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A new methodology for subject-specific finite element (FE) modeling of the tibiofemoral (TF) 

joint based on in vivo computed tomography (CT), magnetic resonance imaging (MRI), and 

dynamic stereo-radiography (DSX) data is presented.  Two techniques to incorporate in vivo 

skeletal kinematics as FE boundary conditions were implemented and compared: one used MRI-

measured tibiofemoral kinematics in a non-weight-bearing supine position and allowed five 

degrees of freedom at the joint in response to an axially applied force; the other used DSX-

measured tibiofemoral kinematics in a weight-bearing standing position and permitted only axial 

translation in response to the same force.  The model-predicted cartilage-cartilage contact areas 

were examined against ‘benchmarks’ from a novel in situ contact area analysis (ISCAA) in 

which the intersection volume between non-deformed femoral and tibial cartilage was 

characterized to determine the contact. The results showed that the DSX-based model predicted 

contact areas in close alignment with the benchmarks, and outperformed the MRI-based model.  

The importance of accurate, task-specific skeletal kinematics in subject-specific FE modeling 

and the necessity of subject-specific verification are discussed. 

A study of the effects of partial meniscectomy on the intra-articular contact mechanics 

was then conducted as an illustration of application of the verified models.  A musculoskeletal 

dynamic model was used to generate the knee joint forces as boundary conditions for the above 

developed FE models.  Thus, a sequence of quasi-static position-dependent FE models was 

SUBJECT-SPECIFIC FINITE ELEMENT MODELING OF THE TIBIOFEMORAL 

JOINT IN VIVO: DEVELOPMENT, VERIFICATION AND APPLICATION 

 

Robert Edward Carey, M.S. 

University of Pittsburgh, 2014

 



 v 

developed for a series of time points throughout a decline walking task.  These time points 

include heel-strike and in increments of 0.05 seconds up to 0.30 seconds, and additionally, the 

time points of the two peak compressive joint force values for each knee.  Several factors were 

observed to measure the effects on intra-articular contact mechanics.  The greatest maximum 

compressive stress was recorded in the partially meniscectomized compartment or in the 

opposite compartment of the contralateral knee throughout all time points.  The significance of 

the application of the FE models for evaluation of the biomechanical effects of meniscectomy is 

demonstrated, and the importance of simultaneously observing joint kinematics and intra-

articular contact mechanics at more than one time point during a dynamic task is discussed. 
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1.0  BACKGROUND 

1.1 MOTIVATION 

The knee joint is a complex combination of hard tissues (such as bones) and soft tissue (such as 

menisci, ligaments and cartilage), allowing for locomotion of the body.  Therefore, it is 

important to retain the overall health of the knee joint, including all components that compromise 

the joint. 

 Two of these components that are essential to joint function are the menisci and articular 

cartilage.  The menisci are semi-lunar fibro-cartilaginous tissue that contains a solid phase and a 

fluid phase.  The solid phase is composed primarily of collagen fibers, which provide a large 

tensile stiffness and strength and are arranged in different orientations for different functions 

(Figure 1) [1].  Mechanical function of the menisci is contingent not only upon its material 

makeup, but also its shape, the shapes of interaction components, and boundary conditions.  The 

menisci sit upon the tibial articular cartilage, and are anchored in the tibial plateau at the anterior 

and posterior horns, which prevent displacement of the menisci when loads are applied to the 

knee.  With their wedged shape, the menisci displace forces from the rounded femoral condyles 

and transfer these forces through the tibia via the flat tibial plateau and articular cartilage [1].  

The role of the menisci is to aid in stability, proprioception, lubrication, shock absorption and 

load distribution [2].  The latter function is a key responsibility in maintaining joint congruency, 
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and disruption of the menisci, such as removal due to meniscectomy (Figure 2), can cause 

changes that may alter the intra-articular contact mechanics of the TF joint, resulting in damage 

to the surrounding soft tissue, such as articular cartilage. 

 

 

 

Figure 1: Image of a meniscus showing the radial and circumferential collagen fiber orientation 

[3]. 

 

Another component essential to joint function is the articular cartilage, a hyaline cartilage 

covering of the subchondral bone on both the femur and tibia of the tibiofemoral (TF) complex.  

Articular cartilage consists primarily of collagen, which provides a large tensile property to the 

cartilage at the articulating surface, allowing for the ability to accommodate large shear, tensile 

and compressive stresses.  The articulating surface retains special molecules called superficial 

zone proteins, which play an important role in the nearly frictionless surfaces of the articular 

cartilage, and in combination with the joint synovial fluid, allows for ease of joint articulation 

[4].  Damage to the articular cartilage, such as fibrillation of the articulating surface, can reduce 
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the ease of joint articulation, and can lead to osteoarthritis (OA), a painful and debilitating 

disease [5]. 

 

 

 

Figure 2: Image showing the area of a meniscus removed in a partial meniscectomy [6]. 

 

OA, considered to be a major worldwide cause of economic loss, is the most common 

degenerative joint disease.  It is usually diagnosed through radiographic evidence of articular 

cartilage loss, osteophytes, an increased subchondral bone density and cysts.  More than 1/3 of 

all people over the age of 45 report joint symptoms consistent with OA, including loss of motion 

and constant deep pain.  The World Health Organization estimates that 10% of the world’s 

population aged 60 and up suffer from OA.  Of these individuals, it is believed that 80% have 

limited movement and that 25% cannot perform standard daily activities [5].  Once an individual 

develops OA, he or she suffers from the disease the rest of his or her life, and the severity of the 
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symptoms, such as the pain, only increases with time.  Solving the issue of OA will require a 

method of either stunting the progression of joint degeneration, such as articular cartilage 

damage and loss, or developing a way to prevent it entirely [5].   

Injury of the meniscus is one of the most common knee injuries, with as many as one 

million meniscal procedures performed annually in the United States [7, 8].  Of these procedures, 

meniscectomy is one of the most popular surgical options to relieve pain caused by the injury 

[9].  It has been observed that those with injuries of TF joint components have an accelerated 

onset of OA [10-19].  Thus, it is imperative that the relationships between injury/treatment, 

changes in intra-articular contact mechanics and the accelerated onset of OA be better 

understood so that a solution can be found for the prevention of OA (Figure 3). 

It has been shown that disruption of the meniscus, such as removal by meniscectomy, can 

lead to degenerative changes of the TF articular cartilage, preceding OA [1, 20, 21].  This has 

been established through clinical observations (Figure 3b).  It has also been seen that changes in 

the TF intra-articular contact mechanics due to injury or treatment are linked to accelerated loss 

of cartilage, also leading to the early beginning of OA (Figure 3c).  Andriacchi et al. [22] utilized 

a cartilage defect algorithm in conjunction with a FE model in order to simulate the effect of 

increased stress on the thinning of the TF articular cartilage.  The work presented below will 

focus on the third link of this relationship: how injury or treatment of a TF joint component can 

cause changes in the intra-articular contact mechanics (Figure 3a). 

There are different computational methods for the study of TF intra-articular contact 

mechanics.  Two popular methods are discrete element analysis (DEA) and finite element 

analysis (FEA).  DEA is a method in which contact forces between two bodies are modeled 

using a spring-damper relationship.  This simplification allows for computationally efficient 
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models to be developed, even with complex geometries.  FEA uses the calculus of variations, 

alongside the deformation of solid mechanics, and attempts to minimize an error function to 

produce a stable solution.  FEA is not as computationally efficient as DEA for small scale 

models, but tends to produces more accurate predictions. Abraham et al. compared a validated 

FEA model to a DEA model of the hip joint, and found that the DEA model produced only 

general trends for contact stress magnitudes, but failed to reliably predict the true magnitude 

[23].  Thus, for more accurate predictions of intra-articular contact mechanics, FEA was chosen 

for these studies. 

 

 

 

Figure 3: Three important relationships for the understanding and prevention of early OA onset: 

(a) the relationship between meniscectomy and changes in tibiofemoral contact mechanics, (b) 

the relationship between meniscectomy and the early onset of osteoarthritis and (c) the 

relationship between changes in tibiofemoral contact mechanics and the early onset of 

osteoarthritis. 

 

Finite element (FE) modeling provides a useful technique that can be applied to the study 

of OA prevention. A relative new computational modeling process, it allows for the 



 6 

approximated solution to simple and complex boundary value problems by using approximation 

to the mathematical components behind three-dimensional solid mechanics.  FE modeling has 

been used for the study of biological tissue on a microscopic level [24], a macroscopic level [25], 

prosthetic devices [26], fracture mechanics [27] and insight into pathology [28].  Although FE 

modeling comes with a high computational cost, developments in technology will further allow 

for the increase in speed of simulations and for the increased complexity of the model being 

simulated, which can lead to more accurate representations of biological features and better 

insights into their mechanical responses. 

 

1.2 SUMMARY 

The goals of this thesis are to develop subject- and task-specific FE models using highly accurate 

geometry, kinematics and kinetics, verify the subsequent models using a novel subject- and task-

specific technique, and apply these models to study the effects of partial meniscectomy on the 

intra-articular contact mechanics. 

The models will be developed using an integrative multi-modality approach, utilizing 

computed tomography, magnetic resonance imaging and dynamic stereo-radiography data.  Two 

methods to incorporate kinematics into the models will be used and verified by an in situ contact 

area analysis developed to compare cartilage-to-cartilage contact centroids on the tibial cartilage. 

The material properties chosen for the models will be subject to a sensitivity analysis to 

determine their overall effect on the verification process. 
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Once the verified models are created, they will be applied to study a decline walking task 

of a subject with a partial meniscectomy in the lateral compartment of the left knee and a healthy 

contralateral knee.  Subject- and task-specific kinetics will be developed through the use of 

dynamic stereo-radiography, skin surface markers and ground reaction forces using a 

musculoskeletal dynamic model.  From this model, knee joint compressive forces will be 

extracted and applied to the models, along with corresponding kinematics to complete the 

modeling task.  Intra-articular contact mechanics, such as cartilage-to-cartilage contact area and 

maximum compressive stress will be compared between the partially meniscectomized knee and 

the healthy knee. 

In Chapter 2, the model development and verification process will be discussed, 

including the methods used to turn multi-modality data into subject-specific FE models and the 

novel technique for verifying the models using subject-specific data. 
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2.0  DEVELOPMENT AND VERIFICATION 

2.1 INTRODUCTION 

 

Finite element (FE) modeling is a powerful tool for studying joint and tissue mechanics, as it 

enables manipulation of variables and simulation of situations that may be challenging or 

infeasible to evaluate clinically or experimentally.  The accuracy of FE model solutions depends 

on well-defined anatomical geometry, material properties and boundary conditions [29].  Given 

the considerable inter-subject variability in tissue structure morphology, personalized analyses 

and insights would require subject-specific FE modeling [30]. In vivo FE modeling efforts have 

been limited by difficulties in acquiring and analyzing multi-modality data for model 

construction and validation, including proper co-registration and integration of all necessary 

data.  Recent advances in the fields of medical imaging and image reconstruction have increased 

the potential to incorporate accurate tissue morphology and boundary conditions into in vivo 

subject-specific models [31].   

Nevertheless, the veracity of FE model predictions hinges upon at least two challenging 

aspects: accurate representation of joint kinematics during functional tasks, and validation or 

verification of the model with experimentally measurable parameters obtained in vivo.  Previous 

in vivo TF FE modeling efforts have created models without sufficiently considering the 
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functional joint kinematics involved in the joint loading process [32, 33].  Studies have 

incorporated skeletal kinematics from either non-subject-specific data [22, 34, 35] or skin surface 

marker measurements [36, 37]—the latter are prone to soft-tissue artifacts [38] due to marker 

movement [39, 40] and inaccurate marker positioning on the skin relative to the bone [41, 42].  

Two FE studies have employed advanced imaging techniques to acquire skeletal kinematics: 

Beillas et al. [34, 35] used X-ray imaging that required surgical implantation of radio-opaque 

markers into the bone; Yao et al. [43] utilized a loading device to exert a force on the knee as it 

was undergoing magnetic resonance imaging (MRI) in a supine position.  While these studies 

were successful attempts to incorporate task-specific [34, 35] or load-specific [43] kinematics, 

quantitative verification of their FE model predictions was not conducted.  Validation or 

verification is a crucial step before making interpretations based on model predictions or using 

the model for clinical applications [21, 44].  Conventional measures for FE model validation, 

such as contact pressure [31], cannot be reliably acquired without invasive procedures and are 

not applicable to in vivo subject-specific models.  However, it is possible to estimate the contact 

area and centroid in vivo without invasive procedures with a technique we present here. 

This study was motivated by the need for a validated subject-specific FE modeling 

methodology to study joint mechanics and functions in response to various musculoskeletal 

injuries and their treatments.  While it is believed that the methodology can be generalized to 

other articulating joint structures, this study focused on the TF joint, meniscus injury and 

meniscectomy.  The meniscus is an integral component of the knee, playing a vital role in 

stability, proprioception, lubrication and load distribution [2, 10, 17, 45].  It has been shown that 

meniscectomy, a common treatment for meniscal injuries and one of the most frequently 

performed orthopaedic procedures, can lead to degenerative changes of the articular cartilage in 



 10 

the knee [17, 20, 21, 46-48].  In order to better understand the relationship between 

meniscectomy and the onset as well as progression of articular cartilage damage, it is important 

to first assess the joint and tissue mechanical changes involved — a problem well suited for 

investigation based on FE modeling.   

Specifically, we aimed to explore subject-specific FE modeling of the TF joint based on 

in vivo measurements of tissue morphology from high-resolution MRI and three-dimensional 

(3D) skeletal kinematics from dynamic stereo-radiography (DSX).  This latter technology 

provides an ability to measure skeletal kinematics during functional tasks with sub-millimeter 

accuracy [49].  We proposed a novel in situ contact area analysis (ISCAA) technique, allowing 

the use of a subject’s own data to validate the subject-specific FE model. 

 

2.2 METHODS 

The knee morphological and kinematic data for FE modeling were from an IRB-approved 

meniscus allograft transplantation experimental study.  We used the data of one subject (female, 

age 19) who had previously undergone an arthroscopic partial meniscectomy of the lateral 

meniscus in the left leg.  Data for both the meniscectomized left knee and intact right knee, 

collected prior to the transplantation surgery, were used.  An overview of how multi-modality 

data (DSX, CT, and MRI) were acquired and integrated for model creation and verification is 

presented in Figure 4.  The individual procedures from data acquisition to model verification are 

described as follows. 
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Figure 4: A flow chart of the FE model development and verification process incorporating 

multi-modality data. 
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2.2.1 Data Acquisition 

The experimental setup consisted of a high-speed biplane radiographic system (Figure 5) for 

collecting X-ray images of the knee joint with the ability to capture dynamic skeletal kinematics 

within 0.2 mm and 0.2° [49].  Two high speed 4 mega pixel Phantom v10 cameras (Vision 

Research, New Jersey, USA) capable of capturing 250 images per second, each coupled with a 

16-inch Thalus image intensifier (Shimadzu Medical Systems, Kyoto, Japan), a CPX-3100CV 

cardiac-cine angiography generator (EMD Technologies, Saint-Eustache, Canada) and a 0.3/0.6 

mm focal spot X-ray tube were used to capture the TF skeletal kinematics. 

The cardiac-cine generators were optimized to 80 kVp and 100 mA with an exposure 

pulse width of 1 ms in order to clearly capture the bone motion while minimizing radiation 

exposure to the subject, and were offset from each other by approximately 45° in order to fully 

acquire the 3D positions.  The location of the cameras was also chosen in order to maximize the 

time that the desired knee was within the imaging volume and minimize the time of interference 

from the contralateral knee during movement.  Kinematical data was captured while the subject 

performed the desired task on an instrumented dual belt treadmill (Bertec Corp., Columbus, 

Ohio, USA), which has the ability to record 3D ground-reaction forces for each half of the 

treadmill independently. 
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Figure 5: Experimental setup for measuring 3D TF skeletal kinematics during static standing 

using a dynamic stereo-radiography system. 
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A bilateral computed tomography (CT) scan (GE Medical Systems Lightspeed Pro 16, 

Waukesha, WI) of the subject’s knees was obtained with the following specifications: pixel size 

= 0.586x0.586 mm
2
, slice thickness = 1.25 mm, pixel resolution = 512x512 pixels, field of view 

(FOV) = 30.0 cm, number of slices = 123, excitation voltage = 120 kV, current-time = 402.8 

mAs.  The CT data were imported into Mimics 14.0 (Materialise, Ann Arbor, MI, USA) and 

segmented slice-by-slice to create a 3D bone model for both the femur and tibia.  A custom 

model-based tracking software program was used to create a virtual testing configuration 

replicating that of the actual physical DSX system.  The 3D bone models produced from CT 

were placed within the virtual environment to, through a ray-tracing algorithm, create digitally 

reconstructed radiographs (DRRs).  A volumetric image-matching algorithm was then employed 

in a co-registration process between the DRRs and DSX images, optimizing the 3D position of 

the DRRs relative to the corresponding bone in the DSX images for each frame.  Additional 

details on this model-based tracking technique can be found in a previous publication [50]. 

An MRI scan (Siemens Trio 3.0 Tesla, Washington, DC) of the knee joint was acquired 

while the subject was in a non-weight-bearing, supine position using a sagittal 3D dual echo 

steady state water excitation (DESS-WE) sequence.  The MRI scan specifications were: pixel 

size = 0.365x0.365 mm
2
, slice thickness = 0.7 mm, pixel resolution = 384x384 pixels, FOV = 

14.0 cm, number of slices = 160. 

 

2.2.2 Model Geometry 

The MRI data were imported into Mimics 14.0 for creation of 3D models of the femur, tibia, 

femoral cartilage, tibial cartilage, and menisci.  Once the 3D models were created, they were 
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imported into TrueGrid (XYZ Scientific, CA, USA) for manual linear hexahedral meshing.  Each 

component was meshed separately and then imported into Abaqus CAE 6.9 (Simulia, RI, USA), 

where they were combined into a single FE model for an implicit analysis.  Figure 6 shows an 

example of the FE model geometry development process.  The numbers of elements in the FE 

models of individual components in each knee are listed in Table 1.  

 

 

 

 

Figure 6: FE model geometry development sequence for the tibia. 

 

2.2.3 Material Properties 

Tissue material properties were taken from literature.  The femur and tibia were modeled as rigid 

structures, which greatly reduced the computational time and has been shown to have minimal 

effect on the model predictions [22, 29, 32, 36, 46, 51-61].  Articular cartilage is known to be an 

anisotropic, biphasic material with a time constant approaching 1500 seconds [62, 63].  The 

compressive loading in this study was quasi-static.  It has been shown that under this condition, 

the biphasic response of cartilage can be negligible and the single-phase linear isotropic 

constitutive law is applicable [62, 63].  Therefore, cartilage was modeled as a homogeneous, 
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elastic, linearly isotropic material [22, 29, 30, 32-34, 36, 43, 46, 47, 52, 54, 55, 57-61, 64-68] 

with a modulus of 15 MPa [32, 36, 47, 52, 57, 67] and a Poisson’s ratio of 0.46 [53-55, 69, 70]. 

 

Table 1: Numbers of linear hexahedral elements in individual model components 

 

 Meniscectomized Knee Healthy Knee 

 

Femur 

 

41,984 

 

76,308 

Tibia 61,440 87,852 

Femoral Cartilage 5,632 3,648 

Tibial Cartilage 11,264 2,816 

Lateral Meniscus 16,896 2,352 

Medial Meniscus 16,896 2,112 

Total 154,112 175,088 

 

 

For the menisci, a transversely isotropic constitutive law was used in order to emphasize 

the dominant role played by the circumferential fibers in load distribution and function [1, 2, 10, 

14, 71].  The menisci were therefore modeled as linearly elastic, transversely isotropic materials 

[29, 30, 32, 36, 37, 43, 47, 52, 56-58, 61, 65-67, 72], where the modulus and Poisson’s ratio were 

20 MPa and 0.2, respectively, in the radial and axial directions, and 140 MPa and 0.3, 

respectively, in the circumferential direction [32, 52, 67, 72].  Time dependent effects of the 

cartilage and menisci properties were not considered due to the quasi-static nature of the models 

[32, 34, 35, 46, 52, 54, 57, 62-64, 70, 73, 74].  The anterior and posterior meniscal roots for each 
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meniscus were modeled as linear springs with spring constants of 2000 N/mm [36, 46, 47, 52, 

57, 58, 67, 72]. 

 

2.2.4 Kinematics and Loading Conditions 

Two FE models were created for each knee, one incorporating MRI-based static supine 

kinematics and the other DSX-based static standing kinematics (Figure 7).  The first FE model 

developed for each knee was based on the MRI data using the procedure described above, 

resulting in a model in the supine MRI position.  In order to incorporate the static standing DSX-

based kinematics, the DSX-acquired kinematics had to be transformed into the MRI-based 

coordinate system.  For both the femur and tibia, the CT-based 3D model was co-registered to 

the MRI-based 3D model using Geomagic Studio 10 (Geomagic, North Carolina, USA).  A 

manual n-point registration was completed by choosing three landmark points on the surface of 

the CT 3D bone model and then choosing the same three points on the surface of the MRI 3D 

bone model.  This was done to create a close initial estimate for an automatic global registration 

process.  The automatic global registration process was then executed, minimizing the co-

registration error between the two 3D models.  The average (± SD) error in the co-registration 

process for the bones was 0.472 (± 0.305) mm.  This procedure output a transformation matrix 

from the CT coordinate system to the MRI coordinate system (CT-MRI).  One output of the 

model-based tracking process was a transformation matrix from the laboratory coordinate system 

to the CT coordinate system (lab-CT).  The lab-CT and CT-MRI transformation matrices for 

each respective bone were combined to yield a transformation matrix from the laboratory 

coordinate system to the MRI coordinate system (lab-MRI).  These transformations were then 
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applied to each knee’s MRI-based supine position FE model to create a model in the DSX-based 

static standing position.  The tibial side lab-MRI transformation was applied to the tibia, tibial 

cartilage and menisci, while the femoral side lab-MRI transformation was applied to the femur 

and femoral cartilage. 

 

 

 

 

Figure 7: Lateral and anterior views of FE models of the meniscectomized knee in (a) MRI-

based and (b) DSX-based positions. 

 

 

For both the MRI-based and DSX-based models, the tibia was held in a fixed position 

while the femur was allowed to translate axially in response to a force of half the subject’s body 

weight (275 N) applied to the proximal end of the femur towards the tibia.  This force, along 

with contact pairs and prescribed boundary conditions, determined the “final position” of each 

model.  For the model in the MRI-based supine position, five degrees of freedom (DOF) were 

allowed for the femur while the flexion-extension was fixed.  For the model in the DSX-based 
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standing position, since the prescribed position of the femur relative to tibia is a final, known 

position from the experimental data, the only DOF permitted was an axial translation, allowing 

the femur to settle into its final position in response to the force applied.  The femoral and tibial 

cartilage components were tied to the femur and tibia surfaces, respectively, while hard, 

frictionless contact was assumed for cartilage-cartilage and cartilage-meniscus interfaces [29, 32, 

43, 46, 52, 54-57, 59-61, 64, 65, 67, 68, 70, 75].  In all models, a large-strain formulation was 

used [60, 68] to account for potentially substantial strains in the soft tissue components.  The 

cartilage-to-cartilage contact area between the femoral and tibial cartilage from the resulting FE 

analysis was used as the measure for verification.  The contact centroid was determined on the 

tibial cartilage for each compartment based on a transverse view of the superior cartilage surface. 

 

2.2.5 Verification 

An in situ contact area analysis (ISCAA) method was developed in order to verify the 

predictions of the FE models using cartilage-cartilage contact as the measure.  The femoral and 

tibial cartilage in the DSX-based standing position was utilized.  The cartilage surfaces in the 

MRI-based supine position were imported into Matlab 2012a (MathWorks, Massachusetts, 

USA).  Cartilage was transformed into the DSX-based standing position by applying the lab-

MRI transformation.  The overlapped area between non-deformed femoral and tibial cartilage 

(Figure 8) was calculated and projected onto a single transverse plane determined as the least-

squares-fit plane of the tibial cartilage, which provided a common reference for comparing the 

FE model-predicted and ISCAA-assessed contact centroids.  The depth of overlap can be used as 

a surrogate measure of total cartilage strain [76].  The contact centroid for the ISCAA (CISCAA) 



 20 

result was calculated and compared to the contact centroids obtained from the MRI-based supine 

position model (CMRI) and the DSX-based standing position model (CDSX). 

 

 

Figure 8: In situ contact area analysis (ISCAA) to determine the contact area, defined as the 

intersection between femoral and tibial cartilage, by co-registering the MRI-acquired cartilage 

models with DSX-acquired bone models. 
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For the FE models, the contact centroid (CMRI or CDSX) was found by projecting the tibial 

cartilage on the aforementioned least-squares-fit plane and determining the geometric center in 

two dimensions (2D).  For the ISCAA, the CISCAA was found by discretizing the contact area into 

grid sections (size: 0.368 mm
2
) and then identifying the section with the smallest weighted-

average Euclidean distance to all other sections.  Numerically, CISCAA was located by the grid 

section ID (i) resulting from the following optimization procedure:  




N

j i

ij

i d

s

1
2

2

argmin         (1) 

where s is the distance from one grid section i to another grid section j; d is the localized 

cartilage depression (i.e., the depth of overlap) at a grid section, and N is the total number of grid 

sections.  Note that when cartilage depression d is uniform across the entire contact area, the 

solution from Eq. (1) would be the geometric center as in the case for CMRI and CDSX. 

A sensitivity analysis was performed to assess how sensitive CMRI and CDSX predictions 

would be to changes in assumed material properties of the articular cartilage, menisci and 

meniscal roots.  Seven material property values (elastic modulus and Poisson’s ratio of articular 

cartilage, elastic modulus and Poisson’s ratio of meniscus in the circumferential direction, elastic 

modulus and Poisson’s ratio of meniscus in the axial and radial directions, spring stiffness of the 

meniscal roots) were each varied by ±5% and ±10%, resulting in a total of 28 model variants. 
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2.3 RESULTS 

When overlaying the FE model predictions for contact centroid with the ISCAA results, the 

DSX-based position models were in better agreement with the ISCAA results compared to MRI-

based position models, as evidenced in Figure 9 by the alignment of the FE cartilage-to-cartilage 

contact area prediction with the areas of greater contact depth in the ISCAA. 

With CISCAA as the benchmark estimate for the contact centroid, CDSX predicted the 

contact centroid more accurately than CMRI (Figure 10).  The mean absolute distance from CFE to 

CISCAA was 6.395 mm (SD: 2.296 mm, range: 3.242 mm to 8.234 mm) for the MRI-based FE 

models, and 0.747 mm (SD: 0.457 mm, range: 0.205 mm to 1.307 mm) for the DSX-based FE 

models.  CDSX estimate was closer to CISCAA by 85% (±17%), on average, than CMRI (See Table 

2). 

Once the model in the DSX-based position was verified, cartilage-to-cartilage contact 

area between the femoral and tibial cartilage (reported as a percentage of the superior surface 

area of the tibial cartilage), maximum compressive stress and maximum contact pressure were 

extracted from the FE results and compared between the meniscectomized and healthy knees 

(Table 3).  All three variables, in both the lateral and medial compartments, were greater for the 

meniscectomized knee compared to the healthy knee.  It was also noted that the differences in 

these three variables between healthy and meniscectomized states were much greater in the 

lateral compartment than in the medial compartment. 

The sensitivity analysis showed that variations of material properties by ±5% and ±10% 

had no marked effect on the average model-predicted contact centroid locations (Figure 11).  The 

conclusion that the DSX-based model outperformed the MRI-based model and provided accurate 

predictions holds for the range of material property variations considered. 
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Figure 9: Left: meniscectomized knee ISCAA results overlapped with (a) MRI-based position 

and (b) DSX-based position FE model predictions.  Right: healthy knee ISCAA results 

overlapped with (c) MRI-based position and (d) DSX-based position FE model predictions.  The 

green area represents the FE model cartilage-to-cartilage contact area predictions, while the other 

colors are the color-coded ISCAA estimate.  Penetration depth increases from blue to red.  M = 

Medial, L = Lateral, A = Anterior, P = Posterior. 
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Figure 10: Left: contact centroid of ISCAA estimation and (a) MRI-based and (b) DSX-based FE 

model predictions for meniscectomized knee plotted on FE tibial cartilage.  Right: contact 

centroid of ISCAA estimation and (c) MRI-based position and (d) DSX-based position FE model 

predictions for healthy knee plotted on FE tibial cartilage.  M = Medial, L = Lateral, A = 

Anterior, P = Posterior. 
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Table 2: Distances (mm) between FE-predicted and ISCAA-estimated contact centroids 

 

 Meniscectomized Knee Intact Knee 

 
Lateral 

Compartment 

Medial 

Compartment 

Lateral 

Compartment 

Medial 

Compartment 

MRI-based FE 

model 
7.95 6.15 8.23 3.24 

DSX-based FE 

model 
0.84 0.21 0.64 1.31 

 

 

 

 

Table 3: DSX-based FE model predictions of cartilage-to-cartilage contact area, maximum 

contact and compressive stresses in meniscectomized and healthy knees 

 

             Meniscectomized Knee Healthy Knee 

Cartilage-to-

Cartilage 

Contact Area 

(%) 

Medial 8.3 8.2 

Lateral 5.8 0.4 

Maximum 

Contact 

Pressure 

(MPa) 

Medial 2.95 2.69 

Lateral 4.32 0.70 

Maximum 

Compressive 

Stress (MPa) 

Medial 2.86 2.27 

Lateral 3.96 0.56 
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Figure 11: Average distances between FE-predicted and ISCAA-estimated contact centroids at 

different levels of material property variation for both MRI-based and DSX-based models. 
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2.4 DISCUSSION 

The current study presents a novel approach to creating patient-specific FE models of the TF 

joint. This approach distinguishes itself from past efforts in two ways: (a) physiologically 

realistic weight-bearing states are modeled with high morphological and kinematic fidelity, and 

(b) the model is verified, in vivo, with a unique technique using the patient’s own data.  

The FE model of the patient in a standing posture, developed by integrating CT, MR and 

DSX images, was compared to an MRI-based FE model incorporating supine kinematics – a 

technique applied in past FE studies investigating TF mechanics [32, 33].  The contact centroid 

was used as a benchmark variable to discern the differences between the two FE models.  The 

contact centroid was selected as a variable for verification/comparison since contact pressure and 

stress are currently infeasible to measure in vivo without surgically invasive procedures (which 

would also inevitably alter the characteristics of the contact itself).  Further, accurate material 

properties, which are difficult to determine in vivo for the various components in the TF joint, are 

necessary for prediction of contact pressure and stress.  In contrast, the contact centroid remains 

largely unaffected by the choice of material properties. 

Application of highly accurate task-specific kinematics is critical for achieving accurate 

FE model predictions, as demonstrated by results from the current study.  Creating a model in a 

weight-bearing state using non-weight-bearing kinematics [32, 33] incurs an artifact of joint 

congruity change, as evidenced by the differences in predicted contact area as well as the contact 

centroid.  This could compromise the accuracy of predictions of the TF mechanical response and 

potentially obscure the true effects of structural alteration due to an injury or treatment.  

Customized loading devices have been used to emulate weight-bearing conditions during the 
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MRI scan [43, 77] but these alternatives are much less flexible in accommodating a variety of 

functional kinematics as compared to the dynamic X-ray imaging we used. 

Experimental studies by Bingham et al. [78], Li et al. [79], and Van de Velde et al. [80] 

using biplane X-ray images of subjects in a full-extension weight-bearing position have showed 

that the contact centroids lie anterior to the anterior-posterior (AP) midline of the cartilage for 

both the lateral and medial compartments.  Contact centroid estimation by the DSX-based model 

in the current study was consistent with those previous findings.  However, studies using a 

supine position from MR imaging have provided different and often inconsistent estimates.  For 

example, Perie et al. estimated the contact location to be anterior in the medial compartment, but 

toward the center in the lateral compartment, based on estimates of hydrostatic stress distribution 

from a supine MRI-based FE model of a healthy knee [33].  The discrepancy in the location of 

contact in the lateral compartment is similar to the prediction from the MRI-based FE model of 

the healthy knee in the current study.  In contrast, experimental investigations by Shefelbine et 

al. [77] and Von Eisenhart-Rothe et al. [81] predicted the contact centroid to be posterior in the 

medial compartment and anterior on the lateral side with respect to the AP midline of the 

cartilage.  A collective look at these studies conclusively establishes the potential for erroneous 

predictions when FE models rely on non-task-specific kinematics.  Small changes in the 

positioning of the bones can cause substantial inaccuracies in FE model predictions, as shown by 

a previous sensitivity analysis [43]. 

The demonstration of a viable approach to verifying FE model predictions using subject-

specific data is another unique contribution of this study.  To our knowledge, there has not been 

any TF joint FE model employing a subject’s own in vivo data to verify the model predictions.  

Peña et al. [53-55] developed several 3D FE models that considered in vivo functional 
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kinematics using weight-bearing MRI, but all of these models lacked validation or verification 

against data from the same subjects.  Instead, verification was done by comparing the model 

results with literature data, some of which were based on in vitro cadaveric data.  Considering 

the morphometric variations across individuals [40] and the discrepancies between in vitro and in 

vivo modalities in relation to sometimes subtle effects or differences, conventional verification 

can serve at best as a qualitative “reality check.”  With access to or the ability to acquire in vivo 

data, validating a subject-specific FE model by the subject’s own data obviates errors arising 

from inter-individual morphological variations.  As in vivo measurements of joint pressure and 

stress continue to be a formidable challenge, we believe the in situ contact area analysis proposed 

in the current study offers a viable alternative for quantitative verification of subject-specific FE 

models based on in vivo data.   

Once the validity has been established, the model can be used with confidence to analyze 

the contact pressure and stress distribution in the joint complex.  The subject modeled in this 

work had previously undergone a meniscectomy of the lateral meniscus on the left knee.  The 

predicted cartilage-to-cartilage contact area, maximum contact pressure and maximum 

compressive stress in both the lateral and medial compartments were all greater in the 

meniscectomized knee than in the right, healthy knee during the static, standing trial.  The 

difference was most evident in contact area in the lateral compartment.  The trends found in this 

study—increased cartilage-to-cartilage contact area, increased maximum contract pressure and 

increased maximum compressive stress in the meniscectomized versus healthy knee—were 

consistent with prior reports based on FE analysis [46, 55-57]. 

While the contact centroid locations predicted by the FE model in DSX-based bone 

positions were in close agreement with those from the ISCAA, the actual contact area resulting 



 30 

from the ISCAA was noticeably greater than the area predicted by the corresponding DSX-based 

FE model.  This discrepancy may be attributable to two simplifying assumptions.  First, in the 

ISCAA, the intersection between non-deformed cartilage volumes was assumed to represent the 

total volume in contact (i.e., experiencing stress).  Had the deformation been taken into account, 

which is not yet achievable in vivo, the total volume or area in contact would likely be smaller, 

considering there would be deformed but non-contacting cartilage areas.  Second, material 

properties used in the FE models were taken from literature on the subject of TF FE modeling, 

which may have contributed to the inaccuracy in prediction of contact area.  In vivo subject-

specific material properties remains the “holy grail” in biomechanics and having such property 

values for model development as well as validation would greatly reduce the putative error 

caused by use of generic “one-size-fits-all” data.  It must be pointed out, nevertheless, that for a 

“within-model” comparative evaluation as done in the current study, the use of generic but 

consistent property values would be much less consequential, as confirmed by the sensitivity 

analysis conducted. 

The cruciate ligaments (ACL, PCL) and collateral ligaments (MCL, LCL) were not 

included in the models in this study.  It is understood that the ligaments play a central role in 

maintaining joint stability and therefore can affect the kinematics [82]. Inclusion of these 

ligaments in the DSX-based models would not have any effect on the kinematics, which was 

prescribed from experimental data.  Inclusion of the ligaments in the MRI-based models might 

have an effect on the contact centroid predictions as the model permitted a large number of 

DOFs.  Given that the MRI-based models saw only small femoral movement relative to the tibia 

(displacement < 1 mm) in response to the quasi-static loading, and that the standing position is 

considered the most “neutral” position in terms of ligament tensions and effect, we believe the 
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effect would be minimal.  However, caution must be exercised when the proposed methodology 

is applied to modeling a joint in more dynamic acts and/or deviate positions.  Another limitation 

of this study was the assumption of the loading condition applied to the TF joint.  One-half of the 

body weight was administered only in the axial direction.  Although we elected to use a simple 

loading scenario in order to minimize possible interaction effects on predicted joint mechanical 

responses and loading “bias” in model comparison, the actual loading would be more complex 

than a uniformly applied axial load.  Our ongoing work involves the use of a musculoskeletal 

dynamic modeling tool OpenSim [83] to determine a more realistic ensemble force input for the 

FE model. 

 

2.5 SUMMARY 

In this chapter, it was discussed how computed tomography, magnetic resonance imaging and 

dynamic stereo-radiography data were used to develop subject-specific FE models of the TF 

joint.  Two approaches of integrating kinematics into the models were compared using a novel 

ISCAA technique that employed subject-specific data, and the use of the contact centroid on the 

tibial cartilage showed the importance of utilizing task-specific kinematics when building FE 

models.  The material property sensitivity analysis indicated that the contact centroid, used to 

verify the models, is not highly sensitive to the choice of material properties, thus the properties 

chosen were acceptable.  Preliminary results of the verified model, assumptions used for the 

ISCAA, limitations of the study and directions for future studies were then discussed. 
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 In Chapter 3, we will apply the previously verified models to study the effects of 

meniscectomy on the TF intra-articular contact mechanics during a decline walking task.  

Subject- and task-specific kinematics will be developed through the use of kinematics from DSX 

and skin surface markers, and from ground reaction forces.  These elements will be applied to a 

musculoskeletal dynamic model in order to acquire TF joint compressive forces.  These forces, 

along with corresponding kinematics from DSX measurements, will be applied to the FE models 

using a sequential quasi-static sequence.  The resulting intra-articular contact mechanics will be 

collected and a comparison between the partially meniscectomized and healthy contralateral 

knees will be made. 
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3.0  APPLICATION 

3.1 INTRODUCTION 

Disruption of the meniscus, such as partial or complete removal by a meniscectomy, has been 

shown to lead to degenerative changes of the TF articular cartilage and eventually OA [18, 84, 

85].  How aberration of TF joint function due to injury or treatment (e.g., meniscectomy) relates 

to the “wear-and-tear” degenerative changes of articular cartilage in the knee continues to 

intrigue clinicians and researchers alike.  Assessing the joint mechanical consequences of 

meniscectomy can provide a better understanding of the relationship between treatment of injury 

and the onset as well as progression of articular cartilage damage. 

Two important and inter-related aspects of changes in TF joint function due to injury or 

treatment are joint kinematics/kinetics and intra-articular contact mechanics.  Small changes in 

kinematics can potentially result in large alterations in contact stress and pressure distribution 

patterns, possibly instigating degenerative changes in the joint [43].  However, small changes in 

kinematics may not be detected accurately enough to afford valid prediction of possible 

mechanical markers of degenerative changes.  Furthermore, it has been shown that limbs with a 

partial meniscectomy have greater levels of flexor-extensor co-contraction which might lead to 

an increased total muscle force in the knee joint [11].  Hence intra-articular contact mechanics 
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must be examined in conjunction with joint kinematics/kinetics in order to fully understand the 

effects of meniscectomy on TF mechanical joint function.   

One potentially measurable aspect of TF intra-articular contact mechanics is the 

maintenance of joint congruency [45], as indicated by factors such as cartilage-to-cartilage 

contact area, contact pressure and compressive stress, which can be assessed using finite element 

(FE) modeling.  Modeling techniques, such as FE modeling, have demonstrated effectiveness in 

evaluating joint congruency in the meniscectomized and healthy TF joint [46, 53-55, 58, 70, 72, 

86-89]. 

Most in vivo TF FE studies of the effects on meniscectomy on the mechanical function of 

the joint were limited to a static, standing weight-bearing position [46, 54, 55, 58, 64, 70, 86].  

These studies have shown that meniscectomized TF joints, when compared to healthy joints, 

have increased levels of compressive and shear stresses in both the articular cartilage and 

menisci.  Although such information is valuable in understanding the effects of meniscectomy in 

a static standing position, it lacks important details regarding the effects throughout the range of 

motion of an activity of daily living, which would provide a more relevant context for exploring 

the benefits and disadvantages of meniscectomy for both researchers and clinicians [70, 86].  

Recent in vivo studies have modeled meniscectomy and integrated non-subject-specific gait 

kinematics and kinetics [72, 87].  The precision of developed models for such analysis is 

contingent upon accurate definitions of the geometry and kinematics/kinetics experienced by the 

joint [29, 88], therefore making the inclusion of subject-specific kinematics and kinetics vital for 

precise model predictions.  Injury and treatment of the menisci can cause structural changes in 

the joint, thereby modifying the kinematics and kinetics of the joint complex [6, 13].  Netravali 

et al. observed the differences in the six degrees of freedom of the TF joint between subjects with 
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a partial medial meniscectomy and healthy contralateral limb using an opto-electronic system 

and found significantly greater external rotation and significantly less interval range of motion in 

the meniscectomized limb compared to the contralateral limb [6].  Therefore, use of non-subject-

specific kinematics can potentially obfuscate the changes in the joint due to the injury or 

treatment being simulated. 

In this study, we aimed to investigate alterations in the TF intra-articular contact 

mechanics after a unilateral partial meniscectomy of the lateral meniscus using a previously 

verified subject-specific FE technique based on in vivo morphological, kinematic and kinetic 

measurements.  Three-dimensional (3D) skeletal kinematics were acquired using dynamic 

stereo-radiography (DSX), while TF joint compressive forces were found using a subject-

specific musculoskeletal dynamic model developed with OpenSim [83].  These kinematic and 

kinetic inputs were applied to the subject-specific FE model for a sequence of time points within 

the stance phase of a decline walking task, which was selected due to the greater shear forces 

experienced in the TF joint when compared to level gait [90].  We believe the results will show a 

greater cartilage-to-cartilage contact area in the meniscectomized compartment compared to the 

other three compartments at each time point, and greater maximum compressive stress and 

contact pressure in both compartments in the meniscectomized knee compared to the healthy 

knee at each time point. 
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3.2 METHODS 

3.2.1 Data Acquisition 

We used data of a 19 year old female subject (56.2 kg, 169.5 cm) who participated in an IRB-

approved meniscus allograft transplantation study, who had previously undergone an 

arthroscopic partial meniscectomy of the lateral meniscus in the left leg.  To acquire 3D TF 

skeletal kinematics data, a DSX system with a precision of 0.2 mm in translation and 0.2° in 

rotation was used [49].  Whole body kinematics was also captured at the same time using an 8-

camera surface-based motion capture system (VICON, Oxford, UK) to be used to aid in 

determining task-specific kinetics.  Kinematical data was captured while the subject preformed 

the desired task on an instrumented dual belt treadmill (Bertec Corp., Columbus, Ohio, USA), 

which has the ability to record 3D ground-reaction forces for each half of the treadmill 

independently.  The downhill walking trial data used in this study were collected while the 

subject walked down an inclined treadmill of 15° at a speed of 1 m/s (Figure 12).  The decline 

walking task was selected due to the increased TF shear force in the joint as compared to level 

walking [90] in order to elicit differences between the healthy and meniscectomized TF joints.  A 

handrail was provided for the subject for safety, but she was asked not to alter her normal gait by 

leaning on the rail.  A bilateral computed tomography (CT) scan (GE Medical Systems 

Lightspeed Pro 16, Waukesha, WI, USA) and a sagittal 3D dual echo steady state water 

excitation (DESS-WE) MRI scan (Siemens Trio 3.0 Tesla, Washington DC, USA) were acquired 

while the subject was in a non-weight-bearing, supine position. 
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Figure 12: Subject, positioned within DSX system and VICON cameras, during decline walking 

task. 
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3.2.2 FE Model Construction 

Three-dimensional models of the femur, tibia, femoral cartilage, tibial cartilage, and menisci 

were developed by importing the MRI data into Mimics 14.0.  After generation of the 3D 

models, knee components were imported independently into TrueGrid for manual linear 

hexahedral meshing. Once meshed, each TF component was imported into Abaqus CAE 6.9, 

where they were combined into a single FE model for an implicit sequential quasi-static analysis. 

 

3.2.3 Material Properties 

Material properties of all tissues were taken from literature.  In order to greatly reduce the 

computational time, the femur and tibia were modeled as rigid structures, which has been shown 

to have a minimal effect of the model predictions [22, 29, 32, 36, 46, 52-61, 67, 69, 70, 91].  

With a time constant approaching 1500 seconds, articular cartilage is known to be an anisotropic, 

biphasic material [62, 63].  Due to the time independence of the compressive forces applied in 

his study, the biphasic response of the cartilage was ignored and a single-phase linear isotropic 

constitutive law was [62, 63].  Articular cartilage was therefore modeled as a homogeneous, 

elastic, linearly isotropic material [22, 29, 30, 32-34, 36, 43, 46, 47, 52-55, 57-61, 64-70, 91].   

The circumferential fibers play a large role in the meniscal function; therefore, a 

homogeneous, elastic, linearly transversely isotropic constitutive law was used to model the 

menisci [1, 2, 10, 14, 29, 30, 32, 36, 37, 43, 47, 52, 56-58, 61, 65-67, 71, 72, 87].  Due to the 

quasi-static nature of the models, no time dependent effects for any of the model components 

were considered [32, 34, 35, 46, 52, 54, 57, 62-64, 70, 73, 74].  Linear springs were used to 
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model all four meniscal roots (lateral anterior, lateral posterior, medial anterior, medial 

posterior).  Table 4 contains more details regarding the material properties chosen for the TF 

joint components. 

 

3.2.4 Musculoskeletal Dynamic Simulation 

In order to simulate downhill walking, task-specific kinetics were determined and incorporated 

into the FE model sequence.  Using the downhill walking kinematics derived from the 

experimental testing, and the 3D ground reaction forces collected, OpenSim (SimTK, Stanford, 

California, USA) was used to determine joint reaction forces on the distal femur for both the 

meniscectomized and healthy knees during the downhill walking task.   

A musculoskeletal dynamic model (Figure 13) that included 92 unique muscles and 

utilized 23-DOF [83, 92] was used in this study.  The model was scaled based upon the 

anthropometric measurements and surface marker data from VICON.  The knee joint was 

modeled as a 1-DOF joint, constraining three translations and both internal/external rotation and 

ab/adduction as cubic spline functions of knee flexion angle based on DSX measurement data.  

To derive full body joint angles, inverse kinematics was employed using both surface-based and 

DSX-measured kinematic data.  Then a residual reduction algorithm was used to resolve any 

dynamic inconsistencies intrinsic in the model and experimental data.  A computed muscle 

control algorithm was applied to compute the muscle excitations that constrained the model to 

track the specified joint kinematics [83], considering the task-specific ground reaction forces 

(GRFs) measured during testing, which allowed for predicted joint compressive forces to be 
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extracted [93, 94].  These forces can be seen in Figure 14 as a function of body weight (BW = 

551 N) for both the meniscectomized and healthy knee.   

 

Table 4: Material properties for each TF joint component for FE modeling (E = elastic modulus, 

ν = Poisson’s ratio, Er and νr = elastic modulus and Poisson’s ratio in radial direction, Ez and νz = 

elastic modulus and Poisson’s ratio in axial direction, Eθ and νθ = elastic modulus and Poisson’s 

ratio in circumferential direction and k = spring stiffness) 
 

TF component Material type Value Reference 

 

Bones  

(Femur/Tibia) 

 

 

Rigid 

 

N/A 

 

[22, 29, 32, 36, 46, 

52-61, 69, 91] 

 

Articular cartilage 

(Femoral/Tibial) 

 

 

Homogeneous 

Elastic 

Linear 

Isotropic 

 

 

E = 15 MPa 

ν = 0.46 

 

[32, 36, 47, 52-55, 57, 

58, 67, 70] 

 

Menisci  

(Lateral/Medial) 

 

 

Homogeneous 

Elastic 

Linear 

Transversely Isotropic 

 

 

Er, Ez = 20 MPa 

Eθ = 140 MPa 

νr, νz = 0.2 

νθ = 0.3 

 

[52, 67, 72, 87] 

 

Meniscal roots 

(Anterior/Posterior) 

 

 

Homogeneous 

Elastic 

Linear 

 

 

k = 2000 N/mm 

 

[36, 46, 47, 52, 57, 

58, 67, 72, 87] 
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Figure 13: OpenSim simulation of a decline walking task using a 23-DOF musculoskeletal 

dynamic model. 
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3.2.5 Linking Musculoskeletal Dynamic Simulation and FE Model 

The experimentally collected kinematics, along with the musculoskeletal dynamic simulation 

driven kinetics, were combined with the TF geometry to model a decline walking task.  The FE 

models are in a supine, non-weight bearing position once the 3D geometry is developed from 

MRI.  To incorporate the weight-bearing decline walking kinematics with the geometry, the 

coordinate system was adjusted, as described below.   

For both the femur and tibia, the CT-based 3D model was co-registered to the MRI-based 

3D model using Geomagic Studio 10.  The average (± SD) error in the co-registration process for 

the bones was 0.472 (± 0.305) mm.  This procedure output a transformation matrix from the CT 

coordinate system to the MRI coordinate system (CT-MRI).  One output of the model-based 

tracking process was a transformation matrix from the laboratory coordinate system to the CT 

coordinate system (lab-CT) for each time point of the decline walking task.  The lab-CT and CT-

MRI transformation matrices for each respective bone at each desired time point were combined 

to yield a transformation matrix from the laboratory coordinate system to the MRI coordinate 

system (lab-MRI) at their respective time point.  These transformations were then applied to each 

knee’s MRI-based supine position FE model to create a model in the DSX-based weight-bearing 

decline walking position at each desired time point.  The tibial side lab-MRI transformation was 

applied to the tibia, tibial cartilage and menisci, while the femoral side lab-MRI transformation 

was applied to the femur and femoral cartilage. 

Heel-strike for both the kinematics and kinetics was found in order to align the two sets 

of data.  Each knee was modeled at heel-strike and in increments of 0.05 seconds up to 0.30 

seconds after heel-strike. In addition, the time points of the two peak compressive joint force 

values for each knee were selected for model development (Left leg: 2021 N at 0.06 sec after 
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heel-strike, 2241 N at 0.21 sec after heel-strike; Right leg: 2612 N at heel-strike, 2122 N at 0.20 

sec after heel-strike). For the left, meniscectomized knee, a total of nine models were developed 

(heel-strike, 0 sec, 0.05 sec, 0.06 sec, 0.10 sec, 0.15 sec, 0.20 sec, 0.21 sec, 0.25 sec and 0.30 sec 

after heel-strike) and for the right, healthy knee, a total of seven models were developed (heel-

strike, 0 sec, 0.05 sec, 0.10 sec, 0.15 sec, 0.20 sec, 0.25 sec and 0.30 sec after heel-strike).  The 

corresponding kinematics and kinetics at each time point were combined with the FE model to 

create a quasi-static sequence modeling a subject- and task-specific downhill walking task. 

For all the models, the tibia was fixed while the femur was allowed to translate axially in 

response to a compressive joint force applied to the proximal end of the femur.  The only DOF 

allowed was an axial translation since the medial/lateral and anterior/posterior position of the 

femur relative to tibia is a final, known position from the experimental DSX-based 6-DOF data.  

This allowed the femur to settle into its final position in the axial direction in response to the 

force applied.  Contact pairs, prescribed boundary conditions and the aforementioned force all 

contributed to the determination of the “final position” of each model.  Both the femoral and 

tibial cartilage components were tied to their respective bone surfaces, while hard, frictionless 

contact was assumed for cartilage-cartilage and cartilage-meniscus boundaries [32, 52, 56, 57, 

59, 61, 65, 67, 75].  A large-strain formulation was used for all models [60, 68, 69]. 
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Figure 14: Solid red and blue lines are the time-varying OpenSim-predicted TF joint 

compressive forces for the meniscectomized and healthy knees, respectively.  Red and blue 

dotted lines indicate peak joint compressive forces for their respective knees, while black dotted 

lines indicated additional modeled time points for both knees.  
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3.3 RESULTS 

In order to measure joint congruency, the cartilage-to-cartilage contact area, maximum 

compressive stress, maximum contact pressure and maximum shear stress were observed in four 

different locations for each knee at each time point modeled: the right knee lateral compartment 

(RLC), the right knee medial compartment (RMC), the left knee medial compartment (LMC) and 

the left knee lateral compartment (LLC), which was the compartment with the partial 

meniscectomy. The cartilage-to-cartilage contact area in the LLC was greater than the contact 

area seen in the other three compartments, as expected after part of the meniscus is removed 

(Figure 15). 

The maximum compressive stress on the tibial cartilage was greater in the LLC and in the 

RMC than in the other two compartments for the entire time (Figure 16a).  The profiles for the 

maximum compressive stress in the LLC and RMC were very similar, with major differences in 

the very beginning of the stance phase, while the profiles for the other two compartments, the 

LMC and the RLC, also had similar profiles with the major differences occurring in the second 

half of the stance phase.  In the second half of the stance phase, the maximum compressive stress 

in the LMC was much larger than that of the RLC, but still less than in the LLC and RMC.  On 

the menisci, the profiles for maximum compressive stress in all four compartments were fairly 

similar, except in the LMC, which had a peak in the second half of the stance phase at the same 

time when the tibial cartilage experienced its peak (Figure 16b).  There was also a large 

difference between the values at heel-strike, when the LMC and RLC experienced much greater 

values of maximum compressive stress than the other two compartments. 

The maximum contact pressure on the tibial cartilage was greatest in the RMC or the 

LLC for the entire time.  The RMC had a varying profile while the LLC showed a much more 
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consistent contour (Figure 17a).  On the menisci, the compartments with the maximum predicted 

values of contact pressure were dissimilar than for the tibial cartilage (Figure 17b).  Whereas the 

tibial cartilage saw the greatest values in the RMC or the LLC, the greatest values of maximum 

contact pressure on the menisci were mixed between the RLC, LMC and LLC, while the RMC 

had the smallest value of maximum contact pressure the majority of the time.  The LMC showed 

the two greatest peaks of maximum contact pressure, one shortly after heel-strike and the other 

occurring in the second half of the stance phase. 

The maximum shear stress seen by the tibial cartilage throughout the stance phase of gait 

was experienced in the RMC (Figure 18).  The peak maximum shear stress in the RMC was seen 

in the first half of the stance phase, with a second smaller peak occurring in the second half of 

the stance phase.  The other three compartments were varied, but each showed instances of peak 

maximum shear stress. 
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Figure 15: FE predicted cartilage-to-cartilage contact area. 
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Figure 16: FE predicted maximum compressive stress on the (a) tibial cartilage and (b) menisci. 
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Figure 17: FE predicted maximum contact pressure on the (a) tibial cartilage and (b) menisci. 
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Figure 18: FE predicted maximum shear stress on the tibial cartilage. 
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3.4 DISCUSSION 

The current study presents a method to create subject- and task-specific FE models of the TF 

joint and apply these models to the study of patho-mechanics, using partial meniscectomy as an 

example.  This approach distinguishes itself from past studies in that it applies a sequential quasi-

static method, rather than a static method, to FE model development while using subject-specific 

geometry and in vivo kinematics and kinetics, which are acquired from musculoskeletal dynamic 

modeling. 

A previously verified FE model developed from MRI was integrated with high fidelity 

subject-specific kinematics from CT and DSX imaging, and combined with subject-specific 

kinetics developed using the OpenSim platform, to obtain subject- and task-specific models.  

This was done for both knees of a single patient who had previously undergone a left knee lateral 

partial meniscectomy, creating two sets of models, one for each leg.  In order to simulate a 

decline walking task, multiple time points during the stance phase were chosen and static models 

were developed at these times with corresponding kinematics and kinetics, creating a sequential 

quasi-static modeling technique.  Once the models were developed, the intra-articular contact 

mechanics were collected and compared between the meniscectomized knee and the healthy, 

contralateral knee throughout the stance phase of gait. 

The greatest cartilage-to-cartilage contact area was seen in the meniscectomized 

compartment.  This result is intuitive, as removing meniscus, which separates the tibial and 

femoral cartilage, would allow for more contact to occur.  Although the cartilage-to-cartilage 

contact area increased after meniscectomy, we also saw that the total area of contact within the 

joint (cartilage-to-cartilage and meniscus-to-cartilage) decreased. 
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Our results have shown that the LLC (meniscectomized compartment) does not see the 

greatest maximum compressive stress throughout the entire stance phase.  It was noted that either 

the LLC or the RMC had the greatest values for maximum compressive stress throughout the 

stance phase.  Many previous studies simulating a static, standing weight-bearing position for the 

TF joint have seen an increase in the maximum compressive stress in the meniscectomized joint 

compared to the healthy joint [46, 54, 55, 58, 70, 86].  This result is not incorrect, but is not 

enough information for a clinician to make an informed decision whether or not to perform a 

meniscectomy.  It lacks information regarding common everyday dynamics activities, such as 

walking.  Information regarding intra-articular contact mechanics during a high-shear force 

inducing activity, which aids in the expedition of the onset of OA [95], can help better inform 

clinicians and researchers alike. 

One previous study has seen an overall increase in the maximum compressive stress in 

the partially meniscectomized TF joint compared to the healthy TF joint throughout the stance 

phase of gait [72].  The FE model in that study lacked subject-specific kinematics and kinetics, 

and instead, generic healthy kinematics and kinetics were applied, which may have caused it to 

estimate inaccurate results.  In the current study, it was noted that during the stance phase, the 

meniscectomized knee was in a valgus state while the healthy knee changes from valgus to 

varus.  This finding may cause the maximum compressive stress patterns that we see in the 

models, and highlights the importance of subject- and task-specific FE modeling incorporating 

accurate skeletal kinematics and more realistic predictions of dynamic joint loading.  Modeling 

results thus obtained through these simulations may offer better insights into the relationship 

between patho-mechanics and the development of OA in the knee. 



 53 

The current study was limited to modeling of a single subject, which does not allow for 

any statistical analysis, and therefore limits the power of the findings.  In order to truly produce 

an informed decision as to whether partial meniscectomy is an effective clinical tool in the 

treatment of meniscal injuries, and since FE modeling is a subject-specific technique, more 

subjects will need to be modeled in order to determine if there is one overall solution or if 

meniscectomy is truly a patient-by-patient decision.  This study also used a quasi-static modeling 

sequence, which does not model every instance of time throughout gait, but rather choses certain 

time points, and ignores the effects of velocity and acceleration.  This modeling technique may 

have caused an important time point to go unobserved, and therefore, may cause pertinent results 

to be unreported, while a lack of velocity and acceleration may affect the FE model predictions.  

A more effective method is to use a fully dynamic FE modeling technique, which captures every 

time point from start to finish, and which we plan on using in future studies. 

 

3.5 SUMMARY 

In this chapter, previously verified FE models of a partial meniscectomized and healthy knee of a 

single subject were applied to study the effects of meniscectomy on the intra-articular contact 

mechanics.  Subject- and task-specific kinetics was developed for application to the FE models 

using a musculoskeletal dynamic model during a decline walking task.  Once joint compressive 

forces were obtained, they were applied to the FE models, along with corresponding decline 

walking kinematics acquired from dynamic stereo-radiography using a sequential quasi-static 

model sequence.  The time points for FE model creations were chosen to be at heel-strike and in 
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increments of 0.05 seconds up to 0.30 seconds, and two instances of maximum joint compressive 

force for each corresponding knee.  Cartilage-to-cartilage contact area, maximum compressive 

stress, maximum contact pressure and maximum shear stress were compared between the lateral 

and medial compartments in the partial meniscectomized knee and the contralateral healthy knee. 

The results indicated that a partial meniscectomy has detrimental effects on not only the knee 

containing the partial meniscectomy, but also the contralateral healthy knee. 
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4.0  CLOSING 

In summary, a FE model of the TF joint was developed from CT, MRI and DSX data in vivo, 

verified using subject-specific data and applied to study the effects that meniscectomy has on the 

mechanical function of the joint.  The latter task was accomplished by incorporating a decline 

walking task with the previously verified models using sequential quasi-static modeling that 

incorporated subject- and task-specific kinetic inputs found using a musculoskeletal dynamic 

model. 

 This work provides new and useful information and techniques to the field of 

biomechanical research.  A new method of FE model verification has been detailed in which the 

developed subject-specific model is compared to data from the same subject.  This technique can 

be used to develop highly accurate subject- and task-specific models, and with proof of the 

accuracy of these models, will lead to more accurate and useful predictions.  

 The work also places an emphasis on the inclusion of subject- and task-specific inputs 

into the development of FE models to obtain results that are applicable in a research and clinical 

environment.  Previous models have lacked specification of FE model inputs or have used non-

subject-specific data, and the predictions from these studies are more likely to be error prone.  

Verification or validation of these studies was also taken from literature or in vitro studies, and 

while this can provide a basic reality-check into the model predictions, it cannot deliver a true 

verification or validation of the models. 
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The application of the verified models to a pathological example (meniscectomy in this 

case) will allow for better insight into the effects on the joint in question.  Since different tasks 

require different movements of the body and different muscle inputs and since all people are 

physically unique, subject- and task-specific kinematics and kinetics allows for a more in-depth 

understanding for a particular subject.  This specificity will allow for a treatment tailored to the 

patient, which hopefully will deliver a better clinical outcome.  The use of a sequential quasi-

static sequence using a subject- and task-specific approach provides better insight into the effects 

that meniscectomy has during a dynamic, everyday task.  This knowledge will help clinicians 

decide if meniscectomy is an improvement over meniscal pathologies, such as tears. 

The techniques detailed above, including the methods for FE development, verification 

and application are believed to be applicable to any articulating joint.  The TF joint and 

meniscectomy are just one example of the power of FE modeling and its many applications.  

Further studies observing the TF joint are warranted due to the limited results found, which call 

for more improvements in the modeling process.  Quasi-static modeling was used for the study 

of meniscectomy on mechanical joint function, but the data collected for both subject- and task-

specific kinematics and kinetics is dynamic, and therefore, to get an even more accurate picture 

of the effects of meniscectomy, a dynamic FE modeling technique should be employed.   

Another improvement in future studies will be a more realistic material structure applied 

to the soft tissues involved in the joint.  In these studies, soft tissues, such as articular cartilage, 

were taken to be homogeneous, elastic and linear materials with no time-dependent effects.  

Although these simplified material properties are acceptable for the studies, they do limit the 

predictions made by the FE process.  More advanced material properties, such as viscoelasticity, 
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can be applied to obtain a better understanding of how these soft tissues and their pathologies 

affect the mechanical joint function. 
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