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COMPRESSION ARCHITECTURE FOR BIT-WRITE REDUCTION IN

NON-VOLATILE MEMORY TECHNOLOGIES

David Dgien, M.S.

University of Pittsburgh, 2014

In this thesis we explore a novel method for improving the performance and lifetime of

non-volatile memory technologies. As the development of new DRAM technology reaches

physical scaling limits, research into new non-volatile memory technologies has advanced in

search of a possible replacement. However, many of these new technologies have inherent

problems such as low endurance, long latency, or high dynamic energy. This thesis pro-

poses a simple compression-based technique to improve the performance of write operations

in non-volatile memories by reducing the number of bit-writes performed during write ac-

cesses. The proposed architecture, which is integrated into the memory controller, relies

on a compression engine to reduce the size of each word before it is written to the mem-

ory array. It then employs a comparator to determine which bits require write operations.

By reducing the number of bit-writes, these elements are capable of reducing the energy

consumed, improving throughput, and increasing endurance of non-volatile memories. We

examine two different compression methods for compressing each word in our architecture.

First, we explore Frequent Value Compression (FVC), which maintains a dictionary of the

words used most frequently by the application. We also use a Huffman Coding scheme to

perform the compression of these most frequent values. Second, we explore Frequent Pat-
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tern Compression (FPC), which compresses each word based on a set of patterns. While

this method is not capable of reducing the size of each word as well as FVC, it is capable of

compressing a greater number of values. Finally, we implement an intra-word wear leveling

method that is able to enhance memory endurance by reducing the peak bit-writes per cell.

This method conditionally writes compressed words to separate portions of the non-volatile

memory word in order to spread writes throughout each word. Trace-based simulations of

the SPEC CPU2006 benchmarks show a 20× reduction in raw bit-writes, which corresponds

to a 2-3× improvement over the state-of-the-art methods and a 27% reduction in peak cell

bit-writes, improving NVM lifetime.
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1.0 INTRODUCTION

The goal of this thesis is to explore the performance of new non-volatile memory technolo-

gies and to develop new methods for improving their performance. These new non-volatile

technologies, such as phase change memory, resistive RAM, and spin-transfer torque RAM,

have been the focus of recent research efforts towards their adoption as a replacement for

DRAM in main memory. However, despite their non-volatility and improved density these

new technologies are still relatively new in their development and suffer from a number of

problems in performance compared to DRAM. Unless these problems are mitigated, as de-

velopment of DRAM slows main memory will become an increasingly larger bottleneck in

the advancement of high performance computing systems. This thesis presents a new write

method and memory controller architecture using data compression to reduce bit-writes and

improve performance in non-volatile memory technologies.
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1.1 MOTIVATION

Over the last few years, computing power has increased substantially, placing greater de-

mands on the technologies that drive these systems. One area with critical issues is main

memory, especially in embedded systems where memory performance is critical. DRAM has

played a major role in supporting the demands on memory capacity and performance for

decades. However, scaling DRAM below 22nm is currently unknown [2], placing limits on its

maximum capacity and making it less suitable for next generation main memory. Several new

non-volatile memory (NVM) technologies have been considered to address these problems,

such as phase change memory (PCM) [16], resistive RAM (ReRAM) [5], and spin-transfer

torque RAM (STT-RAM) [15].

However, the performance of these new technologies are affected by a number of problems.

Some, such as PCM or ReRAM, suffer from poor cell endurance. In PCM, this is a result

of the physical stresses on the phase change material during write operations. The repeated

heating and cooling of each cell causes the phase change material to slightly expand and

contract. Under enough cycles, these stresses can create gaps in the material or cause

the material to break away from the heating element entirely. This ruins the electrical

conductivity of the cell, causing it to be “stuck” in one state. PCM and ReRAM cells are

only able to sustain on the order of 108 writes before failure, compared to the ability of DRAM

cells to sustain on the order of 1015 writes [33]. Other technologies, such as STT-RAM, suffer

from long write latency and high write energy. During write operations, STT-RAM requires

a polarized current pulse to switch the spin direction of the free ferromagnetic layer in the

magnetic tunneling junction. The length and magnitude of this pulse varies, with faster

switching times requiring higher currents, resulting in write latencies 1.25–2× worse and

write energies 5–10× worse than DRAM [15]. In all of these technologies, limits on the

2



maximum amount of energy that the device can consume requires the memory to only write

a limited amount of data at a time, further impacting the overall write latency of the device.

Solutions to these problems must be designed before we can realize widescale adoption of

any of these technologies in main memory systems.

1.2 WORK OVERVIEW

In this work, we propose a compression-based architecture to reduce bit-writes and improve

write energy, write latency, and write endurance in non-volatile memories (NVM). The pro-

posed architecture, which is integrated into the memory controller, relies on a compression

engine and a data comparator which work together to reduce the number of bit-writes that oc-

cur during each write access to memory. We discuss two different compression methods to be

implemented in the compression engine integrated directly into the memory controller. The

first, Frequent Value Compression, relies on a dictionary of the most frequently used values

in each application, then compresses these values using a Huffman Coding algorithm [11].

The second method implements the frequent pattern compression (FPC) algorithm [3] to

compress the incoming data. The FPC algorithm uses a static pattern table capable of

matching a wide range of values and does not require additional memory or application

profiling to track frequent values.

When a write access is received by the memory controller, each word is passed through

the compression engine to attempt compression of the data. If the word is unable to be

compressed, the memory controller writes it “as is” to the memory cells. During the write

operation to the NVM cells, the memory controller uses a read-modify-write operation.

This operation compares the new (possibly compressed) word against the existing word

in memory and updates only the changed bits. Through compression of each word, the
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maximum number of bit-writes that are potentially necessary during each write access is

reduced significantly. During read accesses, the memory controller checks the status of a tag

bit set during write to determine if it has been stored in a compressed format. If it has, the

controller again uses the compression engine to decompress the word before forwarding it on

the memory bus to the processor. Finally, the proposed architecture utilizes the additional

space available through compression to implement an opportunistic wear leveling scheme that

conditionally writes the compressed data to the opposite sides of the NVM array. Besides

the 10% area increase in the memory controller, the architecture also requires 2 tag bits for

every 32-bit word, corresponding to a 6.25% memory overhead.

1.3 PROBLEM STATEMENT

The main problem this thesis addresses, is to design a write method for reducing bit-writes

in non-volatile memory technologies. The detailed questions we address are the following.

• How can we use data compression to improve non-volatile memory performance? While

compression is frequently used to reduce data size in order to improve storage capacity,

the improved density of non-volatile memories compared to DRAM means that this is

not a concern. We ask if reducing data size on a smaller granularity can instead reduce

bit-writes to improve performance.

• What method of compression is best for this application? While there are many different

compression methods and algorithms, we focus on compressing relatively small amounts

of data, namely 32 bit words. Because of this not all compression methods are appropriate

we need to look at those that are and determine which compression method is ideal for

this application.
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• Our compression method may have some unintended negative impacts on the perfor-

mance of the non-volatile memory as a result of concentrating the data within the mem-

ory. We need to examine any of the potential problems and develop ways to mitigate

them.

1.4 WORK PLAN

To address the problems above, in this thesis we perform the following work:

• We propose a write method for non-volatile memory that reduces bit-flips by attempting

to compress each word before we write it to the non-volatile memory array. By com-

pressing the data in the memory on a word by word basis, we can immediately reduce

the number of potential bit-writes that may need to be performed during a write access

before we even look to see which bits are different and need to be changed.

• We design a modified memory controller architecture to implement our compression based

write method. This architecture integrates the necessary compression and decompression

engines directly into the memory controller datapath to allow it to seamlessly modify the

data as needed. Additional circuitry is added to move the data through the compression

and decompression engine, as well as a multiplexer to allow uncompressed read data to

bypass the decompression engine entirely.

• We analyze two possible compression methods, Frequent Value Compression (FVC) using

Huffman coding and Frequent Pattern Compression (FPC). Frequent Value Compression

maintains a dictionary of the most frequently occurring words in the application, which

we then encode using Huffman coding to significantly reduce the size of each word.

Frequent Pattern Compresson, on the other hand, compresses words based on a set of
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patterns. Any data word that matches a pattern is able to be compressed, which allows

FPC to compress many more words, albeit not as densely.

• We propose a modification to the write method and architecture to perform intra-word

wear leveling. Without this method, compressed words are consistently written to the

same portion of the non-volatile memory array, which results in higher write activity to

those cells. Our wear leveling method spreads the write activity throughout the word

by writing to alternating sides of the memory array. We also compare two different

possibilities for deciding when to switch write direction, one based on an internal write

access counter, and one based on the number of potential bit-writes performed by each

orientation.

• We simulate our methods across a number of benchmarks from the SPEC CPU2006

suite using an in-house simulator. This simulator evaluates the performance of each

method by processing memory traces generated from the benchmarks using the Intel

Pin instrumentation toolset [18] and counting the number of bit-writes performed during

each trace.

1.5 THESIS ORGANIZATION

In Chapter 2, we explore a variety of non-volatile memory technologies that are currently

being researched as possible replacements for DRAM as main memory. We then look at many

of the problems that are preventing wide-scale adoption of these new technologies. Last we

look at the previous work with compression in main memory and non-volatile technologies.

In Chapter 3, we propose our compression based architecture. We describe the write and

read methods that allow our method to perform compression and reduce-bit writes. We also

describe the modifications made to the memory controller and non-volatile memory array.
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In Chapter 4, we introduce the two different compression methods, Frequent Value Com-

pression using Huffman Coding and Frequent Pattern Compression. We describe the back-

grounds of each method and describe how each compresses the data words, as well as the

differences between the two of them.

In Chapter 5, we describe the reasons for implementing our intra-word wear leveling

method, and describe how our method works to spread writes out within each word. We

also describe the two options for choosing when to perform wear leveling, the write access

counter based method and the potential bit-write based method.

In Chapter 6, we explain our simulation methods and discuss results of our methods.

We examine the number of bit-writes performed under Frequent Value Compression with a

number of different Huffman coding parameters, and compare this to the performance of the

Frequent Pattern Compression method. Additionally we compare the number of peak cell

bit-writes performed without our wear leveling method versus the two different wear leveling

methods we implement.

Chapter 7 summarizes our work and the contributions of this thesis, draws conclusions,

and discusses future work.
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2.0 BACKGROUND

In this chapter we discuss the operation of new non-volatile memory (NVM) technologies.

Since our method focuses on reducing the number of bit flips, it can potentially be applied

to any byte-addressable NVM technology to improve performance. We also provide a brief

background on previous efforts to improve the performance of these new NFVM technologies

and on the use of compression in SRAM, DRAM and NVM technologies.

2.1 NON-VOLATILE MEMORY

NVMs use a variety of new technologies to store information. Unlike DRAM, which retains

information as charge stored in a capacitor, NVM technologies typically store information

using different states of a physical system. As a result, the information in these NVMs will

remain intact for a far longer time than in DRAM, whereas the capacitors lose informa-

tion (i.e., charge) in a matter of milliseconds. We discuss the usage and drawbacks of 3

different NVM technologies: phase change memory (PCM), resistive RAM (ReRAM), and

spin-transfer torque RAM (STT-RAM),.
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2.1.1 Phase Change Memory

PCM technology uses unique properties of chalcogenide glass to store information [16].

This material typically consists of an alloy of germanium, antimony, and tellurium, such

as Gb2Sb2Te5, called GST. When the material is in a crystalline (SET) state it exhibits low

resistance when subjected to an electric current, and when it is in an amorphous (RESET)

state it exhibits high resistance. These resistance levels are drastically different, with the

resistance in the amorphous state being as much 5 times that of the crystalline state.

To write information to the PCM cell, current is passed through a heating element

to melt the chalcogenide material. When performing a RESET operation a short pulse

of high current is passed through the heater, raising the temperature of the chalcogenide

material above the melting point. This pulse is then quickly terminated to allow the melted

material to rapidly cool, resulting in the chalcogenide material being programmed into the

amorphous state. In contrast, when performing a SET operation a longer but weaker current

pulse is applied to the heating element. This raises the temperature of the chalcogenide

material above its crystallization temperature but below its melting point. This allows the

chalcogenide material to slowly cool into the crystalline state.

2.1.2 Resistive RAM

ReRAM technology operates on similar principles as PCM, but instead uses the electrical

switching properties of metal oxides to store information [5]. ReRAM can be constructed

using a variety of metal oxides, such as ZnO or TiO2. Like PCM, the metal oxide material

can be in two different states: a high resistance (RESET) state with the metal oxide material

in its regular uniform structure, and a low resistance (SET) state caused by forming oxygen

depleted conductive paths through the material.
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To perform write operations in ReRAM cells, a voltage difference is applied across the

cell to move oxygen ions in the metal oxide into or out of the cell. When performing a

SET operation, a positive voltage difference is applied, forcing oxygen ions out of the metal

oxide and into the electrode material. These oxygen depleted zones in the metal oxide form

conductive metal-only filaments through the material, creating a low resistance state similar

to the crystalline state in PCM. During RESET operations, a negative voltage difference

is applied, forcing the oxygen ions out of the electrode material and back into the oxygen

holes, placing the metal oxide material back into the high resistance state.

2.1.3 Spin-Transfer Torque RAM

STT-RAM technology uses the physical phenomenon of electron spin polarization to store

information in a magnetic tunnel junction (MTJ) [15]. An MTJ is created by placing a

thin layer of insulating material between two layers of ferromagnetic material. One of these

magnetic layers has a fixed magnetic polarization, while the other has a polarization that is

free to switch when subjected to a spin-polarized current. The insulating layer prevents the

two layers from interfering with each other, but is thin enough to allow electrons to tunnel

through so current can flow. In an MTJ, the polarization of the free layer relative to the

fixed layer affects the resistance of the cell. When the free layer is polarized parallel to the

fixed layer, the cell is in a low resistance (RESET) state, and when the free layer is polarized

anti-parallel to the fixed layer, the cell is in a high resistance (SET) state. Note that the

resistance states are flipped with their respective write operations compared to PCM and

ReRAM.

To perform write operations in STT RAM, a spin polarized current is injected across

the MTJ device. By injecting this current from the free layer to the fixed layer, the spin

polarization of the current forces the polarization of the free layer to the anti-parallel, or
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high resistance, state. Conversely, if this current is injected from the fixed layer to the free

later, it forces the polarization of the free layer to the parallel, or low resistance, state.

2.1.4 Energy, Endurance, and Latency

. Read operations in all of these new technologies are comparable to DRAM, consisting of

simply placing a small voltage across the device and sensing the current produce to measure

the resistance level. However, write operations are the cause of many of their problems and

drawbacks.

First, both SET and RESET operations in all of these NVM technologies require a

much higher current than DRAM to change the states of the device. Modern memory

modules usually include energy consumption limits on their operation to prevent the modules

from drawing too much power from the power supply, and to prevent overheating. As a

result, devices are restricted to writing a limited amount of data at once, iterating over the

memory array to complete writes. This restriction increases the write latency, impacting

performance [32]. Second, SET and RESET operations in PCM require long pulses to

ensure that the material cools properly, up to hundreds of nanoseconds. As both SET and

RESET operations occur simultaneously during a single write, the next write cannot start

until all of the longer SET operations are complete, creating a bottleneck in individual

write operations [33]. Finally, during the operation of both PCM and ReRAM, frequently

changed cells are subject to physical stresses. In PCM, repeated heating and cooling puts

thermal stress on the chalcogenide material, while in ReRAM, repeated programming can

cause undesirable expansion in the conductive filaments. These stresses can result in poor

data retention or can eventually lead to cell failure. This limits the lifetime of these memory

cells to around 108 write cycles before cell failure [16].
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2.2 IMPROVING NVM PERFORMANCE

Across all new NVM technologies, existing solutions use various methods to improve the

endurance, latency, and energy problems.

In PCM, for example, one set of solutions tackle the endurance problem through complex

data migration or address translation techniques. Start-gap [20] proposes a system for per-

forming wear leveling by moving words within a PCM block. Within each block an additional

PCM word is allocated as the ”gap” word. After a certain number of write accesses, the gap

register is shifted to the next address in the array, by writing the word in that address to the

gap address. By combining this moving technique with an address randomization layer, wear

to the PCM array can be evened out across the whole array. Security refresh [21] uses address

translation techniques to obfuscate the locations of data from potential attackers. A random

key is used to swap pairs of addresses across the address space of each PCM block through

and xor process. By implementing a two level security refresh system, both within a PCM

block and between PCM blocks, the authors are able to both improve memory security as

well as perform wear leveling simultaneously. Finally, cache address remapping [25] proposes

a hybrid memory system using PCM and a DRAM cache to shield PCM cells from malicious

wear-out attacks. CAR exchanges a random set of address bits in the DRAM cache tag with

a set of index bits to perform randomized address remapping. This bit exchange, along with

the DRAM cache, allows CAR to shield the PCM from malicious attack and reduce wear

without requiring remapping table lookups.

Other proposals reduce the write latency directly through architectural improvements.

Jiang et. al. propose a Write Truncation and Form Switch method to improve the write

performance of multi-level cell (MLC) PCM [13]. Write truncation determines which cells are

difficult to write and require many write-and-verify iterations, and which cells do not. This
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allows the easy-to-write cells to finish their write operations early. This process is managed

using additional ECC cells, which are incorporated into the array using the form switch

method to compress each line. Additionally, Yue and Zhu propose a method for preventing

write accesses from potentially blocking read accesses in PCM [32]. This method proposes

a reorganization of the PCM banks called Parallel Chip PCM (PC2M). This reorganization

allows the architecture parallelize each write accesses, as well as divide write acceses up into

micro-writes. These parallel micro-writes do not need to be performed contiguously, allowing

the much shorter read accesses to a write access by having the remaining micro-writes be

performed after the read request is fulfilled.

With STT-RAM, a candidate replacement for SRAM cache or embedded DRAM, archi-

tectural improvements similar to those applied to PCM have been considered. Kultursay

et al. propose an STT-RAM architecture for main memory that reduces the high energy

consumed by write operations [15]. This architecture uses row buffer arrays, similar to [16],

to cache data being read from or written to the STT-RAM array. By performing writes just

to this row buffer, and tracking whether data in the buffer is dirty or not when it needs to

be evicted, this architecture can reduce the number of writes that need to be performed,

reducing the overall energy consumed. Zhou et al. also propose an STT-RAM architecture

that attempts to reduce the write energy consumed during write operations by implementing

early write termination (EWT) [36]. EWT uses special write circuitry to read the value of

each cell as it is being written to. If the current value of the cell is the same as the new

value to be written, the circuitry cuts off the write current to that cell, preventing it from

consuming any more current or energy.
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2.2.1 Reducing Bit-writes

Although many of these proposals specifically address the endurance, latency, or energy

problems with success, they result in performance penalties in the other categories as a

trade-off. This limits the potential improvement these proposals can accomplish. In contrast,

there are two recent proposals that improve energy, endurance, and write latency of PCM

by simply reducing the maximum number of bits changed during a write access.

The first proposal, Data Comparison Write (DCW) [26] takes advantage of the non-

volatility of these new memory technologies by noting that, unlike DRAM, unmodified bits

do not require a refresh during write operations. As a result, only those bits that are changing

due to overwriting one word in memory with a new one require a bit-write operation and

any unchanging bits are simply left alone.

The second proposal, Flip-N-Write (FNW) [7], builds on the DCW method by reducing

the maximum number of bits changed during a write access through conditionally “flipping”

the data to be written, reducing the number of bit-writes between the old and new data by

at least half. However, the improvement in FNW is dependent on both the existing data

and the new data to reduce bit-writes. Because our method, like these, focuses mainly on

reducing the number of bit-write operations performed during write accesses, we consider

these methods to be state-of-the-art and look to further reduce bit-writes beyond FNW.

Simply reducing the number of bit-writes that need to occur per word is very beneficial

in that it can potentially improve energy consumption, cell endurance, and write latency,

depending on how the memory architecture is configured. Cell endurance improvements

from reducing bit-writes are fairly straightforward. By not performing a write operation on

cells that are not changing, the cell does not receive any wear and its lifetime is slightly

extended. Similarly, write energy consumption improvements are straightforward as well, as

only the cells that are undergoing write operations consume energy. How reducing bit writes
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improves latency is slightly more complicated. If the memory architecture performs writes

using an iterative process where a portion of each word is written at once, such as in [32], or

if the memory has a limited power budget such as the one described in [14], then we can see

how reducing the bit writes can increase the effective amount of data written at once. For

example, if a certain architecture can perform 8 bit-writes in one power cycle and we have

4 words that each only require 2 bit-write operations, then we could potentially write all 4

words in parallel, greatly decreasing the effective time required to write each word through

parallelization.

Furthermore, reducing bit-writes is flexible because it does not rely on any particular

characteristic of the memory technology other than the requirement that the memory be

”bit-addressable”. That is, individual bits can be selectively written to, unlike DRAM where

all bits in a row are written to in order to perform a refresh. As a result, techniques that just

rely on reducing bit-writes for performance gain can be applied to any of the non-volatile

memory technologies described in section 2.1.

2.3 MEMORY COMPRESSION

Compression techniques have been investigated widely for classical memory technologies,

largely to improve capacity of both main memory systems and last level caches. An anal-

ysis of the compressibility of all areas of main memory and caches was able to show that

the contents of main memory could be compressed to at least 39% of its original size [19].

IBM developed a commercial main memory compression architecture utilizing a compres-

sion method called MXT [24]. MXT utilizes the LZ77 compression algorithm to compress

cache lines and dynamically allocates variable size memory sectors to store the data without

fragmentation. In [10], the authors propose a block based compression technique for main
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memory. In this technique blocks are compressed using a frequent zero-value based compres-

sion algorithm, then relocated into a different section of memory. These sections are allocated

with different sizes to accommodate different size block, minimizing the amount of unused

space while still maintaining the location of each block. In a more recent paper, researchers

developed a compression scheme called MemZip [22]. This technique does not improve upon

capacity, but instead uses compression to reduce bandwidth to improve energy consumption

and latency of the memory. This method is based on the concept of rank subsetting. A

cache line is fetched from a single ranks subset and the burst length of the data transfer is

a function of the compression factor. A highly compressed cache line requires fewer bursts

and therefore saves transfer time and bus energy. However, the methods required to perform

the compression and decompression of data usually incur non-negligible latency overheads

during the process, and may require complex address translation or space reallocation pro-

cedures to account for the variable size of the compressed data within the storage space.

For example, an analysis of a number of compression techniques by Yim et. al. showed

that those techniques were not sufficient in both sufficiently expanding main memory capac-

ity while alleviating the processor-memory performance gap in traditional technologies [31].

These difficulties in the design of compression systems have impeded the widescale adoption

of these techniques in commercial products.

A common technique used for compression in cache and main memory is frequent value

compression [28]. Frequent value compression is based on the concept of frequent value

locality, examined in depth by Yang [27]. The concept of frequent value locality states that,

in memory and caches, a small set of common values occupy a majority of the addresses.

Frequent value locality was shown to have applications in a number of areas, including

improving capacity in caches [28], reducing the power consumed in buses [29], and improving

bandwidth in network-on-chips [37]. For many of these compression applications, such as in
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the frequent value cache architecture described in [30], the hardware maintains a dictionary

of the words most frequently used in memory, typically storing the results in a local content-

addressable memory (CAM). This CAM allows the hardware to quickly determine if a word

in a write access is within the set of frequently used words, so it can then replace it with the

CAM address of the matching value. This reduces the effective size of the data to log2(Num.

of Values), which can be a significant reduction. The major difficulty with implementing

frequent value compression is determining exactly what the frequent values for the given

application or working set are. Data profiling can be performed to get this information,

either before or during application execution. However, performing profiling before execution

only works with a static set of input, while performing profiling during application can incur

large overheads if a frequent value needs to be removed from the dictionary.

Another common technique for compression, called frequent pattern compression [3],

builds upon the concept of frequent value locality while trying to mitigate some of the

issues with it. Frequent pattern compression uses a static set of patterns to determine

which values are compressed. The authors of this method chose a set of 7 patterns to

compress, based on their analysis of benchmark applications. A more detailed description of

the patterns compressed can be found in section 4.2. The main benefit of frequent pattern

compression is that it can be implemented entirely using logic gates, without the need for

extra memory, CAMs, or application profiling. Additionally, the usage of patterns instead

of specific values means that frequent pattern compression can potentially compress many

more values compared to frequent value compression. However, for most patterns, frequent

pattern compression results in a lower amount of compression per word, and is unable to

guarantee compression if none of the values in an application fit one of the patterns. Like

frequent value compress, frequent pattern compression has been applied to a variety of areas,

including caches [4], main memory [10, 22], and network-on-chips [8].
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2.3.1 Non-volatile Memory Compression

Compression for NVMs is a relatively newer area of research. While compression as a mech-

anism for improving performance in STT-RAM or ReRAM has not been investigated much,

as their respective technologies are still under development, compression has been used with

limited success within the context of PCM. Because PCM’s performance is significantly worse

compared to DRAM, compression has a greater potential for closing the processor-memory

performance gap to bring PCM’s performance closer to DRAM’s. The reduced data size as

a result of compression can be used to improve performance, energy, and endurance simulta-

neously as a result of the system reading or writing less data. Additionally, if the remaining

free space is not used to store additional data, the overhead of realigning data words within

the compressed block can be eliminated. Compression based methods can afford to give up

this additional space because most NVMs have scaling comparable to or better than DRAM,

maintaining overall improvements in total capacity.

Notably, compression is used in [6] and [17] to create hybrid architecture based on PCM.

In [6], the authors design a hybrid architecture that combines DRAM and PCM. The DRAM

banks, with their lower latency and dynamic energy requirement, are used to store recently

used pages, as a sort of cache. The PCM banks, with their non-volatility and lower static

energy, are used to store unused pages, until their data is needed by the processor. A dual-

phase compression method is then layered on top, which enhances the DRAM banks by

increasing their capacity with the first phase, and enhances the PCM banks by reducing

bit-level accesses and performing wear leveling. In [17], the memory system is comprised

exclusively of Multi-level cell PCM, and each cache line sized block is compressed before

writing. Any lines that can be compressed beyond a 50% ratio are stored in SLC mode cells,

which have a lower latency and energy requirement than those cells in 2-bit MLC mode.

However, this method requires each entire line to be compressed, meaning each line must be
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read and decompressed before data can be extracted from it. Any lines that do not reach

the 50% ratio may be written into fewer PCM cells than if they were uncompressed, but

still only receive limited performance improvement from utilizing MLC mode cells. Both of

these applications implement frequent pattern compression as their compression algorithm.

However, they both utilize compression to create additional space then use that space for

benefits, rather than taking advantage of compression to directly improve other areas.

Alternatively, frequent value compression is utilized in [23] where the authors use this

compression algorithm to directly reduce the number of PCM bit-writes. However, their

architecture embeds the compression hardware and dictionary memory directly into the

memory chip. While the intent of this method is similar to our own in terms of reducing bit

writes, the use of a compression engine embedded in the PCM chip results in unnecessary

duplication of compression logic across all chips in the device, increasing overall energy

consumption. On the other hand, our proposed method integrates the compression engine

entirely in the memory controller and is capable of being applied to general NVM technologies

without depending on specific technology features. Furthermore, the FPC algorithm uses

a static pattern table capable of matching a wide range of values and does not require

application profiling or runtime modifications. Finally, the remaining free space available

within each word as a result of compression can be used to further improve endurance using

an opportunistic wear leveling scheme, described later in this thesis.

2.4 SUMMARY

In this chapter we introduce background on new non-volatile memory technologies. We de-

scribe their operation as well as their drawbacks preventing their commercial adoption as

main memory. We look at some of the previous work at mitigating these drawbacks, includ-
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ing two general solutions, data comparison write and Flip-n-Write. Both of these methods

improve performance by simply reducing the number of bit-writes. Then, we introduce pre-

vious work using compression to improve capacity and performance in cache, traditional

main memory, and NVM based main memory. We describe two common compression algo-

rithms used in these areas, frequent value compression and frequent pattern compression,

and discuss their advantages and disadvantages over each other.
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3.0 COMPRESSION BASED NON-VOLATILE MEMORY

In this chapter we introduce our compression based method for reducing bit-writes in non-

volatile memories. We describe the write and read methods performed by our method in

detail, and propose the modifications to the architecture and memory array necessary for

our method.

3.1 REDUCING BIT-WRITES

The main idea of this method is to take advantage of a simple compression scheme to reduce

the number of bit-writes that occur as each word in memory is overwritten by a new word.

State-of-the-art methods, data comparison write (DCW) [26] and Flip-N-Write (FNW) [7],

have been successful in reducing the number of bit-writes during memory operation to im-

prove performance. These methods show how the non-volatility of these new memory tech-

nologies can be leveraged by only performing write operations on the bits that need to be

changed, while leaving the other bits unmodified. Unlike DRAM, where the entire memory

line needs to be written back after each row activation during a read or write operation,

refreshing the unchanged bits in NVMs is not necessary, so extra energy or time need not be

expended on them. Our method improves upon the state-of-the-art methods by approaching

performance improvement from a different angle using data compression. While DCW and
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FNW reduce the number of bit-writes through comparison methods, the compression of data

words before write allows the proposed method to reduce the number of data bits within

each word before performing comparison, resulting in a further reduction in bit-writes.

3.1.1 Write Method

To achieve this reduction in bit-writes, our approach breaks the write access of each memory

word into a series of steps. First, an attempt is made to compress the new data to be

written using a compression engine integrated directly into the memory controller. This

compression engine implements a FPC-based compression method described in Section 4.2.

Second, as the compression engine attempts compression of the incoming data, the memory

controller reads the existing data currently at the target address within the memory array.

Once the compression attempt has completed, the old data and the new data are compared

bit by bit to determine the differing bits. If the compression was successful the compressed

data is compared against the old data, otherwise the uncompressed data is used. Using the

information from this bitwise comparison, only those bits that differ between the old data

and the new data are updated and programmed to the NVM cells. If the new data size

is smaller than the space it is being written to as a result of compression, the unused bits

in the array are ignored during the comparison and update process. Since the reason for

comparison is to determine which cells require write operations, the new data is compared

to the old data as it exists in memory regardless of its compression state. Finally, the system

records the status of the compression process in a compression tag bit in the memory array

used to indicate whether or not the data at that address is compressed.
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3.1.2 Read Method

During read accesses, these steps are performed in reverse to obtain the original data. First

the memory controller reads the word from the NVM cells, including the tag bits. The

compression tag bit is checked to determine if the word read is in compressed form or

uncompressed form. If the tag bit indicates compression, the word is passed through the

decompression engine, and the decompressed result is passed onto the memory bus on its way

to the processor. Otherwise, the data bypasses the decompression engine using a multiplexer

circuit and the read word is passed directly onto the memory bus, allowing the system to

save a few cycles.
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3.2 ARCHITECTURE

The proposed architecture is integrated into the memory controller as illustrated in Fig-

ure 1. In this architecture the compression engine is integrated directly into the memory

controller, allowing data to be seamlessly compressed and decompressed during read and

write operations. Extra circuitry is added to facilitate the new data path through the com-

pression/decompression engines, and to allow uncompressed data being read to bypass the

decompression engine during read operations.

L3 Cache

NVM Array

Write Buffer Read Buffer

Compression

Engine

Decompression

Engine

Write Controller Read Controller

To L2 Cache and Processor

Memory Controller

Compression Bit

Figure 1: NVM memory controller architecture

The memory array is also modified to provide the tag/status bits to support compression

and wear leveling. For each 32-bit word in the memory array, two additional tag bits are

added. An example of this, along with an example of a write operation, can be seen in
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Figure 2. The first tag bit is used to indicate to the memory controller whether the data

from the memory array is compressed or not. This bit is extracted from the word bus in

the memory controller and is used as the select signal for the multiplexer that passes the

data to the read buffer. The second tag bit is used to support an opportunistic wear leveling

technique. This bit is handled within the decompression engine as described in Chapter 5.

Without Wear Leveling With Wear Leveling

0 0 1 1 0 0 1 0

1 1 0 0 0 0 0 1

1 0 0 1 1 0 0 1

0b0111101011000010 0b0111101011000010

0b1111111111111001 0b1111111111111001

0b0011001xxxxxxxxx 0bxxxxxxxxx1001100

0b0011001011000100 0b0111101011001100

Old Data

In Memory

New Data

Compressed 

New Data

Write Result

Write Access

Position Bit Compression Bit : Valid Data : Unused Space

Memory Array

2 Bit-write Operations 3 Bit-write Operations

Figure 2: Example write operation

These tag bits together incur a 6.25% capacity overhead overall. This is the same amount

of overhead used in the Flip-N-Write method [7], where the authors require 1 tag bit for every

16 bit word. We believe that this is a reasonable amount of overhead for our method.
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4.0 COMPRESSION METHODS

The compression algorithm implemented within the memory controller plays an critical part

in the performance of the method. In this chapter we discuss two different compression

methods for compressing data in order to reduce the number of bit writes: Frequent Value

Compression using Huffman Coding, and Frequent Pattern Compression.

4.1 FREQUENT VALUE COMPRESSION

The first compression method that we investigate is Frequent Value Compression (FVC). The

main concept behind FVC, frequent-value locality, was first proposed by Zhang et al [34].

This work shows that often during program execution, a small set of distinct values occupy

the majority of locations in memory. The authors are able to use this knowledge to create

a ”Frequent Value Cache” that works along side the main data cache to reduce miss rate.

This work has been also been applied to a number of other areas, including a compression

based cache [28], low power buses [29], and Network-on-Chip architectures [37].

This concept is also used in the NVM domain by Sun et al [23]. The authors of this

paper use frequent-value locality to design a compression based main memory architecture

for PCM. This frequent value PRAM design uses application profiling, either before or

during execution, to determine the set of values that are used most frequently used by that
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application. The architecture then stores these frequent values using CAMs to facility easy

encoding and decoding during memory operation. As new write accesses are received by

the memory module, they are checked against the frequent value CAM to determine if they

match a frequent value. If they do, instead of writing the full value, the module writes the

address of the frequent value in the CAM instead. Because the number of bits of the is only

log2(Num. of Frequent Values), the number of bit-writes can be greatly reduced. Our method

is similar to that used in [23], however we store the frequent values and perform compression

within the memory controller, instead of within the memory modules themselves.

Additionally, we believe that there is some room for improvement in the compression

method used by a frequent value based architecture. Instead of using the simple address

based method for data compression, we chose to use a Huffman coding based method.

Huffman coding was created in the 1950s by David Huffman as an efficient binary cod-

ing scheme [11]. It is a frequency based, variable length coding generated by constructing

a binary tree based on the frequency of each value. In this tree, leaf nodes with more fre-

quent values are shallower than those with less frequent values, which results in code word

sizes that vary based on the value frequency. As a result, the average number of bits in the

encoded data set is minimized, which is beneficial for our goal of reducing the number of

bit-write operations.

To construct a Huffman coding, first a sorted list of the most frequent values used during

application execution, along with the frequency with which each value appears, is generated.

From this table, a binary tree is constructed from the bottom up, starting with the least

frequent values. The two least frequent values are removed from the list, and are used to

create a parent node, with the two values as its children nodes. This parent node is given

its own frequency value equal to the sum of the frequencies of its two children, then is added

back to the list of values. The value list’s order is maintained with the new parent node being
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placed in the list according its own frequency. Once the list of values and nodes is emptied,

we can use the resulting binary tree to construct the codes that represent each of the values.

By performing a pre-order traversal of the tree and having left branches append a ‘0’ to the

code and right branches append a ‘1’, we can progressively build up a prefix-free code word

for each of the values in our frequent value list. An example Huffman tree constructed using

1-byte words can be seen in Figure 3.
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0x00 31 11

0xFF 24 10

0x01 12 011

0x02 10 010

0xFE 8 001

0x5B 4 0001

0x01 2 00001

0x11 1 00000

Figure 3: Sample Huffman coding

Once the frequent values and their respective codewords have been determined for the

application, they need to be incorporated into the compression engine integrated into the

memory architecture. To achieve this, we use a set of CAMs to store the frequent values

and their respective code words, similar to the method used in [23]. To facilitate this, we

construct the Huffman coding tree using just the N most frequent values, where N is the

size of the CAM. Compression is performed simply by matching the incoming write data

against the saved frequent values using a simple CAM, and replacing matching values with
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their codewords. Decompression is similarly simple, with the same process occurring using

a ternary CAM with the unused bits in the code words set to don’t-care values. A ternary

CAM is perfect for this application, as the Huffman codes are prefix-free, meaning that no

codeword is a prefix of any other code word.

Frequent value compression is beneficial as a result of its simple implementation in hard-

ware, and fast compression and decompression speeds. The authors of [23] report that circuit

level simulations for a CAM lookup operation show an access latency of just one cycle on a

CAM size of up to 128 values. Additionally, using Huffman coding as our encoding technique

should result in a further reduction of bit-writes, at the expense of requiring profiling to be

performed on the application before execution.

4.2 FREQUENT PATTERN COMPRESSION

A second option for data compression in memories is Frequent Pattern Compression (FPC) [3].

FPC is a significance-based compression technique that matches the incoming data against

pattern classes to achieve compression. FPC was originally proposed for use in the L2 cache

to expand its effective capacity, thereby improving performance and reducing miss rate.

In FPC, 32-bit words are compressed based on a set of patterns, rather than specific

values. Table 1 describes the patterns used by FPC.

These patterns were selected based on their high frequency of occurrence in many integer

and commercial benchmarks [3]. In contrast to FVC, FPC requires no application profiling.

Instead, the compression and decompression engines for FPC are implemented entirely using

CMOS logic. When a word is input into the compression engine, the content of the word

is checked to determine if it matches any of the frequent patterns. If a match is found, the

engine encodes the word appropriately and prepends the matching prefix. This 3-bit prefix
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Table 1: Frequent pattern compression patterns

Prefix Pattern Encoded Example Compressed Example Encoded Value
Size Space

000 ”Zero Run” 0x00000000 000 0 bits 1

001 4-bit Sign Extended 0x00000007 0010111 4 bits 15

010 1-byte Sign Extended 0xFFFFFFB6 01010110110 8 bits 240

011 Halfword Sign Extended 0x00005432 0110101010000110010 16 bits 65280

100 Halfword, padded with 0x54320000 1000101010000110010 16 bits 65535
a zero Halfword

101 Two Halfwords, each 0xFFB60036 1011011011000110110 16 bits 65025
a byte sign extended

110 Word consisting of four 0x20202020 11000100000 8 bits 254
repeated bytes

is used during decompression to classify which pattern the compressed value matches, so the

decompression engine can decode the value.

The main benefits of FPC come from the wide range of values that it can compress,

and the simple way that these values can be described. For example, most integers used in

programs can be expressed in just 4, 8, or 16 bits, despite being stored using 32 bits. Table 1

shows that the total number of values that can be compressed with FPC is almost 200,000,

which is a much wider range of values than most dictionary based compression schemes, e.g.,

frequent value compression [23]. Additionally, the pattern table used in FPC is static and

does not need to be generated through application profiling or at runtime. This means that

the compression engine can be realized with relatively simple logic, embedded directly into

the memory controller, and requires no internal memory to store a value dictionary. This

simplifies the implementation of the compression engine and keeps the overhead associated

with the compression engine low.
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The FPC compression engine takes up only 10% additional area in a typical memory

controller, requires 3 additional cycles to perform compression, and 5 additional cycles to

perform decompression [17]. The reduction in bit-writes generated by the proposed archi-

tecture ensures that more words can be written in one write operation within the power

budget limit [33], thereby compensating for the 3 extra cycles of delay incurred by the FPC

compression engine. Even though the FPC compression engine causes 5 extra cycles of delay

in each read operation, the widely used “open-page” policy in the row buffer of the memory

architecture significantly reduces the number of read operations that exactly reach the cell

array. Thus, the timing overhead in the read operation can be reduced by increasing the size

of row buffer [12].

Like FVC, FPC has a simple implementation that can be realized entirely in hardware.

While FVC’s value list is much more tailored to the specific application and may have

better word compression ratios, FPC is capable of compressing a much wider range of values

which can result in more words being compressed. These minimal overheads and simple

implementation combined with good compression over a wide range of frequent values also

make FPC an ideal compression method for the proposed architecture.
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5.0 WEAR LEVELING

Although the proposed method is capable of improving write latency and energy through

reducing the number of bit-writes, endurance benefits can be limited. While the comparison

step of our method does mitigate cell endurance problems in general, the compression method

creates some restrictions that can impact endurance. In both methods used to compress the

data, the location of the first bit and the orientation of the data is important for determining

the length of the relevant data, as different patterns are reduced to different lengths in FPC,

and different frequent values are compressed to different lengths in FVC. In order to ensure

proper decompression, the decompression engine must know exactly where the starting bit is

in the bit array to determine the compressed data length. To preserve this, compressed data

is always aligned to the most significant portion of the NVM word. The result of this is that

the most significant cells of each NVM word are affected by write operations during every

write access, while the least significant cells are only affected by writes of uncompressed data

and are relatively underutilized. We believe there is room for improvement to shift some of

the writes from the most significant to the least significant portion of the NVM word.

Fine-grain and coarse-grain wear leveling for PCM was introduced in [35]. In fine-grain

wear leveling, the bit-writes are distributed evenly among the row by using a shift mechanism.

In coarse-grain wear leveling, memory pages are grouped into segments. Segments with

more bit-writes are swapped with segments with fewer bit-writes. However, both approaches

require additional information such as a remapping table, resulting in significant memory
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space overhead. Another wear leveling method, start-gap, was proposed [20]. Instead of

using a mapping table, start-gap utilizes two pointers to determine how to swap pages,

resulting in less space overhead. However, this approach cannot distribute the writes evenly

in some memory regions when the memory access has uneven write patterns. A wear rate

leveling approach was presented [9], which considers the endurance variation of PCM cells

and puts high priority on protecting the “weak” PCM cells. Similar to the methods in [35],

memory space overhead in [9] is also significant due to the implementation of the remapping

table. These state-of-the-art solutions focus on implementing wear leveling across addresses

in NVM, while our method is unique in that it performs wear leveling within each word,

using the free space available from compression.

To accomplish opportunistic wear leveling in our architecture, a modification to the

compression process is proposed. This modification writes compressed data to both sides

of the NVM word at different times, allowing the wear on the NVM cells to be evened out

across the whole word. During write accesses, instead of always writing the data to the most

significant portion of the NVM word, the data is conditionally flipped horizontally so that

the most significant bit is now the least significant bit, and is written to the least significant

portion (lower half) of the NVM word. Flipping the data ensures that the memory controller

always knows the location of the prefix, so it can determine the compressed data length during

decompression. This method works well for both compression methods, because they both

are capable of reducing the data size significantly. For example, all of the FPC patterns

reduce the data size to at least 16 bits (19 with the prefix), which is about half the size

of 32-bit NVM word. An example of a write operation with this wear leveling process is

illustrated in Figure 2.

To manage this wear leveling process, some modifications to the memory controller and

NVM array are necessary. First, a second “position” tag bit is added to each word. This tag
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bit indicates to the memory controller the side of the NVM array that the data is currently

stored on. Second, additional circuitry is added to the memory controller to determine

whether the compressed data should be written normally or flipped. Once the memory

controller has determined this information, it sets the position tag bit appropriately, with a

“0” indicating normal orientation and a “1” indicating flipped orientation. If the data to be

written is not compressed, then the position bit is unmodified, as data position is irrelevant

to uncompressed data.

During read accesses, after the memory controller detects that the data is compressed,

it reads the position bit to determine the location of the data in the array. If the position

bit indicates that the data was written to the lower half of the NVM word, then the data

read by the memory controller is flipped to restore the prefix to the most significant bits,

and the data is passed to the decompression engine to be decompressed. If the data read is

not compressed, then memory controller just ignores the position bit.

Two different methods for determining which orientation to write the data in are tested.

The first method uses an internal write-access counter to determine which orientation to

write the data. This counter increments every time a write access is received by the memory

controller, and uses an indicator to tell the memory controller which orientation to write the

data. Once a certain threshold of write accesses has been received, the indicator switches

between “flipped” and “normal” (or vice versa) and the counter resets. Before the comparison

and write step of the proposed write method, if the data to be written is compressed, the

memory controller checks the position indicator to determine which side of the memory

array data to write to. If the counter indicates “flipped”, then the (horizontally flipped)

data should be written from the least significant cell toward the most significant cell, on the

lower half of the NVM word. Conversely, if the counter indicates “normal”, then the data

should be written normally, from the most significant cell toward the least significant cell,
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on the upper half of the NVM word. Finally, if the counter indicator has changed since the

last write operation to this address, the position tag bit is updated to match the counter

indicator.

The second method tested uses the number of potential bit-writes to determine orienta-

tion, implementing a more opportunistic wear leveling method During the comparison step

of the proposed write method, the additional circuitry in the memory controller compares

the new data in both the normal (most significant) orientation, and the flipped (least signif-

icant) orientation, against the existing data. The memory controller uses these comparisons

to calculate the number of bit-flips that would be required to perform both write operations.

The circuitry then compares these results to determine which orientation would result in a

fewer number of bit-flips. The orientation with the fewer number of bit-flips is then selected

and written to the location in memory, with the position tag bit set appropriately.

Although the differences between these two methods are minor, there are some trade offs

between them. The main problem for the bit-write based method is that we cannot guarantee

that any wear leveling will actually occur. In the worst case scenario, the optimal orientation

may always be the same, resulting in no improvement in wear leveling performance. However,

while the counter based method guarantees that wear leveling will occur, it may result in an

increase in overall bit-flips, which is not ideal.
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6.0 EVALUATION AND RESULTS

6.1 SIMULATION

The proposed architecture is evaluated using an in-house trace-driven simulator. The traces

used are generated from benchmarks in the SPEC CPU2006 [1] benchmark suite. These

benchmarks reflect a variety of real integer and floating-point based workloads used by

modern computing systems. The memory traces from the benchmarks are recorded using

the Intel PIN Binary Instrumentation Tool [18] on a machine running a 2.3GHz Intel Core

i7 CPU. Our tool captures memory accesses from the processor and simulates a typical

cache system, recording only those accesses sent to main memory. This tool simulates a

separate 32 KB, 4-way associative I-cache and 32 KB 8-way associative D-cache at L1, with

a shared 256 KB 8-way associative L2 cache and an 8 MB 16-way associative L3 cache.

When gathering the traces, the benchmarks are first run through 1 billion instructions to

avoid memory accesses from program initialization; they are then run until 1 million memory

write operations have been recorded.

We run simulations to evaluate the performance characteristics of frequent value com-

pression under different parameters, and compare the performance improvement of our com-

pression based methods with two state-of-the-art methods, Flip-N-Write (FNW) [7] and data

comparison write (DCW) [26]. As explained in Chapter 4, these two methods are similar to

ours because they also perform a bitwise comparison to only update changed bits. For all
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methods, our simulator compares the new data against the existing data in the data struc-

ture before replacing it to calculate and record which bits are different and would undergo a

bit-write operation in a real device.

6.2 FREQENT VALUE COMPRESSION

Our simulator evaluates FVC using Huffman coding with a two step process. First, the

simulator performs application profiling by taking a preliminary pass of the memory trace,

performs the raw writes a data structure representing the contents of memory, and records

the number of times each data word appears in memory during trace execution. Once a

frequency analysis of the memory trace is complete, the simulator constructs the Huffman

tree using the Huffman coding algorithm described in Section 4.1, and uses this to determine

the Huffman codes for each of the words in the tree. The data words and their respective

code word are saved in a data structure to facilitate easy encoding and decoding during the

rest of the simulation. In the second step, the simulator erases the contents of the memory

data structure and begins a second pass of the trace file. In this pass, the simulator processes

each write access, this time performing compression on each word if possible by exchanging it

with its Huffman codewords. The modified data is then stored in the memory data structure,

and any bit changes are recorded to determine the performance of this method.

We evaluated FVC with a number of different Huffman tree sizes from 16 to 256 of the

most frequent values. Additionally, we also ran evaluations where the tree generated by

the simulator is forced to be balanced. By placing the most frequently occurring values

in a balanced tree while still generating codewords using the tree-traversal method used in

the Huffman coding algorithm, the resulting codeword values have a constant length. This

configuration mirrors the address based frequent-value PRAM architecture described in [23].

The results of this analysis can be seen in Figure 4.
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Figure 4: Average bit-writes performed using FVC with Huffman Coding.

We can see a distinct trend in average number of bit-writes among the un-balanced runs,

with larger trees allowing for fewer bit-writes. With the balanced tree however, the tree

size seems to have little effect on the overall number of bit-writes. We believe that this is

because a greater number of accesses contain a fewer number of values, and balancing the

tree to simulate the frequent-value method negates the benefits of letting some codewords

have shorter lengths (and thus fewer bit-writes) than others. Additionally, we note that

for both the Huffman coding simulations and balanced tree simulations, the introduction

of our opportunistic wear leveling scheme resulted in an overall lower number of bit-writes

compared to no wear leveling. This is expected, as our opportunistic wear leveling scheme

ensures that the orientation with fewer bit-writes is always chosen, whereas without wear

leveling the system does not have this choice.
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6.3 FREQUENT PATTERN COMPRESSION

We evaluate FPC using a similar procedure to the FVC evaluation. However, because

FPC does not require application profiling, the simulator does not perform this step of the

simulation. Instead, the simulator is able to begin on the second step of the process, and

requires only a single pass of the trace file to be able to simulate the compression method and

calculate the number of bit changes occurring during the course of the trace. Additionally,

with the compression patterns hardcoded into the FPC technique, there are no parameters

to adjust as in the FVC technique. Instead, we compare the results of FPC directly to those

of DCW, FNW, and FVC.
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Figure 5: Comparison of the number of bit-writes performed.

Our simulation reports the number of bit-writes performed within each trace, the results

of which can be seen in Fig 5. The number of flips is normalized to the DCW method,

and we used the FVC results corresponding to the 128 value Huffman tree. FPC shows the

greatest reduction in bit writes, with FVC showing a small amount of improvement over
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FNW overall. For FPC, improvement is shown in number of bit-write operations performed

in the majority of benchmarks (set B1), especially in the gcc (89% reduction in bit-writes)

and mcf (95% reduction in bit-writes) benchmarks. On average, FPC reduces the number of

bit-write operations by 3× over DCW and 2× over FNW across all benchmarks. For FVC,

on the other hand, number of bit-writes are generally much closer to the number performed

by FNW with FVC reducing the number of bit-write operations by 39% over DCW and just

9% over FNW in the average case.

Under the FPC algorithm a few of the benchmarks do report an increase in the number

of bit-write operations (set B2): bzip2, calculix, gromacs, hmmer, and sjeng. We can obtain

some insight as to why these benchmarks report an increase in bit-write operations in Figure 6

and Figure 7.
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Figure 6: Compression ratios of all valid data in memory after trace execution

These figures report the compressibility of each benchmark under the FPC algorithm

both in terms of number of uncompressed write accesses performed, and the final compression

ratio of the data in memory at the end of simulation for each benchmark. High values in
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Figure 7: Percentage of accesses unable to be compressed

either of these areas indicate a poor fit to the respective algorithm. Here, most benchmarks

reporting an increase in bit-writes also report a high percentage of uncompressed accesses or

a low compressed size. Hmmer and gromacs in particular are not very compressible under

FPC, with hmmer only compressing 9% of accesses and gromacs compressing the data in

memory by only 30%, resulting in poorer performance. Additionally we gain some insight

as to why FVC produces poorer results compared to FPC from these graphs. FVC typically

has a much larger percentage of accesses that are unable to be compressed than FPC across

many of the benchmarks, which contributes to its poorer performance. Despite the problems

with compression in the five benchmarks in set B2, their performance decrease for FPC over

FNW remains small.
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6.4 WEAR LEVELING

The impact of the wear leveling method on bit-writes to specific cells in each memory word

is also evaluated. The simulator reports the number of bit-write operations that occur to

each bit index, over the course of the simulation and across all words. This data is used to

determine the number of bit-flips occurring at the bit index with the maximum number of

writes for each benchmark. The cells that experience the most bit-flips will typically be the

first to fail, so the wear leveling technique attempts to reduce this number, extending the

lifetime of the whole word. The results of this analysis can be seen in Figure 8.
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Figure 8: Comparison of our method with and without wear leveling

We compare improvements when implementing our opportunistic wear leveling method

on top of FPC, and normalize the results to the case with no wear leveling implemented.

Generally, there is a reduction in the maximum number of bit-flips across the benchmarks

when implementing the wear leveling technique. Again, we see similar patterns as with the

bit-flip results, where those benchmarks that exhibit poor compressibility (leslie3d, hmmer,
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gromacs, bzip2) also respond poorly to this wear leveling technique. However, the perfor-

mance decrease is very minimal (at most 3%) compared to the endurance gains in the average

case, with the peak cell bit-writes being reduced by 27%. As the failure of one cell results

in failure for the whole word, our wear leveling method is capable of extending lifetime by

reducing maximum number of bit-writes to specific cells.
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7.0 CONCLUSIONS AND FUTURE WORK

We have presented a novel compression based write method and architecture to reduce the

number of bit-writes performed during write operations in new non-volatile memory technolo-

gies. We explore the use of two different compression methods for performing compression

of each word, Frequent Value Compression using Huffman Coding and Frequent Value Com-

pression. Finally we add an intra-word wear leveling method to spread bit-writes out within

each non-volatile memory word and reduce peak cell bit-writes.

In the rest of this chapter, we summarize the work in this thesis again. Then we list the

main contributions of our work and the important conclusions we can draw from experiments.

Finally, we introduce some remaining problems in this area and a few of our ideas to extend

our work.

7.1 SUMMARY

First, in Chapter 2 we introduce background information on 3 new non-volatile memory

technologies: phase change memory, resistive RAM, and spin-transfer torque RAM. We

describe how each of these work and what makes them ideal as possible replacement for

DRAM as main memory as well as their potential drawbacks. We describe past work for

improving the performance of non-volatile memory technologies, including two techniques
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for generally reducing the number of bit-writes performed, data comparison write and Flip-

n-Write. Finally we introduce past work for performing compression in both traditional main

memory and in non-volatile memories and describe two general compression algorithms used,

frequent value compression and frequent pattern compression.

Chapter 3 introduces our compression based architecture and write method for reducing

bit-writes in non-volatile memories. We describe the details of the write and read meth-

ods used to compress each word in memory accesses as they are received by the memory

controller, and how these methods are capable of reducing bit-flips. We introduce the modi-

fications to the memory controller, including the integration of the compression and decom-

pression engines, as well as the addition of the two tag bits to each word in the memory

array.

In Chapter 4 we discuss the two different compression methods we explored for com-

pressing data in our method. In this work we chose to compare Frequent Value Compression

with Huffman Coding versus Frequent Pattern Compression. We explain how each works

and compare the benefits and potential downsides of each.

In Chapter 5 we propose a wear leveling method to spread bit-writes out within each

word and further improve the non-volatile memory endurance. We discuss two different

options for choosing when to perform the wear leveling switch, one based on a write access

counter and one based on the number of potential bit-writes performed.

Chapter 6 presents our simulation methods and results. We discuss the in-house memory

simulator we developed and how it counts bit-flips to compare performance between the

various compression methods. Overall we find that frequent pattern compression produces

the greatest improvement, reducing overall bit-writes by 3× over Data Comparison Write

and 2× over Flip-n-Write. Additionally, our wear leveling method is able to reduce peak cell

bit-writes by 45% over Flip-n-Write and by 27% over our own method without wear leveling.
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7.2 CONTRIBUTIONS

The contribution that our work makes in the area of improving performance in new non-

volatile memory technology for use in main memory can be summarized as the following:

• We determine that reducing the number of bit-writes performed during write accesses in

non-volatile memories can potentially improve cell endurance, energy consumption, and

write latency simultaneously.

• A write method utilizing data compression to reduce bit-writes is developed. The mod-

ified read and write methods are described in detail. We also describe the modified

memory controller architecture used to implement our methods.

• We examine two different compression methods as possibilities for performing compres-

sion in our method, Frequent Value Compression with Huffman Coding and Frequent

Pattern Compression. The possible benefits and drawbacks of each method are explored.

• An intra-word wear leveling method is developed to further improve non-volatile memory

endurance. Compressed data is written to alternating sides of the non-volatile memory

array in order to spread bit-writes out within each word and reduce peak cell bit-writes.
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7.3 CONCLUSIONS

Based on the exploration of this work, a set of important conclusions can be drawn:

• Our compression based write method and memory architecture is successful at reducing

bit-writes by compressing data within each word. Performing fewer bit-writes during

write accesses results in less energy consumed and an improvement in endurance in the

non-volatile memory, as well as allowing for more words to potentially be written at one

time improving throughput.

• Changing the size of the dictionary impacts frequent value compression performance, with

a larger dictionary allowing for better compressing and fewer bit-writes. Additionally,

using Huffman coding allows for better performance over a balanced coding method.

• Frequent pattern compression results in significantly fewer bit-writes compared to fre-

quent value compression. An analysis of the benchmarks under two compression methods

shows how frequent pattern compression is able to compress more accesses and results

in a better compression ratio compared fo frequent value compression to achieve this

reduction in bit-writes. Additionally, because frequent pattern compression is easier

to implement and its higher overheads can be mitigated, we believe that it is an ideal

compression algorithm for our method.

• Our wear leveling method is able to successfully reduce peak cell bit-writes by writing

compressed data to alternating sides of the non-volatile memory array. While both the

counter based method and bit-write based method are both able to reduce peak cell

bit-writes successfully, the bit-write based method results in slightly better results, and

is also capable of reducing overall bit-writes, leading to better performance.
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7.4 FUTURE WORK

The work presented in this thesis makes some major contributions, but we have some room

to take it further. Future work can be summarized by the following points:

• Because of the limited endurance of many non-volatile technologies, memory modules

often include additional overhead for error correcting codes (ECC). Because a minor

change in the data can have a major impact on the contents of the ECC, our compression

method may have a larger effect on these ECC cells. An investigation of potential impacts

on ECC by our method, or ways or method can be adapted to ECC should be taken.

• Many new non-volatile memories also use multi-level cells (MLC) to further improve

density. However, our method assumes the use of single-level cells (SLC) as each bit-

write reduction equates to one cell that no longer needs to perform a write operation.

Using MLC memory with our method means that a cell has a much higher probability

of being changed, which means that many of the benefits could be negated. The impacts

of using our method with MLC memory should also be examined.
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