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Density functional theory (DFT) in spin polarized generalized gradient approximation 

with Hubbard U correction (GGA+U) was used to investigate the structural changes and voltages 

of LiMn2O4 cubic spinel during the electrochemical process in Li-ion battery. Jahn-Teller 

distortion and electrons transfer between Mn atoms and O atoms were observed by analysis the 

charge density. Effect of the reduction of Li content on distribution of Mn3+ and Mn4+ was also 

discussed. The low-index surface facets (100) and (111) extracted from the optimized bulk 

LiMn2O4 were calculated to study their structures and stability. Two possible terminations and 

some reconstructions of each surface were inspected. A specific reconstruction that would create 

a partial inverse spinel arrangement was applied on (111) surface and resulted in the most stable 

facet among the investigated facets. Furthermore, the negative charged vacancy formation 

energy indicated lithium extracted as a form of Li+ ions, rendered the electron left in the bulk to 

drift through external circuit.  
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1.0  INTRODUCTION 

Lithium-ion batteries have attracted lots of attentions, because of its various 

environmental usages from portable things, like mobile phones, iPads, laptops, and digital 

cameras, to electric vehicles. It has made our life more convenient and promoting the electronic 

industry.  Moreover, the developments of smart phones and laptops request longer operating life 

in electronic devices with thinner and lighter Li-ion battery (LIB) of larger energy capacity and 

higher safety [1]. Though recent researches reported a rechargeable battery cell with over 30,000 

cycles life at a relatively faster rate [2], increasement of the volumetric energy density is still a 

big challenge, and capacity fade is inevitable. The cycle life of the rechargeable battery is the  

 
 
 

                                           

 
Figure 1 The first Li-ion battery [1]. 
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number of cycles until the capacity fades to 80% of its premier value. Li-ion battery is made up 

of electrolyte and two electrodes, a reductant (anode) and an oxidant (cathode); the construction 

of the first LIB is shown in Figure 1. Commonly, lithium metal, graphite, silicon nanotubes, and 

alloys of Tin or lead, are used as anode materials, while, LiCoO2, LiNi1-xCoxO2, LiMn2O4, and 

LiFePO4, are commonly used as cathode materials. During charge process, Li+ will be extracted 

reversibly over a finite solid-solution range in cathode, drift through the separator in the 

electrolyte and be stored in the anode, vice versa in discharge process. For example, a LIB with 

graphite anode and LiMn2O4 cathode, the reactions during charging are: 

LiMn2O4 = xLi+ + xe- + Li1-xMn2O4     in cathode 

xLi+ + xe- + C6 = LixC6                           in anode  

Electrode-electrolyte chemical reactions would result in the irreversible formation of a 

passivated solid-electrolyte interphase (SEI) layer on an electrode during an initial charge of a 

cell fabricated in a discharged state. 

The lithium manganese spinel LiMn2O4 is a kind of commercial cathode material for 

rechargeable LIB due to its performance, low cost and nontoxicity. There are commercial 

products in lithium manganese oxide system, such as LixC/Li1-xMn2O4 (3.5 V lithium-ion cells); 

LiAl/LixMnO2 (2.6 V coin cells); Li4+yTi5O12/Li1-yMnO2 (1.5 V coin cells) [3]. The theoretical 

specific capacities of LiCoO2, LiMn2O4 and LiFePO4 are 273 mAh/g, 297 mAh/g and 170 

mAh/g, respectively. Compared to LiCoO2, LiMn2O4 is more thermal stable and safer. LiMn2O4 

is a cubic spinel with space group symmetry!!"3!. The lithium ions are positioned on the 8a 

tetrahedral sites of the structure, the manganese ions are located on the 16d octahedral sites, and 

the oxygen ions occupy the 32e positions. The lattice of LiMn2O4 is illustrated in Figure 2. The 

framework of this kind of stable spinel provided a stable host structure for the electrochemical 
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insertion and extraction of lithium. The theoretical capacity of the LiMn2O4 is approximately 140 

mAhg--1 in the voltage range of 3.0-4.3 V. However, the stoichiometric LiMn2O4 is found to 

have lower capability. The lattice volume changes when charging. In this work, I have studied to 

use density functional theory (DFT) to investigate the structure changes and voltages of LiMn2O4 

cubic spinel as a function of lithium content, and the electrons transfer in the bulk during charge 

process, and calculate the properties of the LiMn2O4 such as surface energies.   

 
 
 

 
 
Figure 2 The bulk model of the LiMn2O4 structure illustrating the position of the Li (blue), the Mn 

(violet) and O (red) atomic species. 
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2.0  BACKGROUND 

2. 1  LITHIUM ION BATTERY RESEARCHES 

2.1.1 Experimental Researches 

In order to improve the performance of cathode material in LIB, lots of experiments are 

carried out concerning the phase transformation, particle size, reaction between cathode and 

electrolyte, doping or coating to optimize structure, etc. LiCoO2 is the first material used as 

cathode materials in LIB, whose theoretical capacity is about 274 mAh/g, but practically is found 

to be only 120-130 mAh/g in voltage range 2.7-4.2 V [4,5]. Shaju et al. [6] prepared the layered 

Li(Ni1/3Co1/3Mn1/3)O2, by doping Ni and Mn into LiCoO2 stucture, which gives an initial 

discharge capacity of 160 mAh/g in the range, 2.5-4.4 V at a specific current of 30 mA/g and a 

discharge capacity of 215mAh/g at lower current(10 mA/g) and in the voltage window 2.5-4.7 V. 

Zhang et al.[7] demonstrated the LiMn2O4 (LMO) is more thermostable than LixNiO2 and 

LixCoO2. Since LMO showed less energy and less sensitivity to changes in x, while reaction 

energy of LixNiO2 and LixCoO2 strongly depends on the change of x, thus the stoichiometry of 

these two materials required strictly control to achieve safety. Although LMO is cheap, 

environmentally friendly and has an acceptable high cycling capacity, capacity fading is the 

well-known significant problem. It is believed the reasons for capacity fade are surface chemistry 
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of the electrode-electrolyte interface and the phase transformation during lithium 

extraction/insertion. The conventional wisdom being that Mn ions on the spinel surface dissolved 

into electrolyte following disproportion of Mn3+ through the Hunter reaction [8]: 

                              2 Mnsolid
3+         Mnsolid

4+ + Mnsolution
2+. 

Mn2+ ions transfer through electrolyte and deposite both on and in the graphite anode. The Li 

content in the anode is depleted, hence the overall cell capacity faded. Moreover, Park et al. 

suggested that loss of the active material results in decreased effective transport properties in the 

cathode, and therefore lead to reduction in the electrochemical reaction rate and capacity [9]. 

Structural stability has been demonstrated to be an important factor for capacity fades. Huang et 

al. [10] introduced an nonstoichiometric spinel Li1.03Mn2O4.04(Li1[Mn1.98Li0.02]O4) contrast the 

stoichiometric spinel LiMn2O4 in structure change during cycling.  The result shows that 

nonstoichiometric spinel remains single phase and capacity maintains good giving rise to high 

performance, stoichiometric spinel experiences structural degradation, involving accumulation of 

a second phase during cycling bringing large capacity losses. Cho and his co-worker [11] 

confirmed the capacity fading is related to the phase transition accompanying non-uniform strain 

during charge/discharge process. They successes to introduce a zero-strain cathode material, 

which is LiCoO2 powder coated by a thin film of high fracture toughness metal oxides, like ZrO2, 

to suppress the lattice constant changes during cycling. Besides, early studies proved the 

electrode of LIB is reactive in the presence of electrolyte at elevated temperature. MacNeil et al. 

[12] suggest that the LiFePO4 is the safest material compared with a groups of 7 materials 

including LiMn2O4, LiNiO and LiCoO2, and LiMn2O4 is the third safest following LiFePO4 and 

Li[Ni3/8Co1/4Mn3/8]O2. Zaghib et al. [2] reported a novel LIB with a fast charge rate, long cycling 

life and safety is made up of nanoparticles of LiFePO4 (LFP) covered with 2 wt.% carbon as 
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cathode material and Li4Ti5O12 (LTO) as a anode material. This battery is equipped in cars 

presented at the World Energy Council (Monteal, Sep. 2010), and it announced that charging 

time is just 5 minutes with three levels charger in parallel. Recent studies found the advanced 

electrode material for high power LIB, such as LiFePO4 coated LiMn1.5Ni0.5O4, which performs 

high energy density, due to the coating resists the inner particles reacting with electrolyte, and 

hence,  prevents the formation of the passivated SEI layer and increase the safety of LIB [13]. 

However, Edström et al.[14] have proved that the surface film does not passivate the cathode 

surface, as in the case of anode, where the first-discharge SEI layer covered the entire electrode. 

Other researches found that reduction the size of the active particles of the electrodes to 

nanoscale could improve the power density, because the increased contact of surface with 

electrolyte. However, high energy density and high power density cannot achieved at the same 

time, thus it is suggested that in near future LIB will be confronted to the choice between them. 
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2.1.2 Computational Researches 

Computational has a significant advantage that is scalability [15]. By solving the basic 

equations of quantum mechanics and statistical mechanics, computational method would 

determine the properties of the material and help to design and optimize materials. The most 

attractive concerns about LIB are voltage, capacity, cycle life, charge rate, safety and cost. For 

this paper just considers cathode material, the following properties would just analyze related to 

cathode. Computational study requires connection of macroscopic properties with microscopic 

behavior. The cathode materials with lower chemical potential for lithium, result in higher 

battery voltage. Capacity is related to the amount of Li ions reversibly inserting into and 

extracting from the cathode. Weight and volume density of lithium stored in cathode material 

ensure the cycle life required by applications. Provide that Li ions and electrons move fast in the 

cathode, the charge rate would be fast and higher power density responses out of the battery.  

Finally, safety is related to thermal stability and oxidation strength of the material [16], and cost 

of cathode material must less than $15-$20 per kg in order to meet automotive targets. Morgan et 

al. [17] calculate the activation barrier for Li motion in LiFePO4 cathode is very small, indicating 

Li transfer very easy, thus predicting a extremely fast charging and discharging rate. The 

prediction was confirmed by experiments [18] latter, which reported a small battery with this 

material could be fully charge in 18 seconds. Ceder et al. present a method to calculate oxidation 

strength of LiFePO4 and LiMnPO4, by computed Li-Fe-O-P phase diagram and the reduction 

path of FePO4 and MnPO4. The results show the LiFePO4 is rather safe, in the opposite, 

LiMnPO4 is predicted not be safe as LiFePO4, which is agree with the experimental 
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measurements publish latter [19,20]. Let’s take the following research as an example of using 

computational method to design a material. Li(Ni0.5Mn0.5)O2 is said to be a perfect cathode 

material in theory, but the charge rate is low and it loses much capacity at the charge/discharge 

rates. Ceder et al. assumed a structure with no nickel in the lithium layer, and the calculation 

results show this structure lower the activation barrier for Li motion, hence improve the rate. 

Fortunately, the hypothetical material was successfully synthesized [21]. Early researches use 

computational method to calculate the voltage and electron structure of the doped LMO [22,23], 

and to model the nanowire or nanorode structures [24,25] of the cathode material. Recently, 

researchers begin to study the Li migration path and surface properties. Ouyang et al. [26] found 

that LMO (100) surface coated with Al2O3 improves the performance of LMO cathode in LIB 

using DFT simulation. Karim et al. [27] drawed an equilibrium particle deduced from surface 

energies calculation, and the shape of the particle is total agree with experimental observation. 

Nakayama et al. [28] reported the Li migration path for LMO and the energy profile. They also 

confirmed that LMO with transition metal doping would improve the Li diffusivity. Furthermore, 

how the distribution and number of Mn3+ and Mn4+ ions affect the Li+ ions diffusivity, was 

investigated by Meng et al. [29]. In future, computational method will continue aiding material 

design and will be accepted by more scholars. 
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2.2 DENSITY FUNCTIONAL THEORY 

Density functional theory (DFT) is a first principle or ab initio method based on quantum 

mechanics. Nowadays, widely increasing uses of DFT method in chemistry, physics, material 

science, biochemistry and many branches of engineering, are due to its good accuracy and 

efficiency.  For instance, DFT have been used to elucidate that defects promote reactivity for 

epoxidation of propylene in titanosilicalite (TS-1) catalysts [30], the role of vacancy and holes in 

the fracture of carbon nanotube [31], and properties of iron under the extreme pressures and 

temperatures as the Earth’s interior [32]. Although DFT method is much better than the 

traditional multiparticle wave-function methods when applied to systems of many particles, 

computing time rises with the number of atoms [33]. Therefore, it is not suggested to use in a 

system with larger than 100 atoms in practice. A brief overview of the fundamentals of density 

functional theory is illustrated below. 

2.2.1 Schrödinger’s Equation 

In quantum mechanics, we use Schrödinger equation instead of the equation of motion in 

classic mechanics to describe the change of quantum states with time. Since the mass of a proton 

or neutron in a nucleus is 1800 times greater than an electron, the nucleus can assume to be fixed, 

and just the electron moves. The respective mathematical problems can be solved separately by 

using Born-Oppenheimer approximation [34]. The time-independent Schrödinger equation then 

is simplified:  

Ĥ! = !" 
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where Ψ is the electronic wave function, and E is the ground-state energy. For a system with N 

electrons and k nuclei, where multiple electrons are interacting with multiple nuclei, the 

Hamiltonian, Ĥ, is defined as the following equation:  

Ĥ = − ħ!
2!!

!!!
!

!!!
+ !!(!!)

!

!!!

!

!!!
+ 12

!!
!! − !!

!

!!!

!

!!!
 

The terms in the Hamiltonian are the kinetic energy of electrons, the interaction energy 

between each electron and all nuclei, and the interaction energy between electrons, respectively.  

2.2.2 Exchange-Correlation Functional 

Exchange-correlation functional, !!"[! ! ], accounts for the difference between the 

exact ground-state energy and the energy calculated in a Hartree approximation and the form of 

it is still unknown. Thus, effective approximations for !!"[! ! ] are required. 

The local density approximation (LDA) is the simplest but remarkable useful 

approximation [33]. 

!!"!"# = !!"[! ! ]!(!)!" 

In the equation above, !!"[! ! ] is the exchange-correlation energy per particle of a 

homogeneous electron gas of density n. !!" ! ! = − !
!

!
!

!
! !

!
!(!). 
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LDA is good for material with uniform electron gas system, and slow varying electron 

density, like metal. Practically, LDA overestimates energies, but it always agrees with geometric 

experimental data of molecules and solids. 

The generalized gradient approximation (GGA) is not well defined as LDA, but it has a 

similar form as LDA. It takes into account the gradient of the density at the same coordinates. 

!!" ! = !!"[! ! ,∇! ! ] 

Here, ∇! ! ] is a gradient of the electron density, and it is good to represent surfaces 

where the electron density undergoes big difference. In theoretic, GGA is suitable for large 

density gradient system, like surface, an insulated molecular or atom. Experiences have shown 

that GGA is more accurate than LDA, but it often underestimates energies, and results in 

overestimate lattice parameters. There are two most common GGA functional, Perdew-Wang 

(PW91) functional [35] and the Perdew-Burke-Ernzerhof (PBE) [36] functional. 

2.2.3 Pseudopotentials 

Pseudopotential is used to replace the Coulomb potential of the nuclei and the effect of 

tightly bound core electrons by an effective potential acting on the valence electrons. The 

electron density of the core electron is replaced with a smoothed density that approach to the true 

core. Because the wave functions of all the electrons are very complicated, and the chemical 

behavior of the elements and material properties are mainly determined by the outermost valence 

electrons, in order to simplify the calculation, a frozen core approximation is applied. There are 

three kinds of pseudopotentials: norm-conserving pseudopotentials (NCPP), ultrasoft 
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pseudopotentials (USPP), and projector augmented wave (PAW) pseudopotentials. NCPP is 

rarely used todays, and PAW are used most frequently. USPP would be used for speed up 

calculation, and for many system, it gives similar results as PAW gives. PAW is the most 

accurate in these three, and it gives reliable results in most systems including systems with strong 

magnetic moments or large difference in electronegativity. 

2.2.4 GGA+U 

Both LDA and GGA introduce a electron self-interaction energy error, in some case, this 

error would be cancelled between the different calculations that are combined into a property. 

However, in transition metal oxide, the electrons in d or f orbitals present a particularly large 

self-interaction energy, which cannot be cancelled. As a result, GGA+U method is used to 

correct the self-interaction error on transition metal oxides. GGA+U method would give correct 

magnetic ground states, electronic structure for systems and redox reaction energies in oxides 

[37].  The value of U can be obtained by fitting to experimental binary formation enthalpies [38], 

and can be calculated by ab initio self-consistent calculation wave functions of the given system 

[39]. 
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3.0  VOLTAGE AND LATTICE PARAMETERS OF LMO  

3.1 COMPUTATIONAL METHODS 

A cubic spinel structure cell containing eight formula units of LiMn2O4 was used in this 

work. All calculations were performed using the spin polarized generalized gradient 

approximations (GGA+U) to the density functional theory (DFT). The projected augmented 

wave (PAW) method, as implemented in the Vienna ab initio simulation package (VASP), 

represented core electron states. I use a cutoff energy of 550 eV and an 8×8×8 Monkhorst-Pack 

scheme to sample the Brillouin zone. The calculation convergence criterion is 10-6, and the 

atomic would be relaxing until the force acting on each atom was smaller than 0.01 eV/Å. Since 

Mn ions have d electrons, the Hubbard U correction is introduced to describe the effect of them. 

In spinel structure, the U value of Mn3+ ions and Mn4+ ions are 4.64 and 5.04, respectively. 

Because Mn3+ and Mn4+ ions coexist in LiMn2O4, an effective U value of 4.84 was suggested by 

Meng et al. [29] to apply in rotationally invariant GGA+U approach. The atomic positions were 

relaxed to obtain total energy and optimized cell structure. The equilibrium structures of 

LiMn2O4 were obtained from a series of calculation in different volume. To calculate the volume 

change in electrochemical process, a supercell with one vacancy (Li0.875Mn2O4) and four 

vacancies (Li0.5Mn2O4) out of eight Li sites were created. Moreover, the cubic spinel structure 

Mn2O4 was also optimized to get the equilibrium lattice parameters.  To obtain the atomic charge 
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density difference and electronic density of state (DOS), first step is a static self-consistent 

calculation; then run a non-self-consistent calculation; last but not least, operate non-self-

consistent calculation keeping charge density constant during minimization. 

3.2 RESULTS AND DISCUSSION 

3.2.1 Bulk Structure and Charge Density 

Since bulk LiMn2O4 has !"3! group space, all 8a sites are equal, indicating that 

whichever Li ion extracted will not differ the energy of the equilibrium state of Li0.875Mn2O4.In 

my study, I extract the one in �0.75 0.25 0.75] position. During delithiation the original 

symmetry would be destroyed, thus, Li ion extracted from different sites may contribute 

difference in total energy. In my study, I tried 4 possibilities, and I got the lowest equilibrium 

energy when lithium were extracted from two face-centered sites and two diamond sites [0.75 

0.25 0.75] and [0.25 0.75 0.75]. Jahn-Teller distortion is observed in LixMn2O4 (0<x≤1) due to 

GGA+U method distinguish Mn3+ and Mn4+. This effect often occurs in octahedral complexes 

such as MnO octahedral in LMO spinel. One electron of the Mn3+ ions occupies !! orbital, and 

in order to remove the degeneracy involved in !! orbital, Mn-O bond will be elongated or 

contracted. While in Mn2O4, Mn ions only exist as Mn4+, Jahn-Teller distortion does not display. 
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Figure 3 Equilibrium lattice structure of (a) LiMn2O4, (b) Li0.875Mn2O4, (c) Li0.5Mn2O4 and (d) 

Mn2O4, represented by Li (blue), Mn (violet) and O (red) atoms and bonds. 

 
 
 
As to observe the electrons transference and distribution associated with Li ion 

extraction, use atomic charge density difference before and after interactions between atoms. 

Figure 4 intuitively represents the electrons distributions, where blue orbitals express who lose 

electrons and yellow orbitals indicate who gain electrons. Mainly, electrons transfer from Mn 

ions to O ions. However, i t  shows no electron gain or loss on Li atoms, which may be 
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explained as no reactions between lithium and other two elements. Therefore, Mn-O is a 

structural frame for store Li atoms. 

In LiMn2O4 lattice, the electrons are lost from two !! orbitals (!!!!!! and !!!) of Mn, 

and gained in O orbitals. And all of the Mn ions look like the same, as well as O ions. While one 

Li atom remove, the charge density around the Li vacancy change. Electrons leave from just one 

!! orbital of all Mn ions except four far from the vacancy. The orbitals of Mn ions nearest 

vacancy even rotated. Though it seems that the Mn ions near vacancy loss fewer electrons than 

the ones far from vacancy, actually, this figure just qualitatively draw the charge density change. 

In fact, the calculation results tell the Mn ions near vacancy loss more electrons than the ones 

further away. Provided that four Li ions extract, Electrons move from both !! orbital of all Mn 

ions except four of them. Moreover, in Mn2O4 lattice, shapes of the charge density change of all 

the Mn ions and O ions looks like the same as in LiMn2O4 lattice, but a little bigger.  
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Figure 4 Charge density difference of (a) LiMn2O4, (b) Li0.875Mn2O4, (c) Li0.5Mn2O4 and (d) Mn2O4, 

where blue illustrate lose electrons and yellow indicate gain electrons. Isosurface is set to be 0.03. 
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3.2.2 Lattice Parameter and Voltage 

Figure 5 shows the lattice constants of LixMn2O4 cubic cell as a function of Li 

concentration. At x=1, the result overestimates the lattice constant comparing to experimental 

observation by 3%, and comparing to other researchers who also use GGA+U method by less 

than 0.4%. The total volume change from LiMn2O4 to Mn2O4 is calculated as 5.4%, while 

experimental volume change is around 6-7%. It is a little underestimate the volume change. The 

smaller volume change during charge/discharge process, the better performance of cathode is. 

 
 

 
 

Figure 5 Calculated and experiment measured lattice parameters as a function of Li concentration. 

 
 
 
In the charge and discharge process, the Li ions are extract from and insert into the 

cathode materials. The experimental studies have demonstrated that the lithium is extracted from 
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the tetrahedral sites of the spinel structure at approximately 4 V in a two-stage process, separated 

by only 150 mV at a composition Li0.5Mn2O4. The two-step process represented as voltage 

plateaus with a small voltage step is due to ordering of the lithium ions on one-half of the 

tetrahedral 8a sites. Voltage plateaus indicate two phases co-existent at certain Li concentration 

ranges. For any lithiation system, the total Gibbs free energy can be written as: 

!" = !−!!!" + !!!" + !!!!
!

 

where S is entropy, T is temperature, V is volume, P is pressure, !! is chemical potential of 

element i and  !! is amount of element i. The chemical potential of the host elements (M) of the 

lithiation electrode materials do not change during the charge/discharge process. Thus the Gibbs 

free energy can be rewritten as: 

!" = !−!!!" + !!!" + !!" !!!!" + !!! !!!! 

If the system is isothermal and isobaric, the equation can be simplified to !" = !!!" !!!!". 

Thus the chemical potential of Li ions can be calculated as !!" = !"/!!!" . From Nernst 

equation, the voltage of the cell can be expressed as  

Voltage = !− !!"!"#!!"#!!!"!"#$%
!  

where !!"!"#!!"# is the chemical potential per atom of Li in the cathode, !!"!"#$% is the chemical 

potential per atom of Li in anode, and e is the absolute value of the electron charge, which is 

1.602×10-19 C. 

Because only one stable intermediate phase is found at x=0.5, indicating phase 

separations occur in two stages, 0≤x≤0.5 and 0.5≤x≤1. The chemical potentials of Li ions in both 

phase are equal in each stage, thus they can be approximated by: 

!!"!"!!"2!4 =
!!"0.5!"2!4 − !!"2!4

4  
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and 

!!"!"!!"2!4 =
!!"#$2!4 − !!"0.5!"2!4

4  

Li metal is used as the reference anode materials and the chemical potential in Li metal 

calculated at same conditions is !!"!"#$%= -1.9 eV. The voltage profiles is plotted in figure 6, 

compare with the results from Meng et al.. Two voltage plateaus were shown at 3.56 V and 3.95 

V, which have 11% difference from the experimental value, 4.0 V and 4.15 V. The average 

voltage over all Li concentrations is 3.76 V. The absolute value of the voltage step is 390 mV, 

which is much larger than the 150 mV observed value.  

 
 
 

 
 
Figure 6 Voltage calculated by GGA+U method gain from my calculation and Meng et al. 
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3.2.3 Density of State (DOS) 

Density of state (DOS) is used to analyze the electronic structure. Figure 7 shows the 

DOS of LiMn2O4, Li ions, Mn ions and O ions. The electronic states with energies no higher 

than Fermi energy are occupied, and the states higher than Fermi energy are empty. Since there 

are states with energies just little higher than Fermi energy, it exhibits as a conductor. However, 

it is actually a kind of semiconductor, the reason of this result needs further discussion. Mn and 

O ions contribute to the states less than Fermi energy, and it is indicated the bonds between Mn-

O. Li ions contribute much in the empty states with much higher energies. In LiMn2O4, the 

average valence of Mn ions is +3.5. According to crystal field theory, Mn ions in the O 

octahedral leads to d orbitals splitting into two !!  orbitals with higher energy and three 

!!!orbitals with lower energy. For Mn4+, three valence electrons fill three !!!orbitals, leaving !! 

orbital empty, and there is a band gap between !!! and !!, thus Mn4+ ions operate as insulator or 

semiconductor. On the other hand, Mn3+ ion has four valence electrons occupy three !!!orbitals 

and one !! orbital. The band gap disappears, and it exhibits conductor properties. Thus in this 

material, only Mn3+ ions contribute to conduction, even though Mn3+ ions and Mn4+ ions coexist. 

The small peak near Fermi energy in Mn DOS is the !! orbitals, and combined with the small 

peak near Fermi energy in O DOS makes the peak appear near Fermi energy in total DOS. 

Therefore, the Mn-O network makes a significant contribution to conductivity. Recalling the 

bulk charge density difference figure, in Li0.5Mn2O4 lattice, there are four Mn ions different from 

the others. These four Mn ions are Mn3+ ions, and sequential extraction of Li ions would 

decrease the conductivity. In Mn2O4 lattice, there are only Mn4+ ions, thus Mn element cannot 

contribute to conductivity. 
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Figure 7 Density of state (DOS) of LMO and partial DOS of Li, Mn and O ions, with Fermi energy 

marked by a solid black line. 
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Furthermore, the charge density difference figure, Figure 4, shows no electrons gain or 

loss in Li atoms, which is total consistent with the result shown in DOS, Figure 7. From Figure 7, 

it is obvious that electrons in lithium make hardly contribution to the total valence band, and 

there are no bonds created between Li and O or between Li and Mn. There are two evidence 

demonstrate that lithium is reserved in Mn-O frame and has no chemical reactions with Mn and 

O. 

3.3 CONCLUSION 

During charge/discharge process, the extraction/insertion of the Li ions leads to volume 

changes of the LMO. The calculated voltages are little underestimated. Electrons distribution 

affected by Li vacancies could be illustrated by the charge density difference figure. Though, 

lithium is just stored in Mn-O frame, extraction of Li leads change in electrons distributions 

around the Li vacancies. DOS indicates the conductivity of LMO owing to the Mn-O octahedral 

network.  When x<0.5, the conductivity of LixMn2O4 will reduce. 
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4.0  SURFACE PROPERTIES 

4.1 COMPUTATIONAL METHODS 

In this work, the same cubic spinel structure cell of LiMn2O4 was used. All calculations 

were performed using the spin polarized generalized gradient approximations (GGA+U) to the 

density functional theory (DFT). The projected augmented wave (PAW) method, as 

implemented in the Vienna ab initio simulation package (VASP), represented core electron 

states. A cutoff energy of 550 eV, and an effective U value of 4.84 were applied in rotationally 

invariant GGA+U approach. The lattice constant and the optimized structure obtained from the 

previous work were used to calculate the surface energies for the different surface facets of the 

LiMn2O4 spinel. The unrelaxed structures of (100) and (111) surfaces were extracted from the 

optimized bulk spinel structure. The surface energies of unrelaxed surface, γ, is computed as  

! = !!"#$ − !!!"#$
2!  

where !!"#$ is the energy of the surface slab, !!"#$ is the bulk energy per atom, N is the number 

of atoms in the surface slab, and A is the base area of the slab. 

According to the Tasker criterion, both (100) and (111) surfaces have a net polar charge. 

Therefore, these surfaces require a redistribution or compensation of charges, such as additional 

Li ions, on r ever se surfaces of the slab, which can be accompanied by a significant 

reconstruction of the surface atoms. When constructing the slab, a vacuum layers with a 
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thickness about 8 Å was used along the surface normal, which sufficed to remove interaction 

between the slabs with 6 to 8 atomic layers. A calculation convergence criterion of 10-6 and the 

atomic force convergence criterion of 0.05 eV/Å were applied for the surface relaxations.  

Because of the complicated structure, several possible atomic terminations are possible, since the 

surface index does not specify where to cleave the surface. Thus this study investigated Li 

terminated (100), Mn/O terminated (100), Li/Mn/O terminated (111) and Li terminated (111) 

surfaces. Since (110) surface is well recognized as non-most-stable surface, and some calculation 

showed (100) surface to be the most stable facet, while some demonstrated (111) surface is the 

one. Therefore, I just discuss (100) and (111) surface, to study the reason for making such 

different results. For (100) surfaces studies, I used a slab of 8 atomic layers including 56 atoms, 

and the Brillouin zone was sampled by an 8×8×1 Monkhorst-Pack scheme. For (111) surfaces 

calculations, a slab of 6 atomic layers including 56 atoms was utilized, and an 8×4×1 Monkhorst-

Pack scheme was applied in k-point sampling. 

4.2 RESULTS AND DISCUSSION 

4.2.1 Surface Configuration and Surface energy 

Due to asymmetry charge on the two surface of a slab, for Li-terminated (100) surface, it 

needs to move one of the two surface Li ions from the top layer to the bottom one. Final structure 

is shown in Figure 8. From the top view, including two layers of Li atoms, it illustrates a very 

beautiful pattern. And it is obvious that it is the face-centered Li atom moved to the bottom.  
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            Figure 8 Li terminated (100) surface structure from some aspect (left), and the top layer of the surface 

(right) with directions and a unit cell framed in black line. 

 
 
 

 

 
 

             Figure 9 Mn/O terminated (100) surface from some aspect (left), and the top layer of the surface 

(right) with directions and a unit cell framed in black line. 

 
 
 
For Mn/O terminated (100) surface, it need to move four O and two Mn from the top 

layers to the bottom, to eliminate the net charge. This configuration creates islands on the surface 
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as shown in Figure 9. From the topside, only the atoms on the island are presented, and 

compared the unit cell with that in Figure 8, it is easily discovered which Mn and O atoms are 

moved.  Another possible construction of the surface was calculated but has a higher energy than 

the one explained first. The calculated surface energies were found to be 0.40 J/m2 and 0.90 J/m2 

for the Li and Mn/O terminations, respectively. Benedek et al. found that Li termination was the 

most stable surface, which suggesting it exhibits less broken bonds/area unit compared to the 

Mn/O termination [40].  

 
 
 

 

 
 
Figure 10 Li/Mn/O terminated (111) surface from some aspect (left), and the top layer of the surface 

(right) with directions and a unit cell framed in black line. 

 
 
 
Li/Mn/O terminated (111) surface remains the original unreconstructed structure 

extracted from bulk relaxation, shown in Figure 10. It is apparently that (111) surfaces are much 

more density than (100) surfaces. The surface energy of Li/Mn/O terminated (111) surface is 

found to be 0.62 J/m2, which is larger than Li terminated (100) surface. However, experimental 

work found the (111) facet is the predominant one in LiMn2O4 cubo-octahedral particles. Thus, it 
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is believed that there should have a low-energy surface structure, which is reconstructed from the 

original one. According to Karim et al. [27], they exchange the undercoodinated surface Mn ions 

with Li from the next available layer, where Li occupy the octahedral site and Mn locates the 

tetrahedral sites. Figure 11 shows the reconstruction (111) surface and compared the view of the 

top layer with Figure 10 will find the exchanged Li atoms and Mn atoms. This reconstruction 

r esul t s  i n a local inverse spinel distribution at the surface. This kind of (111) surface 

reconstruction has been found to be stable for other spinel system like MgAl2O4 [41]. As a result, 

the surface energy of this reconstructed Li-terminated (111) surface is 0.33 J/m2, which is the 

lowest surface energy. Thus it meets the agreement to the experiments, that (111) surface is the 

most stable facets in LiMn2O4. 

 
 
 

 

 
 
Figure 11 Li terminated (111) surface from some aspect (left), and the top layer of the surface (right) 

with directions and a unit cell framed in black line. 
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Surface energies of all the surfaces studied in this paper are list in Table 1, comparison 

with calculated values form other two papers. The surface energies vary obviously between 

studies (Benedek et al., and Karim et al.), may due to different structures and 

electronic/magnetic parameters like ferromagnetic or antiferromagnetic arrangement for Mn. 

However, the qualitative results that Li-terminated (100) surface is more stable than Mn/O 

terminated (100) surface, and that the reconstructed (111) surface is more stable than Li/Mn/O 

terminated (111) surface, are agree with all the studies. 

 
 
 

Table 1 Calculated surface energies of (100) and (111) surface of LMO, with unit of (J/m2). 

 
 

 
 
 
 

4.2.2 Surface Charge Density 

Study the charge density on the surface helps to understand the surface reaction. Figure 

12 shows the Li terminated and Mn/O terminated (100) surfaces charge density difference, where 

 Surface energy Karim et al. Benedek et al. 

Li terminated (100) 0.40 0.96 0.58 

Mn/O terminated (100) 0.90 1.3 0.98 

Li/Mn/O terminated (111) 0.62 1.23 1.29 

Li terminated reconstructed 

(111) 

0.33 0.67 0.85(Li/Mn terminated 

reconstructed) 
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blue orbitals express who lose electrons and yellow orbitals indicate who gain electrons. The 

shapes of orbitals, which lose or receive electrons, distinguish surface atoms and bulk atoms. 

Electrons only loss from !!!!!! orbitals of Mn, which is parallel to the surface, on both Li 

terminated and Mn/O terminated (100) surface, while electrons loss from !!!!!! and !!! orbitals 

of Mn atoms inside the bulk. As electrons move from Mn to O ions, the shape of O orbitals also 

changes a little bit. It seems that on the surface, O atoms obtain more electrons on the surface 

than inside the bulk, suggesting that Mn ions are willing to be higher valence on the surface. 

 
 

 

 

 

 
 
Figure 12 Charge density difference of (i) Li terminated and (ii) Mn/O terminated (100) surface, 

where blue represent lose electrons and yellow indicate gain electrons. Isosurface is set to be 0.03. 
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For (111) surface as shown in Figure 13, orbitals of two Mn ions near the surface layer 

are different from other Mn ions on the same layer. The two specific Mn ions locate at disparate 

positions in two kinds of (111) surface structures. 

 
 
 

 

 
 
Figure 13 Charge density difference of (i) Li/Mn/O terminated and (ii) Li terminated reconstructed  

(111) surface, where blue represent lose electrons and yellow indicate gain electrons. Isosurface is set to be 

0.03. 

 
 
 

4.3 CONCLUSION 

The significantly difference of the absolute energies from my calculation to Karim et al. 

and Benedek et al., due to the difference in structure and the electronic/magnetic parameters. In 
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my work I used the structure Karim et al. suggested, but employed a ferromagnetic arrangement 

for Mn ions like Benedek et al. did, while Katim et al. applied an antiferromagnetic arrangement. 

Though the quantities do not agree to each other, the qualitative analysis is reliable. In DFT 

study, a precise structure is the most significant element to achieve credible results.  
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5.0  CHARGED VACANCY 

5.1 COMPUTATIONAL METHODS 

Charged vacancy can be easily achieve by added an electron to the total net electrons in a 

bulk with a vacancy.  Then run a calculation using the same method as previous bulk LMO with 

a Li vacancy calculation. To obtain the charge density, self-consistent calculation is operated 

following by a non-self-consistent calculation with and without keeping the charge density 

constant during minimization. 

5.2 RESULTS AND DISCUSSION 

All of my LMO bulk calculations are assumed that extraction of Li ions leaves neutral 

vacancy. However, charged vacancy commonly exist in compound, and vacancy with or without 

charged is determined by the form of the leaving atom. In fact, vacancy with a negative charge is 

created by Li+ leave, and vacancy with no charge is made by Li atom extract. To investigate the 

influence of addition charge in vacancy, vacancy formation energy is introduced. 

Vacancy formation energy: 

∆!! = !! − !!"#$ + !!" + !!! 
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where !! and !!"#$ are the energy of the simulation cell with and without vacancy with charge 

state q; !!" is the chemical potential of Li; !! is the chemical potential of electron. In this study, 

q=-1 for charge vacancy and q=0 for neutral vacancy; !!" is approximated to the cohesive energy 

of metal Li, and since LMO is a kind of conductor, !! can be defined as Fermi energy. 

As a result, the neutral vacancy formation energy is 2.891 eV, while the charged vacancy 

formation energy is 2.874 eV, which is smaller than the neutral one. Charged vacancy formation 

energy smaller than neutral vacancy formation energy indicated that charged vacancy is formed 

easier than neutral vacancy, thus lithium is more willing to be extracted as a Li+ ions, rather than 

Li atom. But my result gives a very little difference in these two formation energies, which is not 

so convincible. Charge density difference of Li0.875Mn2O4 with charged vacancy is also taken 

into account; nevertheless, the figure looks like the same as the one with neutral vacancy. 

5.3 CONCLUSION 

It is suggested that lithium is extracted as Li+ ions, and the electrons left form free 

electrons going through the external circuit. Provided that electrons are added in bulk 

calculation, the results especially the voltage would more close to the experimental values. 

Although addition charge seems to be a good correction in calculation, no evident shows where 

and how the charge distributes. Whereas, calculations of Li atom and Li ion diffusion, are needed 

to improve reliability of my prediction. 
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