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Chung-Chou H. Chang, PhD 
 

ABSTRACT 

Acute liver failure (ALF) is a clinical syndrome characterized by the rapid onset of illness 

and disruption of critical hepatic processes. The natural history and clinical recognition of ALF in 

children differs considerably from that observed in adults largely due to both heightened etiologic 

variation and delayed onset of clinical encephalopathy within the pediatric population. Despite 

efforts to implement multidisciplinary management strategies and understand optimal timing of 

orthotopic liver transplantation (OLT), current prognostic models are unreliable and fail to identify 

high-risk patients. We propose a dynamic prediction model of pre-transplant survival for pediatric 

patients with ALF, specifically to inform the sequential medical decision making process and 

consequently improve clinical outcomes.  Public Health Significance:  Dynamic prediction 

models are of great interest to clinicians and patients alike, enabling well-informed decisions in 

light of the unpredictable nature of clinical and pathophysiological systems. Extensions of our 

model may be utilized to facilitate proper allocation of scarce resources, such as donor organs. 
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1.0  INTRODUCTION 

1.1 OVERVIEW 

Acute liver failure (ALF) is a clinical syndrome characterized by the rapid onset of illness 

and disruption of critical hepatic processes. The natural history and clinical recognition of ALF in 

children differs considerably from that observed in adults largely due to both heightened etiologic 

variation and delayed onset of clinical encephalopathy within the pediatric population. Emergency 

orthotopic liver transplant (OLT) is the most effective intervention among limited therapies but is 

not without risk and long-term implications: reduced life expectancy and lifelong 

immunosuppression (McDiarmid, 2007; SPLIT Research Group, 2001; Feng, 2008).  While 

children with ALF receive priority in the allocation according to policies established by the United 

Network for Organ Sharing (UNOS), access to quality donors is restricted by the overwhelming 

demand of patients with chronic illnesses. The medical decision making process is further 

complicated by the high rate of spontaneous recovery; an estimated 50% of patients with pediatric 

acute liver failure (PALF) return to normal levels of health within weeks (Lu, 2013). Despite 

extensive investigation of the underlying pathophysiological mechanisms and optimal therapeutic 

strategies, the short-term outcome for the population of PALF patients remains poor (Devictor, 

2011; Ee, 2003; Squires, 2006).  The status quo, specifically the absence of a standard method for 

evaluating illness severity or mortality, indicates an exciting opportunity to improve upon existing 
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methods of evidence-based patient evaluation and contribute to the growing body of acute pediatric 

care literature. The purpose of our study is to develop a dynamic prediction model of pre-transplant 

survival for pediatric patients with ALF, specifically to inform the sequential medical decision 

making process (Figures 1, 2). 
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Figure 1:  Gross simplification of PALF natural history and the sequential decision making process. Each square represents a single decision epoch. 
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Figure 2:  Simplified decision tree for each epoch in the sequential decision making process. Each circle represents a chance node. Death and transplant are 

absorbing states; realization of the non-absorbing state alive or recovered results in progression to the proceeding epoch.
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1.2 PREDICTION MODELS IN MEDICINE 

The notion of prognosis, the probable course of a condition or disease, is central to clinical 

practice, medical research, public health, and countless disciplines of the biomedical sciences 

(Eagle, 2004; Friedman, 2002; Visser, 2002).  Historical evidence of prognostication dates back 

to the early works of Hippocrates in 5th century BC (Garrison, 1966), a period seemingly dissimilar 

to the evidence-based era of Western medicine. Rather, the observed exponential growth of 

publications on prognostic modeling between 1970 and 2005 suggests the transition from 

subjective to objective evaluation of prognosis is a recent phenomenon (Steyerberg, 2009).  

This application of the scientific method to prognostic modeling and strategies devised to 

improve prognosis on a population level (such as screening procedures, diagnostic tests, and 

therapies) reinforces emerging evidence-based standards and enhances shared medical decision 

making.  The addition of a quantitative analyst to the joint patient-physician decision construct 

facilitates the communication of technical concepts and mitigates biased reporting of risks. 

Furthermore, the integration of quantitative analysts into clinical analysis provides a basis for 

development of the increasingly complex models required to address the issues of modern clinical 

medicine. 

The development of personalized risk prediction models represents an ideal opportunity 

for such interdisciplinary efforts. Patients of similar identifiable clinical characteristics do not 

necessarily experience similar clinical outcomes. Except for random uncertainty, one of the 

reasons for this heterogeneity is contributed by the time-dependent characteristics, which include 

nonlinear prognosis over the course of time, and time-updated information on clinical events and 
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test results. Standard clinical prediction models are not suitable for such complicated designs. 

Within the context of survival, a set of markedly similarly patients may display statistically 

significant differences in time-to-event profiles (Dent 2007, Goldhirsch 2010). To reduce 

heterogeneity in survival estimation among patients with similar baseline characteristics, a method 

was recently developed to incorporate short-term events into the prediction of long-term survival 

estimation (Parast, 2013).  

Dynamic prediction is an estimation procedure that accounts for time-dependent 

characteristics. van Houwelingen and colleagues proposed dynamic prediction models based on a 

landmarking method. With these models one not only can incorporate time-dependent information 

into risk prediction but also can efficiently make prediction at a series of predetermined time points 

(Nicolaie, 2013; van Houwelingen, 2007, 2008; van Houwelingen and Putter, 2012).  Moreover, 

the landmarking method van Houwelingen introduced is robust against misspecification of the 

proportional hazards assumption. In this thesis, we applied these landmark dynamic prediction 

models to estimate the probability of survival at a set of future time points based on the collected 

time-dependent information for children with ALF. 

1.3 PEDIATRIC ACUTE LIVER FAILURE (PALF) 

Acute liver failure (ALF) is a clinical syndrome characterized by the rapid onset of illness 

and disruption of critical hepatic processes. Often health deteriorates within a period of days, 

resulting in the immediate need for intensive medical treatment. The accurate estimation of 

incidence is difficult, as with many rare conditions, yet its impact on the transplant community is 

clear:  adults and children with ALF account for a disproportionate number of deceased-donor 
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liver transplants after adjusting for the number of listings (ANZLTR, 2010; Rajanayagam, 2013).  

Causes of pediatric acute liver failure include accidental acetaminophen overdose, viral hepatitis, 

metabolic errors, ischemia, and indeterminate in roughly 50% of the population (Squires, 2008). 

The delayed onset of hepatic encephalopathy (HE) until terminal stages of natural history opposes 

the classic criteria for the diagnosis of ALF.  Thus the management of PALF requires a pediatric-

specific definition and an advanced framework of etiologic assessment. Marginal prognosis is 

better in children than adults but conditional prognosis indicates significant disparities among 

select clinical features (Squires, 2008).  Accordingly, the volume of PALF research is growing 

with improved understanding of the pathophysiology, therapeutic interventions, influential clinical 

predictors, and outcome profiles. Unfortunately, short-term outcomes remain bleak in spite of 

efforts to implement multidisciplinary management strategies and understand optimal timing of 

orthotopic liver transplantation:  PALF results in mortality or resource-transplant in up to 45% of 

patients (Lu, 2013). 

1.4 PALF STUDY 

The primary objective of the PALF Study is to collect, maintain, analyze, and report 

clinical, epidemiological, and outcome data in children with ALF, including information derived 

from biospecimens. A secondary objective is to develop data-driven methods to predict the 

likelihood of a child spontaneously recovering without requiring OLT. The PALF Study Group 

began collecting prospective patient data in December 1999, following the operationalization of 

the clinical syndrome and approval of institutional review boards at 20 unique international clinical 

sites (n=958), 17 within the borders of the United States (n=756). Now in its second phase of 
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funding from the National Institute of Diabetes and Digestive and Kidney Diseases, the study 

currently supports 12 sites in North America.  The PALF working group, consisting of 21 

investigators, defines the entry criteria for children under the age of 18 years: (1) no known 

evidence of chronic liver disease; (2) biochemical evidence of acute liver injury; and (3) hepatic-

based coagulopathy defined as a prothrombin time (PT) >=15 seconds or international normalized 

ratio (INR) >= 1.5 not corrected with vitamin K in the presence of clinical HE or a PT >= 20 

seconds or INR >=2.0 regardless of the presence or absence of clinical HE (Squires, 2006). 

Collection of demographic, clinical, and laboratory information for up to 7 consecutive days begins 

following enrollment. Upon informed consent from a parent or legal guardian, the clinical 

diagnosis is assessed and classified in accordance to one of the numerous etiologies such as 

acetaminophen-overdose, indeterminate, and viral-induced. The following primary outcomes are 

assessed at 3 weeks after entry into the cohort:  successful hospital discharge, liver transplantation, 

or death. Confirmation of current health status occurs at 30 days post-enrollment in addition to 

follow-up at 6 months and 12 months, if appropriate.  

1.5 REVIEW OF PALF MODELING LITERATURE 

The existing literature of prognostic modeling for adult patients with ALF is appropriately 

large. Examples include the King’s College Hospital criteria, Clichy criteria, serum group-specific 

component protein levels, liver volume on CT scanning, blood lactate levels, hyperphosphataemia, 

Acute Physiology and Chronic Evaluation II score, serum alfa-fetoprotein levels, and the Model 

for End Stage Liver Disease (MELD) (O’Grady, 1989; Yantorno, 2007; Schiodt, 2007; Yamagishi, 

2009; Bernal, 2002; Chung, 2003; Antoniades, 2007; Murray-Lyon, 1976; Zaman, 2006). The 
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corresponding literature of prognostic modeling for pediatric patients with ALF is underdeveloped 

in comparison (Table 1). The prior studies are simple in nature and rely upon standard logistic 

regression modeling procedures and validation methods (Sanchez, 2012; Liu, 2005; Lu, 2013; 

Rajanayagam, 2013; Squires, 2006).  Rajanayagam et al. (2013) and Azhar et al. (2013) are two 

notable exceptions. This pair of manuscripts applies machine-learning methods to small datasets, 

with sample sizes of 54 and 49, respectively. Findings are consistent across the studies; however 

the latter analyses consider a significantly larger set of candidate variables, effectively increasing 

likelihood of false positives and improved fit by chance.  

A common limitation throughout the literature is the misrepresentation of the stochastic 

nature of the multisystem disorder. PALF is a function of dynamic, interrelated physiological 

processes. Patients display a dynamic state of being; rarely is a static state observed. Given the 

time-dependent nature of ALF, the standard set of baseline covariate measures is insufficient. 

Dynamic conditions require dynamic approaches to modeling. The prediction of clinical outcomes 

for patients with such an unpredictable, volatile condition is arduous yet worthwhile of rigorous 

scientific investigation. Prognostic models of PALF can therefore be improved with early and 

exact evaluation of condition severity, incorporation of novel time-varying biological markers, and 

implementation of dynamic modeling principles. Therein the purpose of our study is to develop a 

dynamic prediction model of pre-transplant survival for patients with PALF, specifically to 

facilitate timely registration for deceased-donor OLT and guide utility-driven allocation decisions 

with organ procurement organizations (OPO). 
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Table 1:  Summarization of the published literature on predictions models of PALF. 
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2.0  MATERIALS AND METHODS 

2.1 STATISTICAL CONCEPTS 

2.1.1 Estimation of Marginal Survival 

Let 𝑇𝑇𝑖𝑖∗ denote the event time for the i-th subject (i = 1, …, n) and 𝐶𝐶𝑖𝑖 be the corresponding 

censoring time. Suppose {𝑇𝑇𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝑿𝑿𝑖𝑖(∙)} indicates the observed ordinary right-censored survival data 

for n individuals from our target population, where 𝑇𝑇𝑖𝑖 = min (𝑇𝑇𝑖𝑖∗,𝐶𝐶𝑖𝑖) is the observed follow-up 

time, 𝛿𝛿𝑖𝑖 = 𝐼𝐼(𝑇𝑇𝑖𝑖∗ ≤ 𝐶𝐶𝑖𝑖) the event indicator, 𝐼𝐼(∙) an indicator function that takes value 1 only when 

𝑇𝑇𝑖𝑖∗ ≤ 𝐶𝐶𝑖𝑖, and 𝑿𝑿𝑖𝑖(∙) a vector of p baseline covariates. Given the assumptions of conditional 

independence of event and censoring times and independence among individuals, we define the 

marginal cumulative distribution and marginal survival functions at time t as: 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡), 

𝑆𝑆(𝑡𝑡) = 1 − 𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡). 

The Kaplan-Meier (KM) estimator (Kaplan and Meier, 1958), also referred to as the 

product-limit estimator, is a non-parametric maximum likelihood estimator (MLE) of the marginal 

survival probability. The KM estimator for a given dataset can be expressed as follows: 

�̂�𝑆(𝑡𝑡) = ��1 −
𝑑𝑑𝑖𝑖
𝑛𝑛𝑖𝑖
�

 

𝑡𝑡𝑖𝑖≤𝑡𝑡

, 
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where 𝑑𝑑𝑖𝑖 denotes the number of events at time 𝑡𝑡𝑖𝑖 and 𝑛𝑛𝑖𝑖 the number of at-risk individuals just prior 

to time 𝑡𝑡𝑖𝑖.  

If we are interested in estimating marginal survival adjusting for covariates 𝑿𝑿, a Cox 

proportional hazards (PH) regression model (Cox, 1972) is commonly used for estimation. The 

Cox PH model, subject to the proportionality assumption, is defined as: 

ℎ(𝑡𝑡|𝑿𝑿) = ℎ0(𝑡𝑡) exp(𝑿𝑿′𝜷𝜷), 

where ℎ0(𝑡𝑡) denotes the hazard of an unspecified form for individuals with baseline covariates, 𝑿𝑿 

a vector of p baseline covariates, and 𝜷𝜷 a vector of p-dimensional regression coefficients. The 

marginal survival function 𝑆𝑆(𝑡𝑡) of the Cox PH model takes the form: 

𝑆𝑆(𝑡𝑡|𝑿𝑿) = exp�−�ℎ0(𝑢𝑢) exp(𝑿𝑿′𝜷𝜷)𝑑𝑑𝑢𝑢
𝑡𝑡

0

� 

  = exp{−𝐻𝐻0(𝑡𝑡)}exp (𝑿𝑿′𝛃𝛃) . 

The estimated marginal survival function �̂�𝑆(𝑡𝑡|𝑿𝑿) can be obtained by substituting unknown 

parameters 𝜷𝜷 with the partial likelihood estimator 𝜷𝜷� and substituting the unspecified cumulative 

baseline hazard function 𝐻𝐻0(𝑡𝑡) with the Breslow estimator 𝐻𝐻�0(𝑡𝑡).  When the PH assumption is 

violated, other regression models can be used to estimate marginal survival. These models usually 

incorporate a more complex procedure to estimate time-varying covariate effects. For example, 

Gray’s time-varying coefficients model (Gray, 1992) is a commonly used alternative for the Cox 

PH model if the PH assumption is violated. Gray’s model expresses time-varying effects via a 

linear combination of B-spline basis functions. The unknown regression parameters are estimated 

by the penalized partial likelihood estimators. 
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2.1.2 Estimation of Conditional Survival 

For dynamic prediction, we are interested in the conditional survival function, that is the 

survival function at a specified time 𝑠𝑠 conditional on surviving event free until time 𝑡𝑡 − (𝑠𝑠 > 𝑡𝑡). 

Accounting for the covariates 𝑿𝑿, we express the conditional survival function as a ratio of two 

marginal survival functions with the form: 

𝑆𝑆(𝑠𝑠|𝑡𝑡,𝑿𝑿) = 𝑃𝑃(𝑇𝑇 > 𝑠𝑠|𝑇𝑇 ≥ 𝑡𝑡,𝑿𝑿) =
𝑆𝑆(𝑠𝑠|𝑿𝑿)
𝑆𝑆(𝑡𝑡 − |𝑿𝑿) 

for 𝑠𝑠 ≥ 𝑡𝑡. If we rewrite the future prediction time 𝑡𝑡 as a function of current time 𝑠𝑠 plus a prediction 

window of length 𝑤𝑤, the probability of the event occurring within the fixed window 𝑤𝑤 conditional 

on surviving event free until time 𝑡𝑡 −, can be defined as: 

𝐹𝐹𝑤𝑤(𝑡𝑡|𝑿𝑿) =  𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡 + 𝑤𝑤|𝑇𝑇 ≥ 𝑡𝑡,𝑿𝑿) = 1 − 𝑆𝑆(𝑡𝑡 + 𝑤𝑤|𝑡𝑡,𝑿𝑿). 

This conditional failure probability is also called the fixed width failure function. In practice, the 

selection of the fixed width 𝑤𝑤 depends on the length of the follow-up, number of events, and the 

overall survival rate. For small values of 𝑤𝑤 the fixed width failure function approximates the 

instantaneous risk of the event for the individuals still at risk, the basis of the flexible class of 

regression models. 

It is worth noting that based on the definition of the conditional survival, the process of 

estimating fixed width failure probability is a two-step sequential process by separately estimating 

the marginal survival at times 𝑡𝑡 and 𝑡𝑡 + 𝑤𝑤 separately. Computationally this two-step estimation 

process is not efficient. In addition, theoretical derivation of the estimated standard errors for the 

resulting estimated failure probability is difficult. 
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2.1.3 Crude Landmark Model 

van Houwelingen (2007) proposed a Cox-based model that can be used to accurately 

estimate the fixed width failure probability in one step. Moreover, the proposed model is not 

sensitive to the violation of the PH assumption. He called this extension of methodology the crude 

landmark model. 

Suppose we are interested in predicting failure probability at time  𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤 conditional on 

surviving up to a pre-specified landmark time 𝑡𝑡𝐿𝐿𝐿𝐿. The crude landmark model first creates a dataset 

including all individuals at risk at 𝑡𝑡 = 𝑡𝑡𝐿𝐿𝐿𝐿 and ignores all events occurring beyond the fixed 

window width 𝑤𝑤 by means of adding an administrative censoring at 𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤. Therefore, the 

hazard function of the crude landmark model can be expressed as follows: 

ℎ (𝑡𝑡|𝑡𝑡𝐿𝐿𝐿𝐿,𝑿𝑿) = ℎ0(𝑡𝑡|𝑡𝑡𝐿𝐿𝐿𝐿) exp(𝑿𝑿′𝜷𝜷𝐿𝐿𝐿𝐿) 

for  𝑡𝑡𝐿𝐿𝐿𝐿 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤. We can then compute the corresponding conditional failure probability 

as: 

𝐹𝐹�𝑤𝑤(𝑡𝑡𝐿𝐿𝐿𝐿|𝑿𝑿) = 1 − exp�− � ℎ�0(𝑢𝑢|𝑡𝑡𝐿𝐿𝐿𝐿) exp�𝑿𝑿′𝜷𝜷𝐿𝐿𝐿𝐿� �𝑑𝑑𝑢𝑢

𝑡𝑡𝐿𝐿𝐿𝐿+𝑤𝑤

𝑡𝑡𝐿𝐿𝐿𝐿

� 

                                        = 1 − exp�−exp (𝑿𝑿′𝜷𝜷𝐿𝐿𝐿𝐿� ){𝐻𝐻�(𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤) −𝐻𝐻�(𝑡𝑡𝐿𝐿𝐿𝐿 −)}�, 

where 𝜷𝜷𝐿𝐿𝐿𝐿�  is the partial likelihood estimator of regression parameters 𝜷𝜷𝐿𝐿𝐿𝐿 and 𝐻𝐻�(∙) is the Breslow 

estimator of the baseline cumulative hazard 𝐻𝐻(∙). Upon violation of the proportional hazards 

assumption, 𝜷𝜷𝐿𝐿𝐿𝐿�  is a weighted average of the true time-varying effects 𝜷𝜷 (𝑡𝑡) on the interval 

 [𝑡𝑡𝐿𝐿𝐿𝐿, 𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤] and 𝐹𝐹�𝑤𝑤(𝑡𝑡𝐿𝐿𝐿𝐿|𝑿𝑿) well approximates the conditional failure, assuming:  follow-up is 

not too long, the hazard ratios do not vary too much, and the covariate effects are not excessively 

large (van Houwelingen and Putter, 2012). 
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2.1.4 Crude Landmark Model with Time-Dependent Covariates 

Prior to this point we restricted prognostic information to baseline covariates, or 

information available at the beginning of the follow-up period. In the presence of p time-dependent 

endogenous covariates we denote the dynamic patient information as 𝑿𝑿(𝑡𝑡). A common approach 

to predicting conditional survival given time-dependent covariates requires the specification of a 

joint model for {𝑇𝑇,𝑿𝑿(𝑡𝑡)} (Wulfsohn and Tsiatis, 1997; Henderson, 2000; Hashemi, 2003; Tsiatis 

and Davidian, 2004).  Such joint models are computationally complex and often inappropriate for 

prediction modeling given that the distribution of 𝑿𝑿(𝑡𝑡) is unknown. 

When dynamic prediction is the primary concern, the landmark approach represents a 

viable alternative to joint modeling. We assume the time-dependent covariates to be Markovian in 

nature. That is, the future values of 𝑿𝑿(𝑡𝑡) are solely dependent upon the present value of the 

covariate process, 𝑿𝑿(𝑡𝑡𝐿𝐿𝐿𝐿). The hazard function for the crude landmark model with time-dependent 

covariates can be expressed as follows: 

ℎ {𝑡𝑡|𝑡𝑡𝐿𝐿𝐿𝐿,𝑿𝑿(𝑡𝑡𝐿𝐿𝐿𝐿)} = ℎ0(𝑡𝑡|𝑡𝑡𝐿𝐿𝐿𝐿) exp{𝑿𝑿(𝑡𝑡𝐿𝐿𝐿𝐿)′𝜷𝜷𝐿𝐿𝐿𝐿} 

for  𝑡𝑡𝐿𝐿𝐿𝐿 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤. We can then compute the corresponding conditional failure probability 

as: 

𝐹𝐹�𝑤𝑤(𝑡𝑡𝐿𝐿𝐿𝐿|𝑿𝑿(𝑡𝑡𝐿𝐿𝐿𝐿)) = 1 − exp �− � ℎ�0(𝑢𝑢|𝑡𝑡𝐿𝐿𝐿𝐿) exp�𝑿𝑿(𝑡𝑡𝐿𝐿𝐿𝐿)′𝜷𝜷𝐿𝐿𝐿𝐿��𝑑𝑑𝑢𝑢

𝑡𝑡𝐿𝐿𝐿𝐿+𝑤𝑤

𝑡𝑡𝐿𝐿𝐿𝐿

� 

                                          = 1 − exp�−exp ��𝑿𝑿(𝑡𝑡𝐿𝐿𝐿𝐿)′𝜷𝜷�𝐿𝐿𝐿𝐿��{𝐻𝐻�(𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤) − 𝐻𝐻�(𝑡𝑡𝐿𝐿𝐿𝐿 −)}�, 

where 𝜷𝜷𝐿𝐿𝐿𝐿�  is the partial likelihood estimator of regression parameters 𝜷𝜷𝐿𝐿𝐿𝐿 and 𝐻𝐻�(∙) is the Breslow 

estimator of the baseline cumulative hazard 𝐻𝐻(∙), and 𝑡𝑡𝐿𝐿𝐿𝐿 − indicates the instantaneous moment 

prior to 𝑡𝑡𝐿𝐿𝐿𝐿. As before, upon violation of the proportional hazards assumption, 𝜷𝜷𝐿𝐿𝐿𝐿�  is a weighted 
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average of the true time-varying effects 𝜷𝜷 (𝑡𝑡) on the interval  [𝑡𝑡𝐿𝐿𝐿𝐿, 𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑤𝑤] and 𝐹𝐹�𝑤𝑤�𝑡𝑡𝐿𝐿𝐿𝐿�𝑿𝑿(𝑡𝑡𝐿𝐿𝐿𝐿)� 

well approximates the conditional failure, given the set of assumptions previously stated in section 

2.1.3. 

2.1.5 Stratified Landmark Supermodel with Time-Dependent Covariates 

When there is a set of landmark time points of interest in dynamic prediction, van 

Houwelingen (2007) proposed a stratified landmark supermodel to model the regression 

parameters 𝜷𝜷𝐿𝐿𝐿𝐿 as a function of the landmark time 𝑡𝑡𝐿𝐿𝐿𝐿. The hazard function of the model follows 

the form: 

ℎ (𝑡𝑡|𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿,𝑿𝑿(𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿)) = ℎ0(𝑡𝑡|𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿) exp{𝑿𝑿(𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿)′𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿)} 

for 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 𝑤𝑤, where ℎ0(𝑡𝑡|𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿) is the unspecified baseline hazard and 𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿) is 

an arbitrarily-defined smooth function (e.g. polynomial, spline) of the landmark time 𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿. In 

practice we posit a linear model of  𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠) on 𝑠𝑠: 

𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠) = �𝜃𝜃𝑗𝑗𝑓𝑓𝑗𝑗(𝑠𝑠)
𝑚𝑚𝑏𝑏

𝑗𝑗=1

 

with a set of 𝑚𝑚𝑏𝑏 basis functions �𝑓𝑓1(𝑠𝑠),𝑓𝑓2(𝑠𝑠), … ,𝑓𝑓𝑚𝑚𝑏𝑏
(𝑠𝑠)� and a vector of 𝜃𝜃 parameters. The 

consistent estimators of unknown parameters can be obtained by maximizing the integrated partial 

log-likelihood (IPL) function: 

𝐼𝐼𝑃𝑃𝐼𝐼(𝜷𝜷𝐿𝐿𝐿𝐿) = �𝑑𝑑𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�� 𝑿𝑿𝑖𝑖(𝑢𝑢)′𝜷𝜷𝐿𝐿𝐿𝐿(𝑢𝑢)𝜓𝜓(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡𝑖𝑖

0

− � ln�� � exp (𝑿𝑿𝑗𝑗(𝑢𝑢)′𝜷𝜷𝐿𝐿𝐿𝐿(𝑢𝑢))
𝑡𝑡𝑖𝑖

0

𝑛𝑛

𝑡𝑡𝑗𝑗≥𝑡𝑡𝑖𝑖

�𝜓𝜓(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡𝑖𝑖

0
 � 
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where 𝜓𝜓(⋅) is an indicator function that takes on value 1 in the specified window [𝑠𝑠, 𝑠𝑠 + 𝑤𝑤] and 0 

otherwise.  

The stratified supermodel conveniently estimates smooth landmark-dependent covariate 

effects 𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠), however it provides separate estimated baseline hazards at the event time 𝑡𝑡𝑖𝑖 for 

each landmark stratum under the following expression: 

ℎ0�(𝑡𝑡𝑖𝑖|𝑠𝑠) = �� exp�𝑿𝑿𝑗𝑗(𝑠𝑠)′𝜷𝜷𝐿𝐿𝐿𝐿�(𝑠𝑠)�
𝑛𝑛 

𝑡𝑡𝑖𝑖≤𝑡𝑡𝑗𝑗 

�

 

−1

, 

limiting the generalizability of predictions between landmark time points. Note that ℎ0�(𝑡𝑡𝑖𝑖|𝑠𝑠) does 

not depend on 𝑠𝑠 if 𝑿𝑿(𝑠𝑠) and 𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠) are constant. 

2.1.6 Proportional Baselines Landmark Supermodel with Time-Dependent Covariates 

To address the issue of separate baseline hazards for each landmark stratum, van 

Houwelingen (2007) proposed another model called the proportional baselines landmark 

supermodel. The premise is to model a common baseline hazard through a multiplicative 

dependence on two components:  the set of landmark-specific baseline hazards and a smooth 

function of the landmark time 𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿. Formally, ℎ0(𝑡𝑡|𝑠𝑠) ≡ ℎ0(𝑡𝑡)exp{𝜸𝜸(𝑠𝑠)}. Therefore, the 

hazard function with time-dependent covariates follows the form: 

ℎ (𝑡𝑡|𝑠𝑠,𝑿𝑿(𝑠𝑠)) = ℎ0(𝑡𝑡) exp{𝑿𝑿(𝑠𝑠)′𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠) + 𝜸𝜸(𝑠𝑠)}, 

for 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 𝑤𝑤. In practice, we fit the gamma function via a linear model: 

𝜸𝜸(𝑠𝑠) = �𝜂𝜂𝑗𝑗𝑔𝑔𝑗𝑗(𝑠𝑠)
𝑚𝑚ℎ

𝑗𝑗=1
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with a set of 𝑚𝑚ℎ basis functions �𝑔𝑔1(𝑠𝑠),𝑔𝑔2(𝑠𝑠), … ,𝑔𝑔𝑚𝑚ℎ
(𝑠𝑠)� and a vector of 𝜂𝜂 parameters. The 

unknown regression parameters (𝜃𝜃, 𝜂𝜂) will be estimated by maximizing a generalization of the 

integrated partial log-likelihood (IPL*): 

𝐼𝐼𝑃𝑃𝐼𝐼∗(𝛃𝛃LM,𝜸𝜸) = �𝑑𝑑𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�� 𝑿𝑿𝑖𝑖(𝑠𝑠)′ 𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠)𝜓𝜓(𝑠𝑠)𝑑𝑑𝑠𝑠 + � 𝜸𝜸(𝑠𝑠)𝜓𝜓(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡𝑖𝑖

0

𝑡𝑡𝑖𝑖

0

− � 𝜓𝜓(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡𝑖𝑖

0
ln�� � exp (𝑿𝑿𝑗𝑗(𝑠𝑠)′𝜷𝜷𝐿𝐿𝐿𝐿(𝑠𝑠) + 𝜸𝜸(𝑠𝑠))

𝑡𝑡𝑖𝑖

0

𝑛𝑛

𝑡𝑡𝑗𝑗≥𝑡𝑡𝑖𝑖

�𝜓𝜓(𝑠𝑠)𝑑𝑑𝑠𝑠 �, 

where 𝜓𝜓(𝑠𝑠) is an indicator function that takes on value 1 in the specified window [𝑠𝑠, 𝑠𝑠 + 𝑤𝑤] and 0 

otherwise.  The corresponding common baseline hazards will be estimated via the following 

formula: 

ℎ0�(𝑡𝑡𝑖𝑖) =
∫ 𝜓𝜓(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡𝑖𝑖
0

∑ ∫ exp�(𝑿𝑿𝑗𝑗(𝑠𝑠)′𝜷𝜷𝐿𝐿𝐿𝐿� (𝑠𝑠) + 𝜸𝜸�(𝑠𝑠)�𝜓𝜓(𝑠𝑠)𝑑𝑑𝑠𝑠  𝑡𝑡𝑖𝑖
0   

𝑡𝑡𝑗𝑗≥𝑡𝑡𝑖𝑖

. 

Note that the estimated hazard ℎ0�(𝑡𝑡𝑖𝑖) no longer depends on 𝑠𝑠. For both the stratified and 

proportional baselines supermodels, we implement the sandwich estimators of Lin and Wei (1989) 

to correctly estimate standard errors by accounting for correlation due to the clustering of 

observations within an individual. 

2.2 PALF STUDY DATA 

The PALF Registry contains center- and patient-specific data from 20 sites throughout 

Canada, the United States, and the United Kingdom. For the purpose of our study, we restrict our 

attention to the sample of US patients only (corresponding to the exclusion of site codes 39, 40, 
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and 41), spanning admissions from December 25, 1999 to January 7th, 2011. Clinical information 

including medical history, demographics, and laboratory test results are collected and recorded on 

de-identified forms. Conditional on consent, blood samples and additional biospecimens 

(including but not limited to urine, liver tissue, bile, and skin) are gathered over the course of the 

following seven days only when clinical measures require such sampling. Additional data are 

collected at 6 and 12 months following enrollment, if applicable, given the current status of the 

patient. The University of Pittsburgh Epidemiology Data Center (EDC) receives all registry data 

and remotely stores the potential sources of analysis data in one of the five data structures described 

below. (Note:  descriptions of data structures are adaptations of original PALF-EDC 

documentation.) 

2.2.1 Hospital Evaluation Form 

The hospitalization evaluation (HE) form database contains 756 unique entries, accounting 

for all US patients.  The research team distributes the HE form immediately following patient 

enrollment in the PALF registry. The form captures patient demographics, admission, family, and 

medication histories, and in-hospital information through the first of the following outcomes: 

successful hospital discharge, liver transplantation, or death.  The majority of baseline information 

regarding characteristics of patients at the time of enrollment is found within this file. 

2.2.2 Follow-up Form 

The follow-up (FF) form database contains 352 entries, representing 194 unique patients. 

(Note: 36 patients with one entry; 158 patients with two entries.) The research team follows up 
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with each registry patient at 6 and 12 months following enrollment. The FF form records the 

current status of patients alive with and without a transplant at the last time of registry assessment, 

either at the original hospital discharge or prior follow-up evaluation. Specifically, the form 

captures changes in patient location, list status, vital status, and final diagnosis during the follow-

up interval. 

2.2.3 Follow-up Vital Status Form 

The follow-up vital status (FV) form database contains 170 entries, representing 93 unique 

patients. (Note: 16 patients with one entry; 77 patients with two entries.) The research team 

administers the FV form to patients who underwent liver transplantation, either during the initial 

hospitalization or during the interval following discharge. Follow-up vital status form is completed 

for patients who underwent liver transplantation during the initial hospitalization or during the 

previous follow-up interval. The form captures the same changes as indicated by the description 

of the FF form. 

2.2.4 Hospital Flow Sheet Form 

The hospital flow sheet (HF) form contains 6257 entries, representing 756 unique patients. 

The median number of entries is 9, the mode 10, the interquartile range 4, and the range 1 to 14. 

The HF form is essential to any dynamic analysis, as it contains the time-varying covariate 

information. The HF records daily in-hospital laboratory, procedural, treatment, and event 

information in the PALF registry from the time of enrollment up through 7 days post-enrollment 

in the PALF registry or N-acetylcysteine Trial (until the first of successful hospital discharge, 
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transplantation, or death). The flow sheet is setup as an Excel spreadsheet and is easily accessible 

on the project website. In combination with the HE form, the HF form comprises the majority of 

the patient information necessary to build dynamic prediction models such as van Houwelingen’ 

s landmark supermodel. 

2.2.5 Summary Descriptive File 

The summary descriptive (SUMDS) file contains 756 entries, one for each unique patient 

in the registry. The summary file is an unofficial aggregation of select variables that data managers 

from the EDC believe to be particularly useful in describing the study population and outcomes. 

The file includes useful variables such as date of hospitalization, date of enrollment, time of death, 

time of transplant, and multiple assessments of diagnosis, but fails to capture information 

pertaining to the patient listing with UNOS for transplantation.  

2.3 CONSTRUCTION OF ANALYSIS DATASET 

2.3.1 Selection of Candidate Covariates 

Extensive exploratory analysis precedes the development of dynamic prediction models.  

With expert clinical guidance we considered the proceeding variables from the HE and HF form 

databases: discretized age, albumin (serum), albumin (total), ammonia (arterial), ammonia 

(venous), alanine aminotransferase (ALT), ascites, aspartate aminotransferase (AST), blood pH, 

blood pressure (diastolic), blood pressure (systolic), blood urea nitrogen, creatinine, primary 
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diagnosis, encephalopathy grade, gamma-glutamyl transpeptidase (GGT), gender, hematocrit, 

international normalized ratio (INR), prothrombin time (PT), race, sodium, UNOS Status 1, 

treatment in the intensive care unit, ventilator support, and white blood cell count. We excluded 

potential covariates for a myriad of reasons including substantial proportions of missing values, 

multi-collinearity, and homogeneity within subgroups. High proportions of missing values 

prevented the selection of many desirable predictors:  GGT (33.1% missing), Factor VIIa (53.1% 

missing), sodium (56.9% missing), and venous ammonia (55.3% missing), to name a few. 

Following the identification of the candidate variables we generated a repeated measures survival 

dataset utilizing information concerning outcomes from all four data collection forms, baseline 

characteristics from the HE form, and time-varying information of laboratory values from the HF 

form. The final repeated measures dataset contained 3349 observations from a sample of 658 

unique PALF patients. 

2.3.2 Creation of Super Prediction Dataset 

Landmark analysis necessitates intricate data management routines (Figure 3).  The method 

requires construction of a particular form of data frame, called a super prediction dataset, through 

an involved procedural algorithm. The process is summarized as follows:  

 

i. Fix the prediction window 𝑤𝑤 based on clinical knowledge. For the analysis we elected a 

prediction window of 3 days, an empirical estimate of the median elapsed between listing 

and emergency OLT. 
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ii. Select a set of uniformly spaced landmark prediction time points and define the set 𝑠𝑠𝐿𝐿 =

{𝑠𝑠1, … , 𝑠𝑠𝑙𝑙} based on clinical knowledge. For the analysis we elected to use the set 𝑠𝑠𝐿𝐿 =

{0, … , 18} such that the analysis spans the full 21 days prescribed in the PALF study design. 

iii. Create a prediction dataset for each landmark time point 𝑠𝑠 by left truncation and right 

administrative censoring at end of the prediction window (𝑠𝑠 + 𝑤𝑤); collectively we refer to 

each of these datasets as a stratified data frame. 

iv. Stack all 19 stratified data frames (one for each landmark time point 𝑠𝑠 within the set 𝑠𝑠𝐿𝐿) 

vertically into a single super prediction dataset. Note that passing from one stratum to the 

next one corresponds to sliding the window over the range of time points. 

v. Transform the stacked super prediction dataset by the time-dependent covariates. In 

practice, this equates to censoring and resetting the clock for all individuals within a 

landmark risk set for each observed event. 

 

The repeated process of generating overlapping stratified data frames, re-arranging the 

components as a super stacked dataset, and transforming the data by the time-varying covariates 

results in the rapid inflation of the sample size. The final stacked super prediction dataset contains 

25,666 observations. 
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Figure 3: Graphical representation of the data management process.
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2.4 ANALYSIS 

We managed data and performed analyses in the statistical packages SAS version 9.3 (SAS 

Institute, Cary, North Carolina) and R version 3.0.3 (CRAN, http://cran.r-project.org/), 

respectively. The analysis called for a sequential approach to construct a dynamic prediction model 

of three-day pre-transplant death risk for patients with PALF. Upon performing descriptive 

statistics, we developed the traditional survival regression models and progressed to the 

landmarking method of van Houwelingen, and then examined its predictive ability. Detailed 

specifications of this process are found below. 

2.4.1 Descriptive Statistics 

We reported summary measures of candidate covariates as two-way proportions and 

sequences of mean-median-standard deviation for categorical and continuous variables, 

respectively. We implemented Fisher’s Exact Tests to assess differences among distributions of 

categorical variables between outcomes of (1) alive or OLT and (2) dead without OLT. 

Analogously, we implemented the Mann-Whitney U Test to assess differences in the distributions 

of continuous laboratory values between the aforementioned outcomes. 
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2.4.2 Univariable Cox PH Models 

We modeled the outcome of regression models as pre-transplant survival, measured from 

the time of enrollment in the PALF Study. We applied right censoring to the patients who left the 

study for extraneous reasons, underwent emergency OLT, or did not experience an event within 

the short-term period of interest defined as 21 days. All thirteen of the candidate covariates entered 

univariable regression models; extended Cox regression models with time-dependent covariates 

assessed the continuous variables with repeated measures.  

 

2.4.3 Multivariable Cox PH Models 

Variables deemed statistically significant at a conservative cutoff of P < 0.20 from the 

univariable Cox models, along with all possible covariate-by-covariate interactions, then entered 

the multivariable time-dependent Cox regression model. We employed an Akaike Information 

Criterion-based (AIC) forward selection procedure to produce a parsimonious multivariable 

model.  To validate the selection of variables in the multivariable model, we entered all significant 

variables from the univariable models, along with all possible interactions, into a multivariable 

time-dependent Cox regression model and performed manual backwards selection with a slightly 

less conservative cutoff of P < 0.15. Specifically, we assessed the significance of all predictors 

using the Wald Test, to identify a parsimonious model. Categorical variables with multiple levels 

remained in the model only if the simultaneous testing of the associated vector of parameters 

proved significant. 
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2.4.4 Proportional Baselines Landmark Supermodel 

The construction of the landmark prediction model requires the R package dynpred (Putter, 

2011). We carried forward the final model from the multivariable Cox regression and developed 

the landmark supermodel in a fashion similar to that described in section 2.4.3. Generally speaking, 

the process of fitting a parsimonious landmark supermodel is cumbersome in the presence of 

multiple time-varying covariates.  

Here we simplify the process for the purpose of illustration and translatability. Beginning 

with the final predictors from before, we clustered the model on patient to account for multiple 

observations per patient, inserted two necessary proportional baseline parameters �𝜸𝜸(𝑠𝑠)�, and 

added a landmark time 𝑠𝑠-by-covariate interaction (𝜷𝜷(𝑠𝑠)) for each of the main effects. (The models 

quickly become large and difficult to test.) As before, we employed an AIC forward selection 

procedure to admit entry into the multivariable model and produce less biased estimates of the 

parameters in a parsimonious model.  For the purpose of validating the selection of candidate 

variables, we entered all variables mentioned previously in 2.4.3 into a separate multivariable time-

dependent Cox regression model and performed manual backwards selection. Just as before, we 

assessed the significance of all predictors using the Wald Test. In the presence of repeated measure 

survival outcomes, the likelihood ratio test (LRT) assumes independence among clustered 

observations whereas the Wald Test correctly accounts for their dependence. Thus the use of the 

Wald Test is pertinent to testing parameters within all landmark regression models with repeated 

measures. 
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2.4.5 Prediction of Conditional Survival and Fixed Window Risk Estimates 

To compute estimates of conditional survival and the related estimate of fixed window risk 

probabilities, we invoked a user-modified version of the Fwpredict function in the dynpred 

package (Putter, 2011). (The function is practical but unable to handle models more complex than 

those found in the van Houwelingen and Putter’s textbook.) We plotted the trajectory of the 

average patient’s three-day death probabilities, in addition to the trajectories of all 658 patients 

from the PALF Registry with complete data and aggregated the data in various forms.  

2.4.6 Evaluation of Model Performance 

To examine the performance of the model in the absence of a validation cohort, we 

calculated a marginal estimate of the area under the receiver operating characteristic curve (AUC) 

for all landmark times 𝑠𝑠 (Green and Swets, 1966; Heagerty and Zheng, 2005). As an extension, 

we calculated the dynamic AUC at each of the original landmark time points 𝑠𝑠𝐿𝐿 = {0, … ,18} and 

plotted the performance as a function of time. 
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3.0  RESULTS 

3.1 DESCRIPTIVE STATISTICS 

Among the 756 pediatric patients enrolled in the PALF Study within the United States, we 

identified 658 with complete information (87.0%) based upon expert clinical guidance.  The 

Kaplan-Meier function estimated a 3-week survival of 82.6% (95% CI: 79.0 – 86.4) (Figure 4).  

Overall, 78 patients succumbed to ALF (11.9%) during the 3 week period of study with a median 

time-to-death of 5 days (range 0 - 20). The remaining 580 patients spontaneously recovered, 

underwent orthotopic liver transplant, or left the study (88.1%) with a median time-to-censoring 

of 11 days (range 0 - 21).    

Patient demographics, clinical data, and baseline laboratory values for the PALF patients 

meeting the inclusion study for the analysis are outlined in Table 2.  The following patient 

demographics, clinical factors, and laboratory values indicated statistically significant differences 

by outcome with respect to the Fisher Exact and Mann-Whitney U Tests for categorical and 

continuous variables, respectively: age group, ascites, diagnosis, encephalopathy,  gender,  race, 

UNOS Status 1, ventilator support, ICU, AST, ALT, PT, and total bilirubin.  Spaghetti plots of the 

four continuous laboratory values are displayed in Figure 5. 
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Figure 4:  Kaplan-Meier estimate of survival in the analysis cohort of PALF patients. 
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Table 2:  Patient demographics, clinical data, and laboratory values for the analysis cohort of PALF patients at the time of study enrollment. 
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Figure 5:  Spaghetti plots of the four continuous predictors AST, ALT, PT, and Bilirubin. Observe the sudden drop in the density of measurements beyond day 7 

of the PALF study.

32 



3.2 UNIVARIABLE COX PH MODELS 

Univariable Cox regression models indicated that six time-invariant predictors influenced 

the survival of PALF patients:  age group (P = .0348), ascites (risk factor, P < .0001), diagnosis (P 

= .0145), ventilator support (risk factor, P < .0001), ICU (risk factor, P < .0001), and 

encephalopathy (P < .0001) (Table 3). Within the specific levels of the predictors, we observed 

significant relationships:  age of at least 3 years positively impacted survival (P = .0081) compared 

to age less than 6 months, a diagnosis of etiology other than acetaminophen-related or 

indeterminate negatively impacted survival (P = .0091) compared to an acetaminophen-related 

diagnosis, and an encephalopathy grade of III or IV negatively impacted survival (P < .0001), 

compared to a grade of 0. Among the time-varying lab values, the extended Cox regression models 

indicated that elevated levels of three predictors influenced the survival of PALF patients:  alanine 

aminotransferase (P < .0001), prothrombin time (P < .0001), and total bilirubin (P < .0001). 
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Table 3:  Regression parameter estimates from the univariable time-dependent Cox PH models of pre-transplant survival in PALF patients. 

 

Log hazard ratios are reported with 95% confidence intervals, calculated with robust standard errors. 
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3.3 MULTIVARIABLE COX PH MODELS 

Per the forward selection procedure, the multivariable time-dependent Cox regression 

model indicated nine influential predictors of survival in PALF patients:  ventilator support (risk 

factor, P < .0001), ICU (risk factor, P = .0580), aspartate aminotransferase (P < .0001), alanine 

aminotransferase (P = .0088), prothrombin time (P = .0003), total bilirubin (P = .0006), aspartate 

aminotransferase-bilirubin interaction (P = .1200), aspartate aminotransferase-prothrombin time 

interaction (P = .0840), and bilirubin-prothrombin time interaction (P = .0680) (Table 4). Manual 

backwards selection confirmed the identification of pertinent predictors.  
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Table 4:  Regression parameter estimates from the multivariable time-dependent Cox PH models of pre-transplant survival in PALF patients. 

 

Log hazard ratios are reported with 95% confidence intervals, calculated with robust standard errors.

36 



3.4 PROPORTIONAL BASELINES LANDMARK SUPERMODEL 

The final multivariable landmark supermodel included a set of predictors similar to that the 

of the multivariable Cox model:  ventilator support (risk factor, P < .0001), ICU (risk factor, P = 

.0400), aspartate aminotransferase (P < .0001), alanine aminotransferase (P = .0082), prothrombin 

time (P < .0001), total bilirubin (P = .3900), alanine aminotransferase-bilirubin interaction (P = 

.0930), aspartate aminotransferase-prothrombin time interaction (P = .0790), and bilirubin-

prothrombin time interaction (P = .0037) (Table 5). Furthermore the model indicated the following 

supermodel-related covariate dependencies:  aspartate aminotransferase as function of landmark 

time 𝑠𝑠 (P = 0.1300), prothrombin time as a function of landmark time 𝑠𝑠 (P = 0.0083), hazard as a 

function of landmark time 𝑠𝑠 (P = .0140), and hazard as a function of landmark time 𝑠𝑠2 (P = .0004) 

(Figure 6). 
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Table 5:  Regression parameter estimates from the proportional baselines landmark supermodel of pre-transplant survival in PALF patients. 

 

Log hazard ratios are reported with 95% confidence intervals, calculated with robust standard errors. 
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Figure 6:  Baseline hazard and landmark effects in the proportional baselines landmark supermodel. 
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3.5 PREDICTION OF CONDITIONAL SURVIVAL AND FIXED WINDOW RISK 

ESTIMATES  

The conditional three-day mortality probability estimates of the average patient ranged 

from 0.75% at the time of registry enrollment to 0.06% at the eighteenth day of follow-up. The 

maximum observed probability of 1.1% for the average patient occurred at the second day of the 

study (Figure 7). The personalized dynamic predictions of risk are noticeably different than that 

of the “average patient”, characterized by a substantial degree of variability (Figures 8, 9). 

Personalized predictions for all 658 patients of the analysis cohort are found in the supplementary 

file (separate document). The distribution of conditional three-day mortality probabilities 

aggregated across all landmark points in time and the distributions of the log probabilities stratified 

by landmark time point 𝑠𝑠 provide a graphical representation of the variation in estimates 

probabilities and the potential to discriminate between events and non-events, or rather deaths and 

non-deaths (Figures 10, 11). 
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Figure 7:  The trajectory of three-day conditional mortality probabilities for the “average patient,” or an individual with mean lab values, indicated in blue. 
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Figure 8:  Non-random selection of personalized conditional mortality trajectories for 4 censored (successfully recovered or transplanted) PALF patients. 
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Figure 9:  Non-random selection of personalized conditional mortality trajectories for 4 deceased PALF patients. 

 

43 



 

Figure 10:  Distributions of conditional three-day mortality probability estimates and log mortality probably probability estimates, respectively, aggregated over 

all landmark time points s. 
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Figure 11:  Distributions of conditional three-day mortality log probability estimates, stratified by landmark time point 𝒔𝒔. Probabilities are log transformed to 

enhance visual separation. (A) Day 0  (B) Day 3  (C) Day 6  (D) Day 9  (E) Day 12  (F) Day 15 
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3.6 EVALUATION OF MODEL PERFORMANCE 

The bootstrapped estimates of the supermodel AUC aggregated across all landmark time 

points s indicated a moderate level of discriminative ability, with a marginal AUC of 73.3 (95% 

CI: 71.0 – 78.3) (Figure 12). Although such an evaluation of predictive value is technically 

improper due to the conditional nature of the estimates, the estimate provides a preliminary 

assessment of discriminative ability. The aggregated AUC estimate falls within the confidence 

interval of an oft-cited study in the literature (Lu, 2013). The estimates of dynamic AUC changed 

considerably as a function of landmark time, highlighted by a range of 66.8 – 92.1 (Table 6, Figures 

13, 14). The lowest and highest predictive value of the landmark supermodel occurred on the third 

and sixteenth day following enrollment with estimates of 66.8 (95% CI:  63.9 – 85.1) and 92.1 

(95% CI: 90.3 – 93.8), respectively.  
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Figure 12:  Bootstrapped estimate of AUC for the landmark supermodel (73.3%), aggregated across all landmark time points s. 

Table 6:  Bootstrapped estimates of dynamic AUC for the proportional baselines landmark supermodel. 
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Estimates of AUC are reported with 95% confidence intervals, calculated for 100 bootstrap iterations. 
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Figure 13:  Bootstrapped estimates of dynamic AUC for the landmark supermodel at distinct landmark time points 𝒔𝒔 ∈ (𝒔𝒔𝟎𝟎, 𝒔𝒔𝟏𝟏𝟏𝟏), or simply each of the first sixteen 

days of the PALF Study. 
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Figure 14:  Bootstrapped estimates of dynamic AUC for the landmark supermodel plotted as a function of landmark time point 𝒔𝒔; the red line indicates the 

aggregated (or unweighted) estimate of AUC. 
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4.0  DISCUSSION 

Pediatric acute liver failure is a devastating clinical syndrome for which timely 

transplantation represents the only suitable treatment option for the majority of patients. Despite 

an influx of efforts to understand the underlying physiological mechanisms and improve 

management protocols, the mortality rate remains high. In this study of a multi-center cohort of 

children with ALF, we developed a dynamic prediction model of pre-transplant survival to 

mitigate the uncertainty surrounding the complex clinical decision making process. The model 

performed well, reporting a broad range of AUC estimates. We observed the lowest and highest 

predictive value of the landmark supermodel occurred on the third and sixteenth day following 

enrollment, with estimates respective of 66.8 and 92.1. The extent of variability is not surprising 

given the dynamic nature of the clinical process and constantly evolving risk set.  

As time progresses from study enrollment, the dynamic prediction model provides more 

relevant prognostic information in comparison to traditional survival analyses [and less 

informative methods of modeling such as logistic regression].  Although we cannot formally test 

a related hypothesis, the close examination of predictions enables us to support our claim. Figure 

11 reveals a rapid surge in discriminative ability beginning in day four and extending to day 

sixteen, with one noticeable deviation. This late boost in predictive ability illustrates the ability of 

conditional survival methodology to account for temporal changes in the cohort of interest.  
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There are several limitations to our approach. The study is retrospective in design, as the 

analysis is not primary but secondary in form.  Specifically, we may not be cognizant of temporal 

changes in management or measurement practices dating back to 1999.  The lack of a validation 

cohort is another weakness in the analysis. We plan to investigate external generalizability of our 

model by applying the landmark supermodel to patients of PALF Study from countries other than 

the United States.  

The availability of data, or lack thereof, beyond the first seven days presents a notable 

limitation of the study as well. For 75% of the patients in our analysis, updated health status data 

is not available beyond the first week. Resultantly, a majority of the estimates in the latter weeks 

are subject to a potential attenuation effect due to aging of the time-dependent covariates.  

The most significant of limitations pertains to a common difficulty in survival analysis. 

Our analysis attempts to estimate the likelihood of mortality in the presence of a strong competing 

risk:  emergency transplant. As with any analysis subject to a competing risk, the possibility of 

biased estimates is non-ignorable. However, the competing risk landmark supermodel 

methodology is not currently available although its development is long underway. The typical 

approach in the related literature is to model the outcome as a composite event (group died and 

received a transplant together). Given the association between pre-transplant death and OLT, the 

estimation procedure for clustering the events together as a unit is considerably less complicated. 

Results published in the Lu et al. (2013) secondary evaluation of the Liver Injury Unit measure 

supports this claim. Notably, the c-index of the Liver Injury Unit for predicting death versus 

survival (ignoring transplant altogether) is 0.76 based on a convenience sample selected on the 

basis of valid ammonia data (n = 276). We explicitly elected to model deaths alone and not the 

joint event, in order to mimic the actualization of the medical decision making process in a real 
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life scenario. When evaluating a PALF patient the physician inherently estimates the probability 

of death, not the probability of death or receiving a transplant.  

On a related note, our study imposed weak requirements for inclusion with respect to 

missing data. That is, we did not limit the analysis sample size on the basis of the availability of 

the strongest predictors. The sole inclusion of cases with venous ammonia measurements restricts 

our sample from 658 patients to roughly half of the original size. This practice inherently 

introduces bias, typically by reducing heterogeneity in the sample or assuming the availability of 

powerful yet oft-absent information. Under these conditions we would expect an ill-informed 

increase in predictive ability.  

Regarding novelty, our study may be the first to explicitly assign probabilities of clinical 

outcomes to liver transplantation. Additionally, we believe our study may be the first apply 

conditional survival modeling to an acute scenario, regardless of disease. Updated prognosis is 

particularly relevant to acute conditions, as clinicians are asked to repeatedly assess the 

appropriateness of high-risk interventions for a given patient. Independent of the short-term 

success with modeling acute liver failure in children, landmarking modeling appears to be a 

promising quantitative method for analyzing dynamic changes in risk sets and conditional survival. 

Further research is warranted. 

 

Public Health Impact: 

Dynamic prediction models are of great interest to clinicians and patients alike, enabling 

well-informed decisions in light of the unpredictable nature of clinical and pathophysiological 

systems. Extensions of our model may be utilized to facilitate proper allocation of scarce resources, 

such as donor organs. 
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APPENDIX A: ALTERNATIVE LANDMARK SUPERMODELS 

 

i. Aging Covariate Model allows for time-varying covariate effects within the prediction 

window w  

ii. Derivative-Type Model incorporates the rate of change in laboratory value vector {ALT, 

AST, Bilirubin, PT} since the last time of measurement 

A.1 AGING COVARIATE EFFECTS (LINEAR) 

 

54 



A.2 AGING COVARIATE EFFECTS (SQUARE) 

 

A.3 AGING COVARIATE EFFECTS (LINEAR) WITH INTERACTIONS 
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A.4 AGING COVARIATE EFFECTS (SQUARE) WITH INTERACTIONS 

 

A.5 DERIVATIVE-TYPE MODEL WITH AGING COVARIATES 
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A.6 DERIVATIVE-TYPE MODEL WITH AGING COVARIATES AND 

INTERACTIONS 

 

A.7 DERIVATIVE-TYPE MODEL WITH LANDMARK-DEPENDENT EFFECTS 
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A.8 DERIVATIVE-TYPE MODEL WITH LANDMARK-DEPENDENT EFFECTS 

AND INTERACTIONS 

 

A.9 AGING COVARIATE EFFECT MODEL WITH LANDMARK-DEPENDENT 

EFFECTS AND INTERACTIONS 
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APPENDIX B: R CODE 

 

Brief sample of the R Code utilized to estimate the landmark supermodel and calculate dynamic 

predictions at the population- and patient-level. Code is an adaptation and extension of the dynpred 

package (Putter, 2011) created and maintained for the purpose of complementing the textbook of 

van Houwelingen and Putter (2012). 

 
rm(list=ls())  
 
#import data from SAS; 
#library(Hmisc) 
#PALF=sasxport.get('C:/Users/dsd21/desktop/Thesis PC/PALF2_bio_change.xpt') 
#save(PALF,file='C:/Users/dsd21/desktop/Thesis PC/PALF2_bio_change.Rda') 
 
load('C:/Users/dsd21/desktop/Thesis PC/PALF2_bio_change.Rda')  #PC 
names(PALF) 
summary(PALF) 
require(dynpred) 
require(car) 
require(leaps) 
 
 
############################################################################## 
###  Define parameters 
############################################################################## 
 
#3140 of ammonia missing among all HF entries 
#specify window length 
w = 3 
lastLM = 21 - w 
gap = 1 
 
#unblock these if want to used censored times 
#PALF$t.event=PALF$t.eventc 
PALF$event1=PALF$event1c 
PALF$t.event=PALF$t.eventc 
#PALF$event1=PALF$event12 
 
# 
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#PALF$t.eventc=.0000000001+PALF$t.eventc 
#PALF$t.event=.0000000001+PALF$t.event 
PALF$t.eventc=.5+PALF$t.eventc 
PALF$t.event=.5+PALF$t.event 
 
 
#dxi 
PALF$dxi=0 
PALF$dxi=ifelse(PALF$dx=="Indeterminate", 1, 0) 
 
#modify age 
PALF$age = 1 
PALF$age[PALF$age.grp=="0-6 months"] <- 0 
 
#transformed in SAS 
#log transform 
#PALF$ptp=log(PALF$ptp) 
#PALF$tbili=log(PALF$tbili) 
#PALF$ast=log(PALF$ast) 
#PALF$alt=log(PALF$alt) 
#PALF$pc=log(PALF$pc) 
#PALF$tc=log(PALF$tc) 
#PALF$a1c=log(PALF$a1c) 
#PALF$a2c=log(PALF$a2c) 
 
par(mfrow=c(2,2)) 
hist(PALF$ptp) 
hist(PALF$tbili) 
hist(PALF$ast) 
hist(PALF$alt) 
 
#center continuous variables 
PALF$ptp = PALF$ptp - mean(PALF$ptp) 
PALF$tbili = PALF$tbili - mean(PALF$tbili) 
PALF$ast = PALF$ast - mean(PALF$ast) 
PALF$alt = PALF$alt - mean(PALF$alt) 
 
#okay to run if not used 
PALF$tc=PALF$tc/PALF$tel 
PALF$pc=PALF$pc/PALF$tel 
PALF$a1c=PALF$a1c/PALF$tel 
PALF$a2c=PALF$a2c/PALF$tel 
 
par(mfrow=c(2,2)) 
hist(PALF$pc) 
hist(PALF$tc) 
hist(PALF$a1c) 
hist(PALF$a2c) 
 
 
PALF[is.na(PALF)] <- 0 
 
#check vif // no issues 
 
check=lm(t.event ~ ptp + tbili + i.respr + i.icu + ast + alt  
  + ptp*tbili +tbili*alt + ptp*ast 
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  #+ cluster(ttime) 
  , data=PALF) 
vif(check) 
 
vcov(check) 
 
 
############################################################################## 
############################################################################## 
### Section 7.2  
############################################################################## 
############################################################################## 
 
 
#prep data with extra stuff for tracking changes in biomarker levels 
## Overall survival 
palfsurv <- NULL 
n <- length(unique(PALF$id)) 
nid <- length(unique(PALF$id)) 
n2 <- unique(PALF$id) 
for (i in 1:n) { 
  tbilii <- PALF[PALF$id==n2[i],] 
  n2i <- nrow(tbilii) 
   
  tbilii$Tstart <- tbilii$ttime 
  tbilii$Tstop <- c(tbilii$Tstart[-1],tbilii$t.event[1]) 
  tbilii$status <- c(rep(0,nrow(tbilii)-1),tbilii$event1[1]) 
  #tbilii$TEL <- 0 
  #tbilii$TEL <- tbilii$Tstop - tbilii$Tstart 
  #tbilii$tc = tbilii$tc/tbilii$TEL 
  #tbilii$pc = tbilii$pc/tbilii$TEL 
  #tbilii$a1c = tbilii$a1c/tbilii$TEL 
  #tbilii$a2c = tbilii$a2c/tbilii$TEL 
  palfsurv <- rbind(palfsurv,tbilii) 
} 
 
palfsurv[1:20,] 
 
#varified tel is correct 
#hist(palfsurv$tel) 
 
 
 
 
############################################################################### 
Cross-tabulation of first event status and survival status 
############################################################################## 
 
pslast <- palfsurv[c(which(!duplicated(palfsurv$id))[-1]-1,nrow(palfsurv)),] 
table(pslast$status,pslast$event1) 
 
pslast[1:20,] 
 
pred=6 
 
logHR=matrix(0,lastLM+1,pred) 
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se=matrix(0,lastLM+1,pred) 
lb=matrix(0,lastLM+1,pred) 
ub=matrix(0,lastLM+1,pred) 
 
LMdata <- NULL 
LMs <- seq(0,lastLM,by=gap) 
for (LM in LMs) { 
  LMdataLM <- cutLM(data=PALF,outcome=list(time="t.event",status="event1"), 
                  LM=LM,horizon=LM+w,covs=list(fixed=c("ast","alt","ptp","i.respr","i.icu", 
   "ascites","age.grp","dxi","age","dx","tc","pc","a1c","a2c","tel","event2"), 
   varying="tbili"),format="long",id="id",rtime=c("ttime"),right=FALSE) 
 
  LMdataLM <- LMdataLM[LM - LMdataLM$ttime <= 100,] # of wbctime? 
  #LMdataLM <- LMdataLM[LM - LMdataLM$ttime,] 
  LMdataLM <- LMdataLM[!is.na(LMdataLM$id),] 
  LMdata <- rbind(LMdata,LMdataLM) 
   
  LMcox <- coxph(Surv(LM,t.event,event1) ~ ast + alt + ptp + tbili + i.respr + i.icu 
                + cluster(id), data=LMdata, method="breslow",robust=TRUE) 
  se[LM+1,] <- (sqrt(diag(LMcox$var))) 
                logHR[LM+1,] <- LMcox$coef[1:pred] 
} 
 
 
ub=logHR+1.96*se 
lb=logHR-1.96*se 
 
par(mfrow=c(2,3)) 
for (i in 1:pred) { 
plot(LMs,logHR[,i],type="s",lwd=2, 
     xlim=c(0,lastLM),ylim=c(-1,4), 
     xlab="Time (days)",ylab="Log hazard ratio",lty=1) 
lines(LMs,rep(0,lastLM+1),"s",lty=1,col="red") 
lines(LMs,lb[,i],type="s",lty=2) 
lines(LMs,ub[,i],type="s",lty=2) 
} 
 
 
 
 
 
 
############################################################################### 
Results of landmark analyses for the WBC counts; 
### s runs from 0.5 to 3.5 with steps of 0.1; window width w=4 
############################################################################## 
 
## Simple (ipl) 
LMdata$Tstart <- LMdata$LM 
LMsupercox0 <- coxph(Surv(Tstart,t.event,event1) ~ ast + alt + ptp + tbili + i.respr +i.icu 
 + strata(LM) + cluster(id), data=LMdata, method="breslow",robust=TRUE) 
LMsupercox0 
 
## Extended 
tt <- sort(unique(LMdata$t.event[LMdata$event1==1])) 
dim(LMdata) 
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LMdata2 <- survSplit(data=LMdata, cut=tt, end="t.event", start="Tstart", event="event1") 
dim(LMdata2) 
 
 
LMdata2$tbilitmins <- LMdata2$tbili*(LMdata2$t.event - LMdata2$LM) 
LMdata2$tbilitmins2 <- LMdata2$tbili*(LMdata2$t.event - LMdata2$LM)^2 
 
LMdata2$ptptmins <- LMdata2$ptp*(LMdata2$t.event - LMdata2$LM) 
LMdata2$ptptmins2 <- LMdata2$ptp*(LMdata2$t.event - LMdata2$LM)^2 
 
LMdata2$asttmins <- LMdata2$ast*(LMdata2$t.event - LMdata2$LM) 
LMdata2$asttmins2 <- LMdata2$ast*(LMdata2$t.event - LMdata2$LM)^2 
 
LMdata2$alttmins <- LMdata2$alt*(LMdata2$t.event - LMdata2$LM) 
LMdata2$alttmins2 <- LMdata2$alt*(LMdata2$t.event - LMdata2$LM)^2 
 
LMdata2$i.resprtmins <- LMdata2$i.respr*(LMdata2$t.event - LMdata2$LM) 
LMdata2$i.resprtmins2 <- LMdata2$i.respr*(LMdata2$t.event - LMdata2$LM)^2 
 
LMdata2$i.icutmins <- LMdata2$i.icu*(LMdata2$t.event - LMdata2$LM) 
LMdata2$i.icutmins2 <- LMdata2$i.icu*(LMdata2$t.event - LMdata2$LM)^2 
 
 
f2 <- function(t) (t/lastLM) 
f3 <- function(t) (t/lastLM)^2 
 
LMdata2$f2ast = LMdata2$ast*f2(LMdata2$LM) 
LMdata2$f3ast = LMdata2$ast*f3(LMdata2$LM) 
LMdata2$f2alt = LMdata2$alt*f2(LMdata2$LM) 
LMdata2$f3alt = LMdata2$alt*f3(LMdata2$LM) 
LMdata2$f2ptp = LMdata2$tbili*f2(LMdata2$LM) 
LMdata2$f3ptp = LMdata2$tbili*f3(LMdata2$LM) 
LMdata2$f2tbili = LMdata2$tbili*f2(LMdata2$LM) 
LMdata2$f3tbili = LMdata2$tbili*f3(LMdata2$LM) 
LMdata2$f2i.respr = LMdata2$i.respr*f2(LMdata2$LM) 
LMdata2$f3i.respr = LMdata2$i.respr*f3(LMdata2$LM) 
LMdata2$f2i.icu = LMdata2$i.icu*f2(LMdata2$LM) 
LMdata2$f3i.icu = LMdata2$i.icu*f3(LMdata2$LM) 
 
 
# ipl 
#linear effects 
LMsupercox11 <- coxph(Surv(Tstart,t.event,event1) ~ ast + alt + ptp + tbili + i.respr + i.icu 
 + strata(LM) + cluster(id), data=LMdata2, method="breslow") 
 
#polynomial effects 
LMsupercox12 <- coxph(Surv(Tstart,t.event,event1) ~ ast + alt + ptp + tbili + i.respr + i.icu 
 + strata(LM) + cluster(id), data=LMdata2, method="breslow") 
 
LMsupercox11 
LMsupercox12 
 
# ipl* 
g1 <- function(t) (t/lastLM) 
g2 <- function(t) (t/lastLM)^2 
 

63 



LMdata2$LM1 <- g1(LMdata2$LM) 
LMdata2$LM2 <- g2(LMdata2$LM) 
 
LMsupercox21 <- coxph(Surv(Tstart,t.event,event1) ~  ast + alt + ptp + tbili + i.respr + i.icu 
 #+ptptmins + 0*ptptmins2 +asttmins + 0*asttmins2 +alttmins + 0*alttmins2 
 + LM1 + LM2 + cluster(id), data=LMdata2, method="breslow") 
LMsupercox22 <- coxph(Surv(Tstart,t.event,event1) ~  ast + alt + ptp + tbili + i.respr + i.icu 
 #+0*ptptmins + ptptmins2 +0*asttmins + asttmins2 +0*alttmins + alttmins2  
 + LM1 + LM2 + cluster(id), data=LMdata2, method="breslow") 
LMsupercox21 
LMsupercox22 
 
LMsupercox2 <- coxph(Surv(Tstart,t.event,event1) ~  ptp + tbili + i.respr + i.icu + ast + alt  
 + f2ptp + f2ast + ptp*tbili + ast*ptp + tbili*alt 
 + LM1 + LM2 + cluster(id), data=LMdata2, method="breslow") 
LMsupercox2 
 
 
 
 
############################################################################## 
### Figure 8.5: Time-varying effect of LWBC for the ipl and the ipl* 
### models of Table 8.5 
############################################################################## 
par(mfrow=c(1,2)) 
 
 
#plot the linear effect model 
 
tseq <- seq(0,lastLM,by=gap) 
plot(tseq,coef(LMsupercox11)[["ast"]]+coef(LMsupercox11)[["asttmins"]]*tseq, 
    type="l",lwd=2,ylim=c(-2,6),xlab="t-s",ylab="Log hazard ratio",main="Landmark Supermodel Effects (Linear T-
V)",col="green") 
lines(tseq,coef(LMsupercox21)[["ast"]]+coef(LMsupercox21)[["asttmins"]]*tseq, 
    type="l",lwd=2,lty=2,col="green") 
lines(c(0,lastLM),rep(coef(LMsupercox0)[["ast"]],2),type="l",lty=3,col="green") 
 
 
lines(tseq,coef(LMsupercox11)[["ptp"]]+coef(LMsupercox11)[["ptptmins"]]*tseq, 
    type="l",lwd=2,lty=1,col="purple") 
lines(tseq,coef(LMsupercox21)[["ptp"]]+coef(LMsupercox21)[["ptptmins"]]*tseq, 
    type="l",lwd=2,lty=2,col="purple") 
lines(c(0,lastLM),rep(coef(LMsupercox0)[["ptp"]],2),type="l",lty=3,col="purple") 
 
lines(tseq,coef(LMsupercox11)[["alt"]]+coef(LMsupercox11)[["alttmins"]]*tseq, 
    type="l",lwd=2,lty=1,col="blue") 
lines(tseq,coef(LMsupercox21)[["alt"]]+coef(LMsupercox21)[["alttmins"]]*tseq, 
    type="l",lwd=2,lty=2,col="blue") 
lines(c(0,lastLM),rep(coef(LMsupercox0)[["alt"]],2),type="l",lty=3,col="blue") 
 
lines(c(0,lastLM),rep(coef(LMsupercox11)[["tbili"]],2),type="l",lty=3,col="red") 
 
#lines(c(0,lastLM),rep(coef(LMsupercox0)[["i.respr"]],2),type="l",lty=3,col="red") 
#lines(c(0,lastLM),rep(coef(LMsupercox0)[["i.icu"]],2),type="l",lty=3,col="grey") 
 
legend("topright",lwd=c(2,2,1),lty=1:3,c("Extended ipl","Extended ipl*","Simple ipl"),bty="n") 
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#plot the non-linear model 
 
tseq <- seq(0,lastLM,by=gap) 
plot(tseq,coef(LMsupercox12)[["ast"]]+coef(LMsupercox12)[["asttmins2"]]*tseq^2, 
    type="l",lwd=2,ylim=c(-2,6),xlab="t-s",ylab="Log hazard ratio",main="Landmark Supermodel Effects (Non-
linear T-V)",col="green") 
lines(tseq,coef(LMsupercox22)[["ast"]]+coef(LMsupercox22)[["asttmins2"]]*tseq^2, 
    type="l",lwd=2,lty=2,col="green") 
lines(c(0,lastLM),rep(coef(LMsupercox0)[["ast"]],2),type="l",lty=3,col="green") 
 
lines(tseq,coef(LMsupercox12)[["ptp"]]+coef(LMsupercox12)[["ptptmins2"]]*tseq^2, 
    type="l",lwd=2,lty=1,col="purple") 
lines(tseq,coef(LMsupercox22)[["ptp"]]+coef(LMsupercox22)[["ptptmins2"]]*tseq^2, 
    type="l",lwd=2,lty=2,col="purple") 
lines(c(0,lastLM),rep(coef(LMsupercox0)[["ptp"]],2),type="l",lty=3,col="purple") 
 
lines(tseq,coef(LMsupercox12)[["alt"]]+coef(LMsupercox12)[["alttmins2"]]*tseq^2, 
    type="l",lwd=2,lty=1,col="blue") 
lines(tseq,coef(LMsupercox22)[["alt"]]+coef(LMsupercox22)[["alttmins2"]]*tseq^2, 
    type="l",lwd=2,lty=2,col="blue") 
lines(c(0,lastLM),rep(coef(LMsupercox0)[["alt"]],2),type="l",lty=3,col="blue") 
 
lines(c(0,lastLM),rep(coef(LMsupercox12)[["tbili"]],2),type="l",lty=3,col="red") 
 
#lines(c(0,lastLM),rep(coef(LMsupercox0)[["i.respr"]],2),type="l",lty=3,col="red") 
#lines(c(0,lastLM),rep(coef(LMsupercox0)[["i.icu"]],2),type="l",lty=3,col="grey") 
 
legend("topright",lwd=c(2,2,1),lty=1:3,c("Extended ipl","Extended ipl*","Simple ipl"),bty="n") 
 
 
 
############################################################################### 
 Baseline hazard and landmark effects in proportional 
### baselines landmark supermodel 
############################################################################## 
 
means <- LMsupercox2$means 
means 
 
ndata <- data.frame(ast=0,alt=0,ptp=0,i.respr=0,i.icu=0,tbili=0,tbilitmins=0, ptptmins=0, 
 asttmins=0,alttmins=0,LM1=0,LM2=0,f2ptp=0,f3ptp=0,f2ast=0,f3ast=0) 
sf2 <- survfit(LMsupercox2, newdata=ndata) 
Haz0 <- data.frame(time=sf2$time,surv=sf2$surv);  
Haz0$Haz <- -log(Haz0$surv) 
 
par(mfrow=c(1,2)) 
par(mar=c(5,4,4,1.6)+0.1) 
plot(Haz0$time, Haz0$Haz, type="s", lwd=2, xlab="Time (days)", ylab="Cumulative hazard") 
 
par(mar=c(5,3.6,4,2)+0.1) 
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plot(LMs, exp(LMsupercox2$coef["LM1"]*g1(LMs)+ LMsupercox2$coef["LM2"]*g2(LMs)) , type="l", lwd=2, 
xlab="Landmark (s)", ylab="exp(theta(s))") 
par(mfrow=c(1,1)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
############################################################################# 
### Dynamic predictions of death within w = 3 years in the 
### proportional baselines landmark supermodel for different trajectories 
### of laboratory values 
############################################################################## 
 
tt <- PALF$t.event[PALF$event1==1] 
tt <- sort(unique(c(0,tt,tt-w))) 
tt <- tt[tt>=0] 
tt=seq(0,lastLM,by=1) 
nt <- length(tt) 
 
# Custom-made fuction 
Fwpredict <- function(bet, Haz0, xdata1, xdata2, xdata3, xdata4,xdata5, xdata6, tt) 
{ 
    nt <- length(tt) 
    Haz0$haz <- diff(c(0,Haz0$Haz)) 
    Fw <- data.frame(time=tt,Fw=NA) 
    for (i in 1:nt) { 
        sfi <- Haz0 # local copy 
        tti <- tt[i] 
        sfi$haz <- sfi$haz * 
          exp(bet[1]*xdata1[i] + bet[7]*xdata1[i]*g1(tt[i])    #ptp 
  + bet[2]*xdata2[i]        #tbili 
  + bet[3]*xdata3 + bet[4]*xdata4  
  + bet[5]*xdata5[i] + bet[8]*xdata5[i]*g1(tt[i])    #ast 
  + bet[6]*xdata6[i]        #alt 
  + bet[11]*xdata1[i]*xdata2[i] + bet[12]*xdata1[i]*xdata5[i] +bet[13]*xdata2[i]*xdata6[i] 
 #interaction 
  + bet[9]*g1(tt[i]) + bet[10]*g2(tt[i])) 
        sfi$Haz <- cumsum(sfi$haz) 
        tmp <- evalstep(sfi$time,sfi$Haz,c(tti,tti+w),subst=0) 
        Fw$Fw[i] <- 1-exp(-(tmp[2]-tmp[1])) 
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    } 
    return(Fw) 
} 
 
 
 
 
 
base=subset(PALF,ttime==0) 
means_b = base$means 
ri00=subset(PALF,i.respr==0 & i.icu==0)  #no resp, no icu 
means_00 = ri00$means 
ri01=subset(PALF,i.respr==0 & i.icu==1)  #no resp, yes icu 
means_01 = ri00$means 
ri10=subset(PALF,i.respr==1 & i.icu==0)  #yes resp, no icu 
means_10 = ri00$means 
ri11=subset(PALF,i.respr==1 & i.icu==1)  #yes resp, yes icu 
means_11 = ri00$means 
 
 
 
 
 
 
 
 
# First basic, not taking into account biomarker measurements 
cbas <- coxph(Surv(t.event,event1) ~ i.respr+i.icu, data=pslast, method="breslow") 
sf <- survfit(cbas) 
Fwbas <- Fwindow(sf,width=w) 
Fwbas <- subset(Fwbas,time>=0.0) 
Fwbas <- subset(Fwbas,time<=(lastLM+.01)) 
 
tt <- seq(0,lastLM,by=gap) 
nt <- length(tt) 
xdata1 <- rep(0,nt)  #pt 
xdata2 <- rep(0,nt)  #bili 
xdata3 = means[3]   #respr 
xdata4 = means[4]   #icu 
xdata5 <- rep(0,nt)  #ast 
xdata6 <- rep(0,nt)  #alt 
Fw0 <- Fwpredict(LMsupercox2$coef, Haz0, xdata1, xdata2, xdata3, xdata4, xdata5, xdata6, tt) 
 
 
xdata1 <- rep(max(PALF$ptp)/3,nt) 
xdata2 <- rep(max(PALF$tbili)/3,nt) 
xdata3 = means[3]    #resp 
xdata4 = means[4]    #icu 
xdata5 <- rep(max(PALF$ast)/3,nt)  #ast 
xdata6 <- rep(max(PALF$alt)/3,nt)  #alt 
Fw1 <- Fwpredict(LMsupercox2$coef, Haz0, xdata1, xdata2, xdata3, xdata4, xdata5, xdata6, tt) 
 
 
xdata1 <- (1-(tt/lastLM))*max(PALF$ptp)*2/3 
xdata2 <- (1-(tt/lastLM))*max(PALF$tbili)*2/3 
xdata3 = means[3] 
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xdata4 = means[4]       #icu 
xdata5 <- (1-(tt/lastLM))*max(PALF$ast)*2/3  #ast 
xdata6 <- (1-(tt/lastLM))*max(PALF$alt)*2/3  #alt 
Fw2 <- Fwpredict(LMsupercox2$coef, Haz0, xdata1, xdata2, xdata3, xdata4, xdata5, xdata6, tt) 
 
 
 
 
 
plot(tt,Fw0$Fw,type="l",lwd=2,ylim=c(0,.10),xlab="Landmark(s)",ylab="Probability of Death within 3 
days",col="blue") 
 #    main="Landmark Supermodel Prediction") 
lines(tt,Fw1$Fw,lwd=2,lty=3) 
lines(tt,Fw2$Fw,lwd=2,lty=2) 
lines(Fwbas$time,Fwbas$Fw,lwd=2,col=8) 
 
legend("topright",c("x(s)=Mean Lab Values","x(s)=Elevated but Stable Biomarker Values", 
 "x(s)=Highly Elevated but Decresasing Biomarker Values","Model without Biomarker 
Data"),lwd=2,lty=c(1,3,2,1),col=c(1,1,1,8),bty="n") 
 
#hist(pslast$Tstart) 
 
summary(pslast$Tstart) 
 
 
 
 
 
 
 
 
############################################################################## 
###  Automated procedure to generate trajectories for all patients and AUC estimates 
############################################################################## 
 
par(mfrow=c(1,1)) 
 
#number of randomly drawn patients 
#z=round(runif(1,min=1,max=16)) 
z=8 
p  <- matrix(NA,length(unique(LMdata$id)),lastLM+1) 
death <- matrix(NA,length(unique(LMdata$id)),lastLM+1) 
 
maxp <- NULL 
deathf <- NULL 
event <- NULL 
tx <- NULL 
pl <- NULL 
p0 <- NULL 
p3 <- NULL 
p6 <- NULL 
p9 <- NULL 
p12 <- NULL 
p15 <- NULL 
p18 <- NULL 
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graph.row=round(sqrt(z)) 
#par(mfrow=c(graph.row,ceiling(z/graph.row))) 
nid <- length(unique(LMdata$id)) 
n2 <- unique(LMdata$id) 
 
 
 
pdf() #ouputs as Rplot in Documents/R 
par(mfrow=c(3,2)) 
 
#for (ii in 1:z) { 
for (ii in 1:nid) { 
 
u=round(runif(1,min=1,max=nid)) 
#temp=PALF[PALF$id==n2[u],]             #z random sample 
temp=LMdata[LMdata$id==n2[ii],]             #entire sample 
 
 
xdata1=temp$ptp 
xdata2=temp$tbili 
xdata3=temp$i.respr[1] 
xdata4=temp$i.icu[1] 
xdata5=temp$ast 
xdata6=temp$alt 
tt=temp$LM 
 
Fw <- Fwpredict(LMsupercox2$coef, Haz0, xdata1, xdata2, xdata3, xdata4, xdata5, xdata6, tt) 
maxp[ii] <- max(Fw$Fw) 
last=nrow(temp) 
p[ii,1:length(Fw$Fw)]=Fw$Fw 
pl[ii] = Fw$Fw[last] 
death[ii,1:length(Fw$Fw)]=temp$event1 
deathf[ii] <- temp$event1[last] 
tx[ii] <- temp$event2[last] 
#event[ii] <- temp$event[1] 
 
 
 
Outcome=factor(deathf) 
levels(Outcome) = c('Censored','Deceased') 
#Competing.Risk=factor(event) 
#levels(Competing.Risk) = c('Censored','Deceased','Transplanted') 
 
 
 
 
color="darkseagreen" 
if (deathf[ii]==1) {color="darkred"} 
if (tx[ii]==1) {color="blue"}                #disable this to get rid of transplant indication 
 
style="l" 
if (length(Fw$Fw)==1) {style=NULL} 
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#plotname=paste("predictions_ext/", Outcome[ii],"/id_", n2[ii],"_",round(1000*maxp[ii])/1000, ".pdf", sep="") 
 
plot(tt,Fw$Fw,type=style,lwd=2,xlim=c(0,max(tt)),ylim=c(0,.85),xlab="Landmark (s)",ylab="Probability of Death 
within 3 days", 
     main=paste0("Patient ID = ",n2[ii]," (",Outcome[ii],")"),col=color) 
} 
 
 
 
 
 
dev.off() 
 
table(event) 
 
#create new outcome vector to match length of probabilities!! 
m=max(maxp) 
PRI=100*(p/m) #PALF risk index 
#PRI=exp(p/max(p)) #PALF risk index                #modified PRI 
 
par(mfrow=c(1,1)) 
hist(p) 
 
require(ggplot2) 
require(AUC) 
require(pROC) 
 
pv=as.vector(p) 
#pv=na.omit(pv) 
 
 
pdf('outcome_p.pdf') 
Proximal.Outcome=factor(death) 
levels(Proximal.Outcome) = c('Censored','Deceased') 
qplot(pv, geom="density", fill=Proximal.Outcome, alpha=I(.4),  
      main="Distribution of 3-day Probabilities at Enrollment", xlab="P[Death within 3 days]",  
      ylab="Density") 
#fill=death[c((s-1)+seq(1,length(n2)*(lastLM),by=lastLM))] 
dev.off() 
 
 
pdf('outcome_logp.pdf') 
Proximal.Outcome=factor(death) 
levels(Proximal.Outcome) = c('Censored','Deceased') 
qplot(log(pv), geom="density", fill=Proximal.Outcome, alpha=I(.4),  
      main="Distribution of 3-day Probabilities at Enrollment", xlab="P[Death within 3 days]",  
      ylab="Density") 
#fill=death[c((s-1)+seq(1,length(n2)*(lastLM),by=lastLM))] 
dev.off() 
 
 
 
 
#pROC commands 
roc(death,pv) 
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roc1 = roc(death,pv, percent=TRUE, 
# arguments for auc 
partial.auc=c(100, 90), partial.auc.correct=TRUE, 
partial.auc.focus="sens", 
# arguments for ci 
ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE, 
# arguments for plot 
plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
print.auc=TRUE, show.thres=TRUE) 
CI_all=c(roc1$ci[1],roc1$ci[2],roc1$ci[3]) 
 
 
 
t1=0; t2=lastLM     #all probs, or up to given time t2 
t1=1; t2=4          #specificy range 
roc2 = roc(tdeath,tpv, percent=TRUE, 
           # arguments for auc 
           partial.auc=c(100, 90), partial.auc.correct=TRUE, 
           partial.auc.focus="sens", 
           # arguments for ci 
           ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE, 
           # arguments for plot 
           plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
           print.auc=TRUE, show.thres=TRUE) 
 
 
par(mfrow=c(4,4)) 
days=lastLM+1 
CI <- matrix(NA,days,3) 
 
for (ti in 1:days) { 
d=ti-1; t1=d; t2=d+1          #pick single day 
tdeath=death[(1+(658*t1)):(658*(t2+1))] 
tpv=pv[(1+(658*t1)):(658*(t2+1))] 
roc2 = roc(tdeath,tpv, percent=TRUE, 
           # arguments for auc 
           partial.auc=c(100, 90), partial.auc.correct=TRUE, 
           partial.auc.focus="sens", 
           # arguments for ci 
           ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE, 
           # arguments for plot 
           plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
           print.auc=TRUE, show.thres=TRUE) 
CI[ti,]=roc2$ci 
} 
 
 
plot(LMs,CI[,2],type="l",xlab="Landmark(s)",ylab="AUC(s)",lwd=2,  
     main="Dynamic AUC(s) for Landmark Supermodel",ylim=c(50,100)) 
lines(LMs,CI[,1],type="l",lwd=1,lty=2) 
lines(LMs,CI[,3],type="l",lwd=1,lty=2) 
lines(LMs,rep(roc1$ci[2],length(LMs)),col="red",lwd=2) 
legend("bottomright",c("Estimated AUC(s)","95% CI","Unweighted AUC"), 
                    lwd=1,lty=c(1,2,1),col=c(1,1,"red"),bty="n") 
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#select landmark time point to plot 
s=8 
#pdf('outcome_p.pdf') 
Proximal.Outcome=factor(death[,s]) 
levels(Proximal.Outcome) = c('Censored','Deceased') 
qplot(log(p[,s]), geom="density", fill=Proximal.Outcome, alpha=I(.4),  
      main="Distribution of 3-day Probabilities at Enrollment", xlab="P[Death within 3 days]",  
      ylab="Density") 
#fill=death[c((s-1)+seq(1,length(n2)*(lastLM),by=lastLM))] 
#dev.off() 
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