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EFFICIENT LEARNING WITH SOFT LABEL INFORMATION AND MULTIPLE

ANNOTATORS

Quang Nguyen, PhD

University of Pittsburgh, 2014

Nowadays, large real-world data sets are collected in science, engineering, health care and

other fields. These data provide us with a great resource for building automated learn-

ing systems. However, for many machine learning applications, data need to be annotated

(labelled) by human before they can be used for learning. Unfortunately, the annotation pro-

cess by a human expert is often very time-consuming and costly. As the result, the amount

of labeled training data instances to learn from may be limited, which in turn influences

the learning process and the quality of learned models. In this thesis, we investigate ways

of improving the learning process in supervised classification settings in which labels are

provided by human annotators. First, we study and propose a new classification learning

framework, that learns, in addition to binary class label information, also from soft-label

information reflecting the certainty or belief in the class label. We propose multiple meth-

ods, based on regression, max-margin and ranking methodologies, that use the soft label

information in order to learn better classifiers with smaller training data and hence smaller

annotation effort. We also study our soft-label approach when examples to be labeled next

are selected online using active learning. Second, we study ways of distributing the anno-

tation effort among multiple experts. We develop a new multiple-annotator learning frame-

work that explicitly models and embraces annotator differences and biases in order to learn

a consensus and annotator specific models. We demonstrate the benefits and advantages

of our frameworks on both UCI data sets and our real-world clinical data extracted from

Electronic Health Records.
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1.0 INTRODUCTION

Nowadays, large real-world data sets are collected in various areas of science, engineering,

economy, health care and other fields. These data sets provide us with a great opportunity

to understand the behavior of complex natural and man-made systems and their combina-

tions. However, many of these real-world data sets are not perfect and come with missing

information we currently have no means to collect automatically. One type of such infor-

mation is subjective labels provided by human annotators in the field that assigns data

examples to one of the classes of interest. Take for example a patient health record, while

some of the data (such as lab tests, medications given) are archived and collected, diagnoses

of some conditions, or adverse events that occurred during the hospitalization are not. In

the context of supervised learning, in order to analyze these conditions and predict them, in-

dividual patient examples must be first labeled by an expert or a group of experts. Moreover,

supervised learning systems often perform well only if they are trained on a large number

(hundreds, even thousands) of labeled examples. However, the process of labeling examples

using subjective human assessments faces a number of problems:

First, collecting labels from human annotators can be extremely time-consuming and

costly, especially in the domains where data assessment requires a high level of expertise.

For example, in our disease diagnostics task, an experienced physician needs to spend about

five minutes (on average) to review and evaluate one patient case [Nguyen et al., 2011a];

or in speech recognition tasks, [Zhu, 2005] reports that a trained linguist may take up to

seven hours to annotate one minute of audio record (e.g. 400 times as long). The challenge

is to find ways to reduce the number of examples that need to be reviewed and labeled by

an expert while improving the quality of the models learned from these examples.

Second, because of the time it may take the human to review and annotate an example,
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it is hard to expect that one annotator/expert will be able to label all examples. To address

this, instead of using one annotator, we can use multiple annotators to label examples.

However, different annotators may have different opinions, knowledge or biases, which lead

to disagreements in the labeling. For example, one physician may diagnose a patient as

having a certain disease, while another may say the opposite. Modelling and combining

all agreements/disagreements among annotators is an important and interesting problem.

Studying of this problem would help us get more insights into the labeling process, improve

the quality of labels and the performance of learning models.

The first problem focuses more on the quantity of labels, while the second one focuses

more on the quality of labels. In this thesis, we study and develop approaches to address

both quantity and quality aspects of the annotation and learning process. Our ultimate goal

is to increase the performance of classification models, while reducing and distributing the

cost of labeling. Note that our work was originally motivated by applications in medical do-

main, so many examples and discussions in this thesis are related to this domain. However,

in general, our proposed methods can be successfully applied in other domains, as we will

demonstrate on many real-world benchmark data sets.

1.1 LEARNING WITH AUXILIARY SOFT-LABEL INFORMATION

The problem of optimizing the time and cost of labeling has been studied extensively in ma-

chine learning research community. One of the most popular research directions for this

problem is Active Learning [Cohn et al., 1996]. The goal of active learning research is to

develop methods that analyze unlabeled examples, prioritize them and select those that are

most critical for the task we want to solve, while optimizing the overall data labeling cost.

We explore another direction that is orthogonal to the active learning approach, which can

help us to alleviate the costly labeling process in practice. The idea is based on a simple

premise: a human expert who gives us a subjective label can often provide us with auxiliary

information, which reflects his/her certainty in the label decision, at a cost that is insignifi-

cant when compared to the cost of example review and label assessment. To illustrate this
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point, assume an expert reviewing electronic health record (EHR) data in order to provide

some diagnostic assessment of the patient case. The complexity of clinical data prompts

him/her to spend a large amount of time reviewing and analyzing the case. However, once

the example is understood and the label decision is made, the cost of providing additional

assessment of the confidence in this decision is relatively small. For example, according

to our studies analyzing adverse clinical events (Heparin Induced Thrombocytopenia and

Amiodarone Toxicity), experts spend four to six minutes before they make a decision on the

condition and whether it is worthwhile to alert on it. In contrast, it takes them only a few

seconds to provide an auxiliary assessment of confidence, e.g. the probability of having dis-

ease or the strength of the alert. Clearly, the cost to obtain this auxiliary information is

insignificant compared to the whole data acquisition cost. The question is how to utilize it

efficiently?

We propose and study a machine learning framework in which a classification learning

problem relies, instead on just the binary class label information, on a more refined soft-

label information reflecting the certainty or belief in this label. In general, this information

can be a probabilistic/numeric score, e.g. chance of having disease is 0.7/1, 7/10, etc. or a

qualitative category, e.g. weak, medium, strong belief in having disease. We expect this

auxiliary soft-label information, when properly used, can help us to learn a better classifica-

tion model. Briefly, we expect an instance with a high (or low) probability should be easier

to classify by a proposed machine learning model, while an instance with probability close

to 0.5 likely indicates the instance is harder to classify and is close to the decision bound-

ary. The limitation of soft labeling is that assessments may be subject to noise. Studies

by [Suantak et al., 1996, Griffin and Tversky, 1992, O’Hagan et al., 2007] showed that hu-

mans are not very good in assigning subjective probabilities. To address the problem, we

propose novel methods based on the support vector machine and learning to rank method-

ologies, that are more robust to noise and able to learn high quality classifiers with smaller

numbers of examples.

Note that our learning from auxiliary soft labels approach is complementary to active

learning: while the later aims to select the most informative examples, we aim to gain more

useful information from those selected. This gives us an opportunity to combine these two
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approaches.

1.2 LEARNING WITH MULTIPLE ANNOTATORS

In practice the labeling process is often tedious and time consuming. At the same time

the human expert effort is scarce. Therefore, it is hard to expect that one annotator/expert

will be able to label all examples. To address this problem, we investigate and develop

a learning framework that lets us use the labels obtained from multiple expert annotators.

Our objective is to build a "consensus" model that agrees as much as possible with all experts

and generalizes well on future unseen data. Note that this setting is different than the

traditional supervised learning: instead of having a single annotator, we have a group of

annotators labeling examples.

The biggest challenge in multiple-annotator learning is how to model and combine all

agreements and disagreements among annotators. To develop a consensus model, we need

to grasp the causes for the labeling disagreement of different annotators. The labeling dis-

agreement may be rooted in (1) differences in the risks annotators associate with each class

label assignment, (2) differences in the knowledge (or model) annotators use to label exam-

ples, and (3) differences in the amount of effort annotators spend for labeling each case. To

illustrate the nature of these differences, let us consider the problem of diagnosing a patient

from noisy and incomplete observations. First, diagnosing a patient as not having a disease

when the patient has disease, carries a cost due to, for example, a missed opportunity to

treat the patient, or longer patient discomfort and suffering. A similar, but different cost is

caused by incorrectly diagnosing a patient. The differences in the annotator-specific utilities

(or costs) may explain differences in their label assessments. Second, while diagnoses pro-

vided by different experts may be often consistent, the knowledge they have and features

they consider when making the disease decision may differ, potentially leading to differ-

ences in labeling. It is not rare when two expert physicians disagree on a complex patient

case due to differences in their knowledge and understanding of the disease. These differ-

ences are best characterized as differences in the model they use to diagnose the patient.
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Third, different experts may spend different amounts of time to review the case and decide

on the diagnosis. This may lead to mistakes in the labeling that are inconsistent with the

expert’s own knowledge and model. Our objective is to develop a learning framework that

will embrace these types of differences and find a consensus model.

In this dissertation, I propose and develop a new multiple-annotator learning approach

that takes into account the annotators’ reliability as well as differences in the annotator-

specific models and biases when learning a consensus model.

1.3 ORGANIZATION OF THE THESIS

This thesis is organized as follows:

Chapter 2 provides background and relevant research for supervised classification and

approaches for label efficient learning. In particular, we start with an overview of super-

vised classification learning, with more details on logistic regression and maximum margin

methods. Then we review relevant research in active learning, transfer learning, learning

with auxiliary soft-label information and multi-annotator learning fields.

Chapter 3 describes our approach for learning with auxiliary soft-label information and

the combination of active learning and auxiliary information in one learning framework.

We demonstrate the benefits of our methods on a number of UCI data sets, while adding

noise to auxiliary assessments. We also test our approach on real medical data representing

experts assessment of the risk of the Heparin Induced Thrombocytopenia (HIT) [Warkentin

et al., 2000] given a set of patients’ observations and labs.

Chapter 4 describes our approach for learning with multiple annotators, followed by

experimental results. We study our framework on synthetic (UCI-derived) datasets and on

our real-world multiple expert learning problem in medical domain. First, for the synthetic

data we start from the ground consensus model and show that we can recover it accurately

from simulated experts’ labels that may differ because of the expert-specific parameters.

Second, we show benefits of our approach on HIT data.

Chapter 5 outlines our contributions and open research questions.
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Finally, I would like to note that parts of this thesis have been previously published

in [Nguyen et al., 2011a], [Nguyen et al., 2011b], [Nguyen et al., 2013], [Valizadegan et al.,

2012], [Valizadegan et al., 2013].
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2.0 BACKGROUND

This chapter outlines background and relevant research for methods we describe in this

thesis. We start with the basics of supervised learning and classification methods, then

discuss label efficient learning and related works. We use the following notation throughout

this document: matrices are denoted by capital letters, vectors by boldface lower case letters

and scalars by normal lower case letters.

2.1 SUPERVISED CLASSIFICATION LEARNING

Supervised learning is a sub-field of machine learning, where the task is to learn a mapping

from input examples to desired output targets. In the standard supervised setting, training

data consist of examples and corresponding labels (targets), which are given by a teacher

(labeller). The goal is to learn a model that can accurately predict labels of future unseen

examples. Formally, given training data D = {d1,d2, ...,dN } where di is a pair of (xi, yi), xi

is an input feature vector, yi is a desired output given by a teacher, the objective is to learn

a mapping function f : X → Y such that for a new future example xnew, f (xnew) ≈ ynew. If

desired outputs are continuous values then the learning problem is regression, otherwise

the learning problem is classification if desired outputs are discrete.

In this thesis we focus on the classification learning, which has many applications in

practice, for example, given historical clinical data, predict whether a (future) patient has

disease or not, or given a text database, classify a new text document to one of possible topics

(news, sport, etc.). In general, there may be any number of desired class outputs, however,

the most frequently researched problem is binary classification, where outputs belong to
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two classes, e.g. a disease is detected/not detected.

The exact form of the model f : X → Y , and the algorithms used to learn it, can take

on different forms. For example, the model can be based on linear discriminant analysis

(LDA) [Fisher, 1936], logistic regression [McCullagh and Nelder, 1989], maximum margin

(support vector machines) [Cortes and Vapnik, 1995], probabilistic models such a Naive

Bayes model [Domingos and Pazzani, 1997] or a Bayesian belief network [Pearl, 1985], and

classification trees [Breiman et al., 1984]. In addition, there are various ensemble methods,

such as bagging [Breiman, 1996] and boosting [Schapire, 1990], where multiple individual

(weak) learners are combined together to create a strong one.

In this chapter, we describe Logistic Regression [McCullagh and Nelder, 1989] and Max-

imum Margin [Cortes and Vapnik, 1995] methods in more details. These are the two of the

most widely used baselines in classification learning research. Moreover, many methods

mentioned in this thesis, including some of ours, are based on these methods, so a review of

them would be useful.

2.1.1 Logistic regression

We want to learn a classification function f : X → Y , that maps input (features) X to one

of the class labels {0,1..k} in Y . One way to do this is to define a function g i(x) : X → R for

each class i ∈ {0,1, ..,k}, then classify an input example x to the class with the highest value

of g i(x), i.e. f (x) = argmaxi∈{0..k} g i(x). Intuitively, function g i(x) represents a kind of class

membership, and an example belongs to the class for which it has the highest membership

value.

For illustration let us consider the binary classification case, i.e. Y ∈ {0,1}. Figure 1

illustrates the input space with positive and negative examples and the decision boundary

defined by g i(x), i ∈ {0,1}. If g1(x) > g0(x) then x belongs to class 1 (positive), otherwise

it belongs to class 0 (negative). The decision boundary is defined when g1(x) = g0(x), e.g.

membership values are equal.

Function g i can be designed in different ways. The logistic regression [McCullagh and
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Figure 1: Discriminant functions and decision boundary.

Nelder, 1989], one of the most commonly used models, defines g1 and g0 as follows:

g1(x) = 1

1+ e−wTx
= p(y= 1|x,w)

g0(x) = p(y= 0|x,w)= 1− p(y= 1|x,w)

An example x will be assigned to class 1 if g1(x)≥ 0.5, and class 0 otherwise.

The main idea of logistic regression is to obtain a probabilistic interpretation of class

membership by transforming a linear combination of input vector x, i.e. wTx, into a proba-

bilistic value. The logistic function 1
1+e−wT x

is useful because it can take any input wTx from

(−∞,+∞) range and transforms it into an output in (0,1) range.

2.1.1.1 Learning the logistic regression model Let D i = (xi, yi) denotes the set of in-

put examples xi and labels yi, and µi = p(yi = 1|xi,w)= g(wTx). We learn logistic regression

model by maximizing the likelihood of data:

w∗ = argmaxwL(D,w)

where

L(D,w) =
N∏

i=1
p(y= yi|xi,w)

=
N∏

i=1
µ

yi
i (1−µi)1−yi
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This is equivalent to maximizing the log-likelihood of data since the optimal weights are

the same for both likelihood and log-likelihood:

w∗ = argmaxw[logL(D,w)] (2.1)

= argmaxwl(D,w)

= argminw− l(D,w)

= argminw− log
N∏

i=1
p(y= yi|xi,w)

= argminw− log
N∏

i=1
µ

yi
i (1−µi)1−yi

= argminw−
N∑

i=1
yi logµi + (1− yi) log(1−µi)

We can solve the optimization problem maxw l(D,w) = minw−l(D,w) by taking the

derivatives and updating the weight vector w by some scheme, for example, gradient de-

scent. More specifically, the gradient of the log-likelihood of data for the logistic regression

model becomes:

5w− l(D,w)=
N∑

i=1
−xi(yi − f (w,xi))

The gradient descent procedure can be implemented by iteratively updating weights as:

w(k) =w(k−1) +α(k)
N∑

i=1
−xi(yi − f (w,xi))

where k indicates the k-th step of the updating process and α(k) is the learning rate scaling

the iterative updates.

In this section we gave a brief review of logistic regression, more details about theory

and analysis can be found in [McCullagh and Nelder, 1989].
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2.1.1.2 Regularization Over-fitting problem is a problem in which a learner achieves

high performance on training, but poor performance on test data. It can arise when the

dimensionality of x is high while the number of training examples N is small. We can reduce

the over-fitting effect by using one of the regularization approaches, such as the ridge (or

L2) regularization [Hoerl and Kennard, 1981], the lasso (or L1) regularization [Tibshirani,

1996, Friedman, 2010], or their elastic network combination [Zou and Hastie, 2005]. Using

regularization, the optimization in Equation 2.1 is modified to:

w∗ = argminwLoss(D,w)+Q(w)

where Loss(D,w)=− logL(D,w) for logistic regression and Q(w) is a regularization penalty.

Examples of regularization penalties are: Q(w) = λ||w||1 = λ
∑d

j=1 |w j| for the L1 (lasso)

regularization, or Q(w) = λ||w||2 = λ(
∑d

j=1 w2
j )

1
2 for the L2 (ridge) regularization. λ is a

constant that scales the regularization penalty. Typically this constant is optimized using

the internal cross-validation approach.

2.1.2 Maximum Margin method

The main idea of the Maximum Margin method for classification is to find the decision

hyper-plane that maximizes the margin between examples of the two classes. "Margin" is

defined as the distance from the closest examples to the decision hyper-plane. The intuition

is that among all possible decisions, the max-margin decision has the best generalization

ability. In other words, it has the best chance to classify a future example correctly. This

intuition was proved to be true. In fact, the idea has a strong foundation in statistical

learning theory: [Vapnik, 1995] proved that the bound on generalization error is minimized

by maximizing the margin.

Figure 2 illustrates this idea. In Figure 2-left positive and negative examples can be

perfectly separated by many linear decision boundaries. However, as argued by [Vapnik,

1995] and [Cortes and Vapnik, 1995], the optimal solution is the decision boundary that

maximizes the margin between positive and negative examples (Figure 2-right).

Note that the decision hyper-plane is determined only by the examples on the margin

hyper-planes (circled points in Figure 2-right). Hence, these examples are called "support
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vectors". In machine learning literature, Maximum Margin method for classification is often

referred by the term "Support Vector Machines".

Figure 2: Maximum Margin (Support Vector Machines) idea. Left: many possible decisions;

Right: maximum margin decision.

We briefly describe mathematical formulations of Linear SVM and Kernel SVM in the

following sections.

2.1.2.1 Linear Support Vector Machines Let start with a simple case, when data are

linearly separable. Figure 2 illustrates a 2-d example of this case.

Linear SVM can be formulated by the following constrained optimization problem:

min
w,b

Q(w)

subject to:

∀i = 1..N : yi(wTxi +b)≥ 1

where N is the number of examples in the training data, w is the weight vector - the model

to be learned. w defines the direction of the decision boundary. b is the bias term, which

defines the shift of the boundary. xi and yi ∈ {1,−1} are feature vector and label, respectively,

of example i. Q(w) is a regularization function (Section 2.1.1.2), which is typically written in

L2 norm in machine learning literature, but in general can be in L1 norm. For classification,

a new example x is assigned "1" (positive) if (wTx+b)> 0, otherwise "-1" (negative).

The above SVM formulation is called Hard-margin SVM, because it requires all exam-

ples of the two classes to be linearly separable. However, in practice, it is often impossible
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to separate data perfectly with a linear boundary, as shown in Figure 3. To handle this

case, we relax the above requirement by allowing SVM to make mistakes, but mistakes are

penalized in the objective function. We have the following formulation of Soft-margin SVM,

also called the primal form of (Soft) SVM:

min
w,b

Q(w)+C
∑

i
ξi (2.2)

subject to:

∀i = 1..N : yi(wTxi +b)≥ 1−ξi

ξi ≥ 0

Figure 3: Soft-Margin SVM for the linearly non-separable case. Slack variables ξi represent

distances between examples xi and margin hyper-planes.

Slack variables ξi represent distances between examples xi and margin hyper-planes.

Note that ξi = 0 if xi is located on the correct side of the margins, otherwise ξi > 0. ξi =
max(0,1− yi(wTxi + b)) is called the hinge loss. Constant C is a trade-off parameter that

defines how much misclassified examples should be penalized. In fact, Hard-margin SVM is

a special case of Soft-margin SVM with C set to infinity. Therefore, further in this document,

the term "Support Vector Machines" refers to Soft-margin SVM.

Both Hard and Soft-margin formulations are convex optimization problems, which means

that any local optimum is also the global optimum. This property is very important because

it indicates that if we can find a best local solution, we are guaranteed to have the best
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global solution. This is not the case for many other classification methods (logistic regres-

sion, neural networks, etc.), where we may be "trapped" in local optima and never find the

global optimum.

2.1.2.2 Kernel Support Vector Machines Linear SVM with soft margins is a powerful

tool when the non-separability is caused by a small number of (noisy) examples. However,

if data are highly non-linear and are not separable by a linear boundary, e.g. data shown

in Figure 4-left, then Linear SVM may not perform well. Kernel SVM was designed to

solve this problem. The idea is to map features from the original space to a new higher

dimensional space, where linear relations may exist. Figure 4 illustrates this idea: Figure 4-

left shows positive and negative examples that cannot be separable in the 2-d space; Figure

4-right shows that mapping ϕ of input data from the original 2-d space to a 3-d space may

introduce a linear boundary that can separate examples of two classes (in this case the

linear boundary is a surface).

Figure 4: Kernel SVM idea. Left: original 2-d input space, positive and negative examples

are not linearly separable; Right: function ϕ mapping original input space to a higher-

dimensional (3-d) feature space, where positive and negatives can be linearly separable.

Solving the optimization problem 2.2 in the feature space is equivalent to solving the

optimization of the following Lagrangian function:

min
w,b

L(w,b,a)= 1
2
||w||2 −

N∑
i=1

ai(yi(wTϕ(xi)+b)−1)
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where a = (a1, ...,aN)T is the vector of Lagrangian multipliers. Note that for the demon-

stration purpose we use L2 norm regularization ||w||2, which is widely used in the machine

learning literature.

Setting the derivatives of L(w,b,a) with respect to w and b equal to 0, we obtain the

following two conditions:

w =
N∑

i=1
ai yiϕ(xi)

0 =
N∑

i=1
ai yi

Plugging these conditions into L(w,b,a) gives the dual form of the maximum margin

problem:

max
a1..aN

N∑
i=1

ai − 1
2

N∑
i, j=1

aia j yi yjk(xi,x j)

subject to:

∀i = 1..N : 0≤ ai ≤ C
N∑

i=1
ai yi = 0

where k(xi,x j)=ϕ(x)Tϕ(x′) is a kernel function. For Linear SVM, k(xi,x j) is the dot product

of xi and x j : k(xi,x j)= xi ·x j.

Solving constrained optimization problems in high dimensional spaces is difficult and

computationally expensive. Therefore, kernel functions k should be designed so that SVM:

(1) has the representation power of high dimensional spaces and (2) still be computationally

efficient. This can be done by choosing a mapping from the input space I to a new feature

space F: x−→ϕ(x) , such that k(x,x′)=ϕ(x)·ϕ(x′) ∀x,x′ ∈ I. Thus, we implicitly compute dot

product in a high dimensional space F, in terms of operations in the original low dimensional

space I. This is called the "kernel trick".

Many different types of kernels have been designed by the research community. For

example, the two most widely used kernels are polynomial and radial basis functions (RBF):

• Polynomial-p: k(x,x′)= (c+x ·x′)p, p ∈ N, c ≥ 0
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• RBF: k(x,x′)= exp(−||x−x′||2
2σ2 )

In this section we gave a brief review of Support Vector Machines. More details about theory

and analysis of SVM can be found in [Cortes and Vapnik, 1995] and [Bishop, 2006].

2.2 RELATED WORK FOR LABEL EFFICIENT LEARNING

By definition supervised learning systems rely on labels given in the training data, and

in practice, they often must be trained on a large number of labelled examples in order to

perform well. However, as mentioned in the Introduction chapter, the process of labeling

examples using subjective human assessments faces two problems: (1) it can be extremely

time-consuming and costly, which results in a limited number of labeled examples, and (2) in

many cases labels are given by not only one but multiple annotators, which may introduce

disagreements/contradictions due to differences in knowledge, opinions or biases. Since

supervised learning methods rely on labeled examples, we need to find approaches to obtain

more useful information (labels) with lower cost and utilize them efficiently. Again, in this

thesis, we focus on classification learning, where our goal is to build classification models

that can learn with smaller training data and make more accurate prediction on future

unseen examples.

In this section we give an overview of research works that are relevant to our solutions

for above problems. In Section 2.2.1 we review active learning - a sub-field of machine learn-

ing that aims to reduce labeling cost by selecting the most informative examples. In Section

2.2.2 we review transfer learning that aims to reducing labeling cost by transferring useful

information from one domain/task to another domain/task. Then we give an overview of our

alternative approach - learning with auxiliary soft labels and its relevant research. In Sec-

tion 2.2.4 we summarize works in multi-annotator learning, where the two main objectives

are estimating the "true" labels and learning a consensus model, given information collected

from multiple annotators.
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2.2.1 Active learning

Active Learning is a sub-field of (supervised) machine learning, where the primary goal is

to reduce the cost of labeling examples. Active learning has been explored extensively by

the data mining and machine learning communities in recent years. In traditional "passive"

learning, the learner randomly picks examples from the database and requests labels for

them. In contrast, active learning only requests labels for the most informative examples -

ones that help to increase the performance of the current learning model. Intuitively, this

may reduce the number of examples to be labeled and accelerate the learning process.

There are two common query scenarios: stream-based [Cohn et al., 1994] and pool-based

[Lewis and Gale, 1994]. In the stream-based scenario, data come in a stream, one example at

a time, the active learner set an "informativeness" threshold and decides whether to query

for label or discard this example based on that threshold. In the pool-based scenario, the

active learner has access to a pool (subset) of all unlabeled examples. It inspects examples in

the pool and selects the k most informative examples to query for labels. While pool-based

scenario is used much more common in practice, stream-based scenario is more appropriate

in the case when limited processing power does not allow us to scan and inspect a pool of

examples (e.g. mobile applications).

Figure 5 illustrates how (pool-based) active learning works. An active learner recur-

sively performs three steps: (1) inspects unlabeled examples; (2) selects the most k informa-

tive examples and requests an annotator to label them, and (3) retrains the current learning

model with the new set of labeled examples. This process is repeated until some stopping

criteria is met, for example, N examples have been labeled, or the performance the model

has reached some satisfied threshold.

In all the scenarios, the active learner needs to select example(s) based on some "in-

formativeness" criteria. Different strategies to define the "informativeness" have been pro-

posed. We summarize the most popular ones in the following paragraphs.

Uncertainty sampling [Lewis and Gale, 1994] is the simplest and most widely used query

strategy. It queries the example that the current model predicts with the lowest confidence.

For binary classification, uncertainty sampling selects the example that has predictive prob-
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Figure 5: Active Learning scheme.

ability closest to 0.5. The idea is intuitive: if the current model can predict an example with

high confidence then this example does not carry much information to improve the model;

otherwise the example can benefit the model. For regression task, the learner queries the

example for which the current learning model has the highest output variance in its predic-

tion (e.g. least confidence).

Another popular strategy is query-by-committee (QBC) [Seung et al., 1992]. In QBC, one

first constructs a committee of different models, which are all trained on the current labeled

training data, but represent competing hypotheses. Then, committee members vote on the

labeling of query candidates. The most informative example to be queried is the one that

the committee members most disagree on. The construction of committee may be done in

different ways. For example, the approach introduced by [Seung et al., 1992] simply samples

randomly two hypotheses that are consistent with the current labeled training examples.

Another approach is query-by-bagging [Abe and Mamitsuka, 1998]. It repeatedly samples

subsets of labeled instances (using bagging [Breiman, 1996]) and trains committee models

on them. The size of committee may vary, however previous works have shown that even

a small committee (size two or three) could work well in practice ( [Settles, 2010], [Seung

et al., 1992], [Settles and Craven, 2008]).

Expected model change is the strategy that queries examples which cause the largest
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change to the current model if we knew their labels. The intuition is that if an example

changes the current learning model significantly then it likely carries much information

and can make great impact on the learning process. One example of the expected model

change strategy is the method by [Tong and Koller, 2000], where examples are selected to

maximize the Kullback-Leibler divergence between the new posterior distribution obtained

after training with the new queried label and the current posterior distribution (before the

query). Another example of this query strategy is the "expected gradient length" method

introduced by [Settles et al., 2008], where the model change was defined as the Euclidean

length of the training gradient (the vector used to estimate parameter values during the

optimization process). The disadvantage of the expected model change strategy is that "in-

formativeness" can be over-estimated, for example, gradient may be too large if some pa-

rameters become large during the optimization. Therefore, some techniques, e.g. parameter

regularization, need to be used to alleviate this problem.

Expected error reduction strategy was first proposed by [Roy and McCallum, ]. It aims to

directly reduce the generalization error of the learning model. The idea is that, for each ex-

ample xi in the unlabeled pool, the learning algorithm estimates its label and builds a model

over the combination of xi and the training labeled examples. Among them, the example

that minimizes the generalization error is selected to query for label. The disadvantage of

this strategy is the expensive computational cost.

Variance reduction strategy [Geman et al., 1992] was originally designed for regres-

sion task, but could be generalized for classification task. This strategy queries example

that would minimize the prediction variance of the current model. The intuition is that

the generalization error can be indirectly reduced by minimizing output variance. To use

this strategy one must have a way to approximate the output variance, which is not a triv-

ial problem, and also depends on specific learning models. Closed-form approximations of

output variance were derived for Gaussian random fields [Cressie, 1993] and Neural net-

works [MacKay, 1992] .
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2.2.2 Transfer learning

Transfer learning is an emerging field in machine learning research, that aims to improve

the sample complexity of learning problems with the help of additional information and

knowledge sources. The main idea is to transfer useful knowledge/information learned in

one domain or task (source) to another (target) domain or task. This would help to increase

the amount of information that the target learner can learn form, which leads to improved

predictive performance. This is not a trivial problem because we need to find out what infor-

mation is useful and beneficial for the target learner, and how to transfer that information.

2.2.2.1 Core concepts For the discussion of transfer learning we need to give the def-

initions of the core concepts: domain, task and transfer learning. For illustration let us

consider an application example: disease diagnosis, where given patient health records, the

goal is to classify them into certain classes.

Domain, denoted by D, consists of two components: the feature space X and the marginal

distribution P(X ).

Task, denoted by T , consists of two components: the label space Y and a predictive

function f that maps the feature space to the label space: f : X → Y . From probabilistic

point of view, f is the conditional probability P(Y |X ). The function f needs to be learned

from the training data, and can be used to predict the label of a future example.

Source domain and source task are denoted by DS and TS, whereas target domain

and target task are denoted by DT and TT , respectively.

Transfer Learning is a learning technique that aims to improve the predictive per-

formance of the function fT in DT by using the information and knowledge in DS and TS,

where DS 6=DT and/or TS 6=TT .

Given DS, TS, DT and TT , we may have the following cases:

• The case when DS = DT and TS = TT . This is the traditional classification learning,

where we have one domain and one task.

• The case when DS 6= DT . In this case either (1) the feature spaces in source and target

domains are different, e.g. patients have different feature vectors representing different
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bio characteristics, or (2) the feature space is the same but feature distributions are dif-

ferent: P(XS) 6= P(XT), e.g. patient data in source and target domains focus on different

patient demographics (different countries, different age groups, etc.)

• The case when TS 6= TT . In this case we have either (1) the label spaces in source and

target domains are different, e.g. there are two classes in the source domain and five

classes in the target domains, or (2) the label space is the same but the label distributions

are different: P(YS|XS) 6= P(YT |XT), e.g. the source and the target set of patient records

have very different ratios of positive/negative examples.

• The case when DS 6=DT and TS 6=TT . This is the combination of the previous two cases.

2.2.2.2 Types of information to be transferred The most important question of trans-

fer learning is "What to transfer ?". According to [Pan and Yang, 2010], there can be four

different types of information to be transferred from the source domain/task to the target

domain/task:

• Instance transfer. The main idea of this approach is to transfer a set of labeled train-

ing instances from the source data to the target data. The predictive performance is

expected to increase because the target learner has acquired more labeled data to learn

from. The source data usually cannot be used directly for the target task, so typically

some re-weighting technique is developed to assign the weights or importance of the

transferred data instances in the new domain/task. Some related works in this area

are [Dai et al., 2007], [Jiang and Zhai, 2007], [Zadrozny, 2004].

• Feature representation transfer. The main idea of this approach is to utilize infor-

mation from the source and target domains to learn a good feature representation that

reduces the difference between these domains and decrease error rates. The predictive

performance is expected to increase with the new (better) feature set. Some related

works are [Argyriou et al., 2007a], [Lee et al., 2007], [Ruckert and Kramer, 2008]. A

representative work is [Argyriou et al., 2007a], where the authors proposed to learn a

low-dimensional feature representation that is shared between source and target tasks.

• Parameter transfer. The main idea of this approach is to assume that the source and

target tasks have some shared parameters or prior distributions of hyper-parameters
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and the approach aims to increase the performance of the target learner by exploiting

these parameters. Some related works for the parameter transfer approach are ( [Evge-

niou and Pontil, 2004], [Gao et al., 2008], [Lawrence and Platt, 2004]). In Section 2.2.2.3

we will give more details about [Evgeniou and Pontil, 2004] - a representative work in

this area.

• Relation transfer. The main idea of this approach is to assume that some relations

among the data in the source and target domains are similar. Therefore, the learner

in the target domain can benefit by transferring these relations from the source do-

main. Methods for relation transfer typically use some statistical learning technique

(e.g. Markov Logic network) to transfer relation in data from the source to the target

domain. Some related works in this area are ( [Mihalkova et al., 2007], [Davis and

Domingos, 2009]). Note that data are usually in relational domains (e.g. entities are

predicates and their relations are in first-order logic), and not assumed to be indepen-

dent and identically distributed (i.i.d).

2.2.2.3 Multitask learning Multitask learning is a special type of transfer learning.

The reason we have a special interest in multitask learning is that it motivated our so-

lution for the multi-annotator learning problem (Section 2.2.4 and Chapter 4). The main

differences between multitask learning and (general) transfer learning are:

• In multitask learning we have many different tasks and the domain of all tasks is the

same, whereas in transfer learning the relations between tasks and between domains

could be in any combination (Section 2.2.2.1).

• While transfer learning focuses on improving the predictive performance of the target

learner, multitask learning learns all tasks simultaneously and aims to improve the

performance of all involved learners.

The main idea of multitask learning is that it assumes involving tasks are different but

related, i.e. they share some related information that can help to improve the learning of all

tasks simultaneously. Related works in this area aim to discover this shared information

and utilize them to learn the tasks. For example, [Caruana, 1997], [Silver, 2001] transfer
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the information among tasks through the shared hidden layer nodes in Neural Networks.

[Yu et al., 2005], [Argyriou et al., 2007b], [Evgeniou and Pontil, 2004] transfer information

through shared parameters of task-specific models.

A representative work in this area is [Evgeniou and Pontil, 2004], where the authors

proposed a SVM-based method for multitask learning. The idea is to separate the weight

vector w to be learned by the SVM into two components: a shared weight vector that is

common for all tasks; and a task specific weight vector, one for each task:

wt =w0 +vt, t ∈ {1..T}

where T is the number of tasks, w0 is the shared common weight vector, wt is the weight

vector for task t and vt is the difference between w0 and vt.

w0 and wt are incorporated into a single optimization problem and learned simultane-

ously during the optimization process:

min
w0,vT ,ξit

T∑
t=1

m∑
i=1

ξit + λ1

T

T∑
t=1

‖vt‖2 +λ2‖w0‖2

s.t. ∀i ∈ {1,2, ...,m} and t ∈ {1,2, ...,T} :

yit(w0 +vt) ·xit ≥ 1−ξit,

ξit ≥ 0

where m is the number of training examples, ξit are slack variables that penalize misclas-

sification errors, λ1 and λ2 are regularization constants and xit are feature vectors.

Note that we adopt the idea of learning the common and specific tasks for solving the

multi-annotator learning problem (Section 2.2.4). Our approach learns a common consensus

model and annotator-specific models simultaneously. However, we go beyond the Evgeniou

and Pontil’s multitask learning approach by also incorporating the consistency and bias of

different annotators into the optimization process. Details of our multi-annotator learning

framework are described in Chapter 4.
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2.2.3 Learning with auxiliary soft labels

We have done an overview of two popular label-efficient learning approaches: active learning

and transfer learning. In this work we study an alternative approach: enrichment of labeled

instances using auxiliary soft label and its incorporation into the classification learning. The

idea is simple: we ask a human expert annotator to provide us, in addition to class label,

also auxiliary soft label, reflecting his belief/certainty in the class label. This auxiliary

information can be obtained with little extra cost because most of the time was already

spent on example assessment and making class decision. Now, for each example, instead of

having only class label, we have both class and soft labels. The question is how to efficiently

utilize both kinds of labels to improve classification learning.

This problem is different than active learning: while active learning aims to select in-

formative examples to label, we aim to obtain more useful information from those examples

that are selected. This problem is also different than transfer learning because we work

in the same domain, with the same data set, the auxiliary information is (always) directly

relevant and available.

Since there are two kinds of labels available, this problem has close relationships to

both classification, regression, and also preference learning. Previous works in the machine

learning and AI community focused on one of these, but not their combination. For example,

classification algorithms (e.g. logistic regression, SVM) would use only class labels. [Smyth,

1995] used probabilistic labels to learn classification of volcanoes from radar images of dis-

tant planets. They used a simple Gaussian model and relied only on the probabilistic in-

formation to learn the classifier. In preference/rank learning [Fürnkranz and Hüllermeier,

2010], the learner would rely only on the soft label as preference/ranking score and learns a

ranking function that predicts this score. The final classification is made based on a thresh-

old of the score. For example, SVMRank ( [Herbrich et al., 1999], [Joachims, 2002]) learns

a ranking function that satisfy pairwise order constraints on every pair of examples in the

target rank.

In this work we investigate ways to improve existing algorithms by incorporating both

class and auxiliary soft labels. Moreover, we also study the problem of noise in the soft
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labels. Notice that most existing classification/regression/ranking algorithms assume that

labels are reliable (golden standard). However, as we will see in Chapter 3, human subjec-

tive assessments can be noisy, which make the learning process more difficult.

2.2.4 Learning with multiple annotators

In traditional supervised learning, examples are assumed to be annotated by a single anno-

tator - oracle, who gives ground truth labels . In contrast, in multiple-annotator learning,

each example may be labeled by one or many annotators, who are not assumed to give

ground truth labels. There are many application scenarios for multi-annotator learning,

including, but not limited to, the following:

• Each example is labeled by a large number of annotators. In this scenario, the

goal is to obtain a high-quality label for each example and the idea is, instead of acquir-

ing the label from a reliable but expensive expert, one would acquire multiple labels from

many (perhaps unreliable) annotators and try to come up with a consensus "true" label

by some voting scheme. This scenario was motivated by the emerge of crowd-souring

services (e.g. Amazon Mechanical Turk), where labels can be obtained at very low costs

by online workers.

• Different annotators label non-overlapping set of examples. This is the scenario

where each example in the training data is labeled by only one annotator, but overall

there is more than one annotator labeling the training set. The goal is to distribute

labeling efforts to different annotators. This scenario is motivated by the fact that in

many domains (e.g. medical domain), the labeling task may be costly, time-consuming

and tedious, so it is not expected that one annotator can label all examples. Note that in

this scenario, the labeling task is typically very complicated and a high level of domain

expertise is required.

• Different annotators label overlapping sets of examples. This scenario is in be-

tween of the above two scenarios, where each example can be labeled by only one or

multiple annotators. This scenario may appear where, by the nature of the application,

we may have some examples labeled by one and some labeled by many people, e.g. some
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patients may be examined by one or several physicians, or some products may be rated

by one or many consumers. In this case, the goal could include not only learning the

consensus label or model, but also exploring the relations between different annotators

through the labeling process.

Most of the current research focuses on the first case - crowd-sourcing application. How-

ever, note that in practice, there is no clear separation between the application scenarios, so

methods designed for one application can be applied for another application.

So far the most commonly used approach in multi-annotator learning is the majority

vote. For each example i ∈ {1 . . . N} from the set of N examples, the "true" label zi is estimated

by voting: zi = 1 if
∑m

k=1 yk
i ≥ 0, otherwise zi =−1, where yk

i is the label of example i given by

annotator k ∈ {1 . . .K}. The majority vote is illustrated in Figure 6. In this figure zi denotes

the (true) consensus label and yk
i denotes the label of an example provided by an annotator

(in total there are N examples and K different annotators).

 

Figure 6: Graphical model for the majority vote method. N examples labeled by K annota-

tors.

Note that majority vote focuses on estimating the "true" labels, it learns neither a con-

sensus model nor annotator-specific models. Nevertheless, the data set D = {(xi, zi)}N
i=1 gen-

erated by majority vote can be used to train a consensus model later.

The majority vote comes with two drawbacks. First, it assumes that all annotators are

equally reliable when labeling examples. However, when one reviewer is very reliable and

the other ones are unreliable, the majority vote may sway the final labels and assign incor-

rect labels to some examples. Second, tight votes are ignored when learning the majority-

based consensus model. The biggest advantage of majority vote is simplicity, which explains

why it is being used in most practical applications, and as a common baseline to compare

with more advanced methods in the field.
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The research of more advanced techniques than the majority vote has been encouraged

recently by the growing number of crowd-souring services. Using these services, one can

hire many annotators to repeatedly label examples at low cost. [Sheng et al., 2008, Snow

et al., 2008] showed that repeated labeling could help to learn better classification models.

However, like the majority vote, they assume that all annotators have the same reliability,

which is not true in practice. Other methods have been developed to address this limitation.

In general, they can be divided into two main directions, depending on the primary goal of

the learning process:

• Learning the "true" label which represents labels given by multiple annotators. This

label can be used later to learn a predictive model.

• Learning a consensus model that is representative for models of different annotators,

and this consensus model can be applied directly to predict future examples.

In the following sections, we give a brief overview of works in these two directions.

2.2.4.1 Learning the "true" label. This research direction is mainly motivated by the

crowd-sourcing applications. In this line of research, [Dawid and Skene, 1979] is the pioneer

work that serves as the foundation for most other works. The Dawid method is illustrated in

Figure 7. In this figure zi denotes the (true) consensus label and yk
i s denotes the label of an

example provided by an annotator (overall, there are N examples labeled by K annotators).

These are the same as for the majority vote model (see Figure 6). In addition to these,

Dawid’s method adds a set of hidden variables πk that represents the quality of reviews

provided by each annotator. These extra variables are the elements of the contingency table

for each annotator, i.e. true positive, false positive, true negative, and false positive rates.

Dawid & Skene proposed an EM algorithm to learn the elements of the contingency table

πks (M step) and the consensus labels zis (E step).

Many works in this direction were based on this framework. [Smyth et al., 1995] used a

similar method for estimating ground truth from subjective labels of Venus images. [White-

hill et al., 2009] extended the framework by modeling difficulty of examples. [Donmez et al.,

2009] estimated the confidence interval for the reliability of each annotator.
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Figure 7: Graphical model for Dawid method [Dawid and Skene, 1979]. N examples labeled

by K annotators.

The current state-of-the-art method is [Welinder et al., 2010], which models both anno-

tator bias and example difficulty. Figure 8 shows the graphical model for this method. The

Welinder method assumes that each annotator has their own version x̂k
i of the feature vector

xi generated from the class distribution and then utilizes the model wk to produce their own

label. They assume that the feature vector xi is hidden and needs to be inferred from the

labels generated by annotators. Note that this setting is common in crowd-sourcing where

examples are labeled without the feature vectors. However, in many applications, the fea-

ture vectors of the examples are provided. Assuming that the feature vector xi is observed,

the Welinder model becomes a simple model. This is because the hidden variable x̂k
i can be

removed and the relevant information can be directly incorporated into the reviewer specific

model wk.

2.2.4.2 Learning the consensus model. In the second research direction, the primary

goal is to learn a consensus model that can be used to predict labels for future examples.

Yan et al. [Yan et al., 2010] and [Raykar et al., 2010] are state-of-the art methods in this

direction.

[Raykar et al., 2010] used an EM procedure to jointly learn the annotator reliability and

the consensus model. The Raykar method is illustrated in Figure 9, where γk and φk are

sensitivity (true postive rate) and specificity (1-false positive rate) of annotator k, consensus

model u generates the correct labels zis using the feature vector xi.
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Figure 8: Graphical model for Welinder’s method [Welinder et al., 2010]. N examples

labeled by K annotators.

Raykar method aims to find the maximum-likelihood estimator of vectors γ,φ and w:

θ̂ = {γ̂,φ̂, û}

= argmaxθ lnPr(D|θ) (2.3)

where D = {xi, y1
i , ..., yK

i }N
i=1 are the data that consist of N instances labeled by K annotators.

 

Figure 9: Graphical model for Raykar’s method [Raykar et al., 2010]. N examples labeled

by K annotators.

Raykar method assumes that training examples are independently sampled and yk
i is

conditionally independent of all other parameters given γ,φ and u. Therefore, the likelihood
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can be decomposed as follows:

Pr(D|θ) =
N∏

i=1
Pr(y1

i , ..., .yK
i |xi,θ)

=
N∏

i=1

[
Pr(y1

i , ..., .yK
i |zi = 1,γ)Pr(zi = 1|xi,w)+

Pr(y1
i , ..., .yK

i |zi = 0,φ)Pr(zi = 0|xi,w)
]

=
N∏

i=1

[ K∏
k=1

Pr(yk
i |zi = 1,γk)Pr(zi = 1|xi,w)+

K∏
k=1

Pr(yk
i |zi = 0,φk)Pr(zi = 0|xi,w)

]
=

N∏
i=1

[
ai pi +bi(1− pi)

]
(2.4)

where

pi = Pr(zi = 1|xi,w)

ai =
K∏

k=1
(γk)yk

i (1−γk)1−yk
i

bi =
K∏

k=1
(φk)yk

i (1−φk)1−yk
i

The optimization problem in Equation 2.3 can be solved by using the Expectation-Maximization

(EM) [Dempster et al., 1977] procedure:

• E-step. Given the observation D and the current estimate of θ, and plugging Equation

2.4 into Equation 2.3, the conditional expectation of likelihood is:

E{lnPr(D,z|θ)}Pr(z|D,θ) =
N=1∑
i=1

µi ln piai + (1−µi) ln(1− pi)bi (2.5)

where µi =Pr(zi = 1|y1
i , ..., yK

i ,xi,θ). µi can be computed using the Bayes theorem:

µi ∝ Pr(y1
i , ..., yK

i |zi = 1,θ) ·Pr(zi = 1|xi,θ)

= ai pi

ai pi +bi(1− pi)
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• M-step. Then θ̂ = {γ̂,φ̂, û} can be estimated by maximizing Equation 2.5:

γk =
∑N

i=1µi yk
i∑N

i=1µi

φk =
∑N

i=1(1−µi)(1− yk
i )∑N

i=1(1−µi)

wt+1 = wt −ηH−1g

where g is the gradient vector and H is the Hessian matrix.

Raykar method shows superior performance over majority vote when the number of an-

notators is large (> 40). This is practical when the labeling task is easy and crowd-sourcing

services (e.g. Amazon Mechanical Turk) can be utilized. However, it is not practical in do-

mains where the annotation process is time-consuming and requires the work of experts,

who are scarce resources and expensive. Thus, it is infeasible to hire a large number of

annotators. An example is disease modeling and labeling of examples by physicians.

An approach similar to Raykar et al. was developed in [Yan et al., 2010], where the au-

thors used a probabilistic model to model annotator expertise, which may vary and depend

on the data observed. However, this method assumes that each example is labeled by all an-

notators in parallel. This is unrealistic in many applications, especially in medical domain,

where it is common that an example is labeled by only one person.
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3.0 LEARNING WITH AUXILIARY SOFT-LABEL INFORMATION

3.1 INTRODUCTION

In this chapter we propose and study a machine learning framework in which binary class

label, that is used to learn classification models, is enriched by auxiliary soft-label reflecting

the certainty or belief of a human annotator in the class label. In general, the soft label

information can be presented either in terms of (1) a probabilistic score, e.g., the chance

of a patient having a disease is 0.7, or, (2) a qualitative category, such as, weak or strong

agreement with the patient having the disease. We expect the soft label information, when

applied in the training (learning) phase, will let us learn binary classification models more

efficiently with a smaller number of labeled examples. The idea of asking human annota-

tors to provide auxiliary soft-labels is based on a simple premise: a human that gives us a

subjective class label can often provide us with auxiliary information, which reflects his/her

certainty in the class label decision, at a cost that is insignificant when compared to the cost

of example review and label assessment.

Formally, our goal is to learn a classification model g : X → Y , where X denotes the

input (or feature) space and Y = {0,1} are two classes one can assign to each input. In the

standard binary classification setting, the discriminant function is learned from examples

with class labels {0,1} only. In our framework, in addition to class labels y, we also have

access to auxiliary soft labels p associated with these class labels. Hence, each data entry

di in the training data set D = {d1,d2, · · ·dN } consists of three components: di = (xi, yi, pi) -

an input xi, a binary class label yi and a soft label pi.

We first study the case when soft-labels pi are presented in terms of probabilistic scores.

We start by showing that we can modify a simple regression algorithm to incorporate the
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soft-label assessments and learn a better classifier. Then we show this regression method

may be very sensitive to the assessment inconsistencies and noise since it depends strongly

on the accuracy of the human subjective estimates. To address the problem, we propose

a novel method based on the support vector machines and learning-to-rank methodologies,

that is more robust to noise and able to learn high quality classifiers with smaller numbers

of labeled examples. Briefly, instead of relying on exact estimates of soft-labels, this method

models the pair-wise ordinal relations between all training examples. The proposed method

shows superior performance compared to traditional binary classifiers, e.g. SVM and logistic

regression. However, it may not scale well with large data sets because it models the pair-

wise ordinal relations between all pairs of examples, which means the number of constraints

in optimization is (approximately) N2, where N is the number of examples.

To address the quadratic complexity problem, we propose two methods to reduce the

number of constraints. The first method discretizes all training examples into a constant

number of bins based on the soft-label information, then models the pairwise ordinal re-

lations between pairs of examples only when they belong to different bins. This helps to

reduce the number constraints in practice. However, because there is still O(N) examples

in each bin, the total number of constraints is still O(N2). We propose the second method

based on ordinal regression, which can reduce the number of constraints to O(N). Briefly,

instead of explicit modeling pairwise relations between examples, we model the relations be-

tween examples and the boundaries separating the bins. Since the number of bins and their

boundaries is constant, the number of constraints is linear in the number of training exam-

ples. We show that, with a linear number of constraints in optimization, the performance of

this method is still comparable to the proposed ranking method with O(N2) constraints and

significantly outperforms other baseline methods.

We also study the case when soft-labels are presented in terms of qualitative ordinal

categories, e.g. weak, medium, strong belief that a patient has a disease. We show that

our proposed methods based on ranking and ordinal regression can also be applied to learn

classifiers efficiently in this case. In fact, instead of making bins (or categories) by dis-

cretization of probabilistic soft-labels, we have categorical labels explicitly given by human

annotators. These labels essentially create categories of different examples, therefore, the
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proposed methods that work with discrete bins can be naturally applied to learn classifiers

in this case.

We demonstrate advantages and disadvantages of all proposed methods on a number of

UCI data sets. We also compare them on real-medical data representing expert assessment

of the risk of the Heparin Induced Thrombocytopenia (HIT) [Warkentin et al., 2000] given

a set of patients’ observations and labs. The experimental results show that, whether soft-

labels are represented in terms of probabilistic scores or ordinal categories, our methods

still significantly outperform traditional binary classification methods.

Our framework is different than transfer learning. Transfer learning relies on train-

ing data and labels of some tasks/domains that are relevant to the target task; however,

this source of data is not always available. Moreover, transfer learning often requires to

learn/tune the "relevance" of other data sources to the current, which is a non-trivial prob-

lem, and sometimes can lead to "negative transfer", i.e. negative impact on learning of the

main target task. In contrast, our approach aims to obtain more information by asking cer-

tainty labels, that are directly related to the target task, and based on the same training

data as the main (binary) label decision.

Our approach is complimentary to active learning: while the later aims to select the

most informative examples, we aim to gain more useful information from those selected.

This orthogonality gives us an opportunity to combine these two approaches. In this work,

we also investigate the extension of our framework for the active learning setting, where

we actively select examples to query for labels based on the model learned from soft-label

information.

In the following, we first study how to learn binary classification models efficiently from

soft-labels presented in terms of probabilistic scores, then study how to learn classifiers from

ordinal categorical soft-labels.
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3.2 ALGORITHMS FOR LEARNING WITH PROBABILISTIC SOFT-LABELS

In this section we develop classification learning algorithms that let us accept and learn

from probabilistic soft-labels pi ∈ [0,1]. We start with modifying a simple discriminative

model, and keep modifying the model to account for possible noise and inconsistencies in

subjective probability estimates.

3.2.1 Discriminative regression methods

In the discriminative classification approach we want to learn a function f : X → R that

lets us discriminate examples in the two classes. Once the function f is known, the class

decision is made with the help of a threshold σ such that for values f (x)≥σ we classify the

example as class 1, otherwise as class 0. In our framework, in addition to binary class labels

{0,1}, we also have auxiliary probabilistic information associated with these class labels.

The question is how this information can be used to learn a better discriminant function.

3.2.1.1 Linear regression One relatively straightforward solution is to assume the dis-

criminant function is defined directly in terms of these auxiliary probabilities. In such a

case, the learning of the discriminant function can be converted into a regression problem.

One way to learn the function is to regress the features directly to probabilities, that is, we

can learn a regression mapping f where (xi, pi) are the input-output pairs.

Assuming the function f : X → R is formed by a linear model f (x) = wTx , the learning

problem becomes a linear regression problem solved by minimizing the error function based

on the sum of squared residuals:

w∗ = argminw
1
N

N∑
i=1

(
wTxi − pi

)2 +Q(w)

where Q(w) is an optional regularization term that may help to prevent model over-fit (Sec-

tion 2.1.1.2). The solution w∗ yields a weight vector optimizing the linear model.

Further in this work, we refer to this method as to LinRaux (Linear regression with

auxiliary soft-label information).
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Defining the classification threshold. Once the weights of the discriminant function

are learned, a classifier can be defined using a decision threshold σ. To find the optimal

threshold, we can use class labels and minimize the overall loss in the training data.

3.2.1.2 Consistency with probabilistic assessment Obviously, using an arbitrary func-

tion model, the outputs of the regression may not be consistent with probabilities. For ex-

ample, by applying a linear regression directly to the input-probability pairs we may not

guarantee the consistency of probabilistic labels once the model is learned, that is, some

data points may fall outside [0,1] interval. An alternative is to regress inputs to a new

space in R obtained by transforming the probabilistic space, such that the transformation

is monotonic in pi, and its inverse lets us revert back to probabilities. An example of such

a transformation is t(pi) = ln pi
1−pi

which is the inverse of the logistic function. In such a

case the regression model is trained on (xi, t(pi)) pairs. The results of the regression can be

transformed back to the probability space by using the logistic function g(s)= 1
1+e−s and the

probabilities are consistent. Now, the learning problem becomes a linear regression problem

solved by minimizing the following error function:

w∗ = argminw
1
N

N∑
i=1

(
wTxi − t(pi)

)2 +Q(w)

where Q(w) is a regularization term (Section 2.1.1.2). The solution w∗ yields a weight

vector optimizing the linear model and if needed, the posterior probability is recovered as:

p(y= 1|x,w)= 1
1+e−wTx

.

Further in this work, we refer to this method as to LogRaux (Regression with log trans-

formation on auxiliary soft-label information).

3.2.1.3 Soft-labels help to learn better classification models To test whether the

probabilistic soft-label information helps to learn better classification models, we compare

AUC performance of the two regression methods learned from soft-labels - LinRaux and

LogRaux, with two standard binary classifiers learned from binary class labels only - sup-

port vector machines (SVM) and logistic regression (LogR). We conduct experiments on five

UCI data sets with simulated soft-labels and our medical data with real soft-labels given by
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experts. For illustration purpose, we take one of the data sets - "Concrete", as the running

example in the current and following sections. Details about experimental setup, how class

and soft labels are given, and results on all other data sets are described in Experiment

Sections 3.4 and 3.5.

Figure 10 shows the AUC performance of the four methods on "Concrete" data set. We

see that LinRaux and LogRaux clearly outperforms SVM and logistic regression. Similar re-

sults are also observed on all other data sets. This demonstrates that soft-label information

can help us to learn better classification models.

Note that the performance of the two regression methods LinRaux and LogRaux are

very similar and overlapped on "Concrete" data as shown in Figure 10. It turns out that

this is true also for all other data sets we experimented with (see Section 3.5 for full results

on all data sets). Therefore, for simplicity sake, we sometimes omit LogRaux results in the

remaining figures.
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Figure 10: Regression methods LinRaux and LogRaux, that learn from probabilistic soft-

label information, outperform binary classification models SVM and logistic regression

(LogR), that learn from binary class labels only. The soft-labels are not corrupted by noise.

3.2.2 Noise in subjective estimates

Learning of the discriminant function directly from auxiliary probabilities raises a concern

of what happens if these subjective probabilistic assessments are not consistent and subject
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to variations due to inaccurate subjective human estimates. This issue is well documented

in the literature; humans are not very good in providing well calibrated probabilistic esti-

mates [Suantak et al., 1996, Griffin and Tversky, 1992, O’Hagan et al., 2007]. Therefore,

the performance of predictive models trained on probabilistic soft-labels may be negatively

influenced by these inaccurate estimates. Clearly, if the estimates differ widely one expects

them to impact the quality of the learned discriminant function.

In order to test how noisy estimates influence the models trained on soft probabilistic

labels, we have conducted experiments on UCI data sets, where we inject Gaussian noise

in the soft labels. Figure 11 shows the AUC performance of methods from Figure 11 on

"Concrete" data set when soft-labels the methods were trained on were corrupted by three

different levels of noise: weak, medium and strong noise (details about noise levels are

described in Section 3.5).

20 40 60 90 120 160

0.75

0.8

0.85

0.9
Data: concrete, 25% pos, weak noise

Number of Training Examples

A
U

C

 

 

LogR
SVM
LinRaux

20 40 60 90 120 160

0.75

0.8

0.85

0.9
Data: concrete, 25% pos, moderate noise

Number of Training Examples

A
U

C

 

 

LogR
SVM
LinRaux

20 40 60 90 120 160

0.75

0.8

0.85

0.9
Data: concrete, 25% pos, strong noise

Number of Training Examples

A
U

C

 

 

LogR
SVM
LinRaux

Figure 11: AUC of different models when the auxiliary soft-labels have three different

levels of noise: (Left) weak noise, (Middle) Moderate noise, (Right) Strong noise. Regres-

sion method LinRaux clearly outperforms standard binary classifiers SVM and LogR when

noise is weak. However, it’s performance deteriorates quickly as the noise increases, and is

outperformed by SVM and LogR when the noise is strong.

Figure 11.left shows the benefits of probabilistic soft-label information when the noise in

the soft labels is weak. LinRaux method that uses soft-label information clearly outperforms

SVM and LogR methods that rely on class labels only. Figure 11.middle shows the quality

of learned models when these are trained with moderate noise. We see that the perfor-

mance of LinRaux method somewhat deteriorates but still outperforms the methods trained

on binary labels. However, when the models are trained on soft-labels with strong noise
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(Figure 11.right), the benefit of soft-label information disappears and the binary label infor-

mation leads to better classification models. This illustrates that the regression method that

fits probabilistic soft-labels is sensitive to the noise and inconsistencies in soft-label assess-

ments. The challenge is to develop methods that are more robust to these inconsistencies,

and hence, can accept soft-labels based on subjective human estimates.

3.2.3 A ranking method to improve the noise tolerance

To address the soft-label noise problem we propose to adapt ranking methods that are more

robust and tolerate the noise in the estimates better. Briefly, instead of relying strongly on

exact probabilistic estimates, we try to model the relation in between the two probabilistic

assessments only qualitatively, in terms of pairwise order constraints.

Let f : X →R be a linear model f (x) =wTx that lets us discriminate between examples

in class 0 and class 1. Now assume the same model represents a linear ranking function

that lets us order individual data points such that if the instance x1 is ranked higher than

x2 then f (x1) > f (x2). Now assuming any two data points x1 and x2 are ordered according

to their subjective probability p1 and p2, we expect the ranking function to preserve their

order.

The learning to rank algorithms [Herbrich et al., 1999, Joachims, 2002] let us find the

ranking function from the training data by minimizing the number of violated pairwise con-

strains between the data points and the amount of these violations. Such a formulation of

a learning problem makes the problem of learning the discriminative model less dependent

on exact subjective value estimates that are used to induce the pairwise ordering. Hence

we hope this relaxation would allow us to better absorb some amount of noise in subjective

probability estimates, eventually leading to more robust learning algorithms.

Let r∗ be our target ranking order determined by the probabilistic information pi associ-

ated with each example. Then for every pair of examples xi and x j: (xi,x j) ∈ r∗ we can write

a constraint wT(xi −x j)> 0 we want the ranking function f (x)=wTx to satisfy. Just, like in

the classification SVM, we allow some flexibility in building the hyperplane by adding slack

variables ξi, j representing penalties for the constraint violation and a constant C to regular-
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ize these penalties. Now the learning-to-rank of N examples is equivalent to the following

optimization problem:

min
w

Q(w)+C
∑
i, j
ξi, j

subject to:

∀(xi,x j) ∈ r∗ : wT(xi −x j)≥ 1−ξi, j

∀i∀ j : ξi, j ≥ 0

where i, j = 1,2, ..., N indexes examples, Q(w) a regularization penalty, typically 1
2wTw, and

C is a constant. Solving this problem will give us the weight vector w and the discriminant

function f (x)=wTx that violates the smallest number of constraints.

Combining class label and soft-label information in optimization. The ranking

approach presented above improves the noise tolerance of the model to subjective probability

estimates by ignoring their exact values and taking into account only their relative orders.

However, because the human estimates are subjective, it is not uncommon that two different

class labels may get probabilities that rank them opposite of their expected order, that is, the

probability assigned to a class 0 example is higher than the subjective probability assigned

to a class 1 example. The main question that arises is whether it is possible to address

these inconsistencies by incorporating both class labels and auxiliary soft-label information

by combining their loss functions into a single coherent optimization criterion. The intuition

for doing this is to assure the model is driven by the class label first and refined with the

auxiliary probabilistic information, if it is consistent with the labels. Based on this intuition,

we propose to optimize:

min
w

Q(w)+B
∑

i
ηi +C

∑
i, j
ξi, j (3.1)

subject to:

∀i : yi(wTxi +b)≥ 1−ηi

∀(xi,x j) ∈ r∗ : wT(xi −x j)≥ 1−ξi, j

∀i : ηi ≥ 0

∀i∀ j : ξi, j ≥ 0
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where B and C are constants and Q(w) is a regularization penalty.

This formulation assumes two sets of constraints, one defining the hinge loss for all ex-

amples and their class labels, the other one defining the loss for not respecting the orders

induced by subjective probabilistic estimates. Once again, solving this problem will give

us the weight vector w and the discriminant function f (x) =wTx that violates the smallest

number of constraints. Note that by changing scaling constants B and C one can stress more

either the label or the probabilistic order information. For example, if the noise in proba-

bilistic labels is large then its influence can be decreased by decreasing C. In general, the

settings of these parameters can be optimized using the internal cross-validation approach

(3-fold cross-validation was used in our experiments). In this work we refer to this method

as to SvmAuxPair.

Figure 12 compares the AUC performance of this ranking method (SvmAuxPair) with re-

gression method LinRaux (Section 3.2.1.1) and standard binary classifiers SVM and LogR,

on the "Concrete" data we used in Figure 11. Sub-figures 12.left, 12.middle and 12.right

show the learning curves of the methods where soft-labels are corrupted by weak, moderate

and strong noise, respectively. As we can see, when the noise is weak (Figure 12.left), both

methods that learn from soft-labels (LinRaux and SvmAuxPair) clearly outperform meth-

ods that learn from class labels only (SVM and LogR). When the noise level is moderate

(12.middle), LinRaux’s performance decreases more than SvmAuxPair’s, but these methods

still outperform SVM and LogR. However, when the noise level is strong, LinRaux performs

poorly and is worse than SVM and LogR, whereas SvmAuxPair is still the best. This shows

that while the performance of LinRaux deteriorates quickly as the noise level increases,

SvmAuxPair is very robust and consistently outperforms all other methods across differ-

ent noise settings. This is because unlike LinRaux, SvmAuxPair does not rely on the exact

estimates of probabilistic soft-labels, therefore does not suffer as much when the noise in

soft-label is strong.

The proposed ranking approach SvmAuxPair has superior performance compared to

other methods. However, since it models the pair-wise relations between all pairs of ex-

amples, the number of constraints in the optimization is quadratic in the number of exam-

ples used to train the model. Therefore, this method may not scale up well when the size
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of the training data is large. In the following section we propose methods to address this

disadvantage.
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Figure 12: AUC of different models when the auxiliary soft-labels have three different

levels of noise: (Left) weak noise, (Middle) Moderate noise, (Right) Strong noise. Ranking

method SvmAuxPair is robust to noise and outperforms all other methods across different

noise levels.

3.2.4 Ranking methods with reduced number of constraints

In this section we describe two methods that help us to reduce the number constraints in

the above optimization problem (Equation 3.1) while still being robust to noise in soft-labels.

3.2.4.1 A ranking method with discrete bins of examples SvmAuxPair enforces one

constraint for every pair of training examples. So, in order to reduce the number of con-

straints, the first idea is to enforce constraints only for pairs that are significantly different

in terms of soft-labels. For example, we can sort all training examples by the value of their

soft-label and distribute them equally into k bins. After that, we can apply the above rank-

ing method, but include and enforce pairwise constraints only for examples that belong to

different bins. In this work, we refer to this method as to SvmAuxBinPair.

The advantage of this method is that it helps us to reduce the number of constraints

compared to SvmAuxPair method. However, the number of constraints is reduced only by

a constant factor, which means we still have O(N2) constraints in the optimization. An-

other disadvantage of this method is that we need to decide on the number of bins and how

probabilistic soft-labels are distributed into these bins.
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3.2.4.2 A ranking method with linear number of constraints To address the limi-

tation of SvmAuxBinPair, we propose a new method for which the number of constraints is

only linear in the size of training data. This method is based on [Chu and Keerthi, 2005],

where the authors used SVM in the context of ordinal regression learning. We adapt this

idea for our task, where we learn a classification model from both binary class labels and

ordinal soft-labels given by human experts.

To illustrate the idea, let us have examples distributed into four bins according to their

soft-labels, as shown in Figure 13. These examples are mapped to the real line by a decision

function f (x) = wTx, the value of which indicates how likely an example being positive:

larger f (x) means x is more likely positive, and vice versa. Our objective is to learn f (x).
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Figure 13: Ranking based on discrete bins. Examples are distributed to different bins based

on their soft-labels. Optimization constraints are defined for examples and their relative po-

sitions to bin boundaries. Red and blue data points denote negative and positive examples,

respectively.

The examples in different bins are projected (mapped) to the real line and bins are sep-

arated by some boundaries: b1,b2,b3 as shown in Figure 13. Instead of enforcing order

constraints for every pair of examples in different bins (O(N2) pairs), we try to enforce that

every example x falls on the correct side of each boundary defining the bins. That is, if the

example x is located on the left side of a boundary b j then its decision value is smaller than

the lower margin of b j: f (x) ≤ b j −1, otherwise its decision value is greater than the upper

margin of b j: f (x) ≥ b j +1. This means that for each boundary there are N constraints, so

in total, for r−1 boundaries, there are (r−1)N constraints, which is linear in the number of

training examples (O(N)).

Because of the noise, we cannot expect that all constraints will be always satisfied. In
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that case, we allow violations of constraints but penalize errors by slack variables ξ jk, j =
1..r −1,k = 1..n j, where n j is the number of examples in bin j. In addition to order con-

straints between examples and bins, we also enforce order constraints for binary class labels,

that is, if xi belongs to class 0 (yi = 0) and x j belongs to class 1 (yi = 1) then f (xi) < f (x j).

The violations of class label constraints are penalized by slack variables ηi.

To wrap up, we propose to learn the decision function f (x)=wTx by solving the following

optimization problem:

min
w,b,b j ,ηi ,ξ jk

Q(w)+B
N∑

i=1
ηi +C

r−1∑
j=1

n j∑
k=1

ξ jk

subject to:

yi(wTxi +b)≥ 1−ηi ∀i = 1..N

(wTxi −b j)≤−1+ξ jk ∀ j = 1..r−1,k = 1..n j,xi ∈ bins 1, .., j

(wTxi −b j)≥ 1−ξ jk ∀xi ∈ bins j+1, .., r

ηi ≥ 0

ξ jk ≥ 0

where Q(w) is a regularization term, B
∑N

i=1ηi is the total penalty for violating class label

constraints and C
∑r−1

j=1
∑n j

k=1 ξ jk is the total penalty for violating bin order constraints.

In this work, we refer to this method as to SvmAuxOrd.

Figure 14 shows the AUC performance of the two new ranking methods SvmAuxBinPair

and SvmAuxOrd on the "Concrete" data set with three levels of noise. First, note that all

three ranking methods SmvAuxPair, SvmAuxBinPair and SvmAuxOrd outperform other

methods across all noise levels (weak, moderate, strong noise shown in left, middle, right

sub-figures, respectively). Second, SvmAuxBinPair and SvmAuxOrd are comparable with

SvmAuxPair. This means that SvmAuxOrd that uses only O(N) optimization constraints

still performs as well as SvmAuxPair and SvmAuxBinPair, which have O(N2) optimization

constraints.
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Figure 14: Ranking method SvmAuxOrd, with a linear number of optimization constraints,

is robust to soft-label noise and is comparable with SvmAuxPair and SvmAuxBinPair, which

have a quadratic number of constraints.

3.3 LEARNING WITH AUXILIARY CATEGORICAL SOFT-LABELS

As mentioned in section 3.1, auxiliary soft-labels pi may be presented in terms of proba-

bilistic scores or qualitative ordinal categories. For example, in our study for the problem

of monitoring the risk of heparin-induced thrombocytopenia (HIT) (see more details in Sec-

tion 3.5.1), we ask experts to assess the certainty in raising an alert on HIT, in terms of

ordinal categories: "strongly-disagree", "weakly-disagree", "weakly-agree", "strongly-agree"

with the alert. In the case of learning with ordinal categorical soft-labels, the regression

methods (Sections 3.2.1.1 and 3.2.1.2) cannot be applied because target soft-labels are no

longer numeric. However, the above ranking methods using discrete bins (SvmAuxBinPairs

and SvmAuxOrd, Sections 3.2.4.1 and 3.2.4.2) can be applied naturally since we already

have discrete categories given by a human. In fact, the only difference in this case is that

we apply the methods directly to the categorical soft-labels without doing any discretiza-

tion/distribution of examples into bins. This is an advantage because we no longer need to

decide on the number of bins (categories) and the way to distribute examples.

45



3.4 EXPERIMENTS WITH UCI DATA SETS

We have conducted two sets of experiments to test our framework and methods. The first set

of experiments uses five UCI data sets and simulated probabilistic labels. The second set of

experiments uses a real-world clinical data set with human assessments of a life threatening

condition – the heparin induced thrombocytopenia [Warkentin et al., 2000,Warkentin, 2003]

(section 3.5).

In this section we show experiments on UCI data sets with simulated probabilistic la-

bels. We use the data to first demonstrate the benefits of soft-label information for learning

classification models. Second, we show the robustness of our methods to noise in the soft-

label information. Finally, we use the data to show how our approach can alleviate the

learning problem when the data are unbalanced.

3.4.1 Experimental set-up

Since there is no UCI data set with both class labels and auxiliary probabilistic soft-labels,

we used five UCI regression data sets and generated probabilities from their continuous

outputs. Their properties are summarized in Table 1. For all these data sets we normalized

the continuous output values and interpreted them as probabilities. We defined a binary

class variable by using a threshold on the underlying continuous variable. For example,

the output variable representing the strength of concrete in the Concrete data set was used

to define two classes: a concrete with a good strength (class 1) and a concrete with a bad

strength (class 0). Specific thresholds used to define the binary class variable depend on the

the percentage of positive examples we want to generate, for example, to generate a data

set with 25% of examples being positive we assign class 1 to examples with top 25% largest

output values, and class 0 to the rest.

We used the following models in our comparisons:

• LogR: The standard logistic regression with L1 regularization trained on binary labels,

• LinRaux: The linear regression model with L1 regularization trained on auxiliary prob-

abilistic information (from Section 3.2.1.1),
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• SVM: The standard linear SVM with the hinge loss and L1 regularization trained on

binary labels only, and

• SvmAuxPair: The new SVM-based ranking model (from Section 3.2.3) with the L1

regularization penalties and two hinge losses: one for binary labels and the other for

pairwise order constraints between all pairs of examples.

• SvmAuxBinPair: The new SVM-based ranking model (from Section 3.2.4.1) that dis-

cretizes examples into 5 bins according to the soft-labels and enforces constraints be-

tween examples of different bins.

• SvmAuxOrd: The new ranking model (from Section 3.2.4.2) based on ordinal regres-

sion, that discretizes examples into 5 bins according to their soft-labels and enforces

constraints between examples and boundaries of the different bins.

The constants C and B for SVM-based ranking models were optimized using 3-fold cross-

validation approach.

We evaluated performance of the different methods by calculating the Wilcoxon statistic

(the area under the ROC curve). Each data set was split into training and test set (2/3 and

1/3 of all data, respectively). We randomly selected samples from the training set to train

the models. The training process was repeated 100 times. We reported the average AUC on

the test set.

Table 1: UCI data sets used in the experiments

Data set # examples # features

ailerons 7154 40
concrete 1030 8
bank8 4499 8
housing 506 13
pol 5000 48

3.4.2 Effect of the training data size on the model quality

To test the benefit of the methods and the impact of probabilistic soft-label information on

the sample complexity we trained the new models with training data of different size and

compared them with models that learn from the binary labels only. Figure 15 compares the
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performance of the different methods on all five UCI data sets by varying the number of

samples selected for training. The error bars show 95% confidence interval.
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Figure 15: The benefit of learning with auxiliary probabilistic information on five different

UCI data sets. The quality of resulting classification models for different training sample

sizes is shown in terms of the Area under the ROC curve statistic.

The results on all five data sets clearly show the benefit of learning with auxiliary prob-
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abilistic information. Methods trained with the auxiliary information - SvmAuxPair, Sv-

mAuxBinPair, SvmAuxOrd and LinRaux consistently outperform the standard binary clas-

sifiers - SVM and logistic regression, and the sample complexity for training the model of

equivalent quality was greatly reduced. SvmAuxPair is the best method on two of the data

sets, SvmAuxOrd is the best on one, and the linear regression on soft-label information is

the best method on two data sets.

3.4.3 Effect of noise on the auxiliary soft-label information

Our first experiment assumed the class label is defined directly by the probabilistic infor-

mation. It meant to show that the auxiliary information may help. However, in practice the

probabilistic information is often imprecise and subject to noise. This may effect its util-

ity for learning the classification models. Our second experiment aims to demonstrate the

robustness of our method to such a noise.

Figure 16 shows the performance of five methods from the previous experiment when

auxiliary probabilistic information is corrupted by a noise. To obtain the noisy estimates

each auxiliary probability value was modified by adding Gaussian noise as follows: noisy

auxiliary value = original auxiliary value * (1 + noiselevel * N(0,1)). We assume four dif-

ferent levels of noise: no, weak, moderate and strong noise, which are specified as follows:

• No noise: 0;

• Weak noise: Gaussian noise from 0.05 * N(0,1);

• Moderate noise: Gaussian noise from 0.15 * N(0,1);

• Strong noise: Gaussian noise from 0.30 * N(0,1).

Intuitively, this means that the average noise to signal ratios for weak, moderate, strong

noises are 5%, 15% and 30%, respectively. To avoid inconsistent probability values, we

assured all auxiliary values always fell in the interval [0,1].

When the noise is injected into the probabilistic information the linear regression model

trained with probabilistic information is sensitive and its performance drops. We see the

logistic regression model trained on binary labels in some instances outperforms the regres-

sion model with auxiliary information. However, our ranking approaches are more robust
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and outperform both the baseline logistic regression and the baseline SVM for all three noise

levels. This shows the robustness of our approaches to noisy soft-label estimates.

3.4.4 Effect of the training size on the training time

In the previous section (3.4.3) we have shown that: (1) the performance of our ranking-based

methods trained with both class and soft labels (SvmAuxPair, SvmAuxBinPair, SvmAux-

Ord) clearly outperform baseline methods (LinRaux, logistic regression and SVM), and (2)

the performance of SvmAuxPair, SvmAuxBinPair and SvmAuxOrd are comparable. In this

section, we compare the training running time of these methods when the size of the train-

ing data varies. Results are shown in Figure 17. Note that the training time depends on

the number of examples but not on the noise level, so we show results only for the moderate

level of noise. The results for other noise levels are similar.

We can see that the training time of SvmAuxOrd method scales up with the training

size much better than SvmAuxPair and SvmAuxBinPair do. This is because, as discussed in

Section 3.2.4.2, the number of optimization constraints for SvmAuxOrd is only O(N) (N is

the number of examples), whereas that number for SvmAuxPair, SvmAuxBinPair is O(N2).

We have discussed the complexity of different methods in terms of the number of con-

straints in the optimization task. But, what is the complexity in terms of the number of

training examples? First, for the standard SVM formulation these two complexities turn

out to be the same because there is one constraint for each training example defining the

optimization task. Second, SvmAuxPair, SvmAuxBinPair and SvmAuxOrd essentially solve

the SVM problem for an augmented set of training examples generated from pairs of orig-

inal examples. The three methods differ in what pairs are included in the augmented set.

For example, in the case of SvmAuxPair, the augmented set is constructed from all pairs of

original examples. As a result, similar to SVM, the complexity in the number of constraints

is the same as the complexity in the number of (augmented) examples. Then, one may ask:

what is the (time) complexity in terms of the number of examples? The answer depends

on what SVM solver one uses to solve the optimization for SVM and whether a non-linear

kernel is used or not.
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Figure 16: Learning with noise in soft-labels. AUC vs. sample size for different learning

methods trained on data with soft-label information corrupted by three levels of noise: left

column - weak noise (5%), middle - moderate noise (15%), right - strong noise (30%). One

row of figures for each data set. 51



In our experiments we used the state-of-the-art SVM solver implemented in Liblinear

package [Chang et al., 2008], which is specially designed for the linear SVM model. This

solver globally converges at linear rate [Chang et al., 2008]. This means the time com-

plexity of SVM and SvmAuxOrd is O(N), whereas that of SvmAuxPair and SvmAuxBin-

Pair is O(N2). Other optimization methods for SVM may have different time complexity.

For example, Sequential Minimal Optimization (SMO) scales somewhere between linear

and quadratic [Platt, 1999], depending on specific problems and kernels used. This means

if SMO was used, the total time complexity of SVM and SvmAuxOrd would be between

O(N) and O(N2) and that of SvmAuxPair and SvmAuxBinPair would be between O(N2)

and O(N4).

In conclusion, our SvmAuxOrd method is able to achieve AUC performance that is close

to the ranking-based approach and, at the same time, has good scalability of standard base-

line methods. This is important for many practical applications where learning systems are

typically trained on very big data sets.

3.4.5 Effect of auxiliary soft-label information when learning with unbalanced

data sets

The binary labels in all previous experiments were generated using the probabilistic infor-

mation such that the number of positive and negative examples was 25% and 75% of data

respectively. The question we investigate now is how the probabilistic information influ-

ences the learning process when different proportions of positive and negative examples are

observed. In general, we expect that learning from labeled data when data set is unbalanced

is much harder than with a balanced data set.

Experiment. Figure 18 compares five learning methods on five UCI data sets where

positive labels were restricted to top 10, 25 and 50 percent of examples with the highest

observed outcome values respectively. After labels were generated, the weak level of noise

was applied to corrupt the probabilistic information.
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Figure 17: Effect of the training data size (number of examples) on the training running

time (seconds).

The results in Figure 18 show that our methods (LinRaux, SvmAuxPair, SvmAuxBin-

Pair and SvmAuxOrd) that learn with auxiliary information outperform methods that learn

only from binary labels (LogR and SVM) in all three levels of data balance. The advantage of

our methods is clearer when data are more unbalanced (advantage at 10% is higher than at
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25%, and much higher than at 50%). This is important because in many domains, especially

medical domain, data are often highly unbalanced, i.e. the number of positive examples (pa-

tients diagnosed with some disease) is much smaller than the number of negative examples

(without disease). This means that auxiliary labels are very useful for practical learning

tasks.
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Figure 18: Learning with unbalanced data. Area under the ROC curve vs. sample size for

different learning methods trained on data with different ratios of positive examples: left

column - 5%, middle - 25%, right - 50%. One row of figures for each data set.
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3.5 EXPERIMENTS WITH CLINICAL DATA

All experiments so far were conducted on synthetic data where noise in soft-labels was

simulated. The question is whether the proposed approaches really work on data labeled by

humans. To demonstrate that, we apply the proposed methods to the problem of monitoring

the risk of heparin-induced thrombocytopenia (HIT) [Warkentin et al., 2000].

3.5.1 HIT and HIT data set

3.5.1.1 HIT HIT is an adverse immune reaction that may develop if a patient is treated

with heparin for a longer period of time. If the condition is not detected and treated promptly

it may lead to further complications, such as thrombosis, and even to death. An important

problem is the monitoring and detection of patients who are at risk of developing the con-

dition. We investigate the possibility of building a HIT alert model from patient data using

the assessment of HIT by an expert. This corresponds to the problem of learning a binary

classification model from data.

3.5.1.2 HIT data The data used in the experiments were extracted from the Post-Surgical

Cardiac (PCP) database [Hauskrecht et al., 2010, Hauskrecht et al., 2013] of EHRs of 4486

postsurgical cardiac patients. The extracted data consisted of over 51,000 patient-state in-

stances obtained from EHRs using 24-hour segmentation procedure proposed in Hauskrecht

et al. [Hauskrecht et al., 2010]. Out of these we selected 377 instances that were labeled (in-

dependently) by three clinical pharmacists with respect to HIT. The instances for the study

were selected using a special stratified sampling approach aimed to increase the proportion

of HIT alert instances the expert would agree with in the data set. For example, one stratum

with a larger proportion of positives was built using patient instances for which an HPF4

test (that is used to confirm the HIT) was ordered in next 24 hours. The strata covered

the full instance space and the sampling was biased to strata with expected higher propor-

tions of positive instances. All 377 examples sampled by this procedure were recorded with

weights reflecting how likely they would be if they were obtained by an unbiased random
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sampling process. The weights let us correct biases due to stratified selection. Please note,

that the reason for introducing stratified sampling for labeling the patient instances was

that the data and their labels were intended also for other related projects and the aim of

one of them was to obtain and analyze a larger sample of positive HIT alerts. Given the

fixed review budget the stratification of patient instances and stratified sampling was the

best option to achieve our goals.

3.5.1.3 Temporal feature extraction The EHR consists of complex multivariate time

series data that reflect sequences of lab values, medication administrations, procedures

performed, etc. In order to use these for building HIT prediction models, a small set of

temporal features representing well the patient state with respect to HIT for any time t

is needed. However, finding a good set of temporal features is an extremely challenging

task [Hauskrecht and Fraser, 1998, Hauskrecht and Fraser, 2000, Batal et al., 2009, Combi

et al., 2010,Batal et al., 2011,Batal et al., 2012,Batal et al., 2013]. Briefly, the clinical time

series, are sampled at irregular times, have missing values, and their length may vary de-

pending on the time elapsed since the patient was admitted to the hospital. All these make

the problem of summarizing the information in the time series hard. In this work, we ad-

dress the above issues by representing the patient state at any (segmentation) time t using a

subset of pre-defined temporal feature mappings proposed by Hauskrecht et al [Hauskrecht

et al., 2010, Valko and Hauskrecht, 2010, Hauskrecht et al., 2013], that let us convert pa-

tient’s information known at time t to a fixed length feature vector. The feature mappings

define temporal features such as last observed platelet count value, most recent platelet

count trend, or, the length of time the patient is on medication, etc. We used feature map-

pings for five clinical variables useful for the detection of HIT: Platelet counts, Hemoglobin

levels, White Blood Cell Counts, Heparin administration record, Major heart procedure. The

full list of features generated for these variables is listed in Table 6 in Appendix A.1. Briefly,

temporal features for numeric lab tests: Platelet counts, Hemoglobin levels and White Blood

Cell Counts used feature mappings illustrated in Figure 19 plus additional features repre-

senting the presence of last two values, and pending test. The heparin features summarize

if the patient is currently on the heparin or not, and the timing of the administration, such
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as the time elapsed since the medication was started, and the time since last change in its

administration. The heart procedure features summarize whether the procedure was per-

formed or not and the time elapsed since the last and first procedure. The feature mappings

when applied to EHR data let us map each patient instance to a vector of 50 features. These

features were then used to learn the models in all subsequent experiments. The alert labels

assigned to patient instances by experts were used as class labels.

 

Figure 19: The figure illustrates a subset of 10 temporal features used for mapping time-

series for numerical lab tests.

3.5.1.4 HIT data assessment For each patient instance, we asked three experts in clin-

ical pharmacy the following two questions:

• Question 1. How strongly the clinical evidence indicates that the patient is at risk of

HIT? The answer was as a numeric score in the range from 0 to 100, which we inter-

preted as a probabilistic score by converting it to interval [0,1].

• Question 2. Assume you have received a HIT alert for this patient. Please indicate to

what extent do you agree/disagree with the alert? The answer was one of the four ordinal

categories: "strongly-disagree", "weakly-disagree", "weakly-agree", "strongly-agree".

We used answers to Question 2 to define the binary class label "Agree with alert". Briefly,

the label is positive if the expert agrees (weakly or strongly) with the alert in Question 2,

otherwise it is negative. Our ultimate objective was to build a classification model that pre-

dicts this binary class label. Answers to questions 1 and 2 can be then viewed as its soft

label refinement: answers to question 1 define probabilistic labels, and answers to question

2 ordinal category labels. In order to make the qualified judgment, the experts were able
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to see EHR up to the time of the alert assessment, which is what the experts would see if

the instances were encountered prospectively. Questions 1 and 2 were asked, and the an-

swers to both questions were recorded on the same electronic input form. The answers were

submitted at the same time by the expert by pressing the submit button on the form. We

note that inclusion of both questions on the same form and their specific ordering could have

influenced their respective answers. However, at this point we do not have any evidence (for

or against) to believe this skewed the results in any significant way.

Table 2: Basic statistics for the auxiliary soft label information collected from the experts.

Each expert labels 377 patient instances. The second and third columns show the distribu-

tion of probabilities for positive and negative examples. The remaining columns show the

counts of strong and weak subcategories for positive and negative examples.

Mean (std)
probability
for positives

Mean (std)
probability

for negatives

Number of
strong

positives

Number of
weak

positives

Number of
weak

negatives

Number of
strong

negatives
Expert 1 0.51 (0.16) 0.14 (0.17) 3 85 141 148
Expert 2 0.59 (0.06) 0.28 (0.16) 0 53 235 89
Expert 3 0.48 (0.13) 0.39 (0.14) 1 105 181 90

Table 2 shows the basic statistics related to auxiliary soft label information collected

from the experts and used in the experiments. The second and third columns are related

to probabilistic label information; the remaining columns to the ordinal category labels. We

see that while the strong HIT alert (strong positive) option was used only rarely by the

experts, strong and weak no-alerts are quite frequent and likely to be useful for learning a

good discriminative model.

Appendix A.2 gives detailed agreement matrices for all pairs of experts, and their cor-

responding agreement, kappa [Cohen, 1960] and weighted kappa [Cohen, 1968] statistics.

Fleiss’ kappa [Fleiss et al., 1971] statistics is used to assess the agreement for all three ex-

perts combined. Briefly, for binary labels the pairwise kappa ranges in between 0.33 and

0.57, while Fleiss’ kappa is 0.47. For ordinal categorical labels the weighted kappa for pair-

wise analysis ranges in between 0.31 and 0.51, and Fleiss’ kappa is 0.34.
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3.5.2 Experimental setup

We evaluated the performance of the soft-label classification methods using the Area under

ROC (AUC) score [Hanley and McNeil, 1982]. To perform the evaluation, the data set of 377

examples with weights (reflecting the stratification) was first split randomly (by ignoring the

weights) using a 2:1 ratio into the disjoint training and testing groups. This split assured

that instances in the training group were used for training the models, while instances in

the testing group for their evaluation. The weights associated with the instances were then

used to subsample the two groups in order to generate the training and test sets. This

process lets us generate un-biased and non-overlapping training and testing data sets. The

process (data splitting and sub-sampling of data according to weights) was repeated 100

times and the average AUC and 95% confidence interval on the test set were calculated.

To investigate the impact of the soft label information on the sample complexity we

trained the new models that accept soft label information with data of different sizes and

compared them to models that learn from the binary "Agree with alert" and "Disagree with

alert" labels only. In all experiments, the soft label information was used only to aid the

training (learning) process, and it was never used to test the binary model. The training

sizes were varied from 20 to 250. The upper limit (250) was chosen because the performance

of the methods at that point stabilized and further increases in the training size did not

result in any significant changes. We performed two experiments testing the impact of

learning with auxiliary probabilistic labels (Experiment 1), and ordinal categorical labels

(Experiment 2). Table 3 summarizes all methods used for these experiments.

L1 regularization penalty was used to implement Q(w) for all models. The constants C

and B for SVM-based ranking models were optimized using 3-fold cross-validation approach.

Please note that because the number of samples in strong positive subcategory is very small,

the multiclass method is trained only on three subcategories (positives, weak negatives and

strong negatives).
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Table 3: Methods used in experiments with probabilistic soft-labels (experiment 1) and or-

dinal categorical soft-labels (experiment 2). Note: in the "Labels used" column, "prob" and

"categ" mean probabilistic and categorical soft-labels, respectively.

Method Short description Labels used Experiment
Class Prob Categ 1 2

SVM (baseline) Standard binary SVM + Y Y
LogR (baseline) Standard logistic regression + Y Y
Multiclass (base-
line)

Soft-max regression model [Lin
et al., 2007] that learns from
categorical labels, but ignores
the ordinal information

+ Y

LinRaux Linear regression model with
probabilistic soft-labels (section
3.2.1.1)

+ Y

SvmAuxPair The new ranking model with or-
der constraints on all example
pairs (section 3.2.3)

+ + + Y Y

SvmAuxBinPair The new ranking model that dis-
cretizes examples into 5 bins
and enforces constraints only
between examples of different
bins (section 3.2.4.1)

+ + Y

SvmAuxOrd The new ranking model that
enforces constraints between
examples and boundaries of
bins/categories (section 3.2.4.2)

+ + + Y Y

3.5.3 Results and discussion

The results of all our experiments are shown graphically in Figure 20 and 22. In addi-

tion, the same results are tabulated together with pairwise statistical significance test in

Appendix A.3.

3.5.3.1 Experiment 1: learning with probabilistic soft-labels Figures 20(a),20(b),

20(c) compare the performance of different methods on HIT data and soft labels expressed in

terms of probabilistic scores (answers of the experts to question 1 for expert 1, expert 2 and

expert 3, respectively). The x-axis shows the number of examples the models are trained on
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and the y-axis shows the AUC. The baseline methods (SVM and LogR) are illustrated using

dashed lines. Methods that utilize soft labels are shown using solid lines.

The results in Figure 20 show that the simple approach utilizing the probabilistic infor-

mation LinRaux is worse than classification models that learn from the binary label infor-

mation only (SVM and LogR). This is true for all three experts. The new ranking approaches

(SvmAuxPair, SvmAuxBinPair, SvmAuxOrd) that ignore exact probabilistic assessments,

but at the same time try to preserve the relative order of patient instances, perform the best

and outperforms all alternatives on two of the experts (expert 1 and 2) and are comparable

to binary classifiers for expert 3.
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Figure 20: AUC for the different learning methods trained on probabilistic soft labels from

three different experts and for the different training sample sizes.
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Discussion. LinRaux method that attempts to fit probabilistic estimates to define the

discriminant function perform the worst. At first glance this is somewhat surprising. How-

ever, these results can be explained by inconsistences and biases in subjective probability

estimates provided by experts. The fact that subjective probability estimates are often not

well calibrated is a widely documented problem in the literature [Suantak et al., 1996,Grif-

fin and Tversky, 1992, O’Hagan et al., 2007]. Hence, it is not realistic to expect that proba-

bilistic assessments for all instances are perfect both in absolute terms (that is, each prob-

ability assessment is a perfect estimate of the true probability) and relative terms (when

pairs of instances and their probability differences are considered). This in turn may in-

fluence the model based on such assessments, especially when the model tries to ’closely’

fit the estimates. Figure 21 illustrates this problem on the data in our study. It shows the

distribution of probability estimates for positive and negative examples for Expert 1, 2 and

3, and overlaps of the two regions. These overlaps and inconsistencies influence the discrim-

inatory performance of the models trained on probabilistic soft labels and translate to the

results observed in Figure 20. More specifically, notice that while the probability estimates

of expert 2 assigned to positive and negative labels in Figure 21 are rather well separated,

the estimates of expert 1 and particularly expert 3 are much harder to separate and there

is a great deal of overlap in the regions defining positive and negative labels. These differ-

ences translate to the results in Figure 20. In particular, LinRaux that learn their models

only from probability estimates get more benefit from probabilistic information provided by

expert 2 than expert 1 and expert 3. Our ranking models SvmAuxPair, SvmAuxBinPair

and SvmAuxOrd, that rely on both probability estimates and binary labels, are more robust

and able to absorb the inconsistences much better. However, please notice that for expert 3

(with the most inconsistent probability assignments) the benefit of probabilistic information

diminishes and the ranking models are comparable to models that learn from the binary in-

formation only.

In summary, the new ranking approaches (SvmAuxPair, SvmAuxBiPair, SvmAuxOrd)

that ignore exact probabilistic assessments, but at the same time preserve the relative or-

der of patient instances, are more robust to noisy probabilistic estimates and outperform all

alternatives, hence demonstrating the benefit of soft probabilistic labels for learning classi-
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fication models.
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Figure 21: Distribution of probabilities assigned to negative (left) and positive (right) ex-

amples by experts 1, 2 and 3, respectively. Left and right vertical bars show mean and

standard deviation of assigned probabilities to negative and positive examples, respectively.

The ’Overlap Region’ between horizontal dash lines is where probability estimates for pos-

itive and negative examples overlap. These inconsistencies may lead to deterioration of

models trained based on such probabilities.

3.5.3.2 Experiment 2: learning with ordinal categorical soft-labels Figure 22 com-

pares the performance of the methods on HIT data and the soft labels expressed in terms of

ordinal categories: ’strongly-disagree’, ’weakly-disagree’, ’weakly-agree’ and ’strongly-agree’
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with the HIT alert. Figures 22(a), 22(b), 22(c) show the AUC of models learned for expert 1,

expert 2 and expert 3, respectively.
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Figure 22: AUC for the different learning methods trained on ordinal categorical labels from

three different experts and for the different training sample sizes.

The SvmAuxPair method, that enforces O(N2) constraints for all pairs of examples, is

the best for all three experts, followed closely by the SvmAuxOrd method that enforces only

O(N) constraints. These two ranking methods outperform the two baselines that rely on the

binary class information (SVM and LogR) and the multiclass learning method that tries to

learn different categories but ignores their order.

Discussion. The results demonstrate that binary labels, when further refined to ordinal

subcategories, can lead to improved classification models. In particular, splitting positive
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and negative labels to strong and weak positives and negatives, and mapping them on the

same discriminative function while assuring their order helped us to converge faster to a

better discriminative function. However, we also observe that when these subcategories are

taken in isolation (without ordering) as in the multiclass method, the performance tends to

be worse. This can be attributed to the fact that multiclass models require more parameters

and in general more samples are needed to fit them accurately.

The refinement of the two alert classes to four ordinal subcategories clearly helped us

to learn better models for all three experts. In contrast to this, the probabilistic informa-

tion in experiment 1 was helpful, but the margin of the improvement was smaller and for

expert 3 who was the least consistent in assigning probabilities to examples the benefit was

marginal. Our experiments with probabilistic assessments (experiment 1) given by human

suggest the assessments may suffer from consistency/calibration problems which may re-

duce the utility of the probabilistic information for aiding the learning process. This also

suggests that the utility of soft labeling may differ and vary with the resolution and the

number of soft categories the expert may choose from. An interesting and open question is

how many categories to use in order to benefit from the soft labeling the most.

3.6 ACTIVE LEARNING WITH SOFT-LABEL INFORMATION

Active learning is a learning technique that aims to reduce the cost of labeling by actively

seeking the most informative training examples and asking for their labels ( [Lewis and

Gale, 1994], [Roy and McCallum, ], [Tomanek and Olsson, 2009]). This is different than

traditional (passive) supervised learning, where the learner randomly samples training ex-

amples from an unlabeled data set and queries for their labels. We have given an overview

of active learning in Section 2.2.1. In general, an active learner works as follows:

• Step 1. Start with an initial set of unlabeled examples; query labels for this set.

• Step 2. Train a model on the labeled set.

• Step 3. Inspect unlabeled examples and select the k most informative examples based

on the current model.
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• Step 4. Query labels for the selected examples; add these examples to the labeled set.

• Step 5. Repeat steps 2-4 until some stopping criteria is matched, e.g. N examples

(depending on the labeling budget) have been labeled, or the performance of the learned

model has reached some satisfied threshold.

In this work we have proposed a new cost-efficient learning approach: learning with soft-

label information. As mentioned earlier, our approach is complementary to active learning:

while active learning aims to select the most useful examples to request for labeling, the

soft-label learning aims to obtain more information from examples that were selected. This

means that our learning approach can work together with active learning. In this section,

we conduct preliminary investigation of combining auxiliary soft-label information with ac-

tive learning.

3.6.1 A query strategy for active learning with soft-label information

For active learning, the most important question is the query strategy, i.e. how to find the

most informative examples that could help us to learn a model faster. In practical applica-

tions and research studies, the single most commonly used strategy is uncertainty sampling

( [Lewis and Gale, 1994], [Settles, 2010]). Briefly, the uncertainty strategy selects examples

that the current learner is most uncertain about, i.e. examples with predictive scores closest

to 0.5 or examples closest to the decision boundary. The intuition for this strategy is that the

examples closest to decision boundary would most likely influence the decision if we knew

their labels, therefore they are the most informative. Other strategies have been proposed

in the machine learning community (Section 2.2.1), however they were designed for only

either classification (query class label) or regression setting (query continuous values). In

our problem, we have both class labels and auxiliary soft-labels, and none of the existing

active learning works have specifically addressed this setting.

The query strategy we propose to utilize the soft-label information divides examples into

different regions (intervals) based on their predictive scores given by the current learned

model, and then selects examples from the regions that have the most discrepancy between

predictive scores and soft-labels given by the human annotator. The intuition for this strat-
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egy is that if in some region, the model and the human annotator do not agree on the labeling

of examples, then acquiring more labels in that region would help us to resolve the discrep-

ancy between the model and the human and get more useful information for learning. In

contrast, if the current model and the human annotator already agree on the labeling of

examples in a region, then acquiring more labels from that region would not provide more

valuable information for learning.

In the following, we give the description and explanation of our strategy.

3.6.1.1 Description of the query strategy Let us consider the following notation:

• Let U denotes the set of unlabeled examples, L the set of labeled examples that is ini-

tially empty and D the complete set of examples such that D =U ∪L.

• X - the feature space.

• X D , X L, XU - feature vectors of all, labeled and unlabeled examples, respectively.

• f : X → [0,1] - the current model that maps input X to probabilities.

• Ph - probabilistic soft-label given by the human annotator.

• MSE - mean square error estimate.

• ∆E - confidence interval for error estimate.

• Std - standard deviation.

Given this notation, the query strategy with soft-label information is described as fol-

lows:

• Step 1. Select randomly an initial small subset of examples from U ; query a human

annotator for class and soft labels and add the labeled examples to L.

• Step 2. Train a model f on the current labeled set L.

Model f can be trained using any learning algorithm, e.g. a standard binary classifier,

such as SVM, or a learning method that uses soft-label information, such as SvmAuxOrd

(Section 3.2.4.2).

• Step 3. Compute f (X L) and f (XU ); divide the (0,1) interval equally into m continuous

regions with n labeled examples in each region based on f (X L); distribute all examples

to the regions based on f (X L) and f (XU ) (see Figure 23).
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In Figure 23 the values of f (X L) and f (XU ) are projected onto the horizontal axis and

the values of soft-labels Ph(X D) are projected onto the vertical axis. The black points

are labeled examples (X L).

• Step 4. For each region i = 1..m compute MSE i = 1
n ( f (X L

i )−Ph(X L
i ))2 and ∆E i = 1.96∗

Std[( f (X L
i )−Ph(X L

i ))2]/
p

n.

The mean square error term MSE i determines the discrepancy between the predictive

scores f (X L
i ) given by the model f and the soft-label estimates Ph(X L

i ) given by the

human annotator h in region i. ∆E determines the 95% confidence of the MSE estimate.

• Step 5. Select interval i with a probability proportional to MSE i +∆E i; sample ran-

domly an example in the selected interval and query the human annotator for its class

and soft labels; add the labeled example to the labeled set L.

In this step we prefer to select the intervals that have the more discrepancy between

the predictive scores f (X L) and the soft-labels Ph(X L). Note that in Figure 23, more

preferred intervals, e.g. region 2 and 3 , would have labeled examples spread out further

from the line connecting points {0,0} and {1,1}. The intuition for this selection strategy

is that if in some region there is much discrepancy between the learned model f and the

human annotator h then acquiring more labeled examples in that region would help us

to get more information to resolve this discrepancy, and therefore have a better revision

of the model f in the next learning iteration. In contrast, if in some region the learned

model f and the human h already agree on the labeling (e.g. region 4 in Figure 23) then

we probably do not want to put more labeling effort to explore that region further.

• Repeat steps 2-5 until a stopping criteria is matched.

In this work, we refer to this query strategy as to SLDiscr (Soft Label Discrepancy).
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Figure 23: The query strategy (SLDiscr) that uses soft-label information. The black points

are labeled examples. The x-coordinate represents the probability of the example as esti-

mated by the current model, while the y-coordinate shows the probability that is assigned

to it by a human.

3.6.2 Experiments

In our preliminary investigation we have conducted two sets of experiments, one on UCI

data sets and one on our HIT data, to investigate how active learning may work together

with soft-label information. In general, active learning strategies may differ in what algo-

rithm should be used for training model and what query strategy should be utilized to select

the most informative examples.

For training model we test two learning algorithms: (1) standard SVM and (2) SvmAux-

Ord - the proposed ranking method that distributes examples to discrete bins and enforces

O(N) optimization constraints between examples and bin boundaries (Section 3.2.4.2).

For query strategy we test three approaches: (1) Random selection, (2) Uncertainty sam-

pling, and (3) SLDiscr - the query strategy that aims to resolve the discrepancy between the
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soft-label information and the model prediction.

There are two learning algorithms and three query strategies, so in total we have six

different methods. Table 4 summarizes the six methods that we compare in experiments.

Table 4: Methods for the experiments of learning with soft-labels in active learning setting.

Method Use soft label for training Use soft label for query
SVM Random No No
SVM Uncertainty No No
SVM SLDiscr No Yes
SvmAuxOrd Random Yes No
SvmAuxOrd Uncertainty Yes No
SvmAuxOrd SLDiscr Yes Yes

3.6.2.1 Experiments on UCI data sets Similar to experiments in Section 3.4, we com-

pare the above six methods on five UCI data sets ("ailerons", "concrete", "bank8", "housing"

and "pol") with three different levels of noise in the soft-label: weak, moderate and strong.

Figure 24 shows the results for the full set of experiments. We have the following observa-

tions.

First, regardless of the query strategy, methods that use soft-label for training model

(SvmAuxOrd-Random, SvmAuxOrd-Uncertainty, SvmAuxOrd-SLDiscr) outperform meth-

ods that do not use soft-label for training (SVM-Random, SVM-Uncertainty, SVM-SLDiscr).

This suggests that the benefit of soft-label information alone (when models are trained on

randomly sampled examples) is greater than the benefit of active learning when it is applied

in binary label settings.

Second, all methods that use auxiliary soft-label information for training the model

(SvmAuxOrd-Random, SvmAuxOrd- Uncertainty, SvmAuxOrd-SLDiscr), whether the ex-

amples used for training were selected by active learning or random sampling, have com-

parable performance. This suggests that the combination of active learning and soft-label

information may not be as beneficial as we hoped for. However, we would like to note that

we have proposed and tried only one query strategy (SLDiscr) and it is possible that a bet-

ter query strategy for active learning that utilizes soft-label information exists. Hence, the

investigation of the combination of the two approaches and its benefits remains an open

research question.
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Figure 24: AUC vs. sample size for different learning methods and query strategies trained

on data with auxiliary soft-label information corrupted by three levels of noise: left column

- weak noise (5%), middle - moderate noise (15%), right - strong noise (30%). One row of

figures for each data set. 72



3.6.2.2 Experiments on HIT data set In this section we compare different methods on

HIT data (3.5.1). Figures 25 and 26 show the results for learning with probabilistic soft-

label and categorical soft-label, respectively. The results confirm the observations made on

UCI data sets (see above). In particular:

First, methods SvmAuxOrd-SLDiscr and SvmAuxOrd-Random, that use soft-label for

training model, outperform all methods that do not use soft-label for training (SVM-Random,

SVM-Uncertainty, SVM-SLDiscr). This confirms that a passive learning model but trained

with soft-label, outperforms an active learning model trained on binary labels only.

Second, SvmAuxOrd-SLDiscr outperforms SvmAuxOrd-Random for expert 1 but they

are comparable for the other two experts. This observation suggests that once we use soft-

label for training model, the random sampling strategy may be good enough to learn a

high-quality model.

In addition, note that methods with uncertainty strategy do not perform well, especially

for experts 1 and 3. This is because for experts 1 and 3, the overlapping regions of proba-

bilistic soft-label estimates are large (as shown in Figure 21), which make the uncertainty

strategy struggle to find a good decision boundary and determine the closest examples to it.

3.7 SUMMARY

Making use of many real-world data sets often prompts one to fill additional information

with subjective human labels. However, this process is often very time consuming and

costly, so different ways of reducing the labeling cost need to be sought. In this chapter we

investigate a new framework for reducing this cost by reducing the number of examples one

must label. The trick is to use auxiliary soft-label information that reflects how strongly the

human annotator believes in the class label, which can be extracted quickly and virtually at

no additional cost.

We proposed multiple methods that use this information to make the learning more

sample-efficient. First, we introduced regression-based methods that learn directly from

soft-label information. These methods outperform traditional binary classification methods
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when there is little noise in the soft-labels. However, they rely primarily on exact estimates

of auxiliary labels, so their performance quickly degrades when the level of noise increases.

Since in practice, human subjective estimates are often noisy and inconsistent, we proposed

new methods that are more robust to noise. These methods are based on ranking methodol-

ogy and support vector machines, that learn from both class and auxiliary soft-labels.

In general, auxiliary soft labels may be present in the form of probabilities or qualitative

ordinal categories. We proposed different regression-based and SVM-based methods to deal

with each of this case. We evaluated our methods on five UCI data sets and our clinical

data set. The experimental results shown that our methods significantly outperform tradi-

tional binary classifiers in both cases: when soft labels are probabilities, and when they are

qualitative categories. This confirms that the proposed learning with auxiliary soft labels

framework can help to build better classification models with lower cost.
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Figure 25: AUC for different learning methods and query strategies trained on probabilistic

soft labels from three different experts and for different training sample sizes.
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Figure 26: AUC for different learning methods and query strategies trained on ordinal

categorical labels from three different experts and for different training sample sizes.
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4.0 LEARNING WITH MULTIPLE ANNOTATORS

In this chapter we describe a new multiple-annotator learning approach that combines in-

formation obtained from different annotators/experts to learn a consensus model, that gen-

eralizes well to future unseen data. Moreover, our method also learns and produces models

for individual annotators, which are useful for modeling/predicting behavior of specific an-

notators.

Our approach takes into account the annotator reliability as well as differences in the

annotator-specific models when learning a consensus model. These considerations allow

us to identify different characteristics of the annotators, including bias, domain expertise,

and carefulness during the label assignment process. We study our framework on public

UCI medical data sets and on our real-world multiple expert learning problem in medical

domain. First, for the UCI data we start from the ground consensus model and show that

we can recover it accurately from simulated experts’ labels that may differ because of the

expert-specific parameters. Second, we demonstrate benefits of our approach on medical

data representing experts assessment of the risk of the Heparin Induced Thrombocytopenia

(HIT).

4.1 INTRODUCTION

The standard machine learning framework assumes the class labels are assigned to in-

stances by a uniform labeling process. However, in many practical applications the labels

may come from different annotators with different domain knowledge and interpretation

of data. For example, in medical domain, a patient can be diagnosed by a group of physi-
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cians with different experience levels, or in natural language processing, an article can be

annotated by people with different background and education. In this work we take medi-

cal domain as the running example to discuss our multiple-annotator learning framework.

However, in general, our framework can be applied to learn predictive models in other do-

mains.

Let us consider the multiple-annotator learning problem in the context of disease diag-

nosis. Class labels are given to patient instances by physicians/experts, and the goal is to

learn a classification model that correctly predict class label for future patients. Typically

the class labels are either acquired (1) during the patient management process and rep-

resent the decision of the human expert that is recorded in the Electronic Health Records

(EHR), say, diagnosis, or (2) retrospectively during a separate annotation process based on

past patient data. In the first case, there may be different physicians who manage differ-

ent patients, hence the class labels naturally originate from multiple experts. Whilst in the

second (retrospective) case, the class label can in principle be provided by one expert, the

constraints on how much time a physician can spend on patient annotation process often

requires to distribute the load among multiple experts.

Accepting the fact that labels are provided by multiple experts, the complication is that

different experts may have different subjective opinion about the same patient case. The

differences may be due to experts’ knowledge, subjective preferences and utilities, and ex-

pertise level. This may lead to disagreements in their labels, and variation in the patient

case labeling due to these disagreements. However, we would like to note that while we

do not expect all experts to agree on all labels, we also do not expect the expert’s label as-

sessment to be random; the labels provided by different experts are closely related by the

condition (diagnosis, an adverse event) they represent.

Given that the labels are provided by multiple experts, two interesting research ques-

tions arise. The first question is whether there is a model that would represent well the

labels the group of experts would assign to each patient case. We refer to such a group

model as to the (group) consensus model. The second question is whether it is possible to

learn such a consensus model purely from label assessments of individual experts, that is,

without access to any consensus/meta labels, and do this as efficiently as possible.
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To address the above issues, we propose a new multi-expert learning framework that

starts from data labeled by multiple experts and builds: (1) a consensus model representing

the classification model the experts collectively converge to, and (2) individual expert models

representing the class label decisions exhibited by individual experts. Figure 27 shows the

relations between these two components: the experts’ specific models and the consensus

model. We would like to emphasize again that our framework builds the consensus model

without access to any consensus/meta labels.

Consensus Model

Expert 1 Expert 2 Expert m……..........

Figure 27: The consensus model and its relation to individual expert models.

To represent relations among the consensus and expert models, our framework considers

different sources of disagreement that may arise when multiple experts label a case and

explicitly represents them in the combined multi-expert model. In particular our framework

assumes the following sources for expert disagreements:

• Differences in the risks annotators associate with each class label assignment:

diagnosing a patient as not having a disease when the patient has disease, carries a

cost due to, for example, a missed opportunity to treat the patient, or longer patient

discomfort and suffering. A similar, but different cost is caused by incorrectly diagnosing

a patient. The differences in the expert-specific utilities (or costs) may easily explain

differences in their label assessments. Hence our goal is to develop a learning framework

that seeks a model consensus, and that, at the same time, permits experts who have

different utility biases.

• Differences in the knowledge (or model) experts use to label examples: while di-

agnoses provided by different experts may be often consistent, the knowledge they have

and features they consider when making the disease decision may differ, potentially
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leading to differences in labeling. It is not rare when two expert physicians disagree

on a complex patient case due to differences firmly embedded in their knowledge and

understanding of the disease. These differences are best characterized as differences in

their knowledge or model they used to diagnose the patient.

• Differences in time annotators spend when labeling each case: different experts

may spend different amount of time and care to analyze the same case and its subtleties.

This may lead to labeling inconsistency even within the expert’s own model.

4.2 FORMAL PROBLEM DESCRIPTION

In the standard classification learning, we have training data set D = {(xi, yi)}n
i=1 consisting

of n data examples, where xi is a d-dimensional feature vector and yi is the corresponding

binary class label. The objective is to learn a classification function: f : x → y that general-

izes well to future data.

In the multiple-annotator learning setting, we have m different annotators/experts who

assign labels to examples. Let Dk = {(xk
i , yk

i )}nk
i=1 denotes training data specific for the expert

k, such that xk
i is a d-dimensional input example and yk

i is the binary label assigned by

expert k. Given the data from multiple experts, our main goal is to learn the classification

mapping: f : x → y that would generalize well to future examples and would represent a

good consensus model for all these experts. In addition, we can learn the expert specific

classification functions gk : x→ yk for all k = 1, . . . ,m that predicts as accurately as possible

the label assignment for that expert. The learning of f is a difficult problem because (1)

the experts’ knowledge and reliability could vary, and (2) each expert can have different

preferences (or utilities) for different labels, leading to different biases towards negative

or positive class. Therefore, even if two experts have the same relative understanding of

a patient case their assigned labels may be different. Under these conditions, we aim to

combine the subjective labels from different experts to learn a good consensus model.
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4.3 METHODOLOGY

We aim to combine data labeled by multiple experts and build (1) a unified consensus classi-

fication model f for these experts and (2) expert-specific models gk, for all k = 1, · · · ,m that

can be applied to future data. Figure 28 illustrates the idea of our framework with linear

classification models. Briefly, let us assume a linear consensus model f with parameters

(weights) u and b from which linear expert-specific models gks with parameters wk and bk

are generated. Given the consensus model, the consensus label on example x is positive if

uTx+ b ≥ 0, otherwise it is negative. Similarly, the expert model gk for expert k assigns a

positive label to example x if wT
kx+ bk ≥ 0, otherwise the label is negative. To simplify the

notation in the rest of the chapter, we include the bias term b for the consensus model in

the weights vector u, the biases bk in wks, and extend the input vector x with constant 1.

1

Expert 1 (w1) Expert 2 (w2) Expert 3 (w3)

Consensus Model (u)

Figure 28: The experts’ specific linear models wk are generated from the consensus linear

model u. The circles show instances that are mislabeled with respect to individual expert’s

models and are used to define the model self consistency.

The consensus and expert models in our framework and their labels are linked together

using two reliability parameters:
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1. αk: the self-consistency parameter that characterizes how reliable the labeling of expert

k is; it is the amount of consistency of expert k within his/her own model wk.

2. βk: the consensus-consistency parameter that models how consistent the model of expert

k is with respect to the underlying consensus model u. This parameter models the

differences in the knowledge or expertise of the experts.

We assume, all deviations of the expert specific models from the consensus model are ade-

quately modeled by these expert-specific reliability parameters. In the following we present

the details of the overall model and how reliability parameters are incorporated into the

objective function.

4.3.1 Multiple Experts Support Vector Machines (ME-SVM)

Our objective is to learn the parameters u of the consensus model and parameters wk for all

expert-specific models from the data. We combine this objective with the objective of learn-

ing the expert specific reliability parameters αk and βk. We have expressed the learning

problem in terms of the objective function based on the max-margin classification frame-

work [Scholkopf and Smola, 2001, Valizadegan and Jin, 2007] which is used, for example,

by Support Vector Machines. However, due to its complexity we motivate and explain its

components using an auxiliary probabilistic graphical model that we later modify to obtain

the final max-margin objective function.

Figure 29 shows the probabilistic graphical model representation [Bishop, 2006, Koller

and Friedman, 2009] that refines the high level description presented in Figure 28. Briefly,

the consensus model u is defined by a Gaussian distribution with zero mean and precision

parameter η as:

p(u|0d,η) = N (0d,η−1Id) (4.1)

where Id is the identity matrix of size d, and 0d is a vector of size d with all elements equal

to 0.

The expert-specific models are generated from a consensus model u. Every expert k has

his/her own specific model wk that is a noise corrupted version of the consensus model u;
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Figure 29: Graphical representation of the auxiliary probabilistic model that is related to

our objective function. The circles in the graph represent random variables. Shaded circles

are observed variables, regular (unshaded) circles denote hidden (or unobserved) random

variables. The rectangles denote plates that represent structure replications, that is, there

are k different expert models wk, and each is used to generate labels for Nk examples.

Parameters not enclosed in circles (e.g. η) denote the hyperparameters of the model.

that is, we assume that expert k, wk, is generated from a Gaussian distribution with mean

u and an expert-specific precision βk:

p(wk|u,βk)=N (u,β−1
k Id),

The precision parameter βk for the expert k determines how much wk differs from the

consensus model. Briefly, for a small βk, the model wk tends to be very different from the

consensus model u, while for a large βk the models will be very similar. Hence, βk represents

the consistency of the reviewer specific model wk with the consensus model u, or, in short,

consensus-consistency.

The parameters of the expert model wk relate examples (and their features) x to labels.

We assume this relation is captured by the regression model:

p(yk
i |xk

i ,wk,αk)=N (wT
kxk

i ,α−1
k )

where αk is the precision (inverse variance) and models the noise that may corrupt expert’s

label. Hence αk defines the self-consistency of expert k.
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Please also note that although yk
i is binary, similar to [Evgeniou and Pontil, 2004]

and [Zhang and Yeung, 2010], we model the label prediction and related noise using the

Gaussian distribution. This is equivalent to using the squared error loss as the classifica-

tion loss.

We treat the self-consistency and consensus-consistency parameters αk and βk as ran-

dom variables, and model their priors using Gamma distributions. More specifically, we

define:

p(βk|θβ,τβ) = G (θβ,τβ), (4.2)

p(αk|θα,τα) = G (θα,τα),

where hyperparameters θβk and τβk represent the shape and the inverse scale parameter

of the Gamma distribution representing βk. Similarly, θαk and ταk are the shape and the

inverse scale parameter of the distribution representing αk.

Using the above probabilistic model we seek to learn the parameters of the consen-

sus u and expert-specific models W from data. Similarly to Raykar et al. [Raykar et al.,

2010] we optimize the parameters of the model by maximizing the posterior probability

p(u,W ,α,β|X ,y,ξ), where ξ is the collection of hyperparameters η,θβk ,τβk ,θαk ,ταk .

The posterior probability can be rewritten as follows:

p(u,W ,α,β|X ,y,ξ)∝ (4.3)

p(u|0d,η)

(
m∏

k=1
p(βk|θβ,τβ)p(αk|θα,τα)p(wk|u,βk)

nk∏
i=1

p(yk
i |xk

i ,αk,wk)

)

where X = [x1
1; . . . ;x1

n1
; . . . ;xm

1 ; . . . ;xm
nm

] is the matrix of examples labeled by all the experts,

and y = [y1
1 ; . . . ; y1

n1
; . . . ; y1

m; . . . ; ym
nm

] are their corresponding labels. Similarly, X k and yk are

the examples and their labels from expert k.

Direct optimization (maximization) of the above function is difficult due to the complex-

ities caused by the multiplication of many terms. A common optimization trick to simplify

the objective function is to replace the original complex objective function with the logarithm

of that function. This conversion reduces the multiplication to summation [Bishop, 2006].

Logarithm function is a monotonic function and leads to the same optimization solution as

84



the original problem. Negative logarithm is usually used to cancel many negative signs

produced by the logarithm of exponential distributions. This changes the maximization to

minimization. We follow the same practice and take the negative logarithm of the above ex-

pression to obtain the following problem (see Appendix A for the details of the derivation):

min
u,w,ααα,βββ

η

2
‖u‖2 + 1

2

m∑
k=1

αk

nk∑
i=1

‖yk
i −wT

kxk
i ‖2 (4.4)

+ 1
2

m∑
k=1

βk‖wk −u‖2

+
m∑

k=1

(− ln(βk)−nk ln(αk)
)

+
m∑

k=1

(−(θβk −1)ln(βk)+τβkβk
)

+
m∑

k=1

(−(θαk −1)ln(αk)+ταkαk
)

Although we can solve the objective function in Equation 4.4 directly, we replace the

squared error function in Equation 4.4 with the hinge loss1 for two reasons: (1) the hinge

loss function is a tighter surrogate for the zero-one (error) loss used for classification than

the squared error loss [Scholkopf and Smola, 2001], (2) the hinge loss function leads to the

sparse kernel solution [Bishop, 2006]. A sparse solution means that the decision boundary

depends on a smaller number of training examples. Sparse solutions are more desirable

specially when the models are extended to the non-linear case where the similarity of the

unseen examples needs to be evaluated with respect to the training examples on which the

decision boundary is dependent.

By replacing the squared errors with the hinge loss we obtain the following objective

1Hinge loss is a loss function originally designed for training large margin classifiers such as support vector
machines. The minimization of this loss leads to a classification decision boundary that has the maximum
distance to the nearest training example. Such a decision boundary has interesting properties, including good
generalization ability. [Scholkopf and Smola, 2001,Vapnik, 1995]
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function:

min
u,w,ααα,βββ

η

2
‖u‖2 + 1

2

m∑
k=1

αk

nk∑
i=1

max
(
0,1− yk

i wT
kxk

i )
)

(4.5)

+ 1
2

m∑
k=1

βk‖wk −u‖2

+
m∑

k=1

(− ln(βk)−nk ln(αk)
)

+
m∑

k=1

(−(θβk −1)ln(βk)+τβkβk
)

+
m∑

k=1

(−(θαk −1)ln(αk)+ταkαk
)

We minimize the above objective function with respect to the consensus model u, the

expert specific model wk, and expert specific reliability parameters αk and βk.

4.3.2 Optimization

We need to optimize the objective function in Equation 4.5 with regard to parameters of the

consensus model u, the expert-specific models wk, and expert-specific parameters αk and

βk. Similar to the SVM, the hinge loss term: max
(
0,1− yk

i wT
kxk

i

)
in Equation 4.5 can be

replaced by a constrained optimization problem with a new parameter εk
i . Briefly, from the

optimization theory, the following two equations are equivalent [Boyd and Vandenberghe,

2004]:

min
wk

max
(
0,1− yk

i wT
kxk

i

)
(4.6)

and

min
εk

i ,wk

εk
i

s.t. yk
i wT

kxk
i > 1−εk

i
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Now replacing the hinge loss terms in Equation 4.5, we obtain the equivalent optimiza-

tion problem:

min
u,w,εεε,ααα,βββ

η

2
‖u‖2 + 1

2

m∑
k=1

αk

nk∑
i=1

εk
i (4.7)

+ 1
2

m∑
k=1

βk‖wk −u‖2

+
m∑

k=1

(− ln(βk)−nk ln(αk)
)

+
m∑

k=1

(−(θβk −1)ln(βk)+τβkβk
)

+
m∑

k=1

(−(θαk −1)ln(αk)+ταkαk
)

s.t. yk
i wT

kxk
i ≥ 1−εk

i , k = 1 . . .m, i = 1 . . .nk

εk
i ≥ 0, k = 1 . . .m, i = 1 . . .nk

where εεε denote the new set of εk
i parameters.

We optimize the above objective function using the alternating optimization approach

[Bezdek and Hathaway, 2002]. Alternating optimization splits the objective function into

two (or more) easier subproblems, each depends only on a subset of (hidden/learning) vari-

ables. After initializing the variables, it iterates over optimizing each set by fixing the

other set until there is no change of values of all the variables. For our problem, diving the

learning variables into two subsets, {α,β} and {u,w} makes each subproblem easier, as we

describe below. After initializing the first set of variables, i.e. αk = 1 and βk = 1, we iterate

by performing the following two steps in our alternating optimization approach:

• Learning u and wk: In order to learn the consensus model u and expert specific model

wk, we consider the reliability parameters αk and βk as constants. This will lead to an

SVM form optimization to obtain u and wk. Notice that εk
i is also learned as part of

SVM optimization.

• Learning αk and βk: By fixing u, wk for all experts, and εεε, we can minimize the objec-

tive function in Equation 4.7 by computing the derivative with respect to ααα and βββ. This
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results in the following closed form solutions for αk and βk:

αk = 2(nk +θαk −1)∑
yk

i =1 ε
k
i +2ταk

(4.8)

βk = 2θβk

‖wk −u‖2 +2τβk

. (4.9)

Notice that εk
i is the amount of violation of label constraint for example xk

i (i.e. the ith

example labeled by expert k) thus
∑

i=1 ε
k
i is the summation of all labeling violations

for model of expert k. This implies that αk is inversely proportional to the amount

of misclassification of examples by expert k according to its specific model wk. As a

result, αk represents the consistency of the labels provided by expert k with his/her own

model. βk is inversely related to the difference of the model of expert k (i.e. wk) with the

consensus model u. Thus it is the consistency of the model learned for expert k from the

consensus model u.

4.4 EXPERIMENTS

In this section, we conduct two sets of experiments, one with two public UCI medical data

sets, and the other with our medical data set. We demonstrate that: (1) our method ME-

SVM learns better classification models than baseline methods do; (2) ME-SVM performs

well with different numbers and different settings of annotators; (3) ME-SVM learns the

consistency parameters α and β that help us to quantify the quality of the annotators.

4.4.1 Methods

We compare the following methods:

• Majority: An SVM model is trained using the training set obtained from majority vot-

ing.

• Model-Majority A separate model is trained using the training examples provided by

each reviewer. The label of a test example is computed by majority voting of the output

of these reviewer specific models.
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• Dawid: An SVM model is trained using the labels provided by the classical Dawid &

Skene’s algorithm [Dawid and Skene, 1979].

• Raykar: This is the algorithm developed by Raykar et. al. [Raykar et al., 2010]. It

computes two reliability parameters for each reviewer: sensitivity and specificity of each

reviewer in order to combine the labels and obtain a consensus model.

• Welinder: An SVM model is trained using the consensus labels generated by the Welin-

der et. al. [Welinder et al., 2010] algorithm (this method does not directly generate a

consensus model).

• ME-SVM: This is the new method we propose in this work. We set η = 1 and used a

similar gamma prior for both α and β: ταk = τβk = θαk = θβk = 1.

These methods were described in more detail in section 2.2.4. Note that our method and

Raykar method utilize information provided by the feature vectors while Dawid and Welin-

der do not. The difference between our method and Raykar’s method is that the Raykar’s

does not consider the existence of reviewers’ specific models and assumes that reviewers

have access to the consensus label and all the labeling disagreements are due to the fact

that reviewers perturb these consensus labels.

For all the baseline methods, we used the setting recommended by the authors. We

also set the trade-off parameter C = 1 in SVM (default value in LIBSVM [Chang and Lin,

2011]). Notice that the parameter setting is not straightforward since we do not know the

true labels of examples.

We have conducted experiments on our own medical data (HIT condition) and two pub-

licly available medical data sets. We divided the data sets randomly to 2/3 for training and

1/3 for future (test) examples. We repeated all experiments 100 times and reported the aver-

age performance and 95% confidence interval. These data sets and the experimental results

will be described in the following subsections.

4.4.2 Experiments on public medical data sets: Breast Cancer and Parkinsons

To study the performance of ME-SVM under different settings of reviewers’ parameters

(similar to the approach taken by [Raykar et al., 2010,Welinder et al., 2010]), we used UCI
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data sets "Wisconsin Diagnostic Breast Cancer" (WDBC) and "Parkinsons" and generated

reviewers with different values of these parameters. We performed the following steps to

construct synthetic reviewers: (1) We learned a binary classifier u and bias term b using

SVM and the true labels provided in these data sets. (2) To model the different level of

expertise (consensus-consistency) for reviewers, we generated zk for reviewer k based on a

Gaussian distribution with mean 0 and different values of variance [0,0.1∗,0.2,0.3,0.4,0.5]

and obtained the reviewer-specific model wk =u+zk. (3) After obtaining the labeling based

on this specific models, we flipped the labels of a fraction of examples; the fraction’s value is

based on a Gaussian distribution with different values of mean [0,0.1,0.2,0.3∗,0.4,0.5] and

variance 0.1. The values pointed by ∗ are the default values in experiments when they are

not specified. The default value for the number of reviewers is 3.

The 3rd and 4th columns in Table 5 show the performance of different methods for

"Breast Cancer" ("Wdbc") and "Parkinson" data sets and three reviewers. The results show

that the proposed method, ME-SVM, significantly outperforms the other baselines. To inves-

tigate the effect of different settings of the reviewer-specific parameters, we investigate how

different methods work under controlled setting of these parameters. Notice that we fix all

parameters to their default value, as described earlier in this section, except the parameter

under study.

Table 5: AUC of different methods on medical data sets with 3 reviewers

Method/Data set HIT Breast Cancer (Wdbc) Parkinsons
# Examples/Features 377/50 569/31 195/23

Majority 83±1 91±1 73±2
Model-Majority 80±1 85±3 70±3

Dawid 80±1 91±1 69±3
Raykar 83±1 91±1 73±2

Welinder 83±1 88±2 72±2
ME-SVM 86±±±1 97±±±1 81±±±2

4.4.2.1 Effect of the number of reviewers To study the effect of the number of review-

ers, we generated different numbers of reviewers with levels of expertise, noise, and bias set

to default values. Figure 30 shows the result of this experiment. Note that our method ME-
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SVM significantly outperforms baseline methods, especially when the number of reviewers

is small. This is important for medical domain because in practice, it is hard to have a large

number (e.g. more than 20) of medical experts working on patient cases, due to availability

and high labelling cost.
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Figure 30: UCI data: effect of number of reviewers

4.4.2.2 Effect of different levels of expertise (model-consistency) To study the ef-

fect of different expertise levels, we varied the variance of zk (model noise) as specified in

Section 4.4.2. We report the results in Figure 31. Notice that the performance of all methods

decreases when the model noise increases. However, our method ME-SVM is more robust

and outperforms other baselines regardless of the noise level.

4.4.2.3 Effect of different levels of self-consistency To study the effect of different

self-consistency levels, we varied the mean value of the fraction of examples with flipped

labels (flipping noise) as specified in Section 4.4.2. The results are reported in Figure 32.

Notice that when the flipping noise is extreme (close to 0 or 0.5) the performance of all

methods are similar. This is because the flipping noise close to 0 indicates that reviewers

are very consistent and rarely make careless mistakes, so all methods would perform well,

whereas flipping noise close to 0.5 indicates that reviewers make a lot of random mistakes,

which makes learning almost impossible for any method. However, when the flipping noise
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Figure 31: UCI data: effect of model noise

is average (0.2 - 0.3) our method ME-SVM shows superior performance compared to the

baselines. This is important because the case of average noise is common in practice, where

human annotators do make random mistakes, but not too frequently, due to rush, tiredness,

etc.

4.4.3 Experiments on HIT data set

We test the performance of our method on clinical data obtained from EHRs for post surgical

cardiac patients (PCP) and the problem of monitoring and detection of the Heparin Induced

Thrombocytopenia (HIT) [Warkentin et al., 2000, Warkentin, 2003]. Details about HIT and

HIT data were described in section 3.5.1. In this work, we investigate the possibility of

building a detector from patient data and human expert assessment of patient cases with

respect to HIT and the need to raise the HIT alert. This corresponds to the problem of

learning a classification model from data where expert’s alert or no-alert assessments define

class labels.

4.4.3.1 HIT data assessment We asked three clinical pharmacists to provide us with

labels showing if the patient is at the risk of HIT and if they would agree to raise an alert on
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Figure 32: UCI data: effect of flipping noise

HIT if the patient was encountered prospectively. The assessments were conducted using

a web-based graphical interface (called PATRIA) we have developed to review EHRs of pa-

tients in the PCP database and their instances. All three pharmacists worked independently

and labeled 377 patient instances. Note that we collected both binary class and soft-labels

as mentioned in Section 3.5.1. However, for a fair comparison with baseline methods, we

used only binary class labels to train models.

After the first round of expert labeling (with three experts) we asked a senior expert

on HIT condition to label the data, but this time, the expert, in addition to information in

the EHR, also had access to the labels of the other three experts. This process led to 88

positive and 289 negative labels. We used the judgment and labels provided by this expert

as consensus labels.

We note that alternative ways of defining consensus labels in the study would be possi-

ble. For example, one could ask the senior expert to label the cases independent of labels

of other reviewers and consider expert’s labels as surrogates for the consensus labels. Simi-

larly one can ask all three experts to meet and resolve the cases they disagree on. However,

these alternative designs come with the different limitations. First, not seeing the labels

of other reviewers the senior expert would make a judgment on the labels on her own and
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hence it would be hard to speak about consensus labels. Second, the meeting of the experts

and the resolution of the differences on every case in the study in person would be hard

to arrange and time consuming to undertake. Hence, we see the option of using senior ex-

pert’s opinion to break the ties as a reasonable alternative that (1) takes into account labels

from all experts, and, (2) resolves them without arranging a special meeting of all experts

involved.

In addition, we would like to emphasize that the labels provided by the senior expert

were only used to evaluate the quality of the different consensus models. That is, we we did

not use the labels provided by that expert when training the different consensus models,

and only applied them in the evaluation phase.

4.4.3.2 Experiment: learning consensus model The cost of labeling examples in med-

ical domain is typically very high, so in practice we may have a very limited number of train-

ing data. Therefore, it is important to have a model that can efficiently learn from a small

number of training examples. We investigate how different methods perform when the size

of training data varies. For this experiment we randomly sample examples from the train-

ing set to feed the models and evaluate them on the test set. We tested two different ways of

labeling the examples used for learning the model: (1) every example was given to just one

expert and every expert labeled the same number of examples, and (2) every example was

given to all experts, that is, every example was labeled three times. The results are shown

in Figure 33. The x-axis shows the total number of cases labeled by the experts. The left

and right plots respectively show the results when labeling options 1 and 2 are used.

First notice that our method that explicitly models experts’ differences and their relia-

bility consistently outperforms other consensus methods in both strategies, especially when

the number of training examples is small. This is particularly important when labels are

not recorded in the EHRs and must be obtained via a separate post-processing step, which

can turn out to be rather time-consuming and requires additional expert effort. In contrast

to our method the majority voting does not model the reliability of different experts and

blindly considers the consensus label as the majority vote of labels provided by different

experts. The SVM method is a simple average of reviewer specific models and does not con-
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sider the reliability of different experts in the combination. The Raykar method, although

modeling the reliability of different experts, assumes that the experts have access to the

label generated by the consensus model and report a perturbed version of the consensus

label. This is not realistic because it is not clear why the expert perturb the labels if they

have access to consensus model. In contrary, our method assumes that different experts

aim to use a model similar to consensus model to label the cases however their model differs

from the label of the consensus model because of their differences in the domain knowledge,

expertise and utility functions. Thus, our method uses a more intuitive way and realistic

approach to model the label generating process.

Second, by comparing the two strategies for labeling patient instances we see that option

1, where each reviewer labels different patient instances, is better (in terms of the total

labeling effort) than option 2 where all reviewers label the same instances. This shows that

the diversity in patient examples seen by the framework helps and our consensus model is

improving faster, which is what we intuitively expect.
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Figure 33: Effect of the number of training examples on the quality of the model when:

(Left) every example is labeled by just one expert; (Right) every example is labeled by all

three experts

4.4.3.3 Experiment: running time for learning the consensus model In this sec-

tion we compare the running times required to train consensus models for the different

methods when the examples provided by each reviewer fully overlap. Figure 34 shows the
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results for ME-SVM and three baseline methods: SVM, Majority and Model-Majority. All of

these methods rely on the linear SVM solver implemented in the Liblinear package [Chang

et al., 2008] to optimize the parameters of their respective models. This package is optimized

for training speed and it scales linearly in the number of training examples. However, we

note that it only models and optimizes linear models; there is no option to use a non-linear

kernel in this package.

We can see that Majority and Model-Majority approaches scale linearly and are the

fastest in terms of their training time. This is because both of these methods only perform a

voting step (it takes O(kN) time for N training examples and k annotators) and a training

step when the parameters of the linear model are optimized (it takes O(N) time), so the

total running time complexity is O(kN). The SVM approach also scales linearly in N and

k. However, it tends to be slower than Majority and Model-Majority approaches because

the model training dominates the execution time, and the SVM model is trained on Nk

examples (k annotators times N examples). In contrast to this, the Majority and Model-

Majority approaches always run the SVM learning on N examples only.

ME-SVM uses the alternate optimization process, similar to the Expectation Maximiza-

tion (EM) procedure, to learn the consensus model. Therefore, the total time complexity of

ME-SVM is the number of iterations in the alternate optimization procedure multiplied by

time complexity of solving SVM in each iteration (O(kN)). We currently do not have any

rigorous complexity analysis of the rate of convergence of the iterative ME-SVM algorithm.

However, the running time curve for ME-SVM in Figure 34 and its quadratic shape suggests

the procedure is quadratic in N.

The running times for Raykar, Dawid and Welinder methods are not shown in Figure 34

because these methods (their implementation) use different optimization solvers that are

not optimized for speed like the Liblinear package. Therefore, a side -by-side running-time

comparison would not be fair for these methods. Nevertheless, Raykar, Dawid and Welinder

methods rely on iterative EM procedures similar to the solution we use for ME-SVM, so

assuming that these methods would use a solver comparable to Liblinear package in terms

of the speed, their running times would be similar to that of ME-SVM.
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Figure 34: Number of training examples versus running time required for learning the

consensus model (in seconds).

4.4.3.4 Experiment: modeling individual experts One important and unique fea-

ture of our framework when compared to other multi-expert learning frameworks is that

it models explicitly the individual experts’ models wk, not just the consensus model u. In

this section, we study the benefit of the framework for learning the expert specific models

by analyzing how the model for any of the experts can benefit from labels provided by other

experts. In other words we investigate the question: Can we learn an expert model better

by borrowing the knowledge and labels from other experts? We compared the expert specific

models learned by our framework with the following baselines:

• SVM: We trained a separate SVM model for each expert using patient instances labeled

only by that expert. We use this model as a baseline.

• Majority*: This is the Majority model described in the previous section. However, since

Majority model does not give expert specific models, we use the consensus model learned

by the Majority method in order to predict the labels of each expert.

• Raykar*: This is the model developed by Raykar et. al. [Raykar et al., 2010], as de-

scribed in the previous section. Similarly to Majority, Raykar’s model does not learn

expert specific models. Hence, we use the consensus model it learns to predict labels of
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individual experts.

• ME-SVM: This is the new method we propose in this work, that generates expert specific

models as part of its framework.

Similarly to Section 4.4.3.2, we assume two different ways of labeling the examples: (1)

every example was given to just one expert, and every expert labeled the same number of

examples, and (2) every example was given to all experts, that is every example was labeled

three times.

We are interested in learning individual prediction models for three different experts. If

we have a budget to label some number of patient instances, say, 240, and give 80 instances

to each expert, then we have can learn an individual expert model from: (1) all 240 exam-

ples by borrowing from the instances labeled by the other experts, or (2) only its own 80

examples. The hypothesis is that learning from data and labels given by all three experts

collectively is better than learning each of them individually. The hypothesis is also closely

related to the goal of multi-task learning, where the idea is to use knowledge, models or

data available for one task to help learning of models for related domains.

The results for this experiment are summarized in Figure 35, where x-axis is the number

of training examples fed to the models and y-axis shows how well the models can predict

individual experts’ labels in terms of the AUC score. The first (upper) line of sub-figures

shows results when each expert labels a different set of patient instances, whereas the

second (lower) line of sub-figures shows results when instances are always labeled by all

three experts. The results show that our ME-SVM method outperforms the SVM trained on

experts’ own labels only. This confirms that learning from three experts collectively helps

to learn expert-specific models better than learning from each expert individually and that

our framework enables such learning. In addition, the results of Majority* and Raykar*

methods show that using their consensus models to predict expert specific labels is not as

effective and that their performance falls bellow our framework that relies on expert specific

models.
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Figure 35: Learning of expert-specific models. The figure shows the results for three expert

specific models generated by the ME-SVM and the standard SVM methods, and compares

them to models generated by the Majority* and Raykar* methods. First line: different

examples are given to different experts; Second line: the same examples are given to all

experts.

4.4.3.5 Experiment: self-consistency and consensus-consistency As we described

in Section 4.3, we model self-consistency and consensus-consistency with parameters αk and

βk. αk measures how consistent the labeling of expert k is with his/her own model and βk

measures how consistent the model of expert k is with respect to the consensus model. The

optimization problem we proposed in Equation 4.7 aims to learn not just the parameters u

and wk of the consensus and experts’ models, but also the parameters αk and βk, and this

without having access to the labels from the senior expert.

In this section, we attempt to study and interpret the values of the reliability param-

eters as they are learned by our framework and compare them to empirical agreements

in between the senior (defining the consensus) and other experts. Figure 36(a) shows the

agreements of labels provided by the three experts with labels given by the senior expert,
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which we assumed gives the consensus labels. From this figure we see that Expert 2 agrees

with the consensus labels the most, followed by Expert 3 and then Expert 1. The agreement

is measured in terms of the absolute agreement, and reflects the proportion of instances for

which the two labels agree.

Figures 36(b) and 36(c) show the values of the reliability parameters α and β, respec-

tively. The x-axis in these figures shows how many training patient instances per reviewer

are fed to the model. Normalized Self-Consistency in Figure 36(b) is the normalized value

of αk in Equation 4.7. Normalized Consensus-Consistency in Figure 36(c) is the normalized

inverse value of Euclidean distance between an expert specific model and consensus model:

1/||wk−u‖, which is proportional to βk in Equation 4.7. In Figure 36(d) we add the two con-

sistency measures in an attempt to measure the overall consistency in between the senior

expert (consensus) and other experts.

As we can see, at the beginning when there is no training data all experts are assumed to

be the same (much like the majority voting approach). However, as the learning progresses

with more training examples available, the consistency measures are updated and their

values define the contribution of each expert to the learning of consensus model: the higher

the value the larger the contribution. Figure 36(b) shows that expert 3 is the best in terms of

self-consistency given the linear model, followed by expert 2 and then expert 1. This means

expert 3 is very consistent with his model, that is, he likely gives the same labels to similar

examples. Figure 36(c) shows that expert 2 is the best in terms of consensus-consistency,

followed by expert 3 and then expert 1. This means that although expert 2 is not very

consistent with respect to his own linear model his model appears to converge closer to the

consensus model. In other words, expert 2 is the closest to the expected consensus in terms

of the expertise but deviates with some labels from his own linear model than expert 3 does2

Figure 36(d) shows the summation of the two consistency measures. By comparing Fig-

ure 36(a) and Figure 36(d) we observe that the overall consistency mimics well the agree-

ments in between the expert defining the consensus and other experts, especially when the

2We would like to note that the self-consistency and consensus-consistency parameters learned by our
framework are learned together and hence it is possible one consistency measure may offset or compensate for
the value of the other measure during the optimization. In that case the interpretation of the parameters as
presented may not be as straightforward.
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number of patient instances labeled and used to train our model increases. This is encourag-

ing, since the parameters defining the consistency measures are learned by our framework

only from the labels of the three experts and hence the framework never sees the consensus

labels.
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Figure 36: (left top) Agreement of experts with labels given by the senior expert; (right

top) Learned self consistency parameters for Experts 1-3; (left bottom) Learned consensus

consistency parameters for Experts 1-3; (right bottom) Cumulative self and consensus con-

sistencies for Expert 1-3.

4.5 SUMMARY

In many real world applications, labelling examples may be very tedious and time consum-

ing, so it is not expected that one annotator will label all examples. Instead, we may have
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a learning problem where a group of annotators provides assessments on a set of examples.

The challenge with this problem is that annotators often disagree on labelling, sometimes

even give contradictory assessments on the same examples. This is common in practice

because different annotators may have different levels of expertise, bias, or take different

mount of time and effort for labelling. In this work, we have investigated a solution for

the multiple annotator learning problem, where the goal is to efficiently combine labeled

data collected from different annotators to learn better predictive models. We propose a

framework that takes into account and learns three characteristics of annotators: (1) their

individual labeling model, (2) consistency with their own model, and (3) their bias towards

positive/negative class.

We evaluated our method on public UCI medical data sets and our clinical data. The

experimental results show the benefits of our method:

• It learns a consensus model that outperforms baseline methods, regardless of the num-

ber of reviewers, the levels of annotator expertise, self-consistency or bias. The advan-

tage is especially clear when the number of reviewers is low and the level of noise in

labels is average. This scenario is very common in practice, particularly in medical do-

main, because typically we do not have a large number of annotators (medical experts

are scarce resources), and human annotators do make mistakes, but not too frequently.

• It also learns reviewer specific models and parameters very well. This is important be-

cause it provides more insights into the labelling process and identifies which annotators

are better and make more contributions to the consensus model.

• It shows that learning annotator models collectively (in parallel) is more efficient than

learning them individually. This observation shows a connection to real world situations,

when we see that people learn/work more efficiently when they collaborate in a group.
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5.0 CONCLUSIONS

5.1 CONTRIBUTIONS

In many supervised classification tasks training examples need to be labeled by human

annotators before they can be used for learning models. The labeling process may be very

costly and tedious, especially in domains where data are complicated and a high level of

expertise is required. An example of such domains is medical diagnosis. In this dissertation,

I studied and proposed solutions to address the cost-efficient learning problem, where the

objective is to learn better classification models while reducing and efficiently distributing

the cost of labeling. The main contributions of this work are summarized as follows.

• We presented a learning from soft-label framework, where we ask the human annotator

to provide us with, in addition to class label, also soft-label reflecting his/her belief in the

class label, and incorporate this information into the learning process. In general, the

soft-label can be presented in terms of probability, e.g. 0.85, or qualitative categories,

e.g. weak/strong belief. Our framework was motivated by the observation that the cost of

labeling is mostly in the example review. Once an example was reviewed and class label

was given, the human annotator can give us the auxiliary soft-label at an insignificant

cost. We have done a study in medical domain to confirm this conjecture.

• We showed that the soft-label information can help to significantly increase the per-

formance of classification models. However, we pointed out that the soft-label given by

human may be noisy and negatively influence the learning process. To address this prob-

lem, we proposed a ranking-based method that is very robust to noise and outperforms

standard binary classifiers even with a strong level of noise in the soft-label. The idea
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of this method is to model the pair-wise ranking relations between training examples,

and combine that with the class information, instead of relying on the exact values of

soft-labels or class label alone.

• We showed that, while the above ranking method learns high-quality classifiers, it does

not scale up well with large training data because of the O(N2) number of ranking con-

straints in the optimization. To address this issue, we proposed a ranking method that

is able to reduce the number of constraints to O(N) while retaining the high classifica-

tion performance. The idea is to distribute training examples to a constant number of

discrete bins based on the soft-label information, then enforce optimization constraints

on examples and bin boundaries. Another advantage of this method, besides the linear

number of constraints, is that it can be naturally applied in the case when soft-labels

are presented in qualitative categories. In this case the discrete categories/bins are given

directly by the human annotators.

• We presented a novel multi-annotator learning framework that takes into account dif-

ferent aspects of the labeling process and efficiently combines information from different

annotators to learn better classification models. This framework addresses a problem of

the traditional supervised learning framework: it assumes that, either there is a single

annotator labeling all examples, or the labeling process is uniform and labels from dif-

ferent annotators are treated similarly. This is often not the case in practice. First, the

labeling process may be tedious, so we cannot expect that a single human annotator will

be able to work on the whole training data. Second, in some practical applications, there

are naturally many annotators, e.g. a group of physicians examining the same patient,

or many people annotating the same news article. Lastly, it is important to accept the

fact that the labeling process is not uniform - people often have different opinions on the

same subject.

• Our multi-annotator learning approach learns better classification models than state-of-

the art methods. The current methods mainly come from the learning-from-crowds field,

which has been motivated by the growing number of crowd-sourcing services. These

methods typically learn a voting model that weights the labels collected from the crowds

of online workers. The methods often rely on a large number of annotators and labels
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which can be had at low costs. However, in many practical tasks, e.g. disease diagnosis,

it is not feasible to acquire a large number of annotators because the labeling process

requires people with high levels of expertise, which is an expensive and scarce resource.

Our approach does not rely on a large number of labels, instead, it takes into account and

learns different characteristics of the (expert) annotators. Briefly, it models the domain

knowledge, the bias and the consistency of different annotators. This approach results

in successful learning of a consensus model that represents the collective wisdom of the

experts.

• Another advantage of our multi-annotator learning approach is that it also learns the

model and other characteristics of each annotator, such as consistency, reliability and

bias. This is useful in practice because we can use the individual models to predict

labeling patterns of the experts. Moreover, this gives us more insights into the labeling

process, which helps us to tune the models and the labeling process itself for better

predictive performance and higher quality of data in the future (e.g., we may prefer to

collaborate with more reliable annotators).

5.2 OPEN QUESTIONS

We have proposed approaches to learn better classification models while reducing and effi-

ciently distributing the cost of labeling. Our approaches show superior performance com-

pared to existing approaches. However, there are still many challenges and open questions

that are subject to further investigation.

• In learning with soft-label information framework, we proposed a ranking method that

has O(N) number of constraints in the optimization, therefore it scales up well with

large training data. However, in the case when soft-labels are presented in terms of

probabilistic labels, this methods requires a discretization and distribution of examples

into different bins based on the soft-label information. There are two immediate ques-

tions: (1) how many bins should we have, and (2) how to distribute examples into these

bins ? In this work we set the number of bins to five and equally distribute examples
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into five bins. In practice, the performance of classification models may vary and depend

on these settings.

• The baseline methods are mostly designed for crowd-sourcing applications, so they per-

form well with larger numbers of annotators. Currently we have only three annotators

in our real medical data set. Therefore, it is worthwhile to investigate how our multi-

annotator learning framework works with larger numbers of annotators compared to

the other methods on our data.

• Active selection of annotators. As mentioned before, our method can learn individual

annotator models, as well as consistency parameters of annotators. Therefore, we can

learn which annotator is better for the labeling task. This opens a new research opportu-

nity: apply this method to actively select annotators who can make more contributions

to our task.

• An open research direction is to extend our multiple-annotator learning framework to

incorporate auxiliary information. Notice that our current multiple-annotator learning

framework is designed for the classification task with the availability of class labels,

but does not take into account auxiliary soft labels. As discussed in Chapter, we mod-

eled the expertise (model-consistency), bias and self-consistency of annotators by a set

of annotator-specific parameters. In the new setting, the question is how to model an-

notators with a new set of soft labels, in addition to the set of binary class labels? Can

we assume that if an annotator is consistent with class labels then he will also be con-

sistent with auxiliary soft-labels? Adding more parameters to the current framework

would make it more difficult to optimize and possibly increase over-fitting.
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APPENDIX

STATISTICS AND MATHEMATICAL DERIVATIONS
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A.1 FEATURES USED FOR CONSTRUCTING THE PREDICTIVE MODELS

Table 6: Features used for constructing the predictive models. The features were extracted

from time series data in electronic health records using methods from [Hauskrecht et al.,

2010,Valko and Hauskrecht, 2010,Hauskrecht et al., 2013]

Clinical variables Features

Platelet count (PLT)

1 last PLT value measurement
2 time elapsed since last PLT measurement
3 pending PLT result
4 known PLT value result indicator
5 known trend PLT results
6 PLT difference for last two measurements
7 PLT slope for last two measurements
8 PLT % drop for last two measurements
9 nadir HGB value
10 PLT difference for last and nadir values
11 apex PLT value
12 PLT difference for last and apex values
13 PLT difference for last and baseline values
14 overall PLT slope

Hemoglobin (HGB)

15 last HGB value measurement
16 time elapsed since last HGB measurement
17 pending HGB result
18 known HGB value result indicator
19 known trend HGB results
20 HGB difference for last two measurements
21 HGB slope for last two measurements
22 HGB % drop for last two measurements
23 nadir HGB value
24 HGB difference for last and nadir values
25 apex HGB value
26 HGB difference for last and apex values
27 HGB difference for last and baseline values
28 overall HGB slope

White Blood Cell count (WBC)

29 last WBC value measurement
30 time elapsed since last WBC measurement
31 pending WBC result
32 known WBC value result indicator
33 known trend WBC results
34 WBC difference for last two measurements
35 WBC slope for last two measurements
36 WBC % drop for last two measurements
37 nadir WBC value
38 WBC difference for last and nadir values
39 apex WBC value
40 WBC difference for last and apex values
41 WBC difference for last and baseline values
42 overall WBC slope

Heparin

43 Patient on Heparin
44 Time elapsed since last administration of Heparin
45 Time elapsed since first administration of Heparin
46 Time elapsed since last change in Heparin administration

Major heart procedure

47 Patient had a major heart procedure in past 24 hours
48 Patient had a major heart procedure during the stay
49 Time elapsed since last major heart procedure
50 Time elapsed since first major heart procedure
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A.2 STATISTICS OF AGREEMENT BETWEEN EXPERTS

Tables 7 - 12 in this appendix summarize pairwise agreement matrices for experts who

reviewed and evaluated the patient cases. Tables 13 and 14 summarize agreement statistics

among all experts. There are four possible values for categorical labels they could choose

from: "Strongly-disagree", "Weakly-disagree", "Weakly-agree", "Strongly-agree" with alert.

When interpreted in terms of agreements we get binary labels: "Agree" and "Disagree" with

alert. The results show the agreement matrices for both binary and ordinal categorical

labels.

For each pairwise agreement table (7 - 12) we calculate both simple agreement and

kappa [Cohen, 1960] statistics. Since the basic kappa statistic ignores the ordering of cate-

gories, for agreement tables with ordinal categories "Strongly-disagree", "Weakly-disagree",

"Weakly-agree", "Strongly-agree" we also calculate weighted kappa [Cohen, 1968] that re-

flects how far the assessments are in terms of their ordering.

For agreement among all experts (tables 13 and 14) we calculate Fleiss’ kappa [Fleiss

et al., 1971], which assesses the reliability of agreement between all experts.

Table 7: Expert 1 versus Expert 2, binary labels. Absolute agreement = 0.85, Kappa = 0.53

Expert 1 Expert 2
Disagree with alert Agree with alert

Disagree with alert 279 10
Agree with alert 45 43

Table 8: Expert 1 versus Expert 2, ordinal categorical labels. Absolute agreement = 0.61,

Kappa = 0.39, Weighted Kappa = 0.47

Expert 1 Expert 2

Strongly-disagree Weakly-disagree Weakly-agree
Strongly-

agree
Strongly-disagree 71 77 0 0
Weakly-disagree 13 118 10 0

Weakly-agree 5 39 41 0
Strongly-agree 0 1 2 0
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Table 9: Expert 1 versus Expert 3, binary labels. Absolute agreement = 0.84, Kappa = 0.57

Expert 1 Expert 3
Disagree with alert Agree with alert

Disagree with alert 249 40
Agree with alert 22 66

Table 10: Expert 1 versus Expert 3, ordinal categorical labels. Absolute agreement = 0.60,

Kappa = 0.40, Weighted Kappa = 0.51

Expert 1 Expert 3

Strongly-disagree Weakly-disagree Weakly-agree
Strongly-

agree
Strongly-disagree 75 70 3 0
Weakly-disagree 15 89 37 0
Weakly-agree 0 22 62 1
Strongly-agree 0 0 3 0

Table 11: Expert 2 versus Expert 3, binary labels. Absolute agreement = 0.77, Kappa = 0.33

Expert 2 Expert 3
Disagree with alert Agree with alert

Disagree with alert 254 70
Agree with alert 17 36

Table 12: Expert 2 versus Expert 3, ordinal categorical labels. Absolute agreement = 0.55,

Kappa = 0.26, Weighted Kappa = 0.34

Expert 2 Expert 3

Strongly-disagree Weakly-disagree Weakly-agree
Strongly-

agree
Strongly-disagree 45 36 8 0
Weakly-disagree 44 129 62 0
Weakly-agree 1 16 35 1
Strongly-agree 0 0 0 0
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Table 13: All three experts, binary labels. Fleiss’ Kappa = 0.47.

Disagree with alert Agree with alert
All three experts 884 247

Table 14: All three experts, ordinal categorical labels. Fleiss’ Kappa = 0.34.

Strongly-disagree Weakly-disagree Weakly-agree Strongly-agree
All three
experts

327 557 243 4

A.3 AUC AND SIGNIFICANCE TEST RESULTS FOR LEARNING WITH

AUXILIARY INFORMATION EXPERIMENTS

The tables in this appendix list exact AUC values for the different learning methods and the

different number of training examples shown in Figures 20(a), 20(b), 20(c) and 22(a), 22(b),

22(c). In addition to exact AUC values, the tables summarize the results of the pairwise

statistical test assessing the significant differences between the best performing method

and the rest of the methods.

Experiment 1 (Figures 20(a), 20(b), 20(c))

The following tables show the AUC for the different methods and different number of

training examples, for expert 1, 2 and 3, respectively. The methods use probabilistic la-

bels. The best method is shown in bold. A star next to a number indicates the method is

statistically significantly different (at p=0.05) than the best method.
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Table 15: Expert 1 (figure 20(a))

Method Number of training examples

20 40 60 90 120 160 200 250

LogR 57.5* 68.0* 71.4* 74.4* 76.6 77.6 79.2 79.3

SVM 58.6* 68.9* 72.9* 74.3* 76.0 77.2 77.3 78.3

LinRaux 59.2* 60.0* 63.5* 66.7* 68.7* 68.9* 70.4* 70.1*

SvmAuxPair 70.8 75.9 75.8 76.7 77.8 78.8 79.7 80.8

SvmAuxBinPair 67.7* 70.5* 73.8* 73.0* 75.3* 75.3* 75.4* 76.7*

SvmAuxOrd 66.9* 72.3* 74.5 73.5 77.8 78.4 78.3 79.1

Table 16: Expert 2 (figure 20(b))

Method Number of training examples

20 40 60 90 120 160 200 250

LogR 51.3* 55.5* 61.5* 66.1* 70.0* 74.4* 80.3 80.2*

SVM 50.9* 56.6* 62.9* 67.1* 70.5* 76.4* 81.9 81.1*

LinRaux 55.6* 58.9* 62.6* 69.9* 71.1* 71.8* 72.2* 72.9*

SvmAuxPair 62.2 67.7 72.2 75.8 76.8 79.0 81.6 81.6

SvmAuxBinPair 54.3* 66.5 69.9 73.0 73.8 76.6 79.5 81.9

SvmAuxOrd 58.0 65.3 70.3 74.8 77.5 79.6 82.8 84.4
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Table 17: Expert 3 (figure 20(c))

Method Number of training examples

20 40 60 90 120 160 200 250

LogR 60.6 68.4* 71.6 75.6 77.7 79.2 79.3 78.7

SVM 61.2 70.3 74.2 76.3 77.0 78.1 78.8 79.0

LinRaux 50.7* 53.7* 55.5* 56.7* 58.2* 58.9* 58.0* 58.6*

SvmAuxPair 63.2 71.8 74.4 77.9 78.9 79.6 81.0 80.8

SvmAuxBinPair 60.9 67.9* 70.4* 73.2* 73.2* 73.9* 76.0* 76.7*

SvmAuxOrd 60.2 68.0* 71.8 77.0 77.8 77.5* 78.3* 78.5*

Experiment 2 (Figures 22(a), 22(b), 22(c))

The following tables show the AUC for the different methods and the different number

of training examples. The methods use ordinal category labels. The best method is shown

in bold. A star next to a number indicates the method is statistically significantly different

(at p=0.05) than the best method.

Table 18: Expert 1 (figure 22(a))

Method Number of training examples

20 40 60 90 120 160 200 250

LogR 57.5* 68.0* 71.4* 74.4* 76.6 77.6 79.2 79.3

SVM 58.6* 68.9* 72.9* 74.3* 76.0 77.2 77.3* 78.3*

Multiclass 59.3* 64.0* 68.8* 72.5* 73.9* 76.8* 78.2 77.9

SvmAuxPair 73.5 78.7 78.8 80.1 78.6 79.6 79.7 80.7

SvmAuxOrd 72.5 74.9* 76.8 76.7* 78.3 79.1 79.0 78.9

113



Table 19: Expert 2 (figure 22(b))

Method Number of training examples

20 40 60 90 120 160 200 250

LogR 51.3* 55.5* 61.5* 66.1* 70.0* 74.4* 80.3* 80.2*

SVM 50.9* 56.6* 62.9* 67.1* 70.5* 76.4* 81.9 81.1

Multiclass 55.8* 61.5* 66.0* 68.1* 68.8* 71.7* 72.7* 74.2*

SvmAuxPair 71.1 73.8 76.1 80.0 80.1 82.4 84.4 83.9

SvmAuxOrd 68.2 72.2 72.1 75.7* 77.9 81.7 84.1 83.4

Table 20: Expert 3 (figure 22(c))

Method Number of training examples

20 40 60 90 120 160 200 250

LogR 60.6* 68.4* 71.6* 75.6* 77.7* 79.2* 79.3* 78.7*

SVM 61.2* 70.3* 74.2* 76.3* 77.0* 78.1* 78.8* 79.0*

Multiclass 63.5* 69.8* 73.2* 75.1* 76.7* 77.0* 77.5* 77.3*

SvmAuxPair 71.0 76.5 79.4 80.6 80.6 81.1 82.0 81.9

SvmAuxOrd 67.3* 71.8* 74.9* 78.8 78.7 78.6* 79.3* 79.6*
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A.4 DERIVATION OF EQUATION 4.4

In this appendix, we give a more detailed derivation of Equation 4.4 from 4.3:

p(u,W ,α,β|X ,y,ξ)

∝ p(u|0d,η)

×
m∏

k=1
p(βk|θβ,τβ)

× p(αk|θα,τα)p(wk|u,βk)

×
nk∏
i=1

p(yk
i |xk

i ,αk,wk)

= N (u|0d,η−1Id)

×
m∏

k=1
G (βk|θβ,τβ)

×G (αk|θα,τα)

×N (wk|u,β−1
k Id)

×
nk∏
i=1

N (yk
i |w>

k xk
i ,α−1

k )

= ηp
2π

e−
η‖u‖2

2

×
m∏

k=1

1
Γ(θβ)

τ
θβ
β
β
θβ−1
k e−τββk

× 1
Γ(θα)

τ
θα
α α

θα−1
k e−τααk

× βkp
2π

e−
βk‖wk−u‖2

2

×
nk∏
i=1

αkp
2π

e−
αk‖yk

i −w>
k xk

i ‖
2

2

Taking the negative logarithm of p(u,W ,α,β|X ,y,ξ) that lets us to convert the maxi-
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mization problem to minimization, we get:

− ln p(u,W ,α,β|X ,y,ξ)=
− ln(η)− log(

p
2π)+ 1

2
η‖u‖2

+
m∑

k=1

(
ln(Γ(θβ))−θβ ln(τβ)− (θβ−1)ln(βk)+τββk

)
+

m∑
k=1

(ln(Γ(θα))−θα ln(τα)− (θα−1)ln(αk)+τααk)

+
m∑

k=1

(
− ln(βk)+ ln(

p
2π)+ 1

2
βk‖wk −u‖2

)
+

m∑
k=1

nk∑
i=1

(
− ln(αk)+ ln(

p
2π)+ 1

2
αk‖yk

i −w>
k xk

i ‖2
)

Rewriting the above equation we get:

− ln p(u,W ,α,β|X ,y,ξ)=
1
2
η‖u‖2

+
m∑

k=1

(−(θβ−1)ln(βk)+τββk
)

+
m∑

k=1
(−(θα−1)ln(αk)+τααk)

+
m∑

k=1

(
− ln(βk)+ 1

2
βk‖wk −u‖2

)
+

m∑
k=1

nk∑
i=1

(
− ln(αk)+ 1

2
αk‖yk

i −w>
k xk

i ‖2
)

+ A

where A sums all constant terms that can be ignored during the optimization step, and that

include terms involving hyper-parameters η, θα, τα, θβ that are constants. By ignoring A

and rearranging the remaining terms we get Equation 4.4.
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