−1Z(b̂(A) − b̂)

c
+

2(β̂(A) − β̂)TXTS−1W(ĉ(A) − ĉ)
c

+
2(b̂(A) − b̂)TZTS−1W(ĉ(A) − ĉ)

c
= CA1 + CA2 + CA3 + CA4 + CA5 + CA6

(3.10)

where

c = (Nsm− 1)q + p

Here, p is the total number of fixed effect predictors, that is, p =
∑m

k=1 pk; q is the total

number of random effect predictors, q =
∑m

k=1 qk; m is the number of characteristics for

each individual; and A indicates a subset of the observations. Other quantities include β̂,

b̂, ĉ and β̂(A), b̂(A), ĉ(A) which are the fitted values of β, b, c using the samples with and

without the subset of observations, respectively. The subset, A, could be one data point, all

observations in one individual, or some other specified subset.

From equation (3.2), we see that CD(A) can be decomposed into six parts: CA1, CA2,

CA3, CA4, CA5 and CA6, which are as follows:

CA1 =
(β̂(A) − β̂)TXTS−1X(β̂(A) − β̂)

c

=
N∑
i=1

(β̂(A) − β̂)TXT
i [Is ⊗ (Ini

⊗Σ)]−1Xi(β̂(A) − β̂)

c

=
N∑
i=1

s∑
h=1

(β̂(A) − β̂)TXT
i [Ini

⊗Σ−1]Xi(β̂(A) − β̂)

c

=
N∑
i=1

s(β̂(A) − β̂)TXT
i [Ini

⊗Σ−1]Xi(β̂(A) − β̂)

c

= s

N∑
i=1

ni∑
j=1

(β̂(A) − β̂)TXT
ijΣ

−1Xij(β̂(A) − β̂)

c
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CA1 is the total distance measurement for the fixed (marginal) effect between the complete

dataset and the data with subsetA removed. The term
(β̂(A)−β̂)T XT

ijΣ
−1Xij(β̂(A)−β̂)
c

is the overall

marginal Cook’s distance for the hth eye of the ith patient at the jth time point. It is the

total distance measurement of m characteristics, but only normalizing the residual variance-

covariance matrix, without normalizing the random variance-covariance matrices[20]. If we

assume the residual covariance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m], then the

term can be reduced to
∑m

k=1

(β̂(A)−β̂)T XT
ijXij(β̂(A)−β̂)
cσ2

k
, which is the simple summation of the

distance measurements for all the characteristics. When Σ is NOT diagonal, the total

distance measurement for the fixed (marginal) effect also takes into account the correlations

among all the m characteristics.

Continuing with CA2, we have:

CA2 =
(b̂(A) − b̂)TZTS−1Z(b̂(A) − b̂)

c

=
N∑
i=1

(b̂i(A) − b̂i)TZT
i [Is ⊗ (Ini

⊗Σ)]−1Zi(b̂i(A) − b̂i)
c

=
N∑
i=1

s∑
h=1

(b̂i(A) − b̂i)TZT
i [Ini

⊗Σ−1]Zi(b̂i(A) − b̂i)
c

=
N∑
i=1

s(b̂i(A) − b̂i)TZT
i [Ini

⊗Σ−1]Zi(b̂i(A) − b̂i)
c

= s
N∑
i=1

ni∑
j=1

(b̂i(A) − b̂i)TZT
ijΣ

−1Zij(b̂i(A) − b̂i)
c

CA2 is the total distance measurement for the first level (individual level) random effect

parameters between the complete dataset and the data with subset A removed. The term
(b̂i(A)−b̂i)T ZT

ijΣ
−1Zij(b̂i(A)−b̂i)
c

is actually the overall distance measurement of the individual level

random effects for both eyes of the ith patient at the jth time point. It is the total distance

measurement of m characteristics, normalizing the residual variance-covariance matrix. If

we assume the residual covariance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m], then

the term can be reduced to
∑m

k=1

(b̂i(A)−b̂i)T ZT
ijZij(b̂i(A)−b̂i)
cσ2

k
, which is a simple summation of

the distance measurements for all the characteristics. When Σ is NOT diagonal, the total

distance measurement for the individual level random effect also takes into account the

correlations among all the m characteristics.
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CA3 is the total distance measurement for the second level (subject level) random effect

parameters between the complete dataset and the data with subset A removed.

CA3 =
(ĉ(A) − ĉ)TWTS−1W(ĉ(A) − ĉ)

c

=
N∑
i=1

(ĉi(A) − ĉi)TWT
i [Is ⊗ (Ini

⊗Σ)]−1Wi(ĉi(A) − ĉi)
c

=
N∑
i=1

s∑
h=1

(ĉih(A) − ĉih)TWT
ih[Ini

⊗Σ−1]Wih(ĉih(A) − ĉih)
c

=
N∑
i=1

s∑
h=1

ni∑
j=1

(ĉih(A) − ĉih)TWT
(ih)jΣ

−1W(ih)j(ĉih(A) − ĉih)
c

The term
(ĉih(A)−ĉih)T WT

(ih)j
Σ−1W(ih)j(ĉih(A)−ĉih)
c

is actually the overall distance measurement of

the subject level random effects for the hth subject of ith individual at jth time point. It

is the total distance measurement of m characteristics, normalizing the residual variance-

covariance matrix. If we assume the residual covariance matrix is diagonal, that is, Σ =

diag [σ2
1, . . . , σ

2
m], then the term can be reduced to

∑m
k=1

(ĉih(A)−ĉih)T WT
(ih)j

W(ih)j(b̂ih(A)−b̂ih)
cσ2

k
,

which is the simple summation of the distance measurements for all the characteristics.

When Σ is NOT diagonal, the total distance measurement for the subject level random

effect also takes into account the correlations among all the m characteristics.

CA4 is the distance measure of covariation between the change in the population average

profile and the change in the first level (individual level) subject-specific profile relative to

the population average profile.

CA4 =
2(β̂(A) − β̂)TXTS−1Z(b̂(A) − b̂)

c

= 2
N∑
i=1

(β̂(A) − β̂)TXT
i [Is ⊗ (Ini

⊗Σ)]−1Zi(b̂i(A) − b̂i)
c

= 2
N∑
i=1

s(β̂(A) − β̂)TXT
i [Ini

⊗Σ−1]Zi(b̂i(A) − b̂i)
c

= 2s
N∑
i=1

ni∑
j=1

(β̂(A) − β̂)TXT
ijΣ

−1Zij(b̂i(A) − b̂i)
c

The term
(β̂(A)−β̂)T XT

ijΣ
−1Zij(b̂i(A)−b̂i)
c

is actually the overall distance measurement of the

covariation between the change in the population average profile and the change in the
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first level (individual level) subject-specific profile relative to the population average profile

for both eyes of the ith patient at the jth time point. If we assume the residual covari-

ance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m], then the term can be reduced to∑m

k=1

(β̂(A)−β̂)T XT
ijZij(b̂i(A)−b̂i)
cσ2

k
, which is a simple summation of the distance measurements

for the covariance of all the characteristics. When Σ is NOT diagonal, the total distance

measurement for the covariance also takes into account the correlations among all the m

characteristics.

CA5 is the distance measure of covariation between the change in the population average

profile and the change in the second level (subject level) subject-specific profile relative to

the first level subject-specific profile.

CA5 =
2(β̂(A) − β̂)TXTS−1W(ĉ(A) − ĉ)

c

= 2
N∑
i=1

(β̂(A) − β̂)TXT
i [Is ⊗ (Ini

⊗Σ)]−1Wi(ĉi(A) − ĉi)
c

= 2
N∑
i=1

s∑
h=1

(β̂(A) − β̂)TXT
i [Ini

⊗Σ−1]Wih(ĉih(A) − ĉih)
c

= 2
N∑
i=1

s∑
h=1

ni∑
j=1

(β̂(A) − β̂)TXT
ijΣ

−1W(ih)j(ĉih(A) − ĉih)
c

The term
(β̂(A)−β̂)T XT

ijΣ
−1W(ih)j(ĉih(A)−ĉih)
c

is actually the overall distance measurement of the

covariation between the change in the population average profile and the change in the

second level (subject level) subject-specific profile relative to the first level subject-specific

profile for the hth eyes of the ith patient at the jth time point. If we assume the residual

covariance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m], then the term can be reduced to∑m

k=1

(β̂(A)−β̂)T XT
ijW(ih)j(ĉih(A)−ĉih)
cσ2

k
, which is a simple summation of the distance measurements

for the covariance of all the characteristics. When Σ is NOT diagonal, the total distance

measurement for the covariance also takes into account the correlations among all the m

characteristics.

CA6 is the distance measure of covariation between the change in the first level (individual

level) subject-specific profile relative to the population average profile and the change in the

48



second level (subject level) subject-specific profile relative to the first level subject-specific

profile.

CA6 =
2(b̂(A) − b̂)TZTS−1W(ĉ(A) − ĉ)

c

= 2
N∑
i=1

(b̂i(A) − b̂i)TZT
i [Is ⊗ (Ini

⊗Σ)]−1Wi(ĉi(A) − ĉi)
c

= 2
N∑
i=1

s∑
h=1

(b̂i(A) − b̂i)TZT
i [Ini

⊗Σ−1]Wih(ĉih(A) − ĉih)
c

= 2
N∑
i=1

s∑
h=1

ni∑
j=1

(b̂i(A) − b̂i)TZT
ijΣ

−1W(ih)j(ĉih(A) − ĉih)
c

The term
(b̂i(A)−b̂i)T ZT

ijΣ
−1W(ih)j(ĉih(A)−ĉih)
c

is actually the overall distance measurement of the

covariation between the change in the first level (individual level) subject-specific profile

relative to the population average profile for both eyes of the ith patient at the jth time point

and the change in the second level (subject level) subject-specific profile relative to the first

level subject-specific profile for the hth eye of the ith patient at the jth time point. If we

assume the residual covariance matrix is diagonal, that is, Σ = diag [σ2
1, . . . , σ

2
m], then the

term can be reduced to
∑m

k=1

(b̂i(A)−b̂i)T ZT
ijW(ih)j(ĉih(A)−ĉih)
cσ2

k
, which is a simple summation of

the distance measurements for the covariance of all the characteristics. When Σ is NOT

diagonal, the total distance measurement for the covariance also takes into account the

correlations among all the m characteristics.

3.4 APPLICATION

In the previous chapter, we applied the single level multivariate Cook’s distance to the

glaucoma clinical data. Note that for the single level multivariate Cook’s distance, all eyes

were assumed to be independent. This assumption is obviously NOT correct because two

eyes from one patient are typically correlated. We were just demonstrating the method.

Now we apply the multi-level multivariate Cook’s distance to the glaucoma clinical data

we have used before. The multi-level multivariate Cook’s distance will take into account the

correlations between two eyes within each patient.
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3.4.1 The Model

We fitted the following two-level bivariate linear mixed effect model:

YRNFL =
[
β10N + β11GS + β12G+ b10(pt) + c10(eye)

]
+
[
β13N + β14GS + β15G+ b11(pt) + c11(eye)

]
Fu+ β16Age + εRNFL

YGCC =
[
β20N + β21GS + β22G+ b20(pt) + c20(eye)

]
+
[
β23N + β24GS + β25G+ b21(pt) + c21(eye)

]
Fu+ β26Age + εGCC

where Age indicates baseline age; Fu indicates Follow-up (in years), Subscripts (pt) and

(eye) indicate patient-level and eye-level random effects.

We assume that:

b = [b10(pt), b20(pt), b11(pt), b21(pt)]
T ∼ N(0,G1),

c = [c10(eye), c20(eye), c11(eye), c21(eye)]
T ∼ N(0,G2),

ε = [εRNFL, εGCC ]T ∼ N(0,Σ2×2)

Although, in general, the error terms in this model are correlated due to correlations be-

tween different characteristics at the same time point, in specific applications, the correlation

effect can be dominated by the combination of random effects. For computational reasons,

in this example, we restricted the error terms to be uncorrelated. That is, Σ2×2 is assumed

to be diagonal, Σ2×2 =

 σ2
RNFL 0

0 σ2
GCC

 Table 3.1 shows the estimated parameters of the

fixed effects:
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Table 3.1: The estimated parameters of fixed effects

Parameters Estimated value Standard Deviation p value

β̂10 111.7124 3.7328 < 0.0001

β̂11 104.3342 3.8464 < 0.0001

β̂12 95.8305 3.9444 < 0.0001

β̂13 −0.08998 0.1859 0.0049

β̂14 −0.7453 0.1051 < 0.0001

β̂15 −0.6221 0.1518 < 0.0001

β̂16 −0.1811 0.06190 < 0.0001

β̂20 107.7753 2.7568 < 0.0001

β̂21 101.9587 2.8392 < 0.0001

β̂22 95.8144 2.9178 < 0.0001

β̂23 −0.9624 0.1506 < 0.0001

β̂24 −0.5836 0.08332 < 0.0001

β̂25 −0.4858 0.1267 < 0.0001

β̂26 −0.2180 0.04572 < 0.0001

The estimated variance-covriance matrix of the patient level random effect (G1) and its

correlation matrix are:

Ĝ1 =

b10(pt) b20(pt) b11(pt) b21(pt)


b10(pt) 73.629 39.668 −0.664 0.0729

b20(pt) 39.668 38.489 0.308 −0.0802

b11(pt) −0.664 0.308 0.931 0.0239

b21(pt) 0.0729 −0.0802 0.0239 0.356

Ĝ1 =

b10(pt) b20(pt) b11(pt) b21(pt)


b10(pt) 1.000 0.745 −0.0801 0.0142

b20(pt) 0.745 1.000 0.0515 −0.0217

b11(pt) −0.0801 0.0515 1.000 0.0416

b21(pt) 0.0142 −0.0217 0.0416 1.000
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The estimated variance-covriance matrices of the eye level random effect (G2) and its

correlation matrix are:

Ĝ2 =

c10(pt) c20(pt) c11(pt) c21(pt)


c10(eye) 24.713 12.338 −1.060 −0.233

c20(eye) 12.338 12.977 −0.487 0.117

c11(eye) −1.060 −0.487 0.233 0.131

c21(eye) −0.233 0.117 0.131 0.184

Ĝ2 =

c10(pt) c20(pt) c11(pt) c21(pt)


c10(eye) 1.000 0.689 −0.442 −0.109

c20(eye) 0.689 1.000 −0.280 0.0760

c11(eye) −0.442 −0.280 1.000 0.635

c21(eye) −0.109 0.0760 0.635 1.000

The estimated Residual Variance-Covariance Matrix is:

Σ̂ =


YRNFL YGCC

YRNFL 13.8980 0

YGCC 0 8.4852



Table 3.2 shows the estimated residual variances.

Table 3.2: The estimated residual variances

Parameters Estimated value Standard Deviation p value

σ̂2
RNFL 13.8980 0.4324 < .0001

σ̂2
GCC 8.4852 0.2625 < .0001
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3.4.2 The influential observations

Using our method, we calculated the conditional Cook’s distance and the decomposed

terms CA1, CA2, CA3, CA4, CA5 and CA6 for each observation (paired components). We

picked out ten observations with the largest conditional Cook’s distances in ten eyes. Figure

3.1 illustrates the ten observations in the ten eyes and Table 3.3 lists the ten observations

with the largest values of the conditional Cook’s distance. Note that the blue circles and

lines indicate the observed RNFL values and individual fitted regression lines for RNFL. The

blue dotted lines indicate the patient-level fitted regression lines for RNFL. The light blue

lines indicate the marginal fitted regression lines for RNFL. Similarly, the red cirles, lines

and pink lines are for GCC as well. The grey rectangles indicate influential observations

(pairs of components).

10 Observations with largest conditional cook’s distance
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Figure 3.1: 10 observations with largest conditional cook’s distance in 10 eyes.
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Table 3.3: Decomposition of the Conditional Cook’s Distance for the 10 observations with largest conditional cook’s distance.

Eye ID Follow-up Follow-up Diag Cond
(in years) (in days) grp Cooksd CA1 CA2 CA3 CA4 CA5 CA6

2:204:OS 0.5448 199 2 0.02972 0.000163 0.01113 0.01371 −0.000059 0.0000151 0.00477
4:174:OS 1.5387 562 3 0.02522 0.000167 0.01231 0.00881 0.000127 0.0000128 0.00379
3:170:OS 2.9103 1063 3 0.02070 0.000606 0.02060 0.01008 −0.001201 0.0000059 −0.00939
2:102:OD 2.0205 738 2 0.01519 0.000066 0.00739 0.00741 −0.000042 −0.0000018 0.00037
2:191:OS 0.9391 343 3 0.01261 0.000093 0.00492 0.00593 0.000017 −0.0000100 0.00165
4:174:OS 0.0000 0 3 0.01230 0.000073 0.00463 0.00694 −0.000031 0.0000068 0.00068
2:191:OD 0.9391 343 3 0.01206 0.000114 0.00492 0.00586 −0.000014 −0.0000045 0.00118

4:91:OS 0.8487 310 2 0.01068 0.000208 0.00705 0.00381 −0.000211 0.0000073 −0.00018
2:204:OS 0.0000 0 2 0.00770 0.000052 0.00235 0.00486 −0.000055 0.0000135 0.00049
2:102:OS 2.0205 738 2 0.00638 0.000118 0.00224 0.00310 −0.000066 −0.0000077 0.00099
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Figure 3.2: Decomposition of the Conditional Cook’s Distance for the 10 observations with largest conditional cook’s distance.
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3.4.3 The influential components

Using our method, we calculated the conditional Cook’s distance and the decomposed

parts CA1, CA2, CA3, CA4, CA5 and CA6 for each component. We also picked out ten compo-

nents with the largest conditional Cook’s distances in eight eyes. Figure 3.3 illustrates the

ten components in the eight eyes and Table 3.4 lists the ten observations with the largest

values of the conditional Cook’s distance.

Similar to Figure 3.2, in Figure 3.3, blue indicates RNFL, while red indicates GCC.

Circles indicates the components. Solid lines indicate the eye-level fitted regression lines,

while dotted lines indicate the patient-level fitted regression lines. Light solid lines indicate

the marginal fitted regression lines.
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10 components with largest conditional cook’s distance
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Figure 3.3: 10 components with largest conditional cook’s distance in 8 eyes.
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Table 3.4: Decomposition of the Conditional Cook’s Distance for the 10 observations with largest conditional cook’s distance.

Eye ID Outcome Follow-up Follow-up Diag Cond
Type (in years) (in days) grp Cooksd CA1 CA2 CA3 CA4 CA5 CA6

2:204:OS RNFL 0.5448 199 2 0.02972 0.000163 0.01113 0.01371 −0.000059 0.0000151 0.00477
4:174:OS RNFL 1.5387 562 3 0.02522 0.000167 0.01231 0.00881 0.000127 0.0000128 0.00379
3:170:OS RNFL 2.9103 1063 3 0.02070 0.000606 0.02060 0.01008 −0.001201 0.0000059 −0.00939
2:102:OD RNFL 2.0205 738 2 0.01519 0.000066 0.00739 0.00741 −0.000042 −0.0000018 0.00037
2:191:OS RNFL 0.9391 343 3 0.01261 0.000093 0.00492 0.00593 0.000017 −0.0000100 0.00165
4:174:OS RNFL 0.0000 0 3 0.01230 0.000073 0.00463 0.00694 −0.000031 0.0000068 0.00068
2:191:OD RNFL 0.9391 343 3 0.01206 0.000114 0.00492 0.00586 −0.000014 −0.0000045 0.00118

4:91:OS GCC 0.8487 310 2 0.01068 0.000208 0.00705 0.00381 −0.000211 0.0000073 −0.00018
2:204:OS RNFL 0.0000 0 2 0.00770 0.000052 0.00235 0.00486 −0.000055 0.0000135 0.00049
2:102:OS GCC 2.0205 738 2 0.00638 0.000118 0.00224 0.00310 −0.000066 −0.0000077 0.00099
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Figure 3.4: Decomposition of the Conditional Cook’s Distance for the 10 observations with largest conditional cook’s distance
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3.4.4 Decomposition of Conditional Cook’s Distance

Figure 3.4 shows the values of the six decomposition terms of the multivariate conditional

Cook’s distance. We notice that for most observations, the distance measurements of the

random effects are much greater than the distance measurement of the fixed effects, that

is, CA2, CA3 � CA1. As was pointed out earlier, this is obvious because the subject-specific

effects are much more sensitive to the influential observation than the marginal effects. It

is also noticable that for some influential observations, such as the three most influential

observations, the covariance between the distance measurements of first and second level

random effects, that is, CA6, is relatively large. Also, the covariance CA6 can be either positive

(the two most influential observations) or negative (the third most influential observation).

We will further explain the six decomposed effects in the conditional Cook’s distance by

considering two influential observations.

3.4.4.1 Influential Component Example 1 Consider the third most influential ob-

servation in patient number 3:170 (See Figure 3.3), left eye (OS), RNFL (1st characteristic),

at 2.91 years of follow-up, in diagnostic group 3 (G). There is a large negative value of CA6,

which indicates a large negative covariance between the distance measurements of first and

second level random effects.

Table 3.5 shows the changes of estimated parameter values after removing the influential

observation patient number 3:170, left eye (OS), RNFL (1st characteristic), at 2.91 years of

follow-up, including changes of fixed intercepts and slopes, first level subject-specific inter-

cepts and slopes, second level subject-specific intercepts and slopes, for both characteristics

(RNFL and GCC). Figure 3.5 shows the 3:170:OS and 3:170:OD observations and predicted

trend lines based on complete dataset and after the influential observation was removed.
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Table 3.5: Parameter estimation based on complete dataset and removal of influential ob-

servation in 3:170:OS.

Est based on Est w influential
Parameters complete data point removed Change

F.E. β̂12 95.8305 95.6579 −0.1726

(pt ID 3:170) β̂15 −0.6221 −0.6630 −0.04090

β̂16 −0.1811 −0.1761 0.004960

β̂22 95.8144 95.7490 −0.06541

β̂25 −0.4858 −0.4872 −0.001351

β̂26 −0.2180 −0.2164 0.001561

1st level R.E. b̂10(pt) −19.4635 −19.5020 −0.03848

(pt ID 3:170) b̂11(pt) 2.3902 0.1599 −2.2302

b̂20(pt) −7.1572 −7.6951 −0.5379

b̂21(pt) −0.3212 −0.3086 0.01264

2nd level R.E. ĉ10(eye) 3.1883 2.1130 −1.0753

(OS, left eye) ĉ11(eye) 0.4625 −0.2265 −0.6890

ĉ20(eye) 0.3516 1.0986 0.7471

ĉ21(eye) 0.1193 −0.2272 −0.3465

2nd level R.E. ĉ10(eye) −11.5232 −8.8544 2.6688

(OD, right eye) ĉ11(eye) 0.2208 0.4803 0.2595

ĉ20(eye) −3.9869 −3.4371 0.5498

ĉ21(eye) 0.08816 0.1873 0.09913
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Figure 3.5: 3:170:OS and 3:170:OD

The marginal effects (fixed effect parameters) only have very slight changes. This is

consistent with the decomposition barplot shown in Figure 3.4.

Consider the patient level (1st level) subject-specific effects. The intercept of RNFL (1st

characteristic) slightly decreased by 0.03848, but the slope had a large decrease of 2.230218.

Since the patient level (1st level) subject-specific effects are the offset between the marginal

effects and the patient’s 1st level actual intercept and slope values, and the marginal effects

almost had no change, the 1st level subject-specific slope and intercept changes are close to

the changes of the 1st level predicted slope and intercept.

Next, we look at the eye level (2nd level) subject-specific effects. For OS (the left eye),

the eye level random intercept of RNFL (1st characteristic) decreased by 1.07529, and the

slope decreased by 0.689004. Note that the eye level (2nd level) subject-specific effects are
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the offset between the 1st level subject-specific effects and each eye’s predicted intercepts

and slopes values. Hence, they are quite small compare to the actual changes. For OD (the

right eye), we notice that the intercept of RNFL (1st characteristic) increased by 2.66884,

which is large compared to other estimated parameter value changes.

We now calcuate the 1st and 2nd level random effects. In this example, the eyes were mea-

sured at follow-up times (in years) of: 0, 0.5585216, 1.073238, 1.620808, 2.023272, 2.584531,

2.910335. Thus, the matrices Z, W and Σ−1 are:

Z = W =



1 0.000000 0 0
0 0 1 0.000000
1 0.558522 0 0
0 0 1 0.558522
1 1.073238 0 0
0 0 1 1.073238
1 1.620808 0 0
0 0 1 1.620808
1 2.023272 0 0
0 0 1 2.023272
1 2.584531 0 0
0 0 1 2.584531
1 2.910335 0 0
0 0 1 2.910335



Σ−1 =

[
0.072264788 0
0 0.118237494

]

Calculating the influence of the 1st level random effects, and noting that (b(i) − b) =

(−0.03848,−2.230218,−0.537915, 0.012644)T , we have:

f1 = (b(i) − b)T ZT [I7 ⊗Σ−1] Z (b(i) − b) = 8.744124

Then we calculate the influence of the 2nd level random effects. For OS (left eye), we know

that (c(i) − c) = (−1.07529,−0.689004, 0.747056,−0.346515)T , then we have:

f2, OS = (c(i) − c)T WT [I7 ⊗Σ−1] W (c(i) − c) = 2.672573

For OD (right eye), we know that (c(i)−c) = (2.66884, 0.259482, 0.549785, 0.0991345)T , and

so we have:

f2, OD = (c(i) − c)T WT [I7 ⊗Σ−1] W (c(i) − c) = 5.210717

Thus, the total influence of the 2nd level random effects is:

f2 = f2, OS + f2, OD = 2.672573 + 5.210717 = 7.88329
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The ratio of the influence of the 1st level random effect and the 2nd level random effect is:

f1/f2 = 8.744124/7.88329 = 1.109197

Consequently, both the 1st level and 2nd level random effects had a strong effect due to the

removal of the influential observation, and the ratio of the two effects is 1.11, which means,

they are quite close. Thus, CA2 and CA3 should be close to each other. But in Figure 3.4,

the barplot shows CA2 (0.02060) is almost double the value of CA3 (0.01008), which is not

reasonable, because the influence on 1st level random effects is not that high.

We also notice that CA6 is a negative value (−0.00939). If we add up CA2 and CA6, we

get 0.01121, which is close to CA3 (0.01008). Moreover, the ratio of CA2 plus CA6 and CA3 is

0.01121/0.01008 = 1.112103, which is roughly equal to the ratio of the influence of the 1st

level random effect and the 2nd level random effect.

In summary, the CA6 seems to compensate for the overestimation of the patient level effect

(CA2). Hence, the 1st level (patient level) subject-specific effects is actually a combination

of the effects of the two 2nd level (eye level) subject-specific effects.

3.4.4.2 Influential Component Example 2 We now consider the most influential

observation, patient number 2:204, left eye (OS), RNFL (1st characteristic), at 0.54 years of

follow-up, in diagnostic group 2 (GS). We observe a moderately large positive value of CA6,

which indicates a large positive covariance between the distance measurements of the first

and second level random effects.

Table 3.6 shows the changes of estimated parameter values after we removed the most

influential observation, including changes of fixed intercepts and slopes, first level subject-

specific intercepts and slopes, second level subject-specific intercepts and slopes, for both

characteristics (RNFL and GCC). Figure 3.6 shows the 2:204:OS and 2:204:OD observations

and predicted trend lines based on the complete dataset and after the influential observation

was removed.
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Table 3.6: Parameter estimation based on complete dataset and removal of influential ob-

servation in 2:204:OS.

Est based on Est influential
Parameters complete data point removed Change

F.E. β̂11 104.3342 104.3013 −0.03294

(pt ID 2:204) β̂14 −0.7453 −0.7243 0.02100

β̂16 −0.1811 −0.1816 −0.00047

β̂21 101.9587 102.0001 0.04140

β̂24 −0.5836 −0.5842 −0.00058

β̂26 −0.2180 −0.2187 −0.00069

1st level R.E. b̂10(pt) 1.5315 −5.6106 −7.1421

(pt ID 2:204) b̂11(pt) −1.3594 0.3528 1.7122

b̂20(pt) −1.9316 −1.8514 0.08019

b̂21(pt) −0.2932 −0.2805 0.01266

2nd level R.E. ĉ10(eye) 6.0322 −1.2572 −7.2895

(OS, left eye) ĉ11(eye) −0.7231 0.009808 0.7329

ĉ20(eye) 0.8239 −0.5073 −1.3312

ĉ21(eye) −0.4799 −0.06592 0.4140

2nd level R.E. ĉ10(eye) −4.0796 −0.2700 3.8095

(OD, right eye) ĉ11(eye) 0.2872 0.02951 −0.2577

ĉ20(eye) −0.8624 −0.3181 0.5443

ĉ21(eye) 0.1303 −0.04079 −0.1711
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Figure 3.6: 2:204:OS and 2:204:OD.

Like the first example, the marginal effects (fixed effect parameters) only have very slight

changes. This is consistent with the decomposition barplot shown in Figure 3.4.

Examining the patient level (1st level) subject-specific effects, we see that the intercept

of RNFL (1st characteristic) had a large decrease of 6.142142, and the slope had a large

increase of 1.712221 (the trend line became much “flatter”). Since the patient level (1st

level) subject-specific effects are the offset between the marginal effects and the patient’s 1st

level actual intercepts and slopes values, and the marginal effects almost had no change, the

1st level subject-specific slope and intercept changes are close to the changes of the 1st level

actual slopes and intercepts.

Next, considering the eye level (2nd level) subject-specific effects, we see that for OS (the

left eye), the eye level random intercept of RNFL (1st characteristic) decreased by 7.289487,
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and the eye level random slope increased by 0.7328908. Note that the eye level (2nd level)

subject-specific effects are the offset between the 1st level subject-specific effects and each

eye’s predicted intercepts and slopes values. From the plot we can see before we remove the

influential observation, the OS intercept is much larger than the 1st level intercept. After

removal, the OS intercept is slightly less than the 1st level intercept. So, it makes sense that

the 2nd level random intercept decreased a lot. Also, before removal, the OS trend line is

much “steeper” than the 1st level trend line, which means the slope of the OS trend line

is much less (“more negative”) than the 1st level trend line. After removal, the two trend

lines are almost parallel. Hence, it makes sense that the 2nd level random slope increased

substantially. For OD (the right eye), the changes in the 2nd level subject-specific effects

were similiar to OS, but slightly smaller in magnitude. That follows because the two eyes

are highly correlated.

For both characteristics, it is noticable that the 1st level random effects (both intercepts

and slopes) had much smaller changes than the 2nd level random effects. After removal of

the influential observation, the 2nd level random effects became much smaller and the trend

lines were closer to the 1st level trend lines.

We now calcuate the 1st and 2nd level random effects. In this example, the eye was

measured at follow-up time (in years) are: 0, 0.5448323, 1.0020534, 2.0232717, 2.8172485.

Thus, the matrices Z, W and Σ−1 are:

Z = W =



1 0.000000 0 0
0 0 1 0.000000
1 0.5448323 0 0
0 0 1 0.5448323
1 1.0020534 0 0
0 0 1 1.0020534
1 2.0232717 0 0
0 0 1 2.0232717
1 2.8172485 0 0
0 0 1 2.8172485


Σ−1 =

[
0.072264788 0
0 0.118237494

]

Again, calculating the influence of the 1st level random effects, and nothing that (b(i) −

b) = (−7.142142, 1.712221, 0.080185, 0.0126628)T , then we have:

f1 = (b(i) − b)T ZT [I7 ⊗Σ−1] Z (b(i) − b) = 9.971814

67



As before, we next calculate the influence of the 2nd level random effects. For OS (left eye),

and so we know that (c(i) − c) = (−7.289487, 0.7328908,−1.331182, 0.4139648)T , then we

have

f2, OS = (c(i) − c)T WT [I7 ⊗Σ−1] W (c(i) − c) = 15.27044

For OD (right eye), we know that (c(i) − c) = (3.809533,−0.2577002, 0.54433,−0.17111)T ,

then we have

f2, OD = (c(i) − c)T WT [I7 ⊗Σ−1] W (c(i) − c) = 4.482049

The total influence of the 2nd level random effects is:

f2 = f2, OS + f2, OD = 15.27044 + 4.482049 = 19.75249

The ratio of the influence of the 1st level random effect and the 2nd level random effect is:

f1/f2 = 9.971814/19.75249 = 0.5048383

Thus, in our example, the 2nd level random effects exhibited a much stronger influence

due to the removal of the influential observation than the 1st level random effects. That is,

CA3 � CA2. But in Figure 3.4, the barplot shows CA3 (0.01371) is only slightly higher than

CA2 (0.01113).

We note that CA6 is a positive value (0.00477). CA3 and CA6 sum up to 0.01848, which is

much higher than CA2 (0.01113). And the ratio of CA2 and CA3 plus CA6 is 0.01113/0.01848 =

0.6036139, which is roughly close to the ratio of the influence of the 1st level random effect

and the 2nd level random effect. That follows from the effect of the covariance between the

distance measurements of 1st and 2nd level of random effects, CA6. The reason is, the 1st

level (patient level) subject-specific effects is actually a “marginal” effect of the two 2nd level

(eye level) subject-specific effects.

68



4.0 CONCLUSIONS AND FUTURE WORK

4.1 CONCLUSIONS

In the first part of this dissertation, we derived the multivariate conditional Cook’s

distance, which takes into account the three kinds of correlations in multivariate longitudinal

data. Our results show that the extended multivariate conditional Cook’s distance is superior

to the unconditional Cook’s distance in a mixed effect multivariate longitudinal data analysis.

In 1000 simulations, our method successfully detected the influential vector component 925

times but the unconditional Cook’s distance only detected that component for 262 times. We

successfully extended Tan’s conditional Cook’s distance [20] to a multivariate context, where

two characteristics are measured at each time point, and also extended Tan’s conditional

Cook’s distance [20] from one component of observations to a subset of observations.

In the second part of this dissertation, we derived a multilevel extension of the multi-

variate conditional Cook’s distance, which takes into account the correlations between the

subjects within a cluster, in addition to the three kinds of correlations in single level mul-

tivariate longitudinal data. We use a two level random effect model to handle the subject

level and cluster level correlations among different time points, and a residual covariance

matrix to handle correlations among different responses. We also explored the six parts of

our two-level multivariate conditional Cook’s distance, and found that the covariation be-

tween the subject level and cluster level random effects has a relatively large impact on the

Cook’s distance measurement. We demonstrated our method in a real data example from a

glaucoma study. A multilevel multivariate extension of the influence function was derived.

A set of SAS and R programs were developed to implement this method.
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4.2 FUTURE WORK

In this dissertation, we have computed the Cook’s distance for multiple characteristics of

each observation vector. Figure 4.1 shows the 20 eye-characteristics (all RNFL) with largest

conditional cook’s distances, and Table 4.1 shows the decomposition of the 20 Cook’s dis-

tances. Figure 4.1 and Table 4.1 clearly show that the 20 eye-characteristics have the largest

numbers of observations, but do not necessarily contain influential observations. Conse-

quently, deleting subsets with different numbers of observations introduces different degrees

of perturbation to the current model fitted to the data and the magnitude of Cook’s distance

associated with the degree of the perturbation. Thus, the multivariate conditional Cook’s

distance for subsets with different degrees of perturbation are not directly comparable. Ac-

cordingly, Zhu and Ibrahim [37] have developed a scaled version of Cook’s distance to address

this fundamental issue. Accordingly, our further research will consider extension to a scaled

version of our present multivariate conditional Cook’s distance.
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Figure 4.1: 20 eye-characteristics with largest conditional cook’s distance
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Table 4.1: Conditional Cook’s Distance for the 20 eye-characteristics with largest conditional cook’s distance.

Eye ID Outcome Diag Number of Cond
Type grp Observations Cooksd CA1 CA2 CA3 CA4 CA5 CA6

4:20:OD RNFL 2 11 0.2114 0.0071 1.1768 1.5365 −0.0137 0.0008 −2.4961
4:20:OS RNFL 2 11 0.1595 0.0071 1.1001 1.2793 −0.0164 0.0033 −2.2138

4:125:OS RNFL 2 7 0.1566 0.0676 1.5757 1.3166 −0.1331 −0.0089 −2.6613
4:122:OS RNFL 2 9 0.1479 0.0225 1.8638 1.8448 −0.0487 0.0104 −3.5450
4:137:OS RNFL 2 10 0.1342 0.0199 2.3371 2.2882 −0.0416 0.0031 −4.4725
4:119:OD RNFL 2 10 0.1166 0.0082 1.9603 2.0206 −0.0120 −0.0036 −3.8570

3:88:OS RNFL 3 7 0.1099 0.0242 3.2979 3.0727 −0.0659 0.0154 −6.2344
3:83:OS RNFL 2 8 0.1067 0.0104 2.7103 2.5830 −0.0151 −0.0031 −5.1786
3:39:OS RNFL 2 5 0.1065 0.0087 0.6925 0.6342 −0.0195 0.0000 −1.2093

4:130:OS RNFL 3 8 0.0951 0.0113 1.0902 1.0278 −0.0247 0.0036 −2.0131
4:119:OS RNFL 2 9 0.0883 0.0069 1.0283 1.0772 −0.0098 −0.0046 −2.0096
4:126:OD RNFL 2 7 0.0843 0.0145 1.9138 1.7834 −0.0337 0.0040 −3.5977
4:125:OD RNFL 3 8 0.0835 0.0041 1.1295 1.1621 −0.0072 0.0004 −2.2053

3:41:OS RNFL 3 6 0.0830 0.0319 1.8221 1.7933 −0.0592 −0.0010 −3.5041
3:41:OD RNFL 3 6 0.0828 0.0305 2.0089 1.9079 −0.0715 0.0164 −3.8094

4:140:OS RNFL 2 11 0.0734 0.0052 1.6561 1.5290 −0.0100 −0.0011 −3.1058
3:39:OD RNFL 2 6 0.0657 0.0069 1.5981 1.5458 −0.0149 0.0012 −3.0713
3:38:OD RNFL 3 6 0.0626 0.0229 1.8019 1.5861 −0.0549 0.0078 −3.3012

4:122:OD RNFL 2 9 0.0558 0.0069 1.3763 1.3979 −0.0083 −0.0031 −2.7138
3:36:OS RNFL 3 7 0.0409 0.0034 0.4339 0.3432 −0.0060 −0.0013 −0.7324
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Second, for multivariate longitudinal data, an associated problem with joint modeling is:

as the number of characteristics goes up, a convergence issue becomes more and more severe.

To resolve this computational difficulty, a pairwise fitting approach originally proposed by

Fieuws and Verbeke [13] can be adopted into our method to estimated the random effects

and correlations between different characteristics.

Third, currently, we are applying our method to linear multivariate mixed effect model.

In the future, an extension to multivariate generalized linear mixed models can be developed,

where nonlinear models are considered.
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APPENDIX A

SIMULATION

# The function generating bivariate normal distribution data:

rbivariate <- function(mean.x=0, sd.x=1, mean.y=0, sd.y=1, rho=.50, iter=100) {

z1 <- rnorm(iter)

z2 <- rnorm(iter)

x <- sqrt(1-rho^2)*sd.x*z1 + rho*sd.x*z2 + mean.x

y <- sd.y*z2 + mean.y

return(list(x,y))

}

# Generate yi dataset:

ryi <- function(n=50, rho.y=0.8, rho.b=0.2, rho.e=0.5, minni=1, maxni=9) {

# Generate ui’s:

data.u <- rbivariate(mean.x=0, mean.y=0, sd.x=1, sd.y=1, rho=rho.y, iter=n)

var(matrix(c(data.u[[1]], data.u[[2]]), nrow=50, ncol=2))

# Generate matrix B (bi’s):

data.b <- rbivariate(mean.x=0, mean.y=0, sd.x=1, sd.y=1, rho=rho.b, iter=n)

B <- matrix(c(data.b[[1]], data.b[[2]]), nrow=50, ncol=2)

var(B)

# Generate ni’s:

ni <- as.integer(runif(n, 1, 10))

ni[n] <- 9

total_length <- sum(ni)

# Generate matrix E (epsilon’s):

data.e <- rbivariate(mean.x=0, mean.y=0, sd.x=1, sd.y=1, rho=rho.e, iter=total_length)

E <- matrix(c(data.e[[1]], data.e[[2]]), nrow=total_length, ncol=2)

var(E)

e1i <- data.e[[1]]

e2i <- data.e[[2]]

# Generate ID’s:

for(i in 1:n) {

if(i==1) id <- rep(i,ni[i])

else id <- c(id, rep(i,ni[i]))

}

# Generate tij’s (tt and ttc):

# The first individual has 1 measurement

# and the last individual has 5 measurements

for(i in 1:n) {

if(i==1) { tt <- log(1:ni[i]); ttc <- 1:ni[i] }

else {tt <- c(tt, log(1:ni[i])); ttc <- c(ttc, 1:ni[i]) }

}

# Generate u1i,u2i, b1i,b2i, e1i,e2i:

for(i in 1:n) {

if(i==1) {

u1i <- rep(data.u[[1]][i], ni[i])

u2i <- rep(data.u[[2]][i], ni[i])

b1i <- rep(data.b[[1]][i], ni[i])

b2i <- rep(data.b[[2]][i], ni[i])
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}

else {

u1i <- c(u1i, rep(data.u[[1]][i], ni[i]))

u2i <- c(u2i, rep(data.u[[2]][i], ni[i]))

b1i <- c(b1i, rep(data.b[[1]][i], ni[i]))

b2i <- c(b2i, rep(data.b[[2]][i], ni[i]))

}

}

# Make the "Outliers":

b1i[total_length-4] <- 7

# b2i[total_length-4] <- 6

# Generate the data frame:

y1 <- y2 <- rep(0, total_length)

simu.data <- data.frame(id, y1, y2, tt, ttc, u1i,u2i, b1i,b2i, e1i,e2i)

names(simu.data)[ 6] <- "u1"

names(simu.data)[ 7] <- "u2"

names(simu.data)[ 8] <- "b1"

names(simu.data)[ 9] <- "b2"

names(simu.data)[10] <- "e1"

names(simu.data)[11] <- "e2"

beta10 <- beta11 <- beta12 <- 1

beta20 <- beta21 <- beta22 <- 1

simu.data$y1 <- with(simu.data, beta10 + beta11*u1 + beta12*tt + b1 + e1)

simu.data$y2 <- with(simu.data, beta20 + beta21*u2 + beta22*tt + b2 + e2) # only use u1, not u2 ?

simu.data$int.id <- 1

return(simu.data)

}

# Compute the Cook’s distances:

COOKSD <- function(full.model, simu.data) {

simu.data.u <- simu.data

Sigma_inv <- solve(full.model$sigma)

# V = Sigma + ZGZ’ = Sigma + G (In this model, Z = I)

V <- full.model$sigma + full.model$psi

V_inv <- solve(V)

# First, calcualte the yhat based on the complete dataset:

beta10hat <- full.model$beta[1,1]

beta11hat <- full.model$beta[2,1]

beta12hat <- full.model$beta[3,1]

beta20hat <- full.model$beta[1,2]

beta21hat <- full.model$beta[2,2]

beta22hat <- full.model$beta[3,2]

eb <- data.frame(t(full.model$eb))

names(eb)[1] <- "b1hat"

names(eb)[2] <- "b2hat"

eb$id <- rownames(eb)

# For conditional:

simu.data <- merge(x=simu.data, y=eb, by.x="id", by.y="id")

simu.data$y1hat <- with(simu.data, beta10hat + beta11hat*u1 + beta12hat*tt + b1hat)

simu.data$y2hat <- with(simu.data, beta20hat + beta21hat*u1 + beta22hat*tt + b2hat)

simu.data$cooksd1 <- 0

simu.data$cooksd2 <- 0

simu.data$y1hat_i <- 0

simu.data$y2hat_i <- 0

simu.data$d_beta10hat_y1 <- 0

simu.data$d_beta11hat_y1 <- 0

simu.data$d_beta12hat_y1 <- 0

simu.data$d_beta20hat_y1 <- 0

simu.data$d_beta21hat_y1 <- 0

simu.data$d_beta22hat_y1 <- 0

simu.data$d_beta10hat_y2 <- 0

simu.data$d_beta11hat_y2 <- 0

simu.data$d_beta12hat_y2 <- 0

simu.data$d_beta20hat_y2 <- 0

simu.data$d_beta21hat_y2 <- 0

simu.data$d_beta22hat_y2 <- 0
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simu.data$d_b1_50_hat_y1 <- 0

simu.data$d_b2_50_hat_y1 <- 0

simu.data$d_b1_50_hat_y2 <- 0

simu.data$d_b2_50_hat_y2 <- 0

# For unconditional:

simu.data.u$y1hat <- with(simu.data, beta10hat + beta11hat*u1 + beta12hat*tt)

simu.data.u$y2hat <- with(simu.data, beta20hat + beta21hat*u1 + beta22hat*tt)

simu.data.u$cooksd1 <- 0

simu.data.u$cooksd2 <- 0

simu.data.u$y1hat_i <- 0

simu.data.u$y2hat_i <- 0

# For y1’s:

for(i in 1:dim(simu.data)[1]) {

y_i <- y

y_i[i,1] <- NA

y_i[i,2] <- NA # set the other component to NA (missing)

xcol <- 1:3

zcol <- 1

ith.model <- mlmmm.em(y_i, subj, pred, xcol, zcol, maxits=200, eps=0.0001)

beta10hat_i <- ith.model$beta[1,1]

beta11hat_i <- ith.model$beta[2,1]

beta12hat_i <- ith.model$beta[3,1]

beta20hat_i <- ith.model$beta[1,2]

beta21hat_i <- ith.model$beta[2,2]

beta22hat_i <- ith.model$beta[3,2]

eb_i <- data.frame(t(ith.model$eb))

names(eb_i)[1] <- "b1hat_i"

names(eb_i)[2] <- "b2hat_i"

eb_i$id <- rownames(eb_i)

simu.data <- merge(x=simu.data, y=eb_i, by.x="id", by.y="id")

simu.data$y1hat_i <- with(simu.data, beta10hat_i + beta11hat_i*u1 + beta12hat_i*tt + b1hat_i)

simu.data$y2hat_i <- with(simu.data, beta20hat_i + beta21hat_i*u1 + beta22hat_i*tt + b2hat_i)

cooksd <- 0

for(j in 1:dim(y)[1]) {

dy_i <- with(simu.data, matrix(c(y1hat_i[j]-y1hat[j], y2hat_i[j]-y2hat[j]), nrow=2) )

cooksd <- cooksd + t(dy_i) %*% Sigma_inv %*% dy_i

}

simu.data$cooksd1[i] <- cooksd

simu.data$d_beta10hat_y1[i] <- beta10hat_i - beta10hat

simu.data$d_beta11hat_y1[i] <- beta11hat_i - beta11hat

simu.data$d_beta12hat_y1[i] <- beta12hat_i - beta12hat

simu.data$d_beta20hat_y1[i] <- beta20hat_i - beta20hat

simu.data$d_beta21hat_y1[i] <- beta21hat_i - beta21hat

simu.data$d_beta22hat_y1[i] <- beta22hat_i - beta22hat

simu.data$d_b1_50_hat_y1[i] <- eb_i$b1hat_i[50] - eb$b1hat[50]

simu.data$d_b2_50_hat_y1[i] <- eb_i$b2hat_i[50] - eb$b2hat[50]

simu.data <- simu.data[, -c(37,38)]

# Unconditional:

simu.data.u$y1hat_i <- with(simu.data.u, beta10hat_i + beta11hat_i*u1 + beta12hat_i*tt)

simu.data.u$y2hat_i <- with(simu.data.u, beta20hat_i + beta21hat_i*u1 + beta22hat_i*tt)

cooksd <- 0

for(j in 1:dim(y)[1]) {

dy_i <- with(simu.data.u, matrix(c(y1hat_i[j]-y1hat[j], y2hat_i[j]-y2hat[j]), nrow=2) )

cooksd <- cooksd + t(dy_i) %*% V_inv %*% dy_i

}

simu.data.u$cooksd1[i] <- cooksd

}

return(list(simu.data, simu.data.u))

}

# Program starts here:

# --------------------

library(mlmmm)

n.rep <- 1000

list.beta <- vector("list", n.rep)

list.psi <- vector("list", n.rep)
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list.sigma <- vector("list", n.rep)

results.ccd <- rep(0, n.rep)

results.ucd <- rep(0, n.rep)

# Start the clock!

ptm <- proc.time()

for(i in 1:n.rep) {

# Generate data:

simu.data <- ryi()

# Fit the full model (with individual effects):

y <- with(simu.data, cbind(y1,y2))

subj <- simu.data$id

pred <- with(simu.data, cbind(int.id, u1, tt))

xcol <- 1:3

zcol <- 1

fit.mlmmm.full <- mlmmm.em(y, subj, pred, xcol, zcol, maxits=200, eps=0.0001)

list.beta[[i]] <- matrix(fit.mlmmm.full$beta, nrow=6) # convert to vector

list.psi[[i]] <- fit.mlmmm.full$psi

list.sigma[[i]] <- fit.mlmmm.full$sigma

# Conditional and Naive Cook’s Distances:

D2 <- COOKSD(full.model=fit.mlmmm.full, simu.data=simu.data)

simu.data.ccd <- D2[[1]]

simu.data.ucd <- D2[[2]]

simu.data.ccd.ordered <- simu.data.ccd[order(simu.data.ccd$cooksd1, decreasing=TRUE), ]

simu.data.ucd.ordered <- simu.data.ucd[order(simu.data.ucd$cooksd1, decreasing=TRUE), ]

if(as.integer(rownames(simu.data.ccd.ordered)[1])==dim(simu.data.ccd.ordered)[1]-4) {results.ccd[i] <- 1}

if(as.integer(rownames(simu.data.ucd.ordered)[1])==dim(simu.data.ucd.ordered)[1]-4) {results.ucd[i] <- 1}

print(i)

print(results.ccd[i])

print(results.ucd[i])

}

# Stop the clock

proc.time() - ptm

# Calculate the average estimated value:

all.beta <- s.beta <- list.beta[[1]]

for(i in 2:n.rep) {

s.beta <- s.beta + list.beta[[i]]

all.beta <- cbind(all.beta, list.beta[[i]])

}

all.beta <- t(all.beta)

var(all.beta)

beta <- s.beta/n.rep

beta

s.psi <- list.psi[[1]]

for(i in 2:n.rep) s.psi <- s.psi + list.psi[[i]]

psi <- s.psi/n.rep

psi

cov2cor(psi)

s.sigma <- list.sigma[[1]]

for(i in 2:n.rep) s.sigma <- s.sigma + list.sigma[[i]]

sigma <- s.sigma/n.rep

sigma

cov2cor(sigma)

results.ccd

sum(results.ccd)/n.rep

results.ucd

sum(results.ucd)/n.rep

table(results.ccd, results.ucd)
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APPENDIX B

APPLICATION - MULTILEVEL MULTIVARIATE COOK’S DISTANCE

B.1 TWO-LEVEL MULTIVARIATE MIXED EFFECT MODEL

data long3sas;

infile ’D:\LINGYUN\dropbox\Dropbox\Yun Ling\Model_04\Data\long3sas2.csv’ dsd delimiter=’09’x;

input id $ ideye $ thick_avg type $ fu dx bsage type_num fu_rnfl fu_gcc bsage_rnfl bsage_gcc int_rnfl int_gcc ideyetype $ fu_order;

run;

proc print data=long3sas;

title ’Multilevel Multivaraite Mixed Effect Models’;

run;

** 1-level;

proc mixed data=long3sas covtest noclprint;

class ideye dx fu_order type_num;

model thick_avg = int_rnfl*dx int_gcc*dx fu_rnfl*dx fu_gcc*dx bsage_rnfl bsage_gcc /noint solution outpm=resid_1;

random int_rnfl int_gcc fu_rnfl fu_gcc /subject=ideye type=un g gcorr;

repeated type_num/subject=ideye*fu_order type=un r rcorr;

** ods output covparms=cov_1 solutionF=Fixed_1;

run;

** 2-level (Nested Model), but residuals are independent;

** This model works well !!!;

** 2013/12/01...;

proc mixed data=long3sas covtest noclprint;

class id ideye dx fu_order type_num;

model thick_avg = int_rnfl*dx int_gcc*dx fu_rnfl*dx fu_gcc*dx bsage_rnfl bsage_gcc /noint solution outpm=resid_1;

random int_rnfl int_gcc fu_rnfl fu_gcc /subject=id type=un g gcorr s;

random int_rnfl int_gcc fu_rnfl fu_gcc /subject=ideye(id) type=un g gcorr s;

** repeated type_num/subject=ideye*fu_order type=vc r rcorr;

repeated /type=vc group=type_num subject=ideye(id) r rcorr;

where type_num=1 or type_num=2;

ods output covparms=cov_1 solutionF=Fixed_1 solutionR=Random_1;

run;

proc print data=Fixed_1;

format estimate 10.6;

run;

PROC EXPORT DATA= WORK.Random_1

OUTFILE= "D:\LINGYUN\dropbox\Dropbox\Yun Ling\Thesis_Model_6

\SAS\SAS_Output_20131201_random.csv"

DBMS=CSV REPLACE;

PUTNAMES=YES;

RUN;
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B.2 INFLUENCE FUNTION AND MULTILEVEL MULTIVARIATE

COOK’S DISTANCE

# Random Effects:

# ----------------

re <- read.table("/media/yun/DATA/LINGYUN/dropbox/Dropbox/Yun Ling/Model_04/SAS/SAS_Output_20131209_random.csv", header=TRUE, sep=’,’)

# re <- read.table("D:/LINGYUN/dropbox/Dropbox/Yun Ling/Model_04/SAS/SAS_Output_20131209_random.csv", header=TRUE, sep=’,’)

# Remove those incorrect records......

re[re$Estimate==0, ]

factor(re[re$Estimate==0, ]$ideye) # 26 levels...

levels(factor(re[re$Estimate==0, ]$ideye))

re <- re[re$Estimate!=0, ]

re <- re[, -c(5:8)]

re <- re[order(re$id, re$ideye), ]

re$ideye <- factor(re$ideye)

save.image()

# Fixed Effects:

# ---------------

beta.hat.rnfl <- c(111.66, 104.27, 95.8123, -0.08193, -0.7430, -0.6128, -0.1803)

beta.hat.gcc <- c(107.77, 101.96, 95.7668, -0.95520, -0.5873, -0.4479, -0.2179)

beta.hat <- c(beta.hat.rnfl, beta.hat.gcc)

beta.hat <- matrix(beta.hat, ncol=1)

# Variance-covariance matrices:

# ------------------------------

library(Matrix)

library(bigmemory)

# Note: b10 b20 b11 b21

G1 <- matrix( c(73.2727, 39.6156, -0.4922, 0.1135,

39.6156, 38.5626, 0.3086, -0.1125,

-0.4922, 0.3086, 0.8820, 0.01798,

0.1135, -0.1125, 0.01798, 0.3775), nrow=4)

# Note: c10 c20 c11 c21

G2 <- matrix( c(23.7693, 12.4620, -0.7705, -0.4184,

12.4620, 13.8827, -0.4175, -0.1597,

-0.7705, -0.4175, 0.04496, 0.1472,

-0.4184, -0.1597, 0.1472, 0.3505), nrow=4)

# GG1 <- bdiag(G1,G2,G2)

# GG2 <- bdiag(G1,G2) # Some subject missing one eye...

Sigma <- matrix( c(13.8980, 0, 0, 8.4852), nrow=2)

save.image()

# Import the dataset:

# --------------------

long <- read.table("/media/yun/DATA/LINGYUN/dropbox/Dropbox/Yun Ling/Model_04/Data/long3sas.csv", header=TRUE, sep=’\t’)

long$type <- with(long, factor(type, c("RNFL", "GCC")))

long <- long[order(long$id, long$id.eye, long$type, long$fu), ]

long <- long[, -c(8:16)]

names(long)

long$dx <- factor(long$dx)

# (1) Create X matrix:

long2 <- long

long2$beta10 <- with(long2, ifelse(dx=="1" & type=="RNFL", 1, 0))

long2$beta11 <- with(long2, ifelse(dx=="2" & type=="RNFL", 1, 0))

long2$beta12 <- with(long2, ifelse(dx=="3" & type=="RNFL", 1, 0))

long2$beta13 <- with(long2, ifelse(dx=="1" & type=="RNFL", fu, 0))

long2$beta14 <- with(long2, ifelse(dx=="2" & type=="RNFL", fu, 0))

long2$beta15 <- with(long2, ifelse(dx=="3" & type=="RNFL", fu, 0))

long2$beta16 <- with(long2, ifelse(type=="RNFL", baseline.age, 0))

long2$beta20 <- with(long2, ifelse(dx=="1" & type=="GCC", 1, 0))

long2$beta21 <- with(long2, ifelse(dx=="2" & type=="GCC", 1, 0))

long2$beta22 <- with(long2, ifelse(dx=="3" & type=="GCC", 1, 0))

long2$beta23 <- with(long2, ifelse(dx=="1" & type=="GCC", fu, 0))

long2$beta24 <- with(long2, ifelse(dx=="2" & type=="GCC", fu, 0))

long2$beta25 <- with(long2, ifelse(dx=="3" & type=="GCC", fu, 0))

long2$beta26 <- with(long2, ifelse(type=="GCC", baseline.age, 0))

X.data <- long2[, 8:21]

X <- as.matrix(x=X.data)

# (2) Create Z (Z and W) and G (GG) matrix:

id <- with(long, levels(factor(id)))

idx <- 1

for(i in id)
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{

re.id <- re[re$id==i, ]

long.id <- long[long$id==i, ]

ideye <- levels(factor(re.id$ideye))

idx.j <- 1

for(j in ideye)

{

# Create G* (Gstar) and Zi:

if(j=="")

Gstar <- G1

else if(idx.j==2) {

Gstar <- bdiag(Gstar, G2)

# Create Zi, Wi1, Wi2:

fu1 <- long.id[long.id$type=="RNFL" & long.id$id.eye==j, ]$fu

l1 <- length(fu1)

Zij1 <- cbind(rep(1,l1), rep(0,l1), fu1, rep(0,l1))

fu2 <- long.id[long.id$type=="GCC" & long.id$id.eye==j, ]$fu

l2 <- length(fu1)

Zij2 <- cbind(rep(0,l1), rep(1,l1), rep(0,l1), fu2)

Wij <- Zij <- rbind(Zij1, Zij2)

Zi1star <- cbind(Zij, Wij)

Zistar <- Zi1star # The Z* matrix

ZZi <- Zij # The Z matrix

WWi <- Wij # The W matrix

}

else if(idx.j==3) {

Gstar <- bdiag(Gstar, G2)

# Create Zi, Wi1, Wi2:

fu1 <- long.id[long.id$type=="RNFL" & long.id$id.eye==j, ]$fu

l1 <- length(fu1)

Zij1 <- cbind(rep(1,l1), rep(0,l1), fu1, rep(0,l1))

fu2 <- long.id[long.id$type=="GCC" & long.id$id.eye==j, ]$fu

l2 <- length(fu1)

Zij2 <- cbind(rep(0,l1), rep(1,l1), rep(0,l1), fu2)

Wij <- Zij <- rbind(Zij1, Zij2)

Zi2star <- cbind(Zij, matrix(0, nrow=dim(Zij)[1], ncol=dim(Zij)[2]), Wij)

Zistar <- cbind(Zistar, matrix(0, nrow=dim(Zistar)[1], ncol=dim(Wij)[2]))

Zistar <- rbind(Zistar, Zi2star)

ZZi <- rbind(ZZi, Zij) # The Z matrix

WWi <- bdiag(WWi, Wij) # The W matrix

}

idx.j <- idx.j + 1

}

if(idx==1) {

Z <- Zistar

ZZ <- ZZi

WW <- WWi

GG <- Gstar

}

else {

Z <- bdiag(Z, Zistar)

ZZ <- bdiag(ZZ, ZZi)

WW <- bdiag(WW, WWi)

GG <- bdiag(GG, Gstar)

}

idx <- idx + 1

}

Z <- as.big.matrix(as.matrix(Z))

ZZ <- as.big.matrix(as.matrix(ZZ))

WW <- as.big.matrix(as.matrix(WW))

GG <- as.big.matrix(as.matrix(GG))

# Create the R matrix (assume R is diagonal):

sigma.rnfl <- 13.8980

sigma.gcc <- 8.4852

RRinv <- RR <- diag(dim(long)[1])

for(k in 1:dim(RR)[1]) RR[k,k] <- ifelse(long$type[k]=="RNFL", sigma.rnfl, sigma.gcc)

for(k in 1:dim(RRinv)[1]) RRinv[k,k] <- ifelse(long$type[k]=="RNFL", 1/sigma.rnfl, 1/sigma.gcc)
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RR <- as.big.matrix(RR)

RRinv <- as.big.matrix(RRinv)

b.hat <- re$Estimate

b.hat <- as.big.matrix(matrix(b.hat, ncol=1))

y.hat <- X %*% beta.hat + Z %*% b.hat

bb.hat <- re[re$ideye=="",]$Estimate

cc.hat <- re[re$ideye!="",]$Estimate

bb.hat <- as.big.matrix(matrix(bb.hat, ncol=1))

cc.hat <- as.big.matrix(matrix(cc.hat, ncol=1))

y.hat.2 <- X %*% beta.hat + ZZ %*% bb.hat + WW %*% cc.hat

# Create the V matrix:

V <- Z %*% GG %*% t(Z) + RR

long9 <- long

long9$y.hat <- y.hat

long9$y.hat.2 <- y.hat.2

long9$epsilon <- long9$thick_avg - long9$y.hat

long9$diff <- with(long9, y.hat - y.hat.2)

# Create other quantities:

Vinv <- solve(V)

Xt.Vinv.X_inv <- solve(t(X) %*% Vinv %*% X)

Zt.Vinv.X_Xt.Vinv.X_inv <- t(Z) %*% Vinv %*% X %*% Xt.Vinv.X_inv

y <- long$thick_avg

y <- matrix(y, ncol=1)

# Using the dataset "long":

long7 <- long

long7$cooksd <- 0

m <- 2 # number of characteristics...

N <- 487 # number of eyes...

p <- 14 # number of fixed effects...

q <- 2 # number of random effects...

dfr <- (N*m-1)*2+p

# Calculate the decomposed Cook’s distance for the largest 10 observations:

# --------------------------------------------------------------------------

cooksd_comp_10$ca1 <- 0

cooksd_comp_10$ca2 <- 0

cooksd_comp_10$ca3 <- 0

cooksd_comp_10$ca4 <- 0

cooksd_comp_10$ca5 <- 0

cooksd_comp_10$ca6 <- 0

cooksd_comp_10$cooksd2 <- 0

# Start the clock!

ptm <- proc.time()

for(i in 1:dim(cooksd_comp_10)[1])

{

# ii contains the index of the observations to be removed:

ii <- long8[long8$id.eye==cooksd_comp_10[i,]$id.eye & long8$fu==cooksd_comp_10[i,]$fu & long8$type==cooksd_comp_10[i,]$type, ]$idx

# yi, yit, y.i (y(i))

yit <- matrix(y[ii], ncol=1)

yi <- t(yit)

y.i <- matrix(y[-ii], ncol=1)

# Xi, Xit, X.i (X(i)):

Xit <- X[ii, ]

if(length(ii)==1) Xit <- matrix(Xit, nrow=1)

Xi <- t(Xit)

X.i <- X[-ii, ]

# Zi, Zit, Z.i (Z(i)):

Zit <- Z[ii, ]

if(length(ii)==1) Zit <- matrix(Zit, nrow=1)

Zi <- t(Zit)

Z.i <- Z[-ii, ]

# Vii, Vit, Vi, V.i (V[i]):

Vii <- V[ ii, ii]
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V.i <- V[-ii,-ii]

Vit <- V[ ii,-ii]

if(length(ii)==1) Vit <- matrix(Vit, nrow=1)

Vi <- V[-ii, ii]

# V[i]^-1 * Vi:

V.i.inv <- solve(V.i)

V.i.inv.Vi <- V.i.inv %*% Vi

yi.tilda <- yi - t(y.i) %*% V.i.inv.Vi

Xi.tilda <- Xi - t(X.i) %*% V.i.inv.Vi

Zi.tilda <- Zi - t(Z.i) %*% V.i.inv.Vi

# Si and Hii:

Si <- Vii - Vit %*% V.i.inv %*% Vi

Hii <- t(Xi.tilda) %*% Xt.Vinv.X_inv %*% Xi.tilda

# beta.hat.A and b.hat.A:

# ------------------------

beta.hat.A <- beta.hat - Xt.Vinv.X_inv %*% Xi.tilda %*% solve(Si-Hii) %*% (t(yi.tilda) - t(Xi.tilda)%*%beta.hat)

b.hat.A <- b.hat - GG %*% (Zi.tilda - Zt.Vinv.X_Xt.Vinv.X_inv%*%Xi.tilda) %*% solve(Si-Hii) %*% (t(yi.tilda) - t(Xi.tilda)%*%beta.hat)

b.hat.A <- as.matrix(b.hat.A)

y.hat.A <- X %*% beta.hat.A + Z %*% b.hat.A

y.hat.A <- as.matrix(y.hat.A) # convert to normal matrix...

# bb.hat.A and cc.hat.A:

# -----------------------

re$b.hat.A <- b.hat.A

bb.hat.A <- re[re$ideye=="",]$b.hat.A

cc.hat.A <- re[re$ideye!="",]$b.hat.A

bb.hat.A <- matrix(bb.hat.A, ncol=1)

cc.hat.A <- matrix(cc.hat.A, ncol=1)

# Remove some matrices:

rm(Vi); rm(Vit); rm(Vii); rm(V.i); rm(V.i.inv); rm(V.i.inv.Vi)

rm(Zi); rm(Zit); rm(Z.i)

# Compute the Conditional Cook’s Distance (decomposed):

CA1 <- t(beta.hat.A - beta.hat) %*% t(X) %*% RRinv %*% X %*% (beta.hat.A - beta.hat) / dfr

CA2 <- t(bb.hat.A - bb.hat) %*% t(ZZ) %*% RRinv %*% ZZ %*% (bb.hat.A - bb.hat) / dfr

CA3 <- t(cc.hat.A - cc.hat) %*% t(WW) %*% RRinv %*% WW %*% (cc.hat.A - cc.hat) / dfr

CA4 <- 2*t(beta.hat.A - beta.hat) %*% t(X) %*% RRinv %*% ZZ %*% (bb.hat.A - bb.hat) / dfr

CA5 <- 2*t(beta.hat.A - beta.hat) %*% t(X) %*% RRinv %*% WW %*% (cc.hat.A - cc.hat) / dfr

CA6 <- 2*t(bb.hat.A - bb.hat) %*% t(ZZ) %*% RRinv %*% WW %*% (cc.hat.A - cc.hat) / dfr

cooksd_comp_10[i,]$ca1 <- CA1[1,1]

cooksd_comp_10[i,]$ca2 <- CA2[1,1]

cooksd_comp_10[i,]$ca3 <- CA3[1,1]

cooksd_comp_10[i,]$ca4 <- CA4[1,1]

cooksd_comp_10[i,]$ca5 <- CA5[1,1]

cooksd_comp_10[i,]$ca6 <- CA6[1,1]

cooksd_comp_10[i,]$cooksd2 <- cooksd_comp_10[i,]$ca1 + cooksd_comp_10[i,]$ca2 + cooksd_comp_10[i,]$ca3 + cooksd_comp_10[i,]$ca4 + cooksd_comp_10[i,]$ca5 + cooksd_comp_10[i,]$ca6

# Compute the Conditional Cook’s Distance:

# cooksd_comp_10[i,]$cooksd <- t(y.hat.A - y.hat) %*% RRinv %*% (y.hat.A - y.hat) / dfr

print(i)

}

# Stop the clock

proc.time() - ptm
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