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UV RESONANCE RAMAN SPECTROSCOPY STUDY OF PEPTIDE
CONFORMATIONAL TRANSITIONS
Zhenmin Hong, PhD

University of Pittsburgh, 2014

The conformational transition between a-helix-like conformations and the polyproline 11
conformation (now recognized by many as the conformation of unfolded peptides) is
investigated here. We utilized UV resonance Raman spectroscopy together with circular
dichroism and nuclear magnetic resonance spectroscopy to investigate the conformations of three
polyalanine peptides and the impacts of salt bridge side chain interaction and external surfactants
on the transitions between these conformations. We found that the macrodipole-terminal charge
interactions typically affect the a-helix stability more strongly than the salt bridge side chain
interactions do. The a-helix-turn-a-helix conformation can form in short peptides with ~20
residues. The arginine vibration band at ~1170 cm™ was found to report on the guanidinium
group hydration. Addition of anionic surfactants induces o-helix-like conformations in short
cationic peptides through the formation of peptide-surfactant aggregates. The studies here
highlight the crucial roles of hydrogen bonding, hydrophobic effect and electrostatic interactions
in the peptide conformational transitions. In addition, the impact of sample self absorption on the
observed resonance Raman intensities has also been theoretically investigated. In general, the
Raman intensities increase as the excitation approaches resonance. However, narrow bandwidth

impurity absorption can cause the observed Raman intensities to decrease.
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1.0 PROTEIN FOLDING

Proteins consist of one or more chains of amino acid residues. The length of a single chain
ranges from several amino acids to thousands of amino acids. Proteins are one of the most
abundant and important biological molecules in a living organism. They exist in every cell and
actively participate in all biological processes. Proteins serve many essential biological functions,
including, but not limit to, catalysis of biochemical reactions, cell signaling, immune responses,
and mechanical functions. The study of proteins and their functions is vital toward understanding

of various biological processes, disease diagnoses and drug discovery.

1.1  PROTEIN STRUCTURES

Unlike random coiled polymers, proteins adopt certain secondary and tertiary structures to
maintain specific biological functions. Protein misfolding causes many diseases including
Alzheimer's disease, Huntington's disease, Parkinson's disease and Creutzfeldt-Jakob disease,
etc.' The structures of proteins are determined by the amino acids sequence. Pauling first

described two types of protein secondary structures, a-helix and B-sheet.” Other secondary

structures, like B-turns and polyproline 11, were discovered later.



1.1.1 Dihedral angle and Ramachandran plot

The bond between the carbonyl C atom and the N atom shows partial double bond character due
to the delocalization of r orbital electrons of the carbonyl. This partial double bond character
restrains the amide from free rotation. The two o bonds, between the N atom and the C, atom,
the C,, atom and the C atom, are allowed to rotate freely. To quantitatively describe the rotation,
a pair of dihedral angles (¢, w) has been defined. The ¢ angle is defined as the dihedral angle
between the amide plane and the C,-carbonyl plane, and the yangle is defined as the dihedral
angle between of C,-C-N plane and amide plane (Figure 1. 1). Collectively, the (¢, ) dihedral

pairs of all residues dictate the protein secondary and tertiary structures.

Figure 1. 1. Peptide backbone dihedral angles

A Ramachandran plot for an amino acid is generated by plotting the probabilities that the
peptide bond adopts a certain dihedral angle pair. Due to the steric hindrance of side chains, the
amino acids are unable to access all (¢, ) space (Figure 1. 2D). The probability is much higher
for negative ¢ angle than positive one, due to the chirality of amino acids. The smaller the side
chain is, the less constraint the amino acid has. The smallest amino acid, glycine (Gly), which

lacks side chain and is not chiral, can access most of (¢, w) space and shows a symmetric



Ramachandran plot (Figure 1. 2A). Proline (Pro), which is a confined tertiary amide, can only

access a small (¢, ) region of the Ramachandran plot (Figure 1. 2B).

Psi

Psi

Figure 1. 2. Ramachandran plot
(A) glycine, (B) proline, (C) other amino acids except glycine and proline, (D) all amino acids. These plots are

reproduced from http://kinemage.biochem.duke.edu/validation/model.html

The Ramachandran plot is classified as "core”, "allowed", “generously allowed" and
“forbidden” regions.® This classification is a qualitative energetic scale. The “core” regions
involve the most energetically preferred conformations, whereas the "forbidden™ regions involve
the most unfavorable conformations. Different secondary structures have different dihedral
angles and locate in different regions of the Ramachandran plot (Figure 1. 2D). Most of the

amino acids fall in the "core" or "allowed" regions.



1.1.2 Secondary structure

Flory predicted that a completely flexible homogeneous polymer chain in solution without any
specific interactions is in a random coil state based on the three dimensional random walk
model.* However, a peptide is neither completely flexible nor homogeneous. The partial double
bond character of the amide and the steric hindrance of side chains restrict polypeptide backbone
from free rotation. In addition, the carbonyl oxygen (C=0O) can serve as a hydrogen bond (H-
bond) acceptor to form two H-bonds; the amide hydrogen (N-H), as a donor, can form one H-
bond. Therefore, peptides can form intrapeptide H-bonds that also restrict free rotation. The side
chains can also be involved in electrostatic interactions, hydrophobic interactions, cation-nt
interactions, etc. All these interactions together contribute to the determination of peptide

secondary structures.

31n-helix a-helix nt-helix

Figure 1. 3. CPK models of a-helix, 3;5-helix and r-helix



The most common secondary structure is the a-helix. The a-helix is a right handed helix
with 3.6 residues per turn and the pitch is 5.4 A. The N-H of the ith residue forms an intra-
peptide H-bond with the C=0 of the i+4 th residue. The N-H groups of the first four N-terminus
residues and the C=0 groups of the first four C-terminus residues in an a-helix cannot form
intrapeptide H-bonds effectively.

In a long a-helix, each amide carries a dipole. All these dipoles from different amides
form a macrodipole which is parallel to the helix axis with a direction pointing from C-terminus
toward N-terminus. The perpendicular components of these dipoles are cancelled out. This
macrodipole plays an important role in helix stabilization and melting.>®

The 310-helix and m-helix are right handed helices. The 30-helix is a tightly twisted o-
helix with 3 residues per turn. In contrast, the loosely twisted n-helix has 4.4 residues in each
turn. 30-helix occasionally can be found in proteins, while the m-helix is rare. Table 1. 1 and

Figure 1. 3 show the difference among three types of helices.

Table 1. 1. Three types of helices

Helix type | Abundance | Residues/turn | Height/turn H-bond type (o, )
a-helix | Abundant 3.6 5.4 A ii+4 (-60,-45)
310-helix | Infrequent 3.0 6.0 A i,i+3 (-50,-25)
n-helix Rare 4.4 48 A i,i+5 (-60,-70)

The second class of the protein secondary structure is 3-sheet, which are also abundant in
proteins. B-sheets are formed by B-strands that are H-bonded with the adjacent strands. The two

flanking B-strands in a 3-sheet are only partially involved in inter-strand H-bonding.
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Figure 1. 4. Mixed B-sheet including antiparallel and parallel sheets

The consecutive strands in a B-sheet can be either parallel with dihedral angles of (-120,
115) or antiparallel with dihedral angels of (-140, 135). In the antiparallel arrangement, the
consecutive strand reverses the propagation direction so that the N-terminus of one strand is
adjacent to the C-terminus of the next strand. This arrangement produces stronger inter-strand H-
bonds between the C=0 and N-H of adjacent strands, due to the optimized orientation of H-
bonds. Each amide bond of a 3-strand also carries a dipole like that in an a-helix. All the dipoles
sum up into a macrodipole pointing from C-terminus toward N-terminus. The interaction of
macrodipoles of adjacent antiparallel strands is favorable, which stabilizes the antiparallel
arrangement. In the parallel arrangement, the successive strands are arranged in the same
direction. Therefore, the N (or C)-terminus of one strand is adjacent to the N (or C)-terminus of
the next strand. The macrodipole interaction between adjacent strands is unfavorable. In addition,
the configuration of the carbonyl and amine in adjacent strands is slightly off from the optimal

orientation. As a result, the parallel B-sheet is slightly less stable than the antiparallel 3-sheet.



Turns are the third class of secondary structure.”*® A turn links two secondary structures
together into a supersecondary structure. Based on the number of residues involved in a turn,
turns are divided into different types. The most common type is the B-turn, which involves four
residues. The B-turn includes various subclasses, namely, type | and I’, type Il and I, type IlI,
type V, type Vla, type VIb and type VIII. All these B-turns involve a H-bond between CO of the
ith residue and NH of the (i+3)th residue. The smaller y-turn involves three residues.

Proline is a special amino acid. It can only access to limited regions of the Ramachandran
plot (Figure 1. 2B), due to its tertiary amide structure. Polyproline peptides assume two different
conformations, polyproline | (PPI) and polyproline Il (PPII). Recently, the PPIl conformation
with dihedral angles (-75, 150) has received attentions since it has been proposed that unfolded

11-12

non-proline peptides adopt the PPII conformation instead of the random coil. The PPII

conformation is a left handed helix, where all the amides are H-bonded to water.

Figure 1. 5. Polyproline 1 conformation



1.1.3 Tertiary structure

Proteins are composed of multiple secondary structures that assemble into specific
configurations that are known as the tertiary structure of proteins. Tertiary structure is the overall
three dimensional arrangement of all atoms of a protein. Amino acids that are far apart in the
primary sequence of a protein can be very close to each other in the tertiary structure and interact
with each other. The interaction may further help to maintain the tertiary structure.

Based on the tertiary structure, proteins can be classified into three groups: fibrous
proteins, globular proteins and intrinsically disordered proteins (IDPs). Fibrous proteins usually
contain B-sheets or B-strands and a few [-turns, which are usually assembled into fibers.
Globular proteins contain several types of secondary structures and are usually folded into a
spherical or globular shape. In contrast, intrinsically disordered proteins are flexible, lacking
persistent secondary / tertiary structure.™>*® Fibrous proteins are generally insoluble in water and
rigid, providing functions such as structural support. Most enzymes and regulatory proteins are
globular proteins with hydrophobic cores buried inside and hydrophilic surfaces, which maintain
the solubility of proteins. The IDPs remain unstructured so to facilitate the folding upon binding
to their biological targets. ***' The fibrillation of globular proteins involves the aggregation of

proteins, which may cause many serious diseases."'*%°

1.2 INTERACTIONS IN PROTEIN

The stability of protein relies on various interactions.?” These interactions include H-bonding,?®

van der Waals interaction, hydrophobic interaction, electrostatic interaction (ion pair or salt



bridge)** and cation-n interaction**%3

, etc. Proteins are only marginally stable in aqueous
solution at room temperature. A small perturbation may shift protein structure equilibrium and

denature a protein.

1.2.1 Hydrogen bonding

H-bonding is an interaction that a hydrogen atom is shared by two electronegative atoms.
Usually the H-bond donor is an amine or hydroxyl, while the acceptor is a carbonyl or other
group with large electronegative atoms having lone pairs. The H-bond usually is described as an
electrostatic interaction, though it shows some covalent bonding features. The H-bond acceptor
can form a limited number of H-bonds depending on its number of lone pairs, while the donor
can only form one H-bond.

The peptide backbone involves amides, each of which has an N-H group as a potential H-
bonding donor and a carbonyl as H-bonding acceptor. It is therefore expected that a peptide in
aqueous solution would form not only intra-peptide H-bonds between N-H and C=0O but also
intermolecular H-bonds with water molecules. Side chains with H-bonding donor or acceptor can
also form H-bonds.

The thermodynamics of H-bonding has also been extensively studied. It is adequate to
describe the system by classical thermodynamics treatment. The enthalpy and entropy are
temperature independent and the Gibbs free energy is thus simply a linear function of
temperature. Figure 1. 6A shows the diagram of thermodynamic parameters for H-bonding.

H-bonding is the dominant driving force for secondary structure formation. The intra-
peptide H-bonding is usually slightly stronger than the peptide-water inter-molecular H-bonding.
If the number of intra-peptide H-bonds is sufficiently large, the intra-peptide H-bonding drive the

9



peptide to form appropriate compact secondary structures, usually o-helix or B-sheet from PPII
or other extended structures where peptide are fully inter-molecularly H-bonded to water.

The importance of H-bonding in the peptide secondary structure formation is proved by
experiments. Water has a very strong H-bonding donation ability and a moderate H-bonding
acceptance ability.>* Transferring peptides from aqueous solution into solvents that have weaker
H-bonding donation ability and/or weaker H-bonding acceptance ability stabilizes the secondary

structures. Indeed, trifluoroethanol (TFE)**

that has extremely strong H-bonding donation
ability and no H-bonding acceptance ability strongly promotes the formation of o-helix in
peptides. Acetonitrile®” that has both weak H-bonding donation and acceptance abilities also
increases the a-helix stability.

For an a-helix in aqueous solution, polar side chains usually pack along the backbone,
shielding the backbone intra-peptide H-bonding from water molecules and thus increasing the
stability of the a-helix.”**” Also, peptides with side chains having appropriate H-bonding
acceptors, such as Asn, Asp, Glu, Ser, GlIn, etc, close to the a-helix N-terminus can stabilize the
a-helix by forming H-bonds between these side chains and the N-terminal amide.’®*® Side
chains possessing H-bonding donors, such as Lys, His, Arg, Gln, etc, located nearby the a-helix

C-terminus would stabilize the a-helix by forming H-bonds with the C-terminal carbonyl.®®*

1.2.2 Hydrophobic effect

The hydrophobic effect is a phenomenon that causes nonpolar solutes to aggregate in aqueous
solution to minimize their exposure to water.% The hydrophobic effect is an important driving

force for micelle formation and protein folding. The thermodynamics of hydrophobic effect is
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well understood. For simple solutions, the Gibbs free energy shows a linear dependence on
temperature, as the enthalpy and entropy are temperature independent. For solutions involving
hydrophobic interaction, this transfer of a solute from nonpolar solvent into an aqueous solution
gives rise to a large heat capacity change. Therefore, the enthalpy and entropy are functions of
temperature. As a consequence, the Gibbs free energy is non-linearly dependent on temperature.
At the first order approximation, the heat capacity C, is taken to be constant, therefore the

enthalpy AH and entropy AS are?” %%

T
AH(T) = AH(T,) + J deT = AH(T,) + Cp(T -T)) (1.2)
T

T

C T
AS(T) = AS(T,) + J ?pdT = AS(Ty) + Cyln (1.2)
2

T;

IfweletT, =T, and T, = T, where AH(T,,) = 0 and AS(T,) = 0, the Gibbs free energy AG is

AG(T) = C, [(T —T,) — TlnTz (1.3)

N

Figure 1. 6B shows the diagram of the temperature dependent enthalpy, entropy and Gibbs free
energy for hydrophobic effect. The minimal AG locates at exactly T = Ts.

Hydrophobic effect has been widely accepted as the most important driving force in
protein folding based on the following evidence. (1) In protein crystals, most nonpolar residues
are buried inside the core, while most polar residues are exposed to water. On average, 86% of
the carbon and sulfur atoms are buried inside, while 40% of the neutral oxygen and nitrogen
atoms and only 32% of the charged oxygen and nitrogen atoms are found inside the core.” (2)
Nonpolar solvents tend to denature proteins. Nonpolar solvents reduce the free energy of

unfolded state of proteins by solvating the exposed nonpolar residues. (3) The native state
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conformation stability decreases at both low temperatures and high temperatures, indicating the

existence of a free energy minimum, which is predicted by eq. (1.3).
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Figure 1. 6. Comparison of enthalpy (AH), entropy (AS) and Gibbs free energy (AG)
(A) H-bonding and (B) hydrophobic ef