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MEMRISTOR-BASED ANALOG NEUROMORPHIC COMPUTING ENGINE 

DESIGN AND ROBUST TRAINING SCHEME 

 

Beiye Liu, M.S. 

University of Pittsburgh, 2014 

 

The invention of neuromorphic computing architecture is inspired by the working mechanism 

of human-brain. Memristor technology revitalized neuromorphic computing system design by 

efficiently executing the analog Matrix-Vector multiplication on the memristor-based crossbar 

(MBC) structure. In this work, we propose a memristor crossbar-based embedded platform for 

neuromorphic computing system. A variety of neural network algorithms with threshold 

activation function can be easily implemented on our platform. However, programming the 

MBC to the target state can be very challenging due to the difficulty to real-time monitor the 

memristor state during the training. In this thesis, we quantitatively analyzed the sensitivity of 

the MBC programming to the process variations and input signal noise. We then proposed a 

noise-eliminating training method on top of a new crossbar structure to minimize the noise 

accumulation during the MBC training and improve the trained system performance, i.e., the 

pattern recall rate. A digital-assisted initialization step for MBC training is also introduced to 

reduce the training failure rate as well as the training time. We also proposed a memristor-based 

bidirectional transmission exhibition/inhibition synapse and implemented neuromorphic 

computing demonstration with our proposed synapse. Experiment results show that the 

proposed design has high tolerance on process variation and input noise. Different benefits of 

MBC system and new synapse-based system will be compared in our thesis. 
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1.0  INTRODUCTION 

The explosive growth of the functional variety of modern embedded systems leads to the 

emergence of Multiprocessor System-on-Chip (MPSoC) [7]. However, the functionalities of 

various processing elements on a MPSoC are usually determined at system architect and design 

stages. Any changes beyond the system capability may incur architecture change, circuit redesign 

or even new chip fabrication with high cost. The application of programmable elements, such as 

GPU, mitigates the redesign cost, but achieving the system reconfigurability and power efficiency 

simultaneously still remains as a challenge [11]. 

The emerging of neuromorphic computing system successfully addresses this challenge by 

providing functionality reconfiguration as well as low power consumption, especially for the 

computational intensive applications. Although many neuromorphic computing algorithms have 

been proposed for many applications like signal processing, pattern recognition, surveillance etc. 

limited progress was made on the VLSI realization of neuromorphic computing systems [1]. Based 

on the prediction of Prof. Leon Chua in 1972 [2]. HP Labs discovered a memristor device. A 

memristor can record the historical profile of the electrical excitations applied on it and incur 

corresponding resistance change [12]. The similarity between this memristive effect and biologic 

synaptic have motivated many breakthroughs in the design of the neuromorphic hardware systems 

[4, 5]. A lot of memristor based synapse designs have been proposed for cognitive computing 

tasks. For higher connection density and efficiency memristor-based crossbar (MBC) structure is 
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recently introduced to improve the execution of the Matrix-Vector multiplications, which is one 

of the most common operations in the mathematic representation of artificial neural network 

(ANN) [6, 3]. However, there are three major technical challenges in such designs: 1) Due to the 

difficulty of real-time monitoring the memristor state, the off-line training, e.g., directly 

programming the resistance of a single memristor to the target value is unlikely possible [4]; 2) 

The input vector-based iterative training methods, however, usually suffer from the long 

convergence time [3]; and 3) The input signal noise and process variations severely affect the 

training efficiency and reliability.  

In this work, we quantitatively analyzed the sensitivity of the MBC programming to the process 

variations and input signal noise. We then proposed a noise-eliminating training method with the 

corresponding modified crossbar structure to minimize the noise accumulation during the MBC 

training and enhance the trained system performance, i.e., the pattern recognition rate. A digital-

assisted initialization step for MBC training is also introduced to reduce the training failure rate as 

well as the training time. Experimental results show that our technique can significantly improve 

the performance and training time of neuromorphic computing system by up to 39.35% and 

23.33%, respectively. 

At the same time, we also conduct research on more flexible memristor-based synapse design that 

will give us better efficiency on certain cognitive computing tasks. The design is inspired by 

bidirectional biological synapse structure. The memristor is used as gate voltage controller to 

dynamically control the current going through the transistor, which represent “synaptic” behavior. 
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2.0  BACKGROUND 

2.1 MEMRISTOR BASICS 

Figure 1(a) depicts an ion migration filament model of HfOx memristors [9]. A HfOx layer is 

sandwiched between two metal electrodes TE (top electrode) and BE (bottom electrode). 

 

Figure 1. (a) Metal-oxide memristor [10]. (b) Resistance distributions of MLC memristor. 

 

 

 

During the reset process, the memristor switches from low resistance state (LRS) to high 

resistance state (HRS). The oxygen ions migrate from the electrode/oxide interface and recombine 

with the oxygen vacancies. A partially ruptured conductive filament region with a high resistance 

per unit length Roff is formed on the left of the conductive filament region with a low resistance per 

unit length Ron as shown in Figure 1(a). During the set process, the memristor switches HRS to 

LRS. The ruptured conductive filament region shrinks. We define L as the total thickness of the 
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oxide layer and h as the length of the ruptured conductive filament region, respectively. The 

resistance of the memristor R can be calculated by [9][15]: 

R= Roff h+ Ron(L-h).                                                      (1) 

We note that the memristor resistance can be programmed to any arbitrary value by 

applying a programming current with different pulse width or magnitude. Note that the memristor 

resistance changes only when the applied voltage is above a threshold, e.g., Vwrth. 

 

Figure 2. Conceptual overview of neural network [3]. 

2.2 MBC-BASED COMPUTING 

Fig. 2 depicts a conceptual overview of a neural network. Two groups of neurons are connected 

by a set of synapses. The output neurons collect the information from the input neurons through 

the synapses and process them with certain activation function. The synapses apply different 

weights (synaptic strengths) on the information during the transmission. In general, the 

relationship between the activity patterns of the input neurons U and the output neurons Y can be 

respectively illustrated as: 

Yn=Wn×m×Um.                                                         (2) 
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Here the weight matrix Wn×m denotes the synaptic strengths between the two neuron groups. In 

neuromorphic computing system, the Matrix-Vector multiplication represented in Eq. (2) is one of 

the most frequent operations [10][14]. Because of the structural similarity, reconfigurable resistive 

array, e.g., MBC is conceptually efficient to execute the Matrix-Vector multiplications [3]. During 

the operation of MBC-based computing, U is mimicked by the input voltage vector applied on the 

word-line (WL) of the MBC. Every memristor in the MBC is programmed to the resistance state 

representing the weight of the corresponding synapse [17]. The current along every bit-line (BL) 

of the MBC is collected and converted to the output voltage vector Y by the comparator circuit. 

Please refer to the appendix for more details on the operation of the MBC-based neuromorphic 

computing engine. 

2.3 TRAINING METHOD OF MBC 

The training of MBC is defined as the process of programming the resistances of the memristors 

in the MBC to the value representing the connection matrix in Eq. (2). Training method is also 

derived from the close-loop training algorithm of the weight matrix in ANN theory, e.g., gradient 

descent training [8]. During the training process, the weight matrix W is updated iteratively until 

the difference between the output y and the target output y* reaches the minimum. In each iteration, 

W is adjusted based on the gradient of the output error |y-y*| as: 

∆𝑤𝑖𝑗 = 𝜇 ∙ (
𝜕(𝑦 − 𝑦 ∗)2

𝜕𝑤𝑖𝑗
).                                                  (3) 
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Here wij is the element in the W connecting the neuron i and j, or the resistance of the memristor 

at row i and column j in the MBC. ∆ wij  is the change of wij during the iterations. μ is the training 

rate. The choice of μ is discussed in [3]. 
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3.0  NOISE-ELIMINATING TRAINING 

3.1 IMPACTS OF DEVICE VARIATION AND NOISE 

Process variation and signal noise are two major factors affecting the robustness of MBC-based 

computing and training processes. Figure 3(a) shows an example of the output comparison step in 

the MBC training process when a set of read voltage Vrd, 0, Vrd/2 is applied to the WLs of three 

memristors R1 -- R3 in the same column. Here we assume the three memristors are all at HRS. 

The ideal voltage on the BL shared by these three memristors should be Vrd/2. However, the device 

non-uniformity and the input voltage fluctuation may cause the bias changes on the memristors. 

For example, if the resistance of R1 is larger than that of R2, the voltage on the BL will be below 

Vrd/2, as shown in Figure 3(a). Also, if the input voltages on the WL of R1 changes to Vrd + ∆V, 

the voltage on the BL will be above Vrd/2, as shown in Figure 3(b). In both cases, the calculated 

difference between the current output and the target output will be different from the ideal case. 

Such deviation can be accumulated along with the training iterations. Together with the 

fluctuations of the programming voltage and the process variations, it will cause the deviation of 

the programmed memristor resistance from the ideal value during the programming step in the 

MBC training process and finally affect the computation accuracy. We use an example to illustrate 

the impacts of the process variation and input signal noise on the MBC training. A 64 x 64 MBC 

is implemented to realize the synapse connection of a two-layer neural network.  



 8 

 

Figure 3. Training with (a) memristor variation. (b) voltage noise. (c) reference memristors. 

 

 

Figure 4 shows the resistance difference between the ideally trained MBC (no process variation or 

input signal) and the MBCs trained with considering process variation (top row) or input signal 

noise (bottom row), respectively. In the evaluation of process variation's impact, the distribution 

of the memristor cell size in the MBC is generated randomly for every iteration with Gaussian 

distribution. Note that since the input noise for write will result in the variation of the MBC 

memristance, we consider the write input noise with process variation together. The standard 

deviation of the memristance variation is assumed to be 10% (σ = 0.1), 20% (σ = 0.2), and 30% 

(σ= 0.3) of its nominal value. In the evaluation of the read input signal noise's impact, similarly, a 

random noise following Gaussian distribution is generated on the input signals of the MBC in 

every iteration. The standard deviation of the noise is assumed to be 10% (σ = 0.05), 20% (σ = 

0.1), and 30% (σ = 0.15) of Vrd. The mean of the noise is zero. Gradient descent rule is applied in 

the training. 
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Figure 4. Training quality with ideal memristor and memristor with different variations. 

 

 

 

Our simulation shows very marginal degradation in the training robustness as the process 

variation increases. It is because the device variations are reflected in the difference be-tween the 

current output and the target output during each iteration and compensated by close-loop training. 

Similarly, write pulse noise will cause memristance change variation in each iteration, which will 

also be compensated by close-loop training. However, input signal noise is generated on-the-fly 

and accumulated during the training process, leading to a large difference from the ideal trained 

result. 

 

Figure 5. Training process with noise. 

Training under 

memristor variation

Training under 

input signal noise
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3.2 NOISE SENSITIVITY OF MBC TRAINING 

Figure 5 illustrates how the process variations and input signal noise affect the MBC training. 

Now, let us explain how this dynamic threshold training scheme works in system level (shown in 

Figure 4). We assume F is the output function of the MBC, i.e., comparators, which translates the 

output of the MBC to a digital value ∈ {1, -1}. The input signal noise N is added on the F before 

it is sent to the next iteration. Different from the conventional gradient descent training, our method 

tries to minimize not only the 2-norm output distance(𝑦 − 𝑦∗)2, but also the system's sensitivity 

to the noise 
∂𝑓(∑𝑢𝑖𝑤𝑖𝑗)

∂𝑁
   as: 

𝑀𝑖𝑛
𝑤
: 𝐽 =  (𝑦 − 𝑦∗)2⏞      

𝐽1

+
∂𝑓(∑𝑢𝑖𝑤𝑖𝑗 + nosie)

∂𝑁
 

⏞              
𝐽2

.                                                  (4) 

3.3 NOISE-ELIMINATING TRAINING SCHEME 

Based on our observation on Eq.(4), we proposed a noise-eliminating training scheme to minimize 

the noise accumulation during the MBC training. Redundant rows are added on top of the 

memristor array to generate an offset current B that is opposite to the target output of the column 
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Figure 6. Noise elimination mechanism. 

 

 

 

yi* during MBC training, as shown in Figure 3(c). It adds the bias $bias$ to the calculated 

difference between the current output and the target output of the MBC so that the |∑𝑢𝑖𝑤𝑖𝑗| is 

shifted out of the sensitive region of the activation function f(x) as: 

𝑥 = {  ∑𝑤𝑖𝑗𝑢𝑖  > 𝑏𝑖𝑎𝑠 𝑦∗        𝑖𝑓 𝑦∗= −1                                              
∑  𝑤𝑖𝑗𝑤𝑖𝑗𝑢𝑖 < 𝑏𝑖𝑎𝑠 𝑦

∗ 𝑖𝑓 𝑦∗= +1
               (5) 

As shown in Figure 6, through applying bias, the residue of the noise in the sensitive region 

of the activation function is reduced and the accumulation of the noise during the training iterations 

is minimized. The selection of bias is important in our proposed scheme: A bias larger than 

necessary may make the training process bypass the convergence region, leading to the difficulty 

of convergence. If bias is too small, it may not efficiently suppress the noise. A detailed evaluation 

on the selection of bias will be given in Section 5. 

We define bias amplitude a to measure the ability of the reference memristor to offset the 

MBC output as: 

𝑎 =
𝑅𝑜𝑛 𝑁𝑟𝑒𝑓

𝑅𝑟𝑒𝑓  𝑁𝑐𝑜𝑙
                                                             (6) 
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Here Ron is the HRS of a memristor. Rref is the average resistance of the reference 

memristors. Ncol is number of memristors in a column. Nref is the number of reference memristors 

in a column. During the MBC training, a training failure is defined as the unsuccessful convergence 

after the maximum n iterations of training. Here n is the threshold usually much more than the 

normal iteration number required for convergence. If a training failure happens, we will reset the 

reference memristors to reduce a and redo the training process until the training succeeds or a=0, 

which indicates the training is degraded to conventional training scheme. 



 13 

4.0  DIGITAL-ASSISTED INITIALIZATION 

4.1 BASIC IDEA 

In our noise-eliminating training scheme, the introduction of bias affects the convergence process 

of MBC training and may cause the potential convergence failure. In this section, we proposed a 

digital-assisted initialization step to the MBC training to reduce the training failure rate and 

training time. 

As shown in Figure 7, in the initialization step, the target W, which is normally known in the 

algorithm, is quantized to its digital version WD where every element is represented by a MLC 

data, e.g., 2-bit digit. WD is then written into the MBC by the open-loop training method, regardless 

the device variations. Our digital-assisted training initialization step can improve the convergence 

speed of MBC training by setting the initial resistance of the memristors close to the target value. 

The robustness of the training process is also improved as the possibility of being stuck in the local 

minimum reduces accordingly. Different from the open-loop training, the digital initialization does 

not require to program the memristor to the digitalized resistance level precisely and can tolerate 

the device variations. Note that the digitalization of W relies on specific training algorithms as we 

will show next for our approach. 
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4.2 DIGITALIZATION OF WEIGHT MATRIX 

In the conventional MLC memory cell design, the distances between the two adjacent resistance 

states of the memristor must be the same to maximize the sense margin [5]. The threshold to 

differentiate the different MLC level is set to the cross point between the distributions of two 

adjacent resistance states. In MBC training, the convergence rate of the training process is 

conceptually determined by the distance between the target value and the initial value. Therefore, 

the partition method of MLC memory design does not necessarily give us the minimum distance 

in the digitalization of weight matrix W. 

 

Figure 7. Digital-assisted Initialization. 

 

 

 

We propose a heuristic method to determine the resistance states of the memristor 

corresponding to the different digitalized levels of W: For an M-level digitalization, the elements 

of W are equally classified into M baskets Bi, i=1…M based on their values. We then find the Rthi 

, i=1…M for each basket to achieve the minimum∑|𝑊𝑖𝑗 − 𝑅𝑡ℎ𝑖|𝑊𝑖𝑗∈𝐵𝑖
, 𝑖 = 1…𝑀 , Rthi the optimal 
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memristor resistance states for the i level of the digitalization. Here we used 1-norm resistance 

distance to measure the impact of the difference between Wij and WD,ij  on the overall convergence 

rate of the MBC training. For different MBC training algorithms, other methods, e.g., based on 2-

norm distance or the maximum distance, may be also adopted. Considering the practical memristor 

programming resolution, we set M=4 here. Note that this method may cause smaller MLC sensing 

margin, however, we do not need to read out the value of each MLC. The initialization accuracy 

is enough to guarantee the training quality. 
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5.0  TRAINING QUALITY EVALUATION  

5.1 NOISE ELIMINATION 

Figure 8 illustrates the effectiveness of the noise-eliminating training method on improving the 

performance of MBC-based computing engine. A Hopfield Network with 128 input neurons is 

built on a 128×128 MBC with one-layer iterative structure to remember 16 patterns. We choose 

conventional DR training method for comparison. In our simulation, we set the bias amplitude a 

to 0.05. Monte-Carlo simulations are conducted under different process variations and input signal 

noise levels to measure the success rate when recognizing the image. As shown in Figure 8 (a) and 

(b), even at the worst case of σvariation =0.3 or σvariation =0.15 at each comparison, our method still 

achieves the best performance. 

Table 1, Experiment Setup 
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(a) 

 

(b) 

Figure 8. Noise-eliminating training (a) with signal noise; (b) with memristor variation 

5.2 DIGITAL-ASSISTED INITIALIZATION 

Figure 9 compares the training speed of the same MBC design simulated in Section 5.1. 

Y-axis is the Hamming distance between the output vectors of the MBC and the target output 

vectors. X-axis is training iteration number. The size of training input vector set is 16 and the MBC 
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training ends when generated output matches the target patterns. Four combinations of process 

variations and input signal noise levels are simulated. To exclusively measure the effects of digital-

assisted initialization, noise-eliminating training is not applied in the simulations. 

 

Figure 9. Train speed. (a) Ideal case. (b)  𝜹𝒗 = 𝟎. 𝟑. (c)  𝜹𝒗 = 𝟎. 𝟏𝟓. (d) variation and noise. 

 

 

 

“MLC-based digital-assisted” curve denotes the results of using the digitalization method 

of 2-bit MLC memory design in W initialization while “Optimized digital-assisted” curve denotes 

the results of using the heuristic method proposed in Section4.2. Both of them demonstrated much 

lower iteration number than the other training process without the digital-assisted initialization 

step. Our heuristic method offers the best result among all the training methods: when both process 

variation and input signal noise are considered, the training iteration number of “Optimized digital-

assisted” is 23.3% less than that of  “initialization with’0’” .  



 19 

The introduction of process variation causes the deviation of the initial states of the 

memristors from the target states in the digital-assisted initialization step. It raises the Hamming 

distances of the first several iterations and increases the iteration numbers considerably, as shown 

in Figure 9(b) and (d).  

In general, the total training time of a conventional BP training method can be calculated 

by: 

𝑇𝑡 = (𝑇𝑝 ∙ 𝑛
2 + 𝑇𝑐 ∙ 𝑛) ∙ 𝑁𝑖𝑡𝑒𝑟 .                                              (7) 

Here n is the input size of the MBC. Tt is overall training time. Tp and Tc re the 

programming and comparison time consumed in each iteration. Niter is the number of iterations. 

When the digital-assisted initialization step is applied, the initialization time Tinit is added to the 

total training time. Therefore, to achieve the positive benefit, the speed up introduced by the 

digital-assisted initialization step must be larger than the extra initialization time. Figure 10 shows 

that for a MBC with the size of n < 128, digital-assisted initialization step does not give us any 

benefits on the training time reduction under the simulated conditions. 

 

Figure 10. The impact of initialization on total training time. 
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5.3 CASE STUDY 

To comprehensively evaluate effectiveness of all our proposed techniques, we 

implemented a three-layer feed forward neural based on a neuromorphic computing system with 

multiple 512×512 MBC computing engines. BP training is used as comparison training algorithm 

in this case. Other simulation parameters can be found at Table 1. 

Four sets of image patterns (e.g., face, animal, building and finger print) are adopted in the 

training neuromorphic computing systems. As shown in Figure, each pattern set has 8 images with 

a size of 128×128 pixels. 
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(a) 

 

(b) 

Figure 11. 3-layer network recall rate. (a) Standard patterns; (b) Successful recognize rate. 

 

 

 

Figure 11 compares the recall success rates of the conventional back propagation (BP) 

training and the modified noise-eliminating method. Our method surpasses the conventional 

training method over all the simulation cases. Following the increase in the bias amplitude, the 
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recall success rate improvement introduced by the noise-eliminating training method becomes 

more prominent. 

 

Table 2, Training Failure Rate 

 

 

Figure 12. Comparisons of overall training time. 
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Table 2 shows the training failure rate and the training time (without digital-assisted 

initialization step) under the different bias amplitude .The increase in bias amplitude results in the 

reduction of the training time for each iteration while rapidly raises the training failure rate. As 

aforementioned in Section3.3, Training failure will prolong the total training time since we will 

redo the training with a reduced a. The overall training time Ttrain will become: 

𝑇𝑡𝑟𝑎𝑖𝑛 = 𝑇𝑡(𝑎=𝑎1) + 𝑃𝑓(𝑎=𝑎1) ∙ (𝑇𝑡(𝑎=𝑎2) + 𝑃𝑓(𝑎=𝑎1) ∙ (𝑇𝑡(𝑎=𝑎2) +⋯.                (8) 

where 𝑇𝑡(𝑎=𝑎𝑖)and 𝑃𝑓(𝑎=𝑎𝑖) are training time for each iteration and training failure rate for 

the training process with bias amplitude 𝑎 = 𝑎𝑖. 

Figure shows the overall training time comparison between conventional back propagation 

(BP) training, the modified noise-eliminating training with and without the digital-assisted 

initialization step starting with different a. Our techniques generally reduce the MBC training time 

by 12.6~14.1% for the same recall success rate, or improve the recall success rate by 18.7%~36.2% 

for the same training time. Designer can pick the best combination based on the specific system 

requirement. 
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6.0  NEW MEMRISTOR-BASED SYNAPSE DESIGN 

6.1 BIOLOGY INSPIRED SYNAPSE DESIGN 

In real biology neural system, there are chemical synapses and electrical synapses working as 

connections between neurons. Electrical synapses have unique characteristic of bidirectional 

transmission, which is also very important for implementation of artificial neuromorphic 

computing system [20]. In order to implement bidirectional transmission, two sets of input/output 

are needed for one synapse, and the transmission direction should be controlled by a switch signal. 

Figure 13 shows the schematic of memristor-based bidirectional transmission synapse with two 

neurons it connects. The resistance R and memristance M determine the gate voltage of the NMOS 

transistor. By controlling the gate voltage the NMOS transistor generates weighted current just 

like biology synapse. To test the bidirectional transmission function of the synapse, the neurons 

works as an oscillating ring, one neuron updates the state of the other neuron based on its own 

state. The neuron consists of a capacitance and inverters. The capacitance enables the neuron 

collect information (weighted current) from multiple inputs and the inverter works as an analog 

amplifier with threshold that determine the state of neuron according to the accumulated charge in 

the capacitance. 
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Figure 13, Schematic of Neurons Connected with Memristor-based Bidirectional Synapse 

 

 

 

The schematic is simulated in Cadence Virtuoso and result is shown in Figure 14. When 

the switch signal (C1) is ‘1’, neuron1 updates neuron2’s state with neuron1’s state. And when C1 

is ‘0’, the synapse works in the other way around, neuron2 changes neuron1’s state with the 

opposite state of neuron2. In the beginning of the simulation, the initial states of both neurons are 

‘1’, at 30 us capacitance of neuron1 is discharged because Vin2 is ‘0’. As the data is stored as 

charge in capacitance, the neuron oscillating ring has very good tolerance of race condition. 
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Figure 14, Simulation result of neuron-synapse oscillating ring 

 

 

 

An advantage of the neuron-synapse oscillating ring is that the oscillating frequency is 

determined by the weight of the synapse. With larger memristance, the gate voltage is higher and 

weighted current is stronger, which means the charging period of the capacitance is longer. 

6.2 EXCITATION/INHIBITION TRANSMISSION 

In real biology neural system and artificial neural network models, synapse transmits excitation or 

inhibition between neurons according to different function. There have to be inhibitions in the 

system because in interconnected networks, excitation begets more excitation. Interneurons, by 

way of their inhibitory actions, provide the necessary autonomy and independence to neighboring 
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principal cells. So one of the basic components of neuromorphic computing system is synapse with 

ability of excitation/inhibition transmission, while previous research on memristor-based synapse 

design only focus on weighted excitation signal transmission. Figure 15 shows the schematic of 

synapse we proposed to implement excitation/inhibition transmission. As we use capacitance in 

previous neuron design, excitation/inhibition could be implemented by charge (pull up)/discharge 

(pull down) of the capacitance. The truth table of the Excitation/Inhibition synapse is shown in 

Table 3. Signal ‘+/-’ is to determine whether this synapse will implement a ‘Excitation’ or 

‘Inhibition’ function of the input signals. When Vin1/Vin2 is ‘1’ and ‘+/-’ is ‘1’, it means the input 

signal in positive and synapse will transmit it as a excitation, then Vc (XOR output of input signal 

‘Vin1/Vin2’ and ‘+/-‘) will be ‘0’, which will enable P-transistor and cut off N-transistor to charge 

the neuron it connects. 

 

Figure 15, Excitation/Inhibition synapse. 
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Table 3, Excitation/Inhibition synapse Truth Table 

Vin1/Vin2 +/- P-transistor N-transistor Vout1/Vout2 

1 1 Pass Cut off Pull up 

1 0 Cut off Pass Pull down 

0 1 Cut off Pass Pull down 

0 0 Pass Cut off Pull up 

 

To demonstrate the weighted Excitation/Inhibition transmission ability of the synapse we 

proposed, a simple information collecting neuron demo (shown in Figure 16) is designed and 

simulated in Cadence environment. 

 

Figure 16, Information Collecting Neuron Demo. 

 

 

 

In this demo, neuron N0 collects information from other neurons through synapses as we 

proposed. Based on the weighted Excitation/Inhibition signals from 30 other neurons, neuron N0 

makes decision with a non-linear function: 

                    N0 =   { 1       𝑖𝑓 ∑𝑁𝑖 ×𝑊𝑖 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

30

𝑖=0

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (9) 
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We give different set of excitation weight, inhibition weight to every synapse, and test the 

state of N0 by increasing the number of positive input neurons. Result is shown as Figure 17. 

 

Figure 17, Simulation of Information Collecting Neuron Demo. 

 

 

 

Curves from the left to right are test results with positive/negative synapse weights ratio of 

3/1, 2/1, 1/1, 1/2, 1/3, and the positive neurons needed to change the state of N0 is 7, 10, 15, 21, 

23 accordingly. 
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6.3 SYNAPSE BASED NEUROMORPHIC COMPUTING SYSTEM 

6.3.1 System Architecture 

A memristor behaves similarly to a synapse in biological systems and hence can be easily used as 

the weighted connections in neural networks. Based on the memristor-based bidirectional synapse 

design, we implement a network serving as neuromorphic computing system with units (artificial 

neurons) and weighted connections (synapses). The neuron in this network is a binary threshold 

unit that produces only two different values to represent its state. A synapse works as a weighted 

connection to transmit a signal from one neuron to another. The activation function can be 

described in equation (9). The proposed neural network can be used for pattern recognition: first, 

multiple standard input images are used to train the connection weights of the system till they reach 

convergence; after that, any input pattern will produce to a local minimum, which is a stable state 

corresponding to one the stored standard patterns. Such a network system can even be used to 

recognize the input image with defects. In our experiment, we build a network with 100 (10×10) 

neurons and store the character images ‘A’, ‘B’ and ‘C’ shown in Figure 18(a) as the standard 

patterns.  Each neuron in the network represents a pixel of the image.  Then the defected images 

in Figure 18(b) are applied as inputs to initialize the network’s state. Figure 18(c) show that each 

input has 13 defects compared to its corresponding standard images (see black bars). The proposed 

system can completely eliminate the difference to zero and converge to one of the standard 

patterns, as demonstrated by the write bars in Figure 18(c). 
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Figure 18, (a) Standard patterns; (b) Noised patterns; (c) Noised input (black bars) VS output. 

6.4 SYSTEM EVALUATGION 

6.4.1 Robustness 

The maximal allowed stored standard patterns (capacity) of this neural network design is 

determined by the amounts of neurons and connections. Moreover, the more patterns stored in the 

system, the higher precision of the connection weights is needed. Therefore, a large number of 

stored patterns and the high process variation on memristances will result in a higher failure 

probability (Pf). To quantitatively evaluate the impact of memristance variations and robustness 

of the proposed neural network design, we conducted Monte-Carlo simulations for the network 

with 100 (10×10) neurons. Random variations following Gaussian distribution have been injected 

to the memristors. And σ is the standard deviation of the memristance.  The system could fail to 

recognize the noised patterns or mismatch an input with other standard patterns due to the 
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inaccurate connection weights.  To test the failure probability under different conditions, we ran 

10,000 Monte-Carlo simulations by varying the memristance variation σ when 7, 8, 9, or 10 

patterns are stored in the system. In this experiment, each input image contains 21 defects among 

100 pixels. 

The simulation results in Figure 19 demonstrate that the proposed memristor-based neuromorphic 

system has a high tolerance on memristance variations. When σ < 0.4 Pf of all the four 

configuration are close to the ideal condition at σ= 0. This indicates that even a large process 

variation exists in memristor devices; the performance of the proposed neuromorphic system is 

not affected much. Further increasing σ > 0.5, Pf grows significantly. As expected, under the same 

process variation condition, the system suffers a higher Pf when more patterns are stored. 

 

Figure 19, The Impact of Memristor Variations on the Probability of Failure (Pf) 

6.4.2 Capacity Analysis 

For the artificial neural network we implemented last month, the capacitance works as a key factor 

to the robustness of the system. It shows that if error in recalling is allowed, the maximum number 

p of the patterns to be stored in a network with N neurons is 0.15N [19]. The limitation is attributed 
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to the fact that the network is trapped to the so called spurious local minima. In 1987 McEliece et 

al. [9] proved that when p<N/4lnN holds, the Hopfield’s model is able to recall all the memorized 

patterns without error.  

For demonstration, we conducted Monte-Carlo simulations to evaluate the impacts of the capacity 

on the robustness of our networks. A large Hopfield network with 100 neurons is built to recognize 

larger sets of text patterns where the respective theoretical capacity is limited to about 18 patterns. 

Process variations are simulated by introducing Gaussian distribution noise to the memristance of 

the memristor devices in Matlab simulations. A system failure is defined as converging to a wrong 

standard pattern (ones that do not correspond to the input pattern), or failing to converge to a stable 

point. The test results are shown in Figure 20. Here σ is the standard deviation of the memristance 

and Pf is the system failure rate. 

 

Figure 20, Failure Rate of Hopfield Network under Different Patterns and Process Variation. 
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Figure 20 shows that our design has a good immunity against process variations: Even 

when σ< 0.2, our system still demonstrates a Pf close to zero.  Increasing the number of text 

patterns quickly degrades the system’s robustness with much higher Pf values. When the pattern 

number approaches the capacity limit, the pace of the system robustness degradation rises quickly. 

Increased process variations (σ) were also shown to degrade system robustness.  However, in 

conventional CMOS circuit manufacturing, the parametric standard deviation is usually less than 

10% [16][18]. 

For the same amount of stored patterns, a larger network with more neurons is more robust 

to process variations.  Figure 21 compares the performance of the systems with 100 neurons (the 

blue line) and with 400 neurons (the green line). Both systems have 10 standard patterns. And the 

input defect rate remains at 21% for the two designs. The simulations show that the impact of 

process variations is smaller and therefore the required precision of connection weights is lower 

in a bigger network. Hence, in a neural network system design, the tradeoff between network 

capacity and robustness need to considered. 

 

Figure 21, Increasing the Network Size VS Pf. 
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6.5 COMPARISON BETWEEN CROSSBAR AND SYNAPSE BASED 

ARCHITECTURE 

Figure 22 shows the synapse-based image smoothing processor. Input neurons matrix (red) stores 

the original image, in which each neuron represents the value of a pixel. Each neuron in output 

matrix (green) will be calculated by weighted summation of neighbor input neurons: 

            No(i, j) =
1

4
(𝑁𝑖(𝑖, 𝑗) + 𝑁𝑖(𝑖 + 1, 𝑗) + 𝑁𝑖(𝑖, 𝑗 + 1) + 𝑁𝑖(𝑖 + 1, 𝑗 + 1))                  (10) 

 

Figure 22, Synapse-based Image Smoothing Processor. 

 

 

 

The synapse-based architecture is very efficient for this function because it is local 

processing, in which there is no connections between long distance neurons. If we implement the 

same function with crossbar-based architecture, the weighted matrix will be a sparse matrix that 

only has two non-zero elements in each row or column. But for fully connected network, circuit 
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area consumption efficiency of these two architectures depends on system capacity. Crossbar has 

peripheral analog circuit that domains the circuit area when system capacity is small while 

synapse shows less efficiency for large system. We give a general case estimation in Figure 23, 

which shows that for system of more than 320 crossbar-based architecture has better efficiency. 

 

Figure 23, Synapse-based Image Smoothing Processor Area Cost. 
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7.0  CONCLUSION 

In this thesis, we proposed a noise-eliminating training method and digital-assisted 

initialization step to improve the training process robustness and the performance of memristors 

crossbar-based neuromorphic computing engine. Experimental results show that our techniques 

can significantly improve the recall success rate and training time of neuromorphic computing 

system by up to 18.7%~36.2% and 12.6%~ 14.1%, respectively, through suppressing the noise 

accumulation in the training iterations and reducing mismatch between the initial weight matrix 

state and the target value. 

We also proposed a memristor-based bidirectional transmission exhibition/inhibition 

synapse and implemented neuromorphic computing demonstration with our proposed synapse. 

Experiment results show that the proposed design has high tolerance on process variation and input 

noise.  

In the end, memristor crossbar-based and synapse-based neuromorphic computing 

architectures are compared and discussed on circuit area consumption efficiency. The synapse-

based architecture is very efficient for this function because it is local processing, while crossbar 

shows high efficiency in fully connected network. 
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