Dgien, David
(2014)
Compression architecture for bit-write reduction in non-volatile memory technologies.
Master's Thesis, University of Pittsburgh.
(Unpublished)
Abstract
In this thesis we explore a novel method for improving the performance and lifetime of non-volatile memory technologies. As the development of new DRAM technology reaches physical scaling limits, research into new non-volatile memory technologies has advanced in search of a possible replacement. However, many of these new technologies have inherent problems such as low endurance, long latency, or high dynamic energy. This thesis proposes a simple compression-based technique to improve the performance of write operations in non-volatile memories by reducing the number of bit-writes performed during write accesses. The proposed architecture, which is integrated into the memory controller, relies on a compression engine to reduce the size of each word before it is written to the memory array. It then employs a comparator to determine which bits require write operations. By reducing the number of bit-writes, these elements are capable of reducing the energy consumed, improving throughput, and increasing endurance of non-volatile memories. We examine two different compression methods for compressing each word in our architecture. First, we explore Frequent Value Compression (FVC), which maintains a dictionary of the words used most frequently by the application. We also use a Huffman Coding scheme to perform the compression of these most frequent values. Second, we explore Frequent Pattern Compression (FPC), which compresses each word based on a set of patterns. While this method is not capable of reducing the size of each word as well as FVC, it is capable of compressing a greater number of values. Finally, we implement an intra-word wear leveling method that is able to enhance memory endurance by reducing the peak bit-writes per cell. This method conditionally writes compressed words to separate portions of the non-volatile memory word in order to spread writes throughout each word. Trace-based simulations of the SPEC CPU2006 benchmarks show a 20x reduction in raw bit-writes, which corresponds to a 2-3x improvement over the state-of-the-art methods and a 27% reduction in peak cell bit-writes, improving NVM lifetime.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
University of Pittsburgh ETD
|
Status: |
Unpublished |
Creators/Authors: |
|
ETD Committee: |
|
Date: |
16 June 2014 |
Date Type: |
Publication |
Defense Date: |
28 March 2014 |
Approval Date: |
16 June 2014 |
Submission Date: |
3 April 2014 |
Access Restriction: |
No restriction; Release the ETD for access worldwide immediately. |
Number of Pages: |
61 |
Institution: |
University of Pittsburgh |
Schools and Programs: |
Swanson School of Engineering > Electrical Engineering |
Degree: |
MS - Master of Science |
Thesis Type: |
Master's Thesis |
Refereed: |
Yes |
Uncontrolled Keywords: |
Nonvolatile memory, Compression, Phase Change Memory, Spin-Transfer Torque RAM, Resistive RAM, Main Memory |
Date Deposited: |
16 Jun 2014 17:53 |
Last Modified: |
15 Nov 2016 14:18 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/20975 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |