
A PERMUTATION-BASED CORRECTION

FOR PEARSON’S CHI-SQUARE TEST ON

DATA WITH AN IMPUTED COMPLEX

OUTCOME / A MODIFIED EM ALGORITHM

FOR CONTINGENCY TABLE ANALYSIS

WITH MISSING DATA

by

Megan J. Olson Hunt

B.S.T. Mathematics, Education, Winona State University, 2007

B.A. Psychology, Statistics, Winona State University, 2007

Submitted to the Graduate Faculty of

the Department of Biostatistics

Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2014



UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This dissertation was presented

by

Megan J. Olson Hunt

It was defended on

April 3, 2014

and approved by

Gong Tang, PhD, Associate Professor

Department of Biostatistics

Graduate School of Public Health, University of Pittsburgh

Andriy Bandos, PhD, Assistant Professor

Departments of Biostatistics and Radiology

Graduate School of Public Health, University of Pittsburgh

Maria Mori Brooks, PhD, Associate Professor

Departments of Biostatistics and Epidemiology

Graduate School of Public Health, University of Pittsburgh

ii



Chung-Chou Ho Chang, PhD, Professor

Departments of Medicine and Biostatistics

Graduate School of Public Health, University of Pittsburgh

Dissertation Director: Gong Tang, PhD, Associate Professor

Department of Biostatistics

Graduate School of Public Health, University of Pittsburgh

iii



Copyright c© by Megan J. Olson Hunt

2014

iv



A PERMUTATION-BASED CORRECTION FOR PEARSON’S

CHI-SQUARE TEST ON DATA WITH AN IMPUTED COMPLEX

OUTCOME / A MODIFIED EM ALGORITHM FOR

CONTINGENCY TABLE ANALYSIS WITH MISSING DATA

Megan J. Olson Hunt, PhD

University of Pittsburgh, 2014

ABSTRACT

Studies on human subjects often yield missing data, making progress in this field

of inherent public health relevance. Here, two statistical methods are proposed for

the analysis of discrete data with missing values. First, when one variable is subject

to missingness, it was noted the application of Pearson’s chi-square test to singly-

imputed data undermines the variability due to imputation, leading to a type-I error

rate larger than the nominal level. This research concerns Pearson’s test on data

with an imputed complex outcome, where one of its components suffers from missing

values. Imputation in this context may be performed either directly through con-

ditional imputation of the complex outcome given covariates, or indirectly through

conditional imputation of its missing component given the covariates and the other,

observed component. Although the latter imputation scheme is shown to be more

efficient, an existing adjustment method cannot be extended to this scenario due

to the lack of independence amongst the variables constituting the complex out-

come. As a result, a novel permutation-based correction method for Pearson’s test
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is proposed. Simulation studies indicate it provides the nominal rejection rate under

the null. Second, a modification of the expectation maximization (EM) algorithm

for the analysis of discrete data with missing values is presented. In general, the

update in the M-step requires either knowing or modeling the missing-data mecha-

nism. However, misspecification of this mechanism may lead to biased estimates of

model parameters. Given consistent initial estimates of the parameters (which may

be obtained from an external, complete data set, or by recalling a random sample of

subjects), the target function is approximated in the M-step with empirical estimates,

allowing for unbiased estimation without specification or modeling of the often in-

tangible missing-data mechanism. Simulation studies show this modified algorithm

yields consistent estimates potentially more efficient than the initial estimates, even

under non-ignorable missingness.

Keywords: single imputation, discrete data, bias, consistency, efficiency, MNAR,

empirical.
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1.0 INTRODUCTION

1.1 MISSING DATA

In the process of data collection, especially on human subjects, missing data may

arise for multiple reasons. For example, subjects may move away or have an adverse

reaction to (or feel they have received the maximum benefit from) a treatment, such

that they no longer wish to participate in a study. When data are collected over time,

as in longitudinal studies, this problem can be exacerbated, as participant drop-out

tends to increase with an increasing number of follow-up sessions. Consequently,

one may see a potentially large decline in sample size for measures taken later in a

study. Survey data are also particularly susceptible to missing values, as questions

may be deemed too personal or too numerous. In research involving mechanical

processes, machines may fail because of experimental conditions, or the failure may

be independent of the study parameters.

Missing data may also arise from the study design itself. In some instances,

procedures or tests are resource- or monetarily-intensive, or may cause adverse side-

effects. As a result, researchers will choose only to collect certain variables for a

subset of the subjects, leaving values of those variables missing in the remainder of the

sample. Specifically in diagnostic testing, researchers may assume a negative result
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on one test implies a negative result on another, such that the latter data point is

missing by design. However, given the potential for false negatives, this assumption is

not always valid. Often when data are missing− by design or otherwise− imputation

is conducted, subsequently allowing the utilization of statistical methods developed

for complete, rectangular data sets.

Motivation for imputation stems from the existence of statistical procedures that

cannot manage observations with missingness. In these instances, subjects without

complete data would be omitted from the analysis entirely. This complete-case anal-

ysis results in reduced efficiency, as less information from the data is utilized, and

may produce biased estimates if the reason for missingness is not random. For ex-

ample, if a given treatment has an adverse effect on males more often than females,

males may be more likely to drop-out. Subsequently, conclusions no longer apply to

a random sample of men, but only to the more robust subset who remained in the

study, resulting in questionable external validity. Additionally, this type of drop-out

may affect the significance of the effect of gender on the outcome if this loss of data

reduced or increased differences across genders. Lastly, missingness may also limit

the sample size in certain sub-populations (like genders or ethnicities), such that

valid inference cannot be made on these variables.

In general, data may be missing randomly, or the missingness may depend on

certain variables, which themselves may be fully-observed or subject to missingness.

These concepts are discussed in the following section.
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1.2 PATTERNS AND MECHANISMS OF MISSINGNESS

In the study of missing data, patterns and mechanisms of missingness are important

notions that drive theoretical derivations and practical applications. Some issues

related to patterns of missingness are 1) whether the missingness involves one or

more variables, 2) whether or not the data are monotonically missing (i.e., if certain

variables are measured over time, whether or not missingness at one occasion implies

missingness of values thereafter), 3) whether the variable is observable or latent and

4) whether there are certain variables combinations that are never observed together

in a final data set, which is often caused by large amounts of missing data (Little and

Rubin, 2002). Regarding (2), there exist certain methods applicable to monotonically

missing data that are not appropriate for more general patterns, making the former

preferable. The last notion is of concern as it causes some parameters not to be

estimable.

In contrast, missing data mechanisms refer to the underlying cause of the miss-

ingness. For example, if data were missing because a subject was ill, moved unex-

pectedly or got called into work, the missingness does not depend on the variables

under study. Such a mechanism is defined by Rubin (1976) as missing completely

at random (MCAR). Alternatively, missing observations could be related to the ac-

tual variables being collected. Of importance, then, is whether the missing data are

related to something one did or did not observe (but in theory could have).

Take, for example, a longitudinal study where one collected the age of partici-

pants at baseline, then found older people were more likely to drop-out as the study

progressed. Since the missing values were related to something that was observed

(age), the mechanism is defined as missing at random (MAR).

Lastly, data may be missing not at random (MNAR). Here, the missing data
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depend on something one did not observe − the variable with the missingness, and,

more specifically, the missing values themselves. As an example, consider measuring

income: It is possible people with very high or very low income may not want to

report this fact on a survey. Thus, there will be missing income values, and the reason

is due to the values themselves (very high/low income). The formal definitions of

MCAR, MAR and MNAR as characterized by Rubin (1976) are as follows:

Let Y = (Yobs,Ymis) represent a data set (matrix), where Yobs is the observed

portion and Ymis the missing. Define R as the missing data matrix, such that rij = 1

if yij is observed for subject i and variable j, 0 otherwise. Then, if the distribution

of R given Y is denoted f(R |Y,ψ), where ψ represents the parameters of R, then

MCAR: f(R |Y,ψ) = f(R |ψ) ∀ Y

MAR: f(R |Y,ψ) = f(R |Yobs,ψ) ∀ Y

MNAR: f(R |Y,ψ) = f(R |Yobs,Ymis,ψ) ∀ Y

The following section provides an overview of missing data techniques, their

assumptions with regard to the missingness mechanism, as well as advantages and

disadvantages.

1.3 METHODS FOR THE ANALYSIS OF MISSING DATA

As given in Little and Rubin (2002), there are four main methods to deal with

missing data: 1) complete-case analysis, 2) weighting, 3) imputation and 4) model-

based procedures, which include maximum likelihood (ML), generalized estimating

equations and Bayesian methods.
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1.3.1 Complete-case analysis

As the name implies, complete-case analysis − the simplest approach to analyzing

missing data − uses only those subjects with complete data across all variables.

Often the default for certain procedures in statistical packages, the sample size will

be reduced to completers only unless otherwise specified.

Although simple, this technique is usually not preferable due to the loss of data,

which causes a decrease in precision, affecting inference. Additionally, the potential

for bias exists unless the missingness can be verified as MCAR and missing obser-

vations are randomly distributed across the sample (Little and Rubin, 2002). As

discussed previously, this approach may also limit the sample size within subgroups

of a study, resulting in certain parameters that are not estimable. If the amount of

missingness is small, the magnitude of these issues may be deemed negligible and

the approach acceptable.

1.3.2 Weighting

The goal of weighting is to adjust for potential biases that could otherwise be realized

in a complete-case analysis (Little and Rubin, 2002). One example is an extension

the Horvitz-Thompson (H-T) estimator to include not only the probability of being

sampled, but also that of responding (Horvitz and Thompson, 1952; Little and Rubin,

2002). If πi represents the probability of being selected from the population, then the

general H-T estimator weights a given subject with π−1i , so that this person represents

that many units in the population. The extension to include the probability of

responding once selected follows similarly. A variation of the H-T method involves

stratifying a sample by the levels of its predictors, then weighting according to the

probability of response within each stratum (Oh and Scheuren, 1983).
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More popular than the above methods is the use of propensity scores, which

are an extension of stratification when the number of variables used to stratify into

weighting classes becomes large and/or there are continuous predictors (Rosenbaum

and Rubin, 1983, 1985; Little and Rubin, 2002). The limitation of the previous

method occurs when the number of strata increases, as the number of subjects in

a given stratum may be small and/or a stratum may include only non-respondents

(but no respondents). In these cases, weights cannot be calculated. Additionally,

continuous predictors would need to be grouped into ordinal levels in order to allow

stratification. Propensity scores sidestep these issues by using logistic (or probit)

regression to estimate the probability of response with all covariates as predictors.

Various options exist with regard to how these probabilities are subsequently utilized

for weighting. One approach is to group subjects according to ranges of probabilities,

then use the average of all probabilities within a given range as the weight for subjects

in that group. Alternatively, the inverse of the propensity score itself as a weight for

each individual has been suggested (Cassel et al., 1983). This approach requires the

data to be at least MAR.

Other methods include inverse-probability-weighted generalized estimating equa-

tions (see Section 1.3.4) (Liang and Zeger, 1986; Robins et al., 1995), post-stratification

(Holt and Smith, 1979; Little, 1993; Gelman and Carlin, 2002) and raking (Ireland

and Kullback, 1968; Bishop et al., 1975).

1.3.3 Imputation

Imputation is the process of filling-in missing data with means or draws from a dis-

tribution (Little and Rubin, 2002). This can be done once (single imputation) or

repeatedly (multiple imputation). Once imputed, the data set is treated as com-
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plete and standard statistical analyses are conducted. However, inference based on

singly-imputed data usually underestimates the variation and one must adjust anal-

yses appropriately in order to draw valid inference. Multiple imputation (MI), as

discussed in Section 1.3.3.3, resolves this issue by restoring the variation in the point

estimate (Rubin, 1978; Rubin, 2004). Historically, single imputation was preferred

because of its ease, but the advancement of computing has made multiple imputation

widely accessible in most scenarios. As alternatives to MI, one may also accurately

assess the variance of point estimates by utilizing methods such as bootstrapping,

jackknifing and permutations.

In general, there are explicit (model-based) and implicit imputation procedures

(Little and Rubin, 2002). Explicit procedures include mean, regression and stochastic

regression imputation, while implicit methods are those such as hot and cold deck

imputation, and substitution.

1.3.3.1 Explicit imputation procedures In unconditional mean imputation,

the mean of observed values of variables subject to missingness is used to fill-in miss-

ing values amongst non-respondents (Little and Rubin, 2002). This practice is quick

and straightforward, but underestimates the variability of the data. Specifically, if

data had actually been observed, the values would have varied across subjects, yet

this procedure imputes all observations with the same quantity. If the data are strati-

fied according to a given variable and mean imputation carried out within strata (i.e.,

conditional mean imputation), the variation is still underestimated in singly-imputed

data.

Regression imputation may be used when one variable is subject to missingness

and data may be assumed at least MAR (Little and Rubin, 2002). After using

complete cases to regress the variable with missing values against the others, the
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model is used to predict the missing observations. An extension of this idea exists in

the multivariate normal setting when data are thought to be MNAR (Buck, 1960).

As when imputing with means, the variation here is also underestimated, as every

missing observation is imputed along the regression line, whereas the true values

would actually be scattered randomly about this line.

Lastly, stochastic regression imputation attempts to restore the variation that is

underestimated in regression imputation. This approach is an improvement over the

previous methods, but is still not as accurate as multiple imputation, bootstrapping

or jackknifing. The premise is to again use completers to form a regression model, but

then add to it random noise (Little and Rubin, 2002). Specifically, for each subject

i with missing data, the observation is imputed as ỹi = β̂0 + β̂1x1i + β̂2x2i + · · ·+ ηi,

where ηi ∼ N(0, s2), and s2 is the residual variance from the regression model. Little

and Rubin (2002) show that in the case of bivariate, monotone, MCAR data, this

method produces unbiased estimates for all parameters.

1.3.3.2 Implicit imputation procedures One example of an implicit method

is hot deck imputation, where one draws with replacement from the respondents, fills-

in the corresponding missing value, then weights that value by the number of times

that respondent was drawn for imputation (Cochran, 1977). There exist alternate

definitions and variations of this procedure, including hot deck within strata and the

nearest-neighbor approach, which incorporates information from covariates into the

random-drawing process (Rubin, 1973a; Rubin, 1973b).

Alternatively, cold deck imputation refers to filling in missing data with a constant

value from an external data set (Little and Rubin, 2002). For example, if the same

survey had been previously administered, one would use the results from that survey

to impute missing values on the current form.
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Lastly, substitution is used to replace a unit originally chosen for a sample with

another unit, because the former did not respond (Little and Rubin, 2002). There

is a risk of bias here, if there is some underlying difference in units who do/do not

respond.

1.3.3.3 Multiple imputation, bootstrapping, jackknifing and permuta-

tions As mentioned previously, multiple imputation (MI) is a procedure that cor-

rectly restores the variation in the point estimate, so as to provide valid inference

(Rubin, 1978; Rubin, 2004). However, the theory for combining test statistics and

p-values over multiply-imputed data sets indicates the type-I error rate may be over-

or underestimated depending on the amount of missing data, number of imputed

data sets and the type-I error level (Li et al., 1991). This finding is confirmed in

Section 2.3.4.

The premise of MI is to impute a given data set not once, but D times, calculating

the statistics of interest each time. Then, denoting θ̃d as the point estimate from the

dth imputed data set, the appropriate estimate is simply θ̄D = 1
D

D∑
d=1

θ̃d. The variance

estimate of this value is given in Little and Rubin (2002). Inference (confidence

intervals, significance tests) is drawn based on the t distribution. It may be used

with explicit or implicit methods.

As an alternative to MI, one may estimate the variance of point estimates using

bootstrapping or jackknifing, both of which are resampling techniques. Bootstrap-

ping refers to drawing samples of size n with replacement from the observed data,

also of size n (Efron, 1979). When missing data are present in a given bootstrap sam-

ple, values are imputed by a chosen procedure and the desired statistics calculated.

As with MI, the final point estimate is the average of all bootstrapped estimates.

9



If the distribution of estimates is normal, a confidence interval (CI) can readily

be formed based on normal theory. However, if the distribution is non-normal, one

can simply use the desired percentiles to form the bootstrap CI. This method in

general requires a large number of bootstrap samples, which, again, tends not to be

a computational issue by current standards.

Jackknifing, the predecessor of bootstrapping, involves dropping one observation

(or a set of observations) at a time from a sample, then calculating a statistic of

interest. This is repeated until all observations/sets have been removed in turn, after

which the jackknife estimate of the standard error of the point estimate is calculated

(Miller, 1974; Efron and Gong, 1983). In the context of missing data, imputation is

carried out after each data point is removed, then the procedure follows as above.

In general, studies have shown the bootstrap performs better than the jackknife,

but the jackknife is less computationally intensive (Efron, 1982). Little and Rubin

(2002) provide the appropriate information regarding inference for point estimates

after jackknifing and imputation.

For an overview of the advantages and disadvantages of MI, bootstrapping and

jackknifing, and when a given procedure may be more appropriate than another, see

Section 5.5 of Little and Rubin (2002).

Another data-driven method is the use of permutations, often for simulating the

distribution of the test statistic under the null (Fisher, 1935; Efron, 1988; Good,

2005). This approach usually uses a subset of all possible permutations under the

null, with the statistic of interest calculated in each instance. From this set of

estimates, the empirical distribution is formed and the percentile of interest is used

as the critical value for that set of data. This procedure is utilized in Section 2.2.5.2.
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1.3.4 Model-based procedures

The three major categories of model-based procedures used in the realm of missing

data are maximum likelihood, generalized estimating equations (GEE) and Bayesian

methods. Because of its relevance to the subsequent studies presented in this paper,

the focus of this section will be on maximum likelihood (ML) estimation and the

expectation maximization (EM) algorithm. A brief discussion of GEE and Bayesian

methods follows.

GEE is a procedure developed by Liang and Zeger (1986) in order to estimate

the parameters of a generalized linear model when there exists a possible correlation

structure due to repeated or clustered observations. The method is based on the

concept of a “working correlation” (an estimate of the presumed true correlation

structure), which allows the dependence between observations to be accounted for

during the parameter estimation procedure. The assumption of this approach is that

data are MCAR.

Robins et al. (1995) synthesized the notions of propensity scores and GEE to

devise inverse-probability-weighted GEE. Specifically, logistic regression is used to

predict the probability of being observed given the predictors under study. As the

name implies, the inverses of these probabilities are then used to weight observations

in the GEE. As a result, this method has a less strict missingness assumption, as

data need only be assumed MAR.

In general, Bayesian methods consider parameters as random variables rather

than constants. A “prior” distribution is specified for parameters, which is used in

conjunction with information from the sampled data to create a “posterior” distri-

bution. Details on these ideas and how Bayesian methods can be used in the missing

data context can be found in Gelman et al. (1995) and Little and Rubin (2002).
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1.3.4.1 The theory of maximum likelihood Maximum likelihood as a means

to estimate parameters is popular because it is (in general) easy to implement and

possesses favorable properties for data that follow commonly-observed distributions

such as the normal, exponential, Poisson and binomial (Pawitan, 2001). Specifically,

estimates from this method are consistent and efficient (i.e., asymptotically, they

obtain the Cramér-Rao lower bound). Further, ML estimation when data are missing

is readily achieved using the EM algorithm (Dempster et al., 1977). The concepts of

ML estimation without missing data will first be outlined, followed by the case with

missing data in Section 1.3.4.2.

Within the framework of ML, the likelihood is a function of the parameters, θ,

with the data, y, considered fixed. This contrasts a probability density function

(pdf), which is a function of y for fixed θ (Pawitan, 2001). The premise of this

method is thus to solve for the value of θ that maximizes the likelihood function for

a fixed set of observed data. In other words, it asks what value of θ is most likely

given the observed data and the distribution it is assumed to follow.

It is useful to note that since the natural log is a monotonically-increasing func-

tion, maximizing the natural log of the likelihood is equivalent to maximizing the

likelihood itself. This approach is often preferred because it leads to relatively

straightforward optimization, given the simplified form of the likelihood after the

natural log is taken. Additionally, if observations are assumed to be identically and

independently distributed according to a given distribution, the joint likelihood for

the sample is simply the product of n individual likelihoods (Pawitan, 2001).

Once the log-likelihood is formed (and assuming the support does not depend

on the parameters), maximization is carried out by simply finding the the roots of

the first derivatives with respect to the parameters (often called the score functions)

(Pawitan, 2001). If the parameter space is bounded, boundary points should be
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checked as potential maximums. In the case where the support is a function of θ,

setting the derivative equal to zero is not valid, as the maximum occurs at a non-

continuous endpoint on the likelihood curve. Here, the derivative is still utilized to

discern whether the likelihood is an increasing or decreasing function in the param-

eter. Then, based on the restrictions of the parameter range, the largest or smallest

value the parameter attains will maximize the likelihood. These concepts will now

be formally defined for a single unknown parameter, θ, recognizing extensions exist

for multiple parameters.

Denote the likelihood function by L(θ; y), where y is the observed data, θ exists

in the parameter space Ωθ and L(θ; y) ∝ f(y; θ), the pdf of Y . By definition, if

θ /∈ Ωθ, the likelihood is zero (Pawitan, 2001; Little and Rubin, 2002). Next define

the (natural) log-likelihood as `(θ; y) = ln[L(θ; y)] and the score function as S(θ) =

∂
∂θ
`(θ; y). As described above, when the support does not depend on the parameter,

θ̂MLE is found by solving S(θ)
set
= 0 for θ. In general, θ̂MLE = argmax

θ
L(θ; y) ≡

argmax
θ

`(θ; y).

1.3.4.2 Maximum likelihood estimation with missing data When data

are subject to missingness, the observed data contain both the observed outcome

values, yobs, and the missing data indicator, r, where R is a random variable with

pdf f(r | y;ψ). The joint distribution of Yobs and R is then used to determine the full

likelihood model :

Lfull(θ, ψ; yobs, r) ∝ f(yobs, r; θ, ψ) for θ, ψ ∈ Ωθ,ψ,

where

f(yobs, r; θ, ψ) =

∫
f(yobs, ymis; θ)f(r | yobs, ymis;ψ)dymis

is the joint pdf of (Yobs, R) (Little and Rubin, 2002).
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If data are 1) MCAR, or 2) MAR and θ and ψ are distinct (Ωθ,ψ = Ωθ × Ωψ),

the missing data mechanism may be ignored, implying

Lfull(θ, ψ; yobs, r) = Lign(θ; yobs)f(r | yobs;ψ),

where Lign(θ; yobs) ∝ f(yobs; θ) is referred to as the ignorable likelihood (Little and

Rubin, 2002). Even though the ignorable likelihood is based on completers, its

form is not always known or straightforward. From this, other approaches such as

the factored likelihood method have arisen. See Anderson (1957) for details on this

topic.

Alternatively, when data are MNAR, ψ must either be modeled jointly with θ,

or the true value of ψ, ψ0, must be assumed. Although there may exist previous

knowledge to inform the choice of the model or ψ0, if the assumption is incorrect,

biased estimates of θ may result.

1.3.4.3 The EM algorithm for maximum likelihood estimation when data

are subject to missingness Because of potential computational difficulty when

maximizing the full, ignorable or factored likelihoods using derivatives, a general it-

erative optimization method known as the expectation maximization (EM ) algorithm

has been derived (Dempster et al., 1977). Under basic conditions, the EM algorithm

is guaranteed to converge to the global maximum (the maximum likelihood estimate

(MLE)), although it may alternatively converge to local maxima if they exist, so

that the initial state may be important depending on the shape of the curve/surface

(Wu, 1983; Little and Rubin, 2002).

The guaranteed convergence is due to the ability to separate the observed-data

log-likelihood, `(θ, ψ; yobs, r), into the difference of two terms (see Section 3.1.1 for
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details). The first is referred to as the Q-function, and the second, the H-function,

which is guaranteed to decrease by Jensen’s inequality (Dempster et al., 1977).

Therefore, the difference, Q − H, will increase with each iteration as long as Q

increases. As such, the focus of the algorithm is on maximizing Q as follows:

E-step: Given current estimates of the parameters, θ(t) and ψ(t), calculate

Q
[
θ, ψ | θ(t), ψ(t)

]
M-step: Maximize the Q function with respect to θ and ψ based on the expression

from the E-step to obtain θ(t+1) and ψ(t+1), and let θ(t) = θ(t+1) and

ψ(t) = ψ(t+1)

Given a convergence criterion, ε, the algorithm will eventually converge on a

mode of the likelihood function, L(θ, ψ; yobs, r) (Little and Rubin, 2002). The EM

algorithm is preferred over methods such as Newton-Raphson because of its stability,

although in general it does take longer to converge.

1.4 CONTINGENCY TABLE ANALYSIS OF DATA WITH MISSING

VALUES

In the late 1960s and 1970s, missing data in the context of categorical variables was

being explored through log-linear models and imputation. Specifically, Bishop and

Fienberg (1969) used a log-linear model with iterative proportional fitting under the

assumption of independence to estimate cell counts of a 2× 2 table subject to miss-

ingness and discussed extensions to higher-dimensional tables. Blumenthal (1968)

introduced the idea of missing subcategories in multinomial data and the associated

bias and variance for MLEs in this case. Here, people might be completely classified
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at the most general level (job title, e.g.), while lower-level classification (more spe-

cific job duties, e.g.) may be missing. Related to this, Hocking and Oxspring (1971)

proposed an iterative technique to increase the precision of estimates of higher-level

(“parent”) categories based on partial information available in lower-levels. Hocking

and Oxspring (1974) extended these methods to a contingency table setting, differ-

entiating their work from that of Koch et al. (1972), who considered this problem

from the standpoint of a linear model. Also, Chen and Fienberg (1974) discussed ML

estimation for cell counts and a goodness-of-fit test in contingency tables with mar-

gins subject to missingness, addressing asymptotic variance and consistency. Fuchs

(1982) combined the log-linear model approach with the EM algorithm for categorical

data subject to missingness. Phillips (1993) extended the EM algorithm approach to

a three-way contingency table and also considered the impact of relaxing the MAR

assumption. Lastly, Lipsitz and Fitzmaurice (1996) considered a score test for inde-

pendence for a general (R × C) contingency table with missing data. Compared to

the likelihood ratio test, their result is easier to compute as it is not iterative.

Another relatively extensive body of literature has been established for missing

categorical data in the context of survey sampling (Little, 1982; Rao and Scott,

1987). Examples include the use of log-linear models/ML estimation (Fay, 1986;

Stasny, 1986; Baker and Laird, 1988) and latent models (Vermunt et al., 2008).

Of interest to the work carried out in Section 2 are the results of Gimotty and

Brown (1987), which compare the empirical distribution of the chi-square goodness-

of-fit test statistic after imputation to both its asymptotic distribution and that when

imputation is ignored. As expected, when ignored, the test rejects too frequently, as

the variation is underestimated. Also relevant are the findings of Wang (2006), where

a closed-form correction factor for both a test of independence and goodness-of-fit is

derived after conditional imputation of categorical variables.
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1.5 A PERMUTATION-BASED CORRECTION FOR PEARSON’S

CHI-SQUARE TEST ON AN IMPUTED COMPLEX OUTCOME

The second chapter in this manuscript uses the previously described notions of single

imputation in the realm of binary data. Specifically, there exist contexts where

it is meaningful to combine two binary outcomes, A and B, into a third binary

variable, Y , referred to as a complex outcome. Ultimately, Pearson’s chi-square test

for independence between Y and another binary variable, T (treatment, e.g.), is of

interest. Consider the case where A is subject to missingness and subsequently Y

is as well. When data are MCAR, there exist two valid imputation procedures for

the complex outcome: direct imputation of Y conditional on T , denoted Y |T , and

indirect imputation of A conditional on B and T , denoted A | (B, T ). Simulation

confirms single imputation based on A | (B, T ) is more efficient than that based on

Y |T . In general after imputation, Pearson’s test rejects the null at a rate higher than

the nominal α-level, and thus correction is required. Because a closed-form solution

is not clearly tractable for imputation under A | (B, T ), a permutation-based method

is proposed. Specifically, the corrected critical value is determined by estimating the

empirical distribution of the test statistic under the null. Simulation confirms this

approach yields the nominal α-level under the null, and additionally that A | (B, T )

results in a test with higher power than Y |T . Additionally, the data-driven method

is shown to have superior performance over multiple imputation in this context.

In Section 2.4, these results are applied to neoadjuvant breast cancer clinical trial

data, where a combination of drugs is compared to a single drug with regard to each

treatment’s effectiveness at keeping cancer from spreading into the lymph system.
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1.6 A MODIFIED EM ALGORITHM FOR CONTINGENCY TABLE

ANALYSIS WITH MISSING DATA

Finally, chapter 3 shows the utility of a proposed modified EM algorithm in the

case where data are MNAR in the contingency table setting. The method requires

no assumptions about the missing data mechanism, but does necessitate consistent

initial estimates of the model parameters (obtained either through study design or

from a complete, external data set). When these estimates (and possibly the external

data itself) are available, the algorithm combines the information in both to yield

consistent estimates potentially more efficient than those based on the external data

alone. This is true even if estimates based only on the data subject to missingness

would be inconsistent due to data MNAR. The basis of these results is an algebraic

manipulation of the Q-function, such that most of its terms may be estimated em-

pirically from the data. The remaining term that requires an iterative algorithm for

estimation does not depend on the missing data, and thus the value or distribution

of the missing data mechanism is not relevant. However, in the context of discrete

data, it can be shown this approach simplifies to a special case of the general EM

algorithm. The performance of the modified EM is assessed under various model

structures via simulation, then applied in Section 3.4 to a data set regarding survival

after surgery to treat ovarian cancer.
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2.0 A PERMUTATION-BASED CORRECTION FOR PEARSON’S

CHI-SQUARE TEST ON DATA WITH AN IMPUTED COMPLEX

OUTCOME

2.1 INTRODUCTION

A complex outcome, Y , combines two or more other outcomes, providing a compre-

hensive summary of multiple measures. Motivation for the use of complex outcomes

stems from their ability to condense a multitude of variables into a simple, work-

able measure while maintaining the essential information contained in the data. The

variables combined and in what fashion is dictated by context.

If individual outcomes A or B (combined to form complex outcome Y ) or both

are subject to missingness, imputation may be conducted, then statistical analyses

carried out on the imputed data set. However, indirect imputation at the A/B level

affects the variation in the data differently than at the Y level, and thus analyses

must be corrected appropriately depending on the method used. What follows is a

description of the motivating data for this problem, a discussion of the statistical

issues present, a current related method and the objectives of this paper.

To illustrate a complex outcome in practice, consider a neoadjuvant breast cancer

clinical trial where researchers are interested in whether or not a novel treatment is
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more successful than the current at preventing cancer from progressing into the lymph

system (Robidoux et al., 2013). Neoadjuvant therapy is an alternative approach to

treating cancer, where chemotherapy, hormone therapy, etc. is given before primary

surgery to remove a tumor. This contrasts adjuvant therapy, where a tumor is re-

sected before other treatment (radiation, chemotherapy, etc.) is prescribed. Often

with the neoadjuvant approach, less tissue is removed than if surgery had been un-

dertaken before treatment, which may result in better health and cosmetic outcomes

for patients. However, since the tumor remains in the body during chemotherapy,

the potential for cancer to progress into the lymph system during this time is of

concern. As a result, the effectiveness of drugs at impeding this progression is of

primary interest to researchers and physicians.

In order to assess the presence and extent of cancer in the lymph system after

neoadjuvant therapy, lymph nodes must be removed and biopsied. Because the

removal of nodes may result in lymphedema, some physicians prefer to remove only

a subset of nodes, so that data is missing by design. Specifically, a tracer or dye is

used to detect and remove the sentinel nodes (SN) − those that would be affected

first if the cancer progressed. If the SN are positive for cancer, any nodes further

downstream in the arm, the axillary nodes (AN), are removed and biopsied to assess

the extent to which the cancer has spread. Conversely, the assumption given a

negative SN biopsy is that all AN are also negative. In this case, no further nodes are

removed and AN status is thus missing. However, in some women the SN biopsy may

result in a false negative due to either incorrectly identifying the SN or a diagnostic

test error. Because of this, information from women who had both their SN and

AN removed is used to impute women with missing AN status. Note the presumed

data structure is simplified here for illustration purposes. Specifically, it is assumed

missing values of the AN depend only on SN status. In practice, however, other

20



covariates that may affect missingness should be considered. In this case, even if

the SN were negative, physicians may decide to subsequently remove AN based on

tumor size, age or weight, for example.

In clinical practice, researchers are often interested in a treatment’s effect on the

“overall nodal response,” obtained by combining the information from all biopsies

into one variable. Here, binary Y represents whether a patient had either no cancer

in any lymph nodes or at least one node with cancer. In other words, Y is a complex

outcome formed by combining information from the AN (A) and SN (B).

To determine whether or not a novel treatment results in a lower rate of cancer

in the lymph nodes, Pearson’s chi-square test for independence may be used. Specif-

ically, independence between Y and T is tested, where T is a treatment indicator.

However, when missing AN status is imputed, the test performed on singly-imputed

data will underestimate the variation due to imputation and reject the null more often

than it should. Because of this, correction is needed for inference to be meaningful.

For single imputation using Y |T , which represents imputing Y (missing if A was

missing) conditionally on T , Wang (2006) developed a closed-form correction factor

for Pearson’s test, which adjusted the observed test statistic based on the percentage

of missing data in the sample. However, this imputation scheme is näıve compared

to a single imputation of A given B and T (before the calculation of Y ), denoted

A | (B, T ), which utilizes more information in the data. Note in this case A | (B, T )

is equivalent to Y | (B, T ).

However, extending Wang’s (2006) result to this more complicated setting is

not necessarily viable. Specifically, the assumption under the null that Y ⊥ T is

imperative to developing the closed-form correction factor. In contrast, imputation

using A | (B, T ) still assumes under the null that (A,B) ⊥ T ⇒ A ⊥ T and B ⊥ T ,

but not that A ⊥ B. Because of this, the asymptotic properties established by Wang
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(2006) do not hold for A | (B, T ). As a practical and valid alternative, a permutation-

based approach that estimates the distribution of the test statistic under the null is

proposed (Fisher, 1935; Efron, 1988; Good, 2005). From this distribution, the test

statistic that results in the expected type-I error rate is selected as the appropriate

adjusted critical value.

The goals of this paper are to: 1) identify which imputation procedures are and

are not valid in the context of a complex outcome, and quantify via simulation the

level of bias and variation in each procedure; 2) illustrate with simulation that the

inflated rate of rejection of Pearson’s test is not equivalent for all valid imputation

procedures, and that inflation due to A | (B, T ) depends on the percent of missing

data as well as the distribution of (A,B); 3) describe a permutation-based empirical

method to correct Pearson’s test given imputation under A | (B, T ), and show it

results in higher power than Y |T with simulation; and 4) use simulation to show

the proposed method in (3) is more successful at achieving the nominal type-I error

rate than multiple imputation in this context. Aims (1) and (2) additionally show

imputation using Y |T is less efficient than A | (B, T ).

2.2 METHODS

In the analysis of the above clinical trial data, the goal is to estimate the response

rate of Y (overall nodal status) across levels of T (treatment), and conduct a test

of independence between these two variables. Because of potentially missing AN

status, imputation is utilized, and the chosen procedure should yield consistent point

estimates of the cell probabilities of the multinomial distribution defined by Y and

T in order to be considered valid.
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2.2.1 Notation for discrete data with missing values

In order to remain congruous with Wang (2006), much of the notation used in this

paper is the same or similar, and is extended or altered when needed.

Consider a joint outcome vector, F = (A,B)′, where A and B ∈ {1, 2} so

that (A,B) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. Without missing data, Fij jointly form

a multinomial random variable, with each Fij representing the number of times

(A,B)′ = (i, j)′ is observed over n trials. Let A be subject to missingness while B is

fully-observed.

In general, a complex outcome is a function of two or more other outcomes. Here,

define the binary complex outcome Y ∈ {1, 2}, derived from F = (A,B)′ and indexed

by k, as

Y =

 2 if A = B = 2

1 o.w.
. (2.1)

Let T ∈ {1, 2} be a (fully-observed) treatment indicator indexed by l, where

T =

 2 if subject is in the treatment group

1 if subject is in the control group
(2.2)

and define the following for i, j, k, l ∈ {1, 2}:

pijl = P [(A,B, T ) = (i, j, l)]

pij· = P [(A,B) = (i, j)], and similar for other probabilities

pA= i |B= j = P (A = i |B = j) =
pij·
p·j·

, and similar for other probabilities

p = (p111, p112, p121, p122, p211, p212, p221, p222)
′

qkl = P [(Y, T ) = (k, l)]

q = (q11, q12, q21, q22)
′. (2.3)
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If observations are indexed by m ∈ {1, ..., n}, then

CB = subset of {1, . . . , n} where B is observed, but A is missing

CC = subset of {1, . . . , n} whereA and B are both observed (i.e., “completers”)

nB =
∑
m

I{m ∈ CB}

nC =
∑
m

I{m ∈ CC}

nCijl =
∑

m ∈ CC

I{(A,B, T )m = (i, j, l)}

n∗·jl =
∑

m ∈ C∗

I{(B, T )m = (j, l)}, where ∗ is B or C; similar for other counts

πB = nB

n
= probability A is missing while B is observed

πC = nC

n
= probability both A and B are observed.

2.2.2 Assumptions

1. Observations are independent of one another

2. Data are missing completely at random (see Section 2.4 for an exception where

data are missing at random)

3. Missingness of A depends only on B and no other potential covariates

4. Single imputation is carried out with simple random sampling under the desig-

nated imputation scheme

2.2.3 Validity of imputation procedures

Based on Wang (2006) and as given in (2.3), CB is the set of indices for which B

is observed and A is missing. Once A is imputed, estimates based on the imputed

data from those nB people are given by p̂ Bijl = 1
nB

∑
m∈CB

I{(A,B, T )m = (i, j, l)} and
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q̂ Bkl = 1
nB

∑
m∈CB

I{(Y, T )m = (k, l)}. p̂ Cijl and q̂ Ckl are defined similarly for nC and

m ∈ CC , except they are based on the fully-observed data. Equation (2.4) gives the

expression for estimates of the parameters of the multinomial distribution (A,B, T )

based on the imputed data set:

p̂ Iijl =
nB p̂ Bijl + nC p̂ Cijl

n
. (2.4)

Subsequently, let p̂∗ = (p̂ ∗111, p̂
∗
112, p̂

∗
121, p̂

∗
122, p̂

∗
211, p̂

∗
212, p̂

∗
221, p̂

∗
222)

′, where * can be B,

C or I, and similar for q̂∗.

In general, it should be true that p̂Iijl
p−→ pijl or q̂Ikl

p−→ qkl ∀ i, j, k, l as n→∞, or

the point estimate is not consistent (Casella and Berger, 2002). Since p̂I is a weighted

function of p̂B and p̂C (Eq. (2.4)), and p̂C is consistent under the assumption of

MCAR, the consistency of p̂B (or q̂B) is of interest.

For simplicity, consider without loss of generality the element p̂ B222 of p̂B instead

of the entire p̂B vector, or q̂ B22 instead of q̂B, recognizing the following results apply

analogously to all elements of the vector. Let n̂B222 be the number of subjects in CB

for which A = B = T = 2 after imputation of A. Note Y = 2 when A = B = 2,

so that n̂B222 is equivalent to the estimate of the number of subjects in CB for which

Y = T = 2 after imputation of Y .

2.2.3.1 Marginal imputation of a complex outcome (Y ) In this scenario,

imputation is carried out by first calculating q̂ C2· , then sampling from Ym ∼ Bernoulli
(
q̂ C2·
)

for m ∈ CB, where Ym ∈ {1, 2}. Subsequently, n̂B222 ∼ BIN
(
nB··2, q̂

C
2·
)
. Define o(1) as

a random variable such that lim
n→∞

o(1)
a.s.−→ 0. It follows that

q̂ B22 =
n̂B222
nB
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=
nB··2
nB

n̂B222
nB··2

= q̂B·2
[
q̂C2· + o(1)

]
as nB··2 →∞ (2.5)

p−→ q·2q2· as n→∞ (2.6)

= q22 iff T ⊥ Y.

Equation (2.5) follows from the fact that n̂B222 ∼ BIN
(
nB··2, q̂

C
2·
)

and the strong

law of large numbers (SLLN): In general, if X1, X2, ..., Xn represents a sequence of

random variables, then the SLLN states X̄n
a.s.−→ µ as n → ∞, where X̄n and µ are

the sample and population means, respectively (Casella and Berger, 2002). Since a

proportion is a special case of a mean, the SLLN applies here as well and indicates

n̂B
222

nB
··2

= q̂C2· + o(1) as nB··2 → ∞. Equation (2.6) follows by first noting q̂Bkl
a.s.−→ qkl and

q̂Ck′l′ + o(1)
a.s.−→ qk′l′ as n → ∞ by the SLLN, where k, l may or may not be equal

to k′, l′. Then, since almost sure convergence implies convergence in probability

(Rohatgi, 1976), q̂Bkl
[
q̂Ck′l′ + o(1)

] p−→ qklqk′l′ as n→∞ (Bain and Engelhardt, 1992).

Since in general the complex outcome, Y , cannot be assumed to be independent

of treatment, marginal imputation of Y is not valid.

2.2.3.2 Marginal imputation of the missing component of a complex out-

come (A) Here, A is first imputed, then Y is calculated based on the imputed data

set. Imputation of A is achieved by sampling from Am ∼ Bernoulli
(
p̂ C2··
)

form ∈ CB,

so that n̂B222 ∼ BIN
(
nB·22, p̂

C
2··
)
. Then,

p̂B222 =
n̂B222
nB

=
nB·22
nB

n̂B222
nB·22

= p̂B·22
[
p̂C2·· + o(1)

]
as nB·22 →∞
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p−→ p·22p2·· as n→∞

= p222 iff (B, T ) ⊥ A⇒ iff B ⊥ A and T ⊥ A.

In general, it will not be true that B ⊥ A and T ⊥ A, so this imputation proce-

dure is also invalid.

2.2.3.3 Conditional imputation of the missing component of a complex

outcome (A) given the other component (B) Here, the information from B is

used to impute A, sampling randomly from (A |B = 1)m ∼ Bernoulli
(
p̂CA=2 |B=1

)
if m ∈ CB and Bm = 1, or (A |B = 2)m ∼ Bernoulli

(
p̂CA=2 |B=2

)
if m ∈ CB and

Bm = 2. Subsequently, n̂B222 ∼ BIN
(
nB·22, p̂

C
A=2 |B=2

)
. Then,

p̂B222 =
n̂B222
nB

=
nB·22
nB

n̂B222
nB·22

= p̂B·22
[
p̂CA=2 |B=2 + o(1)

]
as nB·22 →∞

p−→ P (B = T = 2)P (A = 2 |B = 2) as n→∞

= P (T = 2 |B = 2)P (B = 2)P (A = 2 |B = 2)

= P (A = T = 2 |B = 2)P (B = 2) iff (T ⊥ A) |B

= p222 iff (T ⊥ A) |B.

Similar to the previous two cases, (T ⊥ A) |B is not a reasonable assumption, so

that this imputation procedure is not valid.

2.2.3.4 Conditional imputation of the missing component of a complex

outcome (A) given a covariate (T) Imputing A based on treatment means
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sampling from (A |T = 1)m ∼ Bernoulli
(
p̂CA=2 |T =1

)
if m ∈ CB and Tm = 1, or

(A |T = 2)m ∼ Bernoulli
(
p̂CA=2 |T =2

)
if m ∈ CB and Tm = 2, so that n̂B222 ∼

BIN
(
nB·22, p̂

C
A=2 |T =2

)
. It follows that

p̂B222 =
n̂B222
nB

=
nB·22
nB

n̂B222
nB·22

= p̂B·22
[
p̂CA=2 |T =2 + o(1)

]
as nB·22 →∞

p−→ P (B = T = 2)P (A = 2 |T = 2) as n→∞

= P (B = 2 |T = 2)P (T = 2)P (A = 2 |T = 2)

= P (A = B = 2 |T = 2)P (T = 2) iff (A ⊥ B) |T

= p222 iff (A ⊥ B) |T.

In general it is not true that (A ⊥ B) |T , as the motivation for forming a complex

outcome based on A and B is from the belief they are somehow related. As such,

this is not a reasonable imputation procedure.

2.2.3.5 Conditional imputation of a complex outcome (Y ) given a co-

variate (T) In contrast to imputing A given treatment, Y given T results in

a consistent estimate of q22. Here, imputation is carried out as (Y |T = 1)m ∼

Bernoulli
(
q̂CY =2 |T =1

)
ifm ∈ CB and Tm = 1, or (Y |T = 2)m ∼ Bernoulli

(
q̂CY =2 |T =2

)
if m ∈ CB and Tm = 2. Then, n̂B222 ∼ BIN

(
nB··2, q̂

C
Y =2 |T =2

)
and

q̂B22 =
n̂B222
nB

=
nB··2
nB

n̂B222
nB··2
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= q̂B·2
[
q̂CY =2 |T =2 + o(1)

]
as nB··2 →∞

p−→ q·2qY =2 |T =2 as n→∞

= q22.

This indicates that under this imputation procedure, q̂Bkl is a consistent estimator

of qkl.

2.2.3.6 Conditional imputation of the missing component of a complex

outcome (A) given the other component (B) and a covariate (T) A

imputed conditionally on B and T is the only other consistent estimate of p222

(q22) in this context. When m ∈ CB and Bm = Tm = 1, sampling is done from

(A |B = T = 1)m ∼ Bernoulli
(
p̂CA=2 |B=T =1

)
, and similarly for other combina-

tions of Bm and Tm. This implies n̂B222 ∼ BIN
(
nB·22, p̂

C
A=2 |B=T =2

)
. Then,

p̂B222 =
n̂B222
nB

=
nB·22
nB

n̂B222
nB·22

= p̂B·22
[
p̂CA=2 |B=2, T =2 + o(1)

]
as nB·22 →∞

p−→ P (B = T = 2)P (A = 2 |B = T = 2) as n→∞

= p222.

Thus, as in Section 2.2.3.5, in general for this type of imputation p̂Bijl is a consistent

estimator of pijl.
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2.2.4 Asymptotic distributions of consistent estimators under the null

of independence

As shown in Section 2.2.3, the only imputation procedures that result in a consis-

tent estimator of p without any independence assumptions are Y |T and A | (B, T )

(equivalent to Y | (B, T )), and thus the distributional properties in these two cases

under the null of A ⊥ T and B ⊥ T ⇒ Y ⊥ T are of interest. Note that indepen-

dence is not assumed between A and B, as the motivation for forming a complex

outcome based on A and B is that they are indeed dependent.

Section 2.2.4.1 shows that in the case of Y |T , the covariance of the distribution of

interest is analogous to that given by Wang (2006). However, Section 2.2.4.2 indicates

imputation under A | (B, T ) does not allow for a clearly tractable derivation of the

covariance matrix.

2.2.4.1 Conditional imputation of a complex outcome given a covariate

(Y |T) The asymptotic results in this situation are equivalent to those established

by Wang (2006). Given the definitions in (2.3), q11 = p111 + p121 + p211, q12 =

p112 + p122 + p212, q21 = p221 and q22 = p222. Thus, Y is analogous to Wang’s (2006)

variable A, while T is equivalent to Wang’s B, where A and B ∈ {1, 2} and A is

subject to missingness while B is fully-observed (since treatment is always observed

here).

Assuming Y and T are independent, πC > 0 and conditional imputation using

Y |T , Wang’s (2006) Theorem 1 indicates
√
n
(
q̂I − q

) d−→ N(0,Σq), where

q̂I is defined analogously to p̂I

Σq = (π−1C + 1− πC)(QY ⊗QT ) +
πC+2πCπT+π2

T

πC
[QY ⊗ (qTq′T )] + [(qY q′Y )⊗QT ]
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⊗ represents the Kronecker product

QY = diag{qY } − qY q′Y , where qY = (q1·, q2·)
′

QT = diag{qT} − qTq′T , where qT = (q·1, q·2)
′

πT = probability that T is observed and Y is missing.

The closed form of Σq hinges, in part, on the fact that E[q̂B |σ(C)]− q may be

written as

E[q̂B |σ(C)]− qY ⊗ qT (2.7)

since Y ⊥ T under the null, and where σ(C) represents the set of observed data: {nB,

nC , (A,B, T )m when m ∈ CC and (B, T )m when m ∈ CB}. Again for simplification,

consider the element q22 from the q vector and note E
[
q̂B22 |σ(C)

]
is constant given

σ(C), so that

E
[
q̂B22 |σ(C)

]
= E

[
n̂B222
nB
|σ(C)

]
=

1

nB
nB··2q̂

C
Y =2 |T =2 (2.8)

= q̂B·2
q̂C22
q̂C·2
.

Equation (2.8) comes from the fact that n̂B222 ∼ BIN
(
nB··2, q̂

C
Y =2 |T =2

)
as defined

in Section 2.2.3.5. Then, given Y ⊥ T under the null,

E
[
q̂B22 |σ(C)

]
− q2·q·2 =

(
q̂B·2
q̂C22
q̂C·2
− q2·q·2

)
=

(
q·2
q̂C22
q̂C·2
− q2·q·2

)
+ o(1) ∵ q̂Bkl

a.s.−→ qkl by the SLLN

=

(
q·2

q̂C22
q·2 − q·2 + q̂C·2

− q2·q·2
)

+ o(1)

=

[
q·2

q̂C22
q·2 + (q̂C·2 − q·2)

− q2·q·2
]

+ o(1)
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=


q̂C22[

q·2+(q̂C·2−q·2)
q·2

] − q2·q·2
+ o(1)

=

 q̂C22

1 +
q̂C·2−q·2
q·2

− q2·q·2

+ o(1)

=

[
q̂C22

(
1− q̂C·2 − q·2

q·2

)
− q2·q·2

]
+ o(1)

by the Maclaurin series,
1

1− (−x)
= 1− x+ x2 − x3 + · · ·

=

[
q̂C22 −

q̂C22
(
q̂C·2 − q·2

)
q·2

− q2·q·2

]
+ o(1)

=
(
q̂C22 − q2·q·2

)
− q̂C22
q·2

(
q̂C·2 − q·2

)
+ o(1)

=
(
q̂C22 − q2·q·2

)
− q22
q·2

(
q̂C·2 − q·2

)
+ o(1)

by Slutsky’s Theorem

=
(
q̂C22 − q2·q·2

)
− q2·q·2

q·2

(
q̂C·2 − q·2

)
+ o(1) ∵ Y ⊥ T

=
(
q̂C22 − q2·q·2

)
− q2·

(
q̂C·2 − q·2

)
+ o(1). (2.9)

Based on the simplification shown in (2.9), (2.7) may be rewritten as a linear

function of qY , qT and indicator vectors for Y and T . Specifically, define IYm as

a two-dimensional vector with its first element equal to 1 if Y = 1, 0 otherwise;

and the second element equal to 1 if Y = 2, 0 otherwise; and similarly for ITm. For

each of the n observations, these vectors will be independent since Y ⊥ T . Note

1
nC

∑
m∈CC

IYm = q̂CY and 1
nC

∑
m∈CC

ITm = q̂CT , so that (2.7) becomes

E[q̂B |σ(C)]− qY ⊗ qT = q̂C − qY ⊗ qT − qY ⊗ q̂CT + qY ⊗ qT + o(1)
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=
1

nC

∑
m∈CC

IYm ⊗ ITm − qY ⊗ qT −
1

nC

∑
m∈CC

qY ⊗ ITm +

qY ⊗ qT + o(1)

=
1

nC

∑
m∈CC

[(IYm − qY )⊗ (ITm − qT ) + (IYm − qY )⊗ qT ] +

o(1).

Based on the above results, Wang (2006) proceeds to derive the variance and

covariance of all terms in (2.7), thus determining the distribution of
√
n
(
q̂I − q

)
.

Subsequently, the distribution of Pearson’s test statistic is derived as a function

of this distribution, leading to the closed-form correction factor (given in Section

2.2.5.1). The final form of (2.7) given above is imperative for the simplification

required to derive the covariance matrix of
√
n
(
q̂I − q

)
and subsequent distribution

of the test statistic. In Section 2.2.4.2, it is noted the assumption of Y |T used

by Wang (2006) for such simplification is violated in the case of imputation under

A | (B, T ), so that Wang’s results do not apply analogously to this situation. See

Wang (2006) for further detail.

2.2.4.2 Conditional imputation of the missing component of a complex

outcome given the other component and a covariate (A | (B,T)) Since here

A is imputed based on B and T , p, not q, must be considered. Specifically, the goal is

to derive the distribution of
√
n
(
p̂I − p

)
after imputation similarly to the derivation

for
√
n
(
q̂I − q

)
. However, since Pearson’s chi-square test is between Y and T , the

test is carried out at the level of q and thus the distribution of
√
n
(
q̂I − q

)
must be

determined as a function of the distribution of
√
n
(
p̂I − p

)
, with the ultimate goal of

finding the distribution of the test statistic based on the distribution of
√
n
(
q̂I − q

)
.
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Let
√
n
(
q̂I − q

)
AB

represent the asymptotic distribution of
√
n
(
q̂I − q

)
after

imputation based on A | (B, T ), so as to distinguish it from
√
n
(
q̂I − q

)
after impu-

tation via Y |T . As in Section 2.2.4.1, q is a linear mapping of p, so that the asymp-

totic distribution of interest is attained by mapping
√
n
(
p̂I − p

)
to
√
n
(
q̂I − q

)
AB

via

√
n
(
p̂I − p

)
=
√
n



p̂I111 − p111
p̂I112 − p112
p̂I121 − p121
p̂I122 − p122
p̂I211 − p211
p̂I212 − p212
p̂I221 − p221
p̂I222 − p222



⇒
√
n
(
q̂I − q

)
AB

=
√
n


q̂I11 − q11
q̂I12 − q12
q̂I21 − q21
q̂I22 − q22

 =
√
n



(
p̂I111 − p111

)
+
(
p̂I121 − p121

)
+
(
p̂I211 − p211

)(
p̂I112 − p112

)
+
(
p̂I122 − p122

)
+
(
p̂I212 − p212

)
p̂I221 − p221
p̂I222 − p222



⇒
√
n
(
q̂I − q

)
AB

=
√
nH

(
p̂I − p

)
, where H =


1 0 1 0 1 0 0 0

0 1 0 1 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 .

The above result depends on the attainment of the closed-form distribution of
√
n
(
p̂I − p

)
. However, this is complicated by the fact that under the null, (A,B) ⊥

T ⇒ A ⊥ T and B ⊥ T , but not that A ⊥ B, yet imputation of A is conditional
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on B. This contrasts Y |T , where Y is imputed conditionally on T , and Y and T are

independent under the null. Also, p is three-dimensional (meaning it is a function

of three variables), while q is two-dimensional. Although one maps from a 3-D to

2-D space with a constant matrix, H, further simplifications are still done using A,

B and T (i.e. one still works with p). This higher-dimensional problem, in addition

to the dependence between A and B, indicates deriving the distribution of the test

statistic under the null is potentially not feasible.

For a practical solution to correcting the rate of rejection of Pearson’s test in this

setting, a permutation-based method is proposed, in contrast to deducing the closed-

form correction factor. As discussed in detail in Section 2.3, there is motivation to

use imputation of A | (B, T ) over Y |T despite a lack of a closed-form adjustment, as

it is more efficient and powerful.

2.2.5 Correction to Pearson’s χ2 test of independence under valid impu-

tation

With no missing data, Pearson’s χ2 test statistic between Y and T is given by

X2
Y := n

∑
kl

(q̂kl − q̂k·q̂·l)2

q̂k·q̂·l

d−→ χ2
(y−1)(t−1), (2.10)

where y and t are the number of categories of Y and T , respectively. However, if there

are missing observations, imputation of one or both variables affects the distribution

of the test statistic under the null. Specifically, imputation adds another level of

variation to the data, so that standard inference without correction will undermine

the true variation in the data. In Section 2.2.3, correction factors for the two valid

imputation procedures are established.
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2.2.5.1 Conditional imputation of a complex outcome given a covariate

(Y |T) When imputation is done according to Y |T , a closed-form solution for the

correction factor exists, as deduced by Wang (2006): Given the asymptotic variance

found in Section 2.2.4.1, Wang (2006) showed (π−1C + 1 − πC)−1 is the appropriate

correction. In other words, under the null,
X2

Y

π−1
C +1−πC

d−→ χ2
(y−1)(t−1) = χ2

1 (since

Y and T are both binary in this case). Note this expression depends only on the

proportion of completers in the sample.

2.2.5.2 Conditional imputation of the missing component of a complex

outcome given the other component and a covariate (A | (B,T)) As dis-

cussed in Section 2.2.4.2, the form of the variance-covariance under A | (B, T ) is not

necessarily achievable, and thus an algorithm that utilizes permutations is proposed

in order to obtain the adjusted critical value. Specifically, Algorithm 1 outlines the

procedure used to construct the empirical distribution of the test statistic under the

null of (A,B) ⊥ T , which then provides an estimate of the adjusted critical value

(Fisher, 1935; Efron, 1988; Good, 2005).

Algorithm 1: Determine the adjusted critical value for Pearson’s chi-square test after

imputation under A | (B, T ) based on the empirical distribution of the test statistic

under the null:

Step 1: For an observed sample of size n from a multinomial distribution with data

assumed to be MCAR, impute missing observations with valid procedure

A | (B, T ) based on complete cases as shown in Section 2.2.3.6, then calculate

Y .

Step 2: Conduct Pearson’s test for independence between Y and T and calculate the

test statistic, S.
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Step 3: For d = 1, . . . , D:

(a) Permute T randomly in the original data to simulate the null of (A,B) ⊥

T .

(b) Impute missing values of A using A | (B, T ) and calculate Y appropri-

ately.

(c) Conduct Pearson’s test between Y and T and record S(d), the observed

test statistic from the dth permuted and imputed data set.

Step 4: Organize the set of D test statistics from Step 3,
{
S(1), S(2), . . . , S(D)

}
, in

ascending order and find S∗1−α, the (1− α)th percentile of the empirical dis-

tribution of the test statistic, which is the corrected critical value of interest.

Step 5: Reject the null of Y ⊥ T if S > S∗1−α.

2.2.5.3 Comparison of permutation-based method to multiple imputa-

tion Given multiple imputation (MI) is a procedure used to adjust inference on

point estimates after imputation, a reasonable question is whether or not it per-

forms similarly to (or better than) the proposed permutation-based procedure. Li et

al. (1991) derived a method to combine test statistics after MI. Specifically, for m

imputed data sets, two values are needed to compute the adjusted test statistic of

interest: The mean of all observed test statistics from Pearson’s chi-square test,

X2
avg =

m∑
`=1

X2
`

m
,

and an estimate of the increase in variance,

r =

(
1 +

1

m

) m∑
`=1

(√
X2
` −

√
X 2

)2

m− 1
,
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where X 2 = (X2
1 , . . . , X

2
m), the vector of m test statistics from each multiply-imputed

data set. In other words, the second term of r is the sample variance of the square

roots of the observed test statistics.

Then, the test statistic is given as

X2∗ =

X2
avg

d
− m+1

m−1r

1 + r
,

where d is the degrees of freedom for a given test statistic from a multiply-imputed

data set (here, d = 1).

Finally, the test statistic is F -distributed with d and ν = d
−3
m (m − 1)

(
1 + 1

r

)2
degrees of freedom:

p∗ = P
(
Fd, ν > X2∗)

In order to assess the asymptotic behavior of MI in this context, simulation is

carried out in Section 2.3.4.

2.3 SIMULATION STUDIES

2.3.1 Defining the data structure

The following steps are used in algorithms 2-6 to define the data structure of interest.

Specifically, they describe how to determine the distribution of (A,B, T ) given a fixed

sample size and distribution for (A,B), balanced treatment groups and a set amount

of correlation between Y and T , expressed as an odds ratio (OR). This approach is

taken since knowledge of (A,B, T ) (as opposed to simply (Y, T )) is needed to assess

how changing the distribution of (A,B) affects the simulation results. Note the final
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distribution will be approximately distributed as (A,B, T ) with approximately the

fixed OR due to the requirement that cell counts be whole numbers.

Step 1: Determine the cell counts for the distribution of (Y, T ) under fixed n and

(p11·, p12·, p21·, p22·), where pij· = P [(A,B) = (i, j)], balanced treatment

groups and a fixed odds ratio between Y and T , q11q22
q12q21

set
= γ, where qkl =

P [(Y, T ) = (k, l)]:

(a) Given the conditions as in Step 1, find q11, q12, q21 and q22 analytically:

First, solve for q22 in the quadratic equation 0.5γp22· + (0.5 − 0.5γ −

γp22· − p11· − p12· − p21·)q22 + (γ − 1)q222 = 0 under the restriction that

0 ≤ q22 ≤ 1. Then, q12 = 0.5 − q22 because of balanced treatment

groups, q21 = p22· − q22 because fixed (A,B) fixes the margins of Y , and

q11 = 0.5− q21, again by balanced treatment groups.

(b) Allot bnq22c = m1 subjects to the cell corresponding to Y = T = 2,

where b c represents the floor function.

(c) Allot b(q21 + q22)nc − m1 = m2 subjects to the cell corresponding to

Y = 2, T = 1.

(d) Allot n
2
−m1 subjects to the cell corresponding to Y = 1, T = 2.

(e) Allot remaining subjects to the cell corresponding to Y = T = 1.

Step 2: Based on the cell counts obtained in Step 1 under a fixed OR between Y and

T , derive the cell counts for the distribution of (A,B, T ) while maintaining

the distribution of (A,B) and balanced treatment groups:

(a) From steps 1 (c) and 1 (b), the cell counts for (A = B = 2, T = 1) and

(A = B = T = 2) are m2 and m1, respectively, since A = B = 2 ⇐⇒

Y = 2 as defined in (2.1). From this, p221 and p222 are known.
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(b) To distribute the remainder of patients into the remaining cells of (A,B, T )

while maintaining balanced treatment groups, let θ1 = P (Y = T = 1) =

0.5 − p221 and θ2 = P (Y = 1, T = 2) = 0.5 − p222, so that θ = θ1
θ1+θ2

is

the proportion of remaining cells corresponding to T = 1.

(c) Allot bnp11·θc = m3 subjects to the cell corresponding to A = B = T =

1.

(d) Allot bnp11·c −m3 subjects to A = B = 1, T = 2.

(e) Allot bnp12·θc = m4 subjects to the cell corresponding to A = 1, B =

2, T = 1.

(f) Allot bnp12·c−m4 subjects to the cell corresponding to A = 1, B = T = 2.

(g) Among the remaining np21· subjects, assign n
2
−m2−m3−m4 to the cell

corresponding to A = 2, B = T = 1 and the rest to the cell corresponding

to A = 2, B = 1, T = 2.

2.3.2 Bias and variance of point estimates of the distribution of (Y, T)

for all imputation procedures

The empirical bias and variance in the estimates of the cell probabilities of (Y, T )

due to each imputation procedure can be quantified by utilizing Algorithm 2.

Algorithm 2: Calculate the empirical bias and variation of parameter estimates of

the joint distribution of Y and T for all imputation procedures outlined in Section

2.2.3 under varying levels of correlation between Y and T (expressed as an odds

ratio).

Step 1: For each sample, X(d) ∼ MULTI(p); d = 1, . . . , D, of size n established in

Section 2.3.1:
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(a) Make a fixed percentage of the data MCAR.

(b) Impute missing values using one of the procedures outlined in Section

2.2.3 and calculate Y appropriately in each instance.

(c) Store q̂(d), the vector of observed probabilities of (Y, T ) after imputation.

(d) Calculate the vector of biases of q̂(d) for the dth data set as δ(d) =
([
q̂
(d)
11 −

q11

]
,
[
q̂
(d)
12 − q12

]
,
[
q̂
(d)
21 − q21

]
,
[
q̂
(d)
22 − q22

])
.

Step 2: Calculate the vector of average biases from estimating (Y, T ) after imputa-

tion as 1
D

D∑
d=1

δ(d).

Step 3: Calculate the vector of empirical standard deviations from estimating (Y, T )

after imputation as

√√√√√ D∑
d=1

[
q̂(d) − ¯̂q

]2
D−1 , where ¯̂q is the vector of means of q̂(d).

Here, the simulation sampled D = 5000 times from a set distribution with

n = 5000 for each sample. When the OR between Y and T was 1, all imputation pro-

cedures had negligible bias (when comparing the empirical bias to the empirical SD;

Table 2.1, bold) except those based on A and A |T , as these procedures are not valid

even when Y ⊥ T , as shown in Sections 2.2.3.2 and 2.2.3.4. For ORs not equal to 1,

only A | (B, T ) and Y |T remained unbiased, as expected again due to the results in

Section 2.2.3. Amongst the two aforementioned valid procedures, for a given cell of

(Y, T ), A | (B, T ) always had lower standard deviation (bold and red) compared to

Y |T , making it more efficient (discussed in more detail in Section 2.3.3).
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Table 2.1: Average empirical bias (true − estimated) and standard deviation (in parentheses) of the param-

eters of the joint distribution of Y and T after imputation. Cases with negligible bias are in bold. Invalid

(biased) procedures are only included for the first parameter settings, as all other results are analogous.

Results in red indicate lower SD when comparing the two valid imputation procedures.

Odds ratioa

(p11·, p12·, p21·, p22·)
b Percent

MCAR
Imputation
procedure

0.25 1 2

(0.69, 0.11, 0.07, 0.13) 20
Y

-7.24e-03, 7.22e-03, 7.08e-03, -7.06e-03 1.88e-04, -5.94e-05, -6.39e-05, -6.43e-05 3.65e-03, -3.74e-03, -3.79e-03, 3.87e-03
(7.22e-03, 7.39e-03, 4.53e-03, 2.86e-03) (7.22e-03, 7.16e-03, 3.82e-03, 3.79e-03) (7.20e-03, 7.19e-03, 3.38e-03, 4.31e-03)

A
-1.42e-02, -2.20e-03, 1.40e-02, 2.36e-03 -8.02e-03, -8.27e-03, 8.15e-03, 8.14e-03 -5.19e-03, -1.13e-02, 5.06e-03, 1.14e-02
(7.11e-03, 7.26e-03, 4.05e-03, 2.30e-03) (7.11e-03, 7.04e-03, 3.33e-03, 3.32e-03) (7.06e-03, 7.05e-03, 2.83e-03, 3.80e-03)

A |B -3.90e-03, 3.86e-03, 3.74e-03, -3.70e-03 1.62e-04, -6.68e-05, -3.81e-05, -5.69e-05 1.86e-03, -1.93e-03, -1.99e-03, 2.06e-03
(7.11e-03, 7.28e-03, 4.48e-03, 2.63e-03) (7.16e-03, 7.11e-03, 3.63e-03, 3.69e-03) (7.13e-03, 7.15e-03, 3.17e-03, 4.18e-03)

A |T -1.22e-02, -3.37e-03, 1.21e-02, 3.53e-03 -8.02e-03, -8.27e-03, 8.14e-03, 8.15e-03 -5.91e-03, -1.03e-02, 5.78e-03, 1.05e-02
(7.19e-03, 7.26e-03, 4.21e-03, 2.30e-03) (7.14e-03, 7.08e-03, 3.41e-03, 3.39e-03) (7.08e-03, 7.11e-03, 2.88e-03, 3.90e-03)

Y |T c -8.98e-05, 1.17e-04, -6.82e-05, 4.13e-05 1.81e-04, -6.86e-05, -5.73e-05, -5.51e-05 -1.55e-04, 5.52e-05, 2.13e-05, 7.88e-05
(7.54e-03, 7.40e-03, 5.00e-03, 2.84e-03) (7.40e-03, 7.34e-03, 4.14e-03, 4.09e-03) (7.29e-03, 7.46e-03, 3.53e-03, 4.72e-03)

A | (B, T )c
-1.28e-04, 1.32e-04, -3.00e-05, 2.60e-05 1.52e-04, -6.16e-05, -2.82e-05, -6.21e-05 -1.24e-04, 6.24e-05, -9.48e-06, 7.16e-05
(7.19e-03, 7.35e-03, 4.60e-03, 2.72e-03) (7.26e-03, 7.20e-03, 3.81e-03, 3.86e-03) (7.17e-03, 7.23e-03, 3.29e-03, 4.34e-03)

(0.16, 0.29, 0.14, 0.41) 20
Y |T c 2.85e-05, 4.67e-05, -1.32e-04, 5.72e-05 -5.24e-05, 1.27e-04, -2.34e-05, -5.10e-05 -7.08e-05, 4.77e-05, -2.27e-05, 4.58e-05

(6.59e-03, 7.54e-03, 7.23e-03, 5.53e-03) (7.40e-03, 7.37e-03, 6.67e-03, 6.70e-03) (7.32e-03, 7.05e-03, 6.13e-03, 6.93e-03)

A | (B, T )c
1.27e-05, 5.63e-05, -1.17e-04, 4.76e-05 -1.37e-04, 9.35e-05, 6.08e-05, -1.77e-05 -1.10e-04, 7.36e-05, 1.69e-05, 2.00e-05
(6.30e-03, 7.42e-03, 6.96e-03, 5.36e-03) (7.17e-03, 7.07e-03, 6.35e-03, 6.45e-03) (7.19e-03, 6.74e-03, 5.87e-03, 6.65e-03)

(0.69, 0.11, 0.07, 0.13) 70
Y |T c -3.70e-05, 8.21e-05, 7.63e-05, -1.21e-04 -2.87e-05, -2.72e-04, 2.35e-04, 6.53e-05 -1.31e-05, -7.32e-05, 1.58e-04, -7.13e-05

(9.86e-03, 8.05e-03, 8.18e-03, 4.72e-03) (9.13e-03, 9.15e-03, 6.78e-03, 6.68e-03) (8.89e-03, 9.62e-03, 5.85e-03, 7.64e-03)

A | (B, T )c
3.24e-05, 6.16e-05, 6.96e-06, -1.01e-04 1.70e-04, -2.19e-04, 3.67e-05, 1.26e-05 1.05e-04, -8.02e-05, 3.90e-05, -6.43e-05
(8.19e-03, 7.71e-03, 6.11e-03, 4.13e-03) (8.24e-03, 8.25e-03, 5.45e-03, 5.45e-03) (8.30e-03, 8.24e-03, 4.96e-03, 5.90e-03)

(0.16, 0.29, 0.14, 0.41) 70
Y |T c 2.63e-05, 1.31e-05, -9.03e-05, 5.09e-05 -7.16e-05, 1.60e-07, 2.16e-05, 4.98e-05 -1.63e-04, -5.88e-05, 2.62e-04, -4.10e-05

(1.06e-02, 1.02e-02, 1.08e-02, 8.85e-03) (1.06e-02, 1.08e-02, 1.03e-02, 1.04e-02) (1.05e-02, 1.08e-02, 9.82e-03, 1.07e-02)

A | (B, T )c
1.32e-04, 4.64e-05, -1.96e-04, 1.76e-05 -1.34e-04, 2.88e-05, 8.39e-05, 2.12e-05 -3.50e-05, -1.96e-06, 1.35e-04, -9.78e-05
(8.94e-03, 9.69e-03, 9.31e-03, 8.24e-03) (9.65e-03, 9.61e-03, 9.24e-03, 9.21e-03) (9.64e-03, 9.41e-03, 8.90e-03, 9.39e-03)

a
OR for Y across levels of T

b
Corresponds to pijl, where A corresponds to i, B to j, T to l

c
Valid imputation procedure
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2.3.3 Inflated and corrected type-I error rates for Pearson’s chi-square

test on a singly-imputed data set

With regard to type-I error, näıve use of Pearson’s test after imputation underes-

timates the variation in the data, thus increasing the rate of rejection beyond the

expected level of α. This finding stems from the fact that the area under the tail

of the χ2 distribution increases with increasing variance, so there is more area to

the right of a given critical value compared to the distribution when data are fully-

observed.

In the remainder of the paper, two versions of the adjusted critical values are

utilized: First, for each sample, the empirical distribution of the test statistic under

the null is used to find the corrected critical value specific to that sample. Second, for

a large number of samples from a set distribution for (A,B), the average corrected

critical value is calculated and subsequently used as the critical value for any sample

from that distribution. The motivation is to illustrate that the inflation in variation

due to imputation depends only on the amount of missingness and the distribution

of (A,B). Specifically, showing Pearson’s test attains the nominal type-I error rate

when using the average adjusted critical value specific to (A,B) for any sample from

that distribution indicates other factors are not affecting the variation in the data.

Algorithm 3 is used to estimate the uncorrected rate of rejection under Y |T

and A | (B, T ), with these results reported in columns 3 and 5 of Table 2.2. In

addition to the empirical standard deviation previously reported, these uncorrected

rates confirm the intuitive notion that imputation using A | (B, T ) is more efficient

than Y |T in that the type-I error after imputing with A | (B, T ) was always smaller

than the respective value after Y |T .
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Algorithm 3: Quantify the inflated type-I error rate in Pearson’s chi-square test when

imputation is ignored:

Step 1: For each sample, X(d) ∼MULTI(p); d = 1, . . . , D, of size n under the null

of (A,B) ⊥ T and with a set percentage of data MCAR:

(a) Impute with a valid procedure, Y |T or A | (B, T ) (see Sections 2.2.3.5

and 2.2.3.6), calculating Y appropriately in each case.

(b) Conduct Pearson’s test for independence between Y and T and let λ
(d)
1 =

I
{
S(d) ≥ S1−α

}
, where S(d) is the observed test statistic and S1−α is

the näıve critical value associated with α if data the were completely

observed.

Step 2: Calculate the inflated rate of rejection as 1
D

D∑
d=1

λ
(d)
1 .

Recalling Algorithm 1 outlines the permutation-based correction to Pearson’s

test after imputation under A | (B, T ), the asymptotic type-I rate of this procedure

is simulated using Algorithm 4. The algorithm samples many times from a fixed

multinomial distribution, carries out Algorithm 1 in each instance and notes whether

or not the test rejects. The average of this binary measure then gives an estimate of

α.

Algorithm 4: Determine the adjusted critical value for Pearson’s chi-square test

after imputation under A | (B, T ) based on the empirical distribution of the test

statistic and show the use of this value results in the nominal type-I error rate, α,

asymptotically:

Step 1: For each sample, X(d) ∼ MULTI(p); d = 1, ..., D, of size n under the null

of (A,B) ⊥ T and with a set percentage of data MCAR:

(a) Impute with A | (B, T ) as outlined in Section 2.2.3.6 and calculate Y .
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(b) Conduct Pearson’s test for independence between Y and T and record

S(d), the observed test statistic.

(c) For g = 1, ..., G:

(i) Permute T randomly to simulate the null of (A,B) ⊥ T .

(ii) Impute missing data with A | (B, T ) and calculate Y appropriately.

(iii) Conduct Pearson’s test between Y and T and record S
(d)
g , the

observed test statistic from the permuted and imputed data.

(d) Organize the set of G test statistics from Step 1 (c),
{
S
(d)
1 , S

(d)
2 , . . . , S

(d)
G

}
,

in ascending order and find S
(d)
1−α, the (1−α)th percentile of the empirical

distribution of the test statistic, which is the corrected critical value of

interest.

(e) Let λ
(d)
2 = I

{
S(d) ≥ S

(d)
1−α

}
.

Step 2: Calculate the corrected rate of rejection as 1
D

D∑
d=1

λ
(d)
2 .

Lastly, since it is believed the corrected critical value depends only on the distribu-

tion of the data and percent of missingness, Algorithm 5 finds the average corrected

value over many samples from a set distribution and uses this value to show the test

rejects at the expected rate of α in the long-run. In other words, for a given dis-

tribution and percent of missing data, there exists one true correction factor, which

could hypothetically be known. Each corrected value obtained from a sample is an

estimate of this true value.

Algorithm 5: Show the adjusted critical value of Pearson’s chi-square test depends

only on the distribution from which the sample is drawn and the percent of missing
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data by estimating the average adjusted value and showing the asymptotic rate of

rejection based on this estimate approaches α.

Step 1: For each sample, X(d) ∼MULTI(p); d = 1, ..., D, of size n under the null of

(A,B) ⊥ T and with a set percentage of data MCAR, conduct steps 1 (a)-(d)

from Algorithm 4 and store S
(d)
1−α in each instance.

Step 2: Find the average of all S
(d)
1−α as S∗1−α = 1

D

D∑
d=1

S
(d)
1−α.

Step 3: For each of g = 1, ..., G samples from the same distribution as defined in

Step 1 :

(a) Impute using A | (B, T ) as in Section 2.2.3.6 and calculate Y .

(b) Conduct Pearson’s test between Y and T and let λ
(g)
3 = I

{
S(g) ≥ S∗1−α

}
,

where S(g) is the observed test statistic.

Step 4: Calculate the corrected rate of rejection based on the average adjusted crit-

ical value as 1
G

G∑
g=1

λ
(g)
3 .

The results from algorithms 3, 4 and 5 are given in Table 2.2, with D = 2000

and n = 1000. G = 3000 for each of the D samples in Algorithm 4, and for Step

1 in Algorithm 5 (which references Algorithm 4 ), G = 3000 (for determining the

empirical distribution of the test statistic), while for Step 3, G = 2000 (number of

samples from the distribution).

Looking at the last column of Table 2.2, the higher efficiency of A | (B, T ) is again

illustrated in that the average corrected critical value forA | (B, T ) was always smaller

than that for Y |T (column 4). Specifically, the more the variation is increased due

to imputation, the larger the critical value needs to be to ensure the test rejects

at the nominal level. Thus, smaller adjusted critical values imply a more efficient

imputation procedure. This increased efficiency under A | (B, T ) comes from the fact
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Table 2.2: Uncorrected and corrected type-I error rates for Pearson’s chi-square test of independence between

Y and T after valid imputation (nominal type-I error rate is α = 0.05).

Y |T A | (B, T )

(p11·, p12·, p21·, p22·)
a Percent

MCAR

Uncorrected Correctedb

(Corrected critical

value)

Uncorrected Corrected Ic Corrected IId

(Average corrected

critical value)

(0.69, 0.11, 0.07, 0.13) 20 0.0980 0.0470 (5.568) 0.0875 0.0560 0.0525 (4.748)

(0.44, 0.05, 0.42, 0.09) 20 0.1165 0.0575 (5.568) 0.0650 0.0485 0.0520 (4.512)

(0.16, 0.29, 0.14, 0.41) 20 0.1035 0.0510 (5.568) 0.0955 0.0545 0.0455 (5.052)

(0.26, 0.22, 0.23, 0.29) 20 0.0920 0.0435 (5.568) 0.0780 0.0505 0.0500 (4.891)

(0.69, 0.11, 0.07, 0.13) 70 0.3320 0.0475 (15.488) 0.2290 0.0425 0.0560 (10.165)

(0.44, 0.05, 0.42, 0.09) 70 0.3230 0.0460 (15.488) 0.1920 0.0495 0.0485 (8.643)

(0.16, 0.29, 0.14, 0.41) 70 0.3300 0.0515 (15.488) 0.2720 0.0510 0.0575 (12.041)

(0.26, 0.22, 0.23, 0.29) 70 0.3415 0.0510 (15.488) 0.2385 0.0490 0.0495 (10.982)

a Corresponds to pijl, where A corresponds to i, B to j, T to l
b Using closed-form adjusted critical value established by Wang (2006)
c Adjusted critical value determined for each of d = 1, . . . , D data sets (sampled from the same population)
d Adjusted rate of rejection for D data sets based on average corrected critical value from D data sets sampled from the same distribution
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that Y is formed as a function of A and B because of contextual information suggest-

ing A and B are correlated. From this, more information is retained if A is imputed

based on knowledge of both B and T , as opposed to first calculating Y and imputing

this variable based only on T .

Additionally, assuming Y is missing when A is missing and imputing all missing

Y values discards instances where Y is already determined based on the knowledge

of B. Specifically, given definition (2.1), knowledge that B = 1 indicates Y = 1

even if A is missing. Thus, ignoring this information unnecessarily imputes known

Y values. In contrast, imputation under A | (B, T ) retains this information: Even

if A was imputed, Y is calculated after the fact, so that despite the value of A, if

B = 1 then Y = 1. Thus, the only observations that are “recognized” as imputed

in the final data set are those for which A was missing and B = 2. Because of this,

a smaller percentage of observations is acknowledged as imputed under A | (B, T )

compared to Y |T , making the former more efficient.

The above notions imply that for A | (B, T ), the rate of rejection will depend not

only on the percentage of missing data, but also on the true cell probabilities that

define the joint multinomial distribution of A and B. This concept is directly related

to the definition of Y as well. For example, when Y is defined as in (2.1), if B = 1

and A is missing, then how A is imputed is not important − Y will be 1 regardless.

The opposite would be true if Y were defined as, for example,

Y =

 2 if A = B = 1

1 o.w.
. (2.11)

Now the distribution of (A,B) impacts the rate of rejection in a different way: The

cells with B = 1 dictate the amount of imputation realized in the data set.

Somewhat obviously, neither the distribution of (A,B) nor the definition of Y
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affect the amount of inflation after imputation under Y |T . This is again because all

values of Y are set to missing if A is missing, so no information is maintained based on

the distribution of (A,B)/definition of Y . This notion is confirmed by observing that

for imputation under Y |T , the simulated inflation in the rate of rejection depended

only on the percent of missing data (Table 2.2, column 3). Specifically, for 20% of

data MCAR, the rate was approximately 0.10 despite the distribution of (A,B), and

increased to about 0.33 for 70% missing data.

In contrast, the inflation in rejection after imputation via A | (B, T ) depended not

only on the percent of missingness, but also on the distribution of (A,B). For exam-

ple, with 70% of data MCAR and cell probabilities for (A,B) of (p11·, p12·, p21·, p22·) =

(0.44, 0.05, 0.42, 0.09), the rate was 0.192, but this increased to 0.272 when the dis-

tribution changed to (0.16, 0.29, 0.14, 0.41). This finding is in the expected direction

since P (B = 2) increased from 0.14 to 0.7, and given the way Y is defined, the cells

with B = 2 will be those recognized as imputed if A is missing. This pattern is

illustrated in detail in Table 2.3. For the marginal probability that B = 2, there is a

monotonically-increasing pattern with the uncorrected type-I error, while for A = 2,

there is no pattern.

Lastly, the results of Algorithm 4 confirmed Pearson’s test rejects at the expected

α-level asymptotically when the empirically-corrected critical value is used, as in-

flated rates of rejection were reduced to approximately 0.05 in all cases (Table 2.2,

column 6). Additionally, the simulation based on Algorithm 5 (which considers the

average corrected critical value) showed there is some hypothetical corrected critical

value that depends only on the distribution of the data and percent of data MCAR:

When the average corrected critical value was used instead of the value specific to

each data set, the rates of rejection were still at the nominal level of 0.05 (last column

of Table 2.2).
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Table 2.3: Comparison of the uncorrected type-I error rate of Pearson’s test based

on the marginal probabilities of the components of the complex outcome.

(p11·, p12·, p21·, p22·) P (A = 2) % MCAR Uncorrected α

(0.69, 0.11, 0.07, 0.13) 0.20 70 0.2290
(0.44, 0.05, 0.42, 0.09) 0.51 70 0.1920
(0.26, 0.22, 0.23, 0.29) 0.52 70 0.2385
(0.16, 0.29, 0.14, 0.41) 0.55 70 0.2720

(p11·, p12·, p21·, p22·) P (B = 2) % MCAR Uncorrected α

(0.44, 0.05, 0.42, 0.09) 0.14 70 0.1920
(0.69, 0.11, 0.07, 0.13) 0.24 70 0.2290
(0.26, 0.22, 0.23, 0.29) 0.51 70 0.2385
(0.16, 0.29, 0.14, 0.41) 0.70 70 0.2720

2.3.4 Comparison of permutation-based method to multiple imputation

As outlined previously, the relative performance of multiple imputation to the pro-

posed permutation-based method for correcting Pearson’s test after single imputation

is of interest. As such, the inferential MI procedure described in Section 2.2.5.3 was

carried out for a large number of samples from a given distribution (D = 2000,

with n = 1000 for each sample) under A | (B, T ). Whether or not the adjusted test

rejected was recorded and the overall rate was calculated over these 2000 samples.

Similar to Table 2.2, Table 2.4 shows the uncorrected and corrected α-levels across

various parameter settings. This analysis was conducted for m = 3 and m = 10

to assess the sensitivity of the results (if any) to the number of imputed data sets.

These choices were based on Li et al. (1991), who used m = 2, 3, 5 and 10. For

the uncorrected rate, one instance of imputation was conducted (for each of the D

samples), and a critical value of 3.84 was used for Pearson’s test.

Table 2.4 shows that for 20% missing data, MI with both m = 3 and 10 performed

as expected − the nominal rejection rate (0.05) was attained in both cases, although
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Table 2.4: Uncorrected and corrected type-I error rates for Pearson’s test between

Y and T after multiple imputation under A | (B, T ) (nominal type-I error rate is

α = 0.05).

m = 3 m = 10

(p11·, p12·, p21·, p22·)
a Percent

MCAR
Uncorrected Corrected Uncorrected Corrected

(0.69, 0.11, 0.07, 0.13) 20 0.0815 0.0500 0.0785 0.0480
(0.44, 0.05, 0.42, 0.09) 20 0.0695 0.0430 0.0695 0.0525
(0.16, 0.29, 0.14, 0.41) 20 0.0785 0.0400 0.0880 0.0500
(0.26, 0.22, 0.23, 0.29) 20 0.0805 0.0500 0.0940 0.0515

(0.69, 0.11, 0.07, 0.13) 70 0.2375 0.1140 0.2280 0.1305
(0.44, 0.05, 0.42, 0.09) 70 0.1825 0.0970 0.1765 0.1010
(0.16, 0.29, 0.14, 0.41) 70 0.2840 0.1340 0.2675 0.1310
(0.26, 0.22, 0.23, 0.29) 70 0.2485 0.1095 0.2390 0.1180

a Corresponds to pijl, where A corresponds to i, B to j, T to l

there was potential downward bias for some settings when m = 3. However, for 70%

missingness, the performance was not optimal despite the value of m (values in bold).

For m = 3, uncorrected rates ranging from about 0.18 to 0.28 were corrected to 0.097

and 0.134, respectively. Similarly, for m = 10, uncorrected rates from approximately

0.18 to 0.27 were corrected to 0.10 and 0.13. As such, this method provides biased

results with large rates of missingness.

These conclusions are consistent with those reached by the authors, who observed

both downward and upward bias in the type-I error rate depending on the chosen

α-level, amount of missing data and number of imputed data sets (Li et al., 1991).

Their simulations did not consider instances with more than 50% missing data, as

they claimed in practice it is unlikely to observe higher levels than this. However,

even for ≤ 50% missing data, they did detect bias, as noted above.

In conclusion, there is no motivation to use MI as presented by Li et al. (1991)
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in this instance, as it behaves erratically while the permutation-based method gives

reliable results despite the structure of the data and amount of missingness.

2.3.5 Power of valid imputation procedures

In addition to efficiency, valid imputation procedures may also be compared with

regard to their ability to reject the null when they should:

Algorithm 6: Estimate the power of Pearson’s chi-square test when a) using the

closed-form corrected critical value after imputation under Y |T (Wang, 2006), b) us-

ing the the empirically-adjusted critical value after imputation under A | (B, T ) (i.e.,

by using the method in Algorithm 1 ) or c) using the average empirically-adjusted

critical value after imputation under A | (B, T ) (i.e., by using the method in Algo-

rithm 5 ):

Step 1: Generate a distribution for (A,B, T ) as in Section 2.3.1, so that Y and T

are correlated according to a fixed odds ratio, γ.

Step 2: For each sample, X(d); d = 1, ..., D, of size n from the distribution of

(A,B, T ) established in Step 1 :

(a) Make a fixed percentage of the data MCAR.

(b) Impute with either Y |T or A | (B, T ) (see Sections 2.2.3.5 and 2.2.3.6)

and calculate Y as appropriate.

(c) Conduct Pearson’s test for independence between Y and T and record

S(d), the observed test statistic.

(d) If imputation under Y |T was used: Let λ
(d)
4 = I

{
S(d)

π−1
c +1−πc

≥ S1−α

}
,

where S1−α is the näıve critical value associated with α if data were
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completely observed. S(d)

π−1
c +1−πc

is the closed-form adjusted test statistic

as derived by Wang (2006). Else, go to Step 2 (e).

(e) If imputation under A | (B, T ) was used, conduct steps 1 (c)-(d) of Algo-

rithm 4, store the value of S
(d)
1−α and let λ

(d)
4 = I

{
S(d) ≥ S

(d)
1−α

}
.

Step 3: If imputation under A | (B, T ) was used, conduct Step 2 of Algorithm 5

based on the stored values from the previous step and calculate λ
(d)
5 =

I
{
S(d) ≥ S∗1−α

}
∀ d.

Step 4: Calculate the applicable power values as 1
D

D∑
d=1

λ
(d)
4 and 1

D

D∑
d=1

λ
(d)
5 .

Based on D = 2000 samples (n = 5000), for all values of the OR between Y and

T (except 1), the power was higher for imputation under A | (B, T ) than under Y |T

when using either the empirically-adjusted critical value specific to each data set or

the average across the 2000 data sets (Table 2.5). In some instances, the increase

in power was large − up to 17 percentage points higher. When the OR was 1, all

procedures rejected around 5% of the time, as expected.
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Table 2.5: Power (percent) of Pearson’s test after imputation using valid procedures. Largest values within

a given set of parameters and odds ratio column are denoted in bold.

Odds ratioa

(p11·, p12·, p21·, p22·)
b Percent

MCAR
Imputation procedure/

Correction factor
0.5 0.75 1 1.25 1.5 1.75 2

(0.69, 0.11, 0.07, 0.13) 20 Y |T c 100 81.75 5.55 59.75 97.50 99.90 100
A | (B, T )d 100 86.85 5.60 63.10 99.15 100 100

A | (B, T ) (average)e 100 86.85 5.30 64.85 98.90 99.95 100

(0.16, 0.29, 0.14, 0.41) 20 Y |T c 100 98.95 5.60 87.75 100 100 100
A | (B, T )d 100 99.25 4.85 92.05 100 100 100

A | (B, T ) (average)e 100 99.20 4.25 92.85 100 100 100

(0.69, 0.11, 0.07, 0.13) 70 Y |T c 98.20 40.90 5.15 25.40 66.20 89.15 97.70
A | (B, T )d 99.65 58.55 5.60 36.25 83.35 98.25 99.85

A | (B, T ) (average)e 99.99 55.20 4.45 35.75 83.10 98.50 99.85

(0.16, 0.29, 0.14, 0.41) 70 Y |T c 100 70.10 5.65 47.75 93.90 99.55 99.95
A | (B, T )d 100 81.05 4.80 59.25 97.95 100 100

A | (B, T ) (average)e 100 80.35 5.25 58.15 97.80 100 100

a OR for Y across levels of T
b Corresponds to pijl, where A corresponds to i, B to j, T to l
c Using closed-form adjusted critical value established by Wang (2006)
d Using adjusted critical value specific to each of d = 1, . . . , D data sets (sampled from the same population)
e Using average adjusted critical value from D data sets sampled from the same distribution
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2.4 APPLICATION IN A BREAST CANCER CLINICAL TRIAL

The B-41 protocol of the National Surgical Adjuvant Breast and Bowel Project was a

randomized, phase-3 clinical trial studying the efficacy of trastuzumab plus lapatinib

compared to trastuzumab alone in neoadjuvant therapy for breast cancer (Robidoux

et al., 2013). Additional detail was given previously in the introduction. As an

illustration of the proposed method, a subset of the outcomes of this study − namely,

the results of the nodal dissection − was considered.

After patients received chemotherapy to shrink a primary tumor before surgery,

they underwent one of three procedures based on physician preference: 1) an axillary

dissection, where a sample of SN and AN were removed from the arm closest to the

tumor, but the types of nodes were not distinguished, 2) the removal of all SN and

AN, where SN were identified by a tracer/dye, or 3) initial detection and removal of

only SN by use of a tracer/dye. If any SN were positive, AN were removed as well.

If instead they were negative, no further removal of nodes was undertaken. Here,

the complex outcome, Y , represents whether a patient had either no cancer in any

lymph nodes (Y = 2) or at least one node with cancer (Y = 1).

Women in case (2) are known as “completers” and are used to impute the missing

AN status for those in group (3). For those in case (1), since a given sample includes

both SN (B) and AN (A), if all nodes are negative, let A = B = 2. Conversely, if

at least one is positive, A = B = 1. Given Y = 1 when any node has cancer, this

assumption that A = B = 1 correctly classifies a woman according to the definition

of Y .

Up to this point, data were assumed MCAR. Here, since missing AN status

depends on the SN biopsy, data are instead missing at random. However, because

imputation of AN is done conditionally on SN, this relationship is accounted for
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Table 2.6: Classification of neoadjuvant breast cancer data (n = 331) by treatment

and sentinel and axillary node statuses (no nodes or at least one node positive for

cancer). Missing data is denoted by ·.

Trastuzumab alone Trastuzumab + lapatinib
AN AN

0 > 0 · Total 0 > 0 · Total
0 60 2 69 131 80 1 55 136

SN > 0 9 30 1 40 6 17 1 24
Total 69 32 70 171 86 18 56 160

and point estimates are unbiased. Additionally, this structure does not affect the

proposed method of permuting the treatment vector under the null, as missingness

does not depend on treatment (since subjects were randomized). As described in

Section 2.1, this simplified form of the data assumes no other predictors determine

the missingness of A. However, if Z represents a set of covariates believed to affect the

probability of a missing observation, imputation would be conducted conditionally

on Z (i.e., as A | (B, T,Z)).

Table 2.6 classifies study participants by treatment and nodal status (missing data

is denoted by ·). Sixty-nine women (20.8%) had both their SN and AN removed and

biopsied, and estimates based on these women were used to impute those with missing

AN (n = 126 (38.1%)). Additionally, 136 (41.1%) women had axillary dissections

that were a sample of both SN and AN, with both types of nodes assumed to have

the same status.

After imputation and without correction, the probability of no cancer in any

lymph nodes given trastuzumab alone was 0.725, while that for trastuzumab and

lapatinib combined was 0.819. Pearson’s test for independence between Y and treat-

ment resulted in a p-value of 0.043, indicating the addition of lapatinib significantly

improved the rate of cancer-free lymph nodes over trastuzumab alone.
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After simulating the distribution of the test statistic under the null, the cor-

rected p-value was defined as the proportion of test statistics larger than observed,

uncorrected test statistic. The p-value increased to 0.107, indicating there was no

significant difference amongst treatments with regard to the rate of cancer found in

the lymph nodes.

Again, this example was a simplified version of the analysis that would take place

in clinical practice, where other covariates that could affect missingness would be

considered. It serves to illustrate, however, the importance of correcting inference

after imputation, as conclusions did change in this instance.

2.5 DISCUSSION

This chapter addressed the imputation of a complex outcome and the associated

adjustment to Pearson’s test for independence. In an attempt to build on Wang’s

(2006) finding for a simple binary outcome, it was determined the closed-form theo-

retical extension to this higher-dimensional problem may not be attainable. In light

of this, a data-driven, permutation-based method that estimates the empirical dis-

tribution of the test statistic under the null was proposed. With simulation, this

method’s ability to provide correct inference based on an adjusted critical value was

confirmed. It was also shown the imputation scheme of A | (B, T ) is more efficient

and has greater power than the näıve method of Y |T . Lastly, a comparison of the

suggested procedure to multiple imputation was undertaken, which demonstrated the

superiority of the permutation-based method given its robustness to the percentage

of missing data.

One weakness of these findings is the lack of a closed-form correction factor.
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Ideally, the distribution of the test statistic could be deduced, such that Pearson’s

test could be adjusted without the use of the test statistic’s empirical distribution,

which would save some computational time. Additionally, these findings could be

extended to the case where both A and B are subject to missingness (the results

are likely analogous − imputation must always be done conditionally on all other

variables in order to obtain consistent estimates) and/or where A, B and Y have

more than two levels (again, the extension is likely trivial). Lastly, this paper only

addressed the simplified case where Y was missing whenever A was missing, without

utilizing the instances where the value of B determines Y , despite the imputed value

of A.

Further work could explore this scenario where the y-values for the aforementioned

subjects are treated as observed, which would affect the estimates used for imputing

the remaining, “truly” missing values under Y |T . In this setting, the estimates

used for imputation would be more precise as they would employ a larger sample

size. However, only T is used for stratification, contrasting A | (B, T ), which stratifies

on both B and T . It is possible, then, that there is a trade-off in the precision gained

by the increased sample size in the Y |T case versus the gain in precision due to

more specific stratification under A | (B, T ). As such, it is likely the solution to this

problem depends on a number of factors, including the distribution of A and B, the

definition of Y and the percent of missingness − namely, the percent of subjects for

which A = · and B = 1, as this is the case where Y = 1 despite the imputed value

of A, given definition (2.1). It is also not clear whether Wang’s (2006) closed-form

correction factor readily holds in this setting for Y |T .

Lastly, as presented in Section 2.4, when the missingness of A depended on B

but not T , imputation under A | (B, T ) was still valid. How this type of missing at

random structure affects imputation via Y |T when values of Y are assumed known
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given B (as discussed in the previous paragraph) is also of interest. Specifically,

if there are instances where Y |T is more efficient than A | (B, T ), yet bias would

be introduced if data were actually MAR, this could indicate the “safer” choice in

general is A | (B, T ).

The results presented here highlight the importance of differentiating between

a simple and complex binary outcome when data are missing. Specifically, where

imputation occurs (i.e., at the A/B or Y level) affects efficiency and the distribution

of the test statistic. Thus, the use of Wang’s (2006) result under A | (B, T ) leads to

incorrect inference. It is notable that in this context, imputation under A | (B, T )

results in higher efficiency and power, and that the suggested permutation-based

method for correcting type-I error outperforms multiple imputation.
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3.0 A MODIFIED EM ALGORITHM FOR CONTINGENCY TABLE

ANALYSIS WITH MISSING DATA

3.1 INTRODUCTION

Maximum likelihood (ML) is a parameter estimation method, popular due to its sim-

ple implementation and favorable properties (Pawitan, 2001). Specifically, estimates

are consistent and efficient − they obtain the Cramér-Rao lower bound asymptoti-

cally. Further, ML estimates for data with missing values may be obtained using the

expectation maximization (EM) algorithm (Dempster et al., 1977). In general, the

maximum likelihood method requires that if data are not presumed at least MAR,

the missing-data mechanism is modeled or assumed known. Bias in the parameter

estimate of interest may occur when such assumptions are misspecified. Additional

detail about this method has been given previously in Sections 1.3.4.1 and 1.3.4.2.

The EM algorithm was formally established in the context of missing data by

Dempster et al. (1977). It provides an alternative optimization routine to the

Newton-Raphson algorithm and its extensions, with the advantage of being a sta-

ble, iterative procedure where the likelihood function is always increasing. Under

general conditions, it always converges to the global maximum (maximum likelihood

estimate (MLE)), with the potential exception of convergence to a local maximum
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if it exists. This last fact indicates the initial value is important in a multimodal

likelihood (Wu, 1983; Little and Rubin, 2002).

The fact that the EM algorithm always converges is due to the ability to separate

the observed-data log-likelihood, `(θ; yobs), into the difference of two terms, Q and H,

where yobs represents the set of observed data, and θ ∈ Ωθ is the unknown parameter

to be estimated (see Section 3.1.1). Jensen’s inequality guarantees H decreases with

each iteration, so that the focus of the algorithm is on maximizing Q at each step

(Dempster et al., 1977). Specifically, when Q increases, so does Q−H, and therefore

`(θ; yobs). In other words, given a convergence criterion, the algorithm will approach

a mode of the likelihood. Although the number of iterations required for convergence

is often larger, the EM algorithm is preferred over Newton-Raphson-type methods

because of its stability.

Presented here is a modification of the general EM algorithm, followed by its ap-

plication to contingency table analyses under varying model structures and with one

variable subject to missingness. The assumption is that consistent initial estimates

of the model parameters are attainable. The case where the data used to obtain

these estimates (the “external” data) is additionally available is also considered.

Briefly, the modified algorithm combines information from the data set subject to

missingness with the initial estimates from the external data − and possibly external

data itself − to produce consistent, yet potentially more efficient, estimates than

those from the external data alone (i.e., the initial estimates). This is true regardless

of the missing data mechanism (i.e., even if data are missing not at random). For

certain model structures, the initial estimates are sufficient to provide this increase

in efficiency, given the data set subject to missingness is at least slightly larger than

the data set that provided the initial estimates. Essentially, the algorithm combines

the initial estimates/external data with the data that, on its own, would produce
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biased estimates (hence the gain in efficiency), but without inducing bias in these

final estimates.

The assumptions about consistent initial estimates and the availability of external

data are feasible for study designs that purposefully allow missing data so as to save

money and/or resources (details below). Alternatively, estimates might be obtained

from a data set believed to follow the same distribution as the data under study,

although the validity of this scenario may be difficult to verify.

There exist two types of studies where the design includes purposeful missingness

while allowing consistent estimation of model parameters. In the first type, a random

sub-sample is drawn under the assumption that any missing observations in that sub-

sample may be recovered (through subsequent interviews, diagnostic testing that was

originally omitted, etc.). As such, this sub-sample will be representative of the entire

sample, and thus estimates based on it will be consistent. In the second scenario,

the sample is initially randomly divided into two sections: In the first, it is assumed

(by use of valuable incentives, necessary resources, etc.) that all observations are

attainable. In the second (collected with less-valuable incentives, a reduced budget,

etc.), data are allowed to be missing. In this case, the first division of the data

provides consistent estimation. In each of these frameworks, the missing portion of

the sample may be missing not at random.

The rest of this chapter is structured as follows: In the remainder of the introduc-

tion, an outline of the general EM algorithm is provided, including the cases where

the missing data mechanism is ignorable or assumed known. In Section 3.2.1, the

modified EM algorithm is introduced in the regression framework. A discussion of

the general and modified EM within the context of contingency table analyses fol-

lows. Finally, application of the modified EM algorithm under three different discrete

data model structures is considered. In Section 3.3, simulation studies are presented
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to illustrate the findings of Section 3.2. Of interest is distinguishing between the

model structures that only require consistent initial estimates in order to increase

efficiency, and those that additionally require the external data itself. Finally, Sec-

tion 3.4 applies the proposed method to a data set regarding the effect of radiation

on the length of survival after surgery due to ovarian cancer (< 10 years vs. ≥ 10

years) after controlling for stage of cancer (low vs. high).

3.1.1 The general EM algorithm for missing data

For a single unknown parameter (similar concepts apply to multiple parameters), de-

note the likelihood function by L(θ; y) = L(θ; yobs, ymis), where yobs are the observed

values, ymis the missing values, θ exists in the parameter space Ωθ and L(θ; y) ∝

f(y; θ), the pdf of Y . The (natural) log-likelihood is denoted by `(θ; y) = ln[L(θ; y)].

When data are subject to missingness, the observed data contain both the ob-

served values, yobs, and the missing data indicator, R, a random variable with pdf

f(r|y;ψ). The joint distribution of Yobs and R is then used to determine the full

likelihood model : For θ, ψ ∈ Ωθ,ψ,

Lfull(θ, ψ; yobs, r) ∝ f(yobs, r; θ, ψ) =

∫
f(yobs, ymis; θ)f(r | yobs, ymis;ψ)dymis

(Little and Rubin, 2002).

The EM algorithm provides a stable optimization procedure for maximizing the

full likelihood when data are subject to missingness. Expressing yi, obs as riyi and

yi,mis as (1− ri)yi, the derivation that underlies the algorithm is as follows:

f(y, r; θ, ψ) = f(yobs, ymis, r; θ, ψ) = f(yobs, r; θ, ψ)f(ymis | yobs, r; θ, ψ)
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⇒ f(yobs, r; θ, ψ) =
f(y, r; θ, ψ)

f(ymis | yobs, r; θ, ψ)

⇒ L(θ, ψ; yobs, r) =
n∏

i=1

f(yi, ri; θ, ψ)

f [(1− ri)yi | riyi, ri; θ, ψ]

=
n∏

i=1

f(yi; θ)f(ri | yi;ψ)

f [(1− ri)yi | riyi, ri; θ, ψ]

⇒ `(θ, ψ; yobs, r) =
n∑

i=1

ln

{
f(yi; θ)f(ri | yi;ψ)

f [(1− ri)yi | riyi, ri; θ, ψ]

}

=
n∑

i=1

{
ln
[
f(yi; θ)

]
+ ln

[
f(ri | yi;ψ)

]
−

ln
{
f [(1− ri)yi | riyi, ri; θ, ψ]

}}
. (3.1)

Thus, using the EM algorithm, to maximize `(θ, ψ; yobs, r), one may maximize the

RHS of (3.1). Taking the conditional expectation of both sides of (3.1) with respect

to the missing data given the observed data and the current estimates of θ and ψ,

θ(t) and ψ(t),

E
[
`(θ, ψ; yobs, r) | yobs, r; θ(t), ψ(t)

]
≡ `(θ, ψ; yobs, r)

=
n∑

i=1

E
{
ln
[
f(yi; θ)

]
+ ln

[
f(ri | yi;ψ)

]
| riyi, ri; θ(t), ψ(t)

}
−

n∑
i=1

E
{
ln
{
f [(1− ri)yi | riyi, ri; θ, ψ]

}
| riyi, ri; θ(t), ψ(t)

}
(3.2)

:= Q
[
θ, ψ | θ(t), ψ(t)

]
−H

[
θ, ψ | θ(t), ψ(t)

]
,
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where Q
[
θ, ψ | θ(t), ψ(t)

]
=

n∑
i=1

E
{
ln
[
f(yi; θ)

]
+ ln

[
f(ri | yi;ψ)

]
| riyi, ri; θ(t), ψ(t)

}
and H

[
θ, ψ | θ(t), ψ(t)

]
=

n∑
i=1

E
{
ln
{
f [(1− ri)yi | riyi, ri; θ, ψ]

}
| riyi, ri; θ(t), ψ(t)

}
are

the first and second terms of (3.2), respectively. The EM algorithm (Dempster et

al., 1977) then proceeds as follows until the convergence criterion, ε, is met:

E-step: Given current estimates of the parameters, θ(t) and ψ(t), calculate

Q
[
θ, ψ | θ(t), ψ(t)

]
M-step: Maximize the Q function with respect to θ and ψ based on the expression

from the E-step to obtain θ(t+1) and ψ(t+1), and let θ(t) = θ(t+1) and

ψ(t) = ψ(t+1)

By Jensen’s inequality, H
[
θ(t+1), ψ(t+1) | θ(t), ψ(t)

]
≤H

[
θ(t), ψ(t) | θ(t), ψ(t)

]
(Demp-

ster et al., 1977). Due to the M-step, Q
[
θ(t+1), ψ(t+1) | θ(t), ψ(t)

]
≥Q

[
θ(t), ψ(t) | θ(t), ψ(t)

]
,

and thus the algorithm guarantees L[θ(t+1), ψ(t+1); yobs, r] ≥ L[θ(t), ψ(t); yobs, r] given

the form of (3.2). As a result, the algorithm in general converges to a maximum

of the likelihood (the MLE or potentially a local maximum if there are multiple

maxima).

Often, sufficient statistics are updated in the EM algorithm rather than the actual

data points. Without loss of generality, assume data follow a distribution belonging

to the exponential family and that the pdf is in canonical form, so that

f(yi; θ) ∝ exp[θS(yi) + h(yi) + b(θ)],

and similar for f(ri | yi;ψ). Then,

Q =
n∑

i=1

E
{
ln
{
exp[θS1(yi) + h(yi) + b(θ)]

}
+

ln
{
exp[ψS2(yi, ri) + g(yi, ri) + c(ψ)]

}
| riyi, ri; θ(t), ψ(t)

}
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=
n∑

i=1

E
[
θS1(yi) + h(yi) + b(θ) + ψS2(yi, ri) + g(yi, ri) + c(ψ) | riyi, ri; θ(t), ψ(t)

]
.

Note in the above expression of the Q function, θ and ψ depend on the data

only through the sufficient statistics S1 and S2, so that these are the terms updated

during the EM algorithm:

E-step: S(t+1) = E
[
S | riyi, ri; θ(t), ψ(t)

]
M-step:

{
θ(t+1), ψ(t+1)

}
= argmax

θ,ψ
Q
[
θ, ψ | θ(t), ψ(t)

]
= u

[
S(t+1)

]
where u(·) is the function of the sufficient statistics that provides the MLE given the

distribution the data are assumed to follow.

3.1.2 The general EM algorithm when the missing data mechanism is

ignorable

If data are 1) MCAR or 2) MAR and θ and ψ are distinct (Ωθ,ψ = Ωθ × Ωψ), the

missing data mechanism may be ignored since

Lfull(θ, ψ; yobs, r) = Lign(θ; yobs)f(r | yobs;ψ),

where Lign(θ; yobs) ∝ f(yobs; θ) is referred to as the ignorable likelihood (Little and

Rubin, 2002). Since the missingness does not depend on what was not observed,

f(r | yobs;ψ) is known and thus only L(θ; yobs) needs to be considered.

Analogous to the derivations in Section 3.1.1,

`(θ; yobs) ∝
n∑

i=1

{
ln
[
f(yi; θ)

]
− ln

{
f [(1− ri)yi | riyi, ri; θ, ψ]

}}
,
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and the resulting Q function is

n∑
i=1

E
{
ln
[
f(yi; θ)

]
| riyi; θ(t)

}
≡

n∑
i=1

∫
`(θ; yi)f

[
(1− ri)yi | riyi; θ(t)

]
dyi.

Here, the same iterative algorithm as in Section 3.1.1 is used, except only θ is up-

dated.

3.1.3 The general EM algorithm when the missing data mechanism is

known

In the next section, the modified EM algorithm is introduced in the regression setting.

Since the modified algorithm is related to the general EM algorithm when the missing

data mechanism, ψ0, is known, a regression model will also be used for illustration

in this section.

Let X be a fully-observed predictor for all i = 1, 2, . . . , n subjects and Y an

outcome subject to missingness, observed only for the first i = 1, . . . , c subjects. Let

Ri indicate missing data, with ri = 1 if yi is observed, 0 o.w., and define P (Ri =

1 | yi, xi) = w(yi, xi;ψ). Again assume without loss of generality the complete data

follow a distribution that is a member of the exponential family and that the pdf is

in canonical form.

Based on Section 3.1.1, the log-likelihood function for the regression model is

expressed as

`(θ, ψ; yobs, r) =
n∑

i=1

{
ln
[
f(yi | xi; θ)

]
+ ln

[
f(ri | yi, xi;ψ)

]
−

ln
{
f
[
(1− ri)yi | riyi, ri, xi; θ, ψ

]}}
(3.3)
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Now assuming ψ0 is known, (3.3) becomes

`(θ; yobs, r, ψ0) =
n∑

i=1

{
ln
[
f(yi | xi; θ)

]
+ ln

[
f(ri | yi, xi;ψ0)

]
−

ln
{
f
[
(1− ri)yi | riyi, ri, xi; θ, ψ0

]}}
and the Q function,

Q∗
[
θ | θ(t)

]
=

n∑
i=1

E
{
ln[f(yi | xi; θ)] + ln[f(ri | yi, xi;ψ0)] | riyi, ri, xi; θ(t), ψ0

}
∝

n∑
i=1

E
{
ln[f(yi | xi; θ)] | riyi, ri, xi; θ(t), ψ0

}
(3.4)

since ln[f(ri | yi, xi;ψ0)] does not involve θ and is constant when ψ0 is known. Divid-

ing (3.4) up into completers and incompleters yields

Q∗
[
θ | θ(t)

]
∝

c∑
i=1

ln[f(yi | xi; θ)] +
n∑

i= c+1

E
{
ln[f(yi | xi; θ)] | ri = 0, xi; θ

(t), ψ0

}
∝

c∑
i=1

ln[f(yi | xi; θ)] +
n∑

i= c+1

{
θE
[
S(yi, xi) | ri = 0, xi; θ

(t), ψ0

]
+ b(θ)

}
.

Therefore, to update the Q function, E
[
S(yi, xi) | ri = 0, xi; θ

(t), ψ0

]
must be up-

dated. In practice, this is accomplished by calculating

E
[
S(yi, xi) | ri = 0, xi; θ

(t), ψ0

]
=

∫
S(yi, xi)f

[
yi |xi; θ(t)

]
[1− w(yi, xi;ψ0)]dyi∫

f
[
yi |xi; θ(t)

]
[1− w(yi, xi;ψ0)]dyi

.
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3.2 METHODS

3.2.1 A modified EM algorithm: Maximum likelihood estimation with-

out modeling or assuming the value of the missing data mechanism

To introduce the concept of the modified algorithm, consider again the regression

setting, with the theory applied to contingency tables in Section 3.2.3. The modi-

fied EM algorithm begins by assuming ψ0 is known, then shows that under certain

assumptions the value is not relevant to the estimation of θ.

As shown in Section 3.1.3, E
[
S(yi, xi) | ri = 0, xi; θ

(t), ψ0

]
needs to be maximized.

Note

E
[
S(yi, xi) | xi; θ(t), ψ0

]
= E

[
S(yi, xi) | ri = 1, xi; θ

(t), ψ0

]
P
[
Ri = 1 | xi; θ(t), ψ0

]
+

E
[
S(yi, xi) | ri = 0, xi; θ

(t), ψ0

]
P
[
Ri = 0 | xi; θ(t), ψ0

]
⇒ E

[
S(yi, xi) | ri = 0, xi; θ

(t), ψ0

]
=
E
[
S(yi, xi) | xi; θ(t), ψ0

]
− E

[
S(yi, xi) | ri = 1, xi; θ

(t), ψ0

]
P
[
Ri = 1 | xi; θ(t), ψ0

]
1− P [Ri = 1 | xi; θ(t), ψ0]

.

All terms on the RHS other than E
[
S(yi, xi) | xi; θ(t), ψ0

]
may be estimated em-

pirically (since they are based on the fully-observed data), so only this term needs to

be updated in the M-step. Note this expression depends only on X and the current

estimate of θ, and subsequently the value of ψ0 is irrelevant. Specifically,

Ê
[
S(yi, xi) | ri = 0, xi; θ

(t), ψ0

]
=
E
[
S(yi, xi) | xi; θ(t)

]
− Ê [S(yi, xi) | ri = 1, xi] P̂ (Ri = 1 | xi)
1− P̂ (Ri = 1 | xi)

, (3.5)

where the estimate of θ in the initial E-step is assumed consistent.
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This requirement of consistency is due to the replacement of some terms by their

empirical estimates in the modified EM. Note these estimates will be consistent, as

they are based on the fully-observed data. As a result, a sufficient condition for

this replacement to be valid is that the current estimate of θ is consistent. This is

achieved by beginning the modified EM algorithm with a consistent initial estimate

of θ.

Obtaining these estimates may be considered more reasonable than assuming the

model structure for θ and ψ, or the value of ψ0, as these can never be truly known.

Given a consistent initial estimate, the use of the EM algorithm based on the form of

(3.5) will then result in a consistent estimate of θ that is presumably more efficient

than the initial estimate.

3.2.2 The general EM algorithm in the contingency table setting

Consider a data set with discrete variables W = (X, Y, Z), indexed by i, j, k; i =

1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K, where, for simplicity, (X, Y ) is fully-observed

and Z is subject to missingness. Let Ra, a = 1, 2, ..., n, be the missing data indicator

such that ra = 1 if za is observed, 0 otherwise, and v(wa;ψ) = P (Ra = 1 |wa).

The observed data are {cijk,mij·}, where the cijk represent the fully-classified table

and the mij· the partially-classified when values of Z are missing. Let the first

c =
∑
ijk

cijk observations be the number of complete cases and the next m =
∑
ij

mij·

be the number of incomplete cases so that n = c + m. Of interest is estimating

π = {πijk = P (X = i, Y = j, Z = k)}.

In the discrete data (multinomial) case, the sufficient statistics if all data are
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fully-observed are

S =

{
nijk = cijk +mijk =

n= c+m∑
a=1

I{xa = i, ya = j, za = k} | i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K

}
.

Then, when data are missing, let π(t) be the current estimate of π. As derived

previously, and with the current notation,

Q =
n∑

a=1

E
{
ln
[
f(wa;π)

]
+ ln

[
f(ra |wa;ψ)

]
| xa, ya, raza, ra,π(t), ψ(t)

}
.

Let S1 be the sufficient statistic associated with f(wa;π) and S2 with f(ra |wa;ψ),

so that

Q =
n∑

a=1

E
{
ln
{
exp
[
πS1(wa) + h(wa) + b(π)

]}
+

ln
{
exp
[
ψS2(wa, ra) + g(wa, ra) + c(ψ)

]}
| xa, ya, raza, ra,π(t), ψ(t)

}
=

n∑
a=1

E
[
πS1(wa) + h(wa) + b(π) + ψS2(wa, ra) + g(wa, ra) +

c(ψ) | xa, ya, raza, ra,π(t), ψ(t)
]

Then,

S
(t+1)
1, ijk =

c∑
a=1

I{xa = i, ya = j, za = k} +

n∑
a= c+1

I{xa = i, ya = j}E
[
I{za = k} |xa = i, ya = j, ra = 0;π(t)

]
= cijk +

n∑
a= c+1

I{xa = i, ya = j}E
[
I{za = k} |xa = i, ya = j, ra = 0;π(t)

]
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and

S
(t+1)
2 ,ijk =

c∑
a=1

S(xa = i, ya = j, za = k, ra) +

n∑
a= c+1

I{xa = i, ya = j}E
[
S(za = k, ra) |xa = i, ya = j, ra = 0;π(t), ψ(t)

]
.

S1 and S2 are iteratively updated in the EM algorithm until convergence.

3.2.3 Implementation of the modified EM algorithm in the contingency

table setting

In order to utilize the modified EM algorithm, assume there exists a representative

external data set with W = (X, Y, Z) observed for all of its nE subjects, from which

at least consistent initial estimates of the parameters, and possibly the entirety of

the data, may be obtained. To differentiate the external data from that subject to

missingness, define nM = c + m and n = nE + nM from this point forward. For

the following derivations, assume only the initial estimates are available from the

external data. As in Section 3.1.3 and assuming ψ0 is known, the log-likelihood is

`(π;wobs, r, ψ0) =
nM∑
a=1

{ln[f(wa;π)] + ln [f(ra | wa;ψ0)]−

ln {f [(1− ra)za | xa, ya, raza, ra;π, ψ0]} },

and the Q function is

Q∗
[
π |π(t)

]
∝

c∑
a=1

ln [f(wa;π)] +

nM∑
a= c+1

{
πE

[
S(wa) | xa, ya, ra = 0;π(t), ψ0

]
+ b(π)

}
. (3.6)
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As in Section 3.2.1, in order to update Q, update

E
[
S(wa) | xa, ya;π(t)

]
− Ê [S(wa) | xa, ya, ra = 1] P̂ (Ra = 1 |xa, ya)
1− P̂ (Ra = 1 |xa, ya)

, (3.7)

which requires updating E
[
S(wa) | xa, ya,π(t)

]
, as all other values are estimated

from the observed data. Specifically, given the form of the sufficient statistics in

Section 3.2.2,

Q∗
[
π |π(t)

]
= S

(t+1)
ijk

=
c∑

a=1

I{xa = i, ya = j, za = k}+
nM∑

a= c+1

I{xa = i, ya = j}×

E
[
I{za = k} |xa = i, ya = j, cijk,mij·, ra = 0;π(t), ψ0

]
= cijk +

nM∑
a= c+1

I{xa = i, ya = j}×

E
[
I{za = k} |xa = i, ya = j, cijk,mij·, ra = 0;π(t), ψ0

]
,

where

E
[
I{za = k} |xa = i, ya = j, cijk,mij·, ra = 0;π(t), ψ0

]
=
{
E
[
I{za = k} |xa = i, ya = j;π(t)

]
−

Ê (I{za = k} |xa = i, ya = j, cijk, ra = 1) ×

P̂ (Ra = 1 |xa = i, ya = j)
}/

[
1− P̂ (Ra = 1 |xa = i, ya = j)

]
based on the form of (3.7)

=

[
π
(t)
ijk

π
(t)
ij·
− cijk

cij·

cij·
cij·+mij·

]
(

1− cij·
cij·+mij·

)
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=
cij· +mij·

mij·

π
(t)
ijk

π
(t)
ij·

− cijk
mij·

(3.8)

⇒ S
(t+1)
ijk = cijk +mij·

[
cij· +mij·

mij·

π
(t)
ijk

π
(t)
ij·

− cijk
mij·

]

= cijk + (cij· +mij·)
π
(t)
ijk

π
(t)
ij·

− cijk

= (cij· +mij·)
π
(t)
ijk

π
(t)
ij·

= nMij·
π
(t)
ijk

π
(t)
ij·

. (3.9)

If one were able to obtain the actual data and not just initial estimates, nEijk

would be added to the RHS of (3.9).

Based on the form of (3.9), one will note the only addition of information from

the data set subject to missingness is through the term nMij·. In other words, only the

(X, Y ) margin is updated, while any values of Z, even if they had been observed,

are ignored. As a result, the modified EM in the context of discrete data simplifies

to using the general EM algorithm as follows:

1. Calculate consistent initial estimates from the external data.

2. Delete all values of Z (the variable subject to missingness) amongst completers

in the data set subject to missingness.

3. Conduct the standard EM algorithm using the data from (2), starting with the

consistent initial estimates from (1).

This outline is assuming the external data itself is not available for use, but

rather just its estimates. If instead it were, after step (2), one would concatenate the

external data and that from (2), such that in the resulting data set, X and Y are
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fully-observed, but Z is only observed in the portion of the data associated with the

external data.

Given this simplification in the context of discrete data, the modified EM algo-

rithm is not iterative under every model structure, but instead may converge in two

steps, which is illustrated in Section 3.2.4.2. This is due to the fact that after the

(X, Y ) margin, nMij·, is incorporated as in (3.9), no more information can be gained

by further iterations and thus the estimates stabilize. As such, the method does

increase efficiency by incorporating information on X and Y , but in some instances,

this is a closed-form, not iterative, process.

Although this approach is näıve in that it deletes information (values of Z in the

data subject to missingness), it is this deletion that allows the modified EM algorithm

to produce unbiased estimates while increasing efficiency. The only way information

on Z is included in the final estimates is through the external data, which is assumed

to provide consistent estimation. As such, if bias is of particular concern in a given

analysis, this approach may be favorable when contrasted with making assumptions

about the missing data mechanism, as is required in the general EM.

In the following section, the modified EM algorithm is considered under three

different discrete model structures. Based on whether or not the nij· are in the set

of sufficient statistics, a general conclusion is drawn regarding the convergence rate

of the modified EM. Additionally, this criterion determines when consistent initial

estimates (in conjunction with a data set subject to missingness) are sufficient for

an increase in efficiency, compared to model structures that additionally require the

use of the external data itself in order to provide such an increase.
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3.2.4 Applications in contingency table analyses of missing data

In the following sections, three types of discrete data model structures are considered:

a conditional independence model, a saturated model and a three-way table without

a three-way interaction (i.e., a two-way interaction model). These structures are

divided into those that do and do not include the nij· in their set of sufficient statistics.

3.2.4.1 Models without nij· in the set of sufficient statistics In the model

that represents conditional independence of X and Y given Z, (X ⊥ Y ) |Z ⇒

(X |Z) ⊥ (Y |Z), so that πijk = πi | kπj | kπ··k. In this case, the sufficient statistics are

ni | k, nj | k and n··k, and thus

π
(t+1)
i | k =

S
(t+1)
i·k

S
(t+1)
··k

, π
(t+1)
j | k =

S
(t+1)
·jk

S
(t+1)
··k

and π
(t+1)
··k =

S
(t+1)
··k
nM

(3.10)

⇒ π
(t+1)
ijk = π

(t+1)
i | k π

(t+1)
j | k π

(t+1)
··k and π

(t+1)
ij· =

∑
k

π
(t+1)
ijk , (3.11)

If nEijk were available and used in (3.9), the denominator of π
(t+1)
··k would be n instead

of nM .

The use of the modified EM algorithm under this model structure is iterative

(i.e., it does not converge in two iterations). Additionally, this structure does not

benefit from consistent initial estimates alone, but rather requires the external data

as well, as is shown via simulation in Section 3.3.2.1.

Note here that all sufficient statistics involve Z, either conditionally or marginally.

Thus, the (X, Y ) marginal information from the data set subject to missingness

cannot improve the initial estimates alone. In order to increase efficiency here, there

must be an increase in sample size − namely, the external data and that subject to

missingness must be combined. The modified EM algorithm allows for this, without
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inducing bias into the final estimates, despite the fact that estimates based on the

data set subject to missingness alone could have been biased.

3.2.4.2 Models with nij· in the set of sufficient statistics Consider first the

saturated model, where no form of independence or interaction amongst variables is

assumed. Thus, π̂ijk =
nijk

n
when data are fully-observed, with sufficient statistics

nijk. Then, since πijk = πij·πk | ij in general, updating πijk is equivalent to updating

πij·πk | ij. Given the sufficient statistics here are nij· and nk | ij, the information from

the nMij· is incorporated directly. Because of this, the proposed EM algorithm will

stabilize within two iterations:

π
(0)
ijk =

nEijk
nE

and π
(0)
ij· =

nEij·
nE

⇒ S
(1)
ijk = nMij·

π
(0)
ijk

π
(0)
ij·

= (nij· − nEij·)
nEijk
nEij·

=
nij·n

E
ijk

nEij·
−
nEij·n

E
ijk

nEij·

=
nij·n

E
ijk

nEij·
− nEijk

= nij·
π
(0)
ijk

π
(0)
ij·

− nEijk

⇒ π
(1)
ijk =

S
(1)
ijk

nM
=
nij·
nM

π
(0)
ijk

π
(0)
ij·

−
nEijk
nM

⇒ π
(1)
ij· =

∑
k

π
(1)
ijk =

nij· − nEij·
nM

=
nMij·
nM
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⇒ S
(2)
ijk = nMij·

[
nij·
nM

π
(0)
ijk

π
(0)
ij·
− nE

ijk

nM

]
(
nM
ij·
nM

)
= S

(1)
ijk,

which indicates π
(t+1)
ijk = π

(t)
ijk ∀ t > 0.

The following expression shows how the data set subject to missingness is incor-

porated into the initial estimate of π:

π
(1)
ijk =

nij·
nM

π
(0)
ijk

π
(0)
ij·

−
nEijk
nM

=
nij·
nM

π
(0)
ijk(
nE
ij·
nE

) − nEijk

(
nE
ij·
nE

)
nM
(
nE
ij·
nE

)
=
π
(0)
ijkn

E(nij· − nEij·)
nMnEij·

=
π
(0)
ijkn

EnMij·
nMnEij·

Thus, the original estimate based on the external data, π
(0)
ijk, is augmented by the

factor
nEnM

ij·
nMnE

ij·
, giving a final estimate in closed-form that includes information from

the data subject to missingness, but only through the (X, Y ) margin.

Due to the fact that information from the nMij· is incorporated directly into the

sufficient statistics, efficiency is increased given the external estimates alone for a

sample size only slightly larger than that of the external data (e.g., nM = 320 vs.

nE = 300). This fact is not shown via simulation for this model structure, but results

are analogous to those under the two-way interaction model, found in Section 3.3.2.2.

Now consider the two-way interaction model (three-way contingency table with

no three-way interaction), where the sufficient statistics are nij·, ni·k, n·jk. In order
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to correctly model the interactions between X, Y and Z, a log-linear model must

be used, where the cell counts of the contingency table are Poisson-distributed with

expected frequencies µijk = nπijk (Agresti, 2002). The model of interest is parame-

terized as

ln(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk . (3.12)

As there is no closed-form for the πijk associated with this model, iterative pro-

portional fitting (IPF) is utilized to obtain estimates of π (Agresti, 2002). For this

model structure, IPF has three steps (illustrated for obtaining estimates from the

external data):

µ
(1)
ijk = µ

(0)
ijk

nEij·

µ
(0)
ij·

, µ
(2)
ijk = µ

(1)
ijk

nEi·k

µ
(1)
i·k

, µ
(3)
ijk = µ

(2)
ijk

nE·jk

µ
(2)
·jk

. (3.13)

The initial estimates, µ
(0)
ijk and µ

(0)
ij· , may be set trivially to 1. After one cycle

(i.e., all three steps) is complete, µ
(3)
ij· is compared with nEij·, µ

(3)
i·k with nEi·k and µ

(3)
·jk

with nE·jk. If convergence is not met, µ
(0)
ijk

set
= µ

(3)
ijk and cycles are continued until

convergence. Denoting the estimates of the µijk resulting from IPF as µ̂ijk, estimates

of the elements of π are given by π̂ijk =
µ̂ijk∑

i, j, k

µ̂ijk
.

During the modified EM algorithm, one would use S
(t+1)
ij· , S

(t+1)
i·k and S

(t+1)
·jk in

place of nEij·, n
E
i·k and nE·jk in (3.13). Therefore, estimation of the πijk depends not on

S
(t+1)
ijk , but rather on these marginal statistics. As a result, if these statistics stabilize,

the estimates of the µijk and thus πijk no longer update. The following derivations

show how the modified EM converges in two iterations under this model structure:

Note in general that S
(t+1)
ijk = nMij·

π
(t)
ijk

π
(t)
ij·

from (3.9), which implies S
(1)
ijk = nMij·

π
(0)
ijk

π
(0)
ij·

, where
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π
(0)
ijk and π

(0)
ij· are obtained from the external data via IPF. Then,

S
(1)
ij· =

∑
k

S
(1)
ijk =

∑
k

nMij·
π
(0)
ijk

π
(0)
ij·

= nMij· ∀ t.

Subsequently, π
(1)
ij· =

S
(1)
ij·
nM =

nM
ij·
nM , which holds true ∀ t > 0. Then,

S
(2)
i·k =

∑
j

S
(2)
ijk =

∑
j

nMij·
π
(1)
ijk

π
(1)
ij·

=
∑
j

nMij·
π
(1)
ijk(
nM
ij·
nM

) = nM
∑
j

π
(1)
ijk = S

(1)
i·k ,

and similar for S
(2)
·jk . Thus, by the second iteration, the marginal sufficient statistics

stabilize and the estimates of π will not benefit from the iterative method. This is

another instance where the (X, Y ) margin from the data set subject to missingness

is incorporated during the first iteration, providing some improvement in efficiency.

As with the saturated model, since nij· are sufficient statistics here, efficiency is

increased when only the initial estimates from the external data are available. These

results are reflected in a simulation study in Section 3.3.2.2.

3.2.5 The role of sufficient statistics in the modified EM algorithm

As discussed above, whether or not nij· are in the set of sufficient statistics given the

assumed model structure is the determining factor in whether or not the external data

itself is required in order increase efficiency through the modified EM algorithm. If

nij· are sufficient statistics, only the initial estimates are required; if not, the external

data set itself is additionally needed. In the latter case, the increase in efficiency is

through a sheer increase in sample size. However, the valuable aspect of the modified

EM algorithm is that data that would otherwise provide biased estimates may be

utilized without actually inducing bias.
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3.3 SIMULATION STUDIES

3.3.1 Defining the data structure

Below are the procedures used to simulate data according to two model structures:

conditional independence and two-way interaction (three-way contingency table with

no three-way interaction).

3.3.1.1 Three-way contingency table with conditional independence The

following steps are used to derive the joint distribution of three binary variables, X, Y

and Z, under the assumption of (X ⊥ Y ) |Z. From this, a fully-observed data set is

created, as well as that subject to missingness under either MCAR, MAR or MNAR:

Step 1: Derive the joint distribution of X, Y and Z:

(a) For binary X, Y, Z ∈ {1, 2}, fix the values of P (Z = 2), P (X = 2 |Z =

1), P (X = 2 |Z = 2), P (Y = 2 |Z = 1) and P (Y = 2 |Z = 2).

(b) Find the joint distribution of X, Y and Z, π = (π111, π121, π211, π221, π112,

π122, π212, π222), using the fact that (X ⊥ Y ) |Z ≡ (X |Z) ⊥ (Y |Z)⇒

P (X |Z)P (Y |Z) = P [(X, Y ) |Z]⇒ P (X |Z)P (Y |Z)P (Z) = P (X, Y, Z).

Step 2: Create a fully-observed data set by sampling nE observations from the multi-

nomial distribution from Step 1 and let nEijk =
∑
a∈DE

I{Xa = i, Ya = j, Za =

k}, where DE represents the set of indices for subjects in the external data

set.

Step 3: Create a data set subject to missingness:

(a) Sample nM observations from the distribution determined in Step 1 and

let nMijk =
∑
a∈DM

I{Xa = i, Ya = j, Za = k}, where DM represents the set
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of indices for subjects in the data set subject to missingness.

(b) For data MCAR, let mijk ∼ BIN(nMijk, ψ) ∀ i, j, k; else go to Step 3 (c).

(c) For data MAR, let mijk ∼ BIN(nMijk, ψij·) ∀ i, j, k; else go to Step 3 (d).

(d) For data MNAR, let mijk ∼ BIN(nMijk, ψ··k) ∀ i, j, k.

(e) The observed data is then cijk = nMijk−mijk andmij· = mij1+mij2 ∀ i, j, k.

3.3.1.2 Three-way contingency table with no three-way interaction As

in Section 3.3.1.1, the following steps are used to simulate a fully-observed data

set, as well as that subject to missingness for the model that includes all two-way

interactions between X, Y and Z, but not the three-way interaction.

Step 1: Using the form of (3.12), choose λXi , λYj , λZk , λXYij , λXZik and λY Zjk such that

all πijk =
µijk∑

i, j, k

µijk
> 0.05 so as to avoid sparse cells.

Step 2: Create a fully-observed data set by sampling nE observations from the multi-

nomial distribution from Step 1 and let nEijk =
∑
a∈DE

I{Xa = i, Ya = j, Za =

k}, where DE represents the set of indices for subjects in the external data

set.

Step 3: Create a data set subject to missingness:

(a) Sample nM observations from the distribution determined in Step 1 and

let nMijk =
∑
a∈DM

I{Xa = i, Ya = j, Za = k}, where DM represents the set

of indices for subjects in the data set subject to missingness.

(b) For data MCAR, let mijk ∼ BIN(nMijk, ψ) ∀ i, j, k; else go to Step 3 (c).

(c) For data MAR, let mijk ∼ BIN(nMijk, ψij·) ∀ i, j, k; else go to Step 3 (d).
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(d) For data MNAR, let mijk ∼ BIN(nMijk, ψ··k) ∀ i, j, k.

(e) The observed data is then cijk = nMijk−mijk andmij· = mij1+mij2 ∀ i, j, k.

3.3.2 Simulation of missing data using the modified EM algorithm

This section outlines two algorithms that assess the empirical bias and standard

deviation of estimates under the assumption of data missing not at random in the

following scenarios: 1) use of the external data alone, 2) the complete-case analysis

based on the data set subject to missingness, 3) use of the modified EM algorithm

with consistent initial estimates from the external data only and 4) use of the modi-

fied EM algorithm with both consistent initial estimates and the external data itself.

Algorithm 1 provides these results for the conditional independence model, while

Algorithm 2 does so for the case of the two-way interaction model.

3.3.2.1 Three-way contingency table with conditional independence

Algorithm 1: Based on the conditional independence model structure (Section 3.3.1.1),

calculate the empirical bias and standard deviation of estimates under data assumed

MNAR for the following cases: 1) use of the external data alone, 2) the complete-

case analysis based on the data set subject to missingness, 3) use of the modified EM

algorithm with consistent initial estimates from the external data only, and 4) use of

the modified EM algorithm with both consistent initial estimates and the external

data itself.
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Step 1: For d = 1, . . . , D:

(a) Simulate data. For fixed nE, nM and distribution of (X, Y, Z) as deter-

mined in Step 1 of Section 3.3.1.1, conduct steps 2-3 of Section 3.3.1.1,

using option (d) in Step 3 (i.e. simulate external data and that missing

not at random).

(b) Estimates from external data only. Calculate estimates of the joint dis-

tribution of (X, Y, Z) under the assumption (X ⊥ Y ) |Z based on the ex-

ternal data only: π
(0)(d)
ijk = π

(0)(d)
i | k π

(0)(d)
j | k π

(0)(d)
··k ∀ i, j, k, where π

(0)(d)
i | k =

nE
i·k
nE
··k

,

π
(0)(d)
j | k =

nE
·jk
nE
··k

and π
(0)(d)
··k =

nE
··k
nE .

(c) Bias in external data estimates. For the estimates based on the external

data only, store the vector of biases as δ
(d)
E = π(0)(d) − π.

(d) Estimates from complete cases. Calculate estimates of the joint distribu-

tion of (X, Y, Z) under the assumption (X ⊥ Y ) |Z based on the com-

plete cases only: π
CC(d)
ijk = π

CC(d)
i | k π

CC(d)
j | k π

CC(d)
··k ∀ i, j, k, where π

CC(d)
i | k =

ci·k
c··k

, π
CC(d)
j | k =

c·jk
c··k

and π
CC(d)
··k = c··k

c
.

(e) Bias in complete case estimates. For the estimates based on the complete

cases, store the vector of biases as δ
(d)
CC = πCC(d) − π.

(f) Modified EM algorithm with initial estimates only. Use the form of (3.9)

to obtain estimates from the modified EM algorithm using the consistent

initial estimates from the external data, π
(0)(d)
ijk : Let t = 0, then:

(i) Calculate St+1
ijk = nij·

π
(t)
ijk

π
(t)
ij·

(Eq. (3.9)).

(ii) Calculate the quantities π
(t+1)
i | k , π

(t+1)
j | k and π

(t+1)
··k as in (3.10).

(iii) Calculate π
(t+1)
ijk and π

(t+1)
ij· as in (3.11).

(iv) Let t = t+ 1.
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(v) Repeat steps 1 (f )(i)-(iv) until
∣∣∣π(t+1)
ijk − π(t)

ijk

∣∣∣ < ε ∀ i, j, k, where ε is

the required level of convergence. Denote the resulting estimates after

convergence as π
I(d)
ijk , where I represents the estimates based on the

initial estimates only.

(g) Bias in estimates from modified EM algorithm using consistent initial

estimates only. For the estimates from the modified EM algorithm that

only uses the initial estimates from the external data, store the vector

of biases as δ
(d)
I = πI(d) − π.

(h) Modified EM algorithm with external data. Obtain estimates from the

modified EM algorithm using the consistent initial estimates from the

external data, as well as the external data itself: Let t = 0, then conduct

steps 1 (f )(i)-(v), with the exception that S
(t+1)
ijk = nMij·

π
(t)
ijk

π
(t)
ij·

+ nEijk in Step

1 (f )(i). Denote the resulting estimates after convergence as π
A(d)
ijk , where

A represents the estimates based on all data.

(i) Bias in estimates from modified EM algorithm using external data. For

the estimates from the modified EM algorithm that uses the external

data, store the vector of biases as δ
(d)
A = πA(d) − π.

Step 2: Calculate the average empirical bias of the estimates of the joint distribution

based on the external data only as 1
D

D∑
d=1

δ
(d)
E , and similar for all other types

of estimates (complete cases, etc.).

Step 3: Calculate the standard deviation of the estimates of the joint distribution

based on the external data only as

√√√√√ D∑
d=1

[
πE(d) − π̄E

]2
D−1 , where π̄E is the
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vector of means of πE(d). The standard deviation for the the other estimates

(complete cases, etc.) follows similarly.

Table 3.1 shows the results of Algorithm 1 (conditional independence model) for

data MNAR with ψ··1 = 0.55 and ψ··2 = 0.3. In all cases, nE = 300. Empirical bias

and SD were calculated over D = 2000 iterations, with ε = 1.0× 10−8.

As discussed in Section 3.2.4.1, initial estimates alone are not sufficient to increase

efficiency under this model structure. When nM = 320 (i.e., slightly larger than nE),

the estimates from the modified EM algorithm given the initial estimates only (Table

3.1, column 6) were never more efficient than those from the external data alone.

Even when the sample size was increased markedly to nM = 5000, they were not more

efficient (the one instance of greater efficiency is a remnant of the large sample size).

This contrasts the last column of Table 3.1, in which estimates from the modified

EM that included the external data were always more efficient than those based on

the external data alone. Additionally, these estimates were unbiased (relative to the

magnitude of the SD), despite the fact that the data were missing not at random.

The complete-case analysis (column 5) shows the bias in the estimates due to this

missing data mechanism.
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Table 3.1: Performance of the modified EM algorithm for a conditional independence model with data

MNAR. The average empirical bias (SD) for estimates of the distribution of (X, Y, Z) is reported under

various estimation methods. SDs in bold represent estimates as or more efficient than those based on the

external data alone.

nM π Population
parameters

External data
(nE = 300)

Complete cases Initial estimates from
external data

Initial estimates and
external data

320 π111 0.231 -5.94e-04 (0.0220) 4.22e-02 (0.0291) -1.11e-02 (0.0407) -4.21e-04 (0.0190)
π121 0.099 -4.16e-04 (0.0141) 1.86e-02 (0.0204) -1.35e-03 (0.0313) -1.25e-04 (0.0117)
π211 0.189 3.24e-04 (0.0202) 3.50e-02 (0.0275) 8.21e-03 (0.0395) -4.84e-06 (0.0176)
π221 0.081 4.72e-05 (0.0119) 1.36e-02 (0.0187) 6.92e-03 (0.0211) 2.03e-05 (0.0104)
π112 0.117 -2.34e-04 (0.0165) -3.27e-02 (0.0280) 1.05e-02 (0.0291) -6.91e-05 (0.0155)
π122 0.063 -3.67e-04 (0.0110) -1.72e-02 (0.0201) 1.74e-03 (0.0264) -2.51e-04 (0.0102)
π212 0.143 9.91e-04 (0.0183) -3.91e-02 (0.0295) -7.73e-03 (0.0419) 6.96e-04 (0.0170)
π222 0.077 2.48e-04 (0.0126) -2.06e-02 (0.0223) -7.24e-03 (0.0319) 1.55e-04 (0.0113)

5000 π111 0.231 -7.35e-04 (0.0220) 4.18e-02 (0.0074) -1.06e-03 (0.0204) -2.99e-04 (0.0150)
π121 0.099 -3.66e-04 (0.0141) 1.80e-02 (0.0054) -4.09e-04 (0.0143) -6.32e-05 (0.0099)
π211 0.189 1.30e-04 (0.0206) 3.42e-02 (0.0069) 6.84e-04 (0.0207) -3.85e-04 (0.0159)
π221 0.081 6.45e-05 (0.0120) 1.48e-02 (0.0048) 4.25e-04 (0.0121) -6.68e-05 (0.0088)
π112 0.117 -3.19e-05 (0.0163) -3.17e-02 (0.0067) 9.83e-04 (0.0181) 1.90e-04 (0.0139)
π122 0.063 -3.13e-04 (0.0110) -1.73e-02 (0.0051) 2.51e-04 (0.0131) -1.32e-04 (0.0092)
π212 0.143 1.07e-03 (0.0184) -3.88e-02 (0.0075) -5.16e-04 (0.0211) 6.03e-04 (0.0159)
π222 0.077 1.80e-04 (0.0131) -2.10e-02 (0.0057) -3.57e-06 (0.0144) 1.54e-04 (0.0099)
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3.3.2.2 Three-way contingency table with no three-way interaction

Algorithm 2: Based on the two-way interaction model structure (Section 3.3.1.2),

calculate the empirical bias and standard deviation of estimates under data assumed

MNAR for the following cases: 1) use of the external data alone, 2) the complete-

case analysis based on the data set subject to missingness, 3) use of the modified EM

algorithm with consistent initial estimates from the external data only, and 4) use of

the modified EM algorithm with both consistent initial estimates and the external

data itself.

Step 1: For d = 1, . . . , D:

(a) Simulate data. For fixed nE, nM and distribution of (X, Y, Z) as deter-

mined in Step 1 of Section 3.3.1.2, conduct steps 2-3 of Section 3.3.1.2,

using option (d) in Step 3 (i.e. simulate external data and that missing

not at random).

(b) Estimates from external data only. Calculate estimates of the joint dis-

tribution of (X, Y, Z) under the two-way interaction model based on the

external data only, π
(0)(d)
ijk , using IPF:

(i) Calculate nEij·, n
E
i·k and nE·jk.

(ii) Set µ
(0)
ijk and µ

(0)
ij· trivially to 1.

(iii) Conduct the cycle of steps in (3.13) until convergence at level ε1.

(iv) Store π
(0)(d)
ijk =

µ̂ijk∑
i, j, k

µ̂ijk
, where µ̂ijk represents the estimates

resulting from the IPF in Step 1 (b)(iii).

(c) Bias in external data estimates. For the estimates based on the external

data only, store the vector of biases as δ
(d)
E = π(0)(d) − π.
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(d) Estimates from complete cases. To estimate π based on complete cases,

conduct Step 1 (b), using cij·, ci·k and c·jk in place of nEij·, n
E
i·k and nE·jk,

and denote the estimates in Step 1 (b)(iv) as π
CC(d)
ijk instead of π

(0)(d)
ijk .

(e) Bias in complete case estimates. For the estimates based on the complete

cases, store the vector of biases as δ
(d)
CC = πCC(d) − π.

(f) Modified EM algorithm with initial estimates only. Use the form of (3.9)

and IPF to obtain estimates from the modified EM algorithm using the

consistent initial estimates from the external data, π
(0)(d)
ijk : Let t = 0,

then:

(i) Calculate S
(t+1)
ijk = nMij·

π
(t)
ijk

π
(t)
ij·

.

(ii) Use IPF as in Step 1 (b) to calculate π
(t+1)
ijk using S

(t+1)
ij· , S

(t+1)
i·k and

S
(t+1)
·jk in place of nEij·, n

E
i·k and nE·jk.

(iii) Let t = t+ 1.

(iv) Repeat steps 1 (f )(i)-(iii) until
∣∣∣π(t+1)
ijk − π(t)

ijk

∣∣∣ < ε2 ∀ i, j, k, where

ε2 > ε1 is the required level of convergence (the initial estimates,

π
(0)(d)
ijk , may not provide enough precision for this step to converge

at the same level, ε1). Denote the resulting estimates after

convergence as π
I(d)
ijk , where I represents the estimates based on the

initial estimates only.

(g) Bias in estimates from modified EM algorithm using consistent initial

estimates only. For the estimates from the modified EM algorithm that

only uses the initial estimates from the external data, store the vector

of biases as δ
(d)
I = πI(d) − π.
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(h) Modified EM algorithm with external data. Obtain estimates from the

modified EM algorithm using the consistent initial estimates from the

external data, as well as the external data itself: Let t = 0, then conduct

steps 1 (f )(i)-(iv), with the exception that S
(t+1)
ijk = nMij·

π
(t)
ijk

π
(t)
ij·

+nEijk in Step

1 (f )(i). Denote the resulting estimates after convergence as π
A(d)
ijk , where

A represents the estimates based on all data.

(i) Bias in estimates from modified EM algorithm using external data. For

the estimates from the modified EM algorithm that uses the external

data, store the vector of biases as δ
(d)
A = πA(d) − π.

Step 2: Calculate the average empirical bias of the estimates of the joint distribution

based on the external data only as 1
D

D∑
d=1

δ
(d)
E , and similar for all other types

of estimates (complete cases, etc.)

Step 3: Calculate the standard deviation of the estimates of the joint distribution

based on the external data only as

√√√√√ D∑
d=1

[
π(0)(d) − π̄(0)

]2
D−1 , where π̄(0) is the

vector of means of π(0)(d). The standard deviation for the the other estimates

(complete cases, etc.) follows similarly.

The results of Algorithm 2 (two-way interaction model) with data MNAR (ψ··1 =

0.55, ψ··2 = 0.3) are given in Table 3.2. Empirical bias and SD were calculated

after D = 2000 iterations (nE = 300). Here, ε1 = 1.0 × 10−8, ε2 = 1.0 × 10−7 and

letting λ = (0, 0.02, 0.2, 0.6, 0.03, 0.07, 0.85) determined the population parameters,

π = (0.051, 0.063, 0.053, 0.066, 0.094, 0.268, 0.103, 0.302).

Here, the initial estimates alone were sufficient to increase efficiency under this

model structure, as can be seen in column 6. Specifically, when nM = 300 (i.e., equal

to nE), the estimates from the modified EM given the initial estimates only were
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sometimes more efficient than those from the external data alone. However, when

this sample size was increased slightly (nM = 320), the modified EM always produced

more efficient estimates. As expected, incorporating the external data itself into the

modified EM algorithm (column 7) also increased efficiency relative to the external

estimates alone. Results from the modified EM algorithm in the aforementioned

cases were unbiased, despite the fact that the data were missing not at random. The

complete-case analysis (column 5) reflects the bias in the estimates that would be

present if the missing data mechanism were ignored.
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Table 3.2: Performance of the modified EM algorithm for a two-way interaction (three-way contingency table

with no three-way interaction) model with data MNAR. The average empirical bias (SD) for estimates of the

distribution of (X, Y, Z) is reported under various estimation methods. SDs in bold represent estimates as or

more efficient than those based on the external data alone.

nM π Population
parameters

External data
(nE = 300)

Complete cases Initial estimates from
external data

Initial estimates and
external data

300 π111 0.051 -1.97e-04 (0.0113) 1.53e-02 (0.0115) 1.42e-05 (0.0117) -9.16e-05 (0.0103)
π121 0.063 -2.19e-04 (0.0123) 1.83e-02 ( 0.0135) -2.69e-04 (0.0123) -2.43e-04 (0.0117)
π211 0.053 5.97e-05 (0.0115) 1.58e-02 (0.0120) 3.33e-04 (0.0114) 1.96e-04 (0.0103)
π221 0.066 1.85e-04 (0.0133) 1.99e-02 (0.0137) 2.38e-05 (0.0131) 1.04e-04 (0.0127)
π112 0.094 -4.79e-04 (0.0161) -8.23e-03 (0.0211) 5.63e-05 (0.0160) -2.11e-04 (0.0131)
π122 0.268 -1.60e-04 (0.0251) -2.41e-02 (0.0322) -1.51e-04 (0.0247) 4.65e-06 (0.0195)
π212 0.103 -3.76e-04 (0.0164) -9.27e-03 (0.0220) 6.06e-05 (0.0168) -1.57e-04 (0.0135)
π222 0.302 8.67e-04 (0.0261) -2.77e-02 (0.0339) -6.88e-05 (0.0265) 3.99e-04 (0.0207)

320 π111 0.051 -2.04e-04 (0.0114) 1.56e-02 (0.0115) -1.16e-05 (0.0111) -1.05e-04 (0.0101)
π121 0.063 -1.51e-04 (0.0126) 1.87e-02 (0.0132) -2.11e-04 (0.0126) -1.82e-04 (0.0121)
π211 0.053 -1.21e-04 (0.0115) 1.57e-02 (0.0120) -4.21e-05 (0.0113) -8.01e-05 (0.0103)
π221 0.066 -4.08e-04 (0.0133) 1.96e-02 (0.0132) - 4.58e-04 (0.0131) -4.34e-04 (0.0127)
π112 0.094 -4.24e-05 (0.0157) -8.88e-03 (0.0199) -1.18e-04 (0.0153) -2.66e-04 (0.0125)
π122 0.268 3.50e-04 (0.0251) -2.45e-02 (0.0315) 1.53e-04 (0.0241) 2.49e-04 (0.0194)
π212 0.103 1.99e-04 (0.0165) -9.16e-03 (0.0213) 2.83e-04 (0.0165) 2.43e-03 (0.0132)
π222 0.302 7.58e-04 (0.0253) -2.69e-02 (0.0321) 4.04e-04 (0.0250) 5.75e-04 (0.0196)
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3.4 APPLICATION IN AN OVARIAN CANCER STUDY

This section considers the application of the modified EM algorithm to data pub-

lished in Madsen (1976) regarding ovarian cancer. Briefly, a retrospective study was

undertaken to assess possible predictors of patients’ likelihood of survival past 10

years after treatment. Ultimately, four of the measured predictors were determined

to be the most important: stage of tumor at time of surgery (low vs. high), type of

operation (extensive vs. not extensive), whether or not the patient received radiation

treatment and tumor pathology (localized vs. spread). The outcome was a binary

variable that grouped survival as < 10 or ≥ 10 years.

In order to apply the modified EM algorithm in the context of three binary

variables, the data have been collapsed over type of operation and pathology. As

a result, the measures under study are the stage of the tumor, whether or not the

patient had radiation and survival. Of interest is whether, conditional on stage,

radiation is associated with survival. Specifically, let X represent radiation; Y ,

survival and Z, stage. Then, the conditional independence model to be tested is

that from Section 3.2.4.1, X ⊥ Y |Z. Table 3.3 presents the fully-observed data as

provided in Madsen (1976). Analysis of this data using the Mantel-Haenszel test of

conditional independence resulted in p = 0.8957, thus the test failed to reject the

null that radiation is not correlated with survival given stage. The point estimate of

the odds ratio was 0.913 (95% CI: 0.494, 1.687).

So as to simulate a situation where data were missing not at random, stage (Z)

was made missing at a rate of 0.55 if Z = 0 and 0.4 if Z = 1, and this data was used

as the hypothetical study data from this point forward.

In order to obtain consistent initial estimates for the modified EM algorithm, a

random sub-sample of 40% of the data was drawn, and the missing values “recovered”
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Table 3.3: Classification of ovarian cancer survival (< 10 vs. ≥ 10 years; n = 299)

by stage (low/high) and radiation (no/yes).

Low stage High stage
Radiation Radiation
No Yes Total No Yes Total

< 10 11 20 31 41 77 118
Survival ≥ 10 54 73 127 7 16 23

Total 65 93 158 48 93 141

(which in practice would have occurred through better attainment of hospital records,

e.g.). This data-recovery strategy was discussed in Section 3.1. The 40% sub-sample

was considered the external data, while the remaining 60% was the data set subject

to missingness.

As shown in Table 3.4, the complete-case (CC) statistics (in red) differ notably

from the others, which reflects the bias due to the data being missing not at random.

Although this value is still not statistically significant at the α = 0.05 level, the

statistics obtained from the CC data tell a notably different story to those from

all other analyses. The inference changes from a very large p-value to one that is

borderline significant, and the point estimate and confidence interval also indicate

there could be a significant correlation between radiation and survival, controlling

for stage. In the last column of Table 3.4, one will note the width of the 95% CI is

smaller for the modified EM algorithm (in bold) than for the external data, indicating

an increase in efficiency.
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Table 3.4: Results of the Mantel-Haenszel test of conditional independence of radia-

tion and survival given stage for the ovarian cancer study. Point estimates of the OR

and associated inference are provided for the true data, external data only, complete

cases and modified EM algorithm (which utilized the external data).

ÔR p-value 95% CI CI width

True data 0.913 0.896 (0.494, 1.687) −
External data 0.931 0.859 (0.340, 2.168) 2.134
Complete cases 2.465 0.067 (1.025, 5.924) −
Modified EM 0.981 0.993 (0.559, 1.764) 1.205

3.5 DISCUSSION

In this chapter, a modified form of the expectation maximization algorithm was

presented and applied in the context of contingency table analyses under various

model structures. Through algebraic manipulation of the general EM algorithm, the

modified EM allows one to estimate most of the terms of the Q-function empirically.

The remaining term that must be updated iteratively is not a function of the missing

data, and thus there is no concern about the value of the missing data mechanism or

the model it is assumed to follow. The assumption of this method is that consistent

initial estimates of the model parameters are attainable, which are assumed to come

from an external data set. As such, the algorithm is robust to the type of missingness,

resulting in estimates that are unbiased and more efficient than the external data

alone, even when data are missing not at random and ignoring the missing data

would produce biased estimates.

For a set of three discrete variables, (X, Y, Z), where Z is subject to missing val-

ues, the computational characteristics of the algorithm were differentiated by whether

or not the nij· are in the set of sufficient statistics for a given model. When they
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are, the algorithm is not actually iterative, but rather incorporates information from

the data set subject to missingness in a closed-form fashion. In these cases, the

initial estimates from the external data alone are enough to provide more efficient

estimation when combined with the data set subject to missing values.

When nij· are not sufficient statistics, the algorithm is iterative, yet the external

data (not just the initial estimates) are required to realize an increase in efficiency.

This is related to the algorithm’s formulation − it incorporates information from the

(X, Y ) margin into the final estimates. Thus, without the nij· as sufficient statistics,

the method can only increase efficiency through a sheer increase in sample size. In

this case, the modified EM is able to combine the external data with that subject to

missingness, while still providing consistent estimation.

Because of the algorithm’s form, it was recognized that in the case of discrete

data, this approach simplifies to a special case of the general EM algorithm: In the

data set subject to missingness, all values in the variable with missingness are deleted,

then the general EM algorithm is carried out using consistent initial estimates from

the external data (and also the external data itself, if available). Of interest, then, is

how these two algorithms are related when other types of variables (continuous, e.g.)

are considered as opposed to all being discrete. However, this finding may speak to

a more general issue regarding the analysis of missing data − namely, without the

willingness to make some assumption about the missing data mechanism, an analysis

will innately be rudimentary and the gain in information can only be so great.

In light of this finding, this approach may be considered näıve in that it deletes

some observed values. However, the trade-off is that it maintains consistent (unbi-

ased) estimates while incorporating additional information, thus increasing efficiency.

As a result, if bias is of particular concern in a given study, this approach may be

considered advantageous.
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