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Triosephosphate isomerase (TPI) is a glycolytic enzyme that catalyzes the isomerization 

of dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, a non-linear step in glycolysis 

not required for the production of pyruvate.  Dysfunction within TPI elicits a disease called TPI 

deficiency; a severe, rare, autosomal recessive disorder characterized by neurological 

dysfunction, shortened longevity, and hemolytic anemia.  Previous studies questioned whether 

this disease was caused by changes in metabolism or protein conformation.  To address this, we 

have used a genomic engineering strategy in Drosophila to study the relationship between the 

structure of TPI and pathology.  We have generated and analyzed novel high-resolution crystal 

structures of TPI mutant proteins, yielding basic insights into TPI dysfunction.  Our data suggest 

the pathogenesis of TPI deficiency is unrelated to its general role in metabolism.  Further, in 

vitro experiments demonstrate that a toxic Drosophila TPI allele is characterized by a defect in 

protein dimerization.  Using our genomic engineering system, we have generated several novel 

TPI alleles that further support the hypothesis that a conformational change at the dimer interface 

is sufficient to elicit TPI deficiency.  We have conclusively shown that gross TPI activity is not 

predictive of disease presence or severity.  Finally, we have identified a synaptic defect caused 

by a dimer interface mutant that we propose is the source of neurological dysfunction in 

Drosophila and TPI Deficiency patients. 
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Table 1. Summary of genomically engineered triosephosphate isomerase alleles. 

Allele name Homozygous 

viability 

Protein 

levels 

Lysate 

isomerase 

activity 

Mechanical 

stress 

sensitivity 

Thermal 

stress 

sensitivity 

Longevity Known or 

Hypothesized 

affect 

dTPI
+
 Viable +++ +++ None None +++ WT 

dTPI
∆cat(K12M)

 Lethal +++ n.d. n.d. n.d. n.d. Prevents 

catalysis 

dTPI
T74R

 Reduced + ++ +++ +++ + Alters dimer 

interface 

dTPI
G75E

 Reduced + ++ +++ ++ + Alters dimer 

interface 

dTPI
T74R,G75E

 Reduced + ++ +++ +++ + Alters dimer 

interface 

dTPI
M80T

 Viable ++ + ++ + ++ Alters dimer 

interface 

dTPI
R188A

 Lethal + n.d. n.d. n.d n.d. Breaks salt 

bridge 

dTPI
R188L

 Lethal + n.d. n.d. n.d. n.d. Breaks salt 

bridge 

dTPI
R188S

 Lethal + n.d. n.d. n.d. n.d. Breaks salt 

bridge 

dTPI
R188K

 Viable +++ n.d. None None n.d. Maintains salt 

bridge 

hTPI
+
 Viable +++ +++ None None +++ WT 

hTPI
T74R

 Lethal n.d. n.d. n.d. n.d. n.d. Alters dimer 

interface 

hTPI
G75E

 Lethal n.d. n.d. n.d. n.d. n.d. Alters dimer 

interface 

hTPI
T74R,G75E

 Lethal n.d. n.d. n.d. n.d. n.d. Alters dimer 

interface 

hTPI
M80T

 Viable ++ + + + ++ Alters dimer 

interface 

hTPI
I170V

 Viable +++ + + + +++ Alters lid 

conformation 
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1.0  INTRODUCTION 

Over the course of evolution, biology has frequently recycled and repurposed protein 

conformations for roles other than their original function.  One of the greatest examples of this 

repurposing of protein structure has been the tertiary structure known as the triose isomerase 

(TIM) barrel.  The TIM barrel was first described in triosephosphate isomerase (TPI), but has 

since been found to be shared by over one hundred functionally diverse enzymes (2).  From 

endonucleases (3), to subunits of the K
+
 channels (4), to phospholipase signaling enzymes (5), 

this diversity clearly demonstrates the versatility of this structure.  Further, the concept of 

multifunctional protein structures has similarly been supported by work over the last few 

decades, revealing the oversimplification of the one protein–one function idea, similar to that of 

the one gene–one enzyme hypothesis.  These additional functions are often regulated by post-

translational modifications, subcellular localization, secretion, differential expression, and 

oligomerization (6).  Many enzymes, such as pyruvate kinase (PK), have been demonstrated to 

perform additional activities upon changes in their oligomerization.  As a monomer, PK is able 

to bind and inhibit the signaling of thyroid hormone receptors in the cytosol (7); yet upon 

oligomerization, PK loses its ability to sequester thyroid hormone receptors and becomes a full 

participant in glycolysis (8).  Other examples of novel functions are based on subcellular 

localization; hemoglobin is a well-described molecule capable of binding gases, and used to 

transfer oxygen throughout an organism.  However, recent studies in the vasculature have 
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identified it as a regulator of nitric oxide signaling (9,10), due to its ability to bind and sequester 

NO in a spatial and temporal manner (11).  These examples are beautiful illustrations of how 

evolution has recycled and reused elements of biochemistry to arrive at our current biological 

complexities, and emphasize the ability of proteins to function in numerous capacities. 

In my dissertation work I have utilized the Drosophila model system to examine the 

complexities of the glycolytic enzyme, TPI.  I have established a genomic engineering approach 

to examine the functional properties of TPI and the pathogenesis of its associated disease, 

triosephosphate isomerase deficiency.  Collectively, my work examines the structure of TPI, and 

how changes in this structure may induce pathophysiology.  I believe my work supports a role 

for localized TPI catalysis at the synapse, though the precise mechanism is still unclear.  In this 

introduction I will briefly review the literature surrounding the known biochemistry of TPI, the 

pathology associated with TPI deficiency, and the utility of Drosophila and the genomic 

engineering methodology. 

1.1 TRIOSEPHOSPHATE ISOMERASE 

1.1.1 Protein structure and catalysis 

Triosephosphate isomerase (TPI) is a non-linear enzyme of the glycolytic pathway.  Within 

glycolysis, TPI is located immediately downstream of aldolase and parallels glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) [Figure 1].  TPI catalyzes the isomerization of 

dihydroxyacetone phosphate (DHAP) into glyceraldehyde 3-phosphate (GAP), as GAP is the 

necessary 3-carbon substrate capable of producing pyruvate.  This isomerization reaction 
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requires a catalytic base to initiate deprotonation of the DHAP substrate (12).  If allowed to 

proceed non-enzymatically using a chemical base, the slow deprotonation of DHAP would result 

in equivalent levels of GAP and an enodiolate intermediate, whose kinetics would deviate 

thermodynamically toward the production of a reactive Schiff base, methylglyoxal (13).  

Methylglyoxal contains a highly reactive aldehyde group that will readily adduct to proteins and 

DNA, thereby causing cellular damage (14).  The positioning of the catalytic residues in TPI 

facilitates an extremely rapid deprotonation of DHAP, yet if left unguided this reaction would 

also generate methylglyoxal.  To inhibit the formation of this toxic byproduct and bias the 

formation of GAP, TPI utilizes a “lid” mechanism which gates the diffusion of any reaction 

intermediates, thereby directing nearly all of the substrate to the appropriately isomerized 

product (13).   

To understand the catalysis of TPI, you must understand its structure.  TPI utilizes a TIM 

barrel base, upon which its catalytic properties have been built (15).  The TIM barrel is a 

commonly used enzymatic tertiary structure which involves alternating beta sheets and alpha 

helices for the production of a stable barrel.  This stable foundation coordinates the positioning 

of looped segments between the beta sheet/alpha helix stretches, and these loops are what give 

each TIM barrel enzyme their respective functional properties.  In TPI, several loops contain 

elements which assist with enzyme dimerization as well as the formation and support of the 

catalytic site (16). 

TPI has traditionally been thought of as an obligatory homodimer, as monomeric versions 

of the protein have yet to be identified in vivo and the catalysis of the enzyme is greatly 

influenced by dimerization.  Indeed, targeted modifications to the TPI dimer interface have been 

generated and characterized in vitro, with all iterations displaying a significant reduction in 
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catalysis (17-19).  These catalytic changes are in stark contrast to the diffusion-limited rates 

achieved upon appropriate dimerization (20).  Structural analyses have revealed that the 

dimerization of TPI helps support the formation of a rigid catalytic pocket (18).  In particular, 

several critical catalytic residues, such as N10 and K12, are supported by hydrophobic 

interactions at the dimer interface (18,19).  Without appropriate positioning in monomeric forms 

of the enzyme, these residues and the catalytic lid appear flexible.  Similarly, molecular 

simulation experiments have concluded that the catalytic residue H95 is coordinated by a 

hydroxyl group extending from a threonine as part of the partner dimer (21).  This hydroxyl 

group is part of the critical loop 3 of the enzyme, which forms a majority of the dimer interface 

surface area.  The tip of TPI loop 3, of which T74 is a key component, reaches into and stabilizes 

the catalytic site of its dimer partner (18,22).  Mutations in T74 and its neighbor G75 have been 

shown to be sufficient to disrupt dimer formation (19).  These residues and their pathogenic 

propensities will be analyzed in Chapter 3. 

Although dimerization has been well-established as a means to regulate the catalytic 

capacity of TPI, little has been done to study how catalysis may convey changes back to the 

dimer interface. One hint of this type of bidirectional relationship was revealed by (23) wherein 

the authors studied the capacity of thiol-targeted reagents to adduct dimer interface cysteines.  It 

was established that occupation of the enzyme protected the buried dimer interface cysteines 

from modification.  Conversely, enzyme without substrate – a more dynamic open conformation 

– exhibited substantial susceptibility for modification by the chemical agents methylmethane 

thiosulfonate (MMTS) and 5,5-dithiobis(2-nitrobenzoate) (DTNB) (23).  These data would 

suggest the capacity for the catalytic site to modulate accessibility of buried dimer interface 

residues.  If occupancy of the enzyme were truly to influence dimerization and stability, it is 
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tempting to think that this may be a self-regulatory mechanism for sensing its necessity and 

regulating turnover.  Through structural and biochemical analyses, I have established that 

changes in lid conformation are capable of influencing dimerization through the reinforcement of 

a trans-monomeric hydrogen bond network.  This bidirectional relationship between the dimer 

interface and catalytic site will be explored and discussed in Chapter 4. 

 

 

Figure 1.  Triosephosphate isomerase and its related metabolic pathways.  A) The de novo glycerol 

synthesis pathway, B) glycolysis, and C) the pentose phosphate pathway.  Only critical substrates are 

indicated. 

1.1.2 TPI and its metabolic pathways 

TPI sits at the crux of glycolysis and enhances its bioenergetic capacity [Figure 1].  The 

additional GAP molecule generated through the isomerization of DHAP contributes a second 

three-carbon substrate for the production of adenosine triphosphate (ATP), the reduced form of 
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nicotinamide adenine dinucleotide (NADH), and pyruvate (24).  The two molecules of ATP 

generated through this molecule of GAP result in a net gain in ATP for the entire glycolytic 

process.  GAPDH, the next enzyme in glycolysis following TPI, generates NADH from the 

oxidation of GAP (24).   

The relationship between TPI and NADH however does not stop at its ability to help 

generate GAP simply for glycolysis; TPI is also involved in the glycerol 3-phosphate (G3P) 

proton shuttle (25).  Cytosolic and mitochondrial pools of NADH are discrete, with the 

exceptions of the malate-aspartate and glycerol 3-phosphate shuttles (25).  NADH generated in 

cytosol is oxidized by glycerol 3-phosphate dehydrogenase (GPDH) with DHAP to form 

glycerol 3-phosphate (24).  This glycerol is the backbone of most phospholipids and 

triglycerides, but can also pass through the inner mitochondrial membrane where mitochondrial 

GPDH oxidizes G3P and FAD
+
 is reduced to FADH2 and DHAP (24).  If TPI were inactive, one 

would predict that this irreversible transfer mechanism would be enhanced through the 

accumulation of DHAP, possibly leading to a depletion of cytosolic NADH.  Again, although 

TPI’s role in this process is peripheral, its inhibition through catalysis or mislocalization could 

result in a selective depletion of cytosolic NADH pools, potentially influencing pyridine 

effectors. 

In addition to its intimate relationship to glycolysis, TPI peripherally participates in the 

pentose phosphate pathway (PPP) through its relationship with GAP (24).  GAP is a product of 

the PPP, which generates reducing cofactors (nicotinamide adenine dinucleotide phosphate – 

NADPH) and precursors of nucleotides and aromatic amino acids (24).  In this way, the PPP 

could be a means to bypass initial inefficiencies in glycolysis, and inhibition of TPI is predicted 

to increase glucose 6-phosphate flux from the glycolytic pathway to the PPP (26).  Within the 
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PPP, this 6 carbon molecule will be broken down, yielding NADPH, ribose 5-phosphate, and 

erythrose 4-phosphate (24).  NADPH is a key electron donor for the regeneration and 

maintenance of glutathione and the cellular redox environment as well as signaling enzymes 

such as NADPH oxidases.  Ribose 5-phosphate can be shunted to help generate nucleotides, 

while erythrose 4-phosphate can be diverted for the production of aromatic amino acids (24).  

However, the progression toward the production of nucleotides or amino acids is regulated by 

their respective anabolic enzymes; in the absence of a need for either of these constituents, the 

ribose 5-phosphate and erythrose 4-phosphate would be further catabolized through the PPP to 

generate fructose 6-phosphate and GAP.  GAP can be handed back to the glycolytic pathway 

through GAPDH while fructose 6-phosphate can be reused by the PPP to generate more GAP, or 

fed directly back into glycolysis (24).   

1.1.3 Important catabolic products 

Through directly- or indirectly-linked pathways, TPI yields three molecules of 

biochemical importance: ATP, NADH, and NADPH.  The function of ATP as a phosphate donor 

has been well-established in the literature as a central molecule in biochemistry, yet NADH and 

NADPH are still gaining appreciation for their biological activities.  Previously, NADH was 

largely thought to feed the electron transport chain (ETC) of mitochondria simply for the 

production of ATP, yet biochemists are finding increasingly influential roles for this type of 

electron donor species in signal transduction events.  One well-established pathway through 

which this molecule can modulate biology has been control over the Sirtuin family (27,28).  The 

Sirtuins bind the unreduced form of NAD
+
 to induce the deacetylation of other transcription 

factors and histones (29).  Through these means, local NAD
+
 gradients can regulate gene 



 8 

transcription, and enhancement of this capacity has been shown to phenocopy the longevity 

enhancement seen in caloric restriction models of aging (30-34).  Indeed, we see a progressive 

increase in NAD
+
 relative to NADH in our TPI

M80T
 animals (35), and if recapitulated in our 

dimer mutants, a putative increase in NAD
+
 is possibly the means through which we see a 

substantial increase in the longevity of our heterozygotes animals (Chapter 3), though such 

hypotheses are as of yet untested.   

Additionally, both NAD
+
 and NADP

+
 have been shown to modulate K

+
 channel activity 

(36).  NAD
+
 has been demonstrated to bind the cytoplasmic domain of Slo2 K

+
 channels (BKCa) 

(37), leading to a 2-fold increase in open probability.  Additionally, the beta subunit of voltage-

gated potassium channels (Kvβ) binds both NAD
+
 and NADP

+
, but not their reduced 

counterparts (38).  As mentioned previously, the KVβ proteins are members of the aldo-keto 

reductase family of proteins and in an extremely interesting coincidence, utilize a TIM barrel 

structure to bind pyridine nucleotides (4).  This binding event removes their inactivating 

influence on the alpha units of the channel, thereby facilitating K
+
 flux (39,40).  Finally, the 

transient receptor potential M2 channel (TRPM2) has been shown to be redox sensitive (41), 

with applications of NAD
+
 increasing permeability (42).  Direct binding experiments have been 

performed (41), though some contend these results are controversial (43).  Regardless, it is clear 

that there is an increasing appreciation for the cytosolic activities of these molecules, and further 

work detailing the importance of local changes in redox pyridines will be extremely interesting. 
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1.2 TRIOSEPHOSPHATE ISOMERASE DEFICIENCY 

1.2.1 A historical perspective on TPI deficiency and its evolutionary maintenance 

Schneider and colleagues first identified a disease associated with triosephosphate 

isomerase back in the 1960s (44).  In this seminal article, a small cohort of individuals was 

examined in an isolated area of Louisiana wherein a number of children were identified with a 

curious collection of symptoms.  The affected infants/children often displayed signs of hemolytic 

anemia, weakened immune responses, and progressive neuromuscular impairments.  The 

children would exhibit an odd collection of periodic dystonia, episodic seizures, and progressive 

weakness and flaccidity in their extremities.  These behaviors often would continue to progress 

until the point of early death, though the cause of death was often ascribed to the persistent 

infections the patients experienced.  Pedigree analyses suggested an autosomal recessive disease, 

and although no consanguinity was initially described, the children’s parents admitted to being 

‘almost certain that they were related in some way’ (26).  Through metabolic experiments it was 

revealed that the hemolytic anemia experienced by these patients was likely derived from 

reduced TPI activity.  Later, molecular studies of these and similar patients revealed that the 

disease was caused by a collection of mutations within the promoter and coding regions of the 

TPI gene (45). 
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Figure 2.  Structure of triosephosphate isomerase highlighting residues affected by human disease-

associated missense mutations.  TPI dimer is shown as a cartoon, with one monomer colored blue and the 

other gold.  Known human mutations are plotted structurally and shown as white with colored elements in 

sticks.  The active site is labeled with DHAP, shown in spheres.  Labels indicate the residues and their 

changes.  Structure shown is WT from yeast, crystallized with DHAP bound in the active site. PDB accession 

code: 1NEY (46). 

 

Typically, patients are genetically characterized as transheterozygotes, with a point 

mutation paired with one of several null alleles.  These null alleles are most often elicited 

through the introduction of a premature stop codon, with the resulting transcript left untranslated 

due to nonsense-mediated decay (45,47,48).   Indeed, hypomorphic alleles have been widely 

described in the general population, though no individuals have yet been identified with 

homozygous null mutations.  A population screen of infant mortality suggested that a 

homozygous null condition is embryonic lethal, and these data are supported by similar 

observations in rodents and Drosophila (49-52).  Therefore to achieve viability, some degree of 

activity must be retained – these observations are supported by the homozygous lethality found 

in our catalytically inactive mutants described in Chapter 2.  
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Of particular interest to population geneticists has been the wide geographic prevalence 

of the toxic E104D allele.  Flanking polymorphisms were used to establish that the E104D allele 

likely arose roughly 1000 years ago (53,54).  The genetic maintenance of this mutation has been 

curious, and many suggested could likely be indicative of an advantageous hypomorphic loss-of-

function.  Indeed, population surveys of hemocyte TPI activity and gene integrity revealed a 

substantial rate of promoter mutations in African American populations (41%) (55).  It is still 

unclear exactly what advantageous properties are conveyed through a hypomorphic condition, 

though the simplest explanation would be one of mild metabolic restriction, and again could be 

related to the genomic signaling properties of NAD
+
 accumulation.  A human population 

analysis of the activity rates of 11 metabolic enzymes identified TPI as enriched in functional 

deficiencies, second only to pyruvate kinase, the second most prevalent glycolytic enzymopathy 

(56).  Caloric restriction has emerged in the field of aging as one of the most reliable means of 

extending lifespans.  Our results in Chapter 3 detail the dramatically increased longevity in 

Drosophila heterozygous for dimer interface mutations.  These data are the first to demonstrate a 

definitive advantage conveyed by heterozygous loss-of-function TPI alleles in a uniform genetic 

background, and support the conclusions of decades of population genetics. 

1.2.2 Known TPI deficiency mutants and investigative studies 

Disease-associated mutations have been described in several functionally relevant, yet 

diverse structural locations.  Residues affected by disease mutations are plotted on an image of 

the enzyme in Figure 2.  To date, the only mutations that have been identified as homozygotes 

are those resulting in E104D and V231M (45,48).  Further, only E104D, V231M, and F240L 

have been demonstrated to be sufficient to elicit TPI deficiency in human patients; C41Y, I170V 
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and G122R have never been identified in patients without accompanying the E104D allele 

(45,48).  Due to the rarity of this disease it is unclear whether these mutations are viable, lethal, 

pathogenic, or simply lack sufficient consanguinity; this topic will be addressed in Chapter 4.  

The most widely identified mutation to date has been a Glu-to-Asp change at position 104 

(E104D) (26).  This mutation occurs at the dimer interface of the enzyme and has been 

associated with disease in a multitude of different allelic contexts; homozygous and trans-

heterozygous in combination with null alleles as well as other point mutations. 

One such trans-heterozygote case provided a unique opportunity within the TPI 

deficiency field – in 1993 a group of clinical researchers identified two genotypically similar 

brothers, one with neurological dysfunction and another healthy and normal (57).  The brothers 

each had an allele bearing the F240L point mutation and the other a null.  These phenotypically-

contrasting patients spurred a number of investigations into possible biological explanations for 

the neurological symptoms.  Using primary tissue samples, (erythrocytes taken from patients) the 

research group identified an increase in plasma membrane calcium ATPase levels (PMCA: 2-3 

fold increase) and acetylcholinesterase activity (~30%) in the affected compared to the symptom-

free brother (58).  Later experiments working with the same F240L mutation identified enhanced 

association of the mutant variant of the enzyme to the plasma membrane of erythrocytes as well 

as microtubules, though this enhancement was admittedly modest (59).  To explain these 

observations, the authors proposed a gain-of-function model; wherein mutations in TPI caused 

enhanced binding to microtubules and PM.  The authors also demonstrated a reduction in TPI 

activity upon the addition of microtubules, which they proposed would further exacerbate the 

deficiencies found in patients (59).  These hypotheses have largely gone unexplored in the last 

decade, though data discussed in Chapters 2,3 and 4 strongly suggest a loss-of-function disease 
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mechanism rather than a gain-of-function.  Indeed, the recessive nature of this disease would 

support such a conclusion, and no published or unpublished results have indicated a toxic gain-

of-function in any TPI alleles. 

1.3 TPI DEFICIENCY IN MODEL ORGANISMS 

1.3.1 Studies in mice and yeast 

Given the rarity of this disorder, pathogenic studies of TPI deficiency have been difficult.  

The majority of research surrounding the disease has thus far focused on primary tissue samples 

derived from a select few patients.  These studies are inherently limited to descriptive analyses, 

precluding hypothesis-driven research.  The dearth of available patient tissues has severely 

limited the ability to study the basis of the neurological phenotypes associated with TPI 

deficiency.  To this end, the development of a tractable model system would significantly impact 

the field, yet the genetics of such a system have proven difficult to manage.  The homozygous 

lethality, and dose-dependent loss-of-function nature of TPI deficiency necessitates gene 

replacement or mutagenesis of the endogenous locus.  As a result, few model organisms exist 

with which to examine TPI deficiency.  Murine and Drosophila TPI knockouts and null alleles 

have been generated, but proven lethal (50,60).  One mouse point mutant of TPI, D49G, has 

recently been identified in a biased screen for erythrocyte enzyme mutations (61), though this 

study focused on hematological parameters of the animals, and no behavioral defects were noted. 

Work in the yeast species S. cerevisiae has proven informative for the in vivo 

biochemical characterization of the various human mutations (62).  Indeed, Ralser and 
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colleagues were the first to establish that the most prevalent mutation, E104D, exhibited an odd 

dimerization phenotype using the yeast-two-hybrid approach (62).  These data were later 

corroborated by a more focused structural analysis which deduced that the dimerization 

phenotype was due to a miscoordination of dimer interface water molecules via the shortening of 

the glutamic acid residue (63).  This evidence set precedent that TPI pathology could be due to a 

reduction in dimerization, though a pathophysiological mechanism was still unclear. 

1.3.2 Studies in Drosophila  

1.3.2.1 Drosophila neurobiology 

Around the same time as the Ralser publication, two independent groups of Drosophila 

biologists identified the same Met-to-Thr substitution at position 80 (M80T) in TPI (50,64).  This 

M80T mutation led to neuropathology and behavioral dysfunction.  These mutants were 

identified in a chemical mutagenesis screen for aberrant behavior, and were characterized with 

two typically distinct behaviors: thermal stress and mechanical stress sensitivity.  The former 

behavior was pioneered by Ganetzky and colleagues as a phenotype enriched for neurological 

dysfunction.  This behavioral test uses elevated temperature to stress the animals to a non-

permissive level, and the subjects are monitored for seizures or paralysis relative to appropriate 

genetic controls.  The basis for this stress-dependency include a trio of factors which are believed 

to lead to the aberrant behavior: i) elevated temperature increases basal Drosophila neural 

activity, ii) increased temperature enhances sensory inputs to the central nervous system, and iii) 

elevated temperature could negatively influence thermolabile proteins (65-69).  This thermal 

stress methodology has been used in conjunction with forward genetic screens to reveal 

mechanisms of neurological function, such as voltage-gated ion channels and their associated 
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transcriptional regulators (69,70), vesicle fusion/recycling proteins (71), and regulators of 

synapse development (72,73), among others.  Of particular interest is the nature of the aberrant 

behavior and the time of onset; the faster the time of onset the more germane the mutant is likely 

to be to neurological function (72).   

Comparatively, the latter phenotype, mechanical stress sensitivity, has been thoroughly 

examined by Tanouye and colleagues as an insect analog of mammalian seizures (74,75).  

Supporting this assertion, recent work in our laboratory has established that strobe light 

stimulation is sufficient to phenocopy mechanical stress-dependant phenotypes, suggesting that 

overstimulation of sensory inputs is both necessary and sufficient to elicit these behaviors (76).  

Indeed, targeted electrophysiology experiments with mechanical stress-sensitive mutants have 

demonstrated fundamental characteristics of seizures: electrically-inducible uncontrolled activity 

followed by refractory periods (77-79).  These “seizures” are threshold events, capable of being 

achieved in even wild type animals with enough stimulation.  Using a modified Drosophila giant 

fiber preparation, Tanouye and colleagues established that many anti-epileptic drugs were 

capable of increasing the threshold to seizure activity in wild type and several mechanically 

stress sensitive mutant alleles (80-84).  These results were leveraged further to identify novel 

putative therapeutic targets for treating epileptic patients, a forward genetic approach badly 

needed in the epileptic community.  These experiments have been extremely fruitful for basic 

research into the causes of epilepsy and potential therapeutic strategies, often revealing an 

intimate link between metabolism and seizure activity. 

Collectively, characterization of a Drosophila TPI allele with both of these behaviors 

corroborated the diverse spectrum of abnormal neuro- and neuromuscular symptoms seen in 

human patients.  The TPI
M80T

 phenotypes suggested the potential for underlying neuropathology, 
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and indeed evidence was found of both peripheral and central neuropathy in this Drosophila 

model of TPI deficiency (50), again, much like in the human patients.  To date, Drosophila are 

the only model organism to effectively recapitulate the neurological dysfunction seen in human 

patients (48).   

1.3.2.2 Drosophila reveal mechanisms of pathologic protein regulation 

Yet the similarities do not end with the neurological phenotypes displayed by the 

animals; the TPI
M80T

 allele shares many biochemical similarities with the mutant human proteins.  

Importantly, all of the severely pathological human TPI mutations exhibit thermolability 

(26,45,48).  Thermolability of a protein establishes a susceptibility to inactivation due to heat 

stress, and this could be indicative of stability/conformational defects within the protein.  

Previous studies in our laboratory have established that TPI
M80T

 is found at reduced protein 

levels, while transcript levels actually increase (85); collectively these data suggest a defect in 

translation or stability of the protein which causes cellular depletion.  Later examinations 

revealed that molecular chaperones, heat shock protein 70 and 90 (Hsp70, Hsp90), were 

preferentially bound to the TPI
M80T

 protein (86).  The pathologic relationship between this 

Drosophila mutant and these chaperones was established through pharmacologic and genetic 

inhibition, which both moderately attenuated TPI
M80T

 levels and also helped ameliorate some of 

the behavioral phenotypes seen in the mutants.  Experiments seeking to examine the possible 

relationship between the chaperones and protein levels established that proteosomal inhibition, 

genetic or pharmacologic, was sufficient to increase TPI
M80T

 protein levels (86).  These results 

concluded that reduced TPI levels in TPI
M80T

 were in part attributable due to increased protein 

degradation.  Importantly, reduced TPI levels have been detected in primary human tissue from 
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patients.  These observations set the stage for us to question whether the activity of the enzyme 

or its presence was most critical to the disease phenotypes in our animals (Chapter 2). 

1.3.2.3 Drosophila and TPI deficiency redox changes 

The Drosophila system also recapitulates the lack of ATP depletion found in patient 

tissues (87-89), and these data have led us to question the pathogenic importance of general 

metabolism in TPI deficiency (Chapter 2,3).  Reduced glycolytic flux is known to be 

compensated by rerouting substrates from glycolysis to the PPP (90), and this detour is likely 

controlled by two possible mechanisms; i) a buildup of DHAP substrate to inhibit aldolase, 

and/or ii) oxidative stress-induced redirection of metabolites (90-92).  We find it likely that both 

mechanisms are influencing metabolic rerouting, as DHAP has been shown to accumulate in 

patient tissues with reduced TPI activity (57), and oxidative stress has been demonstrated to 

target redox-sensitive glycolytic enzymes to reroute glycolytic intermediates through the PPP 

(91).  Further, the TPI
M80T

 allele has been characterized as exhibiting mitochondrial oxidative 

stress (35).   

Previous work by our lab and others suggested that mitochondrial redox changes could be 

due to an accumulation of a toxic byproduct of DHAP (35,64,93).  If allowed to accumulate, 

DHAP can be non-enzymatically converted into the reactive Schiff base, methylglyoxal (MG).  

Hrizo and colleagues suggest that the accumulation of this advanced glycation end-product 

(AGE) could be responsible for inducing the mitochondrial stress exhibited in the TPI
M80T

 

animals (94,95).  To address this possibility, we have generated knockouts (KOs) of the initial 

glyoxylase enzyme responsible for detoxifying the organism of MG.  These glyoxylase KO 

animals failed to recapitulate our mutant TPI phenotypes [data not shown].  Further, gross 

measurements of AGEs have not revealed an obvious contribution to the pathology of the 
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animals, as changes in genetic background have a more dramatic effect on AGE accumulation 

than the inhibition of TPI or the glyoxylase enzyme [data not shown].  This work is still ongoing 

in the laboratory, yet the initial experiments suggest that MG is not a primary contributor to TPI 

deficiency pathology.   

Still, TPI deficiency-associated changes in redox status provide a platform to ask a 

number of intriguing questions surrounding the relationship between glycolysis, the PPP, and 

mitochondrial redox changes.  It has been demonstrated that inhibition of TPI increases PPP flux 

(90,91), yet this increase in PPP and production of NADPH protects the cells from redox 

changes in only certain human disease-associated TPI mutants (62).  Further, the simple 

conclusion that mitochondrial reactive oxygen species (ROS) increases as a function of 

glycolytic flux inhibition is also unclear.  Is the cell compensating for reduced glycolytic ATP 

production by upregulating oxidative phosphorylation, or are changes in ROS elicited by a non-

metabolic mechanism?  Why can activation of the PPP in certain TPI mutants counter this 

putative increase in mitoROS; does this suggest differences in pathogenesis?  Are changes in 

redox status in the cell a toxic byproduct of reduced glycolytic flux, or a purposeful signal from 

the mitochondria to reroute glycolytic metabolites through the PPP?  Noting the modest changes 

in TPI pathology elicited through redox modulation (35), I propose that mitochondrial ROS in 

the TPI
M80T

 animals is likely signaling a purposeful rerouting of metabolic substrates toward the 

PPP.  However, it is not clear whether these observed redox changes in pyridines are derived 

from mitochondrial or cytosolic sources.  Later discussions will focus on the putative impact of 

changing cytosolic redox status, with a focus on local changes in pyridine oxidation at the 

plasma membrane [Chapter 3,5]. 
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1.4 DROSOPHILA GENOMIC ENGINEERING 

Work spanning the last decade has outlined Drosophila as a model organism capable of 

recapitulating the neurological dysfunction seen in human TPI deficient patients 

(1,35,50,64,85,86).  This observation provided a unique opportunity to perform hypothesis-

driven experiments aimed at delineating the pathogenic mechanism through which this 

neurological dysfunction occurs.  Given that TPI deficiency is a dose-dependent loss-of-function 

disorder, traditional transgenic modulations – often considered the strength of the Drosophila 

system – were deemed inadequate.  Fortunately, recent advances in Drosophila homologous 

recombination and genomic engineering technology provided a unique opportunity to study this 

disorder. 

For several years Drosophila homologous recombination (HR) technology lagged behind 

that of yeast and murine systems.  This was fortunately changed roughly 13 years ago by the 

work of Rong and Golic (96).  In this seminal study, the authors first outlined an efficient 

methodology for performing ends-out and ends-in targeting in Drosophila.  The HR system was 

designed to utilize elements encoded entirely by the genome, requiring no injections of pre-

linearized DNA.  Shortly thereafter, a number of groups within the Drosophila community began 

pursuing phiC31-mediated integration as a means to overcome positional variability in transgene 

expression (97,98).  These studies stemmed from an older challenge with random transposon-

mediated transgenesis, wherein genomic changes in transgene positioning could influence 

expression of the construct.  These expression/position based complications made comparisons 

between two constructs difficult, necessitating numerous replicates and control experiments.  To 

anticipate this problem, geneticists conscripted a viral integrase technology known as the phiC31 

integrase system.  The complementary integrase sites, attP and attB, were used in conjunction to 
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ensure site-specific and directional transgenesis.  First, an attP site was placed on a traditional 

transposon and integrated into the genome through standard p-element transgenesis.  Once 

placed, this site became an anchor for future phiC31-mediated transgenesis with the attP 

directing uniform localization of all transgenic permutations.  Constructs containing the 

complementary attB site were generated and injected into the embryos expressing germ-line 

phiC31 integrase to mediate inheritance. 

A major advance in Drosophila genetics was ushered in by uniting the HR and phiC31 

genomic techniques.  A few years ago Huang and colleagues (99,100) utilized the knock-in 

technology pioneered in HR to replace endogenous genes with attP engineering sites.  The 

directed placement of these phiC31 landing sites opened a window into the originally targeted 

gene, making it amenable to future modifications [Schematic shown in Figure 5].  This genomic 

engineering (GE) strategy has been an extremely valuable tool for the meticulous evaluation of a 

specific gene.  Yet the technology’s true utility was in studying highly dose-dependent loci, 

where traditional transgenic expression could introduce over/under-expression and 

misexpression complications.  The importance of using the endogenous regulatory machinery 

was illustrated as the Hong group was able to tag developmentally critical proteins of interest, 

revealing novel functions due to the lack of typical untoward effects associated with transgenic 

manipulations (101).  To this end, the two gene loci I have worked on in my graduate career have 

both been characterized as dose-dependent.  In collaboration with the Hong group we have 

targeted the ATPa gene encoding the major catalytic subunit of the Na,K-ATPase [unpublished], 

and TPI (1).  The work I will describe in this document will be primarily composed of alleles 

generated using GE of the TPI locus.  It is critical to note the beauty of this genetic approach, as 

all of these alleles were generated in a uniform background.  Therefore the key differences 
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between the animals will be the subtle allelic changes made through our targeted modifications.  

This genetic approach is unparalleled, allowing me with confidence to say that my thesis work 

truly is a structure-function analysis within the context of a whole organism. 
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2.0  EVIDENCE OF A NON-CATALYTIC FUNCTION OF TRIOSEPHOSPHATE 

ISOMERASE CRUCIAL TO BEHAVIOR AND LONGEVITY 

2.1 ABSTRACT 

Triosephosphate isomerase (TPI) is a glycolytic enzyme that converts dihydroxyacetone 

phosphate (DHAP) into glyceraldehyde-3-phosphate (GAP). Glycolytic enzyme dysfunction 

leads to metabolic diseases collectively known as glycolytic enzymopathies. Of these 

enzymopathies, TPI deficiency is unique in the severity of neurological symptoms. The 

Drosophila sugarkill mutant closely models TPI deficiency and encodes a protein prematurely 

degraded by the proteasome. This result caused us to question whether enzyme catalytic activity 

was critical to pathogenesis of TPI sugarkill neurological phenotypes. To study TPI deficiency in 

vivo we developed a genomic engineering system for the TPI locus that enables the efficient 

generation of novel TPI genetic variants. Using this system we demonstrate that TPI sugarkill 

can be genetically complemented by TPI encoding a catalytically inactive enzyme. Further, our 

results demonstrate a nonmetabolic function for TPI, the loss of which contributes significantly 

to the neurological dysfunction in this animal model. 
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2.2 INTRODUCTION 

Triosephosphate isomerase (TPI) is a homodimeric enzyme that functions in a non-linear step of 

glycolysis, converting dihydroxyacetone phosphate (DHAP) into glyceraldehyde 3-phosphate 

(GAP).  Both DHAP and GAP are produced from the catabolism of fructose 1,6-bisphosphate by 

the enzyme aldolase; however, only GAP can be utilized by the remaining steps in glycolysis.  

Therefore, TPI is responsible for the net gain of glycolysis-derived ATP as well as the 

production of an extra molecule of pyruvate per molecule of glucose.  This enhancement of 

glycolysis plays an important role in the bioenergetics of both aerobic and anaerobic metabolism.  

Mutations in TPI have been identified in humans that result in a disease known as TPI 

deficiency.  TPI deficiency is a recessive loss-of-function disease resulting from missense 

mutations in the gene.  The disease is clinically characterized by symptoms such as hemolytic 

anemia, cardiomyopathy, neurological dysfunction and degeneration, and premature death 

(26,45).  Pathogenic mutations can be found in various regions of TPI affecting either the 

promoter or coding sequence, and all patients suffering from TPI deficiency have been reported 

as having dramatically reduced TPI activity in vivo owing to changes in catalysis and/or enzyme 

stability (57,102,103).  Patients suffering from TPI deficiency may present with one or more of 

the previously described symptoms with no reliably predictive biochemical or structural 

characteristics ascribed to each phenotype or degree of severity.   

Drosophila are the only model system identified to date in which mutants have been 

shown to recapitulate the neurological phenotypes seen in human patients (50,64).  We have 

previously isolated an animal model of TPI deficiency known as TPI
sugarkill (sgk)

.  TPI
sgk

 is 

characterized by shortened lifespan, neurodegeneration, and conditional behavioral abnormalities 

(50) resulting from a missense mutation causing a methionine to threonine substitution (M80T).  
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The affected methionine is present near the dimer interface yet does not seem to result in a shift 

in monomer-dimer populations in vivo (85).  However, the TPI
sgk

 mutation has been shown to 

induce abnormal proteasomal degradation of TPI resulting in reduced total TPI protein (85,86).  

Interestingly, we have previously shown that this loss-of-function mutation can be attenuated by 

overexpressing mutant TPI
sgk

 (50).  This result caused us to question whether the presence of the 

enzyme or its catalytic activity was most important to the pathogenesis of TPI
sgk

.  Here we 

demonstrate that the M80T substitution in TPI
sgk

 reduces its isomerase activity and, based on the 

proximity to one of the TPI catalytic sites, we predict that the reduced catalytic efficiency is a 

result of the mutation’s influence on dimeric catalytic activity. 

To address whether the presence of the enzyme or its catalysis were most important to the 

TPI
sgk

 disease phenotypes in vivo, we developed genomic engineering (GE) of the Drosophila 

TPI locus.  This process establishes an attP ΔTPI founder line, which can be used to modify the 

gene locus using highly efficient attP/attB transgenesis.  We hypothesized that if the presence of 

the enzyme was critical to pathogenesis independent of catalytic activity, then we would be able 

to rescue the disease phenotypes with a catalytically inactive variant of the protein.  Lys12 of 

TPI is a fully conserved catalytic residue previously shown to be required for substrate binding, 

and a mutation to Met completely abrogates catalysis (16,104).  We have generated the attP 

ΔTPI founder line and have used GE to create Drosophila TPI
∆cat

 encoding a catalytically-

inactive TPI.  Here we demonstrate that TPI
∆cat

 genetically complements the longevity and 

behavior of the TPI
sgk

 animal model of TPI deficiency.  Furthermore, catalytically inactive TPI 

complements TPI
sgk

 phenotypes without enhancing its stability or catalysis or reducing the 

associated metabolic stress. 
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2.3 RESULTS 

2.3.1 Recombinant TPI enzyme activity   

Previous studies established that TPI
sgk

 is a recessive loss-of-function mutation characterized by 

reduced TPI levels (85).  Further, it was suggested that TPI
sgk

 retained sufficient activity to 

rescue mutant survival and behavioral phenotypes if overexpressed (85).  Based on these data we 

hypothesized that reduced TPI catalysis was critical to the pathogenesis of TPI deficiency.  To 

investigate this hypothesis further we generated recombinant Drosophila WT (dWT) and TPI
sgk

 

(dM80T) and examined the kinetics of isomerase activity for each (Table 1).  These data 

demonstrate that TPI
sgk

 (dM80T) exhibits a substantial reduction in isomerase activity.  The 

dM80T protein does not significantly change substrate affinity, yet elicits an ~11-fold reduction 

in catalytic activity compared to WT enzyme.  This ultimately resulted in a ~15-fold reduction in 

enzyme efficiency.  Both enzymes displayed typical Michaelis-Menten kinetics (Figure 3). 

 

 

 

Figure 3.  Both Drosophila wild type (dWT) and sugarkill (dM80T) enzymes follow traditional 

Michaelis-Menten kinetics.  Michaelis-Menten nonlinear regression fits are shown, and all enzyme 

concentrations are indicated. 
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Table 2. Kinetic parameters of Drosophila wild type (dWT) and sugarkill (dM80T) triosephosphate 

isomerase enzymes. 

 dWT dM80T 

kcat (GAP) (s
-1

)  1454 ± 163.6 129.6 ± 1.5 

Km (GAP) (mM) 2.8 ± 0.4  3.7 ± 0.5 

kcat/Km (GAP) (s
-1

 M
-1

) 5.2x10
5
 3.5x10

4
 

* ± SEM 

 

To assess the role of the M80 position within TPI function, we analyzed the crystal 

structure of TPI from G. gallus (105) – Drosophila TPI shows 67% identity and 80% functional 

conservation with G. gallus.  This structure was determined in the presence of the transition-state 

analog phosphoglycolohydroxamic acid (PGH), and the homologous methionine (M81) is 

located within TPI’s third loop (residues 63 to 86) (Figure 4A).  This loop coordinates numerous 

interactions within the dimerization interface of TPI including important contacts between M81 

and M13 and N14 of the neighboring subunit (Figure 4B).  These hydrophobic interactions help 

position the third loop, and are aided by hydrogen bonding between residues T74 and E76 (also 

on the third loop), which interact with H95 and R98, respectively.  The sum of these interactions 

is a coordinated network using conserved residues to mediate both hydrophobic and hydrogen-

bonding interactions that ultimately positions both K12 and H95 properly within the active site 

of the enzyme (Figure 4B & 4C). These residues are critical for enzymatic function in TPI 

(106,107) and establish a connection between M80 in Drosophila TPI and reduced catalysis for 

TPI
sgk

. 

Biochemically establishing that TPI
sgk

 still retains catalytic activity supported a catalytic 

explanation of our phenotypic attenuation via TPI
sgk

 transgenic overexpression.  However, a 

rigorous assessment of this hypothesis in vivo would require supplementation of TPI levels 

without modifying its activity.   
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Figure 4.  Positioning of the third loop forms an interaction network connecting the dimerization 

interface to the catalytic pocket.  A) The crystal structure of TPI dimer from Gallus gallus (PDB ID, 1TPH).  

Monomer A of the dimer is rendered as a surface and colored white, while Monomer B (blue) is shown as a 

cartoon with the third loop highlighted in orange.  The position of the transition state analog 

phosphoglycolohydroxamic acid (PGH, green) is indicated within the catalytic pocket.  B) Local environment 

of the third loop.  Colored as before, with residues making important contributions to the dimerization 

interface indicated as sticks.  Van der Waals interactions between M81 and residues M13 and N14 are 

indicated as black dotted lines.  Hydrogen bonds between residues on the distal end of the third loop and 

connecting to the catalytic core are given as green dotted lines.   Residues are numbered based on Gallus 

gallus sequence, and for clarity we are using the TPI numbering standard that accounts for the removal of 

the initiator methionine.  C) An alignment of TPI protein sequences from H. sapien, G. gallus, and D. 

melanogaster.  Protein alignment was performed using the Clustal W method, with H. sapien and G. gallus 

showing 63.5% and 67.3% identity to D. melanogaster.  Residues that mediate TPI dimerization are indicated 

by grey circles. Residues within the hydrogen-bonding network critical for catalysis are indicated (Cyan). The 

position of the sugarkill mutant (M81, red) and its positions within the third loop (orange box) are indicated. 
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2.3.2 Generation of the founder knock-out line by homologous recombination  

To create a catalytically inactive allele of TPI we developed a GE approach for the TPI 

locus.  Homologous recombination (HR) in Drosophila had previously been developed (96,108) 

but recent advances in GE technology have made the process considerably more efficient 

(99,100).  The GE founder line was generated through replacement of the endogenous TPI locus 

using ends-out homologous recombination with a functional attP element (Figure 5A).  TPI is 

located on the third chromosome between CG31029 (centromeric) and AdoR (telomeric).  

Homology arms directing the deletion of the entire TPI locus were PCR amplified from the w
1118

 

wild type genomic DNA and cloned into the pGX-attP targeting vector.  Traditional P-element 

transgenesis was used to obtain pGX-attP insertion on the second chromosome.  HR was induced 

as previously outlined (99).  Approximately four hundred putative positive HR events were 

identified after screening ~ sixty thousand (60,000) animals.  Among the putative positives, three 

positive HR lines were identified and verified using genetic and molecular methods.   

Genetic validation included failure to complement a previously identified TPI null allele, 

TPI
JS10

 (50), and homozygous lethality.  Molecular validation included PCR analyses to confirm 

proper targeting of left and right homology arms using primers directed outside the homology 

arms and within construct elements.  The confirmed founder line was reduced to remove w
mc+

 

using a CRE recombinase and is designated attP ΔTPI (Figure 5B).  The entire attP ΔTPI region 

was sequenced to confirm the correct placement of the GE elements and the integrity of the 

homology arms.  

GE was performed to create TPI
+ 

(attR), TPI
+
-CFP (attR), TPI

M80T
 (attR), TPI

∆cat 
(attR), 

and TPI
∆cat

 -CFP (attR) animals using standard phiC31 site-directed integration followed by 

CRE-mediated reduction to remove w
mc+

 (Figure S2). These animals were molecularly verified 
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using PCR analyses of the attR construct element (Figure 5E) and the locus was sequenced.  

Importantly, GE TPI
+ 

(attR) animals are homozygous viable and behave normally while animals 

bearing the M80T substitution are substantially stress sensitive and exhibit reduced longevity 

(Figure 6).  Animals homozygous for TPI
∆cat 

(attR) are lethal, indicating a necessity for TPI 

catalysis during development. 

 

Figure 5.  Genomic engineering of the TPI locus.  A)  The target gene is replaced by the attP phiC31 

integration site and a white minigene flanked by two loxP sites.  B)  The white minigene is removed by a CRE 

recombinase, leaving only the attP phiC31 integration site and a loxP site.  C)  TPI is cloned into the pGE-attB 

vector and modified, as desired.  The construct is then injected into founder line embryos expressing the 

phiC31 integrase, which initiates specific and directional integration of the contruct into the TPI locus.  D)  

The white minigene and plasmid construct are removed through the expression of CRE recombinase, leaving 

only an attR and a loxP site.   E)  Molecular analysis reveals the addition of an attR site 5’ of the reconstituted 

TPI gene. 
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Figure 6.  Genomically engineered TPI
sgk

 displays aberrant behavior and reduced longevity.  A)   

Genomically engineered TPI
+
 (GE-WT) displays normal behavior, while the genomically engineered TPI

sgk
 

(GE-sgk) displays marked mechanical stress sensitivity.  B)  GE-sgk exhibits reduced longevity compared to 

GE-WT.  n > 20 for all lifespans and behavior.  A Student’s t test was used to assess behavioral differences 

between genotypes, and a Log-rank (Mantel-Cox) Test was used to assess lifespans.  *** indicates p < 0.0001 

compared to GE-WT.  Error bars indicate ± s.e.m.  Both genomically engineered alleles were assessed over 

TPI
null

. 

2.3.3 Animal behavior and longevity 

To test whether TPI – independent of catalytic activity – is crucial to disease 

pathogenesis, TPI
sgk

/TPI
+
, TPI

sgk
/TPI

sgk
, TPI

sgk
/TPI

null
, and TPI

sgk
/TPI

∆cat
 animals were collected 

and aged at 25°C.  TPI
null

 is a null allele owing to a 1.6 kb deletion, therefore TPI
sgk

/TPI
null

 

animals represent approximately the amount of TPI produced by one allele of TPI
sgk

.  For the 

purposes of this study, contrasting TPI
sgk

/TPI
null

 with TPI
sgk

/TPI
∆cat

 provides the most 

informative comparison, as each animal population contains one catalytically active TPI allele.     

Male and female animals were housed in vials of 10-20 individuals and examined for 

mechanical- and temperature-dependent locomotor defects on day three and twenty.  Time to 

recovery and time to paralysis were measured in each assay. While TPI
sgk

/TPI
+
 shows no sign of 

paralysis or seizures upon mechanical stress, TPI
sgk

/TPI
sgk

 and TPI
sgk

/TPI
null

 exhibit a clear delay 

in recovery (Figure 7A).  In contrast, TPI
sgk

/TPI
∆cat

 animals display no signs of stress sensitivity 
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(Figure 7A).  Previously, we have shown that TPI
sgk

 phenotypes are progressive in nature 

(50,85).  We measured these behaviors at two time points, day 3 and day 20 to reveal whether 

TPI
∆cat

 fully complements the TPI
sgk

 phenotypes or simply delays their onset.  The catalytically 

inactive enzyme was shown to rescue mechanical stress sensitivity at both time points indicating 

that the TPI
∆cat

 allele does not simply delay the progression of the disease phenotype (Figure 

7A). 

 

Figure 7.  The catalytically inactive TPI
∆cat

 rescues behavioral and longevity phenotypes in TPI
sgk

.  A)  

TPI
∆cat

 complements TPI
sgk

 mechanical stress sensitivity at both day 3 and day 20.  B)  TPI
∆cat

 expression 

complements TPI
sgk

 thermal stress sensitivity, again at both day 3 and day 20.  † indicates TPI
sgk

/TPI
+
 and 

TPI
sgk

/TPI
∆cat

 animals did not paralyze.  C)  TPI
∆cat

 complements the longevity defect of TPI
sgk

.  ** indicates p 

< 0.01 and *** p < 0.001 relative to TPI
+
/TPI

+
.  n > 15 per genotype for all behavioral assays, and n > 150 per 

genotype for all lifespans.  Error bars indicate ± s.e.m. 

 

Thermal stress sensitivity of the animals was also evaluated to test the possibility of 

pathogenic divergence (Figure 7B).  Here, TPI
sgk

/TPI
+
 shows no signs of paralysis or seizures 

upon thermal stress, while TPI
sgk

/TPI
sgk

 and TPI
sgk

/TPI
null 

animals show distinct paralytic 

phenotypes initiated at ~240 sec. and ~90 sec. respectively (Figure 7B).  In contrast, animals 

expressing the catalytically inactive allele TPI
sgk

/TPI
∆cat

 displayed no signs of paralysis after 

thermal stress induction (Figure 7B).  Again, we measured these behaviors at two time points, 

day 3 and day 20, and expression of the catalytically inactive enzyme was shown to rescue 

thermal stress sensitivity at both time points (Figure 7B). 
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To test whether genetic complementation extended to longevity we assessed lifespans as 

previously described (109). TPI
sgk

 animals exhibit a marked reduction in median longevity that 

was also complemented with the catalytically inactive TPI
∆cat

 allele (Figure 7C).  Finally, all 

genotypes eclosed at Mendelian rates suggesting the absence of developmental deficits and that 

the behavior of the adult population is representative of the genotype as a whole. 

2.3.4 TPI
sgk

 animal bioenergetics and lysate enzyme activity 

Genetic complementation with TPI
∆cat

 could indicate a previously unidentified non-isomerase 

function of the enzyme or it could result from a restoration of isomerase activity by a number of 

possible mechanisms.  Thus, we examined whether TPI
∆cat

 provided genetic complementation 

through a restoration of enzyme isomerase activity. TPI enzyme activity was robust in both 

TPI
+
/TPI

+
 and TPI

sgk
/TPI

+
 lysates yet markedly reduced in TPI

sgk
/TPI

sgk
 and TPI

sgk
/TPI

null
 

animals (Figure 8A). Most importantly, TPI
sgk

/TPI
∆cat

 animals exhibit levels of isomerase 

activity similar to TPI
sgk

/TPI
sgk

 and TPI
sgk

/TPI
null

 animals demonstrating that the genetic 

complementation is independent of isomerase activity (Figure 8A). 

 

 

Figure 8.  TPI
∆cat

 fails to rescue animal bioenergetics and TPI enzyme activity.  A)  TPI
sgk

 exhibits 

little activity in animal lysates.  Additionally, complementing TPI
sgk

 with TPI
∆cat

 does not rescue its activity in 

vivo.  Inset: A between TPI
sgk

/TPI
null

 and TPI
sgk

/TPI
∆cat

 lysate kinetics reveals low activity levels in both 
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lysates.  Note the axes are maintained but units have been changed.  B)  TPI
sgk

/TPI
null

 animals and 

TPI
sgk

/TPI
∆cat

 animals both showed reduced ratios of P-arg/arginine indicating bioenergetic stress.  *** 

indicates p < 0.001 relative to WT.  Error bars indicate ± s.e.m. 

 

The dramatic reduction in lysate isomerase activity suggested that pathogenesis of TPI
sgk

 

neurological phenotypes could be unrelated to animal metabolic stress.  Previous studies 

measuring ATP levels in this same mutant have failed to detect a significant change (64).  To 

further evaluate the relationship between metabolism and TPI deficiency behavioral and 

longevity phenotypes we measured phospho-arginine [P-arg] to arginine [arg] ratios as 

previously described (110), as this is an extremely sensitive assay of Drosophila bioenergetic 

status (76).  [P-arg]/[arg] ratios in TPI
sgk

 mutant animals were depressed compared to wild type, 

consistent with a strong loss-of-function mutation in glycolysis (Figure 8B).  This represents a 

reduction in the available pool of [P-arg] normalized to the total [arg] available, and suggests that 

the animals are utilizing this pool at a higher rate to buffer their ATP levels, similar to how 

mammals utilize phosphocreatine (76).  Importantly, TPI
sgk

/TPI
∆cat

 animals exhibiting low levels 

of catalytic activity also showed a similar depression in their [P-arg]/[arg] ratios compared to 

wild type animals (Figure 8B).  These data indicate that TPI
∆cat

 rescues TPI
sgk

 phenotypes by a 

mechanism independent of TPI’s well-established role in cellular bioenergetics, and may provide 

an explanation as to the absence of an association between enzyme catalysis and neurological 

complications in human patients. 
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2.3.5 TPI
sgk

 and TPI
∆cat

 protein levels 

The capacity of a catalytically inactive allele of TPI to genetically complement all 

behavioral and longevity phenotypes independent of isomerase activity and animal metabolism 

strongly supports the conclusion that TPI
sgk

 phenotypes are due to a change in total TPI protein 

levels, not a reduction in TPI catalytic capacity.  To determine whether the catalytically inactive 

TPI rescues total TPI levels, we immunoblotted for the presence of TPI with or without a cyan 

fluorescent protein (CFP) tag; the use of the tag allowed us to discriminate between protein 

isoforms.  Figure 10 shows that the addition of this C-terminal CFP does not influence the 

capacity of TPI
∆cat

 to rescue the TPI
sgk

 phenotypes.   TPI
sgk

 display reduced TPI protein levels in 

vivo (85,86), and TPI levels were further reduced when TPI
sgk

 was paired with the null allele, 

TPI
null

 (Figure 9A,C).  Interestingly, complementing TPI
sgk

 with the catalytically inactive allele 

TPI
∆cat

 rescues the total TPI protein levels to that seen in the aphenotypic TPI
+
/TPI

+
 wild type 

homozygotes.  Observing TPI
∆cat -CFP

 and TPI
sgk

 independently, it can be seen that TPI
∆cat -CFP

 

fails to rescue TPI
sgk

 levels (Figures 9A,C) and, conversely, mutant TPI
sgk

 protein does not 

induce the degradation of TPI
∆cat -CFP

 (Figures 9B,C). 
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Figure 9.  TPI
∆cat

 expression does not prevent the degradation of TPI
sgk

.  A)  Shown is a quantification 

of the levels of untagged TPI.  TPI
sgk

 complemented with TPI
∆cat

 shows elevated levels of total TPI similar to 

WT.  Additionally, TPI
sgk

/TPI
null

  have similar levels of TPI compared to TPI
sgk

/TPI
∆cat -CFP

.  ** indicates p < 

0.01 and *** p < 0.001 compared to WT.  Further, ns indicates no significant change compared to 

TPI
sgk

/TPI
null

.  n = 4.  B)  TPI
sgk

 does not induce the degradation of TPI
∆cat-CFP

.  Shown is a quantification and 

comparison of the levels of TPI
∆cat-CFP

 (C).  Student’s T test was used to compare the two groups and found no 

significant difference (ns).  n = 4.  C)  Shown is a representative blot from which Figures 9A and 9B were 

quantified.  The loading control used was ATPalpha (Na,K-ATPase).  Error bars indicate ± s.e.m. 

 

 

Figure 10.  The addition of the C-terminal CFP to TPI
∆cat

 does not affect its capacity to genetically 

complement TPI
sgk

.  A) mechanical stress sensitivity or B) thermal stress sensitivity.  Mechanical stress 

sensitivity was assessed on Day 1 and thermal stress sensitivity was assessed on Day 5.  n > 15.  † indicates 

animals did not paralyze.  A One-way ANOVA was performed to assess variance and data sets were 
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compared using Tukey’s post-hoc analysis.  *** indicates that p < 0.001 and ns indicates no significant 

difference, both compared to WT.  Error bars indicate ± s.e.m. 

 

The inability of TPI
∆cat -CFP

 to modulate TPI
sgk

 levels suggests that any phenotypic rescue 

is likely being performed by the catalytically inactive isoform, and not merely increasing the 

presence of a still catalytically active TPI
sgk

.  Secondly, it is of particular interest that TPI
sgk

 does 

not significantly influence the levels of TPI
∆cat -CFP

.  These results suggest three possible 

interpretations: i) TPI
sgk

 is degraded prior to but stable upon heterodimerization, ii) TPI
sgk

 

monomers are selectively degraded from heterodimer complexes, or iii) that TPI
sgk

 and TPI
∆cat

 

never exist as a heterodimer.  Taken together, these results confirm that TPI
∆cat

 complements the 

TPI
sgk

 phenotypes independent of isomerase activity demonstrating a non-catalytic function of 

TPI critical to the pathogenesis and severity of TPI deficiency.  

2.4 DISCUSSION 

The sugarkill model of TPI deficiency used in these experiments is characterized by 

reduced catalysis and protein stability, characteristics found in several of the more toxic human 

TPI alleles (57,102,111).   Similarly, the M80T mutation recapitulates the neurological 

dysfunction and toxicity exhibited in many of the human patients.  Using the Drosophila model 

we have genomically engineered (GE) the TPI locus to make targeted in vivo modifications to 

the endogenous gene.  GE allows us to study TPI manipulations under endogenous regulatory 

control, allowing rigorous experiments that would not be feasible with traditional transgenic 

approaches (101,112,113).  The power of GE is born in its capacity to study a gene’s function in 
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vivo while reducing artifacts due to transgenic over expression and miss expression.  Previous 

studies analyzing TPI deficiency have primarily utilized human patient erythrocytes, yeast and 

mammalian cellular expression systems.  Although these experimental paradigms are valuable, 

they do not provide the elegant endogenous genetic control of GE and preclude the examination 

of in vivo phenotypes such as behavior and longevity. 

We initiated this study asking whether the presence of the enzyme or its catalytic activity 

was most important to the pathogenesis of our mutant.  Our experiments assessing enzyme 

activity identified that the M80T substitution in TPI
sgk

 resulted in a ~15-fold reduction in enzyme 

efficiency (Table 1).  This reduction in catalytic activity was more severe than those reported in 

two human mutations (63,114), but was not nearly as severe as those modifying critical catalytic 

components (115-118).  An analysis of the TPI enzyme structure taken from G. gallus suggested 

that this mutation might affect isomerase activity through its proximity to several catalytic 

residues (Figure 4).  These results initially supported a catalytic source of disease pathogenesis, 

but further experimentation revealed the capacity for an isomerase-inactive isoform of TPI to 

genetically complement all behavioral and longevity phenotypes of TPI
sgk

. The capacity of a 

catalytically inactive TPI to rescue a severe variant of TPI deficiency independent of any 

changes in isomerase activity was striking.  Thus far most research on TPI deficiency has 

focused on two core principles: i) Inhibited TPI activity would slow glycolysis, and ii) Inhibition 

of TPI would lead to a buildup of excess DHAP and henceforth toxic advanced glycation end-

products (AGEs) (48).  Here we have shown that the addition of an isomerase-dead isoform of 

TPI rescues all behavior independent of catalysis, making it unlikely that AGEs are playing a 

significant role in the genesis of our behavioral or longevity phenotypes. Our findings of genetic 
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complementation independent of an effect on TPI
sgk

 isomerase activity or animal bioenergetics 

suggest a non-metabolic source of TPI deficiency pathogenesis. 

Although glycolytic enzymes are not often thought of as important players in non-

metabolic cellular mechanisms, work spanning the past two decades has clearly outlined vital 

non-metabolic roles for some of these ancient proteins.  Glycolytic enzymes have been described 

in a multitude of different non-catalytic roles, including assistance in assembly and function of 

the vacuolar-type proton-ATPase by aldolase (119,120), inhibition of apoptosis through the 

modulation of Bax, Bak and Bad by hexokinase (121,122), transcriptional regulation of the 

histone H2B gene during cell cycle progression by glyceraldehyde 3-phosphate dehydrogenase 

(123), and the induction of cell motility and invasion through the secretion and binding of 

glucose-6-phosphate isomerase to the autocrine motility factor receptor gp78 (124).  Based on 

this diversity of functions, it is clear that there is the potential for glycolytic enzymes to perform 

functions dramatically independent from their roles in glycolysis.  Our findings are particularly 

relevant as TPI is one of the primary targets of nitrotyrosination in Alzheimer’s disease and is 

sequestered in the neurofibrillary tangles in patient brains (125,126).  Sequestration such as this 

could inhibit a critical non-catalytic function of TPI, further contributing to the neurological 

dysfunction known to be associated with tau aggregation and toxic amyloid beta. 

Recently TPI has been identified as a target of cyclin dependant kinase 2 (cdk2) (127) 

and arginine methyltransferase 5 (PRMT5) (128).  Together, these studies conclude that TPI is 

more highly regulated than previously appreciated.  Furthermore, it was noted that TPI protein 

levels could be modulated via methylation (128).  These results portend the enticing possibility 

that TPI protein levels are regulated in a cell-cycle dependent manner, and that its relationship to 

the cell cycle could be perturbed in TPI deficient patients experiencing neurological symptoms.  



 39 

Indeed, a relationship has already been well-established between cell cycle misregulation and 

neurodegeneration (reviewed in 129), and inappropriate regulation of the cell cycle has been 

described in Alzheimer’s Disease (130).  It is clear that further work is needed to define the 

biological role of post-translational modifications of TPI, and the role of TPI as either a direct or 

indirect component of the cell cycle. 

In conclusion, our data demonstrate the capacity of a catalytically inactive TPI enzyme to 

genetically complement TPI deficiency behavioral phenotypes independent of changes in 

bioenergetics or enzyme catalysis. The identification of an isomerase-independent function for 

this critical protein opens up new avenues of investigation that will prove critical to 

understanding TPI’s role in maintaining normal neural function and TPI deficiency pathogenesis.  

2.5 MATERIALS AND METHODS 

2.5.1 Animal Strains 

The w*; P[GawB] 477w-; TM2/TM6B, Tb
1
 and y,w/Y, hs-hid; hs-FLP, hs-I-SceI/CyO, hs-hid; 

stocks were obtained from Dr. Yang Hong.  TPI
sgk

 is a missense mutation resulting in a Met-to-

Thr change at position 80, while TPI
null

 is a null allele owing to a 1.6 kb deletion of two of the 

three constitutively expressed exons of the TPI locus (50).  This numbering uses the established 

nomenclature for TPI mutations, assuming the start methionine is removed following translation 

(45); and for consistency all residue numbering in this study uses the same convention.  The Cre 

recombinase stock was used to reduce the locus following homologous recombination and 

phiC31 integration.  The strain used, y
1
 w

67c23
 P[y[+mDint2]=Crey]1b; D

*
/TM3, Sb

1
, was 
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obtained from the Bloomington Drosophila Stock Center (Bloomington, IN, USA).  Care was 

taken to ensure all animal populations assessed were approximately equivalent mixtures of males 

and females, with the exception of the TPI
sgk

/TPI
null

 day 20 behavioral tests – in this genotype 

males died noticeably faster than females and as a result this small population of survivors 

consisted mostly of female animals.  

2.5.2 Genomic Engineering  

We performed the TPI GE similar to previously published methods (99,100).  Briefly, ~ 2.6 kb 

homology arms were generated by PCR amplification to areas 5’ and 3’ of the TPI locus.  These 

homology arms were inserted into the pGX-attB vector (99) and transferred onto the second 

chromosome of w
1118

 animals using traditional P-element transgenesis.  Ends-out homologous 

recombination was performed and founder lines were molecularly verified.  The wild type TPI 

locus was cloned into the pGE-attB vector via PCR and verified by sequencing.  Founder lines 

were mated to vasa-phiC31
ZH-2A

 animals expressing the integrase on the X chromosome and their 

progeny injected with pGE-attBTPI
+
, pGE-attBTPI

+
-CFP, pGE-attBTPI

M80T
, pGE-attBTPI

∆cat
, 

or pGE-attBTPI
∆cat

 -CFP constructs.  Integration events between attP and attB elements produce 

an attL and attR and reconstitute the target locus.  Such events were identified based on the 

presence of the w
+
 phenotype and verified molecularly.   

2.5.3 Mutagenesis 

Site directed mutagenesis was performed using the QuikChange Lightning Site-Directed 

Mutagenesis Kit (Agilent Technologies, Santa Clara, CA, USA).  Mutagenesis primers were 
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generated (Integrated DNA Technologies, Coralville, IA, USA) to introduce a Lys-to-Met codon 

change affecting position 11 and a Met-to-Thr codon change affecting position 80 of the protein.  

Mutagenesis was performed on the pGE-attBTPI
+
 plasmid and confirmed by sequencing. 

2.5.4 Drosophila TPI purification 

The coding sequence for Drosophila TPI was cloned into the bacterial expression vector pLC3 

using standard techniques.  The resulting plasmid directs expression of TPI containing N-

terminal His6- and MBP-tags, both of which can be removed with TEV protease.  TPI protein 

was expressed in BL21(DE3) Codon-Plus (RILP) E. coli (Agilent Technologies) grown in ZY 

auto-induction media (131) at room temperature for 24-30 hours.  Cells were harvested by 

centrifugation, lysed via homogenization in 25 mM Tris pH 8.0, 500 mM NaCl, 10% glycerol, 5 

mM Imidazole, 1 mM β-mercaptoethanol and cleared by centrifugation at 30,000 x g.  TPI was 

purified by nickel affinity chromatography followed by overnight TEV protease treatment to 

cleave the His6-MBP tag from TPI.  A second round of nickel affinity purification was 

performed to separate the His6-MBP and TEV protease.  TPI protein was further purified using 

cation-exchange chromatography (HiTrap-QP) followed by gel filtration (Sephacryl S-200, GE 

Healthcare, Little Chalfont, England, UK).  Peak fractions were concentrated to 4-8 mg/ml in 20 

mM Tris pH 8.8, 25 mM NaCl, 2.0% glycerol and 1 mM β-mercaptoethanol using a Vivaspin 

concentrator (GE Healthcare).  The purity was >99% as verified by SDS-PAGE.  Expression and 

purification of the Drosophila TPI M80T sgk mutant was performed as described above. 
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2.5.5 Enzyme Assays 

Isomerase activity was determined using an NADH-linked assay as previously detailed (132).  

TPI activity was measured with three different enzyme concentrations of both purified 

Drosophila WT and M80T enzyme.  Initial velocity of the enzyme was calculated over a GAP 

(Sigma-Aldrich, St. Louis, MO, USA) range of 0.94-5.64 mM.  All kinetic measurements were 

performed three times in triplicate by monitoring the absorbance of NADH at 340 nm in a 

SpectraMax Plus 384 microplate reader (Molecular Devices, Sunnyvale, CA, USA).  The assay 

was performed using 80 µl mixtures containing varied GAP and enzyme concentrations, 0.42 

mM NADH (Sigma-Aldrich), and 1 unit glycerol-3-phosphate dehydrogenase (Sigma-Aldrich) 

in 100 mM triethanolamine (TEA), pH 7.6.  Enzyme activity curves were normalized to 

reactions performed without GAP.  Enzyme kinetics were determined by assessing initial 

velocities taken during the linear phase of each reaction, and the data were fit to the Michaelis-

Menten equation using nonlinear regression in Graphpad Prism 5.0b (GraphPad Software, La 

Jolla, CA, USA). 

For lysate assays, animals were collected and aged to day 3 at 25°C and frozen in liquid 

nitrogen.  Bodies lacking the head and appendages (abdomen and thorax) were isolated after 

vigorous mechanical shaking of the frozen animals.  Tissues lacking eye pigments were used to 

reduce background absorbance.  The bodies were homogenized in 0.75 ml of 1X PBS (2.7 mM 

KCl, 137 mM NaCl, 2 mM NaH2PO4, 10 mM Na2HPO4 pH 7.4) with protease inhibitors 

Leupeptin 1:1000 (Acros Organics, Geel, Belgium), Pepstatin 1:1000 (Sigma-Aldrich), PMSF 

1:100 (Pierce, Rockford, IL, USA).  The homogenates were ice bath-sonicated for 10 min. then 

centrifuged at 4°C for 5 min. at 5,000 x g to remove exoskeletal debris.  Lysates were diluted to 

1 µg/µl in 100 mM TEA, pH 7.6 + inhibitors and TPI enzyme activity was assessed using a 
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linked-enzyme assay, similar to that outlined above.  The assay was performed using 80 µl 

mixtures containing 0.47 mM GAP, 0.42 mM NADH, 1 unit glycerol-3-phosphate 

dehydrogenase and 30 µg of lysate protein in 100 mM TEA, pH 7.6.  Enzyme activity curves 

were performed three times in triplicate and normalized to reactions performed without GAP.  A 

One-way ANOVA was performed to assess variance and data sets were compared using Tukey’s 

post-hoc analysis.   

2.5.6 Behavioral Testing and Lifespan Analysis 

Mechanical stress sensitivity was determined by vortexing the animals in a standard media vial 

for 20 seconds and measuring time to recovery, similar to (133).  Thermal stress sensitivity was 

assessed by acutely shifting animals to 38°C and measuring time to paralysis, as previously 

described (65,109).  All behavioral responses were capped at 600 seconds.  Testing days were 

selected based on previous experience with TPI deficiency progression in Drosophila (50).  

Animal lifespans were performed at 25°C as previously described (109).  Two-way ANOVAs 

were performed with Bonferroni’s post test to compare genotype behavior over time, and 

lifespans were compared with Log-rank (Mantel-Cox) survival tests.   

2.5.7 HPLC Phosphoarginine Assay 

Three sets of 25 animals per genotype were collected and aged to day 3 at 25°C and frozen in 

liquid nitrogen.  The animals were homogenized in 200 µl 0.6 M perchloric acid and neutralized 

with 25 µl of 2 M potassium carbonate.  The lysates were then centrifuged at 12,000 x g for 10 

min. at 4°C and the supernatant filtered through a PVDF 0.45 µm spin column (National 
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Scientific, Rockwood, TN, USA) at 12,000 x g for 5 min. at 4°C as previously described (76).  

These extracts were injected onto a Phenomenex Luna 5µm NH2 250 x 4.6 mm column 

(Torrance, CA, USA) using a Shimadzu high performance liquid chromatography (HPLC) 

system (Kyoto, Japan) and separated with a 95:5 20 mM KH2PO4 pH 2.6: acetonitrile linear 

mobile phase at a flow rate of 0.6 ml/min.  Arginine (Acros Organics) and phospho-arginine (P-

arg) standards were detected at 205 nm, and all samples were measured in triplicate (76).  

Phosphoarginine standards were generated as previously described (134).  Peak analysis was 

performed using EZStart 7.3 software (Shimadzu), and P-arg levels were normalized to total 

arginine and compared across genotypes.  Retention times for arginine and phospho-arginine 

were 3.7min and 5.4min respectively.  A One-way ANOVA was performed to assess variance 

and data sets were compared using Tukey’s post-hoc analysis.   

2.5.8 Immunoblots 

Animals were collected and aged at 29°C.  After 24hrs., ten fly heads were collected in triplicate 

from each genotype and processed as outlined previously (86).  Briefly, the fly heads were 

ground by pestle in 80µl 2× SDS–PAGE sample buffer (4% SDS, 4% β-mercaptoethanol, 

130mM Tris–HCl pH 6.8, 20% glycerol) and spun for 5min. at 5,000 x g to pellet the 

exoskeleton. Proteins were resolved by SDS–PAGE and transferred onto PVDF membrane.  

Following treatment in 1% milk PBST, the blots were incubated with anti-TPI (1:5000; rabbit 

polyclonal FL-249; Santa Cruz Biotechnology, Santa Cruz, CA, USA) or anti-ATPalpha 

(1:10,000; mouse monoclonal alpha5; Developmental Studies Hybridoma Bank, Iowa City, IA, 

USA).  The blots were washed in PBST, incubated in the appropriate HRP-conjugated secondary 

antibody, and developed using ECL (Pierce).  Densitometric analyses of the scanned films were 
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performed digitally using ImageJ software available from the National Institutes of Health.  A 

One-way ANOVA was performed to assess variance of TPI levels and data sets were compared 

using Tukey’s post-hoc analysis. 
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3.0  CHANGES IN TRIOSEPHOSPHATE ISOMERASE DIMER INTERFACE 

MORPHOLOGY ELICIT BEHAVIORAL DYSFUNCTION BY INHIBITING 

SYNAPTIC VESICLE RECYCLING 

3.1 ABSTRACT 

Triosephosphate isomerase (TPI) is a homodimeric non-linear glycolytic enzyme, which 

enhances glycolytic efficiency yet is not required for the production of pyruvate.  Dysfunction 

within TPI elicits a disease called TPI deficiency, and this pathology currently lacks any 

treatments.  TPI Deficiency is unique among other glycolytic enzymopathies for its severe 

patient neurological dysfunction and early death.  Previous studies have detailed structural and 

catalytic changes elicited by disease-associated TPI substitutions, but the pathophysiology of this 

disease has never been examined.  In this study, in vitro experiments demonstrate that a 

previously identified toxic Drosophila TPI
M80T

 allele is characterized by a defect in enzyme 

dimerization.  Using the Drosophila genomic engineering system we generated several novel 

TPI alleles which further support the conclusion that changes at the dimer interface are sufficient 

to elicit TPI deficiency.  Genetic complementation and behavioral rescue conclusively establish 

that TPI activity is not predictive of disease presence or severity.  However, examination of a 

severe TPI allele demonstrated that the neurological phenotypes associated with TPI Deficiency 

are caused by impaired vesicle recycling at the synapse.  It is not currently understood why TPI 
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Deficiency is unique among other glycolytic enzymopathies in these patient symptoms, though 

our findings suggest a critical subcellular locale deficient in glycolytic ATP.  Clinically, these 

findings are the first to inform targeted therapeutic strategies for patients suffering from TPI 

Deficiency.   

3.2 INTRODUCTION 

Triosephosphate isomerase (TPI) is a glycolytic enzyme that converts dihydroxyacetone 

phosphate (DHAP) into glyceraldehyde-3 phosphate (GAP).  TPI is a non-linear member of the 

glycolytic pathway, enhancing the efficiency of the catabolic process, and mutations within 

coding region of TPI lead to a disease known as TPI deficiency (26).  TPI deficiency is one of 

the few glycolytic diseases associated with neurological dysfunction, and by far the most severe 

(48).  Previously, a M80T substitution in Drosophila TPI (TPI
M80T

) was identified which elicited 

mechanical- and thermal-stress dependent paralysis (50,64).  Both of these behavioral 

phenotypes have been independently established as hallmarks of neurological dysfunction, and 

each has been used in forward genetic screens to identify novel components of neuronal 

transmission (66,68,69).  To this end, the TPI
M80T

 allele was identified in such a screen (65), and 

the protein was found to be prematurely degraded with reduced catalytic activity (1,85).  This 

reduction in catalytic activity was shown to inhibit glycolytic flux as well as induce metabolic 

stress (1,50).  Subsequent studies demonstrated that the M80T point mutation could be 

complemented by the addition of a catalytically inactive TPI without increasing lysate isomerase 

activity or alleviating metabolic stress (1).  These results were in agreement with observations 

made from patient tissue samples, wherein no changes in ATP were identified (57) and 
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concluded that the behavioral dysfunction associated with Drosophila TPI deficiency was not a 

function of metabolic stress, but instead a result of either a depletion of cellular TPI or a change 

in its protein conformation. 

The results of the present study extend this work and suggest that conformational changes 

of the TPI dimer interface are sufficient to cause Drosophila TPI deficiency.  Indeed, an 

alteration of the dimer interface was previously identified in the most prevalent human disease-

associated TPI mutation (63).  We purified and assessed the physical characteristics of TPI
M80T

, 

identifying a change in protein dimerization.  These results were further supported when 

independent mutations at the TPI dimer interface phenocopied the behavioral dysfunction seen in 

the TPI
M80T

 allele.  A previous study established that TPI
M80T

 could be complemented with a 

catalytically inactive TPI allele, and complementation analyses with the new dimer mutant 

alleles support the conclusion that an improperly formed dimer interface is a far greater 

determinant of behavioral dysfunction than enzyme catalysis.  Further, our experiments establish 

that Drosophila TPI deficiency results in an impairment of synaptic vesicle recycling, which we 

believe are the source of neurological dysfunction in both our Drosophila model and the human 

condition.  A recent study quantifying the ATP production and consumption at the synapse 

established that activity-driven glycolysis was the most critical source of ATP in the synapse 

(135).  Additional analyses of activity-dependant ATP consumption demonstrated that vesicle 

recycling was the largest consumer of ATP in the synapse (135).  These observations suggest 

that our TPI dimer mutations may elicit a local depletion of ATP due to impaired synaptic 

glycolytic flux.  Collectively, these data conclude that Drosophila TPI deficiency is not elicited 

through a general metabolic defect, and suggests that the neurological dysfunction is elicited by 

changes in the dimer interface likely coordinating localization of synaptic isomerase activity.   
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3.3 RESULTS 

3.3.1 RNAi knockdown of WT TPI 

Our previous results suggested that TPI deficiency neurological and longevity phenotypes were 

not a result of metabolic stress.  We found that the severe longevity and behavioral phenotypes 

elicited through the M80T mutation could be complemented through the addition of a stable, 

catalytically inactive isoform of TPI.  These results suggested one of two possibilities through 

which M80T elicited its disease phenotypes: i) that the depletion of cellular TPI was sufficient to 

elicit disease phenotypes, or that ii) M80T generated a conformational change in TPI which 

could be rescued through the addition of a properly folded yet catalytically inactive isoform.  To 

assess the first possibility, we employed the GAL4-UAS expression system to knock down wild 

type (WT) TPI using a UAS-RNAi line directed toward dTPI (Drosophila TPI) messenger RNA 

(mRNA) (136).  These lines were driven by an actin-GAL4, UAS-GAL4 superexpressor to 

obtain a dramatic reduction of TPI in all tissues. 

 

 

Figure 11.  RNAi knockdown of TPI
+
 fails to recapitulate TPI

M80T
 phenotypes.  TPI transcript levels 

were knocked down ubiquitously and confirmed in thorax (A) and head (B) tissues (n≥3).  Knockdown 
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animals failed to display typical mechanical-stress dependent paralysis (C) at Day 5 aged at 25°C (n≥15).  ns 

indicates no significance, ** p<0.01, and *** p<0.001 relative to +/+. 

 

Using UAS-RNAi in conjunction with the superexpressor GAL4, we found that w;actin-

GAL4,UAS-GAL4/+;UAS-RNAi
TPI

/+  animals exhibited a dramatic reduction in TPI protein 

levels similar to that seen in head and thorax tissue from w;;TPI
M80T

 homozygotes [Figure 

11A,B].  Head and body tissues were assessed separately to ensure equivalent knockdown in 

both tissues.  Next, we examined animal behavior in these knockdown populations to determine 

whether depletion of cellular TPI was sufficient to elicit TPI deficiency pathology.  Mechanical 

stress responses were used to measure behavioral dysfunction.  Behavioral characterization of 

these knockdown animals demonstrated no abnormal mechanical- or thermal-stress dependent 

responses akin to those seen in the TPI
M80T

 model [Figure 11C].  The only behavioral 

abnormality noted was an observation of hypoactivity at elevated temperatures, with the 

knockdown animals consistently dwelling near the bottom of the vial relative to their TPI
+
 and 

undriven UAS controls [data not shown].  

3.3.2 In vitro physical characterization of M80T 

These knockdown data suggested a significant depletion of cellular TPI is not sufficient to elicit 

TPI deficiency neurological dysfunction.  This left us to explore the possibility that M80T 

elicited a conformational change in TPI leading to a loss-of-function unrelated to general 

metabolism.  Numerous misfolding events could be hypothesized to occur as a function of the 

M80T substitution, among them alterations of dimerization (62,63) and aggregation (126).  To 

examine the structure of M80T in vitro we attempted to purify Drosophila TPI
M80T 

(dM80T).   



 51 

Previous purification experiments had yielded small amounts of pure Drosophila TPI 

enzyme, but these samples proved unstable, necessitating rapid usage of fresh aliquots of 

purified enzyme for the characterization of kinetic properties (1).  Indeed, even Drosophila TPI
+
 

(dWT) was aggregation prone at high concentrations, making it difficult to conduct physical 

characterization of the protein in vitro.  Conversely, purified human TPI (hTPI) was well-

behaved.  Therefore, in order to physically characterize TPI we were forced to work with human 

protein in vitro.  To validate this approach we generated human WT (hTPI
+
) and human M80T 

(hTPI
M80T

) TPI alleles in the Drosophila gene locus using our genomic engineering (GE) system 

(1).  We found that hTPI
M80T

 was able to recapitulate the disease phenotypes observed in 

Drosophila protein (dTPI) [Figure 12].  It was noted that the phenotypes of hTPI
M80T

 were less 

severe than dTPI
M80T

, possibly due to subtle organism-specific changes in the dimer interface 

(137).  However, to prevent xenogenic complications of our behavioral results, we decided to 

work exclusively with the Drosophila protein in vivo for the remainder of our genetic 

experiments.  Confirmation that hTPI
M80T

 pathologically phenocopied dTPI
M80T

 indicated that 

any conformational change elicited by M80T was likely retained in the human protein, making 

us confident that evaluating hTPI in vitro would yield informative results.   

 

 

Figure 12.  hTPI
M80T

 phenocopies the behavioral and longevity effects of dTPI
M80T

.  hTPI
M80T

 elicits a 

significant delay in time to recovery from mechanical stress (A) at Day 3, time to paralysis after thermal 
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stress (B) at Day 4, and longevity (C) compared to hTPI
+
, all reared at 25°C.  n≥20 for behavior and n≥70 for 

lifespans.  * indicates p<0.05 and *** p<0.001. 

 

To generally assess potential conformational differences elicited by the M80T 

substitution, we utilized dynamic light scattering (DLS) to examine hWT and hM80T.  We 

hypothesized that any significant conformational changes would likely be reflected by the 

protein’s hydrodynamic radius.  Analyses of 15µM solutions of hWT revealed a hydrodynamic 

radius of 4.3±0.08nm, while hM80T exhibited a significant reduction to 3.3±0.06nm [Figure 

13A].  The linear slope generated by plotting the intensity correlation data suggested the hWT 

sample was largely monodispersed, much like that of the 15µM sample of bovine serum albumin 

[Figure 13B].  This result was contrasted by the non-linear slope generated upon analysis of 

hM80T [Figure 13B], suggesting the possibility of a polydisperse protein population.  

Polydisperse protein populations would qualify the mean hydrodynamic radius, and indicate that 

it may represent a mixed population of proteins in solution.  Polydisperse populations often 

represent sample aggregation, but sample aggregation would be correlated by an increase in the 

predicted mean hydrodynamic radius.  The observed reduction in TPI mean hydrodynamic radius 

could most simply be interpreted as a disruption of the dimer interface resulting in a mixed 

population of monomer and dimer TPI species.   
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Figure 13.  M80T elicits a conformational change in TPI resulting in reduced dimerization.  The 

M80T mutations confers a reduction in mean protein hydrodynamic radius as measured by dynamic light 

scattering (A).  Intensity correlation plots reveal a largely monodisperse WT population and polydisperse 

M80T population (B).  Gel filtration indicates a change in monomer:dimer ratios elicited by M80T (C) with 

relative quantification (inset).  *** indicates p<0.001 

 

We examined the possibility of a dimerization defect by assessing protein size using gel 

filtration chromatography.  We predicted that if the protein was failing to dimerize appropriately 

we would be able to resolve these species independently and quantify their distribution.  A 

standard curve was used to establish column resolution and 15µM samples of hWT and hM80T 

were injected onto the gel filtration column and their migration monitored by UV light at 280nm.  

As shown in Figure 13C, hWT separated into two distinct peaks – one at 24 min. and another at 

27 min.  The elution times indicate that the 24 min. elution correlated with species around 

50kDa, while 27 min. was predicted to be approximately 28kDa; these sizes corroborate with the 
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predicted molecular weight of both monomeric (27kDa) and dimeric (54kDa) hTPI.  Integrating 

the peak areas revealed an 80:20 split in dimer:monomer ratio of hWT [Figure 13C inset].  

Conversely, it is clear to see that the majority of the hM80T sample eluted at 27 min., resulting 

in a 5:95 dimer:monomer split [Figure 13C inset].  These data conclude that the M80T mutation 

elicits a dramatic conformational change in TPI, resulting in a disruption of dimerization.  

Interestingly, the gel filtration results contradict the monodisperse vs. polydisperse observations 

of the DLS experiments; we believe this could be due to dilution effects as the proteins migrated 

over the large gel filtration column. 

3.3.3 TPI dimer interface mutants 

Having established that the M80T mutation alters enzyme dimerization in vitro, we sought to 

assess whether other independent mutations at the dimer interface of TPI were sufficient to elicit 

neuropathology.  Two novel TPI alleles were generated using GE based on previous studies of 

TPI (19): TPI
T74R

, TPI
G75E

.  Upon generating and balancing the new alleles, it was clear that the 

dimer interface mutants were far more toxic than TPI
M80T

.  Test crosses of balanced stocks 

yielded significantly fewer homozygous animals than the 33% predicted by Mendelian rates, and 

unlike TPI
M80T

, these new stocks required maintenance over balancer chromosomes due to their 

poor viability.  These homozygous animals were extremely short-lived [Figure 14C], with 

median lifespans of 2 and 5 days for TPI
T74R

 and TPI
G75E

 respectively. 

To obtain a fair sample size, the poor health of these stocks necessitated the examination 

of behavior on Day 1 and Day 2 while reared at room temperature.  Mechanical- and thermal 

stress-dependent behavioral defects were assessed.  TPI
M80T

 was previously described to exhibit a 

modest phenotype at these time points (50), and these data corroborate our analysis of the GE 
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TPI
M80T

 allele [Figure 14A,B].  In contrast, the dimer interface mutants displayed a more severe 

degree of behavioral dysfunction than that seen in TPI
M80T

 [Figure 14A,B].  These data supported 

our hypothesis that mutations at the dimer interface were sufficient to induce neurological 

dysfunction. 

Lysate isomerase activity was then compared between samples taken from animals 

homozygous for the dimer interface mutants.  First, it was noted that all dimer interface mutants 

exhibited reductions in TPI activity [Figure 14F].  However, a comparison of the TPI
M80T

, 

TPI
T74R

, and TPI
G75E

 lysates revealed a striking observation – the least phenotypically severe 

mutation (TPI
M80T

) was characterized by the lowest isomerase activity.  In comparison, the most 

toxic allele, TPI
T74R

, retained robust activity [Figure 14F].  These data strongly support previous 

observations that TPI activity does not predict the severity or presence of TPI deficiency (1), and 

underlined the conclusion that TPI deficiency is not due to general metabolic stress, but likely a 

change in protein conformation.   



 56 

 

Figure 14.  Mutations affecting the TPI dimer interface recapitulate M80T phenotypes.  TPI
T74R

 and 

TPI
G75E

 exhibit severe mechanical stress (A) and thermal stress (B) sensitivity, n>30.  Dimer interface 

mutations display severely reduced lifespans (C), n>150.  Both TPI
T74R

 and TPI
G75E

 display reduced protein 

levels (D,E) and reduced lysate isomerase activity (F).  ** indicated p<0.01, *** p<0.001.  # indicates animals 

did not paralyze in 360sec. 

 

Many conformational diseases are elicited through changes in protein structure and 

stability leading to misfolding, then either sequestration and degradation, or aggregation (138).  

First, we examined whether these new dimer interface alleles produced robust levels of TPI 

protein.  We determined TPI levels in our dimer interface mutants as previously (86), and found 

that both TPI
T74R

 and TPI
G75E

 exhibited reduced protein levels in homozygotes [Figure 14D,E]. 
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Figure 15.  TPI dimer interface mutations do not cause aggregation.  Increasing amounts of lysate 

were loaded and show no differences in trapped TPI across all genotypes (A) whereas huntingtin exon1-GFP 

displayed robust retention on the filter (B).  n=2 

 

It has previously been shown that TPI has the capacity to aggregate, and thereby seed the 

aggregation of other proteins such as tau (126).  When measuring protein levels via SDS-PAGE, 

it is important to note that not all aggregate species are SDS soluble, and a reduction in protein 

levels can often be an indication that the aggregates are not passing through the gel matrix.  To 

determine whether the T74R and G75E mutations resulted in protein aggregation we used a dot-

blot filter trap assay to assess retention differences between TPI mutant isoforms, as outlined 

previously (139).  Lysates were collected from homozygous mutants, and from PC12 cells 

expressing GFP-huntingtin-Q97 (GFP htt-Q97) as a positive control.  The results indicate that 

little TPI was trapped on the 200nm filter, yet each sample showed a concentration-dependent 

increase in signal [Figure 15A].  Importantly, no differences were observed in TPI signal 

between any of the dimer interface alleles [Figure 15A].  These data support similar findings 

suggested by sedimentation assays performed on TPI
M80T

 (86).  These experiments lead us to 

conclude that although these dimer interface mutants display reduced protein levels via SDS-

PAGE, this is not due to the insolubility of large aggregates.   
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3.3.4 Complementation with a catalytically inactive TPI allele 

Our previous work suggested that TPI deficiency is a loss-of-function disease caused by either  i) 

the depletion of cellular TPI, or ii) a conformational change which could be rescued through the 

addition of a properly folded yet catalytically open/inactive isoform (1).  Having utilized 

knockdown strategies to examine the necessity of total TPI levels, we sought to confirm the 

capacity of TPI
Δcat

 (Lys-to-Met, position 12) to complement disease-associated TPI alleles.  To 

evaluate whether TPI
Δcat

 is sufficient to support normal behavior and longevity, TPI
+
/TPI

+
, 

TPI
+
/TPI

T74R
, TPI

T74R
/TPI

T74R
, TPI

T74R
/TPI

Δcat
, TPI

+
/TPI

G75E
, TPI

G75E
/TPI

G75E
, and 

TPI
G75E

/TPI
Δcat

 animals were collected and tested as outlined above.  These experiments 

demonstrated that TPI
T74R

 was robustly complemented by TPI
Δcat 

[Figure 16A,B,C], similar to 

the results found with TPI
M80T

 (1).  It should be noted however that this complementation was 

not fully penetrant in that 5 out of the 30 TPI
T74R

/TPI
Δcat

 animals did cease moving near the end 

of the thermal stress assay period [Figure 16B].  Conversely, TPI
G75E

 displayed modest 

behavioral complementation and attenuation of its toxicity, decreasing the penetrance of the 

thermal stress sensitivity to 20 out of 30 animals and extending the median lifespan of the 

TPI
G75E

 mutants from 5 to 21 days [Figure 16D,E,F].  It should be noted that neither of these 

dimer interface mutants elicited dominant negative effects within the TPI
+
 heterozygotes; to the 

contrary, TPI
T74R

 and TPI
G75E

 promoted a significant increase in animal health, extending the 

median 48 day TPI
+
/TPI

+
 lifespans to 77 and 71 days respectively [Figure 16C,F].  Experiments 

assessing TPI activity in these animal lysates revealed no link between isomerase activity and 

disease presence or severity.  Although TPI
T74R

, TPI
G75E

, and TPI
M80T

 exhibit reduced isomerase 

activity, complementation with TPI
Δcat

 occurred without increasing lysate TPI activity, and in all 

but one case significantly reduced it [Figure 17A,B].  The best illustration of this isomerase-
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phenotype disparity can be seen when comparing the activity of TPI
G75E

 with TPI
M80T

/TPI
Δcat

.  

The TPI
M80T

/TPI
Δcat

 animals exhibit normal behavior and longevity (1) yet display substantially 

less isomerase activity than the severely toxic allele, TPI
G75E 

[Figure 17B]. 

 

Figure 16.  A catalytically inactive allele is not sufficient for normal behavior and longevity.  TPI
∆cat

 

complements TPI
T74R

 mechanical (A) and thermal stress (B) sensitivity and longevity (C), yet moderately 

attenuates behavior (D,E) and longevity (F) defects of TPI
G75E

.  It should be noted that mean thermal stress 

paralysis times near 360sec represent near-wild type behavior.  n≥30 for behavior, and n≥90 for lifespans.  ns 

indicates no significant, and *** p<0.001.  # indicates the animals did not paralyze (a score of 360 sec.). 

 

The incomplete complementation of TPI
G75E

 was unexpected; our previous experiments 

suggested that TPI
Δcat

 was sufficient to support normal behavior and longevity.  This observation 

alluded that TPI
Δcat 

alone was not sufficient for normal behavior and longevity, and could depend 

on productive interactions with the active isoform.  To examine this possibility, we measured the 

capacity of these TPI isoforms to co-precipitate using a cyan fluorescent protein (CFP) tagged 

variant of TPI
Δcat-CFP

.  The CFP tag was immunoprecipitated in TPI
+
/TPI

Δcat-CFP
, TPI

M80T
/TPI

Δcat-

CFP
, TPI

T74R
/TPI

Δcat-CFP
, and TPI

G75E
/TPI

Δcat-CFP
 animal lysates and probed.  Protein size was used 
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to discriminate between the two isoforms, as the CFP tag roughly doubled the weight of TPI.  

Robust levels of TPI
+
 precipitated with TPI

Δcat-CFP
, establishing substantial heterodimerization 

between the two species [Figure 18A,B].  Conversely, TPI
M80T

 and TPI
T74R

 displayed markedly 

reduced associations with TPI
Δcat-CFP

, reflecting their overall prevalence in the lysate [Figure 

18A] and corroborating their previously established dimerization deficiencies.  Finally, it was 

surprising to see that TPI
G75E

 produced heterodimerization similar to that seen in TPI
+
; it was 

predicted that the rotational flexibility of G75 was necessary for the appropriate positioning of 

loop 3 and establishment/rigidification of the dimer interface.  Further, our genetic data 

suggested that complementation required a productive interaction between TPI
∆cat

 and its partner, 

and based on these observations we predicted that TPI
G75E

 would lack such interactions, not 

maintain them.  This observation led us to generate a double mutant which contained both T74R 

and G75E, predicting that the T74R mutation would reduce enzyme heterodimerization as 

previously published (19).  

 

 

Figure 17.  Lysate isomerase activity does not predict disease presence of severity.  Lysate activity is 

indicated (A) and expanded (B) as per the dashed box.  ns indicates no significant differences and *** 

p<0.001.  Biological replicates are indicated. 

 

We generated a double mutant, TPI
T74R,G75E

 , and discovered that combining the two 

mutations resulted in an allele that closely resembled TPI
T74R

 with respect to animal toxicity, 

behavior, protein levels, and isomerase activity [Figure 19A,B,C].  Additionally, precipitation 
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experiments confirmed the addition of the T74R mutation to TPI
G75E

 also reduced its capacity to 

interact with TPI
Δcat-CFP 

[Figure 18A,B].  We repeated our complementation studies, generating 

TPI
+
/TPI

+
, TPI

+
/TPI

T74R,G75E
, TPI

T74R,G75E
/TPI

T74R,G75E 
and TPI

T74R,G75E
/TPI

Δcat
 animals.  

Characterization of these animals revealed the addition of the T74R point mutation to TPI
G75E

 

enhanced the behavioral attenuation of this dimer interface mutant by TPI
Δcat

; the mean time to 

recovery after mechanical stress was reduced from 204 sec. to 50 sec., with approximately 60% 

of the animals no longer responding to the stressor (defined as a recovery time ≤ 5 sec.).  This 

stood in contrast to TPI
G75E

, whose time to recovery after mechanical stress changed from 69 sec. 

to 82 sec. with approximately 30% of the animals no longer stress sensitive upon TPI
Δcat

 

complementation; thermal stress-sensitive phenotypes exhibited a similar trend.  Observing 

TPI
T74R,G75E

 lysate isomerase activity did not suggest a role for gross catalysis: TPI
Δcat

 

complementation resulted in a marked reduction in activity [Figure 19C] with positive behavioral 

affects.  Measuring animal longevity however yielded disparate results, as both TPI
T74R,G75E

 

homozygotes and TPI
T74R,G75E

/TPI
Δcat

 survived a median of 2 days.  It is important to note that 

this is the first example in which TPI deficiency behavior and longevity phenotypes have not 

been in congruence, and suggests the possibility that these effects are derived from different 

pathogenic sources.  We conclude that the allelic context-dependence of TPI
∆cat

 

complementation suggests a requirement for intermolecular interactions.  Further, it is clear that 

these interaction requirements differ for the purposes of longevity and behavior. 
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Figure 18.  Heterodimerization of inactive TPI and dimer interface mutations.  TPI
∆cat-CFP

 interacts 

modestly with TPI
M80T

, TPI
T74R

, and TPI
T74R,G75E

, yet robustly with TPI
G75E

.  Representative 

immunoprecipitation and input blots are shown (A) with IP: anti-GFP quantification (B) n=3.  ns indicates no 

significance, ** p<0.01, and *** p<0.001. 

3.3.5 Vesicle recycling at the synapse 

Seeing no obvious mechanistic trend from our genetic or biochemistry experiments, we turned to 

the phenotype to direct our next experiments.  In this regard, the TPI
T74R

 temperature-dependent 

paralysis was particularly striking, with a mean time to paralysis of 27 sec.  Acute (<60 sec.) 

temperature-dependent phenotypes have only been identified in a handful of mutants in all of 

Drosophila biology and result from neural conductance or synaptic defects (72).   

To determine whether TPI was playing a role in neural transmission, we first examined 

vesicle recycling efficiency at the synapse using the lipophilic dye, FM1-43FX.  Measuring 

recycling in this context allowed us to assess two possibilities; i) a primary recycling defect, or 

ii) a secondary recycling defect due to aberrant excitation or fusion.  We dissected larvae 

homozygous for TPI
+
, TPI

T74R
, and Shi

ts1
 as previously detailed (140).  The neuromuscular 

junction (NMJ) preparations were heated to 38°C over 3 min. and a loading curve was generated 

from a series of three different high [K
+
] loading times – 15 sec., 30 sec., and 60 sec. as 

previously detailed (141).  TPI
+
 displays a progressive increase in dye loading from 15 sec. to 60 
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sec. [Figure 20A], while the temperature sensitive dynamin mutant control Shi
ts1

 showed no 

signs of vesicle recycling at any heated time points [Figure 20D, data not shown].  Conversely, 

although TPI
T74R

 displayed similar loading to TPI
+
 at 15 and 30 sec., TPI

T74R 
exhibited a striking 

50% decrease in loading at 60sec. [Figure 20A,B,D].  This precipitous decrease in loading is 

temperature dependent [Figure 20C] and corroborated roughly with the mean time to paralysis in 

these animals (27sec).  To examine the relationship between vesicle recycling and animal 

behavior, TPI
T74R/∆cat

 larvae were assessed, and loading experiments demonstrated a significant 

increase in vesicle recycling [Figure 20B,D] corroborating the behavioral complementation 

[Figure 16B].  The utilization of chemical stimulation in these preparations demonstrates a 

synaptic defect arising from the severe TPI
T74R

 dimer mutation, as this methodology bypasses 

conductance requirements.  Further, these mutations were revealed to have a purely functional 

impact on the synapse, as morphological characterizations of bouton number and branches 

revealed no significant differences relative to TPI
+
 [Figure 21].  Collectively, these data 

demonstrate that TPI Deficiency thermal-stress sensitivity is elicited through inhibition of 

synaptic vesicle recycling. 

The identification of a synaptic phenotype generated increasing interest in the possibility 

that these dimer interface mutations may be altering the stability of the enzymes, thereby 

inhibiting transport and maintenance at distal sites.  To independently assess this possibility, we 

engineered a series of permutations of the R188 residue.  This R188 residue forms a well-

described and entirely conserved salt bridge with D224, helping to stabilize the overall TIM 

barrel structure (142).  We predicted that if stability and putative localization of activity were the 

key elements to pathogenesis, with dimerization being a contributing determinant, we should be 

able to observe phenotypes in these animals as well.  We engineered TPI
R188A

, TPI
R188L

, and 
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TPI
R188S

 mutants to examine different biochemical exploitations of this salt bridge, as previously 

assessed (142).  Additionally, we included a TPI
R188K

 control to maintain the charged interactions 

in this region, again as previously established (142).  Upon generating these animals, it was 

noted that TPI
R188A

, TPI
R188L

, and TPI
R188S

 proved homozygous lethal.  Conversely, TPI
R188K

 was 

homozygous viable, easily maintained as a homozygous stock, and exhibited no mechanical or 

thermal stress sensitivities as a homozygote or trans-heterozygote over TPI
null

 [data not shown]. 

Establishing these initial viability phenotypes, we sought to confirm their levels in vivo, 

and to do so required mating these alleles with those encoding CFP-tagged TPI
+
 for animal 

viability and to discriminate between species (TPI
WT-CFP

) (1).  Immunoblot results corroborated 

our viability data, with all the lethal TPI
R188

 alleles exhibiting dramatic reductions in protein 

levels [Figure 22B,D].  The low levels of these proteins necessitated an overexposure of the blot 

to even see evidence of these species [Figure 22D].  Next, we sought to examine the ability of 

TPI
∆cat

 to complement these stability mutants.  We found that the inactive allele restored viability 

in TPI
R188A

/TPI
∆cat

, and TPI
R188S

/TPI
∆cat

, but oddly not TPI
R188L

/TPI
∆cat

.  Observing the tagged 

protein levels of TPI
WT-CFP

, however, suggested that TPI
R188L

 may have a dominant capacity to 

induce degradation of its partner [Figure 22C,D].   

To examine behavior, we aged the animals at 25°C and tested them on day 3, as this has 

been shown to be an optimal time to discriminate behavioral effect in Drosophila TPI deficiency 

(1).  Importantly, even though TPI
∆cat

 was capable of complementing the lethality in these 

animals, they still displayed signs of behavioral dysfunction [Figure 22A]; and although no 

formal longevity assays were performed, we noted reduced longevity.  These data suggest that 

even with the addition of a stable, inactive isoform of TPI, these animals likely experienced a 
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similar deprivation of TPI at critical locales much like the trans-heterozygote TPI
M80T

/TPI
null

.  

These data support a role for TPI stability in the pathogenesis of TPI deficiency. 

 

 

Figure 19.  TPIT74R,G75E behavioral dysfunction and longevity.  TPI
T74R,G75E

 is characterized by 

sever mechanical (A) and thermal (B) stress sensitivity, which responds positively to complementation by 

TPI
∆cat

.  TPI
T74R,G75E

 exhibits reduced lysate catalytic activity compared to WT (C).  TPI
∆cat

 fails to 

complement TPI
T74R,G75E

 longevity (D).  n≥30 for all behavior, n≥80 for all lifespans.  ns indicates no 

significance, ** p<0.01, *** p<0.001.  # indicates animals did not paralyze within 360sec. 

3.4 DISCUSSION 

TPI deficiency is a disease caused by insufficiencies  in subcellular catalytic activity.  This 

disruption of localized activity can be achieved through mutations that directly affect enzyme 

catalysis, transport, or stability.  Previous studies of TPI Deficiency have focused largely on 

molecular and cellular analyses of the disease-associated substitutions.  These structural studies 
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have revealed the importance of the dimer interface for maintaining protein stability.  

Conversely, cellular studies in yeast have revealed complex redox changes which occur as a 

function of inhibiting glycolytic flux.  This study builds upon previous structural work, but 

examines TPI Deficiency neuropathogenesis.  Using a Drosophila GE strategy, we have 

conclusively shown that neurological phenotypes seen in TPI Deficiency are attributable to 

impaired vesicle recycling at the synapse.   

3.4.1 Triosephosphate isomerase dimerization 

In this report we describe the M80T substitution as impairing TPI dimerization.  These results 

were obtained from purified proteins and do not corroborate those from non-denaturing gel 

filtration experiments from animal lysates.  However, several in vitro studies have found that 

mutations which render TPI a monomer severely destabilize the protein (17,19,143-145).  In 

vivo, unstable proteins are bound by chaperones and either refolded, targeted to the proteasome, 

or aggregate (146).  The results presented here suggest that M80T does not cause TPI to 

aggregate [Figure 15], while previous work (86) extensively details the recruitment of Hsp70 and 

Hsp90 to TPI
M80T

 and its degradation through the proteasome.  Therefore, we hypothesize that 

TPI monomer was not previously detected in animal lysates due to its rapid sequestration and 

degradation.  Further, the TPI levels from each mutant closely correlate with their propensity to 

coprecipitate with TPI
∆cat-CFP

 [Figure 18A].  We believe these data, along with the previous 

inability to identify monomer in vivo, collectively suggest that TPI does not stably exist in vivo 

as a soluble monomer.   
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Figure 20.  TPI
T74R

 inhibits vesicle recycling at 38°C.  An FM1-43 timecourse at the NMJ with 

loading times of 15, 30, and 60sec (A), with quantification of 60sec at 38C (B) and 60sec at room temperature 

(RT) (C).  Representative images of TPI
+
, TPI

T74R
, TPI

T74R/∆cat
 and Shi

ts1
 (D).  n=6,  ***p<0.001. 

 

Once M80T was identified as having elicited a dimer defect, we used our GE system to 

generate two TPI alleles with point mutations at the dimer interface which had previously been 

described to impair homodimerization.  These mutations were located at the tip of the 3
rd

 loop of 

TPI which extends into its dimer partner and stabilizes/rigidifies a network of hydrophobic 

interactions and hydrogen bonds which form the dimer interface (18,19,147).  The substitution of 

these dimer interface residues resulted in extremely toxic TPI alleles, eliciting greater behavioral 

dysfunction and shorter lifespans than M80T [Figure 14].  The new mutant animal phenotypes 

were in contrast to our measurements of enzyme activity, which revealed that the dimer interface 

mutants exhibited reduced, yet substantial isomerase activity.  These data firmly establish a 

disjunction between toxicity/neurological dysfunction and gross isomerase activity.  However, 

the allelic differences in TPI
∆cat

 complementation suggested a role for the still-catalytically active 

mutant alleles as a determinant of animal survival and behavior [Figure 16]. 
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Figure 21.  TPI dimer interface substitutions do not alter NMJ development and morphology.  NMJ 

morphology of segment A2 muscle 6/7 was characterized for bouton number (B) and branching (C).  Neither 

parameter showed significant differences elicited by the mutations, relative to either TPI
WT

 or TPI
WT-

CFP
/TPI

WT
.  Representative images shown in (A).  n=10.  Scale bar = 10µm. 

Our previous work indicated that a properly folded, stable, inactive isoform of TPI fully 

complemented the loss-of-function dimer mutant, TPI
M80T

.  We sought to confirm this result by 

crossing that same catalytically inactive TPI allele with our new, more toxic dimer interface 

mutants.  We hypothesized that the inactive enzyme would be able to complement the TPI
T74R

 

and TPI
G75E

 alleles as it did TPI
M80T

.  We found that although TPI
Δcat

 complemented TPI
T74R

, it 

only moderately attenuated the behavioral dysfunction and longevity defects of TPI
G75E

 [Figure 

16].  From these data we concluded that TPI
Δcat

 was not sufficient to maintain normal animal 

health and behavior and may require productive intermolecular interactions.  It was curious that 

measurements of heterodimerization demonstrated that the extremely toxic and complemented 

TPI
T74R

 interacted very poorly with TPI
Δcat-CFP

, while the incompletely complemented TPI
G75E

 

maintained a robust capacity to bind TPI
Δcat-CFP

, similar to that of TPI
+
 [Figure 18].  Though 

these results reflected the proteins’ overall presence in the lysate, these observations were 
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unexpected; based on the genetic data we had predicted that TPI
T74R

 and TPI
M80T

 would have 

interacted more amiably while TPI
G75E

 less so.   

 

 

Figure 21.  TPI
∆cat

 rescues viability in strong TPI stability mutants, though not behavior.  TPI salt 

bridge mutants were crossed to TPI
∆cat

 and assessed for complementation.  Complementation with the 

inactive enzyme restores viability in two of three salt bridge mutants, yet all exhibit similar mechanical stress 

sensitivity as TPI
M80T

/TPI
null

 (A), n≥18.  Salt bridge mutants were complemented with TPI
WT-CFP

 and exhibit 

dramatic reductions in lysate protein levels (D) with quantification (B).  No significant differences were noted 

in TPI
WT-CFP

 levels (D), quantified in (C), though blots of TPI
WT-CFP

/TPI
R188L

 exhibited a trend toward a 

reduction in the tagged protein, n=3.  *** indicates p<0.001. 

 

To explore the role of heterodimerization on TPI deficiency complementation we 

generated a double mutant allele bearing both T74R and G75E mutations.  The addition of T74R 

to the TPI
G75E

 allele indeed reduced its ability to physically interact with TPI
Δcat-CFP

 [Figure 18].  

Further, this lack of heterodimerization improved the efficacy of behavioral complementation via 

TPI
Δcat 

yet failed to alter toxicity [Figure 19].  It is currently unclear precisely why the 

TPI
T74R,G75E

 allele exhibits greater behavioral complementation compared to TPI
G75E

.  The results 

of these experiments suggest that either TPI
G75E

 is capable of interfering with the behavior-

relevant functions of TPI
∆cat

, or that T74R facilitates these interactions.  Yet the dominant 

negative hypothesis is contradicted by TPI
G75E

’s inability to negatively modulate behavior or 

longevity when paired with a wild type allele.  This leaves us to hypothesize that T74R facilitates 
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a productive effect when paired with TPI
∆cat

, even though their heterodimerization is extremely 

limited. 

3.4.2 TPI mutations reduce vesicle recycling at the synapse 

The severity of the newly generated TPI dimer interface mutants provided insight regarding the 

anatomical source of pathology.  It was intriguing that the TPI
T74R

 allele exhibited temperature-

dependant paralysis at a mean time of approximately 27 sec.  As mentioned previously, this type 

of behavior is rare and highly enriched for synaptic or conductance defects.  Only a handful of 

mutant alleles have been identified with this type of behavior, including voltage-gated Na
+
, K

+
, 

and Ca
2+

 channels (para, sei, cac) (70,148,149), the sodium-potassium exchanging ATPase 

(ATPα) (109), and components of vesicle fusion and recycling (N-ethylmaliemide sensitive 

fusion protein – dNSF1, dynamin – Shi) (71,150).  Noting these phenotypic similarities we 

broadly examined synaptic function.  We found that the TPI
T74R

 mutant inhibited FM1-43 

loading at the synapse in a temperature dependant manner [Figure 20].  The TPI
T74R

 mutants 

were characterized by normal loading during acute exposures (15 and 30 sec.) but exhibited a 

dramatic reduction at 60sec. [Figure 20A], suggesting a time/excitation dependant phenotype.  

Further, complementation with the TPI
∆cat

 allele significantly increased the temperature-

dependent FM1-43 loading at these terminals, much like the allele complements the adult 

thermal stress behavioral phenotype.  Collectively, these data establish that impaired vesicle 

recycling is the pathophysiologic mechanism underlying the thermal stress dependent paralysis. 

It has previously been demonstrated that functional as well as developmental changes at 

the synapse can influence vesicle recycling.  Of note, trans-synaptic signaling components of the 

Glass bottom boat (Gbb – a bone morphogenic protein)/Wingless (Wnt)/Transforming growth 
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factor beta (TGF-β) pathways have been shown to modulate synaptic growth and activity (151-

155).  Given the reduced developmental viability of the TPI
T74R

 and TPI
G75E

 alleles, we examined 

whether these substitutions may be altering functional properties of the synapse through a 

primary change in development.  To assess development, we quantified neuromuscular junction 

(NMJ) 6/7 morphology at segment A2 [Figure 21], the same NMJs used for the functional FM1-

43 dye uptake assays.  Our analyses revealed no morphological changes in this NMJ as a 

function of our dimer mutations, supporting a primary functional defect of TPI Deficiency on 

vesicle recycling at the synapse [Figure 21].   

The observed synaptic defect also provided insight into to why the majority of human 

disease-associated TPI mutations occur at the dimer interface.  First, all substitutions which 

disrupt the dimer interface have been shown to destabilize the enzyme in vitro (18,19,147).  This 

destabilization is likely responsible for the reduced cellular TPI found in patient samples, and our 

work with the TPI
M80T

, TPI
T74R

, and TPI
G75E

 mutants support a reduction in TPI levels in vivo as 

a function of dimer interface substitutions [Figure 14D,E].  Secondly, the cellular depletion of 

TPI
M80T

 has been shown to be mediated by heat shock protein sequestration and proteasomal 

degradation (86).  If chaperones sequestered and degraded these misfolded or unstable proteins, 

this would likely prevent the distribution and maintenance of TPI activity at specific subcellular 

locales.  Finally, recent work has shown that the anterograde transport of globular/soluble 

proteins to the terminals is a slow process, moving at a rate of approximately 0.008-0.01µm/sec 

(156).  To put this in the context of the Drosophila nervous system, the length of the relatively 

short larval motor axon innervating muscle 4 of segment A3 has been measured to be ~220µm 

(157).  Based on these approximations, one could estimate that it would take ~6hrs for TPI 

translated in the soma to be transported to the terminal.  In this way, substitutions which affect 
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protein stability likely result in improper localization or sequestration of TPI during distal 

transport.   

To examine the potential for stability mutations independent of the dimer interface to 

elicit pathology, we generated mutants of the entirely conserved R188-D224 salt bridge, 

previously shown to be critical to enzyme stability (142).  The TPI
R188A

,
 
TPI

R188L
,
 
and TPI

R188L
 

substitutions proved lethal, while the conservative TPI
R188K

 substitution behaved like wild type.  

Previous data establishing changes in stability, and our lethality observations, corroborated the 

dramatic reductions of these proteins in animal lysates [Figure 21B,D].  It was intriguing that the 

TPI
∆cat

 allele was capable of complementing two of the three lethal alleles to viability, yet these 

trans-heterozygotes (TPI
R188A

/TPI
∆cat

 and TPI
R188S

/TPI
∆cat

) exhibited behavioral dysfunction, 

much like the partially complemented TPI
G75E

 and TPI
T74R,G75E

.  These data support the 

hypothesis that dimer mutations elicit pathology by changing the stability of TPI. 

The biochemical mechanism through which TPI regulates synaptic function is not yet 

known, but our work and that of others strongly suggests the importance of catalytic 

microdomains at the synapse.  These conclusions are based on the genetic indications of allelic 

interdependence for complementation, TPI Deficiency impaired vesicle recycling, and work by 

others detailing the importance of glycolysis-derived ATP for synaptic vesicular endocytosis 

(135,158).  Indeed, recent work quantifying the ATP consumption in the synapse demonstrated 

that the vesicle cycle represents the greatest ATP burden at the terminals, and this was further 

supported by the cessation in vesicle endocytosis during the inhibition of glycolysis and 

oxidative phosphorylation (OXPHOS) (135).  Of particular note was that inhibition of glycolysis 

had a more dramatic effect on the vesicle cycle compared to that of OXPHOS.  Inhibition of 

glycolysis was also noted to have a more dramatic effect on overall ATP production in the 
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terminal relative to OXPHOS.  These observations suggested that glycolysis, rather than 

OXPHOS, is the primary means through which neural activity drives ATP production.  Further, 

mutations in Drosophila phosphoglycerate kinase, an ATP-producing step of glycolysis, have 

previously been demonstrated to reduce vesicle recycling (158).  Our data and the work of others 

strongly suggests that TPI facilitates the local production of glycolytic ATP, and the subcellular 

localization of this deficiency is the ultimate determinant of neurological dysfunction.  

3.5 MATERIALS AND METHODS 

3.5.1 Animal Strains 

The Vienna Drosophila RNAi Center (VDRC) line used for knockdown experiments was stock 

#25644 (136).  The w;actin-GAL4,UAS-GAL4; animals were generated by recombining the 

second chromosomes of the Drosophila Genetic Resource Center (DGRC) stock #108492 and 

Bloomington Stock Center stock #4414; recombinants were screened molecularly and balanced.  

All TPI alleles used in this study were generated using the GE system: TPI
+
, TPI

M80T
, TPI

T74R
, 

TPI
G75E

, TPI
T74R,G75E

, TPI
Δcat

, TPI
R188A

, TPI
R188K

, TPI
R188L

, TPI
R188S

, and TPI
Δcat-CFP

.  The 

development of the GE system and the production of the TPI
+
, TPI

M80T
, TPI

Δcat
, and TPI

Δcat-CFP
 

alleles were initially described elsewhere (1).  It is important to note that the numbering used in 

this study utilizes the established nomenclature for TPI mutations, assuming the start methionine 

is removed following translation (45); and for consistency all residue numbering in this study 

uses the same convention.  Care was taken to ensure all animal populations assessed were 

approximately equivalent mixtures of males and females. 
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3.5.2 Mutagenesis and Genomic Engineering 

Site directed mutagenesis was performed using the QuikChange Lightening Site-Directed 

Mutagenesis Kit (Agilent Technologies).  Mutagenesis primers were generated (Integrated DNA 

Technologies) to introduce a Thr-to-Arg codon change at position 74, and a Gly-to-Glu change 

at position 75 – both separately and together for the purpose of creating the double-mutant.  

Additionally, primers were generated to create Arg-to-Ala, Arg-to-Lys, Arg-to-Leu, and Arg-to-

Ser mutations at position 188.  Mutagenesis was performed on the previously published pGE-

attBTPI
+
 plasmid and confirmed by sequencing.  Once the constructs were generated, TPI GE 

was performed using previously published methods (1,99,100).  Briefly, the PGX-TPI founder 

animals were mated to vasa-phiC31
ZH-2A

 animals expressing the integrase on the X chromosome 

and their progeny injected with pGE-attBTPI constructs.  Integration events were identified via 

the w
+
 phenotype and verified molecularly.  

3.5.3 Human TPI enzyme purification 

Human TPI enzyme was purified as outlined previously (1).  Briefly, the coding sequence for 

H.sapien TPI was cloned into the bacterial expression vector pLC3 using standard techniques.  

The resulting plasmid directs expression of TPI containing N-terminal His6- and MBP tags, both 

of which can be removed with TEV protease. TPI protein was expressed in BL21(DE3) Codon-

Plus (RILP) E. coli (Agilent Technologies) grown in ZY auto-induction media (131) at room 

temperature for 24–30 hours. Cells were harvested by centrifugation, lysed via homogenization 

in 25 mM Tris pH 8.0, 500 mM NaCl, 10% glycerol, 5 mM imidazole, 1 mM β-mercaptoethanol 

and cleared by centrifugation at 30,000 g. TPI was purified by nickel affinity chromatography 
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followed by overnight TEV protease treatment to cleave the His6-MBP tag from TPI. A second 

round of nickel affinity purification was performed to separate the His6-MBP and TEV protease. 

TPI protein was further purified using cation-exchange chromatography (HiTrap-QP) followed 

by gel filtration (Sephacryl S-200, GE Healthcare). Peak fractions were concentrated to 4–8 

mg/ml in 20 mM Tris pH 8.8, 25 mM NaCl, 2.0% glycerol and 1 mM β-mercaptoethanol using a 

Vivaspin concentrator (GE Healthcare). The purity was >99% as verified by SDS-PAGE. 

3.5.4 Dynamic Light Scattering 

DLS measurements were taken using a DynaPro Plate reader (Wyatt Technology) equipped with 

a temperature control unit.  Purified BSA (Sigma Aldrich), hTPI
+
 and hTPI

M80T
 were diluted to 

concentrations of 5μM, 15μM and 30μM in 100mM triethanolamine (TEA); pH 7.6.  Aliquots of 

75μl were loaded in triplicate onto a 384-well microplate and read at 37°C.  Ten measurements 

were taken per sample and Dyanmics V6 software (Wyatt Technology) was used to process the 

scattering data, generating autocorrelation functions.  Autocorrelation functions were then 

analyzed to obtain the hydrodynamic radii.  Student’s T test was used to compare samples.  

3.5.5 Gel Filtration Chromatography 

Gel filtration was performed as outlined previously (85).  Briefly, separations were performed 

with a Shimadzu high performance liquid chromatography (HPLC) system using a Superdex 

75/300 GL column (Amersham Biosciences) set to a flow rate of 0.4 ml/min at room 

temperature.  A non-denaturing mobile phase was selected consisting of 25mM NaH2PO4, 25mM 

Na2HPO4, 150mM NaCl; pH 7.0.  The column was calibrated with a Low Molecular Weight Gel 
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Filtration Calibration Kit (GE Healthcare Life Sciences) according to the manufacturer’s 

instructions.  Calibration standards included Aprotinin (6.5kDa), RNAase A (13.7kDa), Carbonic 

Anhydrase (29kDa), Ovalbumin (44kDa), and Conalbumin (75kDa).  Purified TPI samples were 

diluted to 15μM in mobile phase and 100μl were injected and measured in triplicate, and their 

elution monitored at 280nm.  Chromatography traces were collected and analyzed using EZStart 

7.3 (Shimadzu) to quantify the relative monomer and dimer populations.  Curve integration data 

were compared using Student’s T test. 

3.5.6 TPI Enzyme Assays 

Isomerase activity was determined using an NADH-linked assay as previously detailed (1,132).  

Briefly, animals aged 1-3 days were collected and frozen in liquid nitrogen.  Bodies lacking 

heads or appendages were isolated and homogenized in 100mM TEA pH 7.6 supplemented with 

cOmplete mini Protease Inhibitors (Roche Diagnostics).  The homogenates were sonicated in an 

ice bath for 10min and centrifuged twice at 4°C for 5min at 5,000g to remove exoskeletal debris.  

Lysates were diluted to 0.1μg/μl in 100mM TEA pH 7.6 + inhibitors and enzyme activity was 

assessed.  Reaction assays were performed using 80μl mixtures composed of 0.5mM NADH, 

0.752mM GAP, 1 unit glycerol-3-phosphate dehydrogenase and 1μg of lysate protein in 100mM 

TEA; pH 7.6.  Consumption of NADH was monitored at 340nm using a SpectraMax Plus 384 

microplate reader (Molecular Devices).  All reactions were performed in both experimental and 

biological triplicate.  Reaction components were purchased from Sigma-Aldrich.  Enzyme 

activity curves were normalized to reactions performed without GAP.  A one-way ANOVA was 

performed to assess variance and data sets were compared using Tukey’s post-hoc analysis.  
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3.5.7 Behavioral testing and lifespan analysis 

Mechanical stress sensitivity was examined by vortexing the animals in a standard media vial for 

20 seconds and measuring time to recovery, similar to (133). Thermal stress sensitivity was 

assessed by acutely shifting animals to 38°C and measuring time to paralysis, as previously 

described (65,109). Behavioral responses were capped at 360 and 600 seconds where indicated.  

Animal lifespans were performed at 25°C as previously described (109). One-way ANOVAs 

were performed with Tukey's post test to compare behavior, and lifespans were assessed with 

Log-rank (Mantel–Cox) survival tests. 

3.5.8 Immunoblots 

Animals were collected aged 1-2 days at room temperature. Ten fly heads were obtained in 

triplicate from each genotype and processed as outlined previously (86). Briefly, the fly heads 

were ground by pestle in 80 µl 2× SDS–PAGE sample buffer (4% SDS, 4% β-mercaptoethanol, 

130 mM Tris–HCl pH 6.8, 20% glycerol) and centrifuged for 5 minutes at 5000 g to pellet the 

exoskeleton.  Proteins were resolved by SDS–PAGE and transferred onto 0.45μm PVDF 

membrane. Following treatment in 1% milk PBST, the blots were incubated with anti-TPI 

(1∶5000; rabbit polyclonal FL-249; Santa Cruz Biotechnology) or anti-ATPalpha (1∶10,000; 

mouse monoclonal alpha5; Developmental Studies Hybridoma Bank).  The blots were washed in 

PBST, incubated in the appropriate HRP-conjugated secondary antibody, and developed using 

ECL (Pierce).  Densitometric analyses of the scanned films were performed digitally using 

ImageJ software available from the National Institutes of Health.  A one-way ANOVA was 
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performed to assess variance of TPI levels and data sets were compared using Tukey's post-hoc 

analysis. 

3.5.9 Filter-trap Dot Blot 

The filter-trap dot blot was modified from methods published previously (139).  Animals were 

aged 1-2 days, collected and homogenized in 1X PBS (2.7mM KCl, 137mM NaCl, 2mM 

NaH2PO4, 10mM Na2HPO4; pH 7.4) supplemented with cOmplete mini Protease Inhibitors, and 

diluted to 1μg/μl.  Samples were diluted 1:2 in 1% SDS, 1X PBS, boiled for 5min, and filtered 

through a cellulose acetate membrane (Whatman, 0.2μm pore) using a 96-well vacuum dot blot 

apparatus.  Positive controls were collected from PC12 cells stably expressing huntingtin exon1 

with a stretch of 97 glutamines and C-terminally tagged with GFP.  The membrane was washed 

four times with the 1% SDS-PBS and blocked with Odyssey Blocking Buffer (LiCor), and 

primary antibodies applied in Odyssey Blocking Buffer.  Blots were incubated with anti-TPI 

(1:5000) and anti-GFP (1:5000) (Santa Cruz Biotechnology).  The membranes were then washed 

and incubated with the secondary antibody IRDye 800-conjugated goat anti-rabbit (LiCor) at 

1:20,000 in the same buffer used for the primary antibodies. Direct-to-scanner detection and 

band visualization were performed using a LiCor Odyssey scanner. 

3.5.10 Coimmunoprecipitations 

Coimmunoprecipitations were performed using the Pierce® Co-Immunoprecipitation Kit 

(Thermo Scientific) as per manufacturer’s instructions.  Lysates were generated by mechanically 

homogenizing 50 animals in 0.5ml of IP Lysis buffer (25mM Tris, 150mM NaCl, 1mM EDTA, 
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1% NP-40, 5% glycerol; pH 7.4) supplemented with cOmplete mini Protease Inhibitors.  After 

homogenization, lysates were frozen and thawed in liquid nitrogen, then centrifuged twice at 

5,000g to pellet exoskeletal debris.  Supernatants were collected and diluted to 1μg/μl and 400μg 

were loaded onto 25μl of gel pre-coupled with 10μg of anti-GFP (Santa Cruz).  A negative 

control was performed using uncoupled gel and TPI
+
/TPI

Δcat
 lysate.  Samples were incubated 

overnight at 4°C and washed ten times with IP Lysis buffer at 4°C.  Beads were eluted with 70μl 

of 2X SDS–PAGE sample buffer, separated via SDS-PAGE, immunoblotted, and analyzed as 

outlined above.  Coimmunoprecipitations were performed in biological triplicate. 

3.5.11 FM1-43 Imaging Experiments 

Images were taken with an Olympus BX51WI fluorescence microscope with Till Photonics 

Polychrome V monochromater excitation, and Hamamatsu C4742-95 digital camera.  

Heterozygous TPI
T74R

 larvae were maintained over TM6B and Tb
+
 3

rd
-instar larvae selected for 

analysis.  Dissection and preparation of larval NMJs were performed as outlined previously 

(140).  FM1-43FX dye [Molecular Probes, Invitrogen] loading was performed as previously 

detailed (141).  Briefly, animals were dissected in ice cold 0mM Ca
2+

 HL-3 with 0.5mM EGTA, 

then heated to room temperature or 38°C over the course of 3 min.  Bath temperature was 

monitored throughout the experiments with a microthermal probe to ensure consistency [Fisher 

Scientific].  Loading experiments were performed with room temperature or 38°C preheated 

90mM KCl 1.5mM CaCl2 Hl-3 supplemented with 4µM FM1-43FX, and preparations were 

washed quickly and thoroughly during the experiments to avoid Ca
2+

 chelation.  After loading, 

preparations were washed with 15ml of 0mM Ca
2+

 HL-3 with 0.5mM EGTA at room 

temperature for 10 min.  Preparations were immediately imaged with a water immersion 60X 
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objective, using 450nm excitation and a 500 nm longpass filter [Chroma Technology].  Simple 

PCI imaging software was used for acquisition and ImageJ for analysis.  Two NMJs from 

muscles 6/7 were assessed per animal, one from segment A2 and A3.  Six biological replicates 

were assessed per genotype per time point for a total of 12 NMJs per experimental condition.  

Boutons were defined as being greater than or equal to 2µm in diameter, and background 

intensity was subtracted from adjacent tissue.  Image analysis was performed blinded, with all 

file names relabeled by an independent researcher.  Pair-wise analyses were performed using a 

two-tailed Student’s t test, while comparisons among multiple experimental conditions was 

performed using a one-way Analysis of Variance (ANOVA) with Tukey’s post-hoc analysis. 

3.5.12 NMJ morphological analyses 

For NMJ morphological analyses, 3
rd

-instar larvae were collected and dissected as 

detailed above, without transection of the descending motor neurons.  Preparations were fixed in 

3.5% paraformaldehyde HL-3, permeabilized with 0.1% Triton X-100 in 1X PBS (PBST), and 

blocked with 0.2% BSA in PBST (PBSTB) for 2hrs.  Preps were washed and incubated with goat 

anti-HRP [Jackson Laboratories] at 1:200 in PBSTB for 2hrs.  Primary antibodies were removed, 

washed in PBSTB, and incubated with Cy3-labeled donkey anti-goat in PBSTB at 1:400 for 

1.5hrs.  Preps were washed, mounted in VectaShield [Vector Laboratories], and imaged within 

three days.  Images were acquired with an Olympus confocal FV1000 microscope, using a 

559nm excitation laser.  Z stacks of segment A2 of muscle 6/7 were taken using 1µm steps, and 

the start and end of the stacks were set just outside the range of the NMJ.  The Z stacks were 

merged using Olympus FV1000 Fluoview Viewer, and morphology determined.  Ten biological 

replicates were assessed per genotype, one NMJ per animal, for a total of ten NMJs per 
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experimental condition.  Boutons were defined as varicosities at least 2µm in diameter, and 

branches defined as extensions containing at least 2 boutons.  Images were relabeled by an 

independent researcher for blinded analysis.  Variance within the data set was examined using a 

one-way ANOVA, with comparisons made using Tukey’s post hoc test. 
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4.0  HUMAN TRIOSEPHOSPHATE ISOMERASE I170V ALTERS CATALYTIC 

SITE, ENHANCES DIMERIZATION AND INDUCES PATHOLOGY IN A 

DROSOPHILA MODEL OF TPI DEFICIENCY 

4.1 ABSTRACT 

Oligomerization is often an important regulator of protein function.  The formation of an 

oligomer can be simple or complex, uniting two homologous subunits, or assembling multiunit 

heterocomplexes.  Modifying the way proteins associate can have tremendous pharmacologic 

and pathologic implications.  Triosephosphate isomerase (TPI) is a glycolytic enzyme which 

homodimerizes for full catalytic activity.  Mutations of the TPI gene elicit a disease known as 

TPI deficiency, a glycolytic enzymopathy noted for its unique severity of neurological 

symptoms.  Recently, a high-resolution structure of one disease-associated TPI mutation 

revealed an alteration of the homodimer interface resulting in a reduction in enzyme stability, 

and not catalytic activity.  This study suggested that TPI deficiency pathogenesis may be due to 

conformational changes of the protein, likely affecting dimerization and protein stability.  In the 

present report, we genetically and physically characterize a previously unstudied human disease-

associated TPI mutation, which confers an I170V substitution.  TPI
I170V

 elicits behavioral 

abnormalities in Drosophila, and purified protein reveals dramatic increases in substrate affinity, 

enhanced enzyme dimerization, and increased thermal stability.  A high-resolution crystal 
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structure of the homodimeric I170V mutant reveals changes in catalytic site morphology.  

Collectively these data reveal new insights into the structural determinants of TPI deficiency 

pathology, and suggest new means of disease pathogenesis. 

4.2 INTRODUCTION 

Protein oligomerization is a phenomenon seen in many facets of biology.  The ability to 

create and stabilize complex quaternary structures from simple subunits is seen in the generation 

of glycolytic enzymes (159-161), receptor tyrosine kinases (162,163), actin filaments (164), 

vesicle fusion proteins (165,166), and countless other examples.  One of the most commonly 

used protein structures in nature is the β/α TIM barrel.  The TIM barrel is the structural base of 

over one hundred different enzymes, but was first identified in triosephosphate isomerase (TPI).  

TPI uses the TIM barrel to form the tertiary structure of its monomers, and like many other TIM 

barrel proteins, only functions as an oligomer/dimer in vivo.  TPI monomers in vitro exhibit little 

catalytic activity (18,19), but attain diffusion-limited catalytic properties upon dimerization (20).  

Structural analyses of artificial monomeric TPI variants have revealed flexibility of normally 

rigid motifs in and around the catalytic pocket (18,19).  These studies concluded that 

dimerization facilitates the rigidification of the catalytic pocket through a variety of trans-

monomeric Van der Waals forces, hydrogen bonds, and salt bridges (107), but little work has 

been done to examine the role of the catalytic site on the formation or maintenance of the 

homodimer. 

Functionally, TPI is a glycolytic enzyme that isomerizes dihydroxyacetone phosphate 

into glyceraldehyde 3-phosphate.  This isomerization occurs at a non-linear step in the catabolic 
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process, enhancing the efficiency of glycolysis, and is not required for the production of 

pyruvate.  Mutations within the TPI coding region lead to a recessive disease known as TPI 

Deficiency, which is characterized by hemolytic anemia, neurologic dysfunction and often early 

death (26).  TPI Deficiency is unique among all other glycolytic enzymopathies in the 

presentation of severe neurological deficits and the lack of ATP depletion (45).  It is not 

currently understood why mutations in a non-linear glycolytic enzyme elicit far greater 

pathology than other central glycolytic enzymes, though recent work has suggested that these 

neurological differentia are derived from a source other than general metabolic stress (1).  To 

date, only one disease-associated TPI mutation has been structurally characterized (63).  

Additional physical analyses of disease-associated substitutions are clearly needed to more fully 

understand the unique pathology associated with TPI Deficiency. 

In the present report, we have investigated a poorly studied human disease-associated 

mutation of TPI which occurs at the catalytic lid of the enzyme.  Previously, patients bearing the 

I170V substitution had only been identified in a trans-heterozygous state with the more common 

E104D missense mutation (102).  Due to the rarity of this particular point mutation, it was 

previously unclear whether I170V was viable as a homozygote, pathogenic, or simply lacked 

sufficient consanguinity for observation.  Our work has revealed that I170V is homozygous 

viable and elicits behavioral dysfunction in a Drosophila model of TPI deficiency.  Further, in 

vitro measurements of TPI
I170V

 dimerization indicated a more robust homodimer population than 

WT, an observation corroborated by increased thermal stability of the TPI
I170V

 enzyme.  A 

crystal structure of TPI
I170V

 revealed a predominantly closed lid conformation, changes in the 

positioning of S96, and a water network coordinating E165 and H95.  Our data establish that the 

disease-associated I170V substitution is sufficient to alter both catalytic and dimerization 
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properties.  These data support and contrast the findings of the only previous structural analysis 

of a disease-associated TPI substitution, reaffirming the importance of enzyme dimerization in 

TPI deficiency pathology, but demonstrating a unique pathogenic increase in dimerization and 

stability.  These findings are critical to the understanding of the unique pathology associated with 

TPI deficiency, and suggest either a physiologic role for TPI in catalytic microdomains, or the 

necessity of dynamic regulation of the TPI dimer. 

4.3 RESULTS 

4.3.1 I170V induces behavioral dysfunction in Drosophila 

We initiated this study seeking to examine the toxic potential of the TPI
I170V

 allele.  Using 

our Drosophila genomic engineering (GE) system (1), we generated novel alleles of human TPI 

with an I170V substitution (hTPI
WT

 and hTPI
I170V

).  A GE approach is optimal for examining this 

type of dose-dependant loss-of-function disease, as it seamlessly places the modified alleles 

directly into the Drosophila TPI gene locus ensuring endogenous expression at all developmental 

stages and in all tissues (99,101).  Due to the relative abundance of null TPI alleles, many TPI 

deficient patients are genetically identified as trans-heterozygotes with a point mutation over a 

null allele (26,45).  hTPI
I170V

 proved homozygous viable, and we generated trans-heterozygous 

populations and assessed two genotypes: hTPI
WT

/TPI
null

 and hTPI
I170V

/TPI
null

.  The TPI
null

 allele 

is a deletion of two of the three exons of the TPI gene (formerly called TPI
JS10

) (50) while 

hTPI
WT

 is the human WT enzyme.   

 



 86 

 
 

FIGURE 23.  hTPI
I170V

 is characterized by behavioral dysfunction but not reduced longevity.  

hTPI
I170V

/TPI
null

 exhibits mechanical (A) and thermal (B) stress sensitivity relative to hTPI
WT

/TPI
null

, n>20.  

Conversely, hTPI
I170V

/TPI
null

 demonstrated similar lifespans (C) as hTPI
WT

/TPI
null

, n≥120.  * indicates p<0.05, 

** p<0.01, and *** p<0.001. 

 

We collected animals, aged them at 25°C, and examined their mechanical- and thermal-

stress sensitivity and longevity, as these phenotypes have been shown to be hallmarks of 

Drosophila TPI Deficiency (1,50,64,85).  Mechanical- and thermal-stress sensitivity were 

detected in hTPI
I170V

/TPI
null

 animals at both early (day 3 and 4) and late (day 20 and 22) time 

points, indicating progressive behavioral dysfunction [Figure 23 A,B].  A slight change in 

thermal stress sensitivity was noted in the wild type populations, with a fraction of the population 

exhibiting abnormal thermal stress-dependent behavior.  These effects on WT are not observed 

in homozygote animals, and we believe that this modest effect is likely a reflection of the 

heterozygote state (hTPI
WT

/TPI
null

).  Interestingly, we did not detect a significant change in 

longevity when comparing hTPI
I170V

/TPI
null

 versus hTPI
WT

/TPI
null

 [Figure 23C].  These results 

suggest Drosophila TPI Deficiency behavioral dysfunction and longevity phenotypes may be 

derived from different pathogenic sources. 
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4.3.2 in vivo TPI protein levels and enzyme activity 

Having identified aberrant behavior in the hTPI
I170V

 mutants, we sought to assess lysate 

isomerase activity and protein levels in this mutant.  An analysis of wild type protein structure 

predicted that the I170V substitution would likely influence catalytic properties due to its 

positioning on the catalytic lid of the enzyme [Figure 28].  Previous studies using a transgenic 

expression system in yeast identified a reduction in isomerase activity due to I170V (62), and our 

experiments measuring hTPI
+
 and hTPI

I170V
 activity in animal lysates confirmed these 

observations in the native gene locus [Figure 24A].  Of note though, a previous study in 

Drosophila failed to find a link between animal metabolism and disease phenotypes (1).  This 

former study suggested that a conformational change or depletion of cellular TPI elicited 

Drosophila TPI deficiency (1).  To examine the possibility that I170V may reduce protein levels 

in our system, we examined TPI levels in our newly generated alleles.  Western blots indicated 

no changes in TPI protein levels due to the I170V substitution relative to TPI
WT

 [Figure 24B,C], 

concluding the I170V mutation does not elicit pathology through a depletion of cellular TPI.   

 

 
 

FIGURE 24.  hTPI
I170V

 exhibits reduced catalysis and normal cellular TPI levels.  Isomerase assays 

reveals hTPI
I170V

/TPI
null

 reduces lysate TPI activity relative to hTPI
WT

/TPI
null

 (A), n=3.  Independent samples 
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of human hTPI
WT

/TPI
null

 and hTPI
I170V

/TPI
null

 (#1,#2,#3) demonstrate similar levels of cellular TPI (C), with 

quantification (B), n=3.   ns indicates no significance. 

 

Table 3. hTPI
WT

 and hTPI
I170V

 kinetic parameters. 

 hTPI
WT

 hTPI
I170V

 

Km (GAP) (mM) 1.4 ± 0.1 0.049 ± 0.014 

kcat (GAP) (s
-1

) 1623 ± 181.1 75.8 ± 2.6 

kcat/Km (GAP ) (M
-1

 s
-1

) 1.2 x 10
6
 1.5 x 10

6
 

4.3.3 I170V enhances substrate affinity, stability, and dimerization in vitro 

The only study to structurally examine a TPI deficiency mutation found that the E104D 

substitution altered a trans-monomeric water network; this E104D substitution resulted in 

reduced enzyme dimerization and stability, but did not alter enzyme activity in vitro (63).  

Recombinant human hTPI
WT

 and hTPI
I170V

 was expressed and purified, and we examined their 

respective kinetic properties [Table 3].  It should be noted that both enzymes displayed typical 

Michaelis-Menten behavior [Figure 25].  hTPI
WT

 demonstrated properties similar to those 

previously published (145,167,168), while hTPI
I170V

 displayed a ~20 fold reduction in catalytic 

turnover [Table 3] and a ~30 fold increase in substrate affinity [Table 3].  The combined 

reduction in turnover and increased substrate affinity suggests the enzyme is preferentially in the 

occupied state.   

Since previous studies had indicated that dimerization was an important molecular 

contributor to TPI deficiency, we assessed TPI dimerization of hTPI
I170V

 using gel filtration 

[Figure 26].  Analyses of hTPI
WT

 at room temperature demonstrated a 80:20 equilibrium of 
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dimer-to-monomer, with two corresponding peaks eluting at 24 and 27 minutes [Figure 26A,B].  

Comparatively, the monomer peak was absent in all analyses of hTPI
I170V

 dimerization [Figure 

26A,B].  These results suggested the I170V substitution may somehow enhance TPI dimer 

stability.  Indeed, Ralser and colleagues (62) noted that while E104D impaired WT:mut 

heterodimer associations in a yeast two-hybrid (Y2H) system, the I170V mutation appeared to 

increase these interactions.  Our results suggest that their increase in Y2H signal was not likely 

due to aggregation or external factors, but that this TPI variant is intrinsically capable of eliciting 

an increase in these dimeric associations.   

 
Figure 25.  hTPI

WT
 and hTPI

I170V
 exhibit Michaelis-Menten behavior.   

 

Over the past two decades several groups have characterized the folding and unfolding 

kinetics of TPI from numerous species (19,147,169-174).  These studies have established that 

dimerization of TPI is a crucial determinant of protein stability, though several monomeric 

intermediates are also critical.  Far-UV circular dichroism (CD) spectra did not identify a gross 

change in protein folding at 20°C [Figure 27], but an assessment of thermal denaturing at 222 nm 

indicated a significant change in protein stability, with hTPI
WT

 and hTPI
I170V

 exhibiting 

monophasic denaturation with Tms of 46.5°C and 59.4°C respectively [Figure 26C].  Previous 

studies have shown that CD measurements of TPI thermal denaturing elicit monophasic 

transitions (167,175), lacking the capacity to resolve many of the still-folded monomeric 
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intermediates.  Importantly, these data indicate that hTPI
I170V

 increases its dimer population 

through an enhancement of enzyme stability.   

Occupancy of the catalytic site has been shown to stabilize the dimer (171,173).  Given 

the enhanced substrate affinity of hTPI
I170V

, we predicted that hTPI
I170V

 stability would be more 

responsive to substrate administration that hTPI
WT

.  Using DL-glycerol-3-phosphate (DL-GP), a 

GAP substrate analog (176-178), we measured the stability shift resulting from occupancy of the 

catalytic site.  The addition of DL-GP to hTPI
WT

 resulted in a 3.7°C increase in stability (Tm 

50.2°C), while DL-GP enhanced hTPI
I170V

 stability only 1.6°C (Tm 61.0°C).  Denaturation of 

hTPI
I170V

 and hTPI
WT

 were both observed to be irreversible, an observation similar to that of 

previous studies (63,179,180). 

 

 
 

FIGURE 26.  I170V increases TPI dimer stability relative to WT.  Gel filtration indicates a change in 

monomer:dimer ratios elicited by I170V relative to WT (A) with quantification (B).  CD thermal shift 

analyses demonstrate a stabilization of TPI due to the I170V substitution (C), and altered responsiveness to 

5mM DL-GP substrate analog.   * indicates p<0.05, ns indicates no significance. 
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4.3.4 The crystal structure of I170V supports a preferentially closed catalytic pocket 

TPI is a TIM barrel protein, using the β/α barrel as a base for the orientation of its accessory 

loops.  The I170 residue is located on the rigid tip of loop 6 [Figure 28A].  Loop 6 of TPI forms a 

“lid” over the catalytic pocket, and its closure over the substrate has been shown to prevent the 

dissociation of catalytic intermediates during substrate isomerization (13).  Previous studies have 

described loop 6 as dynamic in the unbound state, and indeed NMR studies have shown 

breathing motions in this loop (181).  The lid is composed of three main components – an N 

hinge, a rigid tip, and a C hinge (182).  The N hinge extends immediately from the catalytic 

E165 and contains a three residue sequence of P166-V167-W168 (180).  The P166 provides 

rigidity to the hinge mechanism while the bulky hydrophobic V167 is positioned to facilitate lid 

movement.  The N terminal hinge works in conjunction with a C terminal hinge, composed of 

K174-T175-A176 (179,183).  Changes in phi and psi angles of T175 are believed to promote 

changes in lid orientation (182). 

 
Figure 27.  Averaged far-UV CD spectra of hTPI

WT
 and hTPI

I170V
 acquired during thermal 

denaturation. 

To determine if we could visualize the molecular mechanism responsible for the altered 

hTPI
I170V

 catalytic properties, we purified, crystallized and analyzed the structure of hTPI
I170V

 at 

2.0Å resolution.  hTPI
I170V

 was crystallized in a buffer nearly identical to that of hTPI
WT

 (1.6Å), 

facilitating a near-atomic comparison.  The overall folding of the enzymes was similar, 
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corroborating our previous CD analyses [Figures 27-29].  In both structures, a bromide ion from 

the crystallization conditions was found in the active site, as was a phosphate ion which was not 

added intentionally, and which presumably co-purified with TPI.  The positioning of these ions 

directly overlap those of substrate molecules co-crystallized with other TPI structures, suggesting 

their inclusion helped stabilize the catalytic pocket during crystallization.  

The I170V structure revealed a change in the region surrounding the N hinge; specifically 

a ~90° rotation of S96, moving its terminal proton 2.7Å toward the catalytic site [Figure 28A].  

S96 is known to rotate in and out of the catalytic site with the movement of the lid.  In an open 

lid conformation, S96 rotates inward and hydrogen bonds with E165, stabilizing its localization 

2-3Å away from its substrate-bound position (105).  However, S96 rotates out of the catalytic 

pocket upon lid closure, breaking the hydrogen bond with the catalytic E165 and allowing it to 

swing over and induce substrate isomerization.  In the I170V structure, the inward rotation of 

S96 in the closed state is facilitated by the absence of the Ile-to-Val methyl group, and leads to 

increased hydrophilic interactions in the N hinge region.  Previous studies have shown that the N 

hinge is sensitive to both bulk and hydrophilic interference (180,182), with each inducing a 

preferentially closed lid.  The inward rotation of S96 in the I170V structure will strengthen a 

water network within the catalytic pocket, known to interact with substrate [Figure 28B].  This 

reinforced water network demonstrates a putative physical mechanism through which the 

enzyme turnover rate is reduced and substrate affinity increased [Table 3].  Collectively, these 

observations demonstrate that the shortened V170 fails to break the hydrogen bonding between 

E165 and S96 during lid closure, preferentially stabilizing this state and enhancing substrate 

affinity. 
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Figure 28.  Structural comparisons of hWT with hI170V reveal enhanced hydrogen bonding in the 

catalytic site.  Catalytic site of monomer A.  An overlay of hWT (cyan) and hI170V (pink) reveal a 90° inward 

rotation of S96, moving its distal hydrogen 2.7Å (A).  Movement is indicated by a yellow dashed line (A).  The 

rotation of S96 enhances the coordination of a catalytic water and H95 (B).  Polar interactions are indicated 

by blue dashed lines and their distances indicated (B).  Both structures are shown as cartoons, with pertinent 

residues labeled and displayed as sticks.   

4.4 DISCUSSION 

Due to the rarity of the disease and dearth of model systems, little is known about the 

pathogenesis of TPI deficiency.  We have pathologically and physically characterized a 

previously unstudied human disease-associated TPI mutation.  We found that the I170V 

mutation was genetically homozygous viable, yet when paired with a null allele was capable of 

inducing behavioral dysfunction similar to a previously described pathogenic Drosophila TPI 

point mutation (50,64).  These characteristic fly behaviors are enriched for neurological 

dysfunction, and therefore are believed to be analogs of the symptoms exhibited by human 

patients (74,75).  A reduction in catalytic activity in these mutants was predicted based on a 

previous study in yeast (62).  Yet oddly, in vitro biochemical analyses (Table 3) suggested the 
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I170V mutant should be as efficient as wild type, a result at odds with our in vivo lysate 

measurements [Figure 24A].  It is unclear as to why these results were not in congruence, but we 

cannot rule out possible affector proteins or unknown regulatory mechanisms which may be 

present in the lysates, but not the purified system.   

Seeking a molecular explanation of hTPI
I170V

 pathogenesis, a high resolution crystal 

structure revealed clear physical changes resulting from the I170V substitution which illustrate 

the molecular mechanisms responsible for our altered enzyme kinetics.  Specifically, the 

shortening of the I170 residue to V170 leads to the S96-mediated maintenance of a water 

network within the catalytic pocket during lid closure.  This water network likely stabilizes the 

enzyme in the substrate-bound state, again in agreement in with our 30-fold increase in substrate 

affinity [Table 3].  Further, the dynamic orientation of E165, and by extension the C- and N-

terminal hinges, has been linked to the breathing motions of the catalytic lid (177,184).  

Although our experiments lack the capacity to directly measure the rate constants of lid opening 

and closure, it is tempting to speculate that this catalytic water network could inhibit the opening 

rate of the lid.  Inhibiting lid opening would reduce catalytic turnover, resulting in largely closed 

loop orientations, both of which are observations we have made in our crystal structure and 

enzyme kinetic analyses [Table 3; Figure 28].   

The only previously crystallized human disease-associated TPI substitution, E104D, 

indicated a miscoordination of a conserved water network at the homodimer interface.  This 

alteration of the dimer interface elicited a reduction in hTPI
E104D

 dimerization and stability, but 

not changes in catalytic activity (63).  Our data establish altered catalytic properties as a function 

of the I170V substitution, while dimerization and stability experiments demonstrate a distinct 

increase in hTPI
I170V

 stability relative to hTPI
WT

 [Figure 26].  Further, although hTPI
I170V
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substrate affinity is increased [Table 3], the addition of a substrate analog elicited a modest 

increase in protein stability (∆Tm=1.6°C) relative to hTPI
WT

 (∆Tm=3.7°C).  These data suggest 

one of two possibilities: i) the I170V substitution selectively reduces DL-GP, but enhances GAP 

binding, or ii) hTPI
I170V

 stability is less sensitive to catalytic site occupancy.  Addressing the 

first, the catalytic area critically affected by the I170V substitution and Ser96 rotation is the 

region of the catalytic pocket occupied by the phosphate.  The positioning of this phosphate is 

conserved between DL-GP and GAP, making it unlikely that DL-GP binding would diverge 

from that of GAP as a function of the I170V substitution.  Therefore, we believe it is far more 

likely that these stability data indicate that hTPI
I170V

 is mimicking the substrate-bound 

conformation, with similar physical mechanisms underpinning its increased stability.   

Although an unanticipated and exciting result, the structure of hTPI
I170V

 does not yield 

any insight into why we observe changes in stability [Figure 29].  Experiments examining the 

relative contributions of solvent and chain entropy in this mutant would be needed to 

conclusively determine a molecular mechanism of I170V stability.  However, the confluence of 

data lead us to speculate that lid orientation is likely responsible for the changes in enzyme 

stability.  Preferential lid closure would provide additional protection from bulk solvent, and 

reduce overall solvent entropy; a result borne out by the substrate-induced stabilization of 

hTPI
WT

.  Comparatively, the preferentially closed lid of hTPI
I170V

 reduced the sensitivity to 

substrate-induced TPI stabilization.   

Irrespective of the molecular mechanism, the findings that hTPI
I170V

 induces pathology 

and is characterized by decreased catalysis and increased stability demonstrates that reduced TPI 

dimer stability alone is not the only means to achieve pathology.  These observations prompt two 
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new hypotheses regarding TPI Deficiency: i) TPI dimers and monomers are dynamically 

regulated molecules, or ii) localized, not gross TPI activity, is necessary for normal behavior.  

The former hypothesis centers on the potential for TPI dimerization or stability to be 

purposefully regulated.  In support of this hypothesis, recent reports have detailed two post-

translational modifications which have been shown to influence TPI isomerase activity and 

protein levels in vivo: phosphorylation of TPI by cyclin dependent kinase 2 (cdk2) (127), and 

methylation of R189 by protein arginine methyl-transferase 5 (PRMT5) (128).  The 

phosphorylation of TPI is predicted to occur at the solvent/dimer interface residue S20 (127), and 

we hypothesize that post-translational modifications of this residue would likely alter dimer 

interface morphology.  Additionally, R189 participates in an entirely conserved salt bridge with 

D225 at the distal ends of the homodimer.  This salt bridge has been shown to be a critical 

determinant of TPI stability (142), and methylation has been predicted to disrupt this interaction.  

Further work is needed to more clearly define the role of TPI post-translational modifications, 

but provide a tempting platform for speculation. 

Alternatively, the latter hypothesis builds upon the preeminent finding that hTPI
I170V

 has 

a dramatic effect on enzyme kinetics.  Previous work has demonstrated that a catalytically 

inactive TPI allele can complement the toxic TPI
M80T

 substitution.  This study concluded that 

TPI Deficiency neurological dysfunction and reduced longevity are not correlated with metabolic 

stress (1), yet did not exclude the possibility of catalytic microdomains.  It is currently unclear 

where such a microdomain could be critical, and to what end.  TPI activity contributes to the 

glycerol synthesis pathway, glycolysis, and the glycerol 3-phosphate NADH shuttle.  An 

assessment of human disease symptoms in each pathway fails to suggest a singular pathogenic 

catalytic mechanism.  Additional work will be needed to explore the putative importance of 
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catalytic microdomains and their contribution to the unique pathology associated with TPI 

deficiency. 

In conclusion, the data presented in this study demonstrate the pathogenic nature of a 

previously understudied human mutation, and illustrate the molecular mechanism responsible for 

its pathogenesis.  These results are critical for directing future experimentation surrounding the 

largely understudied role of TPI in animal physiology, and the pathogenesis of TPI Deficiency. 

 

 
Figure 29.  I170V crystal structure lacks insight regarding altered protein stability.  I170V fails to 

alter a conserved trans-monomeric TPI water network (A) known to alter protein stability (63).  Analyses of 

WT and I170V demonstrate similar folding and orientation of the peptide backbone (B).  Residues shown as 

sticks, colored by element, with WT labeled blue and I170V labeled pink (A).  Waters are indicated by 

unbound spheres, with WT in red and I170V in yellow (A).  Proteins displayed a cartoon with backbones 

colored as before (B); dashed line indicates the dimer interface.  
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4.5 MATERIALS AND METHODS 

4.5.1 Mutagenesis and Genomic Engineering 

The pGE-hTPI
WT

 construct was generated using human TPI (hTPI) coding region. The hTPI 

sequence was synthesized and recoded for Drosophila codon usage, while maintaining 

Drosophila intron-exon gene architecture and splicing, to ensure appropriate expression. The 

synthesized hTPI was designed to include flanking restriction sites for cloning into the pGE-

attBTPI
+
 plasmid (1). Site directed mutagenesis was performed using the QuikChange 

Lightening Site-Directed Mutagenesis Kit (Agilent Technologies). Mutagenesis primers were 

generated (Integrated DNA Technologies) to introduce an Ile-to-Val codon change at position 

170. Mutagenesis was performed with pGE-hTPI
WT

 and confirmed by sequencing. TPI GE was 

performed using previously published methods (1,99,100). Briefly, the PGX-TPI founder 

animals were mated to vasa-phiC31
ZH-2A

 animals expressing the integrase on the X chromosome 

and their progeny injected with pGE-attBhTPI
I170V

. Integration events were identified via the w
+
 

phenotype and verified molecularly. The newly synthesized alleles were outcrossed to w
1118

 for 

five generations and mated to y
1
 w

67c23
 P[y[+mDint2]=Crey]1b; D

*
/TM3, Sb

1 
to reduce the 

engineered locus. 

4.5.2 Human TPI enzyme purification 

Human TPI enzyme was purified as outlined previously (1).  Briefly, the coding sequence for 

H.sapien TPI was cloned into the bacterial expression vector pLC3 using standard techniques.  

The resulting plasmid directs expression of TPI containing N-terminal His6- and MBP tags, both 
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of which can be removed with TEV protease. TPI protein was expressed in BL21(DE3) Codon-

Plus (RILP) E. coli (Agilent Technologies) grown in ZY auto-induction media (Studier, 2005) at 

room temperature for 24–30 hours. Cells were harvested by centrifugation, lysed via 

homogenization in 25 mM Tris pH 8.0, 500 mM NaCl, 10% glycerol, 5 mM imidazole, 1 mM β-

mercaptoethanol and cleared by centrifugation at 30,000 g. TPI was purified by nickel affinity 

chromatography followed by overnight TEV protease treatment to cleave the His6-MBP tag from 

TPI. A second round of nickel affinity purification was performed to separate the His6-MBP and 

TEV protease. TPI protein was further purified using cation-exchange chromatography (HiTrap-

QP) followed by gel filtration (Sephacryl S-200, GE Healthcare). Peak fractions were 

concentrated to 4–8 mg/ml in 20 mM Tris pH 8.8, 25 mM NaCl, 2.0% glycerol and 1 mM β-

mercaptoethanol using a Vivaspin concentrator (GE Healthcare). The purity was >99% as 

verified by SDS-PAGE. 

4.5.3 Gel Filtration Chromatography 

Gel filtration was performed as outlined previously (85).  Briefly, separations were performed 

with a Shimadzu high performance liquid chromatography (HPLC) system using a Superdex 

75/300 GL column (Amersham Biosciences) set to a flow rate of 0.4 ml/min at room 

temperature.  A non-denaturing mobile phase was selected consisting of 25mM NaH2PO4, 25mM 

Na2HPO4, 150mM NaCl; pH 7.0.  The column was calibrated with a Low Molecular Weight Gel 

Filtration Calibration Kit (GE Healthcare Life Sciences) according to the manufacturer’s 

instructions.  Calibration standards included Aprotinin (6.5kDa), RNAase A (13.7kDa), Carbonic 

Anhydrase (29kDa), Ovalbumin (44kDa), and Conalbumin (75kDa).  Purified TPI samples were 

diluted to 15μM in mobile phase and 100μl were injected and measured in triplicate, and their 
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elution monitored at 280nm.  Chromatography traces were collected and analyzed using EZStart 

7.3 (Shimadzu) to quantify the relative monomer and dimer populations.  Curve integration data 

were compared using a one-way ANOVA with Tukey’s post-hoc analysis. 

4.5.4 TPI Enzyme Assays 

Isomerase activity was determined using an NADH-linked assay as previously detailed (1,132). 

Initial velocity of the enzyme was calculated over a GAP (Sigma-Aldrich, St. Louis, MO, USA) 

range of 0.0094-4.23 mM; enzyme quantities as noted [Figure S1].  All kinetic measurements 

were performed three times in triplicate by monitoring the absorbance of NADH at 340 nm in a 

SpectraMax Plus 384 microplate reader (Molecular Devices).  The assay was performed using 80 

µl mixtures containing varied GAP and enzyme concentrations, 0.5 mM NADH (Sigma-

Aldrich), and 1 unit glycerol-3-phosphate dehydrogenase (Sigma-Aldrich) in 100 mM 

triethanolamine (TEA), pH 7.6.  Enzyme activity curves were normalized to reactions performed 

without GAP.  Enzyme kinetics were determined by assessing initial velocities taken during the 

linear phase of each reaction, and the data were fit to the Michaelis-Menten equation using 

nonlinear regression in Graphpad Prism 5.0b (GraphPad Software). 

Lysate assays were performed similarly.  Briefly, animals aged 1-3 days were collected 

and frozen in liquid nitrogen. Bodies lacking heads or appendages were isolated and 

homogenized in 100mM TEA pH 7.6 supplemented with cOmplete mini Protease Inhibitors 

(Roche Diagnostics). The homogenates were sonicated in an ice bath for 10min and centrifuged 

twice at 4°C for 5min at 5,000g to remove exoskeletal debris. Lysates were diluted to 0.1μg/μl in 

100mM TEA pH 7.6 + inhibitors and enzyme activity was assessed. Reaction assays were 

performed using 80μl mixtures composed of 0.5mM NADH, 0.752mM GAP, 1 unit glycerol-3-
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phosphate dehydrogenase and 1μg of lysate protein in 100mM TEA; pH 7.6.  All reactions were 

performed in both experimental and biological triplicate.  Reaction components were purchased 

from Sigma-Aldrich. 

4.5.5 Circular dichroism and thermal stability  

Circular dichroism (CD) thermal stability analysis was performed on a Jasco J-810 as outlined 

previously (63). Briefly, samples were diluted to 350µg/ml in 0.2µm nylon-filtered 20mM 

MOPS, 1mM DTT, 1mM EDTA pH 7.4, and denaturation was monitored at 222 nm over 20-

80°C at a rate of 0.267°C/min with a pitch of 0.2°C. Far-UV spectra were taken in 1X PBS at 

indicated temperatures for better resolution (63). DL-glycerol-3-phosphate (Sigma), a TPI 

substrate analog (176-178), was added to a final concentration of 5mM (185) and thermal 

stability reassessed. All spectral data were acquired 5 times per step, and three independent 

replicates were run for each experimental condition. 

4.5.6 Behavioral testing and lifespan analysis 

Mechanical stress sensitivity was examined by vortexing the animals in a standard media vial for 

20 seconds and measuring time to recovery, similar to (66,133). Thermal stress sensitivity was 

assessed by acutely shifting animals to 38°C and measuring time to paralysis, as previously 

described (65,109). Paralysis was defined as being at least a 15sec period.  All behavioral 

responses were capped at 600 seconds.  Animal lifespans were performed at 25°C as previously 

described (109). A nonparametric Student’s t test was used to assess behavior, and lifespans were 

assessed with Log-rank (Mantel–Cox) survival tests. 
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4.5.7 Immunoblots 

Animals were collected aged 1-2 days at room temperature. Ten fly heads were obtained in 

triplicate from each genotype and processed as outlined previously (86). Briefly, the fly heads 

were ground by pestle in 80 µl 2× SDS–PAGE sample buffer (4% SDS, 4% β-mercaptoethanol, 

130 mM Tris–HCl pH 6.8, 20% glycerol) and centrifuged for 5 minutes at 5000 g to pellet the 

exoskeleton.  Proteins were resolved by SDS–PAGE and transferred onto 0.45μm PVDF 

membrane. Following treatment in 1% milk PBST, the blots were incubated with anti-TPI 

(1∶5000; rabbit polyclonal FL-249; Santa Cruz Biotechnology) or anti-Beta tubulin (1∶4,000; 

rabbit polyclonal d-140; Santa Cruz Biotechnology).  The blots were washed in PBST, incubated 

in the appropriate HRP-conjugated secondary antibody, and developed using ECL (Pierce).  

Densitometric analyses of the scanned films were performed digitally using ImageJ software 

available from the National Institutes of Health.  Student’s unpaired t test was performed to 

assess differences in TPI. 

4.5.8 Protein crystallization and structural determination 

Recombinant human TPI and hTPI
I170V

 protein and was purified as described above. Initial TPI 

crystals were grown at 4 using the sitting drop vapor diffusion method against a reservoir 

solution containing 34% PEG 2000 MME and 50 mM KBr. These initial crystals were improved 

by microseeding using a reservoir solution containing 30-34% PEG 2000 MME and 50 mM 

KBr. The crystals used for data collection, grew to final dimensions of ~100 x 100 x 150 µm 

over the course of 3 days prior to harvesting. Crystals were cryoprotected by transition of the 

crystal into reservoir solution supplemented to 40% PEG 2000 MME and 20% glycerol followed 
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by flash freezing in liquid nitrogen. Diffraction data for wild type TPI were collected at the 

National Synchrotron Light Source on beamline X25 using a Pilatus 6M detector. Diffraction 

data were integrated, scaled, and merged using HKL2000 (186). Wild-type crystals belong to the 

space group P21 (a = 47.92 Å, b = 48.85 Å, c = 93.97 Å; β = 103.66°) and contain a dimer in the 

asymmetric unit. Crystals of hTPI
I170V

 belong to space group P212121 (a = 64.92 Å, b = 73.64 Å, 

c = 91.77 Å), and also contain a dimer in the asymmetric unit. Initial phases for both wild-type 

and hTPI
I170V

 were estimated via molecular replacement using a search model derived from an 

independent structure of human TPI (2VOM) (63). The model was then refined against native 

data and improved by manual rebuilding within Coot (187) combined with simulated annealing, 

positional, and anisotropic B factor refinement within Phenix. For hTPI
I170V

, isotropic B-factor 

and TLS refinement was used. Model quality for both structures was assessed using MolProbity 

(188). Structural figures were generated using PyMol (PyMOL Molecular Graphics System, 

Version 1.5.0.4, Schrödinger, LLC.). 
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5.0  DISCUSSION 

Prior to the initiation of my thesis work, very little was known about the pathogenic nature of 

TPI deficiency.  Due to the rarity of the disease and disparate patient allelic combinations, it was 

not entirely clear which TPI mutations were sufficient to cause neurological phenotypes.  Work 

in this field was often limited to description due to the dearth of primary tissue samples and a 

lack of robust model systems.  Yet in the past few years of my graduate work I have helped 

establish a genomic engineering system for the Drosophila TPI locus, and this system facilitated 

hypothesis-driven experimentation on the pathogenesis of TPI deficiency.  Establishing this 

system, I used these resources to examine whether the presence of the enzyme or its catalysis 

were most critical to the behavioral phenotypes seen in our animals.  In these initial studies I 

found that an inactive variant of TPI was capable of fully complementing our disease mutant, 

and biochemical data supported this conclusion, revealing that this complementation occurred 

without gross changes in enzyme catalysis or alleviating metabolic stress.  These data suggested 

that it was unlikely that TPI deficiency was being caused by a general metabolic defect, and 

instead pointed to the possibility that it could be due to a conformational change in the protein.  

To test this hypothesis, I worked in collaboration with the VanDemark lab to purify and 

characterize the TPI
M80T

 protein.   

Physical analyses revealed a dimerization defect associated with TPI
M80T

, a characteristic 

shared by the highly toxic human disease-associated mutation, TPI
E104D 

(63).  Independent 
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mutations at the dimer interface of TPI, TPI
T74R

 and TPI
G75E

, further underlined the relationship 

between dimer conformations and disease.  These mutations exhibited more severe phenotypes 

than our previously characterized TPI
M80T

 allele, and their behaviors suggested the possibility of 

underlying conductive or synaptic dysfunction.  Indeed, vesicle recycling experiments indicate 

synaptic dysfunction, and although I have not established a precise biochemical mechanism for 

these effects, they demonstrate that the neurological dysfunction seen in TPI Deficiency patients 

arises from a vesicle recycling defect.  Further work will clearly be needed to establish the exact 

mechanism of the pathogenesis, but my observations are the first to establish a synaptic 

phenotype in TPI deficiency.   

Finally, the last of my dissertation work sought to focus our GE system on an 

understudied human disease-associated mutation.  As mentioned earlier, prior to my work it was 

not understood whether certain human TPI mutations were sufficient for pathology.  One such 

mutation, a TPI
I170V

 missense mutation, has now been established as sufficient for eliciting 

neurological dysfunction in Drosophila.  Further, a detailed structural and biochemical analysis 

of this protein indicated a unique increase in substrate affinity, homodimerization, and thermal 

stability.  Structural analyses revealed that the I170V substitution facilitated the internal rotation 

of S96 into the catalytic pocket of TPI
I170V

.  The rotation of this S96 residue stabilized a 

hydrogen bond network within the catalytic pocket, and is responsible for the increase in 

substrate affinity and reduction in catalytic turnover.  Data from the crystal structure and stability 

assays suggest that TPI
I170V

 is preferentially in the closed lid conformation, and this closed lid is 

likely the mechanism responsible for the observed increase in enzyme stability.  These 

observations are provocative in their implications regarding cellular recognition of enzyme 

activity and protein regulation. 
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5.1 TPI PROTEIN CONFORMATION AND DISEASE 

In the last two decades several reviews have been written summarizing the collective 

observations of the community and literature surrounding TPI deficiency (26,45,48,189).  With 

the dearth of model experimental systems, these reviews have relied heavily on the initial clinical 

characterizations of the disease and a few descriptive studies of erythrocytes derived from 

patients.  This research has been critical for understanding the relationship between TPI 

mutations and the human disease, yet lacked the hypothesis-driven approaches found in 

controlled systems.  The authors of these reviews should be commended for highlighting of the 

poorly understood link between TPI activity and disease, with many citing the diverse 

observations of protein activity, cellular metabolism and protein levels.  Indeed, a review which 

structurally plotted all of the known human mutations was the first to propose the idea that 

protein conformation could be the basis of TPI deficiency pathology (45).  This hypothesis was 

followed up by a yeast molecular study by the Krobitch lab and structural/biochemical analyses 

by the Torres-Larios lab which determined the TPI
E104D

 human mutation affected protein 

dimerization and therefore quaternary structure (62,63).  These articles were the first to lend 

substantial support to the hypothesis that TPI deficiency is a conformational disease.   

Many conformational diseases are elicited by changes in protein quaternary structure, 

with the most common being gain-of-function changes leading to aggregation (138).  However, 

it has been well-established that conformational loss-of-function diseases are also possible, with 

the most prevalent being mutations in the tumor-suppressor p53.  p53 is a highly regulated 

transcription factor, intimately related to DNA repair and cell cycle progression (190,191).  

Conformational changes in p53 can result in an inability to appropriately tetramerize and bind 

DNA (192), an alteration of binding to regulatory proteins (193), changes in localization signals 
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(194), etc.  Mutations of p53 are found in approximately 50% of cancers, and almost all cancers 

influence either it or members of its network, underlining the protein’s relevance to human 

disease (195).  I propose that TPI deficiency could be elicited by a similar loss-of-function due to 

protein conformation – likely through changes in enzyme transport to distal cellular locations. 

The TPI reviews were critical in shaping my understanding of the field as I was initiating 

my experiments.  I was fortunate to be working with a whole animal model of TPI deficiency 

which allowed for such analyses, and these inspirations directed me to question whether gross 

activity and metabolism were truly necessary contributors to the behavioral and longevity 

phenotypes we saw in our Drosophila.  To this end, my initial studies focused on whether a 

depletion of TPI protein or catalytic activity were more critical determinants of Drosophila TPI 

deficiency.  I engineered a constitutively inactive variant of TPI and sought to assess 

complementation of our TPI
M80T

 mutant allele; a general strategy employed in the evaluation of 

several molecular fields (196-198).  The results of these experiments indicated the inactive TPI 

was able to fully complement TPI
M80T

.  Further experiments established that this was not due to 

changes in gross lysate TPI activity, TPI
M80T

 protein levels, or an insect marker of metabolic 

stress.  Later experiments established that the TPI
M80T

 mutation reduced dimerization of TPI, and 

independent mutations of TPI at the dimer interface were also sufficient to elicit disease.  These 

same experiments established that some of the most toxic TPI alleles were characterized by 

dramatically more lysate isomerase activity than completely healthy animals, firmly establishing 

that gross catalytic activity is not predictive of disease presence or severity, and instead 

suggesting that protein conformations are more likely the critical determinants of disease. 

To contrast these results, I selected a human disease-associated mutation at the catalytic 

site for further evaluation.  This point mutation, TPI
I170V

, was examined in the context of the 
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human protein in Drosophila for its sufficiency to elicit pathology, as it had only ever been 

identified in a trans-heterozygote state in humans, paired with a TPI
E104D

 allele.  We again saw 

pathology in these hTPI
I170V

 animals as contrasted by hTPI
WT

.  Detailed characterization of 

enzyme kinetics revealed that the mutation elicited a marked change in enzyme activity, with 

I170V eliciting an increase in substrate affinity and a decrease in catalytic turnover.  Noting that 

dimerization can influence catalytic activity, we sought to examine the converse relationship – 

whether changes in the catalytic site could influence dimerization and stability.  Gel filtration 

results indicated that hTPI
I170V

 exhibited an increase in dimerization and enzyme stability.  In 

collaboration with the VanDemark lab, X-ray crystal structures of each protein were generated 

and analyzed.  Resolutions of 1.6 and 2.0Å were achieved in the WT and I170V structures, 

respectively, allowing near-atomic comparisons of protein conformations.  The crystal structure 

indicated that the shortening of the I170 residue to V170 facilitated the rotation of a proximal 

S96 into the catalytic site, reinforcing a water network within the catalytic pocket.  This water 

network increased substrate affinity, reduced enzyme turnover, and led to a generally closed lid 

conformation.  The crystal structure failed to reveal any obvious changes at the dimer interface.  

Indeed, the only changes observed at the critical dimer interface loop 3 revealed backbone and 

therefore residue shifts of 0.4-0.6Å, just outside the cumulative resolution error of 0.4Å for any 

pairwise comparison of these structures.  However, thermal stability experiments suggested that 

the I170V substitution elicited a protein conformation also induced by catalytic site occupancy.  

These data collectively suggest that an occupied or closed catalytic lid yields a more stable 

enzyme.  The basic implications of active site conformation and putative changes in stability are 

intriguing, and could be a means for a protein to autonomously regulate its own turnover.  

Extending this type of analysis to similar soluble, oligomeric, cytosolic proteins could have 
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stimulating implications on the turnover of cytosolic substrates, as comparatively little is known 

these regulatory mechanisms versus that of the endoplasmic reticulum.       

5.2 DIMERIC COOPERATION AT THE CATALYTIC SITE 

One of the key results that I have struggled with during the course of my thesis has been the 

inexplicable differences in pathology as a result of various TPI structural modifications and 

allelic combinations.  In particular, I have found it difficult to explain the healthy behavior of 

TPI
T74R

/TPI
∆cat

 and TPI
M80T

/TPI
∆cat

, versus the moderate behavioral dysfunction of 

TPI
G75E

/TPI
∆cat

 and the complex behavioral and longevity phenotypes of TPI
T74R,G75E

/TPI
∆cat

.  

The capacity of an inactive enzyme to rescue two severe mutant TPI alleles is astonishing.  Yet 

an inability for this same inactive allele to similarly complement two other dimer mutations has 

led me to conclude that TPI
∆cat

 is not alone sufficient for adult rescue, suggesting requisite 

interactions within the heterodimer.  Again, the pathology does not seem to be determined by 

gross isomerase activity, and an analysis of heterodimer populations failed to suggest an 

underlying mechanism.  Further, the capacity of a catalytic site mutation, TPI
I170V

, to similarly 

elicit pathology cumulatively suggests the importance of microdomains of activity as a 

pathological mechanism.  Indeed, a conformational change in the protein could merely affect 

trafficking and/or stabilization of small pools of active heterodimers at a requisite site.  However, 

if one proposed that the inactive enzyme rescued pathology through increased trafficking of the 

still-active allele (TPI
T74R

/TPI
∆cat

 for example), then it would follow that this interaction would 

likely be stronger than a comparatively poorly rescued variant (TPI
G75E

/TPI
∆cat

) [Figure 30].  

However, coimmunoprecipitation experiments detailed almost the opposite phenomenon.  
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Clearly physical interactions alone do not explain the complementation of the disease 

phenotypes.  Yet if activity is to be achieved by the heterodimer, how could this occur in 

TPI
T74R

:TPI
∆cat

 and TPI
M80T

:TPI
∆cat 

but not TPI
T74R,G75E

:TPI
∆cat

? 

To address putative changes in heterodimer catalysis I sought to analyze the crystal 

structures and known mechanisms of dimeric cooperation and TPI catalysis.  The dimer interface 

of TPI is composed of a mixture of hydrophobic and hydrogen bond interactions which 

ultimately contribute toward the rigidification of the catalytic site of each monomer (199,200).  

Hydrogen bonds established by water molecules sequestered at the dimer interface further 

facilitate this dimeric cooperation, and are themselves participants in the catalytic process (201).  

To help explain this cooperation, the monomers involved in this interplay will be referred to as A 

and B.   

The cooperative nature of TPI catalysis is best exemplified by the extension of the 3
rd

 

loop of TPI[A] toward the catalytic site of its partner [B].  The residues of this loop are entirely 

conserved and catalytic simulations suggest that T74[A] flips “in” and “out” toward its dimer 

partner’s catalytic site, alternating the coordination of a catalytic H95[B] (21).  The alternating 

nature of this interaction allows the substrate to facilitate rapid de- and re-protonation of E165[B] 

and H95[B] in sequence.  This shuttling of protons between these catalytic residues is 

fundamental to the isomerization mechanism (202).  Additionally, hydrophobic interactions 

provided by non-polar members of the 3
rd

 loop [A] support the appropriate alignment of a 

catalytic N10[B] and K12[B] which are required for substrate binding and stabilization of 

substrate transition states (18).  Without these hydrophobic support mechanisms it has been 

demonstrated that the active site of the monomer becomes highly flexible, resulting in dramatic 

reductions in substrate affinity and catalytic capacity (18).   
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Each catalytic site within the [A]:[B] dimer is independent of the other; inactivation of 

one catalytic site does not influence the substrate affinity or catalysis of the other unless the 

dimer interface is perturbed (203).  This observation is important considering the nature of the 

proposed orientation of the TPI
T74R

 mutation.  When first described, the T74R[A] mutant was 

predicted to fit within the bottom of the catalytic site of the [B] monomer when a dimer was 

forced by a modeling algorithm (19).  Experimentally it was determined that the T74R mutation 

conveyed a strong disruption of the dimer interface leading to a largely monomeric population of 

TPI in vitro.  To obtain a fully monomeric population of protein to examine, the authors 

generated an additional mutation at the G75 position, and the double mutant was confirmed to be 

completely monomeric (19).   

I believe that the nuances in the positioning of these dimer interface mutations could 

ultimately be responsible for the complete phenotypic rescue via a catalytically inactive TPI to 

the TPI
M80T

 and TPI
T74R

, but not the TPI
G75E

 and TPI
T74R,G75E

 alleles.  Of the three mutations 

examined, M80T[A] and T74R[A] would be predicted to elicit their catalytic defects by i) 

reducing dimer affinity and ii) modulating the integrity of the catalytic pocket of TPI[B].  

Conversely, G75E[A] is hypothesized to i) disrupt the 3
rd

 loop flexibility provided by the G75 

(21) thereby conveying stress back into TPI[A] upon dimerization, and ii) project into and 

displace important waters sequestered in the dimer interface which contribute to the catalysis of 

both [A] and [B].  These alternative positions, when heterodimerized with an inactive TPI[B], 

would lead to various catalytic outcomes for [A].  Importantly, both M80T[A] and T74R[A] 

would be left with an intact catalytic site [A] which if localized appropriately could contribute a 

modicum of isomerase activity [Figure 27].  Further, the displacement of K12[B] from ∆cat[B] 

may actually generate an amenable pocket for T74R[A].  Conversely, TPI isoforms containing 
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the G75E[A] mutation would continue to exhibit a dearth of local activity even when paired with 

an inactive partner[B]. 

5.3 SYNAPTIC TPI DEFICIENCY AND BEHAVIOR 

Measurements of lysate isomerase activity have firmly established that gross isomerase activity 

is not predictive of presence or severity of TPI Deficiency, yet allelic interactions suggest some 

role for catalytic activity in this disease.  These data could indicate the formation of catalytic 

microdomains [Figure 30] or differential enrichment of activity within specific tissues, both of 

which would be impossible to discriminate using our lysate isomerase assay.  FlyAtlas – a tissue-

based microarray survey of Drosophila gene expression – failed to detect a dramatic enrichment 

of TPI mRNA in the larval or adult CNS relative to the fly as a whole (204), suggesting that if 

tissue-specific differences in TPI activity were the culprit then regulation of these differences 

would occur at a translational or protein stability level.  Based on the ubiquity of TPI expression, 

I would more simply suggest that if tissue-specific effects are occurring it is more likely that 

unknown secondary factors are contributing to these events, possibly forming microdomains of 

necessary activity.  For example, aldolase is another glycolytic enzyme which is expressed 

ubiquitously and at relatively consistent levels (204).  However, its localization to the endosome 

is required for vacuolar H
+
-ATPase (V-ATPase) assembly and function (119,120,205).  Though 

V-ATPase function is important in all tissues, a loss of rapid acidification of vesicles, or poor 

maintenance of the proton gradient in endosomes could lead to dysfunction in receptor dynamics 

as well as vesicle loading.   
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Previously, the only secondary factors known to directly interact with TPI were the 

cytoskeletal protein cofilin and the sodium-potassium exchanging ATPase (Na,K-ATPase).  

Work in mammalian systems described the localization of TPI at the Na,K-ATPase by cofilin, 

and concluded that this was to establish a glycolytic complex to feed the ATPase (206).  

Experiments performed in the lab prior to my integration were unable to identify cofillin:TPI 

complexes [data not shown].  Additionally, my TPI::Na,K-ATPase genetic interactions yielded 

unclear results.  Interestingly though, previous studies in our lab have detailed the sequestration 

of TPI
M80T

 by heat shock proteins 70 and 90 (Hsp70, Hsp90) (86).  In this way, it is possible that 

the differences in TPI
∆cat

 complementation could be due to changes in this sequestration.  Indeed, 

my discussion in Chapter 3 centered on the possibility of sequestration and degradation of TPI 

dimer mutations prior to their distal transport [Figure 30].  These assertions were based largely 

on in vitro analyses which demonstrated that these substitutions altered protein stability.  Future 

experiments could focus on the capacity of TPI
∆cat

 to protect TPI mutants from sequestration by 

chaperones.  Additionally, changes in enzyme stability could be assessed in vivo through 

cotransformation of yeast with differently tagged variants of TPI dimer mutants and TPI
∆cat

.  

Finally, restored distal trafficking could be measured in vivo using genetic complementation of 

fluorescently-tagged mutants. 

To identify candidate tissues and subcellular locations where TPI function could be most 

critical, I turned to the mutant phenotypes.  The vacuolar neuropathology of our TPI
M80T

 mutant 

Drosophila suggested the possibility of either neural or glial dysfunction, while their behavior 

left open the possibility of a muscular component.  As described earlier, mechanical stress 

sensitivity and thermal stress sensitivity are phenotypes enriched for neurological dysfunction 

(72); several mutations that affect primarily glia or neurons have been shown to result in these 
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behaviors.  Conversely, few mutations specifically influencing muscles have been established to 

do the same, with one of the few being a mutation in the sarco/endoplasmic reticulum calcium 

ATPase (SERCA) (207).  Though SERCA mutations elicit thermal stress sensitivity, the 

hallmarks of this SERCA phenotype are basal hypoactivity, which is slowly exacerbated at the 

non-permissive temperature with no accompanying mechanical stress paralysis or seizures. 

Therefore the confluence of both thermal- and mechanical dependant phenotypes, as well 

as the neuropathology provided the basis for looking specifically at the nervous system.  Tissue-

specific rescue experiments, often a strength of the Drosophila model system, were also 

examined.  However, it was found that the initial transposon-mediated placement of the UAS-

TPI transgenes exhibited substantial leak expression, confounding the rescue data.  These results 

were unfortunate and precluded a proper genetic anatomical dissection.  Recently, the McCabe 

laboratory has developed a new attB-mediated transgenic vector with gypsy insulator sequences 

to help protect the construct from chromatin positional effects and cis-regulatory elements (208).  

The attB sequences facilitate directed transgene placement in previously established locations in 

the genome (97,98).  Additionally, noting the propensity for insulators to enhance leak when 

combined with the widely used UAS hsp70 promoter (209,210), the authors leveraged a 

synthetic promoter construct in conjunction with the UAS system (211).  Using these constructs, 

the authors established exquisite transgenic regulatory control in a number of diverse tissues, 

with transgenes positioned on different chromosomes (208).  This system would likely be perfect 

for addressing our previous transgenic difficulties, facilitating a proper analysis of tissue-specific 

requirements of TPI and its relationship to longevity and behavior. 

Though our anatomic transgenic strategies failed to establish a tissue-specific source of 

dysfunction, the extreme thermal stress dependant phenotype of TPI
T74R

 suggested a neuronal 
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source.  As mentioned earlier, this type of acute phenotype has only been described in mutants 

which influence neural conductance or synaptic properties.  An analysis of vesicle recycling at 

the synapse revealed a conditional inhibition of endocytosis under thermal stress [Chapter 3].  

This progressive reduction in recycling was not observed at room temperature, and could be 

complemented by TPI
∆cat

, much like the adult thermal stress-dependent paralysis [Chapter 3].  

These data are the first to demonstrate that TPI Deficiency elicits neurologic dysfunction through 

a reduction in synaptic vesicle recycling.  TPI has not previously been directly linked to any of 

the endocytic machinery, but a recent study indicated that vesicle recycling was the largest 

consumer of ATP at the synapse (135).  This study established that glycolysis was a strong 

facilitator of vesicle recycling, and that glycolytic inhibition resulted in a quick cessation of 

vesicle endocytosis (135).  I lacked the experimental time necessary to identify the exact 

biochemical mechanism, but predict that if TPI mutations reduce vesicle endocytosis through an 

inhibition of synaptic glycolytic flux, we should be able to phenocopy our mutant results in 

TPI
WT

 animals through the administration of glycolytic inhibitors such as 2-deoxyglucose.  

Similarly, bath applications of ATP or GTP with the addition of membrane pore-forming 

antibiotics should facilitate a conditional rescue of the mutant phenotypes.   

Interestingly, Rangaraju and colleagues found that glycolytic inhibition had a greater 

influence over vesicle recycling than inhibition of OXPHOS (135).  The conclusions of this 

study were hinted at previously by Verstreken and colleagues, wherein the authors were able to 

inhibit synaptic mitochondrial transport, yet still achieve normal vesicle recycling (212).  Finally, 

previous work performed by the Littleton group also indicated a reduction in vesicle recycling 

through a mutation in phosphoglycerate kinase, an ATP-producing step of glycolysis (158).   
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Collectively, these studies suggest that glycolytic ATP is the primary energy source for vesicle 

recycling, and these findings strongly support a catalytic role for TPI in vesicle recycling.   

As mentioned previously, Drosophila TPI Deficiency is a multi-phenotype condition, 

consisting of both mechanical- and thermal-stress induced seizure and paralytic phenotypes.  The 

work presented in Chapter 3 demonstrates a physiologic mechanism responsible for the thermal-

stress induced paralysis, but does clarify the pathogenesis of the mechanical-stress induced 

seizures.  A survey of mechanical-stress sensitive mutants reveals they are enriched for 

metabolic and mitochondrial mutants, including genes encoding citrate synthase (213), 

ethanolamine kinase (214), a mitochondrial ribosomal protein (215), ATP6 of the electron 

transport chain (216), mitochondrial superoxide dismutase 2 (217), triosephosphate isomerase 

(50), and the adenosine nucleotide translocase (218).  Many of these reports originally focused 

on the bioenergetic effects of these mutations, but an emerging theme among these alleles has 

been an increasingly prevalent thread of altered cellular redox chemistry.   

In the TPI
M80T

 mutant it has been shown that lysate NAD
+
/NADH ratios shift toward an 

oxidative state (35).  A buildup of cytosolic NAD
+
 or NADP

+
 could have dramatic consequences 

on general excitability through their capacity to regulate various K
+
 channels and TRPM2.  

Mutations in GAPDH, the primary cytosolic source of NADH, have not been identified as a 

source of disease in human patients.  This lack of disease-association, coupled with the central 

importance of GAPDH as a regulator of vesicle transport (219), cytosolic NADH production, its 

contributions as a transcription factor (123) and regulator of apoptosis (220) all suggest lethality.  

However, inhibiting TPI function would have a clear impact in NADH production through its 

restriction of glycolysis.  In this way, it is possible that TPI dysfunction may specifically restrict 

NADH production.  Accumulation of NAD
+
 in the cytosol could activate K

+
 or TRP channels, 
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thereby altering circuit excitability.  Two-electrode voltage clamp experiments at the Drosophila 

neuromuscular junction would facilitate the analysis of mini excitatory post-junctional currents, 

as well as summation properties of excitability at the presynaptic terminal.  Failure rates when 

following train stimuli could also suggest conductance defects.  Finally, if an aberrant phenotype 

is revealed, the nature of these preparations would allow the introduction of pharmacologic redox 

modifications, facilitating an examination of redox status in these specific mutants.  

 

 

Figure 30.  Hypothesized model of TPI behavioral pathogenesis.  Long-distance transport of 

glycolytic proteins is required for their delivery to the boutons.  Wild type TPI (green) is transported to the 

terminal, enhances glycolytic flux, maintains cellular redox potential, and facilitates synaptic vesicle 

endocytosis.  Conversely, an unstable (red) and inactive (blue) TPI are sequestered and degraded, and/or 

unable to support chronic endocytosis and appropriate redox chemistry.  I hypothesize that the genetic 

complementation of the inactive and unstable variants are likely capable of restoring transport and localized 

activity at the bouton (red/blue). 

 

To support any potential synaptic redox data, measurements of NAD
+
 and NADH have 

been performed optically in vivo and in in vitro cell cultures (221-223).  These strategies could 

be a means to link the complementation of TPI mutants with a biochemical mechanism.  The 
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capacity of an inactive allele of TPI to fully complement the behavioral defects of two dimer 

interface TPI mutants (TPI
T74R

, TPI
M80T

), but incompletely attenuate two others (TPI
G75E

, 

TPI
T74R,G75E

) suggested the necessity of heterodimer interactions.  Yet coimmunoprecipitation 

experiments assessing heterodimer populations suggested no obvious role for heterodimers.  

Lysate measurements of protein levels, enzyme activity, and protein-protein interactions may not 

reflect the events occurring at a distal element like the synapse.  It is possible that the inactive 

allele provides complementation through a small population of heterodimers exhibiting a 

structural interaction – as outlined previously – to restore localized catalytic activity [Figure 30].  

This type of catalytic influence could provide the means to restore robust production of cytosolic 

NADH at critical microdomains at the synapse or in the axon [Figure 30].  Indeed, future 

experiments will require examination of localization and quantification of TPI populations at the 

nerve terminal.  This will be accomplished by optical measurements of C-terminal CFP tags I 

have recently added to each of the TPI dimer interface mutations.  Further, genetic interactions 

with the inactive allele could be assessed for the capacity to modulate the presence of the active 

TPI variants at the synapse, perhaps through small changes in stability, increased trafficking, or 

protection from sequestration.   

5.4 EVOLUTIONARY MAINTENANCE OF TPI DYSFUNCTION 

An interesting observation made by Arthur Schneider, the patriarch of TPI deficiency research, 

has been the wide-spread persistence of loss-of-function mutations within the TPI gene (26).  Dr. 

Schneider’s work has detailed up to a 40% prevalence of promoter mutations in African-

American populations, and roughly 2-4% in European and Asian populations (55).  The 
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pervasiveness of these mutations in the face of their homozygous lethality and disease has been 

extremely curious, resulting in several epidemiologists to suggest an advantage – though clearly 

not a selection – for the heterozygous condition.  My studies have established a definitive 

survival advantage for Drosophila heterozygous for a loss-of-function mutation at the dimer 

interface.  These experiments were initially meant to probe possible dominant negative effects of 

the dimer interface mutations, yet their data reveal the first demonstration of a distinct 

heterozygote advantage. 

Given the role of TPI in metabolism, it is likely that this extension in longevity is 

achieved through a well-established means of caloric restriction.  Indeed, a population survey of 

glycolytic loss-of-function revealed a relatively high level of genetic maintenance for TPI and 

pyruvate kinase dysfunction in particular (56).  Decades of work supports this idea that caloric 

restriction extends longevity, though the mechanisms responsible for this extension have been 

hotly debated.  It has been proposed that caloric restriction extends longevity by several possible 

means: reduced oxidative stress, reduced DNA damage, and hormesis.  Based on TPI’s 

established ability to reroute glycolytic intermediates through the pentose phosphate pathway 

(PPP), I would contend the partial loss-of-function likely reduced oxidative stress in our animals, 

though I have no experimental data to support this assertion. 

5.5 NEW FRONTIERS IN GENOMIC ENGINEERING 

Little of the science presented here would have been possible if not for genomic engineering 

(GE).  The GE used in these studies is an incredibly powerful technique for the evaluation of a 

single gene.  As has been shown previously, the true value of this approach is its rapid generation 
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of diverse alleles once the founder line has been established.  Importantly, all of these newly 

generated alleles utilize endogenous regulatory mechanisms to achieve normal spatial, quantal, 

and temporal regulation.  These alleles can then be compared in similar genetic backgrounds to 

facilitate beautiful genetic experiments featuring the perfect controls.  Further, the use of 

endogenous promoter elements ensures that your work will not be complicated by possible 

overexpression or misexpression artifacts.  Transgenic overexpression is a well-established 

danger for any molecular geneticist, as you are biasing the evaluation of your molecule in the 

face of its poorly understood mechanisms of action.  For example, if your protein of interest were 

to form stoichiometric protein complexes, the overexpression of said transgene could have 

deleterious effects on the purposeful regulation of its partners.  Scaffolding molecules such as the 

sodium-hydrogen regulatory exchange factor1 (NHERF1) (224) and post-synaptic density 

protein 95 (PSD95) (225) are difficult to study in part due to the importance of stoichiometry.  

Further, overexpression of wild type could fail to achieve its desired effect without compensatory 

amplification of its complex partners, resulting in a falsely negative result.  A simple example of 

these principles can been seen in the expression of the Na,K-ATPase.  The Na,K-ATPase is 

composed of two primary subunits, an alpha and a beta.  The alpha subunit is the primary 

catalytic component of the ATPase, yet it will not leave the endoplasmic reticulum without 

complexing with beta for transport (226).  In this way, overexpression of alpha without beta 

could result in false negative results.   

Another pitfall of traditional transgenic expression is the use of linked expression 

systems, wherein you leverage an independent promoter to drive the expression of your 

transgene.  Using a linked expresser system exposes you to misexpression of your molecule in 

tissues for which it may lack a function or elicit a new one.  For example, genes such 
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hemoglobin perform diverse roles depending on the tissue in which it is expressed.  

Hemoglobin’s function as an oxygen-carrier in erythrocytes is well-defined.  However, its ability 

to bind other gas molecules has recently implicated hemoglobin as a regulator of nitric oxide 

signaling between the vasculature and muscle (9-11).  Additionally, its function as a metal 

chelator could deplete important tissues of vital cofactors necessary for other protein functions.  

In this manner, conclusions made from an incompletely characterized promoter could achieve 

off-target effects, necessitating the utilization of multiple redundant drivers for the confirmation 

of tissue-specificity.  However, all of these concerns have been anticipated in the genomic 

engineering system, as the critical viral integration site was knocked into the endogenous gene 

locus. 

Yet there are definite drawbacks to the implementation of the genomic engineering 

technology.  In particular, the inefficiencies of homologous recombination have been well-

documented, and often discourage the inexperienced from utilizing these powerful genetic 

technologies.  Upon initiating an HR project, a scientist has little way of knowing how amenable 

the targeted gene locus will be to recombination.  To this end, leveraging a genetic lesion 

technology in conjunction with the attP knock-in could be a tremendous tool for enhancing the 

efficiency of founder line generation.  The new CRISPR system utilizes an RNA-Cas9 

methodology to elicit guided double strand breaks in the genome (227,228).  This system has 

been lauded as a new and highly efficient means of generating targeted gene knockouts, yet its 

leverage toward genomic engineering would be of much greater utility. 

The introduction of both 5’ and 3’ double strand breaks within the genomic engineering 

homology arms would dramatically increases the rate of homologous repair, thus increasing the 

knock-in rate to generate the founder lines (229,230).  The challenges of such a strategy are the 
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generation and administration of the targeted guide strand RNAs, necessitating embryonic co-

injection of these constructs with linearized pGX constructs for the initial recombination event 

(229,230).  Incredibly, the authors utilized two guide RNA-targeted Cas9s to cleave 5’ and 3’ 

their desired 4.6kb gene locus, and used a simple 160 nucleotide (nt) single stranded donor with 

50nt homology arms to mediate a 3.3% replacement of their gene (229).  This combinatorial 

strategy could have dramatic effects on the time and monetary investments required for genomic 

engineering.  However, this is clearly a mutagenesis-based, reductionist approach, and thus has 

inherent limitations. 

5.6 MUTAGENESIS: FORWARD, REVERSE, AND EVERYTHING IN BETWEEN 

Since the establishment of modern genetic research by Thomas Hunt Morgan and his students, 

mutagenesis has been a tool for the investigation of genome organization as well as its content.  

Much of the fundamental work on the organization of chromosomes, genes, and heredity was 

first performed using phenotypic markers derived from mutations.  Yet upon the establishment of 

the gene as a discrete entity, forward genetics has been a means to expand our understanding of 

biology.  Through the induction of both gain-of-function and loss-of-function mutations, 

generations of scientists have probed the biological functions of our increasingly broad catalog 

of genes.  This forward genetic strategy has consistently pushed the boundaries of our 

understanding and remains one of the primary mechanisms of discovery-based science.   

Yet as molecular technology has advanced, we have developed and refined our 

understanding of genetic architecture, as well as the molecules responsible for its persistence.  

The identification of nucleic acids and the genetic code, the polymerases responsible for its 
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replication, and the repair mechanisms which maintain integrity were all landmark discoveries 

which have facilitated our current understanding of the gene.  In turn scientists have taken these 

discoveries and leveraged them into technologies with which to intentionally modulate the gene 

with the goal of intentionally changing its content, yielding the field of reverse genetics.   

In the course of my thesis work I have utilized observations and techniques owing from 

both forward and reverse genetic principles.  The impetus for my thesis work, the TPI
M80T

 

(sugarkill – TPI
sgk

) allele, was first identified in a forward genetic screen.  Yet the entirety of my 

dissertation research has been a tour de force in reverse genetics – utilizing a structure-function-

physiology-behavior experimental paradigm.  I have endeavored as a reductionist to relate 

changes in protein structure to important phenotypic consequences.  I have felt that working 

within a model system which allowed me to observe obvious whole-animal phenotypes was an 

important strategy for ensuring the impact of my experiments, maintaining their biological 

importance.  Yet in reflection on my thesis work, I feel that I relied too heavily on these reverse 

genetic principles, at times to the exclusion of good observation-based investigative science. 

My experience with reverse genetic approaches has left me with an intimate 

understanding of its strengths and weaknesses.  I have leaned heavily on structural biology to 

develop hypotheses surrounding physical TPI regions of putative biological importance.  Yet 

from my mutagenesis experiments I have found that there are seemingly endless ways of 

disrupting function, and the means to define uniting principles are not always obvious.  The core 

of this problem is inherent in the complexity of my in vivo system.  Genes are not singly 

demarcated entities within a larger framework of the chromosome.  Genes are integrated 

components of biology which cumulatively lead to a complex interactive system.  Genomic 

modifications of a single nucleotide within the framework of an organism will lead to 
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complications arising from not only its particular alteration, but that of its affectors and effectors.  

Reverse genetics is the most appropriate approach when asking questions with clearly defined 

players.  How does protein X interact with protein Y?  How does enzyme Q catalyze the 

isomerization of substrate R?  Yet in my case, I was making observations not merely at the 

biochemical level, but within the context of biology.   

I was performing experiments with reductionist approaches, yet my initial observation of 

complementation with a catalytically inactive allele clearly demonstrated an ignorance of all the 

affectors and effectors of TPI.  I continued my reverse genetic approach, establishing that 

dimerization defects were sufficient to elicit pathology, but spent too much time in this mindset 

as I struggled with interpreting my genetic interactions.  It was not until the end of my 

dissertation work that I retooled and took an observation-based investigative angle.  I consider it 

extremely unfortunate that it took me so long to initiate my experiments looking at synaptic 

dynamics, though I consider it one of the more important turning points for my science and my 

development as a scientist.  Observation-based science is extremely valuable in generating 

questions with testable hypotheses, which can then utilize reverse approaches; and the role of 

forward genetics is simply the means to make novel observations.  Clearly there is no one 

experimental approach that is more valuable than the others – each has its strengths and 

weaknesses – and in reflection, I think good science is simply the recognition and application of 

whatever approach is necessary to address the question at hand.  …with appropriate controls of 

course. 
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