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The binding of protein to metal ions is essential to the functioning of thousands of enzymes. 

Although the action of many proteins is well known, there is less concrete knowledge about the 

mechanisms behind them because traditional methods such as NMR are orders of magnitude too 

slow to observe the dynamics.  Two-dimensional infrared spectroscopy is able to probe 

molecular structure and dynamics on the sub-picosecond time scale.  The fundamentals of 2D-IR 

spectroscopy is developed to enable the understanding of the process. The binding sites of many 

proteins such as those containing the widespread EF-hand motif rely on carbonyl ligands, both 

backbone amides and side-chain carboxylates.  Butyramide and EDTA are analyzed with linear 

Fourier-transform and two-dimensional infrared spectroscopy.  The data are consistent with 

published literature.  Butyramide shows a binding time scale with water of 600 fs, which is 

consistent with the known weak binding of amides to metal in aqueous solutions. Vibrational 
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frequencies are calculated using density functional theory.  The carboxylate normal modes of 

calcium-bound EDTA show delocalization and energy splitting consistent with vibrational 

excitons. 
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1.0  INTRODUCTION 

Nature, in its pursuit of efficiency, reuses successful structures over and over.  Consequently, the 

study of a few iterated motifs can broaden our knowledge of a wide span of different biological 

systems.  One of these recurring structures is the EF-hand Ca2+-binding motif is ubiquitous in 

biological systems, accounting for over 3000 

entries in the NCBI Reference Sequences Data 

Bank. 

This diversity is indicative of the wide 

variety of essential signaling roles that Ca2+ plays a 

throughout the life of a cell1,2,3.  The various EF-

hand structures have much in common.  The 

classical EF-hand assembly consists of a 12-residue 

loop (Figure 1) sandwiched between two -

helices4. The Ca2+ is ligated by seven carbonyl or 

carboxyl oxygen atoms in a pentagonal bipyramidal 

structure, the glutamate forming the only bidentate 

ligand5.  The pentagonal bipyramidal structure for binding Ca2+ is conserved across wide 

primary structure variations, even when they require significant rearrangement. 

Figure 1. Detail of the EF-hand binding loop 

showing detail side-chain carboxylate and 

backbone and side-chain amide ligands 
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A canonical EF-hand structure is represented by that of a human calmodulin (Figure 1).  

The ligands fall into two general categories: a polydentate carboxylate configuration (green), and 

various configurations of secondary backbone amides (pink), and side-chain amides (orange) of 

asparagine and glutamine.  A third binding configuration can be assigned to a characteristic 

water bridge, shown here as a blue icosahedron.  Variations in arrangement and identity of 

ligands in the primary sequence lead to binding affinities that vary by a factor of more than 106 

and which exhibit striking variations in ion selectivity.  

X-ray diffraction and NMR studies have yielded static conformational information about 

both the apo (unbound) and holo (bound) states, and while NMR has returned a limited amount 

of knowledge about dynamics, its time resolution is too slow to track fast dynamics. 

2D-IR spectroscopy, on the other hand, has the time resolution to probe dynamics on the 

sub-picosecond scale.  As the vibrational dynamics of both amides and carboxylates are sensitive 

to their environment, they can inspect the process of ion binding.  Because of the wide 

application of EF-hand structures, the diversity of unanswered questions, and the comparative 

simplicity of appropriate models, they are an excellent starting point for exploring the utility of 

2D-IR spectroscopy as an analytical tool for such systems. 

For this study, butyramide was chosen as a model of amides and EDTA as a model of the 

polycarboxylate structure.  These relatively simple models compose an access point to the study 

of the complete EF-hand motif, and immediately suggest several avenues of inquiry. 

What is the butyramide on/off rate?  The weak binding measured by Cremer, et al. 6, 

suggest that it is a fast process with the barrier dominated by solvent dynamics.  The timescale of 

hydrogen reorganization in water is on the scale of 1.5 ps7 and the timescale of butryamide-ion 
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associations can be similarly determined by 2D IR spectroscopy.  The activation energy of this 

transition can be calculated from temperature-dependence studies through Arrhenius plots.  

What is the mechanism of the blue-shifted butyramide peak?  In other words, is the 

change in carbonyl bond strength a consequence of electrostatic polarization or charge transfer?  

As charge transfer is known to be the dominant factor in similar systems8,9, it is likely that 

butyramide-ion binding follows the same dynamics.  Distinguishing between the two 

mechanisms is vital because they have different effects on bond strength and therefore on 

changes to the IR spectrum. 

This is easily illustrated using carboxylate as shown in Figure 2.  The carboxylate ion has 

a negative charge, which occupies the π* antibonding orbital.  Charge transfer out of the 

carboxylate system therefore reduces the antibonding character, strengthening the overall bond.  

This is reflected in IR as a blue shift of the peak.  Polarization, on the other hand, shifts charge 

from one end of the carboxylate system, effectively strengthening one side and weakening the 

other.  The effect of this on the IR spectrum is less clear-cut  

What is the nature of the slight red shift of the butyramide-D2O peak with increasing 

concentration of divalent metal ions?  This is tentatively explained by Cremer, et al. as either an 

effect of the ion hydration shell, or the changing dielectric constant of water.  The latter is 

problematic because monovalent ions also alter the dielectric constant, and Cremer’s own data 

Figure 2. Representation of charge transfer vs. polarization 
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shows no such shift with NaCl.  Likewise, one would expect hydration shell effects from 

monovalent cations as well. 

Of the two ions, the hydration shell of Mg2+ has a sharper radial distribution function10 

leading to a higher charge density (21.2 vs 17.9 ΔV cm-3 mol-1) than for calcium11. Regardless of 

the mechanism for the blue shift, one would expect that Mg2+’s higher charge density or larger 

hydration shell to have a different effect than calcium on the immediate environment leading to 

different IR responses.  However, Cremer reports no difference between calcium and 

magnesium.  I offer an alternative hypothesis based on exchange dynamics that will be 

elaborated upon in the discussion.  2D-IR is uniquely equipped to probe this possibility, which 

speaks to the fundamental dynamics of amide-ion binding. 

Is there a difference between the behavior of backbone and side-chain amides?  

Backbone amides are secondary amides and those in glutamine and asparagine are primary 

amides.  Secondary amides tend to be stiffer and show the amide I band at about 10 

wavenumbers higher than primary amides.  My current studies involve butyramide, which is a 

primary amide and therefore more representative of a side-chain amide than a backbone amide.  

A secondary amide such as N-methylacetamide will also be studied.  Any significant difference 

between the binding dynamics of the two may signal a difference of their roles in EF-hand.  

Also, the greater conformational freedom of side-chain amides may be significant. 

Most of these questions also need to be answered for EDTA-ion complexes. 

One of the variables in EF-hand binding is the selectivity for Ca2+ over Mg2+.  As both 

ions are present in biological systems, and as Mg2+ competition has been implicated in disease12 

and connected with calcium-signaling modulation13, studies will be carried out with both ions. 
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One variable that should be of interest is the smaller ionic radius of Mg2+.  Molecular 

simulations can demonstrate the impact this has on bound geometry, some of which can be 

confirmed with polarization studies to measure the relative angles of oscillators.  The higher field 

gradient and larger hydration shell of Mg2+ may play a role.  Again, molecular simulation can 

produce insight, and hydration shell dynamics have already been studied using 2D-IR 

spectroscopy14 using techniques directly transferable to this study.  Magnesium’s lighter mass 

unlikely has any bearing on static configuration but may play a role in dynamics. 

The remainder of this paper will summarize the theory of how 2D IR spectroscopy works 

and how it can help answer these questions.  That will be followed by the results of 

experimentation so far. 
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2.0  THEORY 

2.1.1 Describing Molecular Vibrations 

2.1.1.1 Basic Oscillator Models 

Infrared spectroscopy is a tool of choice for probing molecular dynamics because the frequencies 

of molecular vibrations correlate with those of infrared radiation.  2D-infrared spectroscopy 

offers the additional advantage over other tools such as NMR spectroscopy in providing 

resolution at the sub-picosecond time scale.  To understand the role of infrared spectroscopy, it is 

first necessary to understand molecular vibrations and the interaction of matter and radiation. 

Conventional Newtonian mechanics are intractable for problems of any complexity, and 

although Lagrangian dynamics fulfill an important role where relativistic considerations become 

significant, is the Hamiltonian formulation, ˆ ˆ ˆH T V= + , that is generally most useful in quantum 

mechanics.  It possesses features that make it convenient, particularly that it readily describes the 

time evolution of a system, and that it yields a direct readout of total system energy, probably the 

most single valuable parameter.  Hamiltonians are easily expressed using formulations for 

kinetic and potential energy, taking care that the kinetic energy portion is expressed using the 

quantum mechanical momentum operator p̂ i= − ∇  instead of the more familiar velocity 

notation.  It is the Hamiltonian that yields the familiar form of the time-independent Schrödinger 

equation: 
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 Ĥ Eψ ψ=  1 

The potential energy well of an interatomic bond is modeled accurately by the Morse 

potential: 

 ( ) ( )( )2
1 ea r r

eV r D e− −= −  2 

where r is the distance between atoms, er is the equilibrium distance, a is a parameter controlling 

the well width, and eD is the dissociation energy 

as measured from the bottom of the well. 

Although the Schrödinger equation for 

the Morse potential can be solved exactly, the 

solution is complex and computationally 

difficult.  It is therefore common practice to use a 

simple harmonic oscillator model (Figure 3, 

orange) as an approximation.  The approximation is quite good near the bottom of the potential 

well, and since most infrared spectroscopy experiments deal only with the lowest three energy 

states, the approximation is not unreasonable.  The Hamiltonian is 

 
2 2

2 2 2 2
2

ˆ 1 1ˆ ˆ ˆ
2 2 2
pH m x m x
m dx

ω ω∂
= + = − +  3 

yielding equally spaced energy levels of  

 1
2

Eν ω ν = + 
 

 . 4 

The harmonic oscillator approximation also allows us to express ω classically in terms of 

a “spring” constant, k , and reduced mass , µ : 

Figure 3: Comparison of the Morse potential with a  

harmonic oscillator. 
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kω
µ

= . 5 

As useful as the harmonic oscillator is, it is important to remember that is just an 

approximation.  The deviation of the real potential energy environment from the harmonic 

oscillator, termed anharmonicity, is ultimately responsible for the fact that infrared spectroscopy 

works at all, and that certain faint transitions forbidden in the harmonic case can, in fact, occur.  

It is also important to note that the energy levels of a harmonic oscillator extend, mathematically, 

to infinity, but that a Morse potential – and real bonds – have a point above which the system is 

unbound and the notion of discrete energy levels becomes meaningless. 

Up until this point, we have assumed that the only potential energy present is that of the 

Morse potential or its approximation, the harmonic oscillator potential.  But except in the case of 

a sufficiently rarefied gas phase, interactions with other molecules must also be considered.   

As infrared activity requires a non-zero transition 

dipole moment, it follows that there must exist dipoles.  

There appear in the form of polar bonds, and those with a 

strong transition dipole moment such as carbonyl groups 

make excellent chromophores for infrared studies.  They 

allow the probing of the immediate environment, because 

the interaction between that dipole and other sources of 

electric potential (charges, other dipoles, etc.) modify the energy environment from that of the 

pure Morse potential (Figure 4).  An attractive force on, let’s say, the oxygen of the carbonyl or 

the hydrogen of an amine, will “stretch” the bond, weaken it, and compress the energy levels 

between adjacent states.  It is this compression of energy levels that directly corresponds to the 

shift in infrared observables that forms the basis of IR spectroscopy as an exploratory probe. 

Figure 4: The widening of a potential 

well by external forces compresses the 

energy levels. 
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Hence, we appear forced to choose between a harmonic oscillator model, which is 

inaccurate except very near the ground state, and the Morse potential model, which is accurate 

but more difficult to work with.  In many areas of physics and chemistry mathematical 

approximation methods are available to ease the burden.  Among these is perturbation theory, 

widely used in spectroscopy.   In modeling a complex Hamiltonian, we start with an easy one, 

such as the harmonic oscillator, and add a small correction (the perturbation) to get closer to the 

real answer: 

 0
ˆ ˆ ˆH H H ′= +  6 

The Morse potential proves to be very cooperative in this regard.  The energy levels for 

an oscillator in the Morse potential are given by 

 
21 1

2 2
E vω ν ωχ   = + − +   

   
  , 7 

where χ is the anharmonicity term.  This expression is already in the form of a 

perturbative expansion because the first term is that the harmonic oscillator and the second is a 

second-order term in the same variable.  Thus, we can use the simple harmonic oscillator model 

for general work and add the second-order anharmonicity term when it is required for accuracy. 

We know that in the absence of any external perturbing potential fields, the individual 

vibrational solutions are given by the time-dependent Schrödinger equation: 

 i E
t
ψ ψ∂

=
∂
 , 8 

where ψ  represents the wave function in Dirac notation, also called bra-ket notation.  The 

symbol used here is the ket, effectively a row vector, and its complex conjugate, ψ , is the bra, 

 9 



effectively a column vector.  Using that convention, 1 2ψ ψ  is the inner product and 1 2ψ ψ  is 

the outer product. 

The time-dependent Schrödinger equation yields the set of solutions: 

 /niE t
n

n

c e nψ −=∑  . 9  

This expression confirms what we already knew about wave functions and, more 

generally, differential equations: if 1ψ  and 1ψ  are solutions, then so must be any linear 

combination of them. 

The existence of an exponential with an 

imaginary exponent suggests an oscillation, but 

if we think of the classical illustration of the ball-

and-spring molecular bond falling into resonance 

with a matching incoming wave,we find that it 

fails to explain spectroscopic processes very 

deeply. Figure 5 shows the probability density of the first three vibration numbers, those of 

concern to most two-dimensional infrared spectroscopy.  Each curve represents the probability 

that the atoms of the oscillator will have a particular separation, but it is impossible to say with 

any certainty that anything is moving in the classical sense.  We must look deeper to discover the 

oscillation that the radiation wave couples to. 

2.1.1.2 The Density Matrix and Ensembles 

There are an infinite number of potential superposition states for any oscillator involving 

any number of eigenstates.  However, we restrict ourselves to superposition states that are 

Figure 5: The first three probability waves of the 

quantum harmonic oscillator. 
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spectroscopically interesting and which have a measurable population.  The most fundamental of 

these is that between states 0  and 1 : 

 
0

0 1

1

/
/ / 0

01 0 1 /
1

iE t
iE t iE t

iE t

c e
c e c e

c e
ψ

−
− −

−

 
= + =  

 



 



 10 

To describe the self-interaction, we introduce the density matrix, which outer product of 

the wavefunction with its complex conjugate: 

 

( )
( )

( )

0
0 1

1

1 2

2 1

01

01

/
/ /* *0

0 1/
1

/2 *
0 0 1

/* 2
1 0 1

2 *
0 0 1

* 2
0 1 1

0
1 1

0

iE t
iE t iE t

iE t

i E E t

i E E t

i t

it t

c e
c e c e

c e

c c c e

c c e c

c c c e
c c e c

ω

ω

ρ ψ ψ
−

−

−

−

−

 
= =  

 
 

=   
 
 

=  
 



 






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The last line simplifies the expression by replacing the difference in energy between the 

two states with the angular frequency corresponding to that difference.  If the wavefunction wase 

normalized, we see that the sum of the diagonal terms (the trace) must equal 1 for any single 

oscillator.  The off-diagonal terms are the ones that introduce the oscillatory process for an 

external field to interact with. 

Such a state is called a coherent state, or more simply, a coherence, and appears when the 

wavefunction is a superposition of more than one eigenstates.  The term coherence generally 

refers to two periodic waves with identical frequency and phase, and applies here to the off-

diagonal terms.  The alternative is a system that is composed of a single eigenfunction, called a 

population state, where the density matrix reduces to 

 
1 0 0 0

0 0 , 1 1
0 0 0 1
   

= =   
   

. 12 

 11 



Since one of the coefficients is 0, there can be no oscillatory off-diagonal terms in the density 

matrix, and so a population state does not absorb or radiate. 

Although the density matrix was 

introduced for a single oscillator, it is an essential 

tool for describing an ensemble of molecules.  A 

state that can be described as a linear 

combination of eigenstates is known as a pure 

state.  It can be thought of as a single vector of 

length 1 in the space of eigenstates.  Over an ensemble, it is possible to find a sum of states 

adding to some arbitrary pure state (Figure 6).  Such a state is called a mixed state.  The mixed 

state shown here has a length of 1 but it does not need to. 

A single oscillator cannot lose its other than by the shift of all of its energy to a single 

eigenstate: 

 

01

01

1
1 02 2

1 0 0
2 2

i t

i t

i e

i e

ω

ω−

 −   
→   

    
 

 13 

Because the off-diagonal terms are cross products, they can only be non-zero if the coefficients 

for both eigenstates are non-zero.  A mixed state presents another situation.  Because it 

represents an ensemble, it is possible that individual systems will relax to one or the other 

eigenstate, leaving both of them partially occupied: 

 

01

01

1 1 0
2 2 2

1 10
2 2 2

i t

i t

i e

i e

ω

ω−

   −   
→   

      
   

 14 

  

Figure 6: Illustration of a pure state and a mixed 

state with the same net vector. 
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There is a second method by what a mixed state can lose coherence.  Especially in the 

condensed phase, the various oscillators composing the state are in slightly different potential 

energy environments.  So although they start out in phase, that phase synchronization is lost as 

time progresses (Figure 7 Dephasing 

because of variations in energy 

environment)..The average of the 

oscillatory terms trends toward zero. 

Although there is a more 

rigorous explanation of dephasing (see 

Appendix) and more sophisticated 

models are available, it is common to represent dephasing by adding an exponential decay to the 

off-diagonal terms in the density matrix: 

 ( )
01 2

01 2

/2 *
1 0 0 1

/* 2
0 1 1

i t t T

it t t T

c c c e e
c c e e c

ω

ωρ
−

 
=  
 

 15 

where 2T  is the dephasing time.  There are two components to this process, the pure dephasing 

time *
2T , which includes only the actual dephasing process described about, and 1T , which is the 

population relaxation time.  As population relaxation drives more oscillators toward the ground 

state, the off-diagonal terms must also diminish because they come about as cross products.  The 

three time constants are related by 

 *
2 1 2

1 1 1
2T T T

= + . 16 

The superscript assigned to ( )1ρ  in Equation 15 designates that this is the first-order 

expansion of the complete density matrix.  In real-world applications, only a small percentage of 

Figure 7 Dephasing because of variations in energy 

environment 
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oscillators are actually excited, so most of them remain in the ground state, and some energy 

goes in to higher terms of the density matrix expansion.  The complete density matrix is more 

accurately described by 

 ( ) ( )
01

01

2 *
0 1 0 0 1

* 2
0 1 1

1 0
...

0 0

i t

it t

c c c e
c c e c

ω

ωρ ρ ρ
−

 − 
= + + = + +  

   
  17 

In spectroscopy, ( )0ρ  is of little interest, and higher terms are generally small, so we restrict our 

focus to ( )1ρ .  Nevertheless, it is important to recognize the existence of higher order terms, as 

they explain what would otherwise look like the disappearance of energy when we consider 

absorption. 

2.1.1.3 Vibrational Excitons 

Up until this point, we have considered uncoupled oscillators, that is, oscillators that do 

not transfer energy between them.  This transfer results in new distributed vibrational modes that 

must be analyzed as a whole.  We know from quantum mechancis that the expectation vale for 

an observable, A , is given by: 

 ˆA Aψ ψ=  18 

With four discrete uncoupled oscillators, we can treat them individually as shown here in 

matrix form: 

 ( )

11

2 2
1 2 3 4

3 3

4
4

ˆ 0 0 0
ˆ0 0 0

ˆ0 0 0
ˆ0 0 0

H

H
E

H

H

ψ
ψ

ψ ψ ψ ψ
ψ
ψ

    
  =   
      

 19 

However, when the oscillators are coupled, we must add energy terms in the off-diagonals to 

represent that coupling: 
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 ( )

1 12 13 141

21 2 23 242
1 2 3 4

3 31 32 3 34

4
41 42 43 4

ˆ

ˆ

ˆ

ˆ

H

H
E

H

H

β β βψ
β β βψ

ψ ψ ψ ψ
ψ β β β
ψ β β β

    
  =   
      

 20 

[More about the exciton Hamiltonians] 

2.1.2 Interaction with Radiation 

2.1.2.1 The Response Function 

Now that we have a basic understanding of quantum molecular vibrations and a language with 

which to discuss entire ensembles, we can approach of interaction of infrared radiation with 

matter. 

Under the influence of an external field, the native Hamiltonian is modified.  Again, we 

treat this as a perturbation 

 ( ) ( )0 0
ˆ ˆ ˆH H W t H E tµ= + = + , 21  

where µ  is the transition dipole moment and ( )E t  is the electric field, which we consider only 

as a scalar field at this point.  Because the transition dipole moment generates off-diagonal terms 

in the density matrix, it must be of the form 

 01

10

0
0
µ

µ
µ
 

=  
 

, 22 

though both terms are generally considered identical. 

In order to be a complete interaction, the dipole perturbation must be applied to both 

sides of the density matrix, i.e., to both the bra and the ket.  As shown by the Liouville-von 

Newman equation (see Appendix I for derivation), this interaction appears as a commutator: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 0 0 0i E Eρ µ ρ ρ µ= −∞ − −∞    23 

For the macroscopic behavior of an ensemble, we must consider the expectation value, which is 

equal to the trace.  The response function is now defined as the interaction of the density matrix 

with a second dipole: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 10 0R i t tµ µ ρ µ ρ µ= −∞ − −∞ . 24 

2.1.2.2 Polarization 

With some simplifying assumptions, the macroscopic polarization in response to a pulse is 

simply the convolution of the pulse with the first-order response function, but we need to use a 

more sophisticated model of the pulse electric field.  We continue overlook that the field is a 

vector until section ???, but now we must apply the knowledge that the real observable aspect of 

the electric field wave consists of two components that are complex conjugates of each other: 

 0 * ( ) ( )i t i tE E E E t e E t eω ω−′ ′= + = + . 25 

Therefore, the convolution can be written as 

 ( ) ( ) ( ) ( ) ( ) ( )1 1*
1 1 1 1

0

P t dt E t t E t t R t
∞

 = − + − ∫ . 26 

However, as the response function also has two terms deriving from the commutator, the integral 

becomes 

 

( ) ( ) ( ) ( )

( ) ( )

1 2 1 2 1

1 2 1 2 1

1 / / 2
1 1 1 1

0 0

/ / 2
1 1 1 1

0 0

t T t T ti t i t

t T t T ti t i t

P t Aie dt E t t e Aie dt E t t e e

Aie dt E t t e Ai dt E t t e e

ωω ω

ωω ω

∞ ∞
− − −−

∞ ∞
− − −−

′ ′= − + −

′ ′+ − + −

∫ ∫
∫ ∫

. 27 

The left-hand integrands come from where the factors combine with opposite signs in the 

exponent and become a relatively slowly varying exponential factor.  The integrands on the right 
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coming from the combination of terms with like signs, contain a rapidly oscillating term, that 

over the interval of the convolution average to zero.  This is called the rotating wave 

approximation, and immediately cuts in half the number of possibilities we have to consider. 

Also, the two remaining terms are complex conjugates of each other, and although both 

are necessary for physical reality, they contain the same information, and so we need to consider 

only one of them for the mathematical analysis of response. 

Minimizing the number of pathways to consider is important because they grow 

explosively.  Two-dimensional IR spectroscopy, 

uses three pulses with four pathways each.  Without 

being able to eliminate a good portion of them, we 

could be left with 34 64=  possible combinations, a 

lot to work with.  A sequence of three pulses 

requires four nested commutators of their dipole 

interactions with the prior density matrix, which 

expand into four pair of interactions: 

 

( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

3 2 1 0,

*
3 1 0 2 2 0 1 3 1 1

*
3 2 0 1 1 0 2 3 2 2

*
3 2 1 0 0 1 2 3 3 3

*
3 0 1 2 2 1 0 3 4 4

*
3 2 1 0 0 1 2 3 5 5

3 2

, ,

o

i r i

i i R R

i i R R

i i R R

i i R R

i i R R

i

µ µ µ µ

µ µ ρ µ µ µ µ ρ µ µ

µ µ ρ µ µ µ µ ρ µ µ

µ µ µ ρ µ µ ρ µ µ µ

µ µ ρ µ µ µ µ ρ µ µ

µ µ µ µ ρ ρ µ µ µ µ

µ µ µ

   − =   

−∞ − −∞ + ⇒ +

−∞ − −∞ + ⇒ +

−∞ − −∞ + ⇒ +

−∞ − −∞ + ⇒ +

−∞ − −∞ + ⇒ +

( ) ( ) *
1 1 0 2 3 6 6i R Rρ µ µ ρ µ µ µ−∞ − −∞ + ⇒ +

 28 

Each pair subsequently leads to a pair of response functions, a response and its complex 

conjugate. 

Figure 8: Timing sequence of a third-order 

spectroscopy 
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We go through the steps that take place and explicitly build response function 1R : 

1. We start at the ground population state 0 0 . 

2. An interaction from the right, elevating the system to a 0 1  coherence state: 

 10 01iρ µ∝  29 

3. The system dephases for time 1t : 

  01 1 1 2/
10 01

i t t Ti e eωρ µ + −∝  30 

4. At time 1t , the second pulse interacts from the left, elevating the system to a 1 1  population 

state: 

 01 1 1 2/2
10 01

i t t Ti e eωρ µ + −∝  31 

5. During time period 2t , the system undergoes population relaxation: 

 01 1 1 2 2 1/ /2
11 01

i t t T t Ti e e eωρ µ + − −∝  32 

6. At time 1 2t t t= + , the third pulse interacts from the right, reducing the system to a 1 0  

coherence state.  Why it does not elevate it to a 1 2  coherence state is related to the 

rotating wave approximation and will become clearer in the next section. 

 01 1 1 2 2 1/ /3
10 01

i t t T t Ti e e eωρ µ + − −∝  33 

7. During time 3t , the system once again dephases: 

 01 1 01 3 3 21 2 2 1 // /3
10 01

i t i t t Tt T t Ti e e e e eω ωρ µ + − −− −∝  34 

8. Finally, the field interaction occurs from the left, generating the signal field: 

 01 1 01 3 3 21 2 2 1 // /4
10 01

i t i t t Tt T t Ti e e e e eω ωρ µ + − −− −∝  35 

Now we can write the response function: 

 ( ) 01 1 01 3 3 21 2 2 1 // /4
1 1 2 3 01, , i t i t t Tt T t TR t t t i e e e e eω ωµ + − −− −∝  36 

 18 



The other response functions are generated similarly.  Recall that the dephasing 2T  is a 

combination of pure dephasing *
2T  and population relaxation 1T .  We can assume that the pure 

dephasing is the same for both states, but the 2 1→  population relaxation time accessible via 

the pathways associated with 3R and 6R , is twice as fast as the 1 0→  relaxation time.  

Therefore, we must distinguish between ( )01
2T  and ( )12

2T .  The overall dephasing times are related 

by 

 ( ) ( ) ( ) ( )* *12 01 12 01
2 22 1 2 1

1 1 1 1 3 1
2 2 2T TT T T T

= + + = +  37 

 See Appendix B for a complete list of response functions for a third-order system. 

2.1.3 Feynman Diagrams and Rephasing 

Needless to say, keeping track of all the details of four interactions is a daunting challenge and 

prone to error.  Feynman diagrams serve to both communicate graphically a sequence of 

interactions, and to help sort out which of those are 

useful.  Named after the physicist Richard Feynman, 

it is probable that Feynman never used these, but 

they function the same is his original diagrams in 

providing a graphical representation of multiple 

quantum pathways. 

Figure 9: Feynman diagrams for R1 and R1* 

pathways Shows Feynman diagrams for the 1R  and *
1R  pathways.  The states shown between the 

vertical bars are those occupied in temporal order, with increasing time toward the top.  Arrows 

Figure 9: Feynman diagrams for R1 and R1
* 

pathways 
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indicate field interactions on the ket (left) and bra (right), the direction of the arrow representing 

either the E  (pointing right) or *E  (pointing left) portion of the electric field.  For a complete list 

of Feynman diagram rules see  Appendix C. 

A number of features facilitate work with multiple pathways.  First, complex conjugates 

are mirror images of each other, so that it is easy to identify them.  Since they report identical 

information, we only need to track one of them, and by convention use the form placing the 

interaction of the signal field (dashed arrow) at the upper left.  Second, we see that arrows 

entering the system raise the state of the bra or ket, and arrows exiting lower the state.  This is 

intuitive.  The counter-intuitive propositions, that arrows entering lower the state or exiting raise 

the state, are those that are excluded by the rotation wave approximation. 

Third, Feynman diagrams make it easy to formulate a response function.  To illustrate, be 

build the 1R  interaction from the Feynman diagram. 

1. Start with the ground-state density matrix. 

 ( )ρ −∞  38 

2. Add the 1t  interaction from the right. 

 ( ) oρ µ−∞  39 

3. Add the 2t  interaction from the left. 

 ( )1 oµ ρ µ−∞  40 

4. Add the 3t  interaction from the right. 

 ( )1 2oµ ρ µ µ−∞  41 

5. Finally, add the signal interaction from the left. 

 ( )3 1 2oµ µ ρ µ µ−∞  42 
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We see that this agrees exactly with the interaction obtained by expansion of nested commutators 

as shown in Equation 29.  Construction of response functions is further facilitated by noting that 

arrows pointing to the right generate coherences that evolve according to i te ω−  and those pointing 

left to i te ω . 

Fourth, Feynman diagrams allow us to 

distinguish rephasing from non-rephasing pathways.  

Examining a sample of each in Figure 10: Rephasing 

vs non-rephasing pathways, we note that they are 

identical except for the second coherence state: in the 

rephasing case they are opposite; in the non-rephasing 

case, they are identical.  In the rephasing case, the 

first coherence is generated by an interaction of the form i te ω and the second by one of the form 

i te ω− .  Consequently, the second coherence state evolves in the opposite direction of the first, 

reversing dephasing, and eventually generating the photon echo shown in Figure 8: Timing 

sequence of a third-order spectroscopy.  In this case, both coherences are generated by an 

interaction of the form i te ω− , so there is no reversal.  Although less intuitive in the case of non-

rephasing pathways, both appear at the detector and are needed to construct complete 

spectroscopic observables. 

We are now able to construct a complete representation of the macroscopic third-order 

polarization: 

 
( ) ( ) ( )

( ) ( ) ( )

3
1 2 3 3 2 1 1 2 3

0 0 0

3 3 2 3 2 1 3 2 1

, , , ,n

n

P t t t dt dt dt R t t t

E t t E t t t E t t t t

∞ ∞ ∞

∝

⋅ − − − − − −

∑∫ ∫ ∫  43 

Figure 10: Rephasing vs non-rephasing 

pathways 
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2.1.4 Implementation 

2.1.4.1 Overview 

It is beyond the scope of this document to present all of the knowledge needed to build a 2D 

infrared spectrometer, but an overview is necessary to help understand the spectra that come 

from it. 

The premise of 2D Infrared spectroscopy is a plot of input ( 1ω ) vs output ( 1ω ) 

frequencies over the range of interest.  The canonical arrangement consists of an ultrafast (100fs) 

infrared pulse laser, an optical parametric amplifier (OPA) to tune the output of the laser to 

frequency of the selected chromophore, and the spectrometer itself.  The pulses from the OPA 

are split into four and routed through a series of computer-controlled precision translation stages 

to adjust the timing between pulses.  The first two, corresponding to the pulses at 1t  and 2t  

(Figure 8: Timing sequence of a third-order spectroscopy are usually called pump pulses.  The 

third is the probe pulse at 3t , and fourth is a reference pulse, identical to the probe pulse, but 

passing through the sample in a region not exposed to the pump pulses to establish a baseline for 

the spectroscopy.  The generated signal pulse passes to an infrared spectrometer, in our case 32 

channels wide, which directly provides the data for the output axis. 

We can assume that the system starts in the 0 0  ground state because at room 

temperature, the difference in energy levels is significantly higher than Bk T .  The first pulse 

places the system into either a 0 1  or 1 0  coherence state, and the second puts it into a 

0 0  or 1 1  population state.  The time between 1t  and 2t  is referred to as a coherence time.    

The time between 2t  and 3t  is known as a population time. 
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2.1.4.2 Generating the ω1 axis 

The coherence time between 1t  and 2t also generates the 1ω  axis.  A sample of several 

thousand 3ω  are recorded against different values of 1 2 1t tτ = − .  The Fourier transform converts 

the 1τ  time base to a frequency.  While designs exist that actually sweep the frequency, given 

that pulses at 1t  and 2t are necessary anyway for third-order spectroscopy, it is often more 

practical to use this method. 

It is easy to say that a Fourier transform converts a time axis to a frequency axis, but the 

reality is less than intuitive, so a physical picture is helpful.  The shape of the laser pulse is 

approximately Gaussian, and the Fourier transform also inverts the width of a Gaussian pulse, in 

the sense that a narrow pulse in one domain is converted to a wide 

pulse in the other domain.  As the pulse is quite short in the time 

domain, there must be a wide distribution of frequencies around the 

center frequency ( Section 1.01(a)(i)Appendix D). Mathematically, 

each of the frequency components is a sine wave of infinite length 

(Figure 11), the various frequency components of the pulses 

overlap in time even though the pulses themselves, intuitively, do 

not. At each value of 1τ , there was one frequency (green) within the 

range of interest that is in phase across both pulses  Other frequencies (red, blue) are out of phase 

and attenuated. 

During the 2 3 2t tτ = −  population time, the system evolves in ways that are 

spectroscopically interesting is changing in ways other than during coherence time.  Two such 

general categories are chemical exchange, where an oscillator moves to another chemical 

environment where its frequency has changed, and relaxation, where energy transfers quantum 

Figure 11: How timing changes 

can determine a frequency 

 23 



mechanically from one system to another.  More detailed information appears below in 

Section   2.1.5. 

2.1.4.3 Phase matching 

Recall that until this point, we have been ignoring the vector nature of the.  Well still 

ignore the field polarization for the moment, but apply the direction of travel vector.  Instead of 

the approximation i te ω− , we will use the more complete expression: 

 i t iE e ω φ− + += kr  44 

where k is the propagation vector and φ  is the phase.  

Coherence states remember the propagation vector and 

phase in addition to the frequency.  Light has been held 

“stationary” for up to a minute15, orders of magnitude 

longer than of interest to spectroscopists.  Figure 1 shows 

the wave vectors for a hypothetical three-pulse system.  

However, it is common to use the projection of those factors onto the target plane, and for those 

we will use the notation 1k


, 2k


, and 2k


. 

Labeling the interaction arrows on a Feynman diagram with the propagation vectors 

facilitates ??? (Figure 13).  Arrows to the right are positive; arrows to the left are negative.  The 

vector sum is then the direction of the emitted signal.  Not all pathways can be so easily 

separated, but many of them can.  Note that in the example here, though it is possible to place a 

detector in the location of each output stream, it is usually more practicable to place a detector at 

only one location and reverse the timing of the first two pulses to select the pathway needed. 

Figure 12: Propagation vectors 
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In our instrument, the two pump beams are collinear.  

Since 1 2 0k k− =
 

, the output signal is collinear with 3k


.  

This has an important ramification in the next section. 

2.1.4.4 The Local Oscillator 

There remains but one term to consider, the phase φ

in the wave.  Proper registration requires a phase reference, 

and this is often provided by another source or by another 

portion of the original laser pulse split off for that purpose.  

Either way, this is referred to as the local oscillator.  In our 

configuration, however, as the pump pulses are collinear and the emitted field in collinear with 

the probe pulse, the transmitted portion of the probe pulse functions as the local oscillator and is 

automatically in the correct phase. 

 

 

2.1.5 Spectroscopic Observables 

2.1.5.1 Classical Spectroscopic Processes and Anharmonicity 

Certain processes that are indistinguishable under linear IR are distinguishable under 2D 

IR.  We begin that discussion with a semi-classical view of spectroscopy that knows nothing 

about coherences.  Under that view, a process begins when the system absorbs a photon, which 

raises it from the 0ν =  state to the 1ν = state.  Note that the photons in this picture are not the 

same as the field interactions described in this paper, as herein it requires two field interactions 

Figure 13: Phase matching with 

Feynman Diagrams 
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to achieve the 1ν =  state.  Once the system is in 

this state, there are three classical pathways it can 

take in response to a second photon (Figure 14).  

The equivalent Feynman diagrams are shown. 

Ground-state bleach (g.s.b.) is the absence 

of an excitation that might have happened had the 

population of oscillators in the ground state not 

been reduced by the first photon.  This appears at 

the detector as increased signal and therefore 

interpreted as a decrease in absorption.  Stimulated emission (s.e.) occurs when the second 

photon couples the excited oscillator back to the ground state.  This also appears as an increased 

signal or decrease in absorption.  Excited-state 

absorption (e.s.a.) occurs when the system absorbs a 

second photon and is elevated to the 2ν =  state.  This 

is a decrease in signal and in increase in absorption. 

These processes appear as two spots on a 2D 

IR spectrum (Figure 15).  Ground-state bleach and 

stimulated emission combine to form the red spot on 

the diagonal.  Excited-state absorption forms the blue 

spot. By convention, the red is considered positive 

and the blue negative.  The offset (∆ ) between them 

derives from the fact that the 1 2ν = → transition is of slightly lower energy than the 0 1ν = →  

transition.  Therefore∆  is a direct measurement of the anharmonicity of the oscillator.  Were it 

Figure 14: The three classical spectroscopic 

processes 

Figure 15. Essentials of a 2D IR spectrum, 

showing anharmonicity. 
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not for anharmonicity, the two spots would overlap and cancel, and there would be no 

spectroscopy at all. 

2.1.5.2 Spectral Diffusion 

One of the most informative pieces of data that comes from 2D IR, invisible with linear 

IR, is spectral diffusion.  Recall from Section  2.1.1.1 that that in the condensed phase, oscillators 

exist in a range of chemical environments.  The upper left image in Figure 16 represents a 

prototypical absorption peak in the moment of excitation.  The colored peaks are the Lorentzian 

response of the system, their width being termed the homogeneous linewidth (Figure 15).   

The homogeneous linewidth is a consequence of the system response.  A classical 

treatment of a harmonic oscillator yields a Lorentzian as an approximation to the solution of the 

system differential equation, but we also have a quantum explanation.  Recall from 

Section  2.1.1.2 that we model the system response as an exponential decay in the time domain.  

The Fourier transform of this exponential into the frequency domain yields a Lorentzian curve 

( Section 1.01(a)(i)Appendix D).  As the system 

dynamics become faster, the homogeneous 

linewidth broadens.  As this is a system 

characteristic, no modification to the spectrometer 

can reduce it further. 

An isolated Lorentzian response is almost 

never directly observable in the condensed phase 

because of variability in local environments, giving Figure 16: Spectral diffusion 
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a Gaussian distribution of Lorentzian lineshapes.  The result is the convolution of Lorentzian and 

Gaussian shapes, most properly called a Voigt response, but generally treated as a Gaussian.   

The width of this distribution is called the inhomogeneous linewidth. 

At the moment of excitation, the system is the state shown on the 

left side of Figure 16.  Input frequency is highly correlated out output 

frequency because the oscillators have not yet had time to reorganize.  

As time progresses, the oscillators move into different environments, so 

that their new frequency does not match the one that excited it.  The 

individual Lorentzian lineshapes broaden, drop in amplitude, and shift 

their peaks toward the center as local oscillator environments 

redistribute themselves.  As the total energy is unchanged, only 

redistributed, the overall envelope remains the same as at the beginning, 

which is why linear IR is unable to resolve the process.  

2D-IR, by correlating two sets of frequencies, is able quantify 

spectral diffusion measuring the time constant of the diffusion process 

through the shape of the spots, as they progress from highly elliptical to 

round or diamond-shaped.  There are a number of methods to quantity 

the amount of spectral diffusion that has occurred, three of which are 

shown in Figure 17.  The first (A) measures the ellipticity of the spots, 

the other two, (B and C) measure the centerline slope and nodal line slope, respectively.  The 

measure of spectral diffusion is then calculated: 

 
2 2

2 2

a b am
a b b

−
Θ = =

+
 45 

Figure 17: Methods of 

measuring spectral 

diffusion 
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These individual correlation values are plotted against population time and fitted to an 

exponential or bi-exponential function, the latter often being a better fit because more than one 

diffusion process is likely present.  The time constants from the fitted curve reveal the time 

scales of the processes. 

2.1.5.3 Cross Peaks 

As in 2D NMR, 2D infrared spectroscopy may yield cross peaks, revealing a variety of 

information 

Static cross peaks appear even at short time scales when 

oscillators are coupled in vibrational excitons.  Figure 18 shows an 

example system with two-oscillator coupling.  Without going through 

the derivations (see Hamm and Zanni16) ∆  is the anharmonicity of 

the oscillator, and β  is the coupling between them.  As shown, the 

strength of the coupling manifests itself graphically and parameters 

can be measured directly from the spectrum.  weakβ  represents the 

magnitude of coupling in the weak limit and is approximated as 

                             
( )

2

2
2 1

4weak
ββ

ω ω
= − ∆

− 

.                                            46 

Dynamic cross peaks evolve over time, and in most cases 

appear after some dynamic process has taken place in the system.  

One of these is population transfer, which occurs when energy is 

transferred between different oscillators with similar energy levels.   

Another process is chemical exchange where an oscillator starts out in one chemical 

environment, and after excitation moves to another chemical configuration.  This is different 

Figure 18: Weak and 

strong coupling domains 
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from spectral diffusion wherein an oscillator is moving around in a distribution of similar 

chemical environments, and instead represents a chemical process such as conformational 

reorganization or chemical binding. 
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3.0  MATERIALS AND METHODS 

Samples were prepared of 200 mM butyramide and 250 mM EDTA-D8 disodium along 

with 0, 2.5, and 5 M CaCl2 and MgCl2.  All three of the salts form hydrates, the chlorides being 

quite hygroscopic.  CaCl2 was dried at 260 °C and EDTA at 180 °C, and stored in a homemade 

desiccator. EDTA decomposes when heated in air to near its melting point.  The acidic 

hydrogens of EDTA were replaced with deuterium by three cycles of dissolving anhydrous 

EDTA in D2O and evaporating, and the resulting EDTA deuterate used.  MgCl2 was purchased 

anhydrous and maintained tightly sealed. 

The EDTA samples were adjust toward pH 12, as EDTA becomes less soluble with 

decreasing pH and because protonation of the nearby nitrogen atoms at lower pH disturbs the 

electron density within the carboxyl group, making it less representative of carboxyl groups in 

peptides.  However, at pH 12, the 250 and 500 mM samples of CaCl2 and MgCl2 became cloudy, 

likely from the formation of insoluble hydroxides, and were adjusted back to pH 11 to obtain 

clear samples. 

Linear spectra were taken with a Nicolet 6700 FTIR spectrometer using CaF windows 

and a 50 micron path length in a 1 mm-wide flow cell channel.  Because H2O bending bands 

overlap the carbonyl and carboxyl asymmetric stretch bands we wish measure, all work was 

done in D2O. 
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Butyramide and the butyramide-calcium complex were studied with third-order 2D-IR 

spectroscopy.  The instrument consists of a 100 fs, 5 kHz modelocked infrared laser at 800 nm 

provides the initial source of radiation in 1 mJ pulses.  Approximately 200 μJ of its output is 

directed into an optical parametric amplifier (OPA) that uses two frequency mixing stages to 

generate a tunable output from nominally 3 to 8 microns (3300-1250 cm-1)17.  The resulting 

approximately 2 μJ pulse train is directed into the actual 2D spectrometer configured in a pump-

probe geometry18.  A 2x32 channel MCT detector acquires spectral data and supplies it to a 

computer for processing. 

In our instrument, the first two (pump) pulses are collinear, which means 𝑘1−𝑘2 = 0 for 

all pathways and that the emitted signal is in line with the third (probe) pulse.  This arrangement 

greatly simplifies both construction and data processing because the rephasing and non-

rephasing signals are added automatically at the detector. 

 The spectra were fit to a pair of 2D Gaussians for further processing. 

Bond lengths and normal mode frequencies in a simplified environment without solvent 

treatment were calculated with Q-Chem (www.qchem.com) using the b3lyp functional with a 6-

31G* basis set alone and bound to calcium and D2O.  
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4.0  RESULTS AND DISCUSSION 

4.1 AMIDE 

4.1.1 General 

The FTIR spectra of butyramide against 

an N2 background at the three 

concentrations of calcium ion are show in 

Figure 19. The peaks are identified as 

follows: (A) D2O aν1+ν2+bν3 combination 

band.  (B) OH stretch.  (C) OD stretch.  

The shoulder on the red side is typical for 

this peak symmetric stretch, and the 

change in amplitude is interpreted to result from various proportions of HOD as the amplitude 

changes correspond to those of peak B. (D) The amide I peak, which is the one of interest for this 

study.  (E) May be an artifact of H2O bending at 1595 cm-1, or of the combination band of D2O 

bending and libration centered at 1555 cm-1. (F) may be HOD bend.  (G) The D2O bending peak 

at 1178 cm-1.  The apparent peaks at 1227 and 1238 cm-1 are interpreted as a saturation effect.  

Figure 19: Butyramide-Ca2+ sequence take against an N2 

background. 
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The corresponding plots for butyramide with calcium and magnesium are not significantly 

different at this scale. 

A close-up of the amide I band, taken against a D2O with both Ca2+ and Mg2+ is shown in 

Figure 20, along with Gaussian fits to the two peaks.  Both show an initial peak at 1620 cm-1. As 

salts are added, the peak red-shifts slightly to about 1616 cm-1 and a blue-shifted shoulder 

appears at 1645 cm-1 with calcium and at 1649 cm-1 with magnesium.  The magnesium shoulder 

appears to not be as high, but this may be an artifact of the smaller overlap. 

4.1.2 Blue shift of butyramide amide I peak with salt concentration 

The carbonyl peak of butyramide in D2O occurs at 1620 cm-1.  With the addition of high 

concentrations of divalent cation, a second blue-shifted peak appears as shown above in Figure 

20.  A fit to Gaussians was performed using Mathematica, obtaining peaks at 1613 cm-1 and 1649 

cm-1 for Ca2+ and 1615 cm-1 and 1649 cm-1 for magnesium which are consistent with Cremer, et 

al.,’s fit at 1615 cm-1 and 1645 cm-1 for Ca2+ and 1615 cm-1 and 1649 cm-1 for Mg2+.  The 

relatively poor fit of Mg2+ compared to Ca2+ may be because of the baseline dip on those spectra, 

Figure 20: 200 mM butyramide in D2O with various concentrations of Ca2+ and Mg2+ 
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interpreted to be an artifact of the background used.  In both cases, as the secondary peak grows 

with concentration, the carbonyl-D2O peak decreases, yielding a clear indication of D2O 

displacement by the ion.  

The amide I band occurs at 1718 cm-1 in the vapor phase19 and only appears at 1620 cm-1 

in D2O because of the red shift introduced by hydrogen bonding of water molecules through the 

shift of charge to the water σ* orbitals.  The apparent blue shift from the salts, therefore, is a 

relative shift due to the weaker red shift from the metal ions.  Therefore, the apparent blue-shift 

with the cations is only relative, indicating a weaker binding than with water.   If greater blue 

shift of Mg2+ suggests that it binds more weakly than Ca2+.  Both bind quite weakly as evidenced 

by the high concentrations required to get the secondary peak.  Higher concentrations are not 

investigated because the ones used reflect the solubility limits of the salts. 

4.1.3 Correlation Function 

A series of 2D-IR spectra was taken of butyramide in D2O.  The raw spectrum at a 

population time of 200 fs is shown in Figure 21. Pink areas are negative, representing decreased 

absorption from ground state bleach and stimulated emission, and the blue areas are positive, 

representing excited state absorption.   
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The pink areas correspond roughly to peaks obtained from conventional linear 

spectroscopy, and in this case are not on the diagonal because of an error in the spectrometer 

calibration.  The blue corresponds to the ν=1 to ν=2 transition.  Measurements of this plot show a 

diagonal anharmoncity of about 30 cm-1, a homogenous half-height width of about 15 cm-1, and a 

single-standard-deviation inhomogeneous line width of about 35 cm-1. 

The gaps in both peaks are H2O 

atmospheric absorption bands.  Improving 

the quality of purge in the system is an 

ongoing struggle and improvements are still 

being made. 

The ellipticity algorithm currently in 

use in our software failed with the 

butyramide data although it has worked well 

elsewhere.   Software is not yet written to use 

Figure 21: Fitted 2D-IR spectra of butyramide in D2O at 200, 600, 1200 fs population time. 

Figure 22: Single-exponential correlation fit of 

butyramide/D2O spectral diffusion based on centerline 

slope. 
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the centerline slope method. However, useable slope data could be extracted manually.  An 

additional data point was available at 1400 fs, but the Gaussian fit was questionable (1600 was 

unusable) and yielded a spurious value.  The data was fitted with Mathematica to a single 

exponential of the form  

 
t

f ae cτ
−

= + . 47 

The plot of data points and the fitted curve is shown in Figure 22. The time constant τ 

shows a timescale for the butyramide-water exchange dynamics of 600 fs. 

4.1.4 Red shift of butryamide-D2O amide I with salt concentration 

My hypothesis to explain the red shift is based on exchange dynamics as diagrammed in 

Figure 23.  These diagrams are intended to be representational and not an accurate portrayal of 

relative homogeneous and non-homogeneous lineshapes. 

The carbonyl absorption peak at 1620 cm-1 is the response of an ensemble of systems 

with varying degrees of interaction, those with stronger H-bonding with water corresponding to 

increased red shift to the right.  Since the cations bind only weakly to the carbonyl, they can 

Figure 23: Proposed spectral shift scenario in weak metal ion binding to butyramide 
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compete more effectively with the more weakly bound water molecules leading to a greater 

depletion of their population.  The amide-Ca band then appears (purple in the right-hand 

diagram) and the remaining resulting in a slightly red-shifted and reduced peak (red).  This 

mechanism also explains the smaller peak amplitude changes with the weaker-binding 

magnesium. 

Note that at about 1600 cm-1, both ions show an increase in absorbance for the bound 

species.  This is apparently not an artifact of the experiment since Cremer’s data shows the same 

phenomenon.  However, my data shows a larger difference in magnitude between the water-

bound and ion-bound species for Mg2+.  This suggests an increase in the population of more 

strongly bound water molecules in the presence of the ions.  It is not directly consistent with my 

hypothesis, but is consistent with Cremer’s suggestion of hydration shell effects, as it is more 

pronounced with magnesium.  It may be that two processes are working in conjunction and does 

not immediately invalidate my hypothesis. 

My population dynamics hypothesis is only viable if the dynamics of cation-amide 

exchange are at least as fast as the ~ 2ps time scale20 of water reorganization. Otherwise, 

unbound water populations would have time to re-equilibrate and restore the shape of the 

original peak. The 600 fs time scale determined above for butyramide-water reorganization is 

certainly consistent with that interpretation.  That the amide-ion binding is weak also suggests 

fast dynamics. Calculations by Mitchell21 show that the amide-ion bond is weaker than either 

amide-water or water-water.  2DIR is an appropriate tool to test the hypothesis of chemical 

exchange by the timing of cross-peaks. 
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4.1.5 Comparison with simulation results 

Electronic electronic structure calculations of a geometrically optimized model of 

butyramide (Figure 24) are compared with experimental results in Table 1.  The vibrational 

frequencies were obtained directly from the output of Q-Chem, and the bond lengths obtained by 

importing the Q-Chem output into Avogadro and 

measuring the distances using Avogradro’s built-in tool.  

Δω and ΔESCF were calculated simply as the change in 

corresponding shifts from those of the D2O-bound 

species. 

Vibrational frequencies were calculated without 

anharmonicity in interest of computational economy and 

solvent effects are not accounted for. Therefore, the 

calculations represent more accurately the gas phase, and so frequencies are not expected to 

directly match those obtained experimentally.  The shifts in frequency between bound and 

unbound states serve as the primary indicator.   Interestingly, Cabannis, et al., obtained very 

similar results when performing these calculations with carboxylates  using a PM3 parameter set 

with SPARTAN22.  Nevertheless, the calculated shifts from water-bound to ion-bound species 

are comparable to the experimental values.    

Simulations show a paradoxical lengthening of the amide carbonyl when bound to an ion, 

whereas the recorded blue shift relative to water would suggest a shortening of the bond. 

 

 

 

Figure 24: Visualization of the butyramide-

Ca model 
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Table 1: Results of Q-Chem simulation of butyramide systems 

Species Measured Simulated (equivalent to gas phase) 
 ω/cm-1 Δω/ cm-1 ω / cm-1 Δω/ cm-1 ESCF/ Eh ΔESCF/ Eh C=O/pm 

D2O 1620  1832.08 - -364.26 - 123.0 

Ca2+ 1645 25 1852.77 20.69 -964.90 -600.64 128.9 

Mg2+ 1649 29 1852.23 20.15 -487.30 -123.04 128.9 

4.2 CARBOXYLATE 

4.2.1 General 

EDTA has long been known to be a strong calcium chelating agent, and its ion binding 

characteristics have been extensively studied by Sawyer23,24, Lanigan25, Kovács 26, and others.  

Linear IR spectra are available for 

both calcium- and magnesium-bound 

species. 

The FTIR spectra of the EDTA 

salts is similar to those for butyramide 

(Figure 25).  Peak F is not simply the 

same D2O combination peak as 

identified in the butyramide spectrum, 

as it is higher in magnitude and 

resolves into two peaks, the larger somewhat red-shifted. That contributor is identified as the 

Figure 25: FTIR spectra of EDTA/Mg2+ at various 

concentrations of Mg2+ 
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carboxylate symmetric stretch.   The similarly positioned carboxylate asymmetric stretch band is 

more prominent than the amide I band in butyramide, not surprising since EDTA has four 

chromophores per molecule. 

Closeups of the EDTA asymmetric stretch in a fully deprotonated state with calcium and 

magnesium at pH 12 is shown in Figure 26.  EDTA shows carboxylate asymmetric stretch at 

1585 cm-1, shifting to 1589 cm-1 for Ca2+ and 1587 cm-1 for Mg2+ with the addition of up to 2 

molar equivalents of metal ion.  

A broad peak occurs at 1550 cm-1 and does not shift with the addition of metal.  This 

frequency corresponds to the same D2O bending and libration band as mentioned above.  

Although it does not shift in frequency, it drops rapidly in magnitude.  A third peak appears at 

1610 cm-1 for Ca2+ and 1600 cm-1 for Mg2+. 

 

Figure 26: FTIR spectra of 250mM  EDTA-D 4in D2O with various concentrations of Ca2+ and Mg2+ with D2O 

background 
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4.2.2 Blue shift of EDTA carboxylate asymmetric stretch peak with salt concentration 

EDTA is a more complicated system than butyramide not only because of eight possible binding 

sites but because it exists in six protonation states 

dependent on pH27 as shown in Figure 27.  

Sawyer showed that the amine nitrogen atoms 

remain protonated at higher pH levels and 

dissociate last.  Although all four carboxylates 

are deprotonated at physiological pH, inductive 

coupling from the positively charged amines 

shifts charge from the partially occupied π* orbitals of the adjacent carboxylates.  This would 

result in a lower charge density than is present in carboxylates at physiological pH and give 

results inconsistent with in vivo binding behavior because of the difference in frequencies. 

Magnesium’s smaller blue shift suggests that it binds with EDTA more weakly than 

calcium.  This is in agreement with literature, given the binding constants for Ca2+ and Mg2+ 

being 5.0x1010 and 4.9x108, respectively. 

4.2.3 Simulation Results 

4.2.3.1 General Considerations 

EDTA, being a tetracarboxylate system is 

expected to support vibrational excitons.  As the 

electronic structure calculations of Q-Chem return 

Figure 27: Protonation states of EDTA  

Figure 28: Local mode motions derived from a 

butyrate model 
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normal mode vibrations and normal modes are computationally intractable in excitonic systems, 

it is prudent to consider a local mode perspective. 

To this end, electronic structure calculations of 

butyrate were analyzed with Mathematica to yield 

approximate data for local mode behavior in EDTA 

(Figure 28).  The carboxylate asymmetric stretch at 

1744.76 cm-1 has a dipole moment of 784 Debye in a 

direction (orange) 14.08º off the axis connecting the two 

oxygen atoms (blue).  This is very close to the angle 

halfway to the axis of one C=O bond, and so the bisected 

vector was taken as a close approximation to the actual 

dipole.  Inspection of the molecular geometry of the EDTA-ion complex shows axis from the 

carbon to the metal ion is a good approximation for the direction of the local-mode transition 

dipole moment.  Its magnitude remains that calculated for butyrate. 

4.2.3.2 Comparison of Experimental and Computational Results 

The experimental data for EDTA is compared with electronic structure calculations in 

Table 2.  The calculated values shown for carboxyl asymmetric stretch are those for the central 

frequency as Q-Chem returned four corresponding to carboxylate vibrational modes.  

Furthermore, as the EDTA/water simulation is still waiting in the queue as of the time of this 

writing, butyrate/water was used to establish the vibrational frequency of the unbound 

carboxylate.  As the more planar structure of unbound EDTA places the dipoles either at two to 

three times the distance as in the bound species or at nearly right angles, anticipating 

Figure 29: Determination of local-mode 

dipole in EDTA complex 
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approximately an order of magnitude lower coupling between them, this approximation was 

deemed tenable. 

Table 2: Measured vs simulated results for EDTA binding 

 
At once, we observe three interesting features.  First, the calculated frequency shifts 

between the bound and unbound states are at least an order of magnitude greater than the 

experimental values.  This may be, in part, a result of butyrate being a poor approximation to 

unbound EDTA.  Second, the calculated shift for the Mg2+ species is greater than for the Ca2+ 

species, whereas the reverse is true experimentally.  This discrepancy is not understood.  Third, 

the splitting demonstrated by the Mg2+ species is somewhat greater than for the Ca2+ species, 

suggesting tighter coupling. 

Species Measured Simulated (equivalent to gas phase) 

 ω/cm-1 Δω/cm-1 ω /cm-1 Δω /cm-1 C=O/pm 

D2O 1585  1703.94   

Ca2+ 1589 4 1744.50 

1750.91 

1752.48 

1775.84 

40.56 

46.97 

48.54 

71.90 

125.7 

Mg2+ 1587 2 1753.27 

1762.79 

1764.75 

1791.39 

49.33 

58.85 

60.81 

87.45 

122.9 
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The four vibrational modes are shown graphically in Figure 30.  Because they look 

identical in a static representation, phase arrows have been added.  The vibrational frequencies 

for both ions are listed in 

Table 3 and shown as stick plots in Figure 32.  They ranged from 1764.01 to 1841.09 cm-

1 for EDTA bound to Ca2+ and 1779.90 to 1842.17 cm-1 bound to Mg2+. 

 

Table 3: Calculated spectroscopic bands corresponding to carboxylate asymmetric stretch. 

 

Ca2+ Mg2+ 

ω /cm-1 Amplitude (km/mole) ω /cm-1 Amplitude (km/mole) 

1744.50 177.974 1753.27 177.974 

1750.91 1065.271 1762.79 1209.355 

1752.48 1569.919 1764.75 1427.892 

1775.84 106.616 1791.39 32.224 
 

The stick plots show similar vibrational patterns for both species.  They show a pair of 

closely spaced frequencies containing most of the energy, a weaker emission on the red-shifted 

side, and an even weaker one farther away on the blue-shifted side. 

Figure 30: Vibrational modes of EDTA corresponding to the carboxylate-Ca asymmetric stretch frequencies as 

calculated by Q-Chem. 
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The relative strength of the peaks can be 

explained using a symmetry argument.  

Although a C2 rotational symmetry was 

necessary to determine the identity of coupling 

constants, a C4 rotational symmetry better 

describes the vibrational modes (Figure 31).  

Recording the change in sign of the vibrational 

modes with each 90º rotation we can identify 

the number of nodes for each case.  We know from fundamental group theory that of these cases, 

only those with one node are consistent with infrared activity.  The “forbidden” cases of two and 

zero nodes then represent the small signals at the 

high and low ends of Figure 32.  They are not 

quite zero because the symmetry is not exact. 

 

 

 

4.2.4 Initial investigation into EDTA vibrational excitons 

EDTA has four equivalent carboxylates, 

so the molecule, barring distortions, exhibits a C2 

symmetry as shown in Figure 33. Therefore, the 

transition dipole coupling between adjacent 

Figure 33: Schematic of EDTA 

Figure 32: Stick plot of EDTA carboxylate 

antisymmetric stretch frequencies 

Figure 31: Rotational symmetry of EDTA 

vibrational modes 
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oscillators in either direction are not equivalent.  This suggests that the single-quantum 

Hamiltonian, using the coupling coefficients βij as indicated in the figure, is best represented as 

 

12 13 14

12 14 13

13 14 12

14 13 12

H

ε β β β
β ε β β
β β ε β
β β β ε

 
 
 =
 
 
 

, 48 

where ε corresponds to the frequency of the uncoupled vibrational modes, and β12, β13, and β14  

are the coupling constants with neighbors in order of distance. 

Hamm and Zanni give the coupling between two dipoles as 

 
( )( )

3 5
0

1 3
4

ij i ij ji j
ij

ij ij

r r
r r

µ µµ µ
β

πε

 ⋅ ⋅⋅
= − 

  

   

 

, 49 

where iµ
  and ir

  are the transition dipoles and their positions, respectively. 

However, as important as this model is for the physical picture of oscillator coupling, it 

can be often be more accurately calculated by fitting the Hamiltonian (Equation 

12 13 14

12 14 13

13 14 12

14 13 12

H

ε β β β
β ε β β
β β ε β
β β β ε

 
 
 =
 
 
 

, 48 in this case) to the known energy eigenvalues.  This was done 

with MATLAB script, and the resulting parameters verified with a Mathematica script 

( Appendix E).  The results (Table 4) show the greatest difference between the two systems being 

between the closest oscillators. 
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Table 4: Computed coupling values for EDTA systems. 

 

The discrepancy between coupling constants obtained through geometrical methods 

versus solution of the Hamiltonian suggest inadequacies in the physical model used for the 

geometrical method.  Possibilities for error include poor assumptions on the local-mode 

transition dipole axis and position and the butyramide model not yielding an appropriate estimate 

of the magnitude of the transition dipole moment. 

These binding constants can be used to perfect the geometrical model described in 

Equation 
( )( )

3 5
0

1 3
4

ij i ij ji j
ij

ij ij

r r
r r

µ µµ µ
β

πε

 ⋅ ⋅⋅
= − 

  

   

 

, 49. 

In addition, accurate treatment in regard to 2D infrared spectroscopy requires 

consideration of the two-quantum Hamiltonian, which is not yet developed for EDTA. 

Coupling Ca2+ Mg2+ 

 ω /cm-1 ω /cm-1 

ε 1755.7 1768.1 

β12 -7.2 -10.0 

β13 -4.4 -4.3 

β14 8.4 8.4 
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5.0  CONCLUSION 

This work has confirmed much of the literature data regarding amide and EDTA binding 

to alkaline earth metals.  Unfortunately, difficulty with the 2D instrument to date has interfered 

with the collection of reliable data to begin addressing the questions posed in the introduction.  

Nevertheless, some observations can be made. 

The absence of a dramatic difference between the behaviors of Ca2+ and Mg2+ suggests 

that they would bind similarly in EF-hand.  Since we know that EF-hand is often highly specific 

for calcium28, it is evident that this selectivity arises from cooperativity of binding units in EF-

hand and not from characteristics of any one ligand. 

The computational studies of EDTA show clear energy-splitting effects due to vibrational 

excitons despite the fact that the transition dipoles are not aligned conveniently.  Therefore, it is 

reasonable to hypothesize that excitons do play a role in the dynamics of EF-hand, as their 

dipoles are aligned comparably 
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APPENDIX A 

DERIVATION OF THE LIOUVILE-VON NEUMANN EQUATION FOR 

A STATISTICAL ENSEMBLE 

The standard form of the Schrödinger equation, 

 ˆi H
t
ψ ψ∂

− =
∂

 50 

implies its complex conjugate, 

 *ˆi H
t
ψ ψ∂

=
∂

 51i 

A density matrix of an ensemble of states is 

 i i i

i

pρ ψ ψ=∑  52 

where ip  is the population fraction of the ith contributing state. Using the chain rule, we can 

expand the time-dependent Schrödinger equation for the ensemble. 

 

i i i

i

i i i i i i i i

i i i

i p

p p p
t t t

ρ ψ ψ

ψ ψ ψ ψ ψ

− =

∂ ∂ ∂   = + +   ∂ ∂ ∂   

∑
∑ ∑ ∑


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Substituting first (i) and (ii), then (iii), we arrive at 

 

*

*

ˆ ˆ

ˆ ˆ

i i i i i i i i i

i i i

i i i

i

i p H p H p
t t

H H p
t

ρ ψ ψ ψ ψ ψ ψ

ρ ρ ψ ψ

∂ ∂ − = − + +  ∂ ∂ 

∂ = − + +  ∂ 

∑ ∑ ∑
∑


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Recognizing that the Hamiltonian, like all quantum mechanical operators, must be 

Hermitian, and therefore that *ˆ ˆH H= , we can write it in the more compact commutator notation: 

 ˆ , i i i

i

i H p
t t
ρ ρ ψ ψ∂ ∂  − = +   ∂ ∂ ∑



 55 

Excluding the summation term at the right, this is the canonical form of the Liouville-von 

Neumann equation.  The rightmost term is a thermodynamic term that expresses the change in 

populations of the various individual states over time.  We know from statistical thermodynamics 

that the highest entropy occurs when the members of any energy level are evenly distributed over 

the available states.  Therefore, the configuration will drift in that direction.  This is the 

mathematical origin of the dephasing phenomenon.  Because there are an infinite number of 

possible states (or practically infinite as far as computation is concerned) we have no method to 

deal with this term, we instead resort to the phenomenological models mentioned in this paper. 
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APPENDIX B 

THIRD-ORDER RESPONSE FUNCTIONS 

 ( ) 01 1 01 3 3 21 2 2 1 // /4
1 1 2 3 01, , i t i t t Tt T t TR t t t i e e e e eω ωµ + − −− −∝  56 

 ( ) 01 1 01 3 3 21 2 2 1 // /4
2 1 2 3 01, , i t i t t Tt T t TR t t t i e e e e eω ωµ + − −− −∝  57 

 ( )
( ) ( )01 12

1 301 1 02 32 2 1 2/ //2 2
3 1 2 3 01 12, , t T t Ti t i tt TR t t t i e e e e eω ωµ µ − −+ −−∝ −  58  

 ( ) 01 1 01 3 3 21 2 2 1 // /4
4 1 2 3 01, , i t i t t Tt T t TR t t t i e e e e eω ωµ − − −− −∝  59 

 ( ) 01 1 01 3 3 21 2 2 1 // /4
5 1 2 3 01, , i t i t t Tt T t TR t t t i e e e e eω ωµ − − −− −∝  60 

 ( )
( ) ( )01 12

1 301 1 02 32 2 1 2/ //2 2
6 1 2 3 01 12, , t T t Ti t i tt TR t t t i e e e e eω ωµ µ − −− −−∝ −  61 
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APPENDIX C 

FEYNMAN DIAGRAM RULES 

1. Time runs from the bottom to the top. 

2. The time evolution must end at a population state.  In linear spectroscopy, this will be the 

ground state 0 0 , but in nonlinear spectroscopy may be another population state.  

Typically, evolutions begin at the ground state, but this is not a requirement, and that 

initial state is sometimes omitted. 

3. Interactions with the field are indicated by arrows.  The direction of the arrow indicates 

the time propagation of the wave and the side on which it appears indicates action on the 

bra or ket.  More explicitly, and arrow pointing to the right indicates a wave of the form 

i t ikte ω φ− + +


and an arrow pointing to the left indicates a wave of the form i t ikte ω φ+ − +


. 

4. The emitted field is shown as a dashed arrow. 

5. By convention, complex conjugates are not drawn, as they contain no additional 

information.  By the same convention, the one is drawn that shows the emitted field at the 

top left. 
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6. Each diagram has a sign ( 1)n− , where n  is the number of arrows on the right.  This sign 

derives from the commutators expansion discussed in the text.  The emitted field arrow is 

never counted, as it does not derive from the commutators. 

7. An arrow pointing in toward the system represents an increase in the eigenstate of the bra 

or ket, and an arrow point out represents a decrease.  This is consistent with the 

exclusions of the rotating wave approximation. 
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APPENDIX D 

THE FOURIER TRANSFORM 

D.1 GENERAL INFORMATION 

Fourier transforms are widely used in communications theory and engineering to 

transform signals back and forth between time and frequency domains.  In more general terms, it 

converts a function from a set of units to the corresponding function in reciprocal units.  In 

spectroscopy, Fourier transforms of the exponential and Gaussian functions are particularly 

interesting. 

D.2 RELEVANT EXAMPLES 

D.2.1 Exponential 

The Fourier transform of an incomplete exponential is given by 

 02 0
2 2

0

1t
t e πω ω

π ω ω
−  =  −

F  62 
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The parameter 0ω specifies the decay rate of the exponential, the higher 0ω , the faster the 

decay.  After the transform, 0ω  appears 

in both the numerator and the 

denominator, but is squared in the 

latter.  Therefore, an increasing 0ω

causes the denominator to grow faster, leading to a narrower pulse. 

Note that this transform is not for a complete exponential, because that one doesn’t 

behave well.  Specifically, this is for right-handed exponential (Figure 34: Right-handed 

exponential function), which is exactly the exponential envelope that interests us in 2D IR 

spectroscopy. 

Interestingly, it is possible to take the Fourier transform of the entire exponential: 

 ( )02
02 2t

t e iπω πδ ω ω−  = + F
 63 

This case yields a Dirac delta function, which is intuitive, as the Dirac delta is the 

limiting case for an increasingly narrow pulse. 

D.2.2 Gaussian 

The Fourier transform of a Gaussian is given by 

 

 
2 2 2

22 21 1
2 2

t

t e e
ω σ

σ

σ π π

− − 
= 

  
F . 64 

Figure 34: Right-handed exponential function 
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Note that the Fourier transform is still a Gaussian, but that the standard deviation σ  translates 

from the denominator to the numerator.  Therefore a wide Gaussian transforms to a narrow one 

and vice-versa. 
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APPENDIX E 

CODE RELATED TO EDTA COUPLING PARAMETERS 

E.1.1 MATLAB code for calculating coupling constants1 

 

1 Courtesy of Sean Garrett-Roe 
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E.1.2 Mathematica code for validating coupling constants 
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