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The rapidly expanding use of high volume hydraulic fracture stimulation during 

development of unconventional gas reservoirs such as the Marcellus Shale in northeastern North 

America has lead to concerns about potential migration or displacement of high TDS (total 

dissolved solids) fluids from the target formation or overlying units into shallow aquifers. 

Typical water quality monitoring methods may be unable to differentiate between contamination 

sources, behave non-conservatively, or require the addition of synthetic chemical tracers. Natural 

strontium isotope signatures (87Sr/86Sr) can be used to distinguish produced waters from the 

Marcellus Shale from other potential regional contaminants. The research objective of this study, 

located at the National Energy Technology Laboratory Greene County Site in southwestern 

Pennsylvania, was to test the assumption that hydraulic fracturing is confined to the target 

formation, and that injected and formation waters do not migrate to overlying units. Strontium 

isotope compositions were determined for produced waters taken over a period of approximately 

four months before and fourteen months after hydraulic fracturing from horizontal wells drilled 

Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus 

Formation Water after Hydraulic Fracturing 

 

 Courtney Anita Kolesar, M.S. 

University of Pittsburgh, 2014

 



 v 

into the Marcellus Shale and from overlying vertical Upper Devonian/Lower Mississippian 

(UD/LM) gas-producing wells. Water samples from a nearby spring were also collected to 

analyze the local ground water geochemistry and test the sensitivity of Sr isotopes as an indicator 

of brine incursions into fresh water aquifers. The results indicate that there was no significant 

post-hydraulic fracturing migration of Marcellus-related fluids or displacement of UD/LM brines 

into shallower units during the study period, and demonstrated that Sr isotopes can detect very 

small incursions of brine (<0.001%) into groundwater, often at a more sensitive level than shifts 

in elemental concentrations. The large difference in Sr content between the Marcellus brines and 

the UD/LM brines allows for detectable isotopic shifts in UD/LM 87Sr/86Sr ratios with as little as 

~1% incursion of Marcellus fluids. Strontium isotopes have the potential to serve as an excellent 

long-term monitoring tool. 
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1.0  INTRODUCTION 

 Exploration companies in the United States, and increasingly throughout the 

world, use directional drilling combined with hydraulic fracturing technologies to stimulate and 

produce hydrocarbons (EIA, 2013).  The hydraulic fracturing process is used when 

hydrocarbons, usually methane, are held in relatively impermeable rock such as shale, and it 

involves injection of millions of gallons of water containing chemical additives into the well to 

create fractures in the rock, allowing gas migration to the well.  Usually more than half of the 

injected water stays in the geologic formation, and the remainder is discharged from the well, 

initially at high rates (“flowback water”) that rapidly decline over the first month as total 

dissolved solids content (TDS) increases. Once gas production begins, the water that continues to 

flow from the well (at a reduced rate) is generally referred to as “produced water” (Soeder et al., 

2014); the transition from flowback to produced water varies with local regulatory definitions.  

The Middle Devonian Marcellus Formation in the northeastern United States contains 

organic-carbon rich mudrocks that serve as both source and reservoir for significant quantities of 

natural gas (Engelder and Lash, 2008).  Late-stage produced water from unconventional 

Marcellus Shale natural gas wells (i.e., >1 month after start of flowback) tends to be a highly 

saline sodium-calcium-chloride brine (up to 345,000 ppm TDS; Chapman et al., 2012; Barbot et 

al., 2013) which, although produced at relatively low rates, presents challenges for 

environmentally safe disposal (Gregory et al., 2011; Maloney and Yoxtheimer, 2012; Ferrar et 
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al., 2013). Current U.S. Environmental Protection Agency (USEPA) regulations consider TDS as 

a contaminant at levels above 500 mg/L (U.S. Environmental Protection Agency, 2009). A key 

issue is the possible contamination of shallow aquifers and surface waters with flowback and 

produced water (Entrekin et al., 2011; Warner et al., 2012; Brantley et al., 2014). While leakage 

along drill bore casings and surface spills during disposal are the most likely vectors for 

produced water release (Soeder et al., 2014), concerns have been raised about possible migration 

of gas and brine in the subsurface resulting from hydraulic fracturing (Osborn et al., 2011; 

Myers, 2012; Jackson et al., 2013). One limitation to addressing these concerns has been a 

general lack of field data documenting the chemistry of formation fluids in adjacent units before 

and after hydraulic fracturing, due to challenges in site access and in observing small changes in 

the geochemistry of high-TDS fluids.   

Here we present data from the Greene County Site (GCS) in Pennsylvania, a 

collaboration between the Department of Energy and its industry partners (Hammack et al., 

2013), on produced waters from Upper Devonian/Lower Mississippian (UD/LM) gas-producing 

sandstones and the Marcellus shale. The UD/LM samples were collected both before and after 

hydraulic fracturing of the underlying Marcellus shale. Strontium (Sr) isotopic compositions 

(87Sr/86Sr ratios) of the waters were applied as a natural long-term (>1 year) monitoring tool that 

is sensitive to upward migration of fluids resulting from hydraulic fracturing. Parts of this thesis 

work are in a manuscript currently in revision for the journal Environmental Science & 

Technology. 
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1.1 BACKGROUND 

 

1.1.1 The Marcellus Shale: Geology, surrounding units, and hydraulic fracturing 

The Marcellus Formation was deposited in portions of West Virginia, Ohio, 

Pennsylvania, and New York (Figure 1) during Middle Devonian time as the Acadian orogeny 

impacted the Appalachian Basin to the east.  The Marcellus Formation ranges in thickness from 

250 m to less than 15 m, and resides 1500 m to 2400 m below the surface in prospective oil and 

gas regions. In southwestern Pennsylvania the Marcellus is approximately 2,460 m to 2,500 m 

below the surface (Hammack et al., 2013). Quartz (~35%) and illite (~25%) are the most 

abundant minerals by volume (Wang and Carr, 2013). The next most abundant minerals are 

chlorite, pyrite, calcite, dolomite, and plagioclase feldspar. Variable amounts of potassium 

feldspar, kaolinite, mixed-layer illite-smectite, and apatite are also present.  
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Figure 1. Extent and location of the Marcellus Formation in North America. The gray shaded region indicates 
the subsurface extent, and the blue indicates Marcellus Shale outcrop. Modified from Penn State Marcellus 
Center for Outreach and Research (2013).  
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The Marcellus is the lowermost formation of the Hamilton Group, and overlies the 

Middle Devonian Onondaga Formation, the Lower Devonian Oriskany Sandstone and 

Helderberg Limestone Group, and the Upper Silurian Salina Group (Figure 2). The Marcellus is 

overlain by gray mudrocks of the Mahantango Formation, and the uppermost member of the 

Hamilton Group, the Tully Limestone. Upper Devonian strata overlying the Tully limestone 

consist of organic carbon-rich units (the Burket, Geneseo, Middlesex, and Rhinestreet Shales), 

and deltaic sandstone gas and oil-bearing reservoirs of the Catskill Formation (Venango Group, 

Bradford Group, and the Elk Group). In some areas, such as the Greene County site described in 

this study, the Lower Mississippian Shenango Formation also produces natural gas. The shallow 

aquifer systems at this site are in sandstone and limestone units of the Pennsylvanian-aged 

Allegheny Formation, Conemaugh Group, and Pittsburgh Formation.  
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Figure 2. Schematic stratigraphic column of the Marcellus Shale in southwestern Pennsylvania in relation to 

overlying and underlying units. Modified from Osborn et al. (2012).  
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Unconventional shale gas reservoirs are low porosity (<10%), low permeability 

(nanodarcy-scale), and high total organic carbon (TOC) mudrocks. Shale-gas reservoirs are self-

sourcing, acting as both source and reservoir for the hydrocarbons.  The implementation of 

technologies such as horizontal drilling and high-volume slickwater hydraulic fracturing has 

enabled the economic development of these hydrocarbon resources. According to some 

estimates, the Marcellus could contain as much as 500 trillion cubic feet of recoverable gas 

(Engelder and Lash, 2008) and 84 trillion cubic feet of additional undiscovered resources 

(Coleman, 2011).  As of 2013, over 7000 horizontal Marcellus wells have been drilled in 

Pennsylvania (Penn State University Marcellus Center for Outreach and Research, 2013).  

High-volume slickwater hydraulic fracturing is the preferred well completion method for 

shale gas wells in the Appalachian Basin.  This completion technique uses high-pressure pumps 

to inject thousands of gallons of water, mixed with chemicals and proppant (sand particles), into 

the target formation through perforations in the well.  This results in the brittle failure of the 

target formation, opening millimeter scale fractures generally within a hundred meters of the 

wellbore (Tiemann and Vann, 2013), but in some cases a few hundred meters away (Hammack 

et al., 2013). Once the pressure is released, fractures are held open by the proppant, generating 

high-permeability pathways for water and hydrocarbons to flow into the wellbore. 

1.1.2 Potential Environmental Impacts from Hydraulic Fracturing 

One concern about shale gas development is that subsurface hydraulic fracturing 

operations could create fractures that extend beyond the target formation and intersect shallow 

water aquifers, potentially allowing contaminants in formation water and fracturing fluids to 

migrate into drinking water supplies (Warner et al., 2012). Hydraulic fracturing fluids consist of 
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98%-99.5% water and sand, with the remainder consisting of chemical additives to aid in the 

propagation and sustainment of induced micro fractures, including gelling agents, breaker fluid, 

surfactants, biocides, corrosion and scale inhibitors, and friction reducers (Fracfocus, 2013). 

Although present at low concentrations in the hydraulic fracturing fluid (typically <0.50% of the 

chemical additive solution) the toxicity of these agents, when in high concentrations, can cause 

detrimental health problems including different forms of cancer, respiratory problems, and liver 

and kidney diseases (Brantley et al., 2014).  

Formation brines from the Marcellus also contain high concentrations of potentially toxic 

constituents including barium (Ba), bromine (Br), and radium (Ra), (Hayes, 2009; Rowan, 2011; 

Haluszczak et al., 2013). Barium is typically present in flowback waters in the range of 2000 to 

8000 mg/L whereas the Maximum Contamination Level (MCL) for public drinking water as 

regulated by the U.S. EPA under the Safe Drinking Water Act for Ba is 2 mg/L. Barium can 

potentially cause gastrointestinal disturbances and muscular weakness (Brantley et al., 2014). 

The concentration of bromide typically present in Marcellus flowback waters ranges from 2 to 15 

mmol/L. During treatment for drinking water, bromide can react with organic matter to form 

brominated trihalomethanes (THMs) that have been associated with an elevated risk of certain 

cancers (States et al., 2013; Vidic et al., 2013; Wilson and Van Briesen, 2013). Other concerns 

are heavy metals and volatile organic compounds (VOCs) (Dresel and Rose, 2010; Haluszczak et 

al., 2013).  

The direct contamination of shallow ground water aquifers from hydraulic fracturing 

fluid and deep formation brines would require the fractures to propagate several thousand meters 

beyond the upward boundary of the target formation (up to ~3050 m; Bruner 2011), including 

through layers of low-permeability shale and limestone, which is considered unlikely. However, 
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pre-existing conduits such as faults or old abandoned wells could pose a threat to the ground 

water aquifers systems overlying hydraulic fracturing targeted formations. Warner et al. (2012) 

suggested that Marcellus-derived brines had migrated to the near-surface naturally in north-

central Pennsylvania on time scales of 104 years, raising the possibility that pathways exist that 

could be reactivated by hydraulic fracturing. However, it has been noted that the great depths to 

the Marcellus shale units and high capillary tension within the formation would cause the 

formation to imbibe the fluids, preventing significant upward movement of injected waters and 

formation brines (Engelder, 2012; Flewelling and Sharma, 2014). Hammack et al. (2013) 

presented microseismic data that indicated potential fracturing of both the overlying Tully 

Formation and underlying Onondaga Limestone during hydraulic fracturing, although no 

evidence of brine migration was detected.  

A far greater risk to groundwater aquifers lies in the integrity of the cement or casing 

surrounding the wellbore. If the annulus is improperly sealed, natural gas, fracturing fluids and 

formation water may leak into drinking water aquifers (Vidic et al., 2013; Vengosh et al., 2014). 

For example, in 2007 a well that had been drilled around 1200 m into the tight sand of the 

Clinton Formation in Bainbridge, Ohio was not properly sealed with cement, allowing gas from a 

shale layer above the target tight sand formation to travel through the annulus into an 

underground source of drinking water (Ohio Department of Natural Resources Division of 

Mineral Resources Management, 2008).  

Thus, the complex nature of Appalachian faulting and jointing, abundance of potentially 

compromised and unidentified abandoned wells, the discontinuous nature of seal rock integrity, 

and potential issues with well-bore integrity makes long-term, sensitive monitors of brine 

migration, and the ability to rapidly distinguish between contaminant sources, a critical part of 
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assuring ground water quality in areas of unconventional hydrocarbon production. The 

contrasting Sr isotopic compositions of contaminant fluids and shallow groundwaters provide a 

promising detection and monitoring method.  

1.1.3 The Strontium Isotopic System 

Strontium isotopes are a powerful tracer for fluids at or near the Earth’s surface (Aberg, 

1995; Capo et al., 1998; Banner, 2004).  Strontium is a divalent alkaline earth element with an 

ionic radius of 1.18 Å, similar to that of Ca (0.99Å). Because of this, Sr can substitute for Ca in 

minerals such as plagioclase feldspar, Ca-sulfates, and Ca-carbonates (Capo et al., 1998). 

Strontium has four naturally occurring isotopes: 84Sr, 86Sr, 87Sr, and 88Sr. The radiogenic isotope 

87Sr is produced by the decay of 87Rb (half life = 48.8 b.y.) over geologic time, leading to large 

differences in the concentration of 87Sr relative to the other (non-radiogenic) isotopes of Sr in 

rock units of different compositions and geologic histories; this is generally expressed as the 

87Sr/86Sr ratio, or as , which is the deviation in parts per 104 of the 87Sr/86Sr ratio from that of 

modern seawater: 

 

 

 
In general, older Rb-containing rocks will have a higher 87Sr/86Sr than younger rocks, and rocks 

with an initial high Rb/Sr ratio will also have a high 87Sr/86Sr ratio (e.g., continental crust is 

generally enriched in Rb compared to oceanic crust). Therefore, rocks with different chemical 

compositions and geological histories develop distinct 87Sr/86Sr isotopic ratios. Strontium does 
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not fractionate appreciably during physical, chemical, or biological processes such as oxidation, 

sorption, or evaporation (Capo et al., 1998). Because water that interacts with rocks tends to 

inherit the 87Sr/86Sr ratio of the rock, Sr isotopes can be used as a tracer to constrain flow paths, 

fluid mixing, and weathering sources for ground and surface waters, provided there are 

differences among the end member Sr isotopic compositions. The best sensitivity is achieved 

when there are large differences in Sr concentrations between the end members and less 

variability of 87Sr/86Sr within individual end members. Produced waters from the Marcellus shale 

have a relatively narrow range of 87Sr/86Sr ratios and high Sr concentrations compared to other 

potential water and contaminant sources, including brines from Upper Devonian oil and gas 

wells, in the Marcellus natural gas producing region (Chapman et al., 2012; Chapman et al., 

2013). 

1.1.4 Geochemistry and Isotopic Signature of Marcellus Produced Waters 

 The geochemistry of late-stage (>one month after the start of flowback) produced 

waters is believed to essentially reflect formation water (Haluszczak et al., 2013; Capo et al., 

2014).  Over the first days, TDS levels in the Marcellus flowback water increase to about 

200,000 mg/L in constituents including Na, Ca, Ba, Sr, Cl- and Br- (Hayes, 2009; Chapman et al., 

2012; Barbot et al., 2013; Haluszczak et al., 2013), as well as relatively high radium (Ra) activity 

(Rowan, 2011; Warner et al., 2013; Skalak et al., 2014). There is some spatial variability, 

although data are still sparse; Bradford County produced waters have the highest reported 

concentrations of dissolved constituents and Westmoreland County waters have the lowest 

(Barbot et al., 2013) 
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  Most of the Marcellus produced waters have a unique and narrow  range between 

+13.8 and +28.4 (Figure 3).  Typical measurement uncertainty is better than ±0.3  units. Only 

the Westmoreland County Marcellus produced waters (orange) deviate from other Marcellus 

produced waters (+39.8 to +41.6). Even considering these differences, the total range of  

values in the Marcellus produced waters is narrow compared with potential interacting  water 

and rock sources  or other possible sources of contamination such as Upper Devonian brines and 

coal mine drainage (Figure 3).  This means that Marcellus produced water isotopic compositions 

are potentially useful as a distinct tracer in fluid migration studies applicable to issues related to 

hydraulic fracturing of shale-gas reservoirs. The narrow 87Sr/86Sr range, combined with the high 

concentrations of Sr in Marcellus produced water (Hayes, 2009; Chapman et al., 2012; 

Haluszczak et al., 2013; Capo et al., 2014), results in a sensitive tracer of interactions between 

Marcellus and Upper Devonian/Lower Mississippian produced waters from conventional wells, 

and of produced water infiltration into shallow ground waters or surface waters. The following 

chapter describes our results on the Greene County Site and the sensitivity and longevity of Sr 

isotopes as a monitoring tool for possible fluid migration.  
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Figure 3. Strontium isotopic variations of Marcellus Formation produced waters compared to western Pennsylvania 

AMD, Phanerozoic limestone, and brines from the Venango Group, Pennsylvania. The Marcellus produced waters 

define a relatively tight field compared to other possible sources of Sr in the Marcellus natural gas production 

region. Stratigraphic location is indicated. The Marcellus produced waters lie within a narrow isotopic range distinct 

from AMD, Upper Devonian produced waters, and WV fly ash. The blue, red, orange, and green colored produced 

waters represent samples taken from Washington Co., Greene Co., Westmoreland Co., and Bradford Co., 

Pennsylvania respectively. Modified from Chapman et al. (2012). 
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2.0  METHODS 

Sample collection at the GCS was arranged through a cooperative agreement between 

DOE-NETL and the site owner/operator.  Flowback water was taken from five Upper Devonian 

wells, one vertical Marcellus well, and three horizontal legs of a Marcellus well pad (Figure 4). 

The samples were taken periodically from on-site oil and gas separators and storage tanks over a 

period from January of 2012 through August of 2013. Flowback and production waters from 

three horizontal legs of a Marcellus well pad were taken from the time hydraulic fracturing 

began in June 2012 through August 2013. Two of the UD/LM wells (UD-2 and UD-5) lay 

directly over one of the horizontal Marcellus wells ((MH-E) (Figure 5). When combined with the 

close proximity of the other surrounding UD/LM wells, this created a nearly ideal setting to 

monitor possible migration of hydraulic fracturing fluids. Water was also collected from a nearby 

spring to analyze the local groundwater geochemistry. Initial flowback samples from the 

horizontal Marcellus wells (as reported in Capo et al. (2014) were collected by the site operators 

and provided to NETL personnel.  After flowback shifted to production, samples were collected 

by NETL or USGS personnel. 
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Figure 4. Well site map showing location of horizontal Marcellus wells and vertical Marcellus and 

Upper Devonian gas wells (modified from Hammack et al., 2013). Inset shows the location of Greene 

County, PA. 
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Figure 5. Schematic geologic cross section from the Greene County sites across line A-A’ (Fig. 4). 

Modified from Hammack et al. (2013). 



 17 

All samples were filtered with a 0.45µm cellulose nitrate filter and preserved with ultra 

pure nitric acid (acidified to 2%) in the laboratory, preventing precipitation of solids and 

microbial growth. Later, the samples were acidified to 4% nitric acid to ensure complete 

dissolution of precipitates. Concentrations of major and minor elements were measured on a 

Spectroflame Modula Inductively coupled plasma atomic emission spectrometer (ICP-AES) 

following a modified version of EPA method 6010C (Appendix A). Eichrom® Sr Resin and a 

vacuum pump chromatograph column were used to isolate the Sr in the samples after the method 

of Wall et al. (2013). The 87Sr/86Sr was then measured on a Neptune Plus multicollector- 

inductively coupled plasma mass spectrometer (MC-ICPMS). Strontium isotope standard SRM 

987 was run repeatedly, and all samples are normalized to an 87Sr/86SrSRM987 value of 0.710240. 

The corresponding value for 87Sr/86Srseawater is 0.709166, based on multiple replicate 

measurements of seawater and SRM 987. 
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3.0  RESULTS AND DISCUSSION OF STRONTIUM ISOTOPES 

3.1.1 Endmember Characterization 

  Strontium and calcium concentrations and Sr isotope ratios for all produced and spring 

waters collected as part of this study are reported in Table 1.  Capo et al. (2014) found that 

produced waters from horizontal Marcellus shale gas wells, including some from this site, 

continued to evolve toward higher  values up to 3 years after hydraulic fracturing.  The GCS 

vertical Marcellus well MW-1 provides an opportunity to estimate a Marcellus shale produced 

water endmember value, as this well had been in production for ~6 years at the time the 

horizontal wells were hydraulically fractured. Figure 6 shows that  continues to rise from a 

maximum value of +32.1 for the horizontal wells 320 days after hydraulic fracturing (Capo et al., 

2014, and Table B1 in Appendix B) to a value of +33.9 in MW-1 six years after hydraulic 

fracturing in the same unit (Table 1; average value prior to hydraulic fracturing of the horizontal 

wells).  The shift in  subsequent to hydraulic fracturing (discussed in the next section) 

suggests that there remains a reservoir of formation water that continues to mix with the initial 

injection water even after 5-6 years of production.   
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Even so, the increase in  observed from one to six years after hydraulic fracturing is 

relatively minor, and the values obtained from well MW-1 represent the likely Marcellus 

formation water endmember for evaluation of fluid migration from hydraulic fracturing at this 

site. 
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Figure 6. Evolution of the Sr isotope composition over time from beginning of flowback for vertical and horizontal 

Marcellus wells from the Greene County site.  Horizontal well data (MH-D, E, F) are primarily from Capo et al. 

(2014). Sample MW-1 is from a vertical Marcellus well that was hydraulically fractured and began production in 

2006, six years prior to hydraulic fracturing of the horizontal wells. Data from MW-1 are reported in Table 1. 



 21 
 

Well UD-2: Upper Devonian/Lower Mississippian 
       UD2-120125-T 1/25/12 Tank 13,600 251 0.719902 ± 0.000015 151.39 ± 0.21 

UD2-120310-S 3/10/12 Separator 14,400 258 0.719976 ± 0.000013 152.43 ± 0.19 

(replicate) 
    

0.720006 ± 0.000015 152.86 ± 0.21 

UD2-120518-S 5/18/12 Separator 12,900 225 0.720076 ± 0.000016 153.84 ± 0.22 

UD2-120628-S 6/28/12 Separator 14,000 248 0.720057 ± 0.000007 153.57 ± 0.10 

UD2-120628-T 6/28/12 Tank 13,000 234 0.719941 ± 0.000007 151.94 ± 0.10 

(replicate) 
    

0.719954 ± 0.000007 152.12 ± 0.10 

UD2-120726-S 7/26/12 Separator 14,900 281 0.719873 ± 0.000009 150.98 ± 0.13 

UD2-120726-T 7/26/12 Tank 14,000 257 0.719937 ± 0.000007 151.88 ± 0.10 

UD2-120829-S 8/29/12 Separator 15,000 265 0.719955 ± 0.000008 152.14 ± 0.11 

UD2-120829-T 8/29/12 Tank 13,100 237 0.719934 ± 0.000006 151.84 ± 0.09 

UD2-120928-S 9/28/12 Separator 13,000 236 0.719933 ± 0.000006 151.83 ± 0.09 

UD2-120928-T 9/28/12 Tank 12,400 223 0.719914 ± 0.000007 151.56 ± 0.10 

UD2-121025-S 10/25/12 Separator 14,300 256 0.719932 ± 0.000006 151.81 ± 0.09 

(replicate) 
    

0.719937 ± 0.000009 151.88 ± 0.12 

UD2-121025-T 10/25/12 Tank 13,300 236 0.719930 ± 0.000008 151.78 ± 0.11 

UD2-121213-S 12/13/12 Separator 13,800 240 0.720018 ± 0.000010 153.02 ± 0.15 

UD2-130123-T 1/23/13 Tank 13,200 240 0.719945 ± 0.000010 152.00 ± 0.14 

(replicate) 
    

0.719941 ± 0.000009 151.94 ± 0.13 

UD2-130219-T 2/19/13 Tank 9,700 232 0.719886 ± 0.000011 151.16 ± 0.16 

UD2-130325-T 3/25/13 Tank 13,200 237 0.719902 ± 0.000011 151.39 ± 0.15 

UD2-130426-S 4/26/13 Separator 12,700 230 0.719909 ± 0.000010 151.49 ± 0.14 

UD2-130626-S 6/26/13 Separator 13,800 245 0.720026 ± 0.000010 153.14 ± 0.14 

UD2-130807-S 8/7/13 Separator 12,500 226 0.720084 ± 0.000011 153.96 ± 0.16 

Well UD-4:  Upper Devonian/Lower Mississippian 
       UD4-120310-T 3/10/12 Tank 13,600 216 0.720295 ± 0.000011 156.93 ± 0.16 

UD4-120518-T 5/18/12 Tank 13,700 217 0.720267 ± 0.000012 156.54 ± 0.17 

(replicate) 
    

0.720304 ± 0.000009 157.06 ± 0.13 

UD4-120628-T 6/28/12 Tank 13,900 218 0.720281 ± 0.000006 156.73 ± 0.09 

UD4-120726-T 7/26/12 Tank 14,000 222 0.720284 ± 0.000007 156.78 ± 0.10 

UD4-120829-T 8/29/12 Tank 14,000 222 0.720265 ± 0.000006 156.51 ± 0.08 

UD4-120928-T 9/28/12 Tank 13,900 218 0.720264 ± 0.000006 156.49 ± 0.09 

UD4-121025-T 10/25/12 Tank 14,000 221 0.720281 ± 0.000007 156.73 ± 0.10 

(replicate) 
    

0.720282 ± 0.000011 156.75 ± 0.16 

UD4-121213-T 12/13/12 Tank 13,900 219 0.720275 ± 0.000010 156.65 ± 0.14 

UD4-130123-T 1/23/13 Tank 13,900 219 0.720283 ± 0.000011 156.76 ± 0.15 

UD4-130219-T 2/19/13 Tank 13,900 221 0.720278 ± 0.000010 156.69 ± 0.15 

UD4-130325-T 3/25/13 Tank 14,400 213 0.720283 ± 0.000012 156.76 ± 0.16 

UD4-130426-T 4/26/13 Tank 14,400 204 0.720280 ± 0.000011 156.72 ± 0.16 

UD4-130807-T 8/7/13 Tank 14,200 201 0.720256 ± 0.000012 156.38 ± 0.16 

     
0.720249 ± 0.000010 156.28 ± 0.14 

Well UD-5:  Upper Devonian/Lower Mississippian 
       UD5-120125-S 1/25/12 Separator 

  
0.720875 ± 0.000012 165.11 ± 0.17 

UD5-120125-T 1/25/12 Tank 13,100 160 0.720954 ± 0.000009 166.22 ± 0.13 

UD5-120310-S 3/10/12 Separator 13,200 162 0.720949 ± 0.000011 166.15 ± 0.15 

(replicate) 
    

0.720981 ± 0.000013 166.60 ± 0.18 

 

Table 1. Sample information elemental concentrations, and Sr isotope compositions from the Greene County Test 
Site 
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UD5-120310-T 3/10/12 Tank 13,800 167 0.720921 ± 0.000013 165.76 ± 0.18 

(replicate) 
    

0.720909 ± 0.000013 165.59 ± 0.19 

UD5-120518-S 5/18/12 Separator 13,600 192 0.720853 ± 0.000013 164.80 ± 0.19 

UD5-120518-T 5/18/12 Tank 13,400 190 0.720916 ± 0.000014 165.69 ± 0.19 

UD5-120628-S 6/28/12 Separator 14,500 197 0.721120 ± 0.000006 168.56 ± 0.09 

UD5-120628-T 6/28/12 Tank 13,100 193 0.720944 ± 0.000006 166.08 ± 0.09 

UD5-120726-S 7/26/12 Separator 16,300 236 0.720934 ± 0.000008 165.94 ± 0.11 

UD5-120829-S 8/29/12 Separator 14,600 208 0.720950 ± 0.000006 166.17 ± 0.09 

UD5-120928-S 9/28/12 Separator 15,400 217 0.720955 ± 0.000007 166.24 ± 0.10 

UD5-120928-T 9/28/12 Tank 13,500 194 0.720945 ± 0.000006 166.10 ± 0.09 

UD5-121025-T 10/25/12 Tank 13,800 194 0.720951 ± 0.000008 166.18 ± 0.11 

UD5-121213-T 12/13/12 Tank 16,400 230 0.720948 ± 0.000012 166.14 ± 0.17 

UD5-130123-T 1/23/13 Tank 12,000 167 0.720953 ± 0.000010 166.21 ± 0.14 

UD5-130219-T 2/19/13 Tank 13,700 198 0.720944 ± 0.000014 166.08 ± 0.19 

UD5-130325-S 3/25/13 Separator 13,400 186 0.720960 ± 0.000015 166.31 ± 0.22 

UD5-130325-T 3/25/13 Tank 13,600 190 0.720954 ± 0.000009 166.22 ± 0.13 

UD5-130426-T 4/26/13 Tank 14,000 196 0.720959 ± 0.000013 166.29 ± 0.18 

UD5-130626-T 6/26/13 Tank 14,200 198 0.720865 ± 0.000011 164.97 ± 0.15 

UD5-130807-S 8/7/13 Separator 17,000 245 0.720820 ± 0.000011 164.33 ± 0.16 

Well UD-6:  Upper Devonian/Lower Mississippian 
       UD6-120310-S 3/10/12 Separator 15,100 266 0.720033 ± 0.000014 153.24 ± 0.19 

UD6-120518-S 5/18/12 Separator 14,200 255 0.719918 ± 0.000014 151.61 ± 0.20 

(replicate) 
    

0.719944 ± 0.000015 151.98 ± 0.21 

(replicate) 
    

0.719951 ± 0.000020 152.08 ± 0.28 

(replicate) 
    

0.719969 ± 0.000016 152.33 ± 0.23 

(replicate) 
    

0.719966 ± 0.000018 152.29 ± 0.25 

(replicate) 
    

0.719977 ± 0.000015 152.45 ± 0.22 

UD6-120628-S 6/28/12 Separator 14,200 246 0.720032 ± 0.000006 153.22 ± 0.08 

UD6-120628-T 6/28/12 Tank 14,800 253 0.720102 ± 0.000007 154.21 ± 0.10 

UD6-120726-S 7/26/12 Separator 15,300 280 0.719770 ± 0.000006 149.53 ± 0.08 

UD6-120726-T 7/26/12 Tank 14,800 253 0.720097 ± 0.000007 154.14 ± 0.10 

UD6-120829-T 8/29/12 Tank 14,900 255 0.720092 ± 0.000008 154.07 ± 0.11 

UD6-120928-T 9/28/12 Tank 13,800 240 0.720091 ± 0.000008 154.05 ± 0.11 

UD6-121025-T 10/25/12 Tank 14,500 248 0.720102 ± 0.000009 154.21 ± 0.12 

(replicate) 
    

0.720097 ± 0.000010 154.14 ± 0.14 

UD6-121213-T 12/13/12 Tank 14,600 249 0.720081 ± 0.000010 153.91 ± 0.14 

UD6-130123-T 1/23/13 Tank 14,400 243 0.720092 ± 0.000010 154.07 ± 0.15 

UD6-130219-T 2/19/13 Tank 14,300 245 0.720089 ± 0.000009 154.03 ± 0.12 

(replicate) 
    

0.720097 ± 0.000011 154.14 ± 0.15 

UD6-130325-T 3/25/13 Tank 14,300 244 0.720074 ± 0.000009 153.81 ± 0.13 

UD6-130426-T 4/26/13 Tank 14,300 244 0.720083 ± 0.000010 153.94 ± 0.14 

UD6-130626-T 6/26/13 Tank 14,400 242 0.720096 ± 0.000009 154.12 ± 0.13 

UD6-130807-T 8/7/13 Tank 14,400 241 0.720087 ± 0.000008 154.00 ± 0.11 

Well UD-7:  Upper Devonian/Lower Mississippian 
       UD7-120310-T 3/10/12 Tank 14,300 204 0.720222 ± 0.000014 155.90 ± 0.19 

UD7-120518-T 5/18/12 Tank 14,200 198 0.720235 ± 0.000012 156.08 ± 0.17 

(replicate) 
    

0.720285 ± 0.000011 156.79 ± 0.16 

UD7-120628-T 6/28/12 Tank 14,400 202 0.720280 ± 0.000005 156.72 ± 0.07 

UD7-120726-T 7/26/12 Tank 14,600 206 0.720270 ± 0.000006 156.58 ± 0.09 

(replicate) 
    

0.720270 ± 0.000007 156.58 ± 0.10 

UD7-120829-T 8/29/12 Tank 14,500 210 0.720285 ± 0.000004 156.79 ± 0.06 

(replicate) 
    

0.720283 ± 0.000005 156.76 ± 0.06 

UD7-120928-T 9/28/12 Tank 14,200 183 0.720275 ± 0.000006 156.65 ± 0.09 

Table 1 (continued). 
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UD7-121025-T 10/25/12 Tank 14,700 209 0.720286 ± 0.000006 156.80 ± 0.08 

(replicate) 
    

0.720294 ± 0.000010 156.92 ± 0.14 

UD7-121213-T 12/13/12 Tank 14,400 208 0.720281 ± 0.000013 156.73 ± 0.18 

UD7-130123-T 1/23/13 Tank 14,500 206 0.720255 ± 0.000009 156.37 ± 0.13 

UD7-130219-T 2/19/13 Tank 14,500 209 0.720255 ± 0.000010 156.37 ± 0.14 

UD7-130325-T 3/25/13 Tank 15,000 212 0.720254 ± 0.000012 156.35 ± 0.17 

(replicate) 
    

0.720238 ± 0.000010 156.13 ± 0.14 

UD7-130426-T 4/26/13 Tank 14,500 206 0.720252 ± 0.000009 156.32 ± 0.13 

UD7-130626-T 6/26/13 Tank 14,700 203 0.720252 ± 0.000011 156.32 ± 0.16 

UD7-130807-T 8/7/13 Tank 14,800 205 0.720263 ± 0.000013 156.48 ± 0.19 

Well MW-1:  Middle Devonian, vertical, hydraulically fractured in 2006 
     MW1-120310-T 3/10/2012 Tank 13,900 1,700 0.711580 ± 0.000006 34.04 ± 0.09 

MW1-120518-T 5/18/2012 Tank 10,400 1,280 0.711541 ± 0.000016 33.49 ± 0.22 

(replicate) 
    

0.711570 ± 0.000013 33.90 ± 0.18 

(replicate) 
    

0.711576 ± 0.000006 33.98 ± 0.08 

MW1-120628-T 6/28/2012 Tank 11,800 1,510 0.711726 ± 0.000006 36.10 ± 0.09 

MW1-120726-T 7/26/2012 Tank 15,000 1,840 0.711710 ± 0.000008 35.87 ± 0.11 

(replicate) 
    

0.711712 ± 0.000007 35.90 ± 0.10 

MW1-120829-T 8/29/2012 Tank 11,000 1,280 0.711729 ± 0.000007 36.14 ± 0.09 

MW1-120928-T 9/28/2012 Tank 10,800 1,380 0.711712 ± 0.000006 35.90 ± 0.09 

(replicate) 
    

0.711720 ± 0.000005 36.01 ± 0.08 

MW1-121025-T 10/25/2012 Tank 11,000 1,370 0.711710 ± 0.000006 35.87 ± 0.08 

(replicate) 
    

0.711705 ± 0.000007 35.80 ± 0.09 

MW1-121213-T 12/13/2012 Tank 13,500 1,780 0.711711 ± 0.000007 35.89 ± 0.10 

MW1-130123-T 1/23/2013 Tank 13,300 1,790 0.711698 ± 0.000007 35.70 ± 0.10 

MW1-130219-T 2/19/2013 Tank 13,500 1,890 0.711709 ± 0.000006 35.86 ± 0.08 

MW1-130325-T 3/25/2013 Tank 13,500 1,850 0.711703 ± 0.000007 35.77 ± 0.10 

MW1-130426-T 4/26/2013 Tank 15,900 1,880 0.711710 ± 0.000007 35.87 ± 0.10 

MW1-130626-T 6/26/2013 Tank 14,500 2,000 0.711692 ± 0.000008 35.62 ± 0.11 

MW1-130807-T 8/7/2013 Tank 13,900 2,130 0.711705 ± 0.000007 35.80 ± 0.10 

Spring water: Shallow groundwater 
        SPW-120518 5/18/12 Spring 50.6 0.161 0.713329 ± 0.000026 58.70 ± 0.37 

(replicate) 
    

0.713349 ± 0.000010 58.98 ± 0.15 

SPW-120628 6/28/12 Spring 58.4 0.176 0.713353 ± 0.000006 59.04 ± 0.08 

SPW-120726 7/26/12 Spring 61.0 0.190 0.713384 ± 0.000007 59.48 ± 0.10 

SPW-120829 8/29/12 Spring 60.3 0.191 0.713361 ± 0.000005 59.15 ± 0.06 

SPW-120928 9/28/12 Spring 64.6 0.196 0.713347 ± 0.000008 58.96 ± 0.11 

SPW-121025 10/25/12 Spring 65.9 0.203 0.713357 ± 0.000008 59.10 ± 0.11 

(replicate) 
    

0.713352 ± 0.000009 59.03 ± 0.13 

SPW-121213 12/13/12 Spring 53.7 0.162 0.713384 ± 0.000008 59.48 ± 0.11 

SPW-130123 1/23/13 Spring 50.4 0.153 0.713434 ± 0.000010 60.18 ± 0.15 

SPW-130219 2/19/13 Spring 51.7 0.153 0.713422 ± 0.000013 60.01 ± 0.18 

SPW-130325 3/25/13 Spring 53.7 0.154 0.713353 ± 0.000010 59.04 ± 0.14 

SPW-130426 4/26/13 Spring 57.7 0.175 0.713332 ± 0.000011 58.75 ± 0.16 

SPW-130626 6/26/13 Spring 60.3 0.191 0.713363 ± 0.000012 59.18 ± 0.17 

SPW-130807 8/7/13 Spring 64.0 0.193 0.713442 ± 0.000009 60.30 ± 0.13 

                      

           a
Normalized to SRM 987 Sr standard = 0.710240; 2s uncertainty based on in-run statistics. 

   b
Reported replicates represent separate aliquots processed through columns and analyzed for 

87
Sr/

86
Sr. 

  c
Sr defined as (

87
Sr/

86
Srsample/

87
Sr/

86
Srseawater - 1)10

4
 where 

87
Sr/

86
Srseawater = 0.709166. 

    

Table 1 (continued). 
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Produced waters from the conventional UD/LM gas wells collected prior to hydraulic 

fracturing (“pre-frac”) of the horizontal Marcellus wells have  values from +151.4 to +166.6 

(87Sr/86Sr  = 0.71990-0.72098), a total spread of about 15 ε units (Table 1).  These values are in 

the range of those reported for other Upper Devonian produced waters in Pennsylvania (Osborn 

et al., 2012; Warner et al., 2012; Chapman et al., 2013), which have  values of +93 to +181.  

Produced water from each of the UD/LM gas-producing units tends to be isotopically and 

chemically distinct, even within the limited geographic and stratigraphic range of the GCS.  

Figure 7 shows the pre-frac Sr isotope ratios are plotted against molar Sr/Ca ratios.  While there 

is some overlap (particularly with produced water from wells UD-2 and UD-6), each defines a 

relatively distinct field.  However, the UD/LM values can be considered rather tightly clustered 

when compared to produced water from vertical Marcellus well MW-1 (Figure 7 inset), as noted 

previously by Chapman et al. (2013).  A mixing curve between the average for MW-1 and the 

most radiogenic Upper Devonian well (UD-5) demonstrates the sensitivity of Sr isotopes to 

incursions of Marcellus fluid into shallow conventional gas reservoirs (Figure 7).  An addition of 

just over 1% of Marcellus fluid to the UD/LM reservoirs could explain the total range in  

values.  However, most of the UD/LM samples fall off the Marcellus mixing curve, and in fact 

all but UD-7 define a strong linear correlation (R2 = 0.94; dashed line in Fig. 7).  This suggests 

that most of the pre-frac geochemical variation reflects within-well mixing of produced water 

among the different UD/LM reservoirs tapped by each well. In either case, the large isotopic 

difference between all UD/LM produced waters and those of the Marcellus indicate that any of 

the Sr isotope ratios measured in UD/LM produced waters at the GCS would be sensitive to 

incursions of Marcellus brine that could take place over days to years following hydraulic 

fracturing. 
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Figure 7. Plot of molar Sr/Ca ratios against Sr isotope composition for pre-frac Upper Devonian/Lower 

Mississippian and vertical well MW-1 Marcellus produced waters.  The inset shows a hypothetical mixing curve 

between Marcellus brines and UD/LM produced waters, with the numbers on the curve indicating the amount of 

Marcellus brine in the mixture.  The main plot focuses in on the variation in the UD/LM samples (bottom right 

corner of inset), with the same mixing curve indicated as a solid line.  The dashed line shows the linear correlation 

of all UD/LM pre-frac samples except for UD-7; this correlation is thought to represent within-well mixing of 

produced waters from multiple units.  
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3.1.2 Effects of Hydraulic Fracturing on Overlying Units 

  Elemental concentrations and Sr isotope compositions of produced waters collected after 

hydraulic fracturing of the underlying Marcellus (all collection dates 6/28/12 and later) are 

reported in Table 1.  In general, samples collected from storage tanks showed less variation than 

those from the gas-liquid separator, because the tank samples represent averaging over a longer 

period.  Nonetheless, there is generally good agreement between tank and separator  values.  

Both pre- and post-frac samples from UD/LM wells are plotted in Figure 8.  The shaded regions 

represent the 95% confidence interval (2) for variations within for the pre- and post-frac sample 

groups.  For three wells (UD-4, UD-6 and UD-7), only two pre-frac data were available; the 

confidence interval was calculated the same way as the others, with the recognition that 

additional samples, had they been available, would likely have changed the size of the 

uncertainty envelope.  Pre- and post-hydraulic fracturing analyses of UD/LM produced waters 

from units overlying the horizontal Marcellus wells show no significant difference; 

heteroscedastic t-tests yield p-values from 0.12 to 0.54 (two tailed), indicating that there was no 

statistically significant change to the 87Sr/86Sr ratios following hydraulic fracturing (Table B2 in 

Appendix B).  The lowest p-value occurs in pre- and post-frac samples from well UD-4, which 

also shows the smallest amount of variation in  over time.  For the isotopic shifts to be 

considered significant enough to suggest an incursion of Marcellus-derived fluid, the mean Sr 

values would need to decrease by 1-3 ε units after hydraulic fracturing, depending on the 

constancy of the pre-hydraulic fracturing measurements.  For these Upper Devonian reservoirs, 

this corresponds to an addition of only 0.1-0.3% Marcellus produced water.  This suggests that 

the UD/LM reservoirs were not measurably affected by upward-migrating Marcellus-derived 
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brines subsequent to hydraulic fracturing over the ~15 month duration of the present study.  The 

lack of evidence of such a shift suggests that the UD/LM reservoirs were not measurably 

affected by upward-migrating Marcellus-derived brines subsequent to hydraulic fracturing over 

the ~15 month duration of the present study.   
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Figure 8. Strontium isotope composition of Upper Devonian/Lower Mississippian produced waters before and 

after hydraulic fracturing of the horizontal Marcellus wells (MH-D, E, F), with the time of hydraulic fracturing 

indicated by the vertical gray bar.  Circles represent samples from separators, triangles samples from storage 

tanks.  The shaded region represents the 2 σ variation (96% confidence interval) of pre-frac and post-frac samples.  
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 Spring water chemistry in the area was also measured to evaluate possible natural or induced 

migration of Marcellus brine to higher stratigraphic levels, or hydraulic fracture-induced forcing 

of UD/LM brines into the aquifer.  The isotopic composition of the spring water lies between 

values for the Marcellus brines and the UD/LM brines, with an average  value of +59.3 

(87Sr/86Sr = 0.71337). Spring water  values shift systematically slightly above and below the 

mean on a semi-annual basis (Fig. 9).  Because the spring water has relatively low Sr 

concentrations (generally <0.2 mg L-1) relative to the produced waters at the site, its 87Sr/86Sr 

ratio is very sensitive to small incursions of produced water.  Admixing only 0.003% Marcellus 

brine to the shallow groundwater would shift the isotope ratio of the groundwater downward by 

>5  units, and a 0.05% addition would shift it by 20  units, compared to a total observed annual 

variation of  ±0.8  units.  Similarly, a 0.01% addition of UD/LM brine would shift the 

groundwater value upward by nearly 10  units, and an addition of 0.05% would shift it by over 

30  units.  The spring at the GCS is most likely too far from the hydraulic fracturing zone to be 

an effective short-term monitoring site, but the natural variation in spring water isotope values 

(±0.8  units) provides a basis for evaluating possible contamination in other situations.  In the 

ideal case, shallow groundwater would be sampled above or near the hydraulically fractured 

zone with 2-3 seasons of pre-frac baseline data to account for background variations. 
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Figure 9. Variation in spring water Sr isotope ratio over the period of the study.  The shaded 

vertical bar represents the period of hydraulic fracturing of horizontal Marcellus wells MH-D, E 

and F.  
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  The one well that showed a potentially significant change in  subsequent to hydraulic 

fracturing is the vertical Marcellus well MW-1 that taps into the hydraulically fractured unit.  

Two pre-frac measurements yielded values of +33.5 and +34.0, while the post-frac values 

jumped to an average of +35.9 (ranging from +35.6 to +36.1; Fig. 9).  The relatively low p-value 

calculated (0.043; Table B2) suggests that the shift could be significant.  This is not unexpected; 

we posit that hydraulic fracturing in the same unit opened up new pathways for formation water 

within or below the shale to enter the vertical well.  The relative constancy of the post-frac 

values suggest that these values represent formation waters which the well would have produced 

several years into the future. 

3.1.3 Sensitivity of Strontium Isotopes to Subsurface Brine Migration 

  Monitoring of ground and surface water for contamination from drilling and hydraulic 

fracturing requires sensitive tracers that can provide an early warning of unexpected fluid 

migration.  Given the multiple potential sources of high TDS brine, knowledge of the source of 

exogenous fluid is also critical.  The differences in chemistry between produced waters and fresh 

waters allow for potential early detection of produced water incursions, where elements with the 

highest produced water:fresh water concentration ratios are more likely to be detected first.  

Elements that fit this description include Ba, Sr, Br, Cl, Na, Ca, and Ra (activity).  The high 

concentrations of Sr in produced waters, when combined with a difference in isotope ratio from 

the fresh water, make Sr isotopes a very sensitive natural tracer that can also identify provenance 

(Chapman et al., 2012; Chapman et al., 2013). 
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  To evaluate the use of elemental and isotopic tracers for monitoring produced water 

migration, we compiled available elemental data from Upper Devonian conventional wells (; 

Dresel and Rose, 2010; Osborn and McIntosh, 2010; Osborn et al., 2012) and Marcellus 

produced water (Hayes, 2009; Rowan, 2011; Chapman et al., 2012; Warner et al., 2012; 

Haluszczak et al., 2013; Capo et al., 2014), and compared it in a series of mixing models to 

potable groundwater, based on Susquehanna County “Type A” groundwater of Warner et al. 

(2012).  Elemental data used in the mixing models are summarized in Table B3 (Appendix B). 

The Sr isotope endmember for the modeled Upper Devonian brine (+140) falls in the middle of 

measured  values for Upper Devonian brines from this and other studies (Chapman et al., 

2013; Osborn and McIntosh, 2010) and the Marcellus produced water endmember (+30) is in the 

mid-range of measured values (Chapman et al., 2012; Warner et al., 2012; Capo et al., 2014). 

The groundwater  value reflects that of the spring at the GCS (+60); this could vary 

considerably from site to site, which emphasizes the importance of obtaining baseline data prior 

to possible environmental impacts of gas exploration. 

 The change in elemental concentrations (relative to the groundwater baseline) and Sr 

isotope composition as a function of produced water added are shown in Figure 10.  Of the 

element concentrations shown, Ba, Br, Cl and Sr tend to be most sensitive for both Upper 

Devonian and Marcellus produced waters.  The activity of Ra (combined 226Ra + 228Ra) can be a 

sensitive indicator of admixing Marcellus brines.  As indicated by the curve for  (the 

absolute shift in ε units), the Sr isotope composition is also sensitive to incursions of produced 

waters; when Upper Devonian waters are added, it drives the groundwater values upward, and 

when Marcellus waters are added, the ratio of the mixture shifts downward.  Relative sensitivity 
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can be demonstrated by comparing the element that shows the most rapid change for each water 

type with the shift in  values.  For Marcellus produced water, Ba is potentially most 

sensitive; it reaches a value of 1.5 times the groundwater baseline when 0.003% Marcellus water 

has been added.  At this same mixture level, the would have shifted downward by 6 ε units, 

which is easily detectable and well outside of groundwater fluctuation observed in the GCS.  In 

Upper Devonian waters, Br tends to be most sensitive; it also reaches a level of 1.5 time baseline 

at 0.003% produced water added, which corresponds to a shift in  of +5.   
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Figure 10. Modeled changes in selected chemical species and Sr isotope composition (εSr) of fresh groundwater 

relative to baseline values as a function of the percent infiltration of Upper Devonian (top) or Marcellus (bottom) 

produced water. 
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  Conversely, by the time the  has shifted by -3 in the Marcellus case, the maximum 

increase in any element is 1.2 times baseline (Ba), and a +3 shift in the Upper Devonian case 

corresponds to a maximum increase of 1.3 times baseline (Br).  The absolute concentrations of 

these elements in produced waters can vary significantly (Barbot, et al., 2013), and in some cases 

the most sensitive elements could behave non-conservatively.  For example, Ba is likely to 

precipitate as barite if it encounters sulfate-rich waters such as acid mine drainage (Kondash et 

al., 2014), which may also pull Ra out of the system. In contrast, the Sr isotope ratio of 

Marcellus produced water falls within a narrow range (Chapman et al., 2012), and Sr behaves 

conservatively under most subsurface conditions.  The relatively constant  values in the 

Marcellus produced waters over long time periods (≥6 yrs.) indicate that Sr isotopes can be 

monitored for many years subsequent to hydraulic fracturing to identify signs of fluid migration. 
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4.0  CONCLUSION 

 The strontium isotope composition is a sensitive indicator of ground and surface water 

contamination by produced water, whether by surface spills, well leakage, or hydraulic 

fracturing-induced migration.  Moreover, the direction of the shift in  can provide direct 

information about the source of migrating fluids (i.e., Upper Devonian/Lower Mississippian vs. 

Marcellus).  Because Sr is present at high levels in the formation waters, it serves as a natural 

indicator of contamination, without need for added chemical tracers (Hammack et al., 2013). 

Given the development of methods for rapid analysis and the small samples required for analysis 

(Wall et al., 2013), Sr isotopes are an excellent natural long-term monitoring tool that can be 

used indefinitely as a sensitive indicator of brine incursion and its source.  In addition, because of 

the long history of conventional oil and gas development in the Appalachian Basin, thousands of 

wells already exist in the Marcellus-producing region (approximately 350,000 as of 2000; 

PADEP, 2000), some of which could be used as an early warning of subsurface produced water 

migration.  By taking baseline measurements in water wells, monitoring wells, and the many 

nearby shallower producing wells, Sr isotopes can be used to determine flow path and to identify 

the nature of fluid migration. 
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APPENDIX A 

A.1 METHODS 

A.1.1 Filtration and Acidification 

 

All bottles and filters used in processing the samples from this study were pre-cleaned 

with nitric acid (HNO3) and rinsed with ultrapure water. All samples were originally filtered to 

<0.45µm in the laboratory and subsequently preserved with ultrapure HNO3 to a 2% 

acidification level to prevent precipitation of solids and microbial growth. Initial elemental 

analysis and Sr isotope chemistry was carried out on these samples.  When additional elemental 

analyses were required (in some cases after >2 years of storage), the samples were acidified to a 

4% level by weight. Many of the samples had been stored in a refrigerator for over two years, 

therefore to ensure complete dissolution of precipitates. 

 

A.1.2 Elemental Analysis 

 

After filtration and acidification all produced water samples were diluted to 1:100 or 

1:1000 (UD/LM samples and Marcellus shale samples respectively) with 4% HNO3. 
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Concentrations of Sr and Ca were measured on a Spectroflame Modula ICP-AES following a 

modified version of EPA method 6010C.  Samples, calibration solutions, and calibration 

verification solutions were spiked with ~1 ppm Sc internal standard (by weight) to monitor 

instrument drift and matrix effects during elemental analysis.  Acceptable Sr and Ca calibration 

curves had a correlation coefficient greater than or equal to 0.999. Further QA/QC analysis was 

carried out using matrix-matched calibration verifications: an initial calibration verification 

(ICV),  continuing calibration verification (CCV), continuing calibration blank, and a certified 

standard solution (NIST 1640a). The ICV, CCV, and NIST 1640a Sr and Ca concentrations were 

measured to be within ± 10% of reported values before measurement of any samples. 

Throughout the analytical run, the CCB and CCV were measured after every ten produced water 

samples. Sr and Ca concentrations in the CCB were measured to be well below detection limits 

to ensure complete rinsing of any constituents within the ICP-AES tubing and nebulizer. Sample 

data were only accepted if (1) the CCV produced Sr and Ca concentrations within ± 10%, and (2) 

the Sr and Ca concentrations reported for the CCB were above detection limits. 

All samples were originally filtered to <0.45µm in the laboratory and subsequently 

preserved with ultra pure nitric acid to a 2% acidification to prevent precipitation of solids and 

microbial growth. Acidification was done by first recording the weight of a polyethylene bottle 

(without the cap) labeled with the appropriate sample name. The filtered sample was then added 

to the bottle and the weight of the liquid was recorded. Finally concentrated ultra pure nitric acid 

was added to the sample to a 2% acidification by weight.  

Later on the samples were acidified to a 4% level by weight. Many of the samples had 

been stored in a refrigerator for over two years, therefore to ensure complete dissolution of 

precipitates additional concentrated nitric acid was added to the samples that had only been 
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filtered and acidified and had not been diluted for ICP-AES analysis. The additional nitric acid 

was added by weighing the amount of solution left in the bottle and then calculating how much 

nitric acid was in the solution. This was done by multiplying the weight (g) of the solution by 

0.02. To calculate how much ultra pure nitric acid should be added to the solution to acidify the 

sample to a 4% level, the following calculation was used: 

 

Amount of HNO3 to add = [(weight of solution (g)*0.04)-(weight of solution (g) *0.02)]/0.96 

 

The calculated amount of ultra pure nitric acid was then added to the sample and the final weight 

and new acidification level was recorded.   
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APPENDIX B 

B.1 SUPPLMENTARY DATA 
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Table B1. Marcellus horizontal well time series Sr isotope data. These represent additional analyses to 
the more complete data set reported by Capo et al. (2014).  
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p-value:

Sample Mean Sample Mean two-tailed
Well size Sr Variance size Sr Variance distribution

UD-2 3 152.63 1.505 17 152.09 0.702 0.545

UD-4 2 156.86 0.009 11 156.65 0.021 0.117

UD-5 6 165.65 0.375 15 166.12 0.759 0.180

UD-6 2 152.68 0.618 14 153.67 1.479 0.265

UD-7 2 156.17 0.144 12 156.53 0.044 0.410

MW-1 2 33.92 0.031 12 35.87 0.022 0.043

Pre-Hydraulic Fracture Post-Hydraulic Fracture

Table B2. Statistical analysis of change in Sr isotope composition ( εSr) after hydraulic fracturing. 
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Na Ca Ba Sr Br Cl Total Ra activitya

pCi/L

Marcellus Produced Waterb 22,240 9,700 2,150 2,750 450 22,200 2,460

Upper Devonian Produced Waterc 35,510 14,180 520 840 780 84,280 910

Ground Waterd 9.27 30 0.13 0.32 0.04 6.25 0.42

- - - - - - - - - - - - - - - - - - -  mg L-1 - - - - - - - - - - - - - - - - - - -

Table B3. Averaged elemental concentration data used to model produced water-ground water mixing  
(Fig. 10). 
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