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A major goal in ecology and toxicology is to better predict the environmental impacts of 

anthropogenic contaminants. A key step towards accomplishing this goal is to understand how 

ecological interactions can influence both the direct and indirect impacts of contaminants in 

nature. While many of the factors that exacerbate contaminant impacts have been well studied, 

ecological factors that can mitigate these effects are relatively poorly understood. In this 

dissertation, I examine the mitigating influence that submerged plants, a common feature of 

aquatic ecosystems, have on the impacts of the widely used insecticide malathion in freshwater 

communities. In chapters one and two, I test the degree to which different realistic submerged 

plant densities and different plant species, respectively, influence malathion’s toxicity to the 

ecologically important zooplankton species, Daphnia magna. I show that each increase in plant 

density reduced both the amount and duration of malathion’s toxicity, and that the ability to 

mitigate malathion’s toxicity is a generalizable phenomenon across submerged plant species. In 

chapter three, I demonstrate that the mechanism traditionally thought to play the largest role in 

mitigating insecticide toxicity, sorption to plant tissues, plays virtually no role in the mitigation 

of malathion. Instead, I present the first evidence that increased water pH caused by plant 

photosynthesis is the primary mechanism driving the mitigating effects of plants on this 

insecticide. Finally, in chapter four I test whether plants can mitigate malathion’s direct and 

indirect effects at larger spatial scales and in more ecologically complex communities. I show 
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that in the absence of plants, realistic malathion exposures decimate sensitive cladoceran 

zooplankton, initiating trophic cascades that result in sustained phytoplankton blooms. However, 

in the presence of submerged plants, even at low densities, malathion had no effect on 

community structure. My research provides the first evidence that submerged plants are capable 

of mitigating the toxicity of a widely used insecticide at multiple spatial scales and levels of 

biological organization. My findings can help improve toxicological models designed to predict 

insecticide effects in aquatic environments and mitigation strategies (e.g., best management 

practices) for reducing the environmental impacts of insecticides.  
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PREFACE 

 

“Not everything that counts can be counted, and not everything that can be counted counts.” 

- Albert Einstein, PhD  

  

The research that I present in this dissertation is the culmination of many years of hard work. 

However, it also much more than that. This dissertation is a tangible result of the profound 

impact that my friends, family, colleagues, and critics have all had on me over the years. There 

are many people who have helped to shape me not only as a scientist, but as a person. Because it 

is not possible for me to sufficiently thank everyone who has influenced and supported me over 

the years, I ask that if you are not mentioned below, please know that I do not forget you. I 

deeply appreciate the role that you have played in my life and my knowing you has made me the 

man that I am today. Thank you. 

First, I would like to thank my advisor, co-author, and mentor Rick Relyea. Rick 

perfectly embodies what it is to be a mentor. Sure, he has all of the obvious characteristics: 

knowledge, experience, and leadership that he has used to teach me how to do interesting, 

rigorous science. However, it is Rick’s qualities that have nothing to do with science that I have 

found most influential on my professional and personal development. For example, Rick 

epitomizes what it is to be passionate about work and life. In meetings where he and I would 
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discuss ongoing studies during the field season, Rick was always downright eager to come to 

look at the experiment and put his hands into the water to decode what the biological 

communities were trying to tell us, often repeating “just another day in paradise!” I hope to 

maintain the same level of passion for my work that I observe in Rick every day. But even 

Rick’s passion for his work pales in comparison to the one trait that I admire about him the most: 

his calmness. Even in my most volatile moments, when I felt the suffocating panic of an 

experiment failing or a grant deadline that I was certain I would never meet, Rick always had a 

way to make me understand that it just wasn’t as big a deal as I was making it and that I could 

handle the challenge. The calmness that Rick displays and transfers to others is something that I 

deeply hope to master as he has. I believe that this ability is rooted deeply in a mentality that, no 

matter what, things are going to be okay. Rick has provided me with a model of what a 

successful mentality looks like and how it translates so effortlessly to happiness in life. That is 

why Rick’s mentorship has extended way beyond my development as a scientist. I am a better 

person and a better man for having met you, Rick, so thank you.  

I also owe an immeasurable debt of gratitude to my lab mates. I will forever have a 

special kinship with Dr. Jess Hua and Heather Shaffery. Without you by my side as my friends, 

colleagues, teammates, and occasionally my therapists (perhaps too often), I am certain that I 

would have given up before the end of my first year. To my senior lab mates Drs. Aaron Stoler, 

Maya Groner, Rickey Cothran and John Hammond, I thank each of you for always graciously 

offering your friendship and assistance with every conceivable aspect of my work. You have 

been some of my strongest supporters and greatest critics. Without a doubt, you have each 

immensely influenced what it means to me to be a scientist and colleague. To my junior lab 

mates RJ Bendis and Devin Jones, and the host of undergraduates who I have had the privilege 



 xviii 

of working with over the years, I have truly enjoyed watching you develop and I just hope that I 

have been half as influential to you as my senior colleagues were to me.   

There are also many people outside of my lab that I wish to thank. My academic 

committee Drs. Walt Carson, Susan Kalisz, Brian Traw, and Katia Engelhardt, whose wisdom 

and guidance have turned my nebulous ideas into the research program contained in these pages. 

In fact, I must credit Walt Carson with the origin of my entire dissertation, as he was the first to 

ask me whether aquatic plants might influence the effects of anthropogenic contaminants, a 

question that has served as the major theme for my entire dissertation and will propel me into my 

career. I also thank my colleagues George Meindl, Matt Koski, Kate Lecroy, Eric Griffin, Mike 

Chips, Nathan Brouwer, Alison Hale, Tarek Elnaccash, Marnin Wolfe, and Steven Tonsor for 

their friendship and input over the years. Finally, I thank the entire departmental administrative 

staff who have made navigating graduate student so pleasant and easy.  

Finally, I dedicate my dissertation to those who have been the greatest source of support 

and strength for me in my life. To my parents, Barbara and Bob, your unconditional support 

during even my most tumultuous times has often been the only thing that has gotten me through. 

I know that I have not always made it easy, but I truly appreciate the sacrifices you have made on 

my behalf so that I could achieve this accomplishment. To my big brother, Justis, you have been 

a major source of guidance for me through the years. You have always been there for me and I 

will forever look up to you and be there for you. Lastly, to my fiancé, Erin, you are the reason 

that I have the courage to pursue my dreams. I know that no matter what happens, we will get 

through it by always being there to love each other, make each other laugh, and support one 

another. I could not have done this without you.   
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1.0  INTRODUCTION 

Over the past century, ecologists and toxicologists have strived to better predict the impacts of 

environmental perturbations on biological communities. Ecologists have historically employed a 

deductive approach; developing and refining theoretical models of species interactions to predict 

biological effects of natural perturbations (Paine 1969, Bender et al. 1984, Novak et al. 2011). In 

contrast, toxicologists have used a more inductive approach; collecting extensive data on species 

sensitivities to anthropogenic contaminants, such as pesticides, and then using models to 

extrapolate the effects to complex communities (Cairns 1986, Newman 2010). While each field 

has greatly expanded our understanding of environmental perturbation impacts, there is growing 

appreciation that integrating these disciplines (i.e. ecotoxicology) can further advance our ability 

to predict pesticide effects in nature (deNoyelles et al. 1994, Fleeger et al. 2003, Rohr et al. 2006, 

Relyea and Hoverman 2006). This is becoming an increasingly important goal as exposure of 

non-target ecosystems like aquatic habitats to pesticides is projected to increase for the 

foreseeable future (Laurence et al. 2001). 

 One way that incorporating ecological theory into toxicology can improve our ability to 

predict pesticide effects in nature is by considering the influence of ecological interactions on 

direct (i.e. lethal and sublethal) pesticide effects to sensitive species. Traditionally, toxicologists 

have assessed direct pesticide effects by performing single-species tests under standardized 

laboratory conditions designed to eliminate any sources of environmental variation (Newman 
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2010). While this approach is necessary for comparing the relative toxicity of large numbers (i.e. 

> 1,000) of pesticide active ingredients, accumulating evidence suggests that in nature, 

ecological interaction modifiers (sensu Wootton 1994, 2002) can dramatically alter pesticide 

direct effects to sensitive species (Fig. 1.1). For example, in aquatic communities, insecticide 

toxicity to sensitive species can increase several-fold in the presence of predators (Hanazato and 

Dodson 1995, Hanazato 2001, Relyea and Mills 2001, Relyea 2003), competitors (Hanazato 

2001, Mills and Semlitsch 2004), and pathogens (Kieseker 2002, Coors and De Meester 2008). 

Despite the clear influence that ecological interaction modifiers can have on insecticide direct 

effects, the primary focus to date has been on understanding factors that exacerbate insecticide 

toxicity, while factors that might mitigate toxicity have received comparatively little attention.  

 

Insecticide 
Sensitive  
species  

Intervening species 

 

 

Figure 1.1. Diagram illustrating the positive or negative indirect effect (dashed arrow) of an interaction 

modifier on insecticide toxicity (solid arrow) to a sensitive species. Adapted from Wootton 1994. 

 

 Ecological interactions can also cause indirect contaminant effects in nature that 

traditional toxicity tests are not designed to predict. For example, it is becoming well established 

that at environmentally realistic concentrations, insecticides can initiate trophic cascades in 

aquatic communities (Fig. 1.2; Hanazato & Yasuno 1987, Fairchild et al.1992, Fleeger et al. 

2003). Insecticides typically decimate cladoceran zooplankton, a key consumer of phytoplankton 
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(Larsson and Dodson 1993). This allows phytoplankton to bloom, which shades the water 

column and can reduce periphyton biomass. As a result, insecticides can indirectly affect the 

growth and survival of periphyton grazers at concentrations that traditional toxicological tests 

predict should be harmless (Relyea and Diecks 2008, Relyea and Hoverman 2008). Although 

indirect effects such as trophic cascades can exacerbate insecticide effects in aquatic 

communities, there is a paucity of literature examining factors that may dampen the magnitude 

of these cascading effects, despite the key implications for basic and applied science.  

 

Insecticide 

Zooplankton 

Phytoplankton Periphyton 

Benthic grazers 

Resources  

 

Figure 1.2. Observed direct (solid lines) and indirect (dashed lines) effects of insecticides in simplified 

aquatic communities containing zooplankton, phytoplankton, periphyton, and periphyton grazers. 

Adapted from Relyea and Diecks 2008. 

  

For my dissertation, I address these gaps in our understanding by examining the ability of 

submerged aquatic plants to mitigate direct and indirect insecticide effects in aquatic 

communities. Since the pioneering work of Brock et al. (1992), the influence of submerged 

plants on insecticide fate and effects has been an issue of interest to ecotoxicologists. Primarily, 
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researchers have examined the rate at which insecticides sorb (i.e. bind) to plant tissues from the 

water column and use these rates to extrapolate the degree to which plants might mitigate 

insecticide toxicity (Karen et al. 1999, Crum et al. 1999, Gao et al. 2000a,b, Hand et al. 2001, de 

Carvalho et al. 2007, Thomas and Hand 2011). However, very few studies to date have actually 

quantified how much submerged plants influence the ecological effects of insecticides and the 

few studies that do are confounded by comparing treatments across years (Brock et al. 1992) or 

because researchers performed simultaneous manipulations of submerged plants and other 

contaminants such as nutrients (Roessink et al. 2005). My dissertation contains the first studies 

designed specifically to isolate and examine the influence of submerged plants on the ecological 

effects of insecticides.  

 I chose to examine the mitigating influence of submerged plants on the toxicity of the 

widely used organophosphate insecticide malathion. Since its introduction in the 1940’s, 

malathion has been one of the most frequently applied insecticides in the United States, with at 

least 5.0 x 106 lbs applied annually over the past decade (Kiely et al. 2004, Grube et al. 2011). 

Malathion is a common insecticide used in insect pest eradication programs and during such 

events, surface water concentrations of the insecticide can exceed 780 µg/L (Newhardt 2006). 

However, during more common agricultural applications, expected environmental malathion 

concentrations in surface waters, taking aerial drift and application frequencies into account, 

range from 0-36 µg/L (Odenkirchen and Wente 2007). Thus, in my dissertation, I examine the 

influence of submerged plants on the ecological effects of malathion concentrations that span 

this latter expected range.   

 In chapter two, I examine the degree to which the cosmopolitan submerged plant Elodea 

canadensis influences malathion’s direct toxicity to the key aquatic herbivore, Daphnia magna. I 
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hypothesize that E. canadensis will reduce malathion’s toxicity (across five concentrations 

ranging from 0 – 30 µg/L) to D. magna, relative to environments containing no plants, and that 

the magnitude of these mitigating effects will increase with plant density (density range: 0 - 

1,102 g dry weight/m3). I also compared the rate at which each E. canadensis density detoxifies 

malathion by exposing D. magna to water samples collected at several time points over a 48 h 

period following malathion applications. I discovered that E. canadensis reduced malathion’s 

toxicity in a density-dependent manner, with the highest plant densities making malathion up to 

nine times less toxic. I also discovered that malathion detoxification rate increased with plant 

density. For example, water treated with 30 µg/L of malathion was still lethal to D. magna after 

48 h in the absence of E. canadensis while water treated with the same concentration was no 

longer toxic after just 2 h in the presence of high plant densities. This paper is co-authored with 

Rick Relyea and is published in Environmental Toxicology and Chemistry (Brogan and Relyea 

2013a).  

 While my second chapter demonstrates that one plant species (E. canadensis) is able to 

mitigate malathion’s toxicity to D. magna, chapter three considers how generalizable this ability 

is across different submerged plant species. Further, I test whether this ability is driven by traits 

of the living plants themselves or if mitigation instead occurs simply as a result of the added 

substrate (i.e. for sorption) provided by the addition of plants. Because no studies examining 

what plant traits may influence insecticide mitigation ability exist, I selected four common 

submerged plant species (E. canadensis, Myriophyllum spicatum, Ceratophyllum demersum, and 

Vallisneria americana) that differ widely in morphology and life histories (Nichols and Shaw 

1986, Blindow 1992, Barrat-Segretain et al. 2002) and compared the magnitude to which and 

rate at which they mitigated malathion’s toxicity to D. magna, relative to treatments containing 
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no plants. I also performed two inert substrate treatments containing polypropylene rope and 

plastic plants, respectively, to control for any mitigating effects of simply adding mass to each 

container. I discovered that each plant species reduced malathion’s toxicity by an equal 

magnitude and at the same rate, while inert substrates had no mitigating effects. My findings 

demonstrate not only that the ability to mitigate malathion’s toxicity is generalizable across plant 

species, but also that these mitigating effects are driven by traits of living plants, not merely their 

mass. This study was conducted with Rick Relyea and is published in Environmental Toxicology 

and Chemistry (Brogan and Relyea 2013b).  

 Having provided the first unequivocal evidence that submerged plants can mitigate an 

insecticide’s toxicity to animals, in chapter four I examine the mechanism driving this effect. We 

introduce the current paradigm employed by toxicological models (e.g., AQUATOX, Park et al. 

2008) that plants mitigate insecticide effects via sorption, the rate of which is predicted using an 

insecticide’s octanol-water partition coefficient (i.e. Kow). However, while insecticides 

possessing high log Kow values (log Kow > 4), such as DDT and many pyrethroid insecticides, 

sorb rapidly to submerged plant tissues (Gao et al. 2000a, Hand et al. 2001, Liestra et al. 2003, 

Carvalho et al. 2007), malathion has a relatively low log Kow value (log Kow = 2.75) and binds 

slowly to plants (Gao et al. 2000b). Because my earlier research shows that submerged plants do 

in fact mitigate malathion’s toxicity, I test an alternative hypothesis that submerged plants 

actually detoxify malathion by increasing water pH via photosynthesis, which causes malathion 

to break down rapidly via alkaline hydrolysis (Wolfe et al. 1977, Seaman and Reidl 1978). To 

tease apart the effects of increased water pH from other functions of plants (e.g., sorption), we 

compared the toxicity of several malathion concentrations (range: 0 – 36 µg/L) across four 

treatments where I independently manipulated the presence of plants (plants present or absent) 
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and water pH (low pH or high pH) using either chemical additions or by manipulating the 

shading environment of plants. I found that chemically increasing water pH reduced malathion’s 

toxicity by the same amount as adding unshaded (i.e. photosynthetic) plants. Further, I 

discovered that sorption played virtually no role in mitigation, as malathion was equally toxic to 

D. magna in water containing shaded (i.e. non-photosynthetic) plants and in the absence of 

plants (at low pH). This discovery demonstrates that a previously unexamined mechanism (pH-

mediated mitigation) may play a major role in buffering aquatic communities from many 

insecticides. This study is co-authored by Rick Relyea and is in press at Chemosphere.  

 While chapters 2-4 demonstrate the ability of submerged plants to mitigate malathion’s 

direct effects on sensitive species in microcosms, chapter five addresses the degree to which this 

ability scales up to more spatially and ecologically complex aquatic communities under several 

environmentally relevant insecticide-exposure scenarios (control, single “pulse” exposure, or 

repeated “press” exposures). I test the hypotheses that, 1. The magnitude of malathion’s direct 

and indirect effects will increase with the number of insecticide exposure events, and 2. 

Submerged plants will mitigate these effects more as plant density increases. Overall, the data 

supported hypothesis 1; in the absence of plants, repeated malathion applications caused 

dramatic declines in cladoceran abundance followed by phytoplankton blooms that were not 

observed following single or control exposures. With respect to hypothesis 2, we found that 

submerged plants mitigated malathion’s toxicity to cladocerans and prevented phytoplankton 

blooms, but mitigation did not increase with plant density because even the lowest plant densities  

strongly mitigated malathion’s effects. Although these results suggest that plants may buffer 

communities from realistic malathion exposure events, I also discovered that plants had negative 

effects on the growth and abundance of some benthic algal and animal species, suggesting that 
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there may be costs associated with living in dense plant beds for some taxa. This study was 

conducted with Rick Relyea and is currently in review at Freshwater Biology.  

 In the final chapter I synthesize my work, discussing the relevance of my research to 

natural systems and important remaining questions that need to be addressed. I also consider 

potential applications of my findings to current pesticide mitigation strategies such as 

agricultural best management practices. Finally, I place my discoveries in the context of broader 

ecological theory, discussing how models designed to predict the ecological impacts of 

perturbations could be improved by incorporating interactions documented in my work and other 

studies.  
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2.0  MITIGATING WITH MACROPHYTES: SUBMERGED PLANTS REDUCE THE 

TOXICITY OF PESTICIDE-CONTAMINATED WATER TO ZOOPLANKTON  

2.1 INTRODUCTION 

Insecticides are important tools for improving human health and the productivity of forestry and 

agriculture. However, projected increases in insecticide usage for the foreseeable future will 

likely lead to greater exposure for natural ecosystems (Laurence 2001). Insecticides pose a 

significant threat to aquatic habitats as they can exacerbate declines in already threatened taxa 

(Davidson 2004, but see Bradford et al. 2011) and decrease biodiversity (Relyea 2005, Geiger et 

al. 2010). Thus, a major contemporary challenge for ecologists and toxicologists is to better 

understand the factors that influence the environmental effects of insecticides in aquatic habitats.  

 Traditional toxicological models designed to predict the impacts of insecticides in aquatic 

communities are derived from results of laboratory tests that determine concentrations at which 

some effect occurs (e.g., LC50 = the concentration of an insecticide that kills 50% of a 

population; Newman 2010). To directly compare the relative toxicity of a large number of 

insecticides, agencies responsible for registering and regulating pesticides across the globe (e.g., 

United States Environmental Protection Agency, Organisation for Economic Co-operation and 

Development, ASTM International, etc.) have established standardized testing guidelines 

designed to provide unambiguous cause and effect relationships by examining species in 
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isolation of most biotic and abiotic environmental variation. However, there is a growing 

recognition that the environmental conditions are not only important in determining the outcome 

of toxicity tests, but also that they incorporate the reality of what organisms experience in nature 

(Hanazato and Dodson 1995, Relyea and Hoverman 2006, Relyea 2010).  

To date, research that has incorporated natural environmental conditions has primarily 

focused on identifying factors that increase the toxicity or ecological impacts of insecticides. For 

example, variation in the abiotic environment (Zaga et al. 1998, Edginton et al. 2004), predatory 

stress (Hanazato and Dodson 1995, Hanazato 2001, Relyea and Mills 2001, Relyea 2004), and 

competitive stress can all make insecticides more lethal to animals (Boone and Semlitsch 2001, 

Boon and James 2003). In contrast, studies examining the ecological factors that might mitigate 

insecticide effects are rare, despite the clear conservation and societal implications.  

 Submersed macrophytes possess traits that may allow them to at least partially mitigate 

the direct effects of insecticides on sensitive aquatic taxa. For example, macrophytes can sorb 

insecticides, potentially reducing the duration and intensity of exposure experienced by aquatic 

taxa (Karen et al. 1998, Crum et al. 1999). In fact, submersed macrophytes can sorb up to 90% of 

insecticides from the water column within 24 h, but such high sorption rates only occur for 

highly lipophilic compounds (i.e. Log octanol-water partition coefficient, Kow > 6.0), such as 

organochlorine (e.g., DDT) and pyrethroid (e.g., lambda-cyhalothrin) insecticides (Gao et al. 

2000a, Hand et al. 2001). For less lipophilic compounds—such as the commonly applied 

organophosphate insecticides chlorpyrifos (Log Kow = 4.81) and malathion (Log Kow = 2.75), the 

amount of insecticides removed from the water column by macrophytes typically ranges from 0 - 

50% in a 24-h period (Van Donk et al. 1995, Karen et al. 1998, Gao et al. 2000b).  
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 Though it is clear that some submersed macrophytes possess the ability to reduce the 

aqueous concentrations of some insecticides, there is very limited evidence for the ability of 

submersed macrophytes to mitigate the effects of insecticides on sensitive aquatic taxa. In one 

study comparing the ecological effects of the organophosphate insecticide chlorpyrifos (35 µg/L) 

between macrophyte-dominated and phytoplankton-dominated artificial test systems (~ 0.85 m3), 

Brock et al. (1992) found that cladocerans were eliminated within hours in the phytoplankton-

dominated system whereas it took several weeks for die-offs to occur in the macrophyte-

dominated system. In addition, Roessink et al. (2005) examined the effects of five concentrations 

of the pyrethroid insecticide lambda-cyhalothrin (ranging from 10 – 250 ng/L) in macrophyte-

dominated and phytoplankton-dominated ditch test systems (~ 0.5 m3). In macrophyte-dominated 

systems, the authors estimated the no observable effect concentration (NOEC) of lambda-

cyhalothrin on Chaoborus obscuripes to be at least 10 ng/L, whereas the NOEC was less than 10 

ng/L in phytoplankton-dominated systems (no lower concentrations were tested). Though these 

studies did find differences in the indirect effects of insecticide exposure on community structure 

and function between phytoplankton- and macrophyte-dominated systems, the influence of 

insecticide exposure versus idiosyncratic differences in ecological interactions on the community 

responses is unclear.  

 While these studies compared the effects of insecticides in macrophyte-dominated versus 

phytoplankton-dominated environments, they were not designed to directly test the extent to 

which macrophytes alone influence the ecological impacts of insecticides. For example, Brock et 

al. (1992) compared the effects of chlorpyrifos on aquatic communities inhabiting macrophyte-

dominated systems in 1988 with the effects of chlorpyrifos on similar (but not identical) 

communities inhabiting open-water systems in 1989. Additionally, Roessink et al. (2005) 
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examined the response of macrophyte- and phytoplankton-dominated communities that differed 

in nutrient environment and species composition. To understand the influence that submersed 

macrophytes have on the biological effects of insecticides in aquatic communities, we need 

experiments that are designed specifically to address whether the manipulation of macrophytes in 

a system can alter insecticide effects on sensitive species.  

 We addressed this challenge by conducting an outdoor experiment that manipulated 

macrophyte density and insecticide concentration to determine whether, and to what extent, 

macrophytes could mitigate the lethality of the popular insecticide malathion to Daphnia magna. 

Studies elucidating the impacts of environmental stressors on Daphnia population dynamics are 

imperative as these animals serve as key drivers of aquatic community dynamics (Sarnelle 2005) 

and water quality (Lathrop et al. 1999). Specifically, we addressed two hypotheses: 1) As 

submersed macrophyte density increases, malathion’s toxicity to Daphnia magna will decrease, 

and 2) As submersed macrophyte density increases, malathion’s toxicity in the water column will 

decrease at a faster rate.  

2.1.1 Insecticide background 

 Malathion is an organophosphate insecticide that inhibits acetylcholineesterase function 

in the nervous system. Malathion is commonly used for both agricultural and residential pest 

control throughout the world with approximately 9.1 to 11.3 x 106 kg of active ingredient applied 

annually in the agricultural sector and another 1.8 to 3.6 x 106 kg applied annually in the home, 

garden, industrial and governmental sectors of the United States alone (Grube et al. 2011). 

Recently, the United States Environmental Protection Agency (USEPA) determined the 

estimated environmental concentration (EEC) for malathion in California surface waters based 
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on application frequencies (every 2 to 14 d), rates and expected drift (Odenkirchen and Wente 

2007). Based on these values for more than 50 terrestrial crops, the EEC for malathion in water 

is 9 ± 27 µg/L (mean ± 95% CI). Further, aerial applications of malathion used to control insect 

pests can produce even higher concentrations in surface waters. For example, in the 1990’s, the 

spraying of malathion for Mediterranean fruit fly control resulted in average surface water 

concentrations of approximately 50 µg/L (Ando et al. 1996). 

2.2 METHODS 

2.2.1 Experimental design 

We conducted the experiment at the University of Pittsburgh’s Pymatuning Laboratory of 

Ecology in Pennsylvania, USA. To investigate the effect of submersed macrophytes on 

insecticide toxicity, we examined the survival of the cladoceran zooplankter, Daphnia magna, 

when exposed to a range of concentrations of the organophosphate insecticide, malathion, in the 

presence of different densities of the macrophyte Elodea canadensis (hereafter called Elodea). 

We used a complete factorial design, crossing five Elodea densities (0, 344, 612, 889, and 1,102 

g dry weight (DW) /m3) with five nominal malathion concentrations (0, 2.5, 10, 25, and 50 µg/L) 

for a total of 25 treatment combinations. Each treatment was replicated four times for a total of 

100 experimental units. 

Elodea canadensis is a globally widespread submersed macrophyte that lives at a wide 

range of densities (i.e. from less than 50 g DW/m3 to more than 800 g DW/m3; Duarte and Kalff 

1990). On 15 June, we collected Elodea from three separate shallow ponds in northwestern 
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Pennsylvania. None of these ponds have been treated with any chemicals (nutrients, pesticides, 

etc.) within the past 5 years (pers. comm. Jerry Bish, PA Game Commission). Once collected, we 

mixed and cultured the macrophytes in 300-L culture pools containing 50 L of loamy sediment. 

We placed a 40% shade cloth over the top to prevent colonization by any invertebrates and to 

reduce water evaporation. Elodea was kept in these conditions for 23 d before being used in the 

experiment.  

 The malathion concentrations that we chose for this experiment span the range of 

concentrations estimated or observed to be present in surface waters following typical 

agricultural and pest control practices (Ando et al. 1996, Odenkirchen and Wente 2007). 

Assuming the California data are representative of exposure scenarios in other regions where 

similar data are unavailable, these concentrations likely represent realistic exposure scenarios for 

aquatic taxa. Direct malathion application to surface waters for mosquito control (EEC = 539 

µg/L) and for protecting aquatic crops (EEC = 1,404 – 1,797 µg/L) can produce dramatically 

higher exposure scenarios (Odenkirchen and Wente 2007). However, such worst-case scenarios 

are likely rare occurrences for a majority of freshwater habitats and so we elected to use 

concentrations that would more commonly occur in nature.  

2.2.2 Test species 

In winter 2010, we obtained 18 genetically distinct Daphnia magna (hereafter called Daphnia) 

clones originating from Katholieke Universiteit Leuven, Belgium.  Using these lab-reared clones 

for our experiment instead of animals collected directly from nature allowed us to ensure that the 

lineages had not been exposed to any environmental contaminants for dozens of generations 

prior to our study. Further, using these clones ensured that there was genetic variability among 
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the Daphnia populations used in our study. We housed the Daphnia in 500-mL glass jars 

containing 300 mL of UV-filtered well water. We culled the Daphnia populations and performed 

water changes every two wks. Daphnia were fed 1 mL of concentrated Scenedesmus spp. algae 

that had been grown in a high-phosphorus COMBO medium (Kast-Hutchinson et al. 2001). 

Because of the logistical issues associated with coordinating the reproduction of these animals to 

achieve the very large number of Daphnia used in this experiment (7,200 total), we did not use < 

24 h-old neonates to test malathion’s toxicity. Instead, we used intermediate sized individuals (~ 

instars 3-6) that had not yet produced eggs. 

2.2.3 Toxicity test setup 

On 8 July, we set up our aquatic test systems, which were 0.95-L glass jars. To do this, we 

removed all coarse organic debris from loamy terrestrial topsoil (collected on site) and added 100 

g of this soil to each jar to serve as a nutrient source and rooting substrate for Elodea. We then 

added 700 mL of aged, UV-filtered well water to each jar. We let the jars sit overnight to allow 

the suspended sediment to settle. The following day, we haphazardly selected Elodea shoots 

from the culture pools, cut each shoot 15 cm below the apex, and added the appropriate number 

of shoots to each jar. To span the range of Elodea densities commonly observed in nature (see 

above), we added 0, 3, 6, 9, or 12 Elodea shoots to each jar, which created density treatments of 

0, 344 ± 60.7, 612 ± 62.8, 889 ± 101.7, and 1,102 ± 148.4 g DW/m3 (mean ± SD).  

 Although we performed this experiment in test systems designed to maximize our control 

over the abiotic and biotic environment inside each jar, we also wanted to expose the 

macrophytes and zooplankton to environmental conditions that were somewhat representative of 

what they would experience in nature. To achieve this, we moved the jars outside and placed 
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them in glass aquaria positioned on their sides inside of 300-L pools that were located on 

wooden tables. We randomly assigned each jar to an aquarium and placed ten jars into each of 

the twelve aquaria in the pools. This setup allowed us to expose the jars to natural temperature 

and light fluctuations, while preventing rain from entering and diluting the water. Once the jars 

were in place, we added ~ 10 cm of cold well water to each pool until it rose to approximately 

one half of the height of the test systems. Placing the pools on flat tables ensured that the water 

level outside of each test system was equal. We drained each pool twice daily (at 11:00 h and 

15:00 h) and added new, cool well water to help buffer the water inside of the jars from reaching 

unnatural temperature extremes. To allow Elodea to acclimate to the jars conditions, we let the 

jars sit outside for 3 d prior to applying insecticides. During this time, we visually inspected the 

plants and determined that they were healthy, as evidenced by new foliar growth and production 

of roots extending into the sediment. 

2.2.4 Malathion applications 

On 12 July, we applied the appropriate concentration of technical grade (99.1%) malathion 

(Chem Service Inc.) to each test system. We elected to use technical-grade malathion instead of 

commercial formulations (typically containing ~ 50% malathion) because little information 

exists about the degree to which aquatic organisms are actually exposed to the inert ingredients 

comprising the other 50% of commercial formulations of malathion. To achieve nominal 

concentrations of 0, 2.5, 10, 25 and 50 µg/L, we added 0, 0.366, 1.463, 3.660, and 7.320 mL, 

respectively, of stock solution (0.123 mg malathion/mL ethanol) to 1.2 L of UV-filtered water to 

make our working solutions. This large batch of working solution provided a sufficient volume 

for dosing each appropriate test system plus two additional jars for malathion concentration 
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analysis. Though we did not perform a control for the ethanol carrier in this experiment, other 

experiments have documented no adverse effects of ethanol at concentrations (0.5 mL ethanol/L 

water) higher than those used in our study (0.41 mL ethanol/L water) on Daphnia (Kast-

Hutchinson et al. 2001). We used a separate container to make each working solution. After 

mixing each working solution for approximately 30 s, we added 50 mL into each appropriate jar 

to bring the total volume of each test system to 750 mL. We applied the malathion stock solution 

to each test system in a circular motion that ensured thorough mixing and even distribution 

inside of each container. We began applying malathion at 12:00 h and finished at 14:00 h.  

To determine the actual malathion concentrations achieved for each treatment, we applied 

50 mL of each working solution (same solution as above) to two separate glass jars containing 

700 mL of UV-filtered water, using identical application techniques as we used for the 

experimental containers. We then took 450 mL of this water and transferred it to 500-mL pre-

cleaned amber glass jars and stored the jars in a 3°C refrigerator until analysis. All samples were 

sent to an independent laboratory (University of Georgia Agricultural and Environmental 

Services Laboratory) for analysis using GC/MS within 1 wk of being collected. The actual 

malathion concentrations corresponding to the nominal concentrations of 0, 2.5, 10, 25, and 50 

µg/L were 0, 3.2, 4.7, 17.7, and 29.6 µg/L (hereafter referred to as 0, 3, 5, 18, and 30 µg/L). 

Because water samples collected during dosing were not analyzed for one week, it is possible 

that some malathion breakdown occurred during this time, resulting in the discrepancy between 

our nominal and actual malathion concentrations. If breakdown did occur, then the true 

malathion concentrations encountered by the Daphnia in our study would be even higher than 

reported but this would not affect the overall conclusions. 
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2.2.5 Determining the effect of Elodea density on malathion’s toxicity 

Once the insecticide was applied, we added 10 Daphnia to each jar. Because the malathion 

application took 2 h, Daphnia were added to each test system 2 h after it had received its 

malathion application (i.e. Daphnia were added in same order that malathion was applied). Each 

day we fed the Daphnia in the jars by adding 0.5 mL of the algae solution that was being fed to 

the Daphnia cultures. After 48 h, we removed the Elodea from the jars to facilitate Daphnia 

survival counts and gently shook the shoots in a separate container of water to ensure that no 

Daphnia had been removed from the jars during Elodea removal. We then counted the number 

of surviving Daphnia in each jar by applying a gentle burst of water over the individuals with a 

transfer pipette. We considered an individual to have survived if it began to swim vertically in 

the water column within three applications of this stimulus. Any individuals that were twitching 

but unable to swim were considered dead. 

2.2.6 Determining Elodea’s effect on the rate of decrease in malathion’s toxicity 

In addition to comparing the amount that different Elodea densities reduced malathion’s toxicity 

to Daphnia, we also compared the rate at which different Elodea densities caused malathion’s 

toxicity to decrease in the water column. To accomplish this, we removed small amounts of 

water from the jars over time and tested the toxicity of this sampled water against new groups of 

Daphnia. We used a glass pipette to remove 25 mL of water from the middle of the water 

column of each jar at 2, 6, 10, and 48 h after we had applied malathion. Again, this step was 

done in the same order that the jars had been dosed so that the duration between insecticide 

application and water collection was equal for each test system. We then transferred the water 
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from each jar to a separate 50-mL glass vial and immediately added 10 Daphnia to each vial. We 

transferred the vials indoors, where they were kept at 20°C under a 12:12 h light:dark cycle. We 

fed Daphnia 0.25 mL of Scenedesmus spp. algae daily. After 48 h, we quantified the number of 

surviving Daphnia 48 h after they had been added to each vial using the criteria described above. 

Thus, the response data for this experiment were the number of surviving Daphnia after 48 h of 

exposure to water collected from each jar at each time point. 

2.2.7 Measuring Elodea’s effects on water pH, DO, and temperature 

We documented the effects of Elodea on water pH (using a calibrated digital pH meter; Oakton 

Instruments), dissolved oxygen (DO) and temperature (using a calibrated digital oxygen meter; 

WTW), 1-h before applying malathion to the experiment. In addition, we documented water pH 

and DO in each test system 48-h after applying malathion. 

2.2.8 Statistical analysis 

To determine the effect of Elodea density on the survival of Daphnia exposed to malathion, we 

compared Daphnia LC5048-h values between each macrophyte density treatment. To estimate 

these values for each Elodea density treatment, we used probit analyses to fit sigmoid-shaped 

curves to the Daphnia survival data. If necessary, data were smoothed to ensure equal or 

decreasing survival with increasing malathion concentration and adjusted for mortality in the 

controls using Abbott’s formula (Finney 1971). To compare the effects of different Elodea 

densities on the Daphnia LC50 values, we examined the overlap between the 84% confidence 

intervals. Payton et al. (2003) have demonstrated that 84% confidence intervals approximate an α 
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= 0.05. In one of the Elodea treatments (889 g DW/m3), the highest mortality levels only 

approached 50%. As a result, this distribution of mortality values produced LC50 estimates that 

were not reliable (LC50 = 64 µg/L, 84% CI = 26 to 4356 µg/L). 

To determine whether Elodea densities differed in the rate at which they reduced 

malathion’s toxicity in the water column, we compared the amount of time it took for the toxicity 

of water treated with each concentration of malathion to return to control levels in each Elodea 

density treatment. To do this, we used Dunnett’s tests to compare Daphnia survival 48 h after 

exposure to control water versus water treated with each respective malathion concentration 

collected at each sampling time point within each Elodea density treatment. Due to unequal 

variances, we first rank-transformed the survival data. While the utility of Dunnett’s test in 

toxicological testing is controversial (Delignette-Muller et al. 2011), we emphasize that we used 

this approach simply as a tool for comparing the rates at which different Elodea densities 

detoxified the water. This is in contrast to the more conventional uses of Dunnett’s tests, such as 

trying to determine acceptable and unacceptable contaminant loads in the environment.  

Finally, we evaluated the effects of Elodea density on aqueous pH, DO, and temperature 

immediately prior to malathion addition using a multivariate analysis of variance (MANOVA). 

We also examined the effect of Elodea density, malathion treatment and the interaction on pH 

and DO 48 h following the application of malathion. Where appropriate, we used univariate 

ANOVAs to examine treatment effects on each response variable. We used Tukey’s multiple 

comparisons tests to determine differences between treatments. 
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2.3 RESULTS 

2.3.1 Influence of Elodea density on malathion’s lethality to Daphnia 

As Elodea density increased, malathion’s lethality to Daphnia decreased (Fig. 2.1). One way to 

quantify this is by estimating the LC5048-h values for malathion within each Elodea treatment. 

The LC5048-h value for Daphnia in the absence of Elodea (2.8 µg/L) was significantly lower than 

the LC50 values of all treatments containing Elodea (Table 2.1). Moreover, with each increase in 

Elodea density, we observed a significant increase in the estimated LC50 value for Daphnia 

exposed to malathion. 

 

Table 2.1. LC5048-h values and 84% confidence intervals calculated for Daphnia magna exposed to 

malathion in the presence of different densities of the submersed macrophyte, Elodea canadensis. 

 

Elodea density      

(g DW/m3) 

Daphnia LC50 

value (µg/L) 

Lower 

84% CI 

Upper 

84% CI 

0 2.8a 2.1 3.1 

344 5.5b 4.8 6.3 

612 14.0c 11.5 17.2 

889 -* - - 

1,102 25.2d 19.5 36.6 

a-d Superscripts indicate significant differences between groups based on the overlap of 84% CI’s. 
*   LC50 estimates for 889 g DW/m3 were not reliable because the highest Daphnia mortality only approached 50%. 
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Figure 2.1. Survival data for Daphnia magna (n = 10) exposed to a factorial combination of malathion 

concentrations (0, 3, 5, 18, 30 µg/L) and Elodea densities (0, 344, 612, 889, 1102 g DW/m3). Data are 

means ± 1 SE. 
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2.3.2 Elodea’s effect on the rate of decrease in malathion’s toxicity 

In general, we observed that the toxicity of a given malathion concentration in the water column 

decreased at a faster rate, relative to insecticide-free controls, with each increase in Elodea 

density. The exception was in all jars receiving 3 µg/L of malathion, in which Daphnia survival 

never differed from insecticide-free controls (p ≥ 0.081). However, in jars receiving applications 

of 5, 18 and 30 µg/L of malathion, water detoxification rates increased with macrophyte density. 

For example, with 0 g DW/m3 of Elodea, water collected from jars at 2, 6, 10 and 48 h following 

the application of 5, 18, and 30 µg/L of malathion always caused greater than 50% Daphnia 

mortality (Fig. 2.2; p ≤ 0.011). With 344 g DW/m3 of Elodea, it took 6, 48 and 48 h for Daphnia 

survival to return to control levels in the 5, 18, and 30 µg/L malathion treatments, respectively (p 

> 0.108). With 612 g DW/m3 of Elodea, it took just 6 h for Daphnia survival to return to control 

levels in the 5, 18, and 30 µg/L malathion treatments (p > 0.561). With 889 g DW/m3 of Elodea, 

it took only 2 h for Daphnia survival to return to control levels in the 5 and 18 µg/L malathion 

treatments, but took 6 h in the 30 µg/L treatment (p ≥ 0.369). The strongest mitigative effect that 

we observed occurred with 1,102 g DW/m3 of Elodea; under this condition, each water sample 

collected between 2 and 48 h after the initial malathion application caused no more Daphnia 

mortality than that which occurred in the no-malathion controls (p ≥ 0.054). 

Finally, an interesting phenomenon that we observed when examining the rate at which 

different Elodea densities detoxify the water column was the apparent decrease in Daphnia 

survival following exposure to water collected from the jars between 6 and 10 h following 

malathion application. To examine this pattern further, we performed Wilcoxon signed-ranks 
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tests on Daphnia survival following exposure to water collected after 6 h versus 10 h in each 

malathion and Elodea treatment combination. These analyses confirmed that none of the 

apparent differences between Daphnia survival in the samples collected at 6 and 10 h were 

significant (p > 0.066). 
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Figure 2.2. The influence of Elodea density on the toxicity of water collected 2, 6, 10, or 48 h after 

malathion applications of 0, 3, 5, 18, and 30 µg/L. We quantified water toxicity by examining Daphnia 

survival 48 h after exposure to each respective water sample. Asterisks indicate treatments where 

Daphnia survival was significantly lower than in insecticide-free treatments at a given sampling time and 

Elodea density. For clarity, data are presented as means plus 1 SE. 
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2.3.3 Effects of Elodea and malathion on water pH, DO, and temperature 

When we analyzed pH, DO and temperature immediately prior to applying malathion, we found 

multivariate effects of Elodea density (Wilk’s λ, F12,246 = 49.8, p < 0.001). The multivariate 

effects were driven by univariate effects of pH (F4,95 > 494.3, p < 0.001) and DO (F4,95 > 113.3, p 

< 0.001). There was no effect of Elodea treatment on temperature (F4,95 = 0.8, p = 0.513) as the 

five Elodea densities were all within 1°C of each other (mean ± SE; 29.8 ± 0.1). Tukey’s test 

revealed that pH increased significantly with each increase in Elodea density (Fig. 2.3; all p < 

0.029). Dissolved oxygen also increased with each increase in Elodea density (Fig. 2.3; all p < 

0.021), except for the two highest Elodea densities, which did not differ (p > 0.760). 

When we analyzed pH and DO 48 h after applying malathion, we observed significant 

multivariate effects of Elodea density (Wilk’s λ, F8,148 = 75.9, p < 0.001) as well as effects of 

malathion concentration (Wilk’s λ, F8,148 = 31.5, p < 0.001), but not the Elodea-by-malathion 

interaction (Wilk’s λ, F32,148 = 1.5, p = 0.061). The effects of Elodea density were driven by 

univariate effects of pH (F4,16 > 3.7, p < 0.009) and DO (F4,16 > 65.6, p < 0.001). Tukey’s tests 

revealed that each increase in Elodea density caused a corresponding increase in pH (Fig. 2.3; p 

< 0.001) except for the highest two Elodea density treatments, which did not differ (p = 0.152). 

Dissolved oxygen also increased with each increase in Elodea density (p < 0.001) with the 

exception of the two highest Elodea densities, which did not differ (p > 0.463). Though we 

detected significant multivariate effects of malathion concentration on the abiotic environment 

48 h after malathion applications, the range of pH (9.2 to 9.4) and DO values (12.3 to 16.8 mg/L) 

that we observed across malathion treatments were unlikely to have resulted in significant 

biological effects on Daphnia or Elodea so they will not be discussed further. 
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Figure 2.3. The influence of Elodea density on the toxicity of water collected 2, 6, 10, or 48 h after 

malathion applications of 0, 3, 5, 18, and 30 µg/L. We quantified water toxicity by examining Daphnia 

survival 48 h after exposure to each respective water sample. Asterisks indicate treatments where 

Daphnia survival was significantly lower than in insecticide-free treatments at a given sampling time and 

Elodea density. For clarity, data are presented as means plus 1 SE. 

 

2.4 DISCUSSION 

While previous studies have reported mitigating effects of emergent vegetation, contained within 

agricultural constructed wetlands and drainage ditches, on the toxicity of insecticides to aquatic 

taxa (Lizotte et al. 2011), the present study appears to be the first experimental demonstration 

that submersed macrophytes can strongly mitigate the lethal effects of insecticides on an aquatic 
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species. Specifically, we discovered that the common macrophyte Elodea canadensis 

substantially reduced the lethality of the popular insecticide malathion to the keystone herbivore, 

Daphnia magna (Sarnelle 2005), and also increased the rate at which water treated with 

malathion was detoxified. 

By generating LC5048-h estimates for Daphnia exposed to malathion in the presence of 

five different Elodea densities, we found strong support for our hypothesis that Elodea would 

reduce malathion’s lethality to Daphnia. Further, these data demonstrate that this mitigating 

effect increases with Elodea density. In fact, we found that the LC5048-h estimates for Daphnia 

significantly increased with each increase in Elodea density. For example, comparing the 0 g 

DW/m3 Elodea treatment to the 344, 612, and 1,102 g DW/m3 Elodea density treatments, we 

observed approximately 2, 5, and 9-fold increases in the LC5048-h estimates for Daphnia.  

The estimated LC5048-h value for Daphnia exposed to malathion in the absence of Elodea 

(2.8 µg/L) is consistent with other studies employing more traditional toxicological experimental 

designs [38, http:www.pesticideinfo.org]. Thus, while incorporating submersed macrophytes into 

our experiment made it impractical for our study to adhere to traditional toxicity testing 

guidelines using Daphnia magna (USEPA, OETC, ASTM, etc.), the similarity between our 

results and others provides external validity that our testing methodology did not strongly 

influence malathion’s toxicity to this species. 

 Our experiment also revealed that the rate at which Elodea reduces the toxicity of water 

following the application of malathion increases with increasing Elodea density. For example, in 

jars containing 0 g DW/m3 of Elodea, the average survival of Daphnia exposed to water 

extracted from treatments that had initially received 5, 18, or 30 µg/L of malathion was less than 

50% even 48 h after malathion had been applied. However, in jars containing 1,102 g DW/m3 of 
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Elodea, regardless of the malathion concentration that had been applied, Daphnia survival never 

significantly differed from controls following exposure to water collected from the test systems 

at any sampling interval after the initial application. Thus, our data also strongly support our 

second hypothesis that higher Elodea densities increase the rate at which malathion’s toxicity in 

the water column is reduced.  

 Curiously, we did not observe significant lethal effects of water extracted at any time 

point following the application of 3 µg/L malathion to Daphnia in any of the Elodea treatments. 

Given the low survival (less than 50%) of Daphnia directly added to the jars containing 0 g 

DW/m3 of Elodea in response to this malathion concentration, we expected to observe at least a 

partial reduction in Daphnia survival following exposure to water collected from these test 

systems, particularly at the early extraction time points (e.g., after 2 h). Malathion breakdown 

during the time interval before the 2 h water extraction is not a likely cause of this difference 

because the Daphnia placed directly into the jars, which experienced substantial mortality, were 

added simultaneously with the first water extraction that took place at 2 h. Though the 

mechanisms underlying this observation are unclear, it is possible that the Daphnia in these jars 

faced greater exposure as their swimming movements near the benthos could have resuspended 

sediment particles bound to malathion that the Daphnia then ingested. Additionally, it is possible 

that desorption of malathion from the sediments caused an exposure that the Daphnia in test 

vials (which contained only water from the jars) would not have encountered. While such 

mechanisms would be interesting to tease apart, they cannot be separated by our experiment and 

are thus beyond the scope of the present study.  

 Though no previous studies have examined the rates at which submersed macrophytes 

can reduce the toxicity of water to aquatic taxa following insecticide exposure, a small body of 
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research has examined dissipation rates of insecticides in the presence of submersed 

macrophytes. For example, Gao et al. (2000b) examined the rate at which malathion 

concentrations decreased in culture medium in the presence of two submersed macrophyte 

species (Myriophyllum aquaticum and Elodea Canadensis; Gao et al. 2000b). However, the 

macrophyte densities (100,000 g fresh weight/m3) used in that study were ten times higher than 

even the maximum Elodea density used in our study (~10,000 g fresh weight/m3). Thus, one 

would expect that the authors would have observed higher malathion dissipation rates compared 

to our study. Interestingly, the opposite appears to have occurred. For example, whereas Gao et 

al. (2000b) documented less than a 50% reduction in aqueous malathion concentration over 48 h 

(nominal concentration applied = 1,000 µg/L), our data suggest much higher dissipation rates as 

all of the macrophyte treatments containing Elodea made the water completely non-toxic to 

Daphnia within 48 h, even at the highest malathion concentrations tested.  

 Because so few data are available on the role that submersed macrophytes play in the 

dissipation of malathion from aquatic environments, it is difficult to draw broad conclusions 

about the factors that may have influenced malathion’s toxicity to Daphnia in our experiment.   

For example, Elodea could be sorbing malathion onto its surfaces and thus reducing water 

toxicity to D. magna. However, though many highly-lipophilic insecticides with Log Kow values 

greater than 6.0 (e.g., pyrethroid and organochlorine insecticides) will bind rapidly to submersed 

macrophytes (Gao et al. 2000a, Hand et al. 2001), malathion is relatively hydrophilic (Log Kow = 

2.75) and it remains unclear how much macrophytes will sorb this insecticide. In the 

aforementioned experiment by Gao et al. (2000b), the authors found no evidence that malathion 

was taken up by macrophytes during the first 48 h following exposure (Gao et al. 2000b). 

Though they attribute the dissappearance of malathion from the water column after 48 h to 
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sorption by Elodea, the authors only measured malathion’s concentration in Elodea on day 8 and 

thus can not determine how much of malathion’s disappearance from the water column was due 

to sorption versus other breakdown processes.   

Another mechanism that might contribute substantiantially to malathion’s disappearance 

from the water column is the rise in pH associated with each increase in Elodea density in our 

study (Fig. 2.3). Increases in aqueous pH are known to affect the persistence of many 

insecticides (Chapman and Cole 1982). For example, Wolfe et al. (1977) demonstrated that each 

unit increase in pH (e.g., pH 8 to pH 9) decreases malathion’s half-life by approximately one 

order of magnitude (Wolfe et al. 1977). Their data suggest that at pH levels similar to those 

documented in our no-macrophyte treatments (i.e. pH ~ 8), malathion’s half-life in water is 

slightly less than 10 h at the average daytime water temperatures occurring in our study (~ 

30°C). However, malathion’s half-life is expected to decrease to approximately 1 h in the 344 g 

DW/m3 Elodea density treatments (pH = 9) and to substantially less than 1 h in the highest 

Elodea treatments (pH = 10). Though it is unknown how much decreasing the half-life of an 

insecticide may affect its toxicity, it is possible that reductions in malathion’s persistence could 

be contributing to the lower toxicity of this insecticide that we observed at higher Elodea 

densities. Thus, an important future step is to compare the relative effects of macrophyte sorption 

versus differences in pH resulting from the presence of macrophytes on insecticide persistence 

and toxicity. While dissolved oxygen also correlated positively with Elodea density, the authors 

know of no studies indicating that the differences in DO between Elodea treatments observed in 

the present study would cause differences in malathion’s persistence or toxicity. 
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2.5 CONCLUSIONS 

The field of ecotoxicology is beginning to fully explore the influence of ecological interactions 

when examining the effects of toxic contaminants in the environment. Despite major 

advancements in this area, however, relatively little attention has focused on the ecological 

factors that can potentially reduce the biological impacts of contaminants in nature. We 

performed the first experiment to explicitly test the extent to which submersed macrophytes 

mitigate the direct toxic effects of a common insecticide contaminant. Our results demonstrate 

that the common waterweed, Elodea canadensis, can dramatically reduce the toxicity of the 

insecticide malathion to Daphnia magna, an herbivorous zooplankton species that plays a key 

role in the functioning of many aquatic ecosystems. Moreover, the mitigating effect of Elodea 

increases with increases in its density. Additionally, we discovered that Elodea can remove 

malathion quickly from the water column, but that the rate at which this macrophyte does so is 

also related to the plant’s density. These findings suggest that processes which reduce the 

abundance of submersed macrophytes, such as eutrophication or vegetation eradication 

programs, may indirectly increase the susceptibility of sensitive aquatic taxa to other 

contaminants like insecticides. Future research should focus on the generalizability of 

contaminant mitigation ability across other species of submersed macrophytes and other 

insecticides. In addition, an important next step is to examine whether the mitigative influence of 

submersed macrophytes on free-swimming Daphnia also applies to other aquatic species that 

may spend more time perching on macrophyte shoots or even ingesting macrophytes or their 

epiphytes directly. Such research will help to fill important gaps in our understanding of the 

ways that biological components of ecosystems may buffer the environment from increasingly 

common exposure to contaminants. 
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3.0  MITIGATING WITH MACROPHYTES: SUBMERSED PLANTS REDUCE THE 

TOXICITY OF PESTICIDE-CONTAMINATED WATER TO ZOOPLANKTON 

3.1 INTRODUCTION 

The use of insecticides is a primary strategy for controlling pest damage to economically 

valuable lands and human health. However, an unintended byproduct of insecticide usage is the 

exposure of non-target species. For example, insecticides commonly enter surface waters via 

runoff, spray drift, and irrigation effluent, leading to exposure for aquatic communities that can 

cause shifts in species composition (Brock et al. 2000, Relyea 2005) and diversity (Geiger et al. 

2010). Thus, preventing adverse environmental impacts of insecticides is an important goal and 

advancing our understanding of the factors that might mitigate these effects is imperative. 

In recent decades, research has explored the efficacy of agricultural best management 

practices (BMPs) for mitigating and remediating the environmental impacts of insecticides in 

aquatic ecosystems (Schulz 2004, Moore et al. 2006, Reichenberger et al. 2007, Werner et al. 

2010). The primary focus of this work has been on evaluating the efficacy of using various 

species of emergent vegetation in constructed wetlands and vegetated drainage ditches to reduce 

the transport of insecticides in runoff from sprayed fields into aquatic ecosystems of economic or 

ecological importance. While this research has demonstrated that BMPs can be effective at 

reducing the environmental transport of some insecticides into adjacent aquatic ecosystems, 
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ecologically relevant concentrations of insecticides are still frequently detected in surface waters 

of aquatic ecosystems located near agricultural lands (Gilliom 2007). Additionally, recent 

surveys suggest that surface waters located in urban areas can possess similar insecticide 

loadings as those in agricultural settings (Hoffman et al. 2009). Yet, despite the frequent 

exposure of non-target aquatic habitats to insecticides, there is currently a paucity of information 

on the ecological factors contained within these environments that might also mitigate insecticide 

effects.   

 Submersed macrophytes are a globally ubiquitous component of aquatic ecosystems that 

can achieve high standing biomass and may be able to mitigate insecticide toxicity to aquatic 

taxa. For example, macrophytes can remove many insecticides from the water column via 

sorption, potentially reducing the risk of exposure for aquatic animals (Crum et al. 1999, Thomas 

and Hand 2011). In fact, evidence suggests that for highly hydrophobic compounds (i.e. log 

octanol-water partition coefficient; Kow > 6.0) such as organochlorine (e.g., DDT) and pyrethroid 

(e.g., lambda-cyhalothrin) insecticides, some submersed macrophyte species can sorb 80% or 

more of the compounds within 1 d (Gao et al. 2000a, Hand et al. 2001). However, sorption of 

less hydrophobic compounds by macrophytes is much slower. For example, Gao et al. 2000b 

reported that over 70% of the malathion (log Kow = 2.75) concentration applied remained after 1 

d in the presence of submerged macrophytes and that only 20% of the total concentration applied 

was extractable from plants after 8 d. Nevertheless, this study still found that malathion 

dissipated from the water column faster in the presence of macrophytes than in the absence of 

plants or in the presence of autoclaved (dead) macrophytes. Thus, a necessary next step is to 

examine whether, and to what extent, macrophytes can actually influence the toxicity of 

relatively hydrophilic insecticides like malathion. 
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 The degree to which macrophytes actually influence the toxic effects of insecticides in 

aquatic communities is poorly understood. Recently, Brogan and Relyea (2013a) examined the 

mitigating influence of submersed macrophytes on malathion’s toxicity to the aquatic 

zooplankter, Daphnia magna. They discovered that malathion was up to nine times less toxic in 

the presence of realistic densities of the common macrophyte Elodea canadensis than in the 

absence of macrophytes (LC50no-macrophytes = 2.8 µg/L). Further, they found that E. canadensis 

dramatically increased the rate at which malathion’s toxicity decreased in the water column 

relative to environments containing no plants. In fact, at the highest macrophyte densities tested, 

the toxicity of water that had been dosed with ~ 30 µg/L of malathion to D. magna returned to 

control levels (non-toxic) within just 2 h after the insecticide had been applied. Although the 

study by Brogan and Relyea (2013a) demonstrated that E. canadensis can mitigate malathion’s 

effects on sensitive aquatic species, it was not designed to elucidate the mechanism driving this 

effect. One way to begin narrowing down a mechanism is to test the mitigating effects of other 

macrophyte species that vary in their influence on the persistence of insecticides in the water 

column. 

 Some evidence suggests that macrophyte species may differ in the rates at which they 

remove insecticides from the water column, which could lead to important differences in 

insecticide mitigation between macrophyte species. For example, Gao et al. (2000b) showed that 

nearly 50% of the malathion concentration applied to the test systems was extractable from 

tissues of the submersed macrophyte Myriophyllum aquaticum 8 d after application, whereas less 

than 25% was bound by Elodea canadensis. Additionally, Crum et al. (1999) demonstrated that 

the submersed macrophytes Chara globularis and Elodea nuttallii, and the floating macrophyte 

Lemna gibba differed in the rate at which they sorbed different insecticides (i.e. chlorpyrifos, 
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coumaphos, and diazinon) from the water by as much as 630%, though the relative sorption rates 

of the macrophyte species depended strongly on the insecticide. Currently, the mechanisms 

driving species-specific differences in macrophyte effects on aqueous insecticide concentrations 

are poorly understood but likely include differences in organic matter content (Crum et al. 1999) 

and the molecular machinery involved in binding, transporting, and degrading pesticide 

molecules (Gao et al. 2000b). However, before attempting to elucidate the mechanisms driving 

species-level differences in insecticide uptake, the critical next step is to determine whether these 

differences are even biologically relevant by asking whether plant species differ in the degree to 

which they affect insecticide toxicity to sensitive species.  

 The goal of our study was to determine whether, and to what extent, several globally 

abundant macrophyte species differ in their ability to mitigate malathion’s toxicity to aquatic 

taxa. Malathion is an organophosphate insecticide that kills animals by irreversibly binding and 

inhibiting the function of acetylcholinesterase enzymes. It is considered highly toxic to aquatic 

insects and many other invertebrates. The most recent market reports identify malathion as one 

of the most commonly applied organophosphate insecticides in the United States, with 

approximately 9.1 to 11.3 x 106 kg of active ingredient applied annually in the agricultural sector 

and another 1.8 to 3.6 x 106 kg applied annually in the home, garden, industrial and 

governmental sectors (Grube et al. 2011). However, despite its toxicity and popularity, 

ecotoxicological experiments examining malathion’s effects on aquatic taxa under semi-natural 

and natural conditions are relatively rare. 

We tested whether macrophyte species differ in the degree to which they mitigate the 

toxicity of multiple malathion concentrations to animals as well as in the rate at which they 

reduce the toxicity of water that has been exposed to malathion. We also examined the mitigating 
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effects of two different inert substrates to determine whether insecticide mitigation occurs merely 

as a result of the added surface area provided by the presence of plants. The null hypotheses we 

tested were: (1) All macrophyte species will reduce malathion’s toxicity by the same amount 

relative to environments containing no macrophytes; (2) all macrophyte species will reduce the 

toxicity of water treated with malathion at equal rates, and (3) environments containing inert 

substrates will not mitigate malathion’s toxicity relative to environments containing no 

macrophytes. 

3.2 METHODS 

3.2.1 Experimental design 

To examine the abilities of different submersed macrophyte species to mitigate the toxic effects 

of insecticides, we conducted an experiment at the University of Pittsburgh’s Pymatuning 

Laboratory of Ecology in Pennsylvania, United States in July 2011. We compared the survival of 

the cladoceran Daphnia magna exposed to a complete factorial cross of three nominal 

concentrations of the insecticide malathion (0, 2.5, 25 µg/L) in each of seven macrophyte 

treatments (no macrophytes, plastic plants, polypropylene rope, Elodea canadensis, 

Myriophyllum spicatum, Ceratophyllum demersum, or Vallisneria americana). Each of the 21 

treatment combinations was replicated four times for a total of 84 experimental units. 

We chose the four submersed macrophyte species for this experiment because they are all 

locally abundant throughout northwestern Pennsylvania and they represent both highly dissected 

(M. spicatum and C. demersum) and broadleaf (E. canadensis and V. americana) growth forms. 
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While no literature currently leads us to predict differences in insecticide uptake or mitigation 

ability among macrophyte growth forms, plants with highly dissected leaves possess higher 

surface area per unit mass, which may increase sorption rates if sorption is the underlying 

mechanism of mitigation. All macrophyte species were collected from field sites during 15 to 17 

June (Table 3.1). While the Geneva Marsh and Crystal Lake sites have had no direct exposure to 

insecticides in the past 5 y (personal communication, Jerry Bish, Pennsylvania Game 

Commission), it is possible that incidental insecticide exposure has occurred in Pymatuning or 

Conneaut lakes as a result of their proximity to agriculture. After collection, all macrophytes 

were washed under running tap water to remove attached invertebrates and epiphytic algae and 

each species was planted in a separate 1,200 L cattle tank containing well water and terrestrial 

topsoil as a rooting substrate and nutrient source. Mesh lids designed to block 60% of solar 

irradiance were placed over each cattle tank to reduce water temperature and to prevent 

colonization by invertebrates. We kept the macrophytes in the cattle tanks until they were 

harvested for the experiment on 20 June. 
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Table 3.1. Collection sites of four submersed macrophyte species tested for their ability to mitigate 

malathion’s toxicity to Daphnia magna. 

 

Collection site GPS coordinates Species collected 

Geneva Marsh 41°35'19.12''N, 80°14'40.61''W Elodea canadensis 

  Ceratophyllum demersum 

Pymatuning Lake 41°37'18.11''N, 80°32'9.94''W Ceratophyllum demersum 

  Myriophyllum spicatum 

Crystal Lake 41°33'13.6''N, 80°22'9.26''W Myriophyllum spicatum 

Conneaut Lake 41°36'13.88''N, 80°17'58.36''W Vallisneria americana 

 

 

 The malathion concentrations that we selected for this study span the range of likely 

exposure scenarios for species inhabiting surface waters in the U.S. Though malathion 

application data for urban and industrial sectors in the United States are sparse, the U.S. 

Environmental Protection Agency has recently calculated the estimated environmental 

concentrations (EEC) for this insecticide in California surface waters based on inputs from 

agricultural sources (Odenkirchen and Wente 2007). Models generated using data including 

typical application amounts, frequencies (every 2 to 14 d), and expected drift patterns for more 

than 50 terrestrial crops reveal surface water EECs for malathion to range between 0 to 36 µg/L 

(mean = 9 µg/L). In addition, malathion’s use in insect-pest eradication programs can produce 

average surface water concentrations of 50 µg/L after spraying events (Ando et al. 1996). If we 

assume these data are representative of exposure scenarios in other states where similar data are 
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currently unavailable, the concentrations that we chose are well within realistic exposure 

scenarios. 

We used Daphnia magna as the test species in this experiment in part because of its 

widespread use in toxicological testing. However, daphnids are also considered to be critical 

herbivores in aquatic food webs because they provide a key link between primary producers, 

planktivorous predators, and water quality (Lathrop et al. 1999, Sarnelle 2005). The D. magna 

used in the experiment were drawn from a mixture of 18 genetically distinct clones originating 

from Katholieke Universiteit Leuven, Belgium. We used a mixture of genetically distinct 

lineages to increase the genetic variability among the animals used in our study. Further, by 

using laboratory-reared clones for our experiment, we ensured that the test animals had not been 

exposed to contaminants for dozens of generations prior to our study. The D. magna populations 

were housed in 500-mL glass jars containing 300 mL of UV-filtered well water and the 

populations were culled during water changes that occurred every 2 wks. We added 1 mL of 

concentrated Scenedesmus spp. algae grown in high-phosphorus COMBO medium to each jar 

every other day. Although D. magna neonates (i.e. < 24-h old) are typically used for 

toxicological testing (ASTM 2004, ASTM 2007), coordinating reproduction to achieve the large 

number of D. magna needed for this experiment (~ 3,500 animals) prevented our use of 

neonates. Instead, we used intermediate sized individuals (~ instars 3 to 6) that had not yet begun 

producing eggs. 

3.2.2 Toxicity test setup 

We performed the experiment in outdoor 0.95-L glass jars containing well water and loamy 

sediment. On 20 July, we removed all coarse organic debris from loamy terrestrial topsoil 
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(collected on site) and added 100 g of soil to each jar. We then added 700 mL of UV-filtered 

well water, which had been allowed to sit in an open container for 48 h, to each jar. We allowed 

the jars to sit overnight letting the suspended sediment settle. The following day, we selected 

shoots of each macrophyte species from culture pools along with inert substrates for inclusion in 

the experiment. For E. canadensis and C. demersum, which form minimal or no root structures, 

we cut each shoot 15 cm below the shoot apex. For M. spicatum and V. americana, which form 

more extensive root systems, we clipped the shoots 15 cm above the sediment. Additionally, we 

clipped the roots and any stolons down to 1 cm. We weighed out 5.7 g fresh weight of each 

macrophyte species and added the macrophytes to their randomly assigned jars. 

We ensured that the basal end of each macrophyte contacted the sediment by combining 

all shoots destined for each jar into a single “bouquet.” We then gently screwed a stainless steel 

hexagonal nut around the base of each bouquet to anchor it to the sediment of each jar. We also 

attached a nut to the artificial plants (plastic and rope), and placed a stainless steel nut in each jar 

containing no plants. After the experiment, the macrophytes were removed, dried at 65°C for 24 

h, and then weighed to determine dry weight biomass densities. The mean (± SE) dry weight for 

each species inside of each jar was as follows:  E. canadensis = 0.54 ± 0.03 g, M. spicatum = 

0.55 ± 0.01 g, C. demersum = 0.49 ± 0.01 g, and V. americana = 0.54, ± 0.05 g. As observed dry 

biomass densities for submersed macrophytes typically range from 0.05 to 0.8 g/L (Duarte and 

Kalff 1990) the densities used in our experiment fall well within this range.   

A major goal of the present study was to observe how macrophytes influence the toxicity 

of malathion under abiotic conditions that macrophytes and D. magna would experience in 

nature. Thus, after adding macrophytes, we moved all jars outside and placed them inside of 

glass aquaria that were positioned on their sides in 300-L pools positioned on wooden tables. We 
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randomly assigned each jar to an aquarium and placed seven jars into each of twelve aquaria 

dispersed throughout four pools (Fig. 3.1). Using this design allowed us to expose the test 

systems to natural fluctuations in temperature and light while preventing rain from entering the 

testing chambers and diluting insecticide concentrations. Once the jars were in place, we added 

approximately 100 L of cool well water to each pool (approximately one-half of the height of a 

jar) to buffer against unnaturally rapid temperature fluctuations. We quantified the abiotic 

environment in each jar by recording pH, temperature (Oakton digital pH meter), and dissolved 

oxygen (DO; Oakton Instruments; WTW digital oxygen meter) 1 h before applying malathion as 

well as pH and DO 48 h after applying malathion. 

We allowed the macrophytes to acclimate to the testing conditions for 4 d prior to 

applying insecticides. During this time, we visually inspected the plants and observed no changes 

in coloration or decay of leaves or shoots. 

 

Tabs%

Wooden%
table%

300/L%pool%

Tes2ng%jars% Glass%aquaria%  

 

Figure 3.1. Depiction of the experimental setup consisting of glass jars positioned inside of sideways-

oriented aquaria. All aquaria were placed in plastic 300-L pools filled with approximately 100 L of well 

water. See methods section for complete details. 
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3.2.3 Malathion application 

On 26 July, we applied technical grade (99.1%) malathion (Chem Service Inc.) to each jar. To 

achieve nominal concentrations of 0, 2.5, and 25.0 µg/L, we added 0, 0.457, and 4.573 mL, 

respectively, of stock solution (0.123 mg/mL malathion dissolved in EtOH carrier) to 1.5 L of 

UV-filtered water to make our working solutions. We used a separate container for each working 

solution. After mixing each working solution for approximately 30 s, we added 50 mL into each 

appropriate jar to bring the total volume in each jar to 750 mL. During dosing, we slowly poured 

control and treated water into each jar to ensure thorough mixing inside of each container 

without disturbing the sediment. We began applying malathion, starting with insecticide-free 

controls, at 10:00 h, and worked up to the 25 µg/L treatments, finishing at 11:00 h. Although we 

did not perform an ethanol control in this experiment, other experiments have demonstrated that 

ethanol concentrations (0.5 mL ethanol/L water) twice as high as those used in our study (0.203 

mL ethanol/L water) had no adverse effects on D. magna survival (Kast-Hutchinson et al. 2001). 

To determine the actual malathion concentrations achieved for each treatment, we applied 

50 mL of each working solution (same solution as above) to two separate glass jars containing 

700 mL UV filtered water using identical application techniques as we used for the experimental 

containers. We then took 450 mL of water from each of these jars and transferred it to two 

separate 500-mL pre-cleaned amber glass jars (VWR). We stored the jars in a 3°C refrigerator 

until analysis. All samples were sent to an independent laboratory for analysis using GC/MS 

(University of Georgia Agricultural and Environmental Services Laboratory) within 1 wk of 

being collected. The actual malathion concentrations corresponding to the nominal 
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concentrations of 0, 2.5, and 25 µg/L were 0, 3.3, and 23.7 µg/L (hereafter referred to as 3, and 

24 µg/L). 

3.2.4 Determining macrophyte effects on the amount that malathion’s toxicity is reduced 

After applying each insecticide treatment, we added 10 Daphnia individuals to each jar in the 

same order that the jars were dosed. Thus, Daphnia were added to each jar approximately 20 min 

after it had been treated with the appropriate malathion concentration. Once all D. magna were 

added, and each day thereafter, we added 1 mL of high-phosphorus Scenedesmus algae raised in 

COMBO medium (Kilham et al. 1998) to each jar to serve as food for D. magna. After 48 h, we 

removed the macrophytes from each jar, gently shaking them in a separate container of well 

water to ensure that no D. magna had been removed while removing the macrophytes. We then 

quantified the number of surviving D. magna individuals in each jar using a protocol slightly 

modified from OECD standardized testing guidelines (OECD 1984). Specifically, we applied a 

gentle burst of water over immobile individuals with a transfer pipette. We considered an 

individual to have survived if it began to swim vertically in the water column within three 

applications of this stimulus. Thus, while most non-survivors were clearly dead (no movement 

and faded color), any individuals that were still twitching but unable to swim in response to the 

stimulus were also considered dead. 

3.2.5 Comparing macrophyte effects on the rate at whch malathion’s toxicity is reduced 

In addition to comparing the amount that different macrophyte species reduced malathion’s 

toxicity, we also compared the rate that different macrophyte species reduced the toxicity of 
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water treated with malathion. To do this, we used a glass pipette to remove 25 mL of water from 

each jar at 2, 8, 24, and 48 h following insecticide treatment applications to test the toxicity of 

this water to D. magna. We removed the water samples in the same order that the jars had been 

dosed so that the duration between insecticide treatment application and water collection was 

equal for each jar. We then transferred the water collected from each jar into a 50-mL glass vial 

and immediately added ten D. magna to each vial. The vials were brought indoors where we 

quantified D. magna survival (using the criteria described above) 48 h after they had been added 

to each vial. During this 48-h exposure period, we fed the D. magna in each vial 0.25 mL of 

high-phosphorus Scenedesmus algae daily. Thus, survival data for this phase of the experiment 

represented the number of surviving individuals 48 h following exposure to water collected from 

each jar at each time point that we extracted the water from the original jars. 

When selecting D. magna individuals to be exposed to water collected from the outdoor 

jars 24 h after malathion applications, we tried pouring the animals through a metal sieve, which 

appeared to affect the survival of these animals. Although we saw no evidence that the animals 

included in this group were unhealthy as we were adding them to the testing vials, 48-h survival 

in the controls for this group was 58% whereas animals in the groups exposed to control water 

collected after 2, 8, and 48 h always exhibited > 90% survival. We also observed higher within-

treatment variation in D. magna survival in the animals tested at 24 h. Therefore, we decided to 

omit the data for the 24-h time point group from our analyses. 

3.2.6 Statistical analysis 

To compare the amount that each macrophyte treatment mitigated malathion’s toxicity, we 

compared the effects of different malathion concentrations on D. magna survival across 
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macrophyte treatments. To do this, we first performed an ANOVA on D. magna survival 48-h 

following malathion exposure. The full-factorial model included macrophyte treatment, 

malathion concentration, and their interaction as sources of variation. Due to unequal variances, 

we first rank-transformed the survival data before analysis. When significant effects of the 

treatment interaction were detected, we used Games-Howell multiple comparisons tests to 

examine the effects of increasing malathion concentrations on ranked D. magna survival within 

each macrophyte treatment. 

To compare the rate of malathion removal from the water column in the presence of the 

different macrophyte species, the inert-substrate controls, and the no-macrophyte treatment, we 

used Dunnett’s test. Specifically, we measured 48-h D. magna survival after exposure to water 

collected at 2, 8, and 48 h following insecticide application and compared ranked survival of 

animals exposed to water treated with 3 and 24 µg/L of malathion to survival in the controls at 

each time point. This allowed us to compare the time that it took for the toxicity of the water to 

return to control levels within each macrophyte treatment. 

We determined the effect of the different macrophyte treatments on aqueous pH, DO, and 

temperature 1-h before applying malathion using a multivariate analysis of variance 

(MANOVA). We also quantified pH and DO 48 h after applying malathion. We again analyzed 

the data using a MANOVA but we included malathion concentration and the macrophyte-by-

malathion concentration interaction in the model to account for any effects of these sources of 

variation. Where appropriate, we used ANOVAs to examine treatment effects on each response 

variable and Tukey’s multiple comparisons tests to determine differences between treatments. 
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3.3 RESULTS 

3.3.1 Effects of macrophyte treatments on the amount that malathion’s toxicity is reduced 

In the outdoor jars, the 48-h survival of D. magna was affected by macrophyte treatment (F6,63 = 

3.6, p = 0.004), malathion concentration (F2,63 = 10.8, p < 0.001), and their interaction (F12,63 = 

3.8, p < 0.001). Due to the significant macrophyte-by-malathion treatment interaction, we 

compared the ability of each species to mitigate malathion’s effects by comparing D. magna 

survival at each malathion concentration. As malathion concentrations increased, we observed 

significant negative effects on D. magna survival in the no-macrophyte, plastic plant, and rope 

treatments (F2,9 > 8.4, p < 0.01) but no effect of malathion concentration on D. magna survival in 

the presence of E. canadensis, M. spicatum, C. dermersum, or V. americana (Fig. 3.2; F2,9 < 0.6, 

p > 0.59). Responses to malathion were similar in the no-macrophyte, plastic plant, and rope 

treatments, where 24 µg/L of malathion caused significant decreases in D. magna survival 

relative to the 0 and 3 µg/L treatments (p < 0.02); the latter two treatments did not differ (p > 

0.094). We also examined D. magna survival across the seven macrophyte treatments in the 0 

µg/L malathion treatments and found no significant differences (F6,21 = 1.435, p = 0.248). This 

demonstrates that even though some of the macrophytes were collected from sites that may have 

encountered incidental prior exposure to pesticides, the plants themselves had no significant 

negative impact on D. magna survival. 
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Figure 3.2. Daphnia magna 48-h survival following exposure to three malathion concentrations in the presence of each of seven macrophyte 

treatments. Data are means ± 1 SE.
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3.3.2 Effects of macrophyte treatments on the rate at which malathion’s toxicity is 

reduced 

We discovered that the rate at which malathion’s toxicity decreased in the water column was 

substantially faster in the presence of any of the four live macrophyte species than in no-

macrophyte or inert-substrate treatments. For example, in the no-macrophyte, plastic plant, and 

rope treatments, Dunnett’s test revealed significantly reduced D. magna survival following 

exposure to water collected 2 and 8 h following applications of 3 and 24 µg/L of malathion (Fig. 

3.3; p < 0.012). Further, in the no-macrophyte and plastic-plant treatments, water treated with 24 

µg/L of malathion was still toxic to D. magna 48 h after the insecticide had been applied (p < 

0.034). However, in treatments containing any of the four living macrophyte species, water 

receiving 3 or 24 µg/L of malathion was non-toxic to D. magna within 2 h following applications 

of the insecticide (p > 0.149). Though survival of D. magna exposed to water collected just 2 h 

after applications of 24 µg/L of malathion in the presence of V. americana was only ~40%, 

Dunnett’s test revealed no difference from survival in the controls (p = 0.110). Additionally, in 

the presence of C. demersum, survival of D. magna following exposure to water collected 48 h 

after malathion applications reduced D. magna survival by a small (< 10%) but statistically 

significant amount compared to controls (p = 0.023) even though no differences in survival were 

observed following exposure to water collected at 2 and 8 h. 
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Figure 3.3. The effects of macrophyte treatment on the toxicity of water collected 2, 8, or 48 h after malathion applications of 0, 3, or 24 µg/L. For 

treatments that had received insecticides, water toxicity was assessed at each sampling time and within each macrophyte treatment by comparing 

D. magna 48-h survival to the controls. Asterisks indicate insecticide treatments where D. magna survival was significantly lower than in 

insecticide-free controls. Data are means ± 1 SE. 
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3.3.3 Effects of macrophyte treatments on the abiotic environment 

Both before and after malathion applications, we found significant multivariate effects of 

macrophyte treatment on pH and dissolved oxygen (Wilk’s λ, F12,124 > 66.3, p < 0.001). The 

multivariate effect of macrophytes were driven by univariate effects of pH (F6,63 > 224.1, p < 

0.001) and DO (F6,77 > 6.5, p < 0.001). Compared to the no-macrophyte treatment, pH samples 

collected at either time point did not differ in the rope treatment (p = 0.651), were 5 to 7% lower 

in the plastic-plant treatment (p < 0.001), and were 11 to 27% higher in treatments containing 

any of the four macrophyte species (Fig. 3.4; p < 0.001). At the first sample time (1 h prior to 

dosing), DO levels in the no-macrophyte treatment did not differ from the plastic plant, rope, E. 

canadensis, C. demersum, or V. americana treatments (p > 0.196). However, DO in the presence 

of M. spicatum was at least 8% higher than all other macrophyte treatments and was 25% higher 

than in the no-macrophyte treatment (p < 0.003). In the sample collected 48 h after dosing, DO 

levels in the no-macrophyte treatment did not differ from the rope or V. americana treatments (p 

> 0.99) but were 27% higher than in the presence of plastic plants (p < 0.001) and 13 to 26% 

lower than in the presence of E. canadensis, C. demersum, and M. spicatum (p < 0.001). The 

average temperature in the jars prior to adding malathion was 30.5°C (range = 27.3 to 32.8°C) 

and was not influenced by any treatments (F6,77 = 1.163, p = 0.335). 

The multivariate effect of malathion concentration (Wilk’s λ, F4,124 = 25.4, p < 0.001) 

was also driven by significant univariate effects of pH (F2,63 =12.2, p < 0.001) and DO (F2,63 = 

27.2, p < 0.001). While pH did not differ between treatments exposed to 0 and 3 µg/L of 

malathion (p = 0.713), concentrations of 24 µg/L increased pH levels by ~3% compared with 

controls (p < 0.001). Malathion’s effect on DO occurred because water exposed to 0 µg/L of 
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malathion had approximately 7% greater DO levels than water dosed with 3 µg/L (p < 0.001), 

and nearly 13% higher DO than 24 µg/L malathion treatments (p = 0.025). 
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Figure 3.4. The effects of macrophyte treatment on pH and dissolved oxygen in 1-L jars 1 h before and 

48 h after malathion application. Data are means ± 1 SE. 
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3.4 DISCUSSION 

We tested the amount and rate at which four species of submersed macrophytes (E. canadensis, 

M. spicatum, C. demersum, and V. americana) and two inert substrates (plastic plants and 

polypropylene rope) can mitigate the toxic effects of a common insecticide (malathion) on the 

aquatic herbivore D. magna. We discovered that all four macrophyte species strongly and 

equally mitigated the toxicity of malathion to D. magna, whereas the inert substrates had no 

mitigating effect. For example, while exposure to 24 µg/L of malathion left no D. magna 

survivors in the absence of macrophytes or in either inert substrate treatment, this same 

concentration had no effect on D. magna survival in the presence of E. canadensis, M. spicatum, 

C. demersum, or V. americana relative to insecticide-free controls. As a result, the data support 

our first hypothesis that all four macrophyte species can mitigate the amount of malathion’s 

toxicity to a similar degree. 

Our experiment demonstrated that the presence of each macrophyte species tested 

prevented any D. magna mortality from occurring even following exposure to malathion 

concentrations that were more than 13 times higher than typical LC50 values for D. magna (e.g., 

LC50 = 1.8 µg/L; Kikuchi et al. 2000). In contrast, the effects of malathion on D. magna survival 

that we observed in the no-macrophyte, plastic-plant, and rope treatments of our experiment are 

similar to documented effects reported in studies employing more traditional toxicological 

experimental designs [Kegley et al. 2010; http:www.pesticideinfo.org]. Although creating 

environments conducive to the maintenance of healthy submersed macrophyte populations in our 

study made it impractical for us to strictly adhere to traditional toxicity testing guidelines using 

D. magna (e.g., USEPA, OETC, ASTM, etc.), the similarities between our results and others 
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employing standardized protocols provides external validity that our testing methodology did not 

strongly influence malathion’s toxicity to this species.  

While our study demonstrates strong mitigating effects of submersed macrophytes on 

zooplankton exposed to insecticides, other studies comparing insecticide toxicity to zooplankton 

in the presence and absence of macrophytes have found mixed evidence of mitigation. For 

example, the results from this experiment are highly consistent with previous work 

demonstrating that different densities of E. canadensis can strongly mitigate the effects of 

malathion on D. magna in a biomass-dependent manner (Brogan and Relyea 2013a). Brock et al. 

(1992) also found some evidence of insecticide mitigation by macrophytes when they contrasted 

the effects of 35 µg/L of another organophosphate insecticide, chlorpyrifos, between 

macrophyte-dominated and phytoplankton-dominated communities using indoor 850-L 

experimental units. They observed that cladocerans were eliminated within hours in the 

phytoplankton-dominated system while it took ~ 2 wks for comparable mortality to occur in 

macrophyte-dominated systems. While the findings of Brock et al. (1992) suggest that 

macrophytes may have had a mitigating effect on zooplankton assemblages, the results of this 

study must be interpreted with caution as the responses of the macrophyte- and phytoplankton-

dominated systems that were exposed to insecticides were examined in separate years (1988 and 

1989, respectively) and, thus, may have had different community compositions prior to dosing.  

In another study, Roessink et al. (2005) compared the effects of a range of concentrations 

(10 to 250 ng/L) of the pyrethroid insecticide lambda-cyhalothrin in outdoor 500-L macrophyte- 

and phytoplankton-dominated mesocosms. Although they did not observe any clear mitigating 

effects of submersed macrophytes on zooplankton assemblages, they did observe stronger 

indirect effects of the insecticide in phytoplankton-dominated microcosms than in macrophyte-
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dominated microcosms. However, the phytoplankton- and macrophyte-dominated systems used 

in their study differed in numerous confounding factors including initial species composition as 

well as nutrient environment. Thus, it is impossible to determine the influence that insecticides 

had relative to the effects of different ecological interactions in phytoplankton- versus 

macrophyte-dominated systems in the studies by Brock et al. (1992) and Roessink et al. (2005). 

Clearly, more studies designed to examine the influence that macrophytes may have on the 

ecological effects of different insecticides in more complex communities are needed.  

Another important discovery in the present study was that all four macrophyte species 

expedited the rate at which malathion’s toxicity decreased in the water column relative to 

treatments containing no macrophytes, plastic plants, or rope. For example, in the no-

macrophyte, plastic-plant and rope treatments, water treated with either 3 or 24 µg/L of 

malathion was still significantly toxic to D. magna 8 h after the insecticide had been applied. In 

fact, in the no-macrophyte and plastic plant treatment, 24 µg/L of malathion was still toxic to D. 

magna 48 h after the application. It is unclear why the toxicity of the water treated with 24 µg/L 

of malathion was not toxic to D. magna after 48 h in the presence of rope, given that the rope 

treatment showed nearly identical patterns to the no-macrophyte and plastic plant treatments in 

all other endpoints measured. Regardless, the difference between live macrophyte and control 

treatments was clear. In the presence of each of the four macrophyte species, water collected just 

2 h following the application of any of the tested malathion concentrations was no longer toxic to 

D. magna. This evidence supports our second hypothesis that macrophyte species will reduce the 

toxicity of water treated with malathion at equal rates and more quickly than in the absence of 

macrophytes. 
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Finally, we also found support for our third hypothesis that insecticide mitigation by 

macrophytes is not merely an artifact of the added surface area resulting from the presence of the 

plants. We demonstrated this by showing that two types of inert substrates—which approximated 

the morphology of submersed macrophytes (plastic plants) or possessed very high surface area 

(rope)—did not cause any decrease in malathion’s toxicity to D. magna or in the rate that 

malathion was removed from the water column relative to treatments containing no macrophytes. 

These results are consistent with previous studies showing that autoclaved (dead) macrophytes 

with no living epiflora removed negligible amounts (< 10%) of malathion over a period of 8 d, 

whereas living submersed plants removed approximately 80% of malathion over this same 

interval (Gao et al. 2000b). Taken together, all of the evidence from our study suggests that 

aquatic plants must be alive to mitigate malathion’s toxicity. 

Of course, living macrophytes host a diverse epiphytic floral community and, while our 

rinsing procedure appeared to remove nearly all epiphytic algae from the macrophytes used in 

our experiment, it is possible that the epiphytic bacterial and algal communities may have 

contributed to the mitigation of malathion’s effects that we observed in our study. However, 

bacteria collected from natural waters degrade malathion relatively slowly, compared with the 

rates that we indirectly observed in our experiment (half-life ≈ 32 h with 5.0 x 108 colony 

forming units; Paris et al. 1981). In fact, Mohamed et al. (2010) even selected a bacterial strain 

(Bacillus thuringiensis) specifically for its ability to degrade malathion in wastewater treatment, 

yet it took approximately 3 d for 7.87 x 1011 colony forming units/mL to reduce aqueous 

malathion concentrations by half. Given the relatively slow degradation rates of malathion by 

bacteria and the likely low biomass of algae present on the plants in our study, we attribute the 

mitigation that we observed primarily to the effects of macrophytes. 
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There are several mechanisms that can help explain the faster reduction of malathion’s 

toxicity by living macrophytes relative to the no-macrophyte and inert substrate treatments. One 

possibility is that macrophytes could be rapidly sorbing malathion onto their tissues and thus 

reducing the toxicity of the water column to D. magna. Gao et al. (2000b) investigated the rates 

at which malathion concentrations decreased in a liquid culture medium containing either of two 

submersed macrophytes (E. canadensis, Myriophyllum aquaticum) or the floating macrophyte 

Lemna minor. They found that after 48 h, measured malathion concentrations in the water 

column had decreased by only 40% and 15% in the presence of M. aquaticum and E. canadensis, 

respectively. Relating this to our study, these results suggest that if the live macrophytes we 

tested were sorbing malathion at similar rates to what Gao et al. (2000b) observed, the malathion 

concentration 48 h following applications of 24 µg/L should still have been approximately 14 

µg/L, which is still enough to cause substantial D. magna mortality. Yet, in the presence of live 

macrophytes we observed high D. magna survival following malathion applications of 24 µg/L 

where the animals were exposed for the whole 48 h duration of the experiment, and when they 

were exposed to water collected just 2 h after dosing. Based on this evidence, it is unlikely that 

sorption was the sole mechanism by which the living macrophytes mitigated malathion’s toxicity 

to D. magna.   

Another possible mechanism to explain the ability of macrophytes to mitigate insecticide 

effects is the increase in water pH associated with the presence of live plants. During 

photosynthesis, macrophytes remove and retain dissolved carbon dioxide while adding oxygen to 

the water, both of which increase aqueous pH (Halstead and Tash 1982). Although the size of 

our testing containers required us to prune the macrophyte roots and shoots in this experiment, 

the high pH and dissolved oxygen concentrations that we observed in the presence, but not 
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absence, of the live plants demonstrated healthy photosynthetic activity. Macrophyte effects on 

pH are potentially very important because malathion’s half-life decreases rapidly with increases 

in pH (Wolfe et al. 1997). For example, in water with pH = 8 (i.e. the no-macrophyte, plastic 

plant and rope treatment of our experiment), malathion’s half-life is approximately 8 h at the 

temperatures recorded in our study (~30°C). However, with each unit increase in pH (i.e. 8 to 9), 

malathion’s half-life is predicted to decrease by an order of magnitude. Thus, in water with pH > 

9 (i.e. the live macrophyte treatments), malathion’s half-life would likely be substantially less 

than 1 h and may be on the order of only a few minutes. Of course, it is possible that 

macrophytes mitigated malathion’s effects via a combination of sorption and through their 

effects on water pH. Unfortunately, the present experiment was not designed to tease apart these 

mechanisms, but an important next step would be to determine the relative importance of 

macrophyte sorption versus macrophyte effects on pH in mitigating insecticides like malathion. 

3.5 CONCLUSIONS 

In this study, we discovered that four different macrophyte species exhibited equal mitigating 

effects on malathion’s toxicity to the sensitive aquatic species D. magna. Further, we 

demonstrated that mitigation does not occur in the presence of two separate inert substrates. 

These results advance our current understanding of the influence that submersed macrophytes 

have on the toxicity of insecticides that, until recently, have largely been extrapolated from 

studies examining the sorption of insecticides from the water column by macrophytes. While the 

mechanisms underlying the mitigating effects that we observed remain unclear, the literature 

suggests that sorption by macrophytes and the effects of macrophytes on water pH may be 
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playing a critical role. The results of the current study suggest that incorporating submersed 

macrophytes into agricultural best management practices, which almost exclusively employ 

emergent macrophytes, could provide a highly effective alternative to reducing the insecticide 

loads contained in runoff. Further, our results indicate that management strategies seeking to 

remove submersed macrophytes to improve the aesthetic quality or recreational functionality of 

water bodies (e.g., lakes, reservoirs, golf courses, etc.) could unintentionally decrease the 

resistance and resilience of these aquatic environments to common contaminants. 
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4.0  A NEW MECHANISM OF MACROPHYTE MITIGATION: HOW SUBMERGED 

PLANTS REDUCE MALATHION’S ACUTE TOXICITY TO AQUATIC ANIMALS  

4.1 INTRODUCTION 

A major contemporary challenge in ecotoxicology is to identify and understand the factors that 

can mitigate the effects of contaminants in aquatic communities. In the past 15 years, aquatic 

plants have emerged as one factor that can have a strong influence on the transport, fate, and 

ecological effects of many contaminants (Cooper et al. 2004, Reichenberger et al. 2007, Moore 

et al. 2011). However, the degree to which plants mitigate contaminant effects in aquatic 

ecosystems is highly variable and there is a critical need for research that examines the 

mechanisms driving contaminant mitigation. 

The current approach used in models designed to predict the influence of aquatic plants 

on the fate and effects of insecticides in surface waters (e.g., AQUATOX, CATS, etc.; Park et al. 

2008) is based primarily on the octanol-water partition coefficient (Kow) of an insecticide. For 

highly hydrophobic insecticides (i.e. log Kow > 5) such as DDT and pyrethroids, plants can 

remove nearly all of a compound from the water column within a few hours (Gao et al. 2000b, 

Hand et al. 2001, Leistra et al. 2003). For less hydrophobic insecticides (log Kow < 3), however, 

plants remove the insecticides from the water column much more slowly. As a result, these 

chemicals can be detected in the water for several days after application (Crum et al. 1999, Gao 
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et al. 2000b). Under the current sorption paradigm, one is left to conclude that plants should have 

weak mitigating effects on insecticides with low log Kow values (e.g., Gao et al. 2000b). While 

this is a logical extrapolation, new evidence suggests that this is not always the case.  

Recent studies demonstrate that aquatic plants can strongly mitigate the toxicity of the 

widely used organophosphate insecticide malathion to the sensitive aquatic zooplankter Daphnia 

magna, despite malathion’s relatively low octanol-water partition coefficient (log Kow = 2.75). In 

one study, Brogan and Relyea (2013a) tested the lethality of malathion to Daphnia across a range 

of densities of the submerged plant Elodea canadensis and demonstrated that with each increase 

in plant density, malathion’s toxicity to Daphnia decreased. Further, by removing samples of 

water at several time points following malathion applications and then exposing Daphnia to 

them, the researchers discovered that in the absence of Elodea, water treated with as little as 5 

µg/L of malathion was still toxic to Daphnia after 48 h, whereas Elodea detoxified water treated 

with up to 30 µg/L of malathion within 2 to 6 h. In a subsequent study, Brogan and Relyea 

(2013b) found that four species of submerged plants all strongly and equally mitigated 

malathion’s toxicity to Daphnia relative to systems containing no plants or plastic-plant controls. 

These studies demonstrated clear mitigating effects of submerged plants on malathion’s toxicity, 

but they were not designed to elucidate the mechanism by which the plants were able to mitigate 

an insecticide that current toxicological models suggest should be weakly mitigated.  

One alternative mechanism that could mitigate malathion’s toxicity is the increase in pH 

caused by plants that can in turn cause the breakdown of malathion. During photosynthesis, 

submerged plants take up dissolved carbon dioxide from the water; this initiates the conversion 

of carbonic acid into CO2 and increases water pH by shifting the bicarbonate buffer system 

towards the more alkaline molecules bicarbonate and carbonate (Wetzel 2001). This increase in 
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pH may be important because malathion is rapidly hydrolyzed under alkaline aquatic conditions. 

For example, malathion’s half-life in water is approximately 3 d at a pH of 7, but it is 19 h at a 

pH of 8 and 2.4 h at a pH of 10 (no temperature data provided; Seaman and Riedl 1986). Wolfe 

et al. (1977) reported similar half-lives at 30°C, although at pH 10 malathion’s half-life was 

substantially less than 1 h. While these studies suggest that alkaline hydrolysis could potentially 

play an important role in the detoxification of malathion in water, no studies to date have 

examined whether alteration of pH is a mechanism whereby plants can mitigate the lethal effects 

of insecticides on animals. This is an important step as some of malathion’s breakdown products 

resulting from alkaline hydrolysis (e.g., malaoxon, diethyl fumurate) can be more toxic to 

aquatic animals than malathion itself (Bender 1969, Aker et al. 2008).  

We addressed this important gap in our knowledge by exploring whether plant-mediated 

and chemical-mediated changes in water pH can alter malathion’s toxicity to Daphnia. Our 

approach allows us to tease apart the independent influence of pH on malathion’s toxicity from 

the effects of other potential interactions between plants and malathion, such as sorption. Based 

on our hypothesis that aquatic plants mitigate the effects of insecticides on sensitive animal taxa 

by a mechanism of increasing water pH, we made the following predictions: (1) adding aquatic 

plants in full sunlight to allow photosynthesis will mitigate malathion's effect on Daphnia, (2) 

chemically increasing water pH by the same amount as a photosynthesizing plant will mitigate 

malathion's effect on Daphnia to a similar degree, and (3) adding aquatic plants in complete 

shade to prevent photosynthesis but to allow other plant-insecticide interactions such as sorption 

will not mitigate malathion's effect on Daphnia. 
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4.2 METHODS 

4.2.1 Experimental design 

We tested these predictions using an experiment conducted at the University of Pittsburgh’s 

Pymatuning Laboratory of Ecology in July 2012. We exposed Daphnia magna to five nominal 

malathion concentrations (0, 1, 5, 10, 50 µg/L) crossed in a factorial manner with four aquatic 

environments (plants in full sunlight, plants in complete shade, chemical additions to maintain 

low pH without plants, and chemical additions to maintain high pH without plants). The 20 

treatments were replicated four times for a total of 80 experimental units. 

4.2.2 Insecticide selection 

While a major reason that we performed the present study using malathion was to test 

hypotheses arising from discoveries in previous studies (Brogan and Relyea 2013a,b), we also 

selected this insecticide because it’s widespread usage and potential for contamination of surface 

waters. With approximately 10-14 million kg applied annually (Kiely et al. 2004, National 

Pesticide Use Database, www.ncfap.org/database/national.php), malathion is one of the most 

common active ingredients applied in the U.S. (Grube et al. 2011). The nominal concentrations 

in the present study span a range of estimated environmental concentrations for malathion 

exposure in aquatic environments (0-36 µg/L), accounting for application frequencies and 

estimated drift (Odenkirchen and Wente 2007). 
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4.2.3 Species collection and husbandry 

For our malathion toxicity assays, we used a mixture of four genetically distinct Daphnia 

magna (hereafter Daphnia) clones originating from Katholieke Universiteit Leuven, Belgium 

that we had reared in the lab since winter 2010 using methods described in Brogan and Relyea 

(2013a,b). Approximately 1 month prior to the start of our experiment, we stopped culling the 

populations and pooled individuals from all Daphnia families together in a 15-L container so that 

we could generate enough gravid females to use < 24-h old neonates for our 48-h survival test. 

No ephippia were observed in our Daphnia cultures at any point within 2 months prior to our 

experiment.   

 We collected and cultured Elodea canadensis (hereafter Elodea) from three artificial 

ponds located in northwestern Pennsylvania, USA (41°35'19.12''N, 80°14'40.61''W) on 15 June. 

More detailed descriptions of the ponds and culturing methods for Elodea are described in 

Brogan and Relyea (2013a,b). We cultured the plants for 25 d before adding them to the 

experiment. 

4.2.4 Experimental setup 

The experimental units were 0.95-L glass jars containing 700 mL of UV-filtered well water. On 

9 July, we set up all 80 jars and added Elodea shoots to the appropriate treatments. To set up the 

treatments containing plants, we harvested the top 12 cm of Elodea shoots in our culturing tanks 

and rubbed each shoot under running well water to remove all visible periphyton and 

invertebrates. We then blotted each plant shoot dry with paper towels and added 5.7 g of Elodea 

(fresh weight) to all appropriate jars. This produced an average dry weight biomass ~ 800 g 
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DW/m3 in our experimental jars; this represents a high, but realistic, submerged plant biomass 

for freshwater ecosystems (Duarte and Kalff 1990, Hopson and Zimba 1993). 

Because the goal of this experiment was to distinguish the mitigating influence of 

Elodea’s natural effects on water via changes in pH versus other mechanisms such as sorption, 

we performed the experiment outdoors where plants would be exposed to natural daily 

fluctuations in light and temperature. To do this, we placed the experimental testing jars in 

sideways-oriented aquaria, which kept out rainwater, that were set in 300-L wading pools 

positioned on wooden tables. After placing the jars and aquaria in the wading pools, we filled 

each pool with approximately 100 L of cool well water. This water served as a buffer to prevent 

the temperature of the water inside each jar from fluctuating widely throughout the day and 

night. While our experimental setup deviates from standardized protocols used in traditional 

toxicological tests (e.g., United States Environmental Protection Agency 1996), this was 

necessary for us to examine the impact that submerged plants have on insecticide toxicity under 

semi-realistic environmental conditions.  

After placing the jars outdoors, we created the shaded and unshaded-plant treatments for 

jars containing Elodea. Unshaded plants were simply kept uncovered and exposed to natural 

sunlight levels in the glass aquaria. These jars were randomly assigned to aquaria throughout our 

experimental array. However, the jars assigned to the shaded-plant treatment were all placed 

together in two sideways-oriented aquaria. The aquaria were covered on all sides with bed sheets 

and wrapped in aluminum foil to prevent any sunlight from reaching the jars contained within. In 

this way, we were able to allow the plants to interact with the water in each jar while preventing 

the plant from photosynthesizing and causing an increase in water pH. We allowed the plants to 

acclimate to these testing conditions for 4 d before chemically manipulating pH in the jars 
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lacking plants and subsequently dosing the experiment with malathion. 

We recognize that randomly placing all of the shaded-plant treatment jars into two 

shaded aquaria does not satisfy the conditions of a complete randomized experimental design. 

However, we used this approach because individually shading each shaded-plant treatment jar 

(e.g., by wrapping each jar in aluminum foil or a similar material) would have made applying 

malathion and sampling each jar logistically very difficult to accomplish in an appropriate time 

frame. Further, the testing conditions to which these and all other jars were exposed were 

virtually identical as the pools were all on tables right next to each other outside. Thus, compared 

to the impacts of the treatment manipulations, we do not expect that the physical location of the 

jars had a significant influence on the response of Daphnia to the malathion treatments. 

 At 0900 h on 13 July, we began manipulating water pH in the jars lacking plants. To 

create low-pH treatments, we added 1M hydrochloric acid (HCl) while monitoring pH using a 

calibrated digital pH meter (Oakton Instruments) until the pH stabilized within 0.1 pH units of 

7.5. After creating all low-pH treatments, the pH meter was rinsed thoroughly and recalibrated. 

We then created high-pH treatments by adding 1M sodium carbonate (i.e. soda, Na2CO3) while 

monitoring pH until it stabilized within 0.1 pH units of 9.5. These jars were then randomly 

assigned to aquaria in our experimental array. The pH targets of 7.5 and 9.5 are within the range 

of natural pH values in lentic systems and were designed to represent aquatic habitats containing 

little or no vegetation and habitats characteristic of high submerged plant densities, respectively 

(e.g., Ondok et al. 1984, Frodge et al. 1990). 
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4.2.5 Sampling abiotic variables 

After chemically manipulating water pH in jars containing no plants, we recorded the aqueous 

pH of all jars from 1100 h to 1300 h (hereafter referred to as “-1 h” relative to malathion 

treatment applications). To monitor changes in pH over time, we also recorded pH 24 and 48 h 

after applying malathion. In addition, we measured the dissolved oxygen concentration (DO) and 

temperature of each jar using a calibrated water quality probe (YSI Inc.) both before (i.e. -1 h) 

and 48 h after applying malathion (see Appendix A for statistical procedure and results for DO 

and temperature). To prevent significant amounts of sunlight from reaching plants located in the 

shaded-plant treatments during sampling of abiotic variables, we removed one shaded jar at a 

time from the covered aquarium and placed it in an opaque box to record pH, DO and 

temperature. 

4.2.6 Malathion applications 

On 13 July, we applied technical grade malathion (99.1% purity; Chem Service Inc.) to each 

appropriate jar. We used technical grade malathion instead of commercial formulations 

containing inert ingredients because the goal of this study was to specifically understand how 

water chemistry affects the toxicity of the active ingredient. To achieve nominal concentrations 

of 0, 1, 5, 10 and 50 µg/L, we added 0, 0.006, 0.03, 0.06, or 0.3 mL, respectively, of malathion 

stock solution (0.123 mg malathion/mL ethanol) to clean, 100-mL glass jars containing 50 mL of 

UV-filtered water to make our working solutions. We mixed the malathion working solutions 

thoroughly and poured the contents into a corresponding experimental jar to bring the total 

volume of each test system to 750 mL. This approach ensured adequate mixing of the insecticide 
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throughout the water column in each jar. We did not perform a control for the ethanol carrier in 

this experiment because other studies have demonstrated that there should be no adverse effects 

of ethanol on Daphnia at higher concentrations (0.5 mL ethanol/L water) than those used in our 

study (0.4 mL ethanol/L water; Kast-Hutchinson et al. 2001). In addition, we have included 

ethanol controls in other studies employing similar experimental designs in which 1 mL 

ethanol/L water had no adverse effects on Daphnia survival (Brogan III, WR and Relyea, RA 

unpublished data). 

At 1400 h, we began applying one malathion concentration treatment at a time, starting 

with 0 µg/L and working up in concentration. To quantify the actual concentration of malathion 

achieved for each treatment, we applied 50 mL of working solution to each of two additional 

glass jars containing 700 mL of UV-filtered water. We then poured 450 mL of this water into 

500-mL pre-cleaned amber glass jars and stored the jars in a 3°C refrigerator until analysis. On 

16 July (3 d after dosing), we sent the jars in coolers of ice to an independent laboratory 

(University of Georgia Agricultural and Environmental Services Laboratory) for extraction and 

analysis using GC/MS. The actual malathion concentrations corresponding to the nominal 

concentrations of 0, 1, 5, 10, and 50 µg/L were 0, 0.75, 3.6, 6.3, and 35.6 µg/L (hereafter referred 

to as 0, 1, 4, 6, and 36 µg/L). The discrepancy between the actual and nominal malathion 

concentrations is likely the result of some breakdown of the insecticide in the 4 d between the 

water collection and extraction of the insecticide from the water samples. Thus, our reported 

malathion concentrations may differ from the actual concentrations that the Daphnia experienced 

in the jars, so they should be interpreted as approximate values representing distinct treatments 

as opposed to exact concentrations for inclusion in formal toxicity assessments for regulatory 

purposes. 
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4.2.7 D. magna 48-h survival assays 

After applying malathion to all jars of each malathion treatment, we added 10 Daphnia to each 

jar in the same order in which we applied the insecticide before moving on the next malathion 

treatment. Thus, Daphnia were added to each jar within 5 min of malathion’s application. After 

48 h (i.e. at 1400 h on 15 July), we terminated the experiment. Starting with the 0 µg/L 

malathion treatment and working up in concentration, we recorded the final abiotic data from 

each jar and then brought the jars indoors for processing. We quantified the number of surviving 

Daphnia in each jar using a transfer pipet to gently blow water over each Daphnia individual. 

We counted an individual as alive if it responded during three applications of the stimulus by 

swimming vertically in the water column. For jars containing Elodea, we first removed the plants 

and carefully transferred them to containers of clean water. We inspected these containers as 

well as the original jars and recorded the number of surviving Daphnia. 

4.2.8 Statistical analysis 

To examine the effects of our treatments on pH over the course of the experiment, we performed 

univariate ANOVAs on pH data from before malathion was applied (-1 h), as well as 24 and 48 h 

after malathion applications. Because no malathion treatments had been applied prior to dosing, 

we performed a one-way ANOVA on pH at -1 h, with plant-pH treatments as a fixed factor. 

However, pH sampled 24 and 48 h after malathion applications were analyzed using a full 

factorial two-way ANOVA model with malathion and plant-pH treatments as fixed factors. 

When appropriate, we performed Tukey’s multiple comparisons tests to compare the effects of 
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each treatment on our response variables. All abiotic data met the assumptions of general linear 

models. 

To determine the effects of plant-pH treatments on malathion’s toxicity to Daphnia, we 

performed a two-way univariate ANOVA on rank-transformed, 48-h survival. Where significant 

interactions occurred, we used Student-Newman-Keuls test to compare Daphnia survival among 

treatments. In these analyses, we excluded one experimental unit (treatment: shaded-plant) 

because we discovered a larval damselfly had gotten into the jar and caused very low Daphnia 

survival (20%) compared to the other replicates of this treatment, which had high survival (90%). 

4.3 RESULTS 

4.3.1 Treatment effects on pH before malathion applications 

Univariate ANOVAs revealed significant effects of plant-pH treatment on water pH 1 h before 

malathion applications (F3,76 = 854.5, p < 0.001). In comparing the plant-pH treatments at -1 h, 

Tukey’s tests revealed water pH in the no-plant/low-pH treatment did not differ from the shaded-

plant treatment (Fig. 4.1; p = 0.217). However, the pH in the no-plant/high-pH treatment was 

slightly (~ 4%) lower than the unshaded-plant treatment (p < 0.001). More importantly, the no-

plant/high-pH and unshaded-plant treatments had much higher pH levels than the other two 

treatments (p < 0.001). 
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4.3.2 Treatment effects on pH after malathion applications 

After applying malathion, we again sampled pH at 24 and 48 h to track any treatment-specific 

changes in pH and to determine whether adding malathion influenced water pH. At 24 and 48 h 

after malathion applications, univariate ANOVAs revealed significant effects of plant-pH 

treatment on water pH (F3,60 > 195.2, p < 0.001) but no effect of malathion (F4,60 < 1.8, p > 

0.131) or the malathion by plant-pH interaction (F12,60 < 1.3, p > 0.256). In both samples, pH 

levels in the treatments were (from lowest to highest): shaded-plant < no-plant/low pH< no-

plant/high pH< unshaded-plants. While all differences between treatments were significant (Fig. 

4.1, p < 0.01), the difference in pH between the two low-pH treatments or between the two high-

pH treatments were relatively small compared to the difference in pH between the low- and high-

pH treatments. 
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Figure 4.1. The effects of plant and chemical pH treatments on water pH in experimental jars over time. 

Data are means ± 1 SE. 

4.3.3 Treatment effects on malathion’s toxicity to D. magna 

The primary goal of the experiment was to examine the influence of water pH and plant presence 

on malathion’s toxicity to Daphnia. We discovered that Daphnia 48-h survival was affected by 

plant-pH treatment (F3,59 = 14.7, p < 0.001), malathion concentration (F4,59 = 28.0, p < 0.001), 

and their interaction (F12,59 = 2.4, p = 0.013). Because of this interaction, we compared Daphnia 

survival across plant-pH treatments within each malathion concentration. In the presence of 0 

and 1 µg/L of malathion, Daphnia 48-h survival was equally high across all of the plant-pH 

treatments (Fig. 4.2, p > 0.799). However, in the presence of intermediate malathion 

concentrations (4 and 6 µg/L), Daphnia survival was 62% to 78% higher in the no-plant/high-pH 

and unshaded-plant treatments, respectively, than in no-plant/low-pH or shaded-plant treatments 
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(p < 0.007). Further, in the presence of both 4 and 6 µg/L of malathion, Daphnia survival did not 

differ between no-plant/high-pH and unshaded-plant treatments (p > 0.786), nor between no-

plant/low-pH and shaded-plant treatments (p = 1.0), respectively. At malathion concentrations of 

36 µg/L we did not observe differences in Daphnia 48-h survival between any plant-pH 

treatments (p > 0.117); fewer than 50% of Daphnia survived in each of the plant-pH treatments. 

However, while the higher variance in Daphnia survival at 36 µg/L precluded statistical 

significance, it is worth noting that the trend of higher Daphnia survival in the no-plant/high-pH 

and unshaded-plant treatments, compared to the two low-pH treatments, was still consistent. 
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Figure 4.2. Daphnia magna 48-h survival following exposure to five malathion concentrations in the 

presence of four plant and chemical pH treatments. Data are means ± 1 SE. Note that the x axis is using a 

log scale (i.e. log [concentration +1]). 
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4.4 DISCUSSION 

In this experiment, we examined the primary mechanism driving the mitigating effects of 

submerged plants on the toxicity of the widely used insecticide malathion to sensitive animals. 

By separately manipulating pH levels and the presence of plants, we were able to compare the 

magnitude of the mitigating effects of plant-elevated pH alone versus other plant-insecticide 

interactions such as sorption. Overall, we were able to achieve very similar pH values within 0.1 

standard units in the no-plant/low-pH and shaded-plant treatments and within 0.32 units in the 

no-plant/high-pH and unshaded-plant treatments, respectively, prior to applying malathion. The 

difficulty in precisely matching the pH levels in the latter treatments occurred because of our 

uncertainty in predicting how much the pH in the unshaded-plant treatments would increase due 

to photosynthesis throughout the day. 

Despite this challenge, we found strong support for our hypothesis that malathion’s 

toxicity to Daphnia would be mitigated by increases in pH. We discovered that relative to 

treatments where pH was kept low via the addition of HCl or by blocking plant photosynthesis 

via shading, simply increasing water pH using Na2CO3 reduced malathion’s toxicity to Daphnia 

to the same degree as when photosynthetically active submerged plants were present. We also 

found support for our hypothesis that shaded plants would not mitigate malathion’s toxicity. Our 

results suggests that the mitigating effect of submerged plants on malathion’s toxicity could be 

predicted entirely based on the pH of the water and that sorption played no role in mitigation, a 

finding that is consistent with malathion’s low binding affinity to organic substrates (log Kow = 

2.75), and its demonstrated weak sorption to plants (Gao et al. 2000b).  

While we did not measure specific degradation pathways in our study, alkaline hydrolysis 

is the most likely mechanism driving malathion’s detoxification in high pH environments (Wolfe 
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et al. 1977, Seaman and Riedl 1986). It is possible that other mechanisms, such as photolysis, 

played a role in malathion’s detoxification but in the only study to our knowledge that has 

examined malathion’s breakdown via direct sunlight in natural waters, it took 16 h to degrade 

only 50% of the insecticide (Wolfe et al. 1977). Compared with malathion breakdown rates 

caused by alkaline hydrolysis (half-life < 2.5 h; Wolfe et al. 1977, Seaman and Riedl 1986), 

processes such as photolysis appear to be of relatively low importance. Further, a review of 

pesticide degradation pathways by Burrows et al. (2002) suggests that, in general, the direct 

photodegradation of most insecticides is a relatively minor breakdown pathway in aquatic 

environments. 

Our study shows that we do not need to invoke the mechanism of sorption to explain the 

mitigating effects of aquatic plants on all insecticides in surface water. Instead, we found that for 

insecticides like malathion, water chemistry can play a primary role in mitigating toxicity. This 

finding challenges current models that primarily use an insecticide’s Kow value to predict the 

influence of aquatic plants on its fate and environmental effects (AQUATOX, CATS; Park et al. 

2008). While most of these models do include abiotic water parameters like pH, no models to our 

knowledge incorporate the influence of abiotic conditions on the removal of contaminants from 

the water by processes such as hydrolysis. Thus, these models may be missing an important 

insecticide degradation pathway in aquatic ecosystems.  

In the United States, surface water pH values exceeding 8 are common (based on average 

daily pH values at ~ 17:30 h from United States Geological Survey real-time surface water 

quality monitoring data; http://waterwatch.usgs.gov/wqwatch), suggesting that pH-mediated 

insecticide mitigation may be a widespread phenomenon. While freshwater ecosystems 

containing high densities of submerged plants often contain high pH (Ondok et al. 1984, Barko 
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and Godshalk 1988, Frodge et al. 1990), highly eutrophied waters dominated by phytoplankton 

(or periphyton) can also posses high pH (e.g., Talling 1976, Toivonen and Huttunen 1995). This 

is important as many eutrophied aquatic environments receiving high nutrient inputs from runoff 

may also experience exposure to high insecticide concentrations. However, it is also important to 

note that well-buffered waters possessing high alkalinity (i.e. containing high concentrations of 

bicarbonates and carbonates) can be resistant to fluctuations in pH, even during periods of 

intense photosynthesis (Wurts and Durborow 1992, Wetzel 2001). Our findings suggest that 

malathion’s toxicity should be mitigated in high pH environments (compared to neutral or acidic 

waters), regardless of the mechanism by which high pH is achieved. A critical next step will be 

testing this prediction while controlling for confounding factors that may also alter malathion’s 

toxicity or the effects of pH on malathion’s toxicity.  

Our results could also improve current agricultural best management practices (BMPs). 

BMPs typically contain high densities of emergent plants for sorbing insecticides and other 

contaminants from the water (Cooper et al. 2004, Kröger et al. 2009). These treatment systems 

are capable of reducing concentrations of many insecticides, but especially those with relatively 

high log Kow values (Moore et al. 2011). However, as emergent plants perform gas exchange 

with the air and not the water, aqueous pH levels in these mitigation systems are likely to remain 

relatively low (i.e. pH < 8, Wetzel 2001). Our results suggest that for insecticides like malathion, 

which posses low Kow values but are hydrolysable under alkaline conditions, a more effective 

mitigation strategy may be to construct sections of BMPs to either contain submerged vegetation 

or at least elevated pH levels. Examining the efficacy of implementing such changes to current 

mitigation systems is an area in need of further research. 

In addition to malathion, waters containing high pH may mitigate other widely used 
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insecticides that are known to undergo relatively rapid alkaline hydrolysis (e.g., carbaryl and 

carbofuran; Wolfe et al. 1978, Chapman and Cole 1982). However, this is not necessarily a 

mechanism that will be generalizable for all pesticides. For example, many of the increasingly 

used pyrethroid insecticides have breakdown rates that differ very little across a wide range of 

pH levels (National Pesticide Information Center; http://npic.orst.edu/ingred/aifact.html). Even 

other insecticides within the same chemical class as malathion (e.g., chlorpyrifos) can persist for 

weeks under alkaline conditions (Christensen et al. 2009) and their toxicity appears to be largely 

unaffected by the presence of submerged plants (Brock et al. 1992). Further, some insecticides, 

such as the organophosphate compound diazinon, actually persist longer in water under alkaline 

conditions and break down faster under acidic conditions (Harper et al. 2009). For insecticides 

like diazinon, it is reasonable to predict that submerged plants (and high pH in general) may have 

the opposite effect on toxicity to invertebrate taxa than we observed for malathion. Clearly, more 

research is needed to understand how ecological complexity can influence the toxicity of 

insecticides so that we can better predict and mitigate their effects moving forward.  

Although our results suggest that managing aquatic ecosystems for high pH (by 

promoting submerged plants or via other methods) may be an appropriate strategy for 

minimizing impacts of some contaminants in certain cases, it is important to consider the full 

biological and economic consequences of management strategies before employing them. In 

general, most aquatic animals appear to be tolerant to alkaline conditions but high pH levels can 

be toxic to some species. For example, high pH can inhibit normal sodium channel function and 

result in toxic elevations in blood ammonia levels in several fish species (Wright et al. 1989, Ip 

et al. 2001, Scott et al. 2005). Further, high water pH can increase the toxicity of some metal 

contaminants to aquatic animals (e.g., copper, zinc, and cadmium; Cusimano et al. 1986). 
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Clearly, before any management strategy is chosen, the potential biological impacts of increasing 

pH need to be carefully considered. Further, the economic costs (i.e. recreational, aesthetic, etc.) 

of managing for high pH need to be evaluated by land managers and stakeholders before 

selecting a strategy. Given the potentially widespread applications of our research, future studies 

evaluating the costs and benefits of different management approaches are needed. 
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5.0  SUBMERGED MACROPHYTES MITIGATE DIRECT AND INDIRECT 

INSECTICIDE EFFECTS IN FRESHWATER COMMUNITIES 

5.1 INTRODUCTION 

A contemporary challenge facing ecologists and ecotoxicologists is to elucidate factors that can 

mitigate anthropogenic contaminant impacts in aquatic ecosystems. Traditionally, the ecological 

effects of contaminants, such as insecticides, are based on laboratory toxicity studies using a 

small number of test species and then extrapolated to entire communities (Newman 2010). 

However, such tests are designed to eliminate sources of environmental variation (e.g., 

Organisation for Economic Co-operation and Development 1984, ASTM International 2007), but 

accumulating evidence suggests this can lead to discrepancies between predicted and actual 

insecticide effects in nature (Fleeger et al. 2003, Relyea and Hoverman 2006, Forbes et al. 2008). 

One common cause of discrepancy between predicted and actual insecticide effects is the 

influence of ecological interactions. For example, in freshwater communities, natural stressors 

such as competition and predation can exacerbate direct insecticide toxicity (Hanazato 2001, 

Boone and Semlitsch 2001, Kieseker 2002, Boone et al. 2007). Further, insecticides can affect 

the growth and survival of relatively resistant species at concentrations that traditional toxicity 

tests predict should have no effect through indirect trophic interactions. For example, low 

concentrations of many insecticides decimate cladoceran zooplankton, initiating trophic cascades 
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that cause phytoplankton blooms. As the phytoplankton bloom, they shade the benthos, reduce 

periphyton growth, and adversely affect benthic grazer growth and survival (Mills and Semlitsch 

2004, Relyea and Diecks 2008, Relyea and Hoverman 2008). While a preponderance of studies 

in aquatic ecosystems have targeted factors that exacerbate insecticide effects, comparatively few 

studies have identified factors that might mitigate these effects.  

Growing evidence suggests that submerged macrophytes can mitigate insecticide effects 

in aquatic ecosystems. For example, Brogan and Relyea (2013a) demonstrated that realistic 

densities of a cosmopolitan submerged macrophyte, Canadian waterweed (Elodea canadensis), 

caused up to nine-fold reductions in the toxicity of the insecticide malathion to the cladoceran 

Daphnia magna in small (0.95-L) outdoor jars. Moreover, each increase in macrophyte density 

caused greater mitigation. We also understand the mechanism of this mitigation; as submerged 

macrophytes photosynthesize, they increase water pH by taking up CO2, which decreases 

carbonic acid concentration and shifts the bicarbonate buffer system towards the more alkaline 

bicarbonate and carbonate (Wetzel 2001). This higher pH causes malathion to degrade more 

rapidly via alkaline hydrolysis (Wolfe et al. 1977, Brogan and Relyea 2014). However, as the 

mitigating effects of submerged macrophytes on insecticide toxicity have thus far only been 

documented at the microcosm scale, a critical next step is to examine whether these effects occur 

in more spatially and ecologically complex communities. 

In addition to mitigating insecticide direct effects, submerged macrophytes may also 

dampen the indirect cascading effects of insecticides in freshwater communities. For example, 

macrophytes can suppress phytoplankton growth via allelopathy (Hilt and Gross 2008) and 

aqueous nutrient competition (Sand-Jensen and Borum 1991, van Donk and van de Bund 2002). 

Thus, even if zooplankton decline following insecticide exposure, submerged plants may still 
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prevent phytoplankton blooms. While predicting the impacts of macrophytes on phytoplankton is 

relatively straightforward, their effects on periphyton and grazers (e.g., snails and larval 

amphibians) are still poorly understood. For example, to our knowledge, no studies have 

examined the impact of submerged macrophytes on the growth or survival of larval amphibians. 

Thus, there is a need for studies examining the influence that macrophytes have on grazers, 

particularly in the presence of perturbations like insecticides. 

When examining the influence of macrophytes on insecticide effects in aquatic 

communities, there is also a need to consider different insecticide-exposure scenarios. For 

example, depending on weather patterns and application frequencies, insecticide exposure in 

aquatic communities can occur either as single “pulse” or repeated “press” events (sensu Bender 

and Case 1984, Yodzis 1988, Paine et al. 1998). However, studies examining community 

responses to different insecticide exposure scenarios have received little attention. In the few 

studies investigating the ecological effects of pulse and press insecticide perturbations, press 

exposures have ecological effects that are longer lasting and many times larger in magnitude than 

pulse perturbations (Hanazato and Yasuno 1990, Boone et al. 2001, Relyea and Diecks 2008). 

While submerged macrophytes can mitigate pulse insecticide applications in microcosm studies 

(Brogan and Relyea 2013a,b), their ability to mitigate the effects of recurring press exposures has 

never been examined. Clearly, considering different exposure regimes is critical for 

understanding the factors influencing realistic insecticide impacts in freshwater communities.  

To address these gaps in our understanding, we examined the mitigating role of a range 

of natural macrophyte densities in freshwater communities containing phytoplankton, periphyton 

and 22 species of animals (zooplankton, snails, and larval amphibians) during several realistic 

insecticide-exposure scenarios. We used the organophosphate insecticide malathion (Diethyl 2-
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dimethoxyphosphorothioylsulfanylbutanedioate) because it is one of the most commonly used 

active ingredients in the U.S. (Grube et al. 2011), with 10-14 million kg applied annually (Kiely 

et al. 2004, National Pesticide Use Database, www.ncfap.org/database/national.php). Despite 

malathion’s popularity, few studies have examined its ecological effects in non-target 

communities. We hypothesized that the magnitude of malathion’s direct and indirect effects 

would increase with the number of insecticide exposure events (control < pulse < press) and that 

these effects would decrease with increasing submerged macrophyte density. 

5.2 METHODS 

5.2.1 Experimental design 

The experiment was conducted at University of Pittsburgh’s Pymatuning Laboratory of Ecology. 

We used a completely randomized, factorial design crossing four macrophyte densities (0, 10, 

50, and 100 E. canadensis shoots initially planted) with three malathion exposure scenarios (no 

insecticide, a single application, and repeated applications every three wks). The 12 treatment 

combinations were replicated four times for a total of 48 experimental units. 

5.2.2 Experimental setup 

The experimental units were outdoor 1,200-L mesocosms containing 850 L of well water. On 2 

May, we added 95 L of sediment to each mesocosm and on 28 to 31 May, we manually planted 

the appropriate number of macrophyte shoots in each mesocosm, simulating planting in the 0-
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macrophyte treatment. The macrophytes were collected and mixed from three local wetlands. 

Prior to adding them to the mesocosms, we placed the collected plants in 200-L wading pools 

containing well water and sediment for 2 wks to allow any attached invertebrate eggs to hatch. 

On 21 May, we established microbial, algal and zooplankton communities in each 

mesocosm. To do this, we used a zooplankton tow to collect water from the same ponds where 

we had collected the macrophytes, combined the water samples, and removed all predatory 

invertebrates. We then added 200-mL aliquots of this water to each mesocosm. On 26 May, we 

added five unglazed, vertically oriented clay tiles (10 x 10 cm) to the north side of each 

mesocosm to serve as periphyton samplers.  

Next, we collected and added larval amphibians to our mesocosms. From 28 to 29 May 

we collected 30 pairs of breeding gray treefrogs (Hyla versicolor) and placed them into 

individual containers to oviposit. We then mixed the resulting eggs and moved them to 200-L 

wading pools containing aged well water. Once hatched, we fed the tadpoles ad libitum until 

reaching an appropriate handling size (~10 mg). On 16 June (defined as day 0 of the 

experiment), we added 20 gray treefrog tadpoles to each mesocosm. The densities of 10 

tadpoles/species/m2 are well within natural densities (Morin 1983, R.A. Relyea, E.E. Werner, 

D.K. Skelly, K.L. Yurewicz, unpublished data). We also set aside 20 tadpoles for staging (all 

tadpoles were at Gosner stage 25; Gosner 1960) and weighing (mass ± 1 SE: 11.4 ± 0.6 mg). In 

addition, we assessed 24-hr survival of 20 tadpoles following handling (survival was 100%).  

To represent grazer communities commonly found in wetlands, we also added freshwater 

snails to the mesocosms. On 5 May, we collected pond snails (Physa acuta and P. gyrina, which 

can only be differentiated by dissecting their internal genitalia) and rams horn snails (Helisoma 

trivolvis) from local ponds. To prevent adult snail endoparasites from being introduced to the 
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mesocosms, the snails used in the experiment were hatched from eggs of the snails collected 

from local ponds and were cultured in clean well water in 200-L wading pools. On 17 June (day 

1), we sorted all hatched pond snails into small (< 10 mg), medium (10 to 20 mg), and large (> 

20 mg) size classes. We added five pond snails from each size class to each mesocosm. On 24 

June (day 8), we sorted rams horn snails into small (< 100 mg) and large (> 100 mg) size classes 

(range = 17 to 211 mg) and added 4 small and 3 large rams horn snails to each mesocosm. While 

these snail densities are considerably lower than what can occur in wetlands in western 

Pennsylvania, (A.M. Turner, unpublished data), we added the maximum number possible to 

each mesocosm given the lower-than-expected number of hatchlings produced during culturing. 

We also assessed the 24-h survival of pond snails and rams horn snail following handling; we 

found 100% survival for each taxa. 

5.2.3 Insecticide applications 

Once all animals were added, we did not disturb the mesocosms for 10 d. On 3 July (day 19), we 

applied the insecticide treatments using technical grade malathion (99.1% active ingredient; 

Chem Service Inc., West Chester, Pennsylvania, USA). Our original target concentration was 18 

µg/L, which is well within the US Environmental Protection Agency’s estimated environmental 

concentration (EEC) for surface waters (0 to 36 µg/L; Odenkirchen and Wente 2007). However, 

3 d after applying malathion, we assessed zooplankton abundance in 0-macrophyte treatments 

and found that the insecticide reduced cladoceran abundance, but not significantly (see Results). 

Given that one of our goals was to determine if the macrophyte could mitigate the toxic effects 

of malathion on zooplankton, we decided to double the nominal concentration to 36 µg/L (which 
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is still within the range of the EPA’s EEC values) and applied this concentration to the 

appropriate mesocosms on 17 July (day 37). 

To achieve nominal concentrations of 36 µg/L in our tanks, we dissolved 0.88 mL of 

technical grade malathion (specific gravity = 1.23 g/mL) in 25 mL of ethanol to make a stock 

solution of (0.042 g/mL). We then added 0.71 mL of this stock solution to each appropriate 

mesocosm (average volume = 850 L). We elected not to apply an ethanol control because the 

concentrations we used have had no effect on any taxa in similar, previous experiments (Relyea 

and Diecks 2008, Relyea and Hoverman 2008, Relyea 2009). After applying malathion, we 

gently mixed the water in the mesocosms to simulate mixing that would occur during a runoff 

event. We also mixed control mesocosms to standardize disturbance. Whereas 36 µg/L of 

malathion was applied only on day 37 in the pulse treatment, we repeated this application 

procedure on days 55 and 73 for the press treatment. Given malathion’s rapid breakdown rate in 

water (t1/2 = 48 h at pH 8; Wang et al. 1991), each application in the press treatment represented 

a new exposure to our nominal malathion concentration. 

We collected water samples within 1 hr of application. Because of the high costs of 

insecticide analysis, we pooled water collected from the center of the water column of each 

mesocosm within a given insecticide treatment into 500 mL pre-cleaned amber glass jars. 

Because pulse and press treatments had received identical malathion applications to this point, 

we pooled water from these treatments to compare with the control. Immediately after collection, 

we stored all water samples in a refrigerator kept just above freezing (3°C) until analysis.  

The water samples were sent for analysis to an independent testing laboratory 

(Mississippi State Chemical Laboratory, Mississippi State, Mississippi, USA) on 17 August (38 

d after application). The actual concentration for the nominal 36 µg/L sample was reported to be 
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below the lower detection limit (0.1 µg/L). Further, the control sample revealed a trace amount 

of the insecticide present (0.156 ug/L). Though actual malathion concentrations in mesocosm 

experiments are often substantially lower (~ 40% lower) than nominal concentrations (e.g., 

Relyea and Diecks 2008, Relyea and Hoverman 2008, Relyea 2009, Distel and Boone 2010), our 

concentrations were lower than typical. One explanation for this discrepancy is that, despite 

being stored in the dark at 3°C, the malathion broke down during the 38+ d that elapsed between 

water sample collection and extraction into an organic solvent by the testing laboratory.  

While we recognize that our protocols do not meet standards for formal toxicological 

assessments, our experiment was not designed to determine the impact of a specific malathion 

concentration on aquatic communities. Instead, our experiment was designed to examine the 

extent to which submerged macrophytes could mitigate the direct and indirect effects of 

malathion in freshwater communities. Based on the biological responses that we observed in our 

study, our malathion applications were sufficiently high to achieve this goal. 

5.2.4 Response variables 

Throughout the experiment we sampled abiotic variables (aqueous pH, dissolved oxygen (DO), 

light decay rate, temperature) and biotic variables including the density of each major 

zooplankton group (cladocerans, copepods, rotifers), phytoplankton abundance (measured as 

chlorophyll a), and periphyton mass several times throughout the experiment using approaches 

described in Relyea and Diecks (2008) and explained in detail in Appendix B. Although each 

round of sampling took at least 3 d to complete, we hereafter identify samples by the day that 

sampling began (i.e. days 26, 47, 68, and 100). 

To determine the influence of our treatments on periphyton grazers, we measured snail 
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abundance and amphibian survival and growth (see Appendix B). We assessed pond snail and 

rams horn snail abundance on day 68. We also quantified gray treefrog survival, time to 

metamorphosis, and mass at metamorphosis. The first gray treefrog metamorph emerged on day 

30, just 13 d after the initial 18 µg/L malathion application (thus, no indirect effects of malathion 

were expected on gray treefrogs); the final metamorph emerged on day 94. 

Finally, we quantified macrophyte density just before taking down the experiment (day 

320). To do this, we placed a stovepipe sampler (r x h, 0.008 x 0.031 m) in the middle of each 

mesocosm to standardize the area sampled. We then removed all macrophytes from within the 

stovepipe, rinsed the macrophytes to remove attached algae, and dried the plants for 24 hrs at 

60°C. We then weighed the plants to determine their dry mass. 

5.2.5 Statistical analysis 

We used general linear models (GLM) to analyze the data from this experiment. To analyze the 

effects of initial macrophyte density and insecticide treatment on final macrophyte density, we 

performed a two-way ANOVA. To analyze the effects of the treatments on abiotic response 

variables over time, we performed a two-way repeated-measures multivariate analysis of 

variance (rm-MANOVA) on pH, DO, temperature and light decay. To analyze treatment effects 

on biotic response variables over time, we performed a two-way rm-MANOVA on cladoceran, 

copepod, and rotifer density, phytoplankton abundance (chlorophyll a), and periphyton biomass. 

When we found significant multivariate effects, we explored the univariate effects on each 

response variable using two-way rm-ANOVAs. When significant univariate time-by-treatment 

interactions were detected, we examined treatment effects within each time point using two-way 

ANOVAs. Where appropriate, we used Tukey’s test for post-hoc comparisons. This hierarchical 
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approach allowed us to control overall experiment-wise error when performing multiple rm-

ANOVAs and subsequent ANOVAs. When necessary, we log (+1) transformed our data to meet 

the assumptions of GLM. 

To analyze the effects of the macrophyte and insecticide treatments on snails, which were 

only measured at a single time point, we performed a two-way MANOVA on log-transformed 

Physa spp. and H. trivolvis snail abundance. We performed a separate two-way MANOVA on 

gray treefrog survival (arcsine-transformed), time to metamorphosis, and mass at 

metamorphosis. We examined all significant multivariate treatment main effects and interactions 

using subsequent two-way ANOVAs and Tukey’s mean comparison tests. 

5.3 RESULTS 

5.3.1 Macrophyte density and abiotic variables 

In general, we found strong effects of initial macrophyte density on final macrophyte density and 

on the abiotic environment in our mesocosms. By the end of the experiment, the 10- and 50-

macrophyte treatments no longer differed in density, but both contained about 50% less biomass 

than the 100-macrophyte treatment. In regard to the abiotic effects, the addition of macrophytes 

generally had no effect on temperature, increased DO, and maintained lower light decay rates 

relative to mesocosms containing no macrophyes (see Appendix C for full results and figures for 

macrophyte density and abiotic variables). Because pH is the primary mechanism by which 

plants mitigate malathion’s toxicity (Brogan and Relyea 2014), we discuss only the results for 

pH further here. 
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We observed a significant time-by-macrophyte interaction on pH (F9,108 = 8.4, p < 0.001). 

At each sample date, macrophyte treatment had a significant effect on pH (F3,36 = 13.5, p < 

0.001). At day 26, pH in the 10-macrophyte treatment was 9% greater than the 0-macrophyte 

treatment (Fig. 5.1, p = 0.001), but 9% less than the 50- and 100-macrophyte treatments (all p < 

0.001), which did not differ from each other (all p > 0.9). On each subsequent sample date, pH in 

the 10-, 50- and 100-macrophyte treatments was at least 10% higher than the 0-macrophyte 

treatment (all p < 0.002) and did not differ from each other (all p > 0.078). 
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Figure 5.1. The effect of macrophyte density on pH over time. Data are means ± 1 SE. 

 

5.3.2 Biotic variables 

The rm-MANOVA on cladoceran, copepod and rotifer densities, phytoplankton abundance, and 

periphyton biomass showed significant effects of macrophytes, insecticides, time, and all 
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interactions (Table 5.1). As a result, we separately examined the time and treatment effects on 

each biotic response variable using two-way rm-ANOVAs (Table 5.2). 

 

Table 5.1. Results of a repeated-measures MANOVA showing the effects of time, macrophyte 

density, malathion treatment, and their interactions on all biotic response variables. Bold p-

values are significant at α = 0.05. 

 

 

 

 

 

 

 

 

 

 

Multivariate test (Wilks’ lambda) df F-value p-value 

Macrophyte (M) 15, 89 5.4 < 0.001 

Insectiide (I) 10, 64 3.3 0.002 

M x I 30, 130 2.1 0.002 

Time (T) 15, 288 15.3 < 0.001 

T x M 45, 468 2.8 <0.001 

T x I 30, 418 1.8 0.006 

T x M x I 90, 509 1.6 0.001 
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Table 5.2. Results of repeated measures ANOVAs showing the effects of time, macrophyte density, malathion treatment, and their 

interactions on each biotic response variable. Bold p-values are significant at α = 0.05. 

 

 
  Cladocerans Copepods Rotifers Phytoplankton Periphyton 

Univariate tests df p  p  p p p 

Macrophyte (M) 3,36 0.002 0.147 < 0.001 < 0.001 0.207 

Insecticide (I) 2,36 < 0.001 0.431 0.146 0.094 0.446 

M x I 6,36 < 0.001 0.506 0.332 0.028 0.860 

Time (T) 3,108 <0.001 < 0.001 < 0.001 0.026 < 0.001 

T x M 9,108 0.626 0.008 < 0.001 0.006 < 0.001 

T x I 6,108 0.091 0.668 0.078 0.005 0.089 

T x M x I 18,108 0.001 0.009 0.396 0.262 0.485 
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5.3.3 Cladocerans 

Cladoceran density was influenced by macrophytes, insecticides, the macrophyte-by-insecticide 

interaction, and the three-way interaction with time (Table 5.2). On day 26 (i.e. after applying 18 

µg/L of malathion), cladocerans were marginally affected by insecticide treatment (F2,36 = 3.0, p 

= 0.061) but not macrophytes (F3,36 = 0.7, p = 0.534) or the macrophyte-by-insecticide 

interaction (F6,36 = 1.2, p = 0.339). Because there appeared to be a pattern of different cladoceran 

responses to insecticide treatment within different macrophyte treatments (Fig. 5.2), we 

conducted Tukey’s mean comparisons within each macrophyte treatment but found that pulse 

and press treatments never differed from the controls (all p > 0.08). As noted in the methods, the 

lack of a malathion treatment effect in the absence of macrophytes led to our decision to increase 

the malathion concentration from 18 to 36 µg/L. 

On sample days 47, 68, and 100 (i.e. after malathion applications of 36 µg/L), we found 

that the effect of insecticide treatment on cladoceran density depended on macrophyte density 

(all F6,36 ≥ 3.2, p ≤ 0.012). In the 0-macrophyte treatment, the pulse insecticide exposure caused 

a marginally significant decline (76%) in cladocerans, relative to controls, on day 47 (p = 0.053). 

However, cladocerans returned to control levels by day 68 and remained equal to controls 

through day 100 (all p ≥ 0.302). In the press treatment, cladoceran densities were less than 3% of 

control densities on days 47, 68, and 100 (Fig. 5.2, all P ≤ 0.009). However, in treatments that 

contained 10, 50, or 100 macrophytes, cladoceran density in the pulse and press treatments never 

differed from the controls on any sample date (all p ≥ 0.173). 



  94 

5.3.4 Copepods 

Copepod density was affected by time, the time-by-macrophyte interaction and the three-way 

interaction with time (Table 5.2). Two-way ANOVAs revealed that on days 26 and 68, copepod 

density was affected by macrophytes (F3,36 = 3.2, p = 0.036), but not insecticides (F2,36 = 0.2, p = 

0.84) or their interaction (F6,36 = 1.2, p = 0.315). On day 26, the macrophyte effect was driven by 

a 13-fold higher copepod density in the 10-macrophyte treatment than the 100-macrophyte 

treatment (Fig. 5.2, p = 0.035). On day 68, however, the macrophyte effect was driven by a 2-

fold higher copepod density in the 0-macrophyte treatment compared to the 100-macrophyte 

treatment (p = 0.031). In between these two dates (day 47), there were no effects of macrophytes 

(F3,36 = 2.7, p = 0.062), insecticides (F2,36 = 1.3, p = 0.291), or their interaction (F6,36 = 1.0, p = 

0.446). 

On day 100, we observed a significant macrophyte-by-insecticide interaction (F6,36 = 2.9, 

p = 0.021) driven by an effect of insecticides on copepod density in the 10-macrophyte treatment 

(F2,36 = 8.7, p = 0.008) but not in the other macrophyte treatments (Fig. 5.2, all F2,36 ≤ 2.1, p ≥ 

0.179). With 10 macrophytes, we observed 12 to 15 times higher copepod densities in the press 

and pulse insecticide treatments compared to the controls (p ≤ 0.016); the press and pulse 

treatments did not differ from each other (p = 0.993). 
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Figure 5.2. The effects of different malathion exposure scenarios in the presence of four macrophyte 

densities on cladoceran density (left) and copepod density (right) over time. Data are means ± 1 SE. 
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5.3.5 Rotifers 

Rotifer density was affected by macrophytes, time, and the time-by-macrophyte interaction; 

however, the insecticide had no effect (Table 5.2). Significant univariate effects of macrophyte 

treatment on rotifer density occurred on each sample day (all F3,36 ≥ 7.1, p < 0.001). On day 26, 

the 50- and 100-macrophyte treatments had five times higher rotifer densities than the 0-

macrophyte treatment (Fig. 5.3, all p ≤ 0.004); the 10- and 0-macrophyte treatments did not 

differ (p = 0.993). On all subsequent sampling dates, rotifer densities in the 10-, 50- and 100-

macrophyte treatments were 2 to 13 times higher than in the 0-macrophyte treatment (all p ≤ 

0.05). 

0

0.5

1

1.5

2

2.5
0 macrophytes

10 macrophytes
50 macrophytes

100 macrophytes

26 47 68 100

Time (d)

Lo
g 

+ 
1 

ro
tif

er
 d

en
si

ty
 (L

-1
)

 

 

Figure 5.3. Effects of macrophyte density on rotifer density over time. Data are means ± 1 SE. 
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5.3.6 Phytoplankton 

Phytoplankton abundance was affected by macrophytes, the macrophyte-by-insecticide 

interaction, time, and several interactions with time (Table 5.2). As a result, we performed two-

way ANOVAs on phytoplankton abundance within each sample day. On days 26, 47, and 68, we 

observed effects of macrophyte treatment (all F3,36 ≥ 5.0, p ≤ 0.006), but not insecticides (F2,36 ≤ 

2.0, p ≥ 0.148) or their interaction (F6,36 ≤ 1.4, P ≥ 0.224). On day 26, phytoplankton abundance 

in the 0- and 10-macrophyte treatments was over five and two times higher, respectively, than in 

the 100-macrophyte treatment (Fig. 5.4, all p ≤ 0.049); abundance in the 50-macrophyte 

treatment was intermediate (all p ≥ 0.126). On day 47, phytoplankton abundance in the 0-

macrophyte treatment was more than three times higher than the 10-, 50-, and 100-macrophyte 

treatments (all P ≤ 0.01), which did not differ from one another (all p ≥ 0.874). On day 68, 

phytoplankton abundance in the 0-macrophyte treatment was over five times higher than in the 

10- and 50-macrophyte treatments (all p ≤ 0.004); the 100-macrophyte treatment did not differ 

from any of the other treatments (all p ≥ 0.141). 

On day 100, we found an effect of insecticides on phytoplankton abundance, but the 

effect depended on macrophyte treatment (F6,36 = 6.3, p < 0.001). This interaction occurred 

because insecticides had a significant effect on phytoplankton when macrophytes were absent 

(F2,36 = 20.5, p < 0.001) but no effect when macrophytes were present at any density (Fig. 5.4, all 

F2,36 ≤ 2.0, p ≥ 0.185). In the 0-macrophyte treatment, the insecticide effect was caused by a 

nearly 12-fold increase in phytoplankton abundance (i.e. a phytoplankton bloom) in the press 

insecticide treatment compared to the control and pulse treatments (all p ≤ 0.003), which did not 

differ from one another (p = 0.457). 
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Figure 5.4. Phytoplankton abundance (measured as chlorophyll a) over time in mesocosms treated with 

different macrophyte densities and different malathion application regimes. Data are means ± 1 SE. 

 

5.3.7 Periphyton 

Periphyton biomass was affected by time and the time-by-macrophyte interaction, but not by 

insecticides (see Table 5.2). We detected significant effects of macrophytes on periphyton 

biomass on days 26, 47, and 100 (all F3,36 ≥ 3.1, p ≤ 0.04), but not on day 68 (F3,36 = 0.9, p = 

0.434). On day 26, Tukey’s test revealed a trend of higher periphyton biomass in the 0- and 10-

macrophyte treatments than in the 100-macrophyte treatment (Fig. 5.5, all p ≤ 0.09), though no 
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treatments differed from the 50-macrophyte treatment (all p ≥ 0.36). On day 47, we again 

observed a trend of higher periphyton biomass in the 10-macrophyte treatment than in the 50- 

and 100-macrophyte treatments (all p ≤ 0.059), though biomass in the 0-macrophyte treatment 

did not differ from any of these treatments (all p ≥ 0.29). Finally, on day 100, periphyton 

abundance in the 50-macrophyte treatment was three times greater than in the 0-macrophyte 

treatment (p = 0.004); the 10- and 100-macrophyte treatments did not differ from the 0- or 50-

macrophyte treatments (all p ≥ 0.265). 
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Figure 5.5. Effects of macrophyte density on periphyton abundance measured as biomass on clay 

tiles over time. Data are means ± 1 SE. 
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5.3.8 Snails 

The two-way MANOVA on snail abundance, which was assessed on day 68, revealed effects of 

macrophytes (Wilks’ F6,70 = 3.3, p = 0.007), insecticides (Wilks’ F4,70 = 3.2, p = 0.018) and their 

interaction (Wilks’ λ, F12,70 = 1.9, p = 0.05). For rams horn snails, abundance was not affected by 

macrophytes (F3,36 = 1.0, p = 0.419), but was affected by insecticides (F2,36 = 4.8, p = 0.014) and 

the interaction (F6,36 = 2.5, p = 0.042). In the 0-macrophyte treatment, we observed a 10-fold 

decrease in abundance in the malathion-press treatment compared to the control, although this 

effect was marginally significant (Fig. 5.6A, p = 0.064); abundance in the pulse treatment did not 

differ from either the press or control treatments (all p ≥ 0.116). In the 10-macrophyte treatment, 

insecticides had no effect on rams horn snail abundance (all F2,9 ≤ 4.0, p ≥ 0.05). In the 50- and 

100-macrophyte treatments, insecticides had significant effects (all F2,36  ≥ 4.6, p ≤ 0.043). 

Abundance was 75% lower in pulse than in press treatments (p = 0.039); controls did not differ 

from the pulse and press treatments (all p ≥ 0.127). 

Pond snail abundance was significantly affected by macrophytes (F3,36 = 7.5, p < 0.001), 

marginally significantly affected by insecticides (F2,36 = 3.0, p = 0.067), and not affected by their 

interaction (F6,36 = 1.7, p = 0.14). The macrophyte effect was caused by a 2.5-fold higher 

abundance in the 0- and 10-macrophyte treatments than in the 50- and 100-macrophyte 

treatments (Fig. 5.6B, all p ≤ 0.008). The insecticide effect occurred because pond snail 

abundance in the press malathion treatment was more than twice as high as in the pulse treatment 

(p = 0.05), though neither treatment differed from the control (all p ≥ 0.387). 
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5.3.9 Amphibians 

The MANOVA on gray treefrog life history traits revealed an effect of macrophytes (Wilks’ F9,82 

= 2.29, p = 0.028) but no effect of insecticides (Wilks’ F6,68 = 1.0, p = 0.405) or their interaction 

(Wilk’s’ F18,96 = 0.7, p = 0.811). Subsequent ANOVAs revealed that survival was high across all 

treatments (mean ± 1 SE; 86 ± 2%) and unaffected by macrophytes  (F3,36 = 0.6, p = 0.629). 

However, macrophyte treatment affected mass at metamorphosis (F3,36 = 6.6, p = 0.001) and time 

to metamorphosis (F3,36 = 5.6, p = 0.003). Compared to the 0-macrophyte treatment, time to 

metamorphosis did not differ in the 10-macrophyte treatment (p = 0.621) but took 5 d longer in 

the 50- and 100-macrophyte treatments (Fig. 5.6C, all p ≤ 0.02). For mass at metamorphosis, 

sgray treefrog raised with 0-macrophytes were similar in mass to those raised with 10 

macrophytes (all p > 0.348), but mass in the 50- and 100-macrophyte treatments was 

approximately 25% lower (Fig. 5.6D, all p ≤ 0.007). 
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Figure 5.6. The impacts of A) insecticide treatments on rams horn snail abundance on day 68 

within each macrophyte treatment, and macrophyte treatment effects on B) pond snail abundance 

on day 68, and gray treefrog C) mass at metamorphosis and D) time to metamorphosis. For 

panels B-D, different lowercase letters represent significant macrophyte-treatment differences (α 

= 0.05). All data are means ± 1 SE. 
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5.4 DISCUSSION 

We tested the general hypothesis that the submerged macrophyte Elodea canadensis would 

mitigate the direct and indirect effects of several realistic insecticide exposure scenarios in 

aquatic communities. Overall, we found that whenever the macrophyte was present, malathion’s 

direct effects were strongly mitigated. This mitigating effect occurred regardless of whether the 

insecticide was applied as a single application or repeated applications. By buffering cladocerans 

from malathion’s direct lethal effects, macrophytes also dampened the insecticide’s cascading 

effects on the rest of the community. Further, we discovered that medium to high macrophyte 

densities suppressed the biomass of periphyton, resulting in reduced snail abundance and tadpole 

growth compared to treatments with low or no macrophytes. 

An important prediction in our experiment was that malathion would decimate sensitive 

cladocerans in the absence of macrophytes but this effect would be mitigated in the presence of 

macrophytes in a density-dependent manner. Indeed, we discovered that without macrophytes, 

both pulse and press malathion applications of 36 µg/L reduced cladoceran densities relative to 

insecticide-free controls. Although cladocerans recovered to control levels within 3 wks after the 

pulse exposure, the press exposures maintained low cladoceran densities for the duration of the 

experiment. This result is consistent with reported cladoceran sensitivities to malathion in 

laboratory experiments (Lethal concentration required to kill 50% of animals; LC5048h < 5 µg/L, 

Kegley et al. 2010; PAN Pesticide Database, http://www.pesticideinfo.org). Other studies 

conducted in mesocosms have demonstrated similarly toxic effects of comparable malathion 

concentrations on cladoceran populations (Relyea & Diecks 2008, Relyea & Hoverman 2008).  

In contrast to malathion’s high toxicity in the absence of macrophytes, when the 

macrophytes were present the pulse and press malathion treatments had no effect on cladocerans. 
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Using microcosm experiments, Brogan and Relyea (2013a) found that a similar range of E. 

canadensis densities (i.e. range = 177 to 747 g dry weight/m3) made malathion up to six times 

less lethal to the cladoceran Daphnia magna than when macrophytes were absent. Further, we 

have demonstrated that the mitigating effects of submerged macrophytes on malathion’s toxicity 

are primarily driven by the elevated water pH caused by plant photosynthesis (Brogan and 

Relyea 2014). While wetlands often range from pH 5 to 8 (Mitsch and Gosselink 1986), pH 

levels of 9 and above are not uncommon in dense macrophyte beds (Raspopov et al. 2002, 

Nurminen 2003), particularly in the canopy near the surface (Carter et al. 1988, Frodge et al. 

1990). It should also be noted that high pH levels also occur during algal blooms (phytoplankton 

and/or periphtyon; e.g., Kufel et al. 2004). Thus, malathion’s toxic effects would also likely be 

reduced under these conditions. Nevertheless, our discovery that realistic macrophyte densities 

(Duarte & Kalff 1990) mitigate insecticide toxicity under the more realistic conditions in the 

present study suggests that this ability may translate to the field, though testing this conclusion is 

an important next step.  

Compared with cladocerans, copepods and rotifers are relatively resistant to malathion 

(Kegley et al. 2010), so the lack of malathion’s direct effects on these taxa was not surprising. 

Previous work has demonstrated that cladoceran declines following malathion exposure in the 

absence of macrophytes can result in the competitive release of copepods and rotifers (Hanazato 

1998, Relyea and Diecks 2008, Relyea and Hoverman 2008). However, we found no evidence of 

this indirect effect in our study. In fact, the only case where we observed significantly higher 

copepod densities following malathion applications (in both the pulse and press treatments) was 

on day 100 in the 10-macrophyte treatment, where malathion treatment had no effect on 

cladoceran density at any earlier sample dates.    
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Although malathion had only minor effects on copepods and rotifers, we observed effects 

of macrophyte density on these taxa. Copepods were generally less abundant in the 100-

macrophyte treatment than in the 0- and 10-macrophyte treatments throughout the experiment, 

though this relationship depended on the sample date. To our knowledge, no studies have 

examined mechanisms by which submerged macrophytes might suppress copepod populations. 

In contrast, rotifers were generally more abundant whenever macrophytes were present. This is 

likely the result of macrophytes providing rotifers with an important refuge from predators, such 

as cyclopoid copepods (Duggan et al. 2001). 

We also predicted that cladoceran declines following malathion exposure would initiate 

phytoplankton blooms. When we examined phytoplankton abundance in the malathion pulse 

treatment, we found no effects of macrophytes, likely because the insecticide caused only 

ephemeral (< 3 wk) cladoceran declines. In the press treatment, however, consistently low 

cladoceran densities occurred when macrophytes were absent and these caused phytoplankton 

blooms that developed by day 68 and persisted through day 100. However, these blooms did not 

occur whenever the macrophyte was present due to the mitigating effects of the macrophytes on 

cladocerans. Thus, we found support for our hypothesis that macrophytes do not only mitigate 

the direct effects of malathion on cladocerans, they also mitigate the subsequent indirect effects 

on phytoplankton.  

The cascading effects that insecticides have in macrophyte-free aquatic communities are 

becoming well established. For example, Relyea and Diecks (2008) documented phytoplankton 

blooms in outdoor mesocosms following press, but not pulse, treatments of low malathion 

concentrations (10 µg/L) because cladocerans were kept at low abundance for several weeks. 

Other studies have documented phytoplankton blooms following pulse insecticide applications, 
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but only where concentrations were high enough to apparently cause local extinctions of 

cladoceran populations (Hanazato and Yasuno 1987, Fairchild et al.1992, Relyea and Hoverman 

2008). While phytoplankton blooms are observed following exposure to many different 

insecticides, the primary mechanism is typically due to dramatic declines in the abundance of 

cladocerans due to direct insecticide toxicity (reviewed in Fleeger et al. 2003). Thus, the present 

study, which investigates the ecological factors capable of partially or completely mitigating 

such cascades, has clear conservation and management implications for developing better 

strategies to protect contaminated freshwater ecosystems. 

Despite the sustained phytoplankton blooms in the 0-macrophyte, press malathion 

treatment in this study, we did not find support for our prediction that the phytoplankton blooms 

would reduce periphyton mass via competition for light and nutrients. Instead, we found no 

effects of malathion on periphyton, regardless of macrophyte treatment. However, we would 

expect this result if, across malathion treatments, grazing pressure was consistently above a 

threshold level necessary to prevent periphyton mass from increasing beyond a minimum mass. 

Under such conditions, one would expect that, instead of creating differences in periphyton mass, 

the phytoplankton blooms would actually manifest as differences in the abundance of grazers in 

different malathion treatments, possibly driven by changes in periphyton quality or production 

(Vadeboncouer et al. 2001).   

In contrast to periphyton, the abundance of rams horn snails was affected by our 

malathion treatments and the effect depended on macrophyte density. Without macrophytes, the 

press malathion treatment tended to decrease rams horn snails abundance relative to controls. 

Given that rams horn snails (and gastropods in general) exhibit low sensitivity to malathion 

(LC5048h = 500,000 µg/L; Tchounwou et al. 1991) it is unlikely that the insecticide had any 
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direct effects on the snails. Instead, the adverse effects of malathion-induced phytoplankton 

blooms on periphyton may have manifested as reduced snail abundance. However, it is important 

to note that rams horn snails were the only grazer affected by malathion in the absence of 

macrophytes and the reasons for this are unclear.  

With high macrophyte densities, rams horn snail abundance in pulse malathion treatments 

was lower than in press and control treatments. Because no phytoplankton blooms or effects on 

periphyton abundance were observed in the pulse malathion treatment at these macrophyte 

densities, the mechanism driving these effects is uncertain. Unfortunately, ecotoxicological 

studies including snails are rare and the impacts of pesticides on snail population dynamics is 

likely driven by a complex set of factors that our experiment was not designed to differentiate. 

While a major focus of the present study was on the influence of macrophytes on 

malathion’s community-level effects, we also discovered important and novel effects of the 

macrophyte on community structure. For example, during the first two sampling dates (days 26 

and 47), periphyton biomass was generally higher in tanks with 0 or 10 macrophytes than 50 or 

100 macrophytes. This pattern makes sense as macrophytes and periphyton overlap spatially and 

compete for light and nutrients in the benthos (Sand-Jensen et al. 1988). Because periphyton is a 

primary food source for many grazer species, we predicted that such competitive interactions 

would have important implications for the growth and abundance of tadpoles and snails 

(Carpenter and Lodge 1986, Sand-Jensen and Borum 1991).   

The abundance of pond snails was closely related to periphyton biomass early in the 

experiment, with the highest abundances occurring with 0 and 10 macrophytes and lower 

abundances with 50 or 100 macrophytes. Though the total primary producer biomass likely 

increased as macrophyte density increased (due to the large biomass provided by the plants) 
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freshwater snails primarily graze algae and are not known to be important herbivores on living 

macrophyte tissues (Lodge 1985, 1991). Thus, macrophytes likely had an inhibitory effect on 

Physa spp. abundance, mediated through their competitive interactions with periphyton.  

Increased macrophyte density also had adverse effects on amphibians, causing gray 

treefrogs to emerge later and at a smaller mass. As in the case of pond snails, this is likely a 

result of increased competition for resources driven by the negative effects of higher macrophyte 

densities on periphyton biomass. An additional possibility is that periphyton quality decreased as 

macrophyte density increased, but the few experiments addressing this question have found no 

effect of macrophytes on periphyton quality (Jones et al. 1999, 2000). Regardless of the 

mechanism, the reduced growth and prolonged larval developmental period experienced by gray 

treefrogs has important implications because anurans that metamorphose later and at smaller 

masses experience reduced survival to reproduction and recruitment (Smith 1987, Altwegg and 

Reyer 2003). More studies examining how different habitats (e.g., macrophyte-free versus 

macrophyte-dominated) and exposure to anthropogenic contaminants might interact to influence 

the survival and life-history traits of amphibians are needed as these taxa continue to decline 

worldwide (Collins and Storfer 2003, Stuart et al. 2004, Blaustein et al. 2010). 

5.5 CONCLUSIONS 

From a management perspective, our work suggests that promoting healthy submerged 

macrophyte populations may be an effective strategy for buffering aquatic communities from 

common contaminants. Not only can submerged plants potentially detoxify contaminants that 

enter non-target aquatic habitats, but they may also help improve best management practices 
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(BMPs) designed to prevent non-target habitats from being exposed to contaminants in the first 

place. For example, constructed wetlands and vegetated drainage ditches used in agricultural 

BMPs currently rely exclusively on emergent macrophytes and sediment to bind pesticides in 

runoff and increase their retention time so that less of the compounds pass through (Moore et al. 

2011). While this approach is successful for some contaminants (particularly compounds with 

high binding affinities for organic substrates), this strategy is unlikely to remediate pesticides, 

such as malathion, that do not rapidly bind to these substrates. Our research suggests that new 

strategies incorporating submerged macrophytes should be examined as a potential 

complementary approach to buffering surface waters from contaminants. However, we also 

found that submerged macrophytes may have some adverse impacts on some species’ life-history 

traits, so it is important to consider this tradeoff in developing a management strategy. 
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6.0  CONCLUSIONS 

Understanding the factors that influence responses of aquatic communities to natural and 

anthropogenic perturbations is an increasingly important goal as degrading water quality has 

become a major threat to freshwater, estuarine, and marine ecosystem integrity (Smith et al. 

1999, Kemp et al. 2005). My dissertation explores the ability of globally abundant submerged 

plants to mitigate the ecological effects of the widely used insecticide malathion in aquatic 

communities. Because this issue has received very little previous attention, I performed 

experiments on simplified communities at the microcosm and mesocosm scale in order to 

address a number of fundamental questions including uncovering the mechanism by which plants 

mitigate malathion’s toxicity. While this approach allowed me to provide the first evidence that 

submerged plants can strongly mitigate an insecticide’s effects at multiple spatial scales, a 

critical next step is to examine how these results scale up to natural aquatic communities that are 

exposed to malathion and other perturbations. 

Several lines of evidence suggest that malathion’s ecological effects might be mitigated 

in a wide variety of natural aquatic communities. My dissertation research indicates that the 

magnitude of malathion’s ecological effects may be predictable using a single, easily measured 

water quality variable, pH. Using this finding to generate straightforward and testable 

predictions, future research should quantify the magnitude of malathion’s effects across water 

bodies differing in pH. Although aquatic ecosystems containing high densities of submerged 
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plants can achieve pH levels high enough to rapidly detoxify malathion (Ondok et al. 1984; 

Barko and Godshalk 1988, Frodge et al. 1990), similar pH levels can also be achieved by algal 

blooms in eutrophied systems (Talling 1976, Toivonen and Huttunen 1995). This is an important 

consideration as eutrophication is a widespread water quality issue (Carpenter et al.1998) and co-

exposure to nutrients and pesticides is likely common in aquatic ecosystems. However, while 

predicting malathion’s effects in homogenous pH environments (i.e. in a thoroughly mixed 

shallow lake) is straightforward, considering the effects of habitat heterogeneity within water 

bodies is also important.  

In wetlands, lakes, and rivers, patches of dense plant beds, algal production and relatively 

oligotrophic zones can create a mosaic environment where insecticides may have variable effects 

depending on local-scale conditions and species distributions. For example, primary productivity 

in deep lakes is typically dominated by phytoplankton in the pelagic zone and submerged plants 

and periphyton in the littoral zone. As these habitats can possess very different water chemistries 

(Wetzel 2001), predicting insecticide effects in these different habitats will require fine-scale 

consideration of individual site characteristics as well as the route by which exposure occurs 

(e.g., groundwater leaching, surface runoff, or drift/direct overspray). Habitat heterogeneity is 

also present in rivers, where pockets of dense submerged plant growth can alter water flow and 

chemistry on a very local scale (Sand-Jensen and Mebus 1996). For example, Beketov and Leiss 

(2008) demonstrated that during exposure to the insecticide thiacloprid in streams, submerged 

plant beds created relatively buffered zones of reduced toxicity surrounded by unvegetated 

regions that experienced high macroinvertebrate mortality. Understanding how populations and 

communities will respond to insecticide perturbations in heterogeneous aquatic habitats will 

require consideration of metacommunity theory, including population source-sink dynamics 
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(Leibold MA et al. 2004, Mouquet et al. 2006) and migratory patterns of aquatic species (Werner 

et al. 1983, Schindler et al. 1996, Hanazato 2001, Burks et al. 2001, 2006)  

While submerged plants should clearly be considered when predicting insecticide impacts 

in aquatic environments, they may also have applications for preventing exposure in the first 

place. Currently, agricultural best management practices (BMPs) such as constructed wetlands 

and vegetated drainage ditches primarily rely on sorption by emergent plants for removing 

insecticides in agricultural runoff (Cooper et al. 2004, Kröger et al. 2009). While emergent plants 

are effective for removing hydrophobic compounds (Moore et al. 2011), these plants may be 

ineffective at mitigating the impacts of a large number of insecticides that do not bind rapidly to 

plant tissues (e.g., malathion). Further, because emergent plants perform gas exchange with the 

air, they do not increase water pH like submerged plants do (Wetzel 2001). As chapter four of 

my dissertation shows, increasing water pH can cause rapid insecticide breakdown via alkaline 

hydrolysis, which can mitigate the toxicity not only of malathion (Brogan and Relyea In press), 

but also of several other insecticides that BMPs are currently unable to remediate (e.g., carbaryl, 

carbofuran; Brogan and Relyea in prep). Based on my dissertation research, incorporating 

submerged plants into BMPs may help reduce exposure of non-target aquatic habitats to a much 

larger number of contaminants. However, an essential next step is to perform field-scale studies 

that factor in ecological and economic considerations to determine whether submerged plants can 

effectively be incorporated into BMPs. 

Submerged plants are also a key factor in determining the structure and function of 

aquatic communities in contexts other than during insecticide exposure. For example, submerged 

plants inhibit phytoplankton growth via interference competition (i.e. allelopathy; Hilt and Gross 

2008, Hu and Hong 2008) and exploitation competition (i.e. nutrient competition; van Donk and 
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van de Bund 2002). Submerged plants can also suppress phytoplankton via apparent competition. 

Field experiments examining fish-zooplankton-phytoplankton interactions show that once a 

critical density of submerged plants is reached, cladoceran zooplankton are able to use plants as 

refuge from fish predation and, as a result, maintain top-down pressure on phytoplankton, which 

otherwise bloom when plant densities are low (Schriver et al. 1995). In general, submerged 

plants are considered a primary factor in maintaining clear-water stable states and preventing 

shifts to phytoplankton-dominated stables states in aquatic ecosystems (Scheffer et al. 1993). 

Given their critical ecological role and ability to buffer aquatic communities from perturbations 

including insecticide exposure, eutrophication and increases piscivorous fish abundance, we 

recommend that conserving submerged plants should be a priority of aquatic water management, 

though strategies should incorporate both ecological and economic (i.e. recreation, aesthetics) 

considerations (van Nes et al. 2002). 

Finally, a central goal of my dissertation has been to provide insights to help ecologists 

develop better models for predicting the impacts of perturbations in ecological communities. 

Currently, models designed to predict the effects of top-down and bottom-up forcing (i.e. trophic 

cascades) on community structure primarily consider direct and indirect resource-consumer 

interactions (Terborgh and Estes 2010). However, the impacts of altering these interactions can 

be highly dependent upon the presence and strength of other ecological interactions. For 

example, factors such as prey (including plant) defenses (Agrawal 1998) and refugia (Schriver et 

al. 1995, Borer et al. 2005), as well as intraguild predation (Finke and Denno 2004, Schmidtz 

2007) can all dampen the magnitude of top-down trophic cascades. As my dissertation shows, 

factors that mitigate perturbation direct effects can also dramatically dampen the magnitude of 

top-down trophic cascades. The critical next steps will be identifying other ecological 
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interactions that can dampen top-down and bottom-up trophic cascades, and to include 

parameters accounting for these factors into ecological models to better predict perturbation 

impacts in biological communities. 
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APPENDIX A 

CHAPTER 4: DISSOLVED OXYGEN AND TEMPERATURE 

A.1 STATISTICAL ANALYSIS 

A.1.1 Statistical analysis of dissolved oxygen (DO) and temperature 

We performed a multivariate analysis of variance to examine the effects of our treatments on 

water DO and temperature both before applying malathion and 48 h afterwards. We analyzed 

data collected before malathion applications using a one-way MANOVA on DO and 

temperature, with plant-pH treatment as a fixed factor. For samples collected 48 h after 

malathion applications, we analyzed DO and temperature using a full factorial two-way 

MANOVA model with malathion and plant-pH treatments as fixed factors. When appropriate, 

we performed Tukey’s multiple comparisons tests to compare the effects of each treatment on 

our response variables. All abiotic data met the assumptions of general linear models. 
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A.1.2 Treatment effects on DO and temperature 

We recorded dissolved oxygen and temperature data before applying malathion (-1 h) and 48 h 

after applying the insecticide. At -1 h, we observed a significant multivariate effect of plant-pH 

treatment on water DO and temperature (Wilk’s λ, F6,150 = 24.7, p < 0.001). This multivariate 

effect was driven by significant univariate effects on DO (F3,76 = 121.7, p < 0.001) but not on 

temperature (F3,76 = 0.7, p = 0.567). Compared with the shaded-plant treatment, DO levels were 

102% and 110% higher in the no-plant/low-pH and no-plant/high-pH treatments, respectively 

(Fig. A.1, p < 0.001), which did not differ from each other (p = 0.976). Further, dissolved oxygen 

in the unshaded-plant treatment was 226% higher than in shaded-plant treatment (p < 0.001) and 

over 50% higher than no-plant/low-pH and no-plant/high-pH treatments (p < 0.001). The water 

temperature at -1 h averaged across all plant-pH treatments was 24.3°C ± 0.1°C (mean ± SE). 

At 48 h after applying malathion, we also observed significant multivariate effects of 

plant-pH treatment (Wilk’s λ, F6,118 = 98.0, p < 0.001), malathion concentration (Wilk’s λ, F8,118 

= 22.6, p < 0.001), and the malathion by plant-pH interaction (Wilk’s λ, F24,118 = 2.7, p < 0.001) 

on DO and temperature. While the plant-pH treatment effect was driven by univariate effects of 

DO (F3,60 = 575.8, p < 0.001) and temperature (F3,60 = 13.1, p < 0.001), only temperature was 

affected by malathion concentration (F4,60 = 73.4, p < 0.001) and the interaction (F12,60 = 5.2, p < 

0.001). Tukey’s test revealed that the effect of plant-pH treatment on DO occurred because, 

compared with the shaded-plant treatment, DO levels in the no-plant/low-pH and no-plant/high-

pH treatments were 283% to 288% higher (Fig. A.1, p < 0.001); these latter two treatments did 

not differ from each other (p = 0.977). Further, DO in the unshaded-plant treatment was 

approximately 600% higher than in the shaded-plant treatment (p < 0.001) and over 65% higher 

than no-plant/low-pH and no-plant/high-pH treatments (p < 0.001).  
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Figure A.1. The effects of plant and chemical pH treatments on water dissolved oxygen concentration in 

experimental jars over time. Data are means ± 1 SE. 

 

The effect of the malathion-by-plant-pH interaction on temperature in the 48-h sample 

occurred because in the presence of the higher malathion concentrations (i.e. 4, 6, 36 µg/L), 

water temperature in jars exposed to sunlight (i.e. no-plant/low-pH, no-plant/high-pH, unshaded-

plant treatments) was 0.9°C to 1.4°C higher than water in the shaded-plant treatment jars (Fig. 

A.2, p < 0.023). However, in the 0 and 1 µg/L malathion treatments, water temperature did not 

differ between plant-pH treatments (all F3,12 ≤ 2.0, p ≥ 0.170). Because we sampled abiotic 

variables in order from lowest malathion concentration to highest beginning at 1100 h, a likely 

explanation for this interaction is that the water in the lower malathion concentration jars (0 and 

1 µg/L) was not exposed to high outside temperatures for as long as the jars containing higher 

malathion concentrations. As the shaded jars were not exposed to direct sunlight, it makes sense 

that the water temperature in these jars remained relatively low while the temperature in the 

other plant-pH treatments increased as the afternoon progressed. 
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Figure A.2. The influence of plant and chemical pH treatments and malathion concentration on water 

temperature in samples collected 48 h after malathion applications. Data are means ± 1 SE. 
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APPENDIX B 

CHAPTER 5: ADDITIONAL SAMPLING DETAILS FOR RESPONSE VARIABLES  

B.1 ABIOTIC VARIABLES 

B.1.1 Sampling abiotic variables 

We quantified water temperature and dissolved oxygen using a calibrated digital water meter 

(WTW, Woburn, Massachusetts, USA) and pH using a calibrated Oakton pH 5 Acorn series 

sensor (Oakton Instruments, Vernon Hills, Illinois, USA). We quantified the shading effect of 

phytoplankton on periphyton by measuring the rate of light decay with depth. Using an 

underwater quantum sensor (LI-COR, Lincoln, Nebraska, USA), we measured 

photosynthetically active radiation at 10 and 20 cm below the water surface by positioning the 

light meter so no macrophyte shoots were shading the sensor. To calculate light decay rate (K), 

we used the formula: 

€ 

K =
ln(L10 /L20 )

d
 

where L10 equals the light intensity at 10 cm, L20 equals the light intensity at 20 cm, and d is the 

difference in depth between those two measurements. 
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B.2 BIOTIC VARIABLES 

B.2.1 Sampling zooplankton 

Using methods from Relyea & Diecks (2008), we collected zooplankton and identified them to 

species. We ultimately grouped them into cladocerans, copepods, and rotifers because species 

within each of these groups exhibit very similar responses to malathion treatments (Relyea & 

Diecks 2008, Relyea & Hoverman 2008, Hua & Relyea 2012). We collected zooplankton 

samples using a 0.2-L tube sampler that was plunged approximately 0.25 m deep at five 

locations in each mesocosm and the water was filtered through a 62-µm Nitex screen. 

Zooplankton samples were preserved in 30% ethanol for enumeration and identification to 

species. We identified a total of 18 zooplankton species in the experiment but we ultimately 

grouped them as cladocerans, copepods, and rotifers because species within each group exhibited 

very similar responses to our treatments; similar results have been found in past experiments 

(Relyea and Diecks 2008, Relyea and Hoverman 2008, Hua and Relyea 2012). 

B.2.2 Sampling phytoplankton 

We also quantified phytoplankton following the protocols of Relyea & Diecks (2008). To sample 

phytoplankton, we plunged plastic cups approximately 5 cm under the water surface to collect 

500 ml of water from each mesocosm. The water was vacuum-filtered through a Fisherbrand 

GF/C filter (4.25 cm diameter). Samples were wrapped in foil and frozen until chlorophyll a 

analysis. We analyzed all chlorophyll a samples within 30 d of collection using methods 

modified from Arar and Collins (1997). We used a mortar and pestle to grind the filters in 90% 
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acetone and steeped the samples in the dark for 24 hrs at 3˚C. We then centrifuged the samples 

for 30 sec at 12,000 rpm and determined the concentration of chlorophyll a using a flurometer 

(TD-700, Turner Designs Inc., Sunnyvale, California, USA). 

B.2.3 Sampling periphyton 

We measured periphyton by removing a single clay tile from each mesocosm. We scrubbed and 

rinsed the periphyton from a standardized area of each tile (10 x 5 cm) and then we collected and 

vacuum-filtered the algae water onto a pre-weighed Fisherbrand GF/C filter (7.0 cm diameter) 

that had been dried for 24 h at 60˚C. After filtration, we dried the filters for another 24 hrs and 

re-weighed them to determine periphyton biomass. 

B.2.4 Sampling snail abundance 

We sampled pond snail and rams-horn snail abundance on day 68 by sinking five plastic cups 

(350 ml) with rocks to the bottom of each mesocosm so that each cup faced upwards. We placed 

a single pellet of alfalfa into each cup to attract the snails. After 24 hrs, we removed the cups 

from each tank and rinsed the contents through a 2-mm sieve. We sorted the snails by species 

and then counted the number of snails caught by the sieve. 

B.2.5 Gray treefrog metamorph collection and processing 

We collected gray treefrogs as they metamorphosed to compare survival and larval development. 

After the first metamorph emerged (day 30), we checked mesocosms daily for metamorphs. 
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Once collected, we held the metamorphs in the lab in separate containers (one 

container/mesocosm) until tail resorption (Gosner stage 46; Gosner 1960). Once tail resorption 

was complete, we euthanized the metamorphs in 2% MS-222 (tricaine methane sulfonate) and 

preserved them in glass jars containing 10% buffered formalin, allowing us to subsequently 

assess metamoprh mass at metamorphosis in addition to survival and time to metamorphosis. 

We collected gray treefrogs as they metamorphosed to compare survival and larval 

development. After the first metamorph emerged (day 30), we checked mesocosms daily for 

metamorphs. Once collected, we held the metamorphs in the lab in separate containers (one 

container/mesocosm) until tail resorption (Gosner stage 46; Gosner 1960). Once tail resorption 

was complete, we euthanized the metamorphs in 2% MS-222 (tricaine methane sulfonate) and 

preserved them in glass jars containing 10% buffered formalin, allowing us to subsequently 

assess metamoprh mass at metamorphosis in addition to survival and time to metamorphosis. 
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APPENDIX C 

CHAPTER 5: RESULTS FOR MACROPHYTE BIOMASS AND ABIOTIC VARIABLES  

C.1 MACROPHYTE BIOMASS 

C.1.1 Treatment effects on macrophyte biomass 

Over the course of the experiment, E. canadensis density increased in all mesocosms containing 

macrophytes. When we quanitified macrophyte biomass on the last day of the experiment (i.e. 

day 320), we detected significant effects of macrophyte treatment (F2,27 = 5.8, p = 0.006) and 

insecticides (F2,27 = 3.7, p = 0.029), but not the interaction (F4,27 = 0.3, p = 0.869). Tukey’s tests 

revealed that the macrophyte treatment effect was driven by an approximately 50% greater E. 

canadensis biomass in the 100-macrophyte treatment compared to the 10- and 50-macrophyte 

treatments (Fig. S2aA, p < 0.02); the latter two treatments did not differ from each other (P = 

0.998). The insecticide effect was caused by an approximately 50% greater E. canadensis 

biomass in the press treatment than in the control (p = 0.03); the pulse treatment did not differ 

from the control or press treatments (Fig. S2aB; all p > 0.339). 

This increase in E. canadensis density in press treatments could be a result of the 

repeated inputs of phosphorus provided by each addition of the organophosphate insecticide, 
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malathion. However, the ability of microorganisms to remineralize nutrients contained in 

insecticide molecules has received little attention to draw definitive conclusions (but see Omar 

1998). A second possibility is that with each malathion application, a new source of nutrients 

was available in the form of dead cladocerans, where the decomposition of the carcasses could 

recycle nutrients and facilitate macrophyte growth. However, our study was not designed to 

elucidate the mechanism driving this pattern. 
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Figure C.1. The effect of A) number of macrophyte shoots planted and B) insecticide treatment on final E. 

canadensis biomass as measured on day 320. Different lower case letters show significant differences (α = 0.05). 

Data are means ± 1 SE and exclude treatments containing no macrophytes. 
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C.2 ABIOTIC VARIABLES 

C.2.1 Treatment effects on abiotic variables 

The rm-MANOVA on temperature, pH, dissolved oxygen, and light decay revealed multivariate 

effects of macrophyte treatment, the macrophyte-by-insecticide interaction, time, and the time-

by-macrophyte interaction (Table C.1). Because of the significant multivariate time-by-

macrophyte interaction, we examined the univariate time-by-macrophyte interaction effects on 

each response variable (pH results discussed in main text). Where appropriate, we subsequently 

examined the univariate macrophyte treatment effects within each sample date. 

Average daytime water temperatures were (mean ± 1 SE) 20.8 ± 0.07 °C, 20.6 ± 0.06 °C, 

22.6 ± 0.08 °C, and 19.6 ± 0.08 °C on days 26, 47, 68, and 100, respectively. However, we did 

not observe a time-by-macrophyte interaction (F9,108 = 0.3, p = 0.99) or a macrophyte-by-

insecticide interaction (F6,36 = 1.1, p = 0.38) on water temperature.  

Dissolved oxygen was significantly influenced by the time-by-macrophyte interaction 

(F9,108 = 2.7, p = 0.009). We found significant macrophyte treatment effects on dissolved oxygen 

concentrations at each sample date (all F3,36 > 9.1, p < 0.001). Tukey’s mean comparisons tests 

revealed that on all sample dates, dissolved oxygen did not differ among the 10-, 50- and 100-

macrophyte treatments (all p ≥ 0.4), but was at least 30% greater in these treatments than in the 

0-macrophyte treatment (Fig. C.4, all p ≤ 0.002;).  

Light decay rate was also influenced by the time-by-macrophyte interaction (F9,108 = 4.2, 

p < 0.001). While there was no effect of macrophyte treatment on light decay on day 26 (Fig. 

C.3, F3,48 = 0.4, p = 0.751), each subsequent sample date revealed a significant macrophyte effect 

(all F3,48 > 4.9, p < 0.006). Tukey’s mean comparisons test revealed that at day 47, the light 
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decay rate in the no-macrophyte treatment was 70% higher than in the 100-macrophyte treatment 

(p = 0.006), but the 10- and 50-macrophyte treatments did not significantly differ from the 0- or 

100-macrophyte treatments (all p ≥ 0.07). On days 68 and 100, light decay rate in the 0-

macrophyte treatment was at least 44% greater than in the 10-, 50-, and 100-macrophyte 

treatments (all p < 0.001), which did not differ from each other (all p ≥ 0.73). 

 

Table C.1. Results of repeated measures MANOVA on water temperature, pH, dissolved oxygen and light decay in 

mesocosms treated with a factorial combination of four macrophyte densities and three insecticide (malathion) 

application regimes. Bold p-values are significant at p < 0.05. 

 

Source (Wilk's lambda) df F-value p-value 

Macrophyte 12, 88 14.5 < 0.001 

Insecticide 8, 66 1.3 0.265 

Macrophyte x insecticide 24, 116 1.7 0.037 

Time 12, 278 54.3 < 0.001 

Time x macrophyte 36, 395 3.1 0.001 

Time x insecticide 24, 368 1.5 0.057 

Time x macrophyte x insecticide 72, 415 1.3 0.06 
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Figure C.2. The effect of macrophyte density on (A) dissolved oxygen and (B) light decay over time (means ± SE). 



  128 

BIBLIOGRAPHY 

Aker WG, Hu X, Wang P, Hwang HM. 2008. Comparing the relative toxicity of malathion and 
malaoxon in blue catfish Ictaralurus furcatus. Environmental Toxicology 23:548-554. 

 
Altwegg R, Reyer HU. 2003. Patterns of natural selection on size at metamorphosis in water 

frogs. Evolution 57:872-882.  
 
Ando C, Gallavan R, Wofford P, Bradley A, Kim D, Lee P, Troiano J. 1996. Environmental 

monitoring results of the Mediterranean fruit fly eradication program, Riverside County 
1994. California Environmental Protection Agency EH95-02. 

 
Arar EJ, Collins GB. 1997. In vitro determination of chlorophyll a and pheophytin a in marine 

and freshwater algae by fluorescence. Method 445.0. National Exposure Research 
Laboratory, USEPA, Cincinnati, Ohio, USA. 

 
ASTM Standard E1193. 2004. Standard guide for conducting Daphnia magna Life-Cycle 

Toxicity Tests. ASTM International. West Conshohocken, PA, USA. 
 
ASTM Standard E729. 2007. Standard Guide for Conducting Acute Toxicity Tests on Test 

Materials with Fishes, Macroinvertebrates, and Amphibians. ASTM International. West 
Conshohocken, PA, USA. 

 
Barko JW, Godshalk GL, Carter V, Rybicki NB.1988. Effects of submersed aquatic macrophytes 

on physical and chemical properties of surrounding water. Technical Report A-88-11, US 
Army Engineer Waterways Experiment Station, Vicksburg, MS.  

 
Barrat-Segretain MH, Elger A, Sagnes P, Puijalon S. 2002. Comparison of three life-history 

traits of invasive Elodea Canadensis Michx and Elodea nuttallii (Planch.) H. St. John. 
Aquatic Botany 74:299-313. 

  
Bender EA, Case TJ, Gilpin ME. 1984. Perturbation experiments in community ecology: Theory 

and practice. Ecology 65:1-13.  
 
Bender ME, 1969. The toxicity of the hydrolysis and breakdown products of malathion to the 

fathead minnow (Pimephales promelas, Rafinesque). Water Research 3:571-582. 
 
Blaustein AR, Han BA, Relyea, RA, Johnson PTJ, Buck JC, Gervasi SS, Kats LB. 2010. The 



  129 

complexity of amphibian population declines: understanding the role of cofactors in driving 
amphibian losses. Annals of the New York Academy of Sciences, 1223, 108-119. 

 
Blindow I. 1992. Long- and short-term dynamics of submerged macrophytes in two shallow 

eutrophic lakes. Freshwater Biology 28:15-27.  
 
Boone MD, James SM. 2003. Interactions of an insecticide, herbicide, and natural stressors in 

amphibian community mesocosms. Ecological Applications 13:829-841. 
 
Boone MD, Semlitsch RD. 2001. Interactions of an insecticide with larval density and predation 

in experimental amphibian communities. Conservation Biology 15:228-238.  
 
Boone MD, Bridges CM, Rothermel BB. 2001. Growth and development of larval green frogs 

(Rana clamitans) exposed to multiple doses of an insecticides. Oecologia 129:518-524.  
 
Boone MD, Semlitsch RD, Little EE, Doyle MC. 2007. Multiple stressors in amphibian 

communities: Effects of chemical contamination, bullfrogs, and fish. Ecological 
Applications 17:291-301.  

 
Bradford DF, Knapp RA, Sparling, DW, Nash, MS, Stanley, KA, Tallent-Halsell, NG, 

McConnell, LL, Simonich, SM. 2011. Pesticide distributions and population declines of 
California, USA, alpine frogs, Rana muscosa, and Rana sierrae. Environmental Toxicology 
and Chemistry 30:682-691. 

 
Brock TCM, Crum SJH, van Wijngaarden, R, Budde BJ, Tijink J, Zuppelli A, Leeuwangh P. 

1992. Fate and effects of the insecticide Dursban 4E in indoor elodea-dominated and 
macrophyte-free freshwater ecosystems: I. Fate and primary effects of the active ingredient 
Chlorpyrifos. Archives of Environmental Contamination and Toxicology 23:69-84. 

 
Brock TCM, Van Wijngaarden RPA, Van Geest G. 2000. Ecological risks of pesticides in 

freshwater ecosystems. Part 2: Insecticides. Alterra-Report 089, Wageningen, The 
Netherlands.  

 
Brogan III WR, Relyea RA. 2013a. Mitigating with macrophytes: Submersed plants reduce the 

toxicity of pesticide-contaminated water to zooplankton Environmental Science and 
Technology 32:699-706.  

 
Brogan III WR, Relyea RA. 2013b. Mitigating of malathion’s acute toxicity using four 

submersed macrophyte species. Environmental Science and Technology 32:1535-1543. 
 
Brogan III WR, Relyea RA. 2014. A new mechanism of macrophyte mitigation: How submerged 

plants reduce malathion’s acute toxicity to aquatic animals. Chemosphere _:__-__. 
 
Burrows HD, Canle L M, Santaballa JA, Steenken S. 2002. Reaction pathways and mechanisms 

of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology 
67:71-108.  



  130 

 
Cairns J Jr. 1986. Community Toxicity Testing: A symposium. ASTM STP 920. Ann Arbor, MI, 

USA.  
 
Carpenter SR, Lodge DM. 1986. Effects of submersed macrophytes on ecosystem processes. 

Aquatic Botany 26:341-370. 
 
Carter V, Barko JW, Godshalk GL, Rybicki NB. 1988. Effects of submersed macrophytes on 

water quality in the tidal Potomac River, Maryland. Journal of Freshwater Ecology 4:493-
501.  

 
Chapman RA, Cole CM. 1982. Observations on the influence of water and soil pH on the 

persistence of insecticides. Journal of Environmental Science and Health Part B: Pesticide 
and Food Contamination 17:487-504. 

 
Christensen K, Harper B, Luukinen B, Buhl K, Stone D. 2009. Chlorpyrifos Technical Fact 

Sheet. National Pesticide Information Center, Oregon State University Extension Services. 
http://npic.orst.edu/factsheets/chlorptech.pdf. 

 
Collins JP, Storfer A. 2003. Global amphibian declines: sorting the hypotheses. Diversity and 

Distributions 9:89-98. 
 
Cooper CM, Moore MT, Bennett ER, Smith Jr. S, Farris JL, Milam CD, Shields Jr. FD. 2004. 

Innovative uses of vegetated drainage ditches for reducing agricultural runoff. Water 
Science and Technology 49:117-123.  

 
Coors A, De Meester L. 2008. Synergistic, antagonistic and additive effects of multiple stressors: 

predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied 
Ecology 45:1820-1828.  

 
Crum SJH, van Kammen-Polman AMM, Liestra M. 1999. Sorption of nine pesticides to three 

aquatic macrophytes. Archives of Environmental Contamination and Toxicology 37:310-
316. 

 
Cusimano RF, Brakke DF, Chapman GA. 1986. Effects of pH on the toxicities of cadmium, 

copper, and zinc to steelhead trout (Salmo gairdneri). Canadian Journal of Fisheries and 
Aquatic Science 43:1497-1503.  

 
Davidson C. 2004. Declining downwind: Amphibian population declines in California and 

historical pesticide use. Ecological Applications 14:1892-1902.  
 
De Carvalho RF, Bromilow RH, Greenwood R. 2007. Uptake of pesticides from water by curly 

waterweed Lagarosiphon major and lesser duckweed Lemna minor. Pest Management 
Science 63:789-797.  

 



  131 

Delignette-Muller ML, Forfait C, Billoir E, Charles S. 2011. A new perspective on the Dunnett 
procedure: Filling the gap between NOEC/LOEC and ECx concepts. Environmental 
Toxicology and Chemistry 30:2888-2891.  

 
deNoyelles F, Dewer SL, Huggins DG, Kettle WD. 1994. Aquatic mesocosms in ecological 

effects testing: detecting direct and indirect effects of pesticides. In RL Graney, JH 
Kennedy, JH Rodgers Jr. eds. Aquatic mesocosm studies in ecological risk assessment. 
Pp:577-603. Lewis, Boca Raton, Florida, USA.  

 
Distel CA, Boone MD. 2010. Effects of aquatic exposure to the insecticide carbaryl are species-

specific across life stages and mediated by heterospecific competitors in anurans. 
Functional Ecology 24:1342-1352.  

 
Duarte CM, Kalff J. 1990. Biomass density and the relationship between submerged macrophyte 

biomass and plant growth form. Hydrobiologia 196:17-23. 
 
Duggan IC, Green JD, Thompson K., Shiel RJ. 2001. The influence of macrophytes on the 

spatial distribution of littoral rotifers. Freshwater Biology 46:777-786.  
 
Edginton, AN, PM Sheridan, GR Stephensen, DG Thompson, HJ Boermans. 2004. Comparative 

effects of pH and vision herbicide on two life stages of four anuran amphibian species. 
Environmental Toxicology and Chemistry 23:815-822.  

 
Fairchild JF, La Point TW, Zajicek JL, Nelson MK, Dwyer J, Lovely PA. 1992. Population-, 

community- and ecosystem-level responses of aquatic mesocosms to pulsed doses of a 
pyrethroid insecticide. Environmental Toxicology and Chemistry 11:115–129. 

 
Finney DJ. 1971. Probit Analysis. Cambridge University Press, New York, NY.  
 
Fleeger JW, Carman KR, Nisbet RM. 2003. Indirect effects of contaminants in aquatic 

ecosystems. Science of the Total Environment 317:207-233.  
 
Forbes VE, Calow P, Sibly RM. 2008. The extrapolation problem and how population modeling 

can help. Environmental Toxicology and Chemistry 27:1987-1994.  
 
Frodge JD, Thomas GL, Pauley GB. 1990. Effects of canopy formation by floating and 

submerged macrophytes on the water quality of two shallow lakes. Aquatic Botany 38:231-
248.  

 
Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL. 2000a. Uptake and 

phytotransformation of o,p’-DDT and p,p’-DDT by axenically cultivated aquatic plants. 
Journal of Agriculture and Food Chemistry 48:6121-6127. 

 
Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL. 2000b. Uptake and 

phytotransformation of organosphosphate pesticides by axenically cultivated aquatic plants. 
Journal of Agriculture and Food Chemistry 48:6114-6120. 



  132 

 
Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, 

Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt, T, Bretagnolle V, 
Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik 
T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P. 2010. Persistent 
negative effects of pesticides on biodiversity and biological control potential on European 
farmland. Basic and Applied Ecology 11:97-105.  

 
Gilliom RJ. 2007. Pesticides in US streams and groundwater. Environmental Science and 

Technology 41:3408-3414. 
 
Gosner KL. 1960. A simplified table for staging anuran embryos and larvae with notes on 

identification. Herpetologica 16:183-190.  
 
Grube A, Donaldson D, Kiely T, Wu L. 2011. Pesticide industry sales and usage: 2006 and 2007 

market estimates. USEPA. Washington, DC, USA. 
 
Halstead BG, Tash JC. 1982. Unusual diel pHs in water as related to aquatic vegetation. 

Hydrobiologia 96:217-224.  
 
Hanazato T, Dodson SI. 1995. Synergistic effects of low oxygen concentration, predator 

kairomone, and a pesticide on the cladoceran Daphnia pulex. Limnology and 
Oceanography 40:700-709.  

 
Hanazato T, Yasuno M. 1987. Effects of a carbamate insecticide carbaryl on the summer 

phytoplankton and zooplankton communities in ponds. Environmental Pollution 48:145-
159. 

 
Hanazato T. 2001. Pesticide effects on freshwater zooplankton: an ecological perspective. - 

Environmental Pollution 112:1-10.  
 
Hanazato T. 1998. Response of a zooplankton community to insecticide application in 

experimental ponds: a review and the implications of the effects of chemicals on the 
structure and functioning of freshwater communities. Environmental Pollution 101:361-
373. 

 
Hanazato T, Yasuno M. 1990. Influence of time of application of an insecticide on recovery 

patterns of a zooplankton community in experimental ponds. Archives of Environmental 
Contamination and Toxicology 19:77-83.  

 
Hand LH, Kuet SF, Lane MCG, Maund SJ, Warinton JS, Hill IR. 2001. Influences of aquatic 

plants on the fate of the pyrethroid insecticides lambda-cyhalothrin in aquatic 
environments. Environmental Toxicology and Chemistry 20:1740-1745.  

 
Harper B, Luukinen B, Gervais JA, Buhl K, Stone D. 2009. Diazinon Technical Fact Sheet. 

National Pesticide Information Center, Oregon State University Extension Services. 



  133 

http://npic.orst.edu/factsheets/diazinontech.html. 
 
Hilt S, Gross EM. 2008. Can allelopathically active submerged macrophyte stabilize clear-water 

states in shallow lakes. Basic and Applied Ecology 9:422-432. 
 
Hoffman RS, Capel PD, Larson SJ. 2009. Comparison of pesticides in eight U.S. urban streams. 

Environmental Toxicology and Chemistry 19:2249-2258. 
 
Hopson MS, Zimba PV. 1993. Temporal variation in the biomass of submersed macrophytes in 

Lake Okeechobee, Florida. Journal of Aquatic Plant Management 31:76-81.  
 
Hua J, Relyea RA. 2012. East Coast versus West Coast: Effects of an insecticide in communities 

containing different amphibian assemblages. Freshwater Science 21:787-799. 
 
Ip YK, Chew SF, Randall DJ. 2001. Ammonia toxicity, tolerance and excretion. Fish Physiology 

20:109-148. 
 
Jones JI, Moss B, Eaton JW, Young JO. 2000. Do submerged aquatic plants influence periphyton 

community composition for the benefit of invertebrate mutualists? Freshwater Biology 
43:591-604.  

 
Jones JI, Young JO, Haynes GM, Moss B, Eaton JW, Hardwick KJ. 1999. Do submerged aquatic 

plants influence their periphyton to enhance the growth and reproduction of invertebrate 
mutualists? Oecologia 120:463-474. 

 
Karen DJ, Joab BM, Wallin JM, Johnson KA. 1998. Partitioning of chlorpyrifos between water 

and an aquatic macrophyte (Egeria densa). Chemosphere 37:1579-1586. 
 
Kast-Hutchinson K, CV Rider, GA LeBlanc. 2001. The fungicide propiconazole interferes with 

embryonic development of the crustacean Daphnia magna. Environmental Toxicology and 
Chemistry 20:502-509. 

 
Kegley SE, Hill BR, Orme S, Choi AH. 2010. Pesticide Action Network Pesticide Database. 

Pesticide Action Network North America. San Francisco, CA, USA. 
 
Kiely T, Donaldson D, Grube A. 2004. Pesticide industry sales and usage: 2000 and 2001 market 

estimates. U.S. Environmental Protection Agency, Washington DC. 
 
Kieseker JM. 2002. Synergism between trematode infection and pesticide exposure: a link to 

amphibian limb deformities in nature? Proceedings of the National Academy of the 
Sciences 99:9900-9904. 

 
Kikuchi M, Sasaki Y, Wakabayashi M. 2000. Screening of organophosphate insecticide 

pollution in water by using Daphnia magna. Ecotoxicology and Environmental Safefty 
47:239–245. 

 



  134 

Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L. 1998. COMBO: A defined 
freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147-159. 

 
Knäbel A, Stehle S, Schäfer RB, Schulz R. 2012. Regulatory FOCUS surface water models fail 

to predict insecticide concentrations in the field. Environmental Science and Technology 
46:8397-8404. 

 
Kröger R, Moore MT, Locke MA, Cullum RF, Steinriede Jr. RW, Testa III S, Bryan CT, Cooper 

CM. 2009. Evaluating the influence of wetland vegetation on chemical residence time in 
Mississippi delta drainage ditches. Agriculture and Water Management 96:1175-1179.  

 
Kufel L, Kufel L, Kroólikowska J. 2004. The effect of lake water characteristics on 

decomposition of aquatic macrophytes. Polish Journal of Ecology 52:261-273.  
 
Larsson P, Dodson SI. 1993. Chemical communication in planktonic animals. Archives of 

Hydrobiologia 129:129-155.  
 
Lathrop RC, Carpenter SR, Robertson DM. 1999. Summer water clarity responses to 

phosphorus, Daphnia grazing, and internal mixing in Lake Mendota. Limnology and 
Oceanography 44:137-146. 

 
Laurence WF. 2001. Future shock: Forecasting a grim fate for the Earth. Trends in Ecology and 

Evolution 16:531-533.  
 
Leistra M, Zweers AJ, Warinton JS, Crum SJH, Hand LH, Beltman WHJ, Maund SJ. 2003. Fate 

of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density. 
Pest Management Science 60:75-84.  

 
Lizotte Jr. RE, Moore MT, Locke MA, Kröger R. 2011. Effects of vegetation in mitigating the 

toxicity of pesticide mixtures in sediments of a wetland mesocosm. Water, Air and Soil 
Pollution 220:69-79.  

 
Lodge DM. 1985. Macrophyte-gastropod associations: observations and experiments on 

macrophyte choice by gastropods. Freshwater Biology 15:695-708.  
 
Lodge DM. 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41:195-224.  
 
Mills NE, Semlitsch RD. 2004. Competition and predation mediate the indirect effects of an 

insecticide on southern leopard frogs. Ecological Applications 14:1041-1054.  
 
Mitsch WJ, Gosselink JG. 1986. Wetlands. Van Nostrand Reinhold, New York, NY, USA. 
 
Mohamed ZK, Ahmed MA, Fetyan NA, Elnagdy SM. 2010. Isolation and molecular 

characterization of malathion-degrading bacterial strains from waste water in Egypt. 
Journal of Advanced Research 1:145-149.  

 



  135 

Moore MT, Bennett ER, Cooper CM, Smith Jr. S, Farris JL, Douillard KG, Schulz R. 2006. 
Influence of vegetation in mitigation of methyl parathion runoff. Environmental Pollution 
142:288-294. 

 
Moore MT, Kröger R, Farris JL, Locke MA, Bennett ER, Denton DL, Cooper DM. 2011. From 

vegetated ditches to rice fields: thinking outside the box for pesticide mitigation. In 
Pesticide Mitigation Strategies for Surface Water Quality. Goh KS, Bret BL, Potter T, Gan 
J. (eds.) pp. 29-37.  

 
Morin PJ. 1983. Predation, competition, and the composition of larval anuran guilds. Ecological 

Monographs 54:119-138. 
 
Newhardt K. 2006. Environmental fate of malathion. California Environmental Protection 

Agency, Department of Pesticide Regulation, California, USA.  
 
Newman MC (ed). 2010. Fundamentals of Ecotoxicology 3rd Edition. CRC Press, NY. 
 
Nichols SA, Shaw BH. 1986. Ecological life histories of the three aquatic nuisance plants, 

Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis. Hydrobiologia 
131:3-21. 

 
Novak M, Wootton JT, Doak DF, Emmerson M, Estes JA, Tinker MT. 2011. Predicting 

community responses to perturbations in the face of imperfect knowledge and network 
complexity. Ecology 92:836-846.  

 
Nurmenin L. 2003. Macrophyte species composition reflecting water quality changes in adjacent 

water bodies of lake Hiidenvesi, SW Finland. Annales Botanici Fennici 40:199-208.  
 
Odenkirchen E, Wente SP. 2007. Risks of malathion use to federally listed California red-legged 

frog (Rana aurora draytonii). US Environmental Protection Agency Environmental Fate 
and Effects Division, Washington, DC, USA. 

 
Omar SA. 1998. Availability of phosphorus and sulfur of insecticide origin by fungi. 

Biodegradation 9:327-336. 
 
Ondok JP, Pokorny J, Kvet J. 1984. Model of diurnal changes in oxygen, carbon dioxide and 

bicarbonate concentrations in a stand of Elodea canadensis Michx. Aquatic Botany 19:293-
305.  

 
Organisation for Economic Co-operation and Development Guideline 202. 1984. Daphnia sp., 

acute immobilization test and reproduction test. Part I: 24 h EC50 acute immobilization 
test. OECD. Paris, France.  

 
Paine RT. 1969. A note on trophic complexity and community stability. The American Naturalist 

103:91-93.  
 



  136 

Paine RT, Tegner MJ, Johnson EA. 1998. Compounded perturbations yield ecological surprises. 
Ecosystems 1:535-545. 

 
Paris DF, Steen WC, Baughman GL, Barnett Jr JT. 1981. Second-order model to predict 

microbial degradation of organic compounds in natural waters. Applied and Environmental 
Microbiology 41:603-609.  

 
Park RA, Clough JS, Wellman MC. 2008. AQUATOX: Modeling environmental fate and 

ecological effects in aquatic ecosystems. Ecological Modelling 213:1-15. 
 
Payton ME, Greenstone MH, Shenker N. 2003. Overlapping confidence intervals or standard 

error intervals: What do they mean in terms of statistical signficance? Journal of Insect 
Science 34:1-6. 

 
Raspopov IM, Adamec LA, Husák S. 2002. Influence of aquatic macrophytes on the littoral zone 

habitats of the lake ladoga, NW Russia. Preslia 74:315-321.  
 
Reichenberger S, Bach M, Skitschak A, Frede HG. 2007. Mitigation strategies to reduce 

pesticide inputs into ground- and surface water and their effectiveness; a review. Science of 
the Total Environment 384:1-35.  

 
Relyea RA, Hoverman JT. 2006. Assessing the ecology in ecotoxicology: A review and 

synthesis in freshwater systems. Ecology Letters 9:1157-1171.  
 
Relyea RA, Hoverman JT. 2008 Interactive effects of predators and a pesticide on aquatic 

communities. Oikos 117:1647-1658.  
 
Relyea RA, Mills N. 2001. Predator-induced stress makes the pesticide carbaryl more deadly to 

gray treefrog tadpoles (Hyla versicolor). Proceedings of the National Academy of the 
Sciences USA 98:2491-2496. 

 
Relyea RA. 2003. Predator cues and pesticides: A double dose of danger for amphibians. 

Ecological Applications 13:1515-1521.  
 
Relyea RA. 2004. Synergistic impacts of malathion and predatory stress on six species of North 

American tadpoles. Environmental Toxicology and Chemistry 23:1080-1084.  
 
Relyea RA. 2005. The impact of insecticide and herbicides on the biodiversity and productivity 

of aquatic communities. Ecological Applications 15:618-627. 
 
Relyea RA. 2009. A cocktail of contaminants: How mixtures of pesticides at low concentrations 

affect aquatic communities. Oecologia 159:363-376. 
 
Relyea RA. 2010. Multiple stressors and indirect food web effects of contaminants on 

herptofauna. Pages 475-486 in D. Sparling, ed. Ecotoxicology of Amphibians and Reptiles, 
2nd edition. 



  137 

 
Relyea RA, Hoverman JT. 2008. Interactive effects of predators and a pesticide on aquatic 

communities. Oikos 117:1647-1658.  
 
Relyea RA, Diecks N. 2008. An unforeseen chain of events: lethal effects of pesticides at 

sublethal concentrations. Ecological Applications 18:1728–1742. 
 
Roessink I, Arts GHP, Belgers JD, Bransen F, Maund SJ, Brock TC. 2005. Effects of lambda-

cyhalothrin in two ditch microcosm systems of different trophic status. Environmental 
Toxicology and Chemistry 24:1684-1696.  

 
Rohr JR, Kerby, J, Sih A. 2006. Community ecology theory as a framework for predicting 

contaminant effects. Trends in Ecology and Evolution. 21:606-613. 
 
Sand-Jensen J, Borum J. 1991. Interactions among phytoplankton, periphyton, and macrophytes 

in temperature freshwaters and estuaries. Aquatic Botany 41:137-175. 
 
Sand-Jensen J, Møller J, Olesen BH. 1988. Biomass regulation of microbenthic algae in a Danish 

lowland stream. Oikos 53:332-340.  
 
Sarnelle O. 2005. Daphnia as keystone predators: effects on phytoplankton diversity and grazing 

resistance. Journal of Plankton Research 27:1229-1238. 
 
Schulz R. 2004. Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-

source insecticide pollution: A review. Journal of Environmental Quality 33:419-448.  
 
Scott DM, Lucas MC, Wilson RW. 2005. The effect of high pH on ion balance, nitrogen 

excretion and behaviour of freshwater fish from an eutrophied lake: A laboratory and field 
study. Aquatic Toxicology 73:31-43.  

 
Seaman AJ, Riedl H. 1986. Preventing decomposition of agricultural chemicals by alkaline 

hydrolysis in the spray tank. New York Food Life Science Bulletin 118:1-7.  
 
Smith DC. 1987. Adult recruitment in chorus frogs: Effects of size and date at metamorphosis. 

Ecology 68:344-350.  
 
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW. 2004. 

Status and trends of amphibian declines and extinctions worldwide. Science 306:1783-
1786.  

 
Talling JF. 1976. The depletion of carbon dioxide from lake water by phytoplankton. Journal of 

Ecology 64:79-121.  
 
Tchounwou PB, Englande AJ, Malek EA. 1991. Toxicity evaluation of bayluscide and malathion 

to three developmental stages of freshwater snails. Archives of Environmental 
Contamination and Toxicology 21:351-358.  



  138 

 
Thomas KA, Hand LH. 2011. Assessing the potential for algae and macrophytes to degrade crop 

protection products in aquatic ecosystems. Environmental Toxicology and Chemistry 
30:622-631.  

 
Toivonen H, Huttunen P. 1995. Aquatic macrophytes and ecological gradients in 57 small lakes 

in southern Finland. Aquatic Botany 51:197-221. 
 
United States Environmental Protection Agency OPPTS 850.1300. 1996. Ecological Effects Test 

Guidelines: Daphnid chronic toxicity tests. USEPA Prevention, Pesticides and Toxic 
Substances, Washington D.C., USA.  

 
Vadeboncouer Y, Lodge DM, Carpenter SR. 2001. Whole lake fertilization effects on 

distribution of primary production between benthic and pelagic habitats. Ecology 82:1065-
1077.  

 
Van Donk E, Prins H, Voogd HM, Crum SJH, Brock TCM. 1995. Effects of nutrient loading and 

insecticide application on the ecology of Elodea-dominated freshwaster test systems I. 
Responses of plankton and zooplanktivorous insects. Archives of Hydrobiology 133:417-
439.  

 
Van Donk E, van de Bund WJ. 2002. Impact of submerged macrophytes including charophytes 

on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic 
Botany 72:261-274. 

 
Wang T. 1991. Assimilation of malathion in the Indian River estuary, Florida. Bulletin of 

Environmental Contamination and Toxicology 47:238–243. 
 
Werner I, Deanovic LA, Miller J, Denton DL, Crane D, Mekebri A, Moore MT, Wrysinki J. 

2010. Use of vegetated agricultural drainage ditches to decrease toxicity of irrigation runoff 
from tomato and alfalfa fields in California, USA. Environmental Toxicology and 
Chemistry 29:2859-2868.  

 
Wetzel D. 2001. Limnology: Lake and River Ecosystems. Third Edition. Academic Press. 
 
Wolfe NL, Zepp RG, Gordon JA, Baughman GL, Cline DM. 1977. Kinetics of chemical 

degradation of malathion in water. Environmental Science and Technology 11:88-93. 
 
Wolfe NL, Zepp RG, Paris DF. 1978. Carbaryl, propham and chlorpropham: A comparison of 

the rates of hydrolysis and photolysis with the rate of biolysis. Water Research 12:565-571.  
 
Wootton JT. 1994. The nature and consequences of indirect effects in ecological communities. 

Annual Review of Ecology and Systematics 25:443-466.  
 
Wootton JT. 2002. Indirect effects in complex ecosystems: Recent progress and future 

challenges. Journal of Sea Research 48:157-172. 



  139 

 
Wright PA, Randall DJ, Perry SF. 1989. Fish gill water boundary layer – a site of linkage 

between carbon dioxide and ammonia excretion. Journal of Comparative Physiology B 
158:627-635. 

 
Yodzis P. 1988. The indeterminacy of ecological interactions as perceived through pertubation 

experiments. Ecology 69:508-515. 
 
Zaga A, Little EE, Raben CF, Ellersieck MR. 1998. Photoenhanced toxicity of a carbamate 

insecticide to early life stage anuran amphibians. Environmental Toxicology and Chemistry 
17:2543-2553.  


	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	PREFACE
	INTRODUCTION
	MITIGATING WITH MACROPHYTES: SUBMERGED PLANTS REDUCE THETOXICITY OF PESTICIDE-CONTAMINATED WATER TO ZOOPLANKTON
	INTRODUCTION
	Insecticide background

	METHODS
	Experimental design
	Test species
	Toxicity test setup
	Malathion applications
	Determining the effect of Elodea density on malathion’s toxicity
	Determining Elodea’s effect on the rate of decrease in malathion’s toxicity
	Measuring Elodea’s effects on water pH, DO, and temperature
	Statistical analysis

	RESULTS
	Influence of Elodea density on malathion’s lethality to Daphnia
	Elodea’s effect on the rate of decrease in malathion’s toxicity
	Effects of Elodea and malathion on water pH, DO, and temperature

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS

	MITIGATING WITH MACROPHYTES: SUBMERSED PLANTS REDUCE THETOXICITY OF PESTICIDE-CONTAMINATED WATER TO ZOOPLANKTON
	INTRODUCTION
	METHODS
	Experimental design
	Toxicity test setup
	Malathion application
	Determining macrophyte effects on the amount that malathion’s toxicity is reduced
	Comparing macrophyte effects on the rate at whch malathion’s toxicity is reduced
	Statistical analysis

	RESULTS
	Effects of macrophyte treatments on the amount that malathion’s toxicity is reduced
	Effects of macrophyte treatments on the rate at which malathion’s toxicity isreduced
	Effects of macrophyte treatments on the abiotic environment

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS

	A NEW MECHANISM OF MACROPHYTE MITIGATION: HOW SUBMERGEDPLANTS REDUCE MALATHION’S ACUTE TOXICITY TO AQUATIC ANIMALS
	INTRODUCTION
	METHODS
	Experimental design
	Insecticide selection
	Species collection and husbandry
	Experimental setup
	Sampling abiotic variables
	Malathion applications
	D. magna 48-h survival assays
	Statistical analysis

	RESULTS
	Treatment effects on pH before malathion applications
	Treatment effects on pH after malathion applications
	Treatment effects on malathion’s toxicity to D. magna

	DISCUSSION
	ACKNOWLEDGEMENTS

	SUBMERGED MACROPHYTES MITIGATE DIRECT AND INDIRECTINSECTICIDE EFFECTS IN FRESHWATER COMMUNITIES
	INTRODUCTION
	METHODS
	Experimental design
	Experimental setup
	Insecticide applications
	Response variables
	Statistical analysis

	RESULTS
	Macrophyte density and abiotic variables
	Biotic variables
	Cladocerans
	Copepods
	Rotifers
	Phytoplankton
	Periphyton
	Snails
	Amphibians

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS

	CONCLUSIONS
	APPENDIX A
	APPENDIX B
	APPENDIX C
	BIBLIOGRAPHY



