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Given that a high frequency (HF) word advantage exists in lexical processing, a question arises 

about the locus of that frequency effect. This locus may be important for AAC research and 

clinical practice to provide an empirical rationale for graphic symbol-based AAC interfaces.  

This study’s first specific aim was to identify whether word frequency affects lexical 

selection using a picture-word interference (PWI) task. Fifty healthy, monolingual, Native 

American English speakers, between 40 and 64 years of age, participated in the study. Response 

times (RT) for semantic, phonological, and mixed distractor conditions served as the dependent 

variable during a PWI task. Data were analyzed using generalized linear mixed 

models (GLMMs). 

In all distractor conditions, participants named HF pictures significantly faster than low 

frequency (LF) pictures. This result revealed that the word frequency effect occurs not only with 

phonological encoding, but also with lexical selection and interactive processing 

between these two steps. This finding is at odds with the Discrete Two Stage (DTS) model that 

states that word frequency selectively affects  phonological encoding.  

The secondary aim was to determine whether the target item’s frequency interacts with 

the distractor item’s frequency. HF distractor words had a stronger interference effect on the 

WORD FREQUENCY EFFECTS ON LEXICAL SELECTION: EVIDENCE FROM A 

PICTURE–WORD INTERFERENCE (PWI) TASK 

Sangeun Shin, PhD 

University of Pittsburgh, 2016

 



 v 

retrieval of target words than LF distractor words, resulting in a more delayed RT when naming 

the target pictures in semantic and mixed distractor conditions. However, an interaction effect 

was observed between target word frequency and distractor frequency only in the mixed 

distractor condition.  

A third aim was to determine whether RT analyses provide a more sensitive measurement 

than error type analysis for healthy adults. No significant word-frequency effect or 

interaction was found for error type. A high rate of correct responses and the characteristics of 

the errors as the end product of inefficient word retrieval are considered as main reasons for 

this negative result. This finding supports the hypothesis that RT is a more sensitive 

measure than error type for indexing the inefficiencies that affect naming behavior in the PWI 

task for healthy adults. 
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1.0 INTRODUCTION 

A word retrieval deficit is one of the prominent symptoms of the disorder of aphasia (Goodglass 

& Wingfield, 1997; Laine & Martin, 2006; Raymer, 2005). For people with aphasia (PWA) who 

are suffering from chronic and severe language disorders, augmentative and alternative 

communication (AAC) technologies commonly are recommended in order to ameliorate the 

impact of the impairment and increase the effectiveness of communication in daily activity and 

social participation (Beukelman, Ball, & Fager, 2008; Fried-Oken & Granlund, 2012; Worrall, 

Rose, Howe, & McKenna, 2007). To assist many PWA’s selection of words, graphic symbol-

based systems are provided (Fox & Fried-Oken, 1996; Garrett, Beukelman, & Low-Morrow, 

1989; Steele, Weinrich, Wertz, Kleczewska, & Carlson, 1989). 

Despite the variety of graphic symbol-based AAC technologies available, AAC research 

has not explored the relatively preserved word retrieval ability for the high frequency (HF) words 

of PWA. Studies have reported that PWA showed higher performance on HF word retrieval 

despite their damaged retrieval process (e.g., Kittredge, Dell, Verkuilen, & Schwartz, 2008; 

Knobel, Finkbeiner, & Caramazza, 2008), which was similar to the performance of non-aphasic 

speakers (e.g., Jescheniak & Levelt, 1994; Navarrete, Basagni, Alario, & Costa, 2006). That HF 

words are produced faster and more accurately than low frequency (LF) words seems to support 

the notion that exploiting PWA’s less impaired word retrieval for HF words could be used to 

improve PWA’s AAC use rather than bypassing the function. 
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In order to determine whether the advantage for HF words will transfer to an AAC 

interface, understanding the locus where the word frequency effect occurs during lexical retrieval 

processing is essential. Since vocabulary on an AAC display is represented as graphic symbols, 

the approach is grounded in semantic representations. With the information about the locus of 

the word frequency effect, PWA’s relatively less impaired lexical retrieval abilities for HF words 

can be predicted and used to support vocabulary selection for the AAC user interface. 

However, an ongoing debate about the locus of frequency effect exists. The established 

view is that word frequency only influences the phonological encoding step, not the lexical 

selection step (Jescheniak & Levelt, 1994). On the contrary, the more recent view proposes that 

word frequency influences both phonological encoding and lexical selection in healthy adults 

(e.g., Caramazza, Costa, Miozzo, & Bi, 2001; Cuetos, Bonin, Alameda, & Caramazza, 2010; 

Gahl, 2008; Navarrete et al., 2006) and PWA (e.g., Kittredge et al., 2008; Knobel et al., 2008). 

Each of the viewpoints stemmed from the Discrete Two-Step (DTS) model (e.g., Levelt, 1989; 

Levelt, 1992) and the Interactive-Activation (IA) model (e.g., Dell & O’Seaghdha, 1991, 1992; 

Dell, 1986) respectively. Both models shared the notion that lexical selection and phonological 

encoding are distinct, serial ordered steps. However, DTS models argue that the steps are 

separate modules, while IA models propose that retrieval processing is achieved through bi-

directional spreading of activation between the two representation levels. Thus, IA proposes that 

semantic information can affect phonological retrieval and phonological information can 

influence word retrieval.  

Although some studies showed the word frequency effect on lexical selection for healthy 

adults (e.g., Caramazza et al., 2001; Cuetos et al., 2010; Jescheniak & Levelt, 1994; Navarrete et 

al., 2006), no study designed an experiment for examining the effect on whole lexical retrieval 
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process including lexical selection, phonological encoding, and their interactive stage. This 

limitation makes it hard to extend the traditional view of the effect on phonological encoding to 

the effect on the higher step.  

Another limitation of the previous studies involves the pathway of the effect. Few studies 

provided evidence on this question with one exception. Based on studies of error analysis for 

PWA, Kittredge et al. (2008) hypothesized that the effect on lexical selection might be due to the 

transmission of activated phonological nodes to the semantic representation level. However, an 

investigation focusing on mixed errors, that play a critical role in support of interactivity, was 

absent in their study. Thus, the evidence is inconclusive as to whether this indirect effect 

influences semantic encoding. If there is an indirect route as well as a direct route for lexical 

selection, a larger HF word advantage can be expected for PWA who mainly depend on graphic 

symbols due to concurrent impairment in phonological encoding.  

Since the word frequency effect is closely related to the spread of activation as a function 

of time (Dell, 1986), using a sensitive measurement is important to examine the phenomenon. 

Some word frequency studies used reaction time to index naming homophones in healthy adults 

(e.g., Caramazza et al., 2001; Cuetos et al., 2010; Jescheniak & Levelt, 1994)(Caramazza et al., 

2001; Cuetos et al., 2010; Jescheniak & Levelt, 1994). However, in the Kittredge et al. (2008) 

study, only accuracy was measured, which limits identification of the influence of word 

frequency.  

Overcoming the limitations of previous studies, the current study aimed to identify the 

locus of the word frequency effect in order to provide an empirical justification for the use of a 

symbol-based AAC interface for PWA. For this purpose, the picture-word interference (PWI) 

paradigm was used with healthy adults to examine the effect of each retrieval process by 
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including semantic, phonological, and mixed (semantically and phonologically related) 

distractors during a picture naming task. Findings of the current study are expected to extend the 

understanding of the nature of the word frequency effect for PWA based on the literature that 

both healthy adults and PWA share the same mechanisms of lexical access (Dell, Schwartz, 

Martin, Saffran, & Gagnon, 1997; Rapp & Goldrick, 2000). In order to increase the sensitivity of 

measurement, both response time (RT) and error frequency were analyzed.  

The specific aims were to investigate: 1) whether word frequency affects lexical selection 

during the PWI task; 2) whether the target item’s frequency interacts with the distractors 

frequency during lexical selection; and 3) whether a difference exists between RT and response 

type when examining the frequency effect for healthy adults. In the following section, AAC 

technologies for PWA are compared to identify possible user interfaces that would enable PWA 

to fully use their advantage for HF words. Then, the characteristics of aphasia, types of naming 

errors, and the underlying mechanism are discussed under the framework of the two influential 

word retrieval models: DTS and the IA models. The focus will then shift to a debate on the locus 

of the frequency effect. Finally, studies related to the PWI task are reviewed. 
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2.0 BACKGROUND AND SIGNIFICANCE 

2.1 BACKGROUND 

2.1.1 AAC Treatment for People with Aphasia (PWA) 

2.1.1.1 Primary, secondary, and tertiary features of AAC systems 

The Matching persons and AAC Technology framework (Hill & Scherer, 2008; Hill, 2010) as 

shown in Figure 1, offers a principled approach to testing, evaluating, and selecting an AAC 

system. AAC components or features are organized or categorized as primary, secondary, and 

tertiary features of the technology or device under consideration. Hill (2010) emphasized that in 

order to design effective AAC systems and interventions, primary features should be considered 

first, thus giving importance to the language elements of a system. 

Primary features relate to the system’s functions to represent vocabulary and generate 

spontaneous, novel utterances. Language representation methods (LRMs) are the ways to 

represent words or messages on AAC systems by using a set of symbols or lexemes. Depending 

on the type of graphics, LRMs can be grouped into three types: single-meaning pictures, multi-

meaning icons (semantic compaction), and alphabet-based methods. Single and multi-meaning 

may be photos, line drawings, color graphics, or animation; thus, literacy skills are not 

necessarily required. Since these symbols represent semantic features (e.g., RED, FRUIT, 
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ROUND) of a target word (e.g., “apple”), lexical selection in the mind can be carried out in this 

type of AAC interface. To be specific, single-meaning pictures employ use of graphic symbols to 

represent one word or message. In other words, each word in this language method is represented 

by a single symbol. Thus, the most concrete and transparent symbols are commonly depicted by 

AAC developers for accurate identification of the corresponding target words. For this reason, 

many pages of symbols need to be organized to represent a large vocabulary, resulting in a 

demand of page navigation for selecting a target word. This representation method tends to have 

symbols organized in a semantically hierarchical structure or key words associated with a topic 

or activity (e.g., a target word ‘apple’ is under a symbol of ‘house’  ‘kitchen’  ‘refrigerator’ 

 ‘fruit’ in Lingraphica). AAC systems that are dedicated to PWA tend to be based on single-

meaning pictures (Aftonomous, Steele, & Wertz, 1997; Shelton, Weinrich, McCall, & Cox, 

1996; Steele et al., 1989; van de Sandt-Koenderman, Wiegers, & Hardy, 2005). 

Multi-meaning icons or semantic compaction also uses symbols; but unlike single-

meaning pictures, symbols on a single page can be used in a prescribed sequence to access a 

large vocabulary and each symbol can represent multiple words by using the metaphors that 

several symbols convey. For example, if a symbol of “apple” is sequenced with a symbol of 

“action”, a verb “eat” can be selected. When “apple” is followed by a symbol that represents an 

“adjective”, a word “hungry” can be selected. This LRM avoids the need for a large number of 

symbols to represent a large vocabulary and can thus avoid searching through several screen 

displays to select or retrieve words. However, the symbols sequences must be taught. The 

interface of such a system is designed to generate HF words as much as possible with a limited 

number of symbols.  
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Figure 1. Augmentative and alternative communication (AAC) primary, secondary, and tertiary components during 

the Matching Persons and Technology (MPT) process (from Hill, 2010, p.45). 
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Communication can be achieved by using alphabet-based methods that use orthography 

(letter-by-letter) and key stroke saving techniques such as using a keyboard or alphabet array. In 

particular, a high level of spelling is required for a user to formulate messages. Thus, the 

majority of PWA are not expected to benefit from this type of methods due to their impaired 

spelling (van de Sandt-Koenderman, 2004). A word prediction feature may be available with 

spelling but still good literacy skills are required. Word prediction presents the candidate with 

possible word choices based on selected letters. Predicted words may be grammatically related 

HF words, commonly used HF words, or personal words added to the dictionary once a user 

types in an initial letter of a target word.  

Word frequency has received a lot of attention from AAC researchers for designing 

systems that optimize vocabulary selection and organization (e.g., Balandin & Iacono, 1999; 

Beukelman, Yorkston, Poblete, & Naranjo, 1984; Beukelman, Jones, & Rowan, 1989; Hill, 

2001; Stuart, Beukelman, & King, 1997; Trembath, Balandin, & Togher, 2007). Some AAC 

literature uses the term “core” vocabulary to indicate highly-used words in daily communication, 

and the term “extended” vocabulary to indicate less frequently used words. The definition of the 

terms remains debatable, but is outside the scope of this paper. Studies show that HF words, 

consisting of about 450 to 500 words, make up approximately 80% to 85% of the words used in 

language samples, regardless of the conversational topic in the samples (Hill, 2010). Along with 

findings of high speed and accuracy of HF word retrieval by researchers in psycholinguistics 

(Alario, Costa, & Caramazza, 2002; Cuetos, Aguado, Izura, & Ellis, 2002; Feyereisen, Van der 

Borght, & Seron, 1988; Nickels & Howard, 1994; Oldfield & Wingfield, 1965; Schwartz, 

Wilshire, Gagnon, & Polansky, 2004; Wilshire, 2002), the HF advantage needs to be considered 

when developing AAC interventions. However, HF words are not necessarily organized well on 
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currently marketed AAC systems despite the fact that the HF words used by speakers are 

consistent across cohorts and are a relatively small pool of words (e.g., Balandin & Iacono, 1998; 

Beukelman, McGinnis, & Morrow, 1991; Hill, 2010; Mein & O’Connor, 1960).  

 The third primary feature to consider is the methods of utterance generation that include 

of spontaneous, novel utterance generation (SNUG) and pre-stored messages. SNUG reflects the 

natural language process of being able to say exactly what you intend to say. Thus, this utterance 

generation tool plays a role of human being’s phonological encoding that is required to produce 

selected lexical nodes in the mind. Accordingly, for AAC speakers who rely on graphic symbol-

based interface, phonological encoding skills are not necessary. With only appropriate lexical 

selection through the AAC graphic symbols, a target word can be generated and integrated with 

other selected words to produce an utterance. Pre-stored messages are stored in advance based on 

what you think you want to say and are later retrieved. Thus, in an expected communication 

situation, for example expressing greetings or making an introduction at a meeting, pre-stored 

messages can be used effectively and efficiently. However, users easily encounter challenges in 

expressing exactly what they want to say or replying to unpredictable questions using pre-stored 

content (van de Sandt-Koenderman, 2004). Thus, the interactive nature of communication and 

social participation require the flexibility of SNUG or access to individual words to formulate a 

response.  

The secondary components focus on the AAC hardware and access technology that 

consist of the user interface, control interface or selection methods, and the outputs. The user 

interface refers to the display where interaction between the user and the AAC system occurs. 

Today’s user interfaces for PWA typically are a visual touch screen with graphic symbols or 

pictures used to represent words or message for the user to select. If a symbol’s location on the 
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system does not change and/or navigation among a variety of displays is not required to locate 

words/symbols, the degree to which users can become more automatic in word selection 

increases. However, most of AAC systems for PWA use single-meaning pictures with a limited 

number of locations, but a large number of words. Thus, navigation is inevitable and 

automaticity is difficult to achieve. For example, a small vocabulary of only 200 words would 

require 10 pages using a 20-location display.  

Lastly, the tertiary components include issues of peripheral and integrated features, 

training and support, and tele-rehabilitation. These are critical components to achieving effective 

communication using an AAC system, since without training and support expected patient and 

family outcomes will not be reached. These issues are beyond the scope of this research study, 

thus, for further discussion, see Hill (2010). 

2.1.1.2 AAC technologies for PWA and their limitations 

Since the 1960s, graphic pictures and symbols have been used in AAC interventions from 

manual communication boards to today’s computer-based technology (Jacobs, R., Ogletree, & 

Pierce, 2004; Kraat, 1990; Wallace & Bradshaw, 2011). Many studies reported the effect of 

symbol-based AAC interventions on PWA’s communication (e.g., Aftonomous et al., 1997; Fox 

& Fried-Oken, 1996; Garrett et al., 1989; Koul & Harding, 1998; Steele et al., 1989; Weinrich et 

al., 1989). Symbol-based user-interfaces are occasionally recommended to PWA, because of the 

perceived difficulties with reading and spelling that occur with aphasia (Nicholas, Sinotte, & 

Helm-Estabrooks, 2011). However, despite a variety of AAC technology available, AAC 

treatment effects are still questionable (Jacobs et al., 2004). Some AAC programs designed 

specifically for PWA are described as follows with their limitations.  
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Portable Communication Assistant for people with Dysphasia (PCAD
TM

) and the revised 

version of the PCAD, TouchSpeak (available at http://www.touchspeak.nl) have been developed 

especially for PWA (van de Sandt-Koenderman, 2004; van de Sandt-Koenderman et al., 2005; 

van de Sandt-Koenderman, Wiegers, Wielaert, Duivenvoorden, & Ribbers, 2007). This handheld 

device incorporates symbols, pictures, and text. Speech output is produced by using either 

digitized speech or synthesized speech. One of the emphases of the TouchSpeak is that this 

system allows the users to fill the system with the vocabulary that is personally relevant to each 

individual. Since photos, pictures, symbols, words, and sentences are organized in a hierarchical 

manner, users need to generate messages by navigating the hierarchical system. Individualization 

of AAC vocabulary and hierarchical vocabulary organization can give an impression of an 

effective and systematic AAC interface. However, these approaches are not necessarily based on 

theoretical and empirical evidence to support their effectiveness in daily communication settings. 

Further studies are required to test their effectiveness. In addition, there has been no 

consideration of the superior HF word retrieval in PWA in the process of AAC vocabulary 

selection and organization.  

Visual Scene Displays (VSDs) are designed to complement the residual cognitive and 

linguistic ability of PWA by utilizing their intact episodic memory (Dietz, McKelvey, & 

Beukelman, 2006; Dietz, Thiessen, Griffith, & Peterson, 2013) (see Figure 2). Images such as 

photographs or pictures that have personal relevance to a PWA are incorporated on the user 

interface. This approach is believed to provide a context for a user and to give his/her 

communication partner(s) information to support communicative interaction (Beukelman, Hux, 

Dietz, McKelvey, & Weissling, 2015; McKelvey, Hux, Beukelman, & Dietz, 2008). However, 

use of VSDs avoids addressing the primary components of an AAC system by failing to consider 

http://www.touchspeak.nl/
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the LRMs, HF and LF vocabulary and availability of SNUG. Rather VSD focuses on 

manipulating the user interface of the technology. 

 

Figure 2. Display of Visual Scene Display (VSD) (from Dietz et al., 2013).  

Note: Six pre-stored sentences relevant to the picture are shown. Other pictures and their corresponding sentences 

can be extracted by navigating the pictures.  

 

Several application programs (Sutton, 2012) similar to VSDs are available online for 

PWA. Since personal pictures are used primarily, pre-stored utterances become context-

governed. Current commercial applications that provide customizable visual scenes include 

Scene Speak (available at http://www.goodkarmaapplications.com) and Scene & Heard 

(available at http://www.tboxapps.com). Digital voice and popup text on the screen can be used 

for meeting functional communication goals. Pictello (available at 

http://www.assistiveware.com) provides a photo album that can be customized to help PWA 

share their experiences and stories with others by adding text and recorded sounds.  

http://www.goodkarmaapplications.com/
http://www.tboxapps.com/
http://www.assistiveware.com/
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Applications such as VSDs, Scene Speak, Scene & Heard, and Pictello are so context-

governed that they seem to be an effective communication tool by delivering personalized 

messages and life-experience content to a communication partner. Conversely, when the 

communication topics are unplanned, PWA face challenges due to the difficulties in finding an 

appropriate word or message on the system. In addition, most of the programs are based on pre-

stored messages, so, interactive word-by-word formulation of messages fitting the situation, 

topic or preferences may be limited. Furthermore, this pre-stored approach often requires reading 

skills if one picture contains multiple written messages as in VSDs (see the “speak button” in 

Figure 2). These systems do not account for word frequency in their vocabulary representation 

since the unit of the utterance tends to be a phrase, a sentence, or even longer discourse to 

describe the picture. In addition, this approach fails to address the underlying language disorders 

of PWA.  

Some less-context governed tools are applicable to many communication situations. 

Computerized Visual Communication (C-VIC) (Weinrich et al., 1993) allows a user to select 

picture symbols to form sentences. The spoken output is generated via SNUG or a recorded 

voice. The efficacy of the program has been reported by several studies (Aftonomous et al., 

1997; Shelton et al., 1996; R. D. Steele, Kleczewska, Carlson, & Weinrich, 1992; M Weinrich, 

Shelton, McCall, & Cox, 1997; M. Weinrich et al., 1989, 1993; Michael Weinrich, McCall, & 

Weber, 1995). The sophisticated version of C-VIC is Lingraphica (The Aphasia Company
TM

, 

Princeton, NJ) (available at http://www.aphasia.com). Some HF words are located on the main 

page but most words are organized in a semantic hierarchical order with many visual cues.  
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Other tablet based programs available as downloads from the internet such as 

Proloquo2Go (available at http://www.assistiveware.com) and TalkTablet (available at 

http://www.talktablet.com) also use single-meaning symbols to represent words. Thus, PWA can 

create messages by combining words or expressions to generate utterances. A few highly re-

usable words such pronouns as “I” and “your” and verbs as “go,” “have,” and “see” are located 

in the display for easy access. Although a few HF words are available on a display for ready 

access, a PWA may still be required to search through displays to find a word in order to say 

what they want to say. Lingraphica, Proloquo2Go and TalkTablet were not designed to enable 

PWA to fully use their superior HF word retrieval. 

Taken together, single-meaning pictures organized on the user interface providing the 

function of SNUG seem to be a more effective approach for PWA than the pre-stored message 

approach to accomplish interactive communication in real world conversational turn-taking. 

However, among the software programs that support SNUG, the word frequency issue is still in 

question for several reasons. Firstly, a trend in clinical service in the U.S. limiting AAC 

vocabulary/messages to addressing the user’s basic needs or medical necessity to meet the goal 

of functional communication is pervasive (Hill, 2010). Low frequency words seem to be 

emphasized in AAC systems due to high symbol transparency and perceptions of ease of use. In 

addition, low frequency word availability can purport individualization or customization of 

selected vocabulary without any theoretical and empirical evidence to support the clinical 

decision. However, the most serious reason would be the lack of understanding of the nature of 

aphasia in the area of AAC intervention and industry development. The characteristics of PWA’s 

word retrieval deficit, the mechanism of the word retrieval process, and the robustness of the 

http://www.assistiveware.com/
http://www.talktablet.com/
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word frequency effect on word retrieval have not been targeted in AAC research. In the 

following subsections, these topics are discussed in detail. 

2.1.2 Aphasia and Error Patterns in Naming 

2.1.2.1 Characteristics of word retrieval deficits in aphasia 

McNeil and Pratt’s definition (2001) provides some insight into the general mechanisms causing 

the defining characteristics of aphasia: 

Aphasia is a multimodality physiological inefficiency with, greater than loss of, 

verbal symbolic manipulations (e.g. association, storage, retrieval, and rule 

implementation). In isolated form, it is caused by focal damage to cortical 

and/or subcortical structures of the hemisphere(s) dominant for such symbolic 

manipulations. It is affected by and affects other physiological information 

processes to the degree that they support, interact with, or are supported by the 

symbolic deficits. 

This definition highlights that aphasia is a processing disorder of language, not a disorder 

of linguistic knowledge (McNeil & Kimelman, 2001). In other words, there is no absolute loss of 

function. Instead, “inefficiency” across multiple language modalities is regarded as a cause of the 

deficits, which can selectively affect verbal symbolic manipulations (e.g. association, storage, 

retrieval, and rule implementation). For example, a patient with anomic deficits can be intact in 

identifying an object by pointing to it when failing to retrieve the name (Goodglass & Wingfield, 

1997). Thus, word-finding difficulties in PWA are clearly distinguished from people with 

Alzheimer’s disease whose failures are attributed to a loss of lexicon or profoundly inaccessible 
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from semantic memory. Rather the problem for a person with aphasia is inefficient access to the 

target lexicon, but not that the target lexicon is erased or profoundly inaccessible from semantic 

memory (Chertkow & Bub, 1990). 

2.1.2.2 Two steps of lexical access  

Naturally occurring errors in normal speech and various error patterns in PWA have long been 

interpreted as a window into the mechanisms of lexical access (Blumstein, 1973; Dell et al., 

1997; Goodglass & Wingfield, 1997; Laine & Martin, 2006; Lecours & Lhermitte, 1969). 

Impairments of lexical access is separable into two distinct steps (Harley, 1984; Jescheniak & 

Levelt, 1994; Kittredge et al., 2008): lexical selection and phonological encoding. 

There are many terms to indicate the first step, lexical selection (Foygel & Dell, 2000; 

Levelt, 1992), which is synonymous with word retrieval (Schwartz, Dell, Martin, Gahl, & Sobel, 

2006), lemma access (Levelt, Roelofs, & Meyer, 1999), lemma retrieval (Indefrey & Levelt, 

2004), or L-retrieval (Rapp & Goldrick, 2000). Here lemma refers to holistic lexical 

representation with which grammatical information and syntactic frames are associated (Bock & 

Levelt, 1994; Dell & O’Seaghdha, 1991, 1992; Dell et al., 1997; Dell, 1986; Levelt et al., 1999; 

Levelt, 1989; Levelt, Schriefers, Vorberg, & Meyer, 1991). Thus, if some lexical factors have 

influence on the subject’s performance in the grammar-relevant task, it may be inferred that the 

locus of the particular effect is at the lexical selection step, where the syntactic information is 

accessed and grammatical features are encoded (Jescheniak & Levelt, 1994; Navarrete et al., 

2006). During lexical selection, semantic features of an intended word are activated at the 

semantic representation level and spread throughout the network, so that the lexical 

representation with the highest activation level is selected.  
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The next step is phonological encoding (Foygel & Dell, 2000; Levelt, 1992), which is 

synonymous with word form, lexeme retrieval (e.g., Butterworth, 1989; Dell, 1986; Fromkin, 

1971; Garrett, 1975, 1976; Kempen & Huijbers, 1983; Levelt, 1989) or phonological retrieval 

(Kittredge et al., 2008; Schwartz et al., 2006). Phonological encoding starts with activation of the 

word unit that spreads to the phonological representation level through the network to select the 

highest activated phonemes. Note that some articles regard phonological encoding not as the 

second step of lexical access lexical but as sublexical access (e.g., Schwartz et al., 2006) or under 

a different concept of two steps (i.e., lexical and sublexical steps). However, the phonological 

errors that have word forms are categorized as lexical errors. Because most word frequency 

effect studies treated these errors as a phonological encoding step during lexical access, the two 

step assumption that is derived from lexical-sublexical levels will not be explored further in the 

current work.  

Errors can occur during either step, because non-target units can become highly active at 

semantic and/or phonological representation levels if connected to activated target units. If a 

breakdown occurs during lexical selection, it may result in semantic errors. Semantic errors have 

the form of word substitution when two words share semantic features (e.g., elbow  “knee”, 

green bean  “asparagus”). If a breakdown occurs during phonological encoding, errors that are 

phonologically related to the target may be produced (e.g., e.g., ankle  “apple”, train  

“tree”). Mixed errors that share both semantic and phonological features of the target word (e.g., 

snail  “snake”, penguin  “pelican”) is another error type. These errors are conceptualized as 

an interaction between the two steps serving as primary evidence to support the notion that these 

two levels or stages of word prediction interact directly with each other. This is at the core of the 

interactive activation model (Dell et al., 1997; Goodglass & Wingfield, 1997; Laine & Martin, 
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2006). If a word unit that does not share semantic or phonological features with the target word 

is highly activated, an unrelated error may occur (e.g., banana  drum).  

There are other error types such as non-word errors that share phonemes with the target 

word (ghost  /goθ/); or neologisms, which are combinations of phonemes that differs greatly 

from the target sound (cane  /tɅ/) (Dell et al., 1997; Miller & Ellis, 1987; Schwartz et al., 

2006). These errors can be categorized as sublexical errors. Unlike lexical errors which result 

from the selection of an incorrect word during lexical access, sublexical errors occur when non-

target phonemes are selected, and those errors are more likely to be non-words. The existence of 

lexical-syntactic information supports the distinction between lexical and sublexical errors 

(Garrett, 1975, 1976). That is, lexical errors involve words of the same grammatical class. Thus, 

nouns replace nouns and verbs replace verbs, but not other syntactic category words (e.g., “Does 

it HEAR different?” to the target utterance of “Does it SOUND different?”). Sound exchanges 

tend to occur in words of different grammatical classes. For example, an error may be shown as 

“BLACK BLOX” for “BLACK BOX”), where a consonant from an adjective moves to a 

different grammatical category (noun). It indicates that word exchanges are constrained by 

grammatical features, which are a kind of lexical selection error, whereas sound exchanges are 

constrained by only phonological properties, not semantic or syntactic properties, which are a 

type of sub-lexical error. In the current study, these sub-lexical errors will not be dealt with in 

detail because the main interest lies in the word frequency effect on lexical retrieval processing.  

Not only the evidence of errors, but also, the time course of activation for lexical 

representations provides empirical support for the existence of two steps in lexical retrieval. 

Schriefers et al. (1990) tested the serial processing to prove that access to a word involves an 

early step of exclusively semantic activation and a later step of exclusively phonological 
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activation. They used a picture-word interference paradigm in which interfering concrete nouns 

were presented auditorily. Semantically related words and phonologically related words were 

presented to healthy adults during picture naming by manipulating the interval between picture 

and distractor onset (stimulus onset asynchrony [SOA]). The study revealed an inhibition effect 

with delayed RT compared to unrelated words for the semantically related words on picture 

naming latencies at an early SOA (- 150 ms). A facilitation effect was also seen, with reduced 

RT compared to unrelated words for phonologically related words at later SOAs (0 ms, + 150 

ms). They concluded that there is a step of word retrieval where only its meaning is activated and 

that it is followed by a step where only its form is activated. 

2.1.3 Word Retrieval Models 

Several word retrieval models were proposed in the 1970s and 1980s. Those models are often 

classified as functional or connectionist models (Laine & Martin, 2006). Although they share a 

common assumption about the overall functional architecture of the two steps of lexical access, 

there is a discrepancy in the temporal coordination and the possible interaction between these 

two steps (e.g., Dell & O’Seaghdha, 1991, 1992; Dell, 1986; Levelt et al., 1991; Levelt, 1992; 

Schriefers, Meyer, & Levelt, 1990). 

Many functional models (e.g., Butterworth, 1989; Fromkin, 1971; Garrett, 1975, 1976; 

Levelt, 1989) represent lexical and phonological components of a word as “boxes,” which are 

retrieved independently of each other. Since there is no interaction between the two boxes, they 

argue that activation is transmitted from the preceding level to the next level, which is indicated 

by “arrows.” Accordingly, functional models are called the “box and arrow” models. 

Alternatively, connectionist models have been more interested in the information flow between 
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the “boxes” (Laine & Martin, 2006) than in the “box” itself. They argue that there is an 

interaction between the steps by providing evidence of the higher-than-chance occurrence of 

mixed errors and phonological coactivation of semantic competitors (e.g., Dell & O’Seaghdha, 

1992; Dell, 1986; Harley, 1984; Martin, Dell, Saffran, & Schwartz, 1994; Plaut, 1996).  

Among the many proposed functional and connectionist models, the focus for this 

research is on two currently influential models of the discrete steps (e.g., Levelt et al., 1999; 

Levelt et al., 1991; Levelt, 1992) and their interactivity (Dell & O’Seaghdha, 1991, 1992; Dell, 

1986). These two models provide different perspectives on mixed errors and phonological 

coactivation of semantic competitors that can be contrasted to account for different findings 

regarding the locus of the word frequency effect.  

2.1.3.1 Discrete two steps (DTS) model  

Levelt (1989) proposed a blueprint for the speaker, which consists of a conceptualizer, a 

formulator, an articulator in a sequential order (see Figure 3). During the conceptualizer’s 

processing, preverbal messages (i.e., conceptual information) are generated. Then, a lexical node 

matched with the preverbal message is activated and makes its syntax available. Focusing on the 

formulator process, Levelt (1989, 1992) illustrated that at the lexical selection step, grammatical 

encoding takes a message as input and retrieves lexical nodes from the mental lexicon. Then a 

surface structure, a hierarchical organization of syntactic phrases consisting of lemmas (lexical 

representation), is delivered as output. Thus, the appropriate thematic role for all lexical nodes is 

retrieved.  

The second subcomponent of the formulator, the phonological encoder, creates a 

phonetic plan for the selected lexical node. The major source of the information to be accessed 

by the phonological encoder is the lexicon’s information containing its morphology (e.g., two 
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morphemes of a lexicon dangerous: a root danger and a suffix -ous) and phonology (e.g., the 

first of three syllables is dan /deɪn/). Finally, the articulators execute the phonetic plan by giving 

a series of neuromuscular instructions to motor systems such as the lips, jaw, tongue, and 

pharynx. Levelt (1989) claimed that through the connection between the production and the 

comprehension system, self-produced internal and overt speech could be monitored by the 

speaker. 

 

 

Figure 3. “A blueprint for the speaker” (from Levelt, 1989, p.9). 

 

The basic idea about the two discrete and serial steps in Levelt’s model (1989, 1992) has 

been further elaborated in computational approaches in Levelt, Roelofs, and Meyer’s (1999) 

WEAVER ++ model (word-from encoding by activation and verification two plus model). In 

this model, the production of words follows a path from conceptual preparation to lexical 
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selection, morphological encoding, phonological encoding and syllabification, phonetic 

encoding, and ends with articulation steps. Each step produces its own characteristic output 

representation such as lexical concept, lemma, morpheme, phonological word, phonetic gestural 

score (which are executed during articulation), and sound waves respectively (see Figure 4). 

 

Figure 4. “The theory in outline” (from Levelt et al., 1999, p.3). 

 

Levelt et al. (1999) describes three strata of nodes in the word retrieval network: the 

conceptual stratum representing lexical concepts, the lemma stratum representing lemmas and 
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their lexical-syntactic information, and the form stratum representing morphemes, their 

phonemic segments, and syllable nodes as well (see Figure 5). For example, a concept node, 

ESCORT(X, Y), which stands for the meaning of the verb escort, is activated at the conceptual 

stratum. ESCORT(X, Y) is represented with a link between a concept and its superordinates, 

such as IS-TO-ACCOMPANY (X, Y). Here, IS-TO indicates the character of the connection: 

i.e., ESCORT (X, Y) IS-TO-ACCOMPANY(X, Y). The activation at the conceptual stratum 

spreads to the lemma stratum and the lexical node escort becomes activated. It is possible that 

other semantically related lexical nodes are activated at this level. However, Levelt et al. (1999) 

 

 
Figure 5. “Fragment of the lexical network underlying lexical access” (from Levelt et al., 1999, p. 4). 
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argued that the escort node receives the full proportion of ESCORT (X, Y)’s activation and thus 

the most highly activated lexical node of escort is selected. After lexical selection, its syntax 

becomes available for grammatical encoding. For example, the two argument positions (x, y), 

corresponding to the transitive verb escort, are valued. Other features are also valued during the 

grammatical encoding; verbs have features such as number, person, and tense, and nouns have 

number in the English language. Then its activation spreads to the third stratum, where the word-

form stratum of the node escort activates the two morphemes, <escort> and <ing>. The 

segmental properties of these morphemes are “spelled out” as /ə/, /s/, /k/, /ɔ/ (sic /o/), /r/, /t/ for 

<escort> and /I/, /ƞ/ for <ing>. Then, the links between segments and syllable program nodes 

specify possible syllabifications such as /ə/, /skɔr/ (sic /skor/), /tiƞ/.  

DTS’s perspectives on the phonological coactivation and mixed errors through Levelt 

and his colleagues’ time-course experiments (Levelt et al., 1991; Schriefers et al., 1990) are 

crucial to supporting the fundamental features (i.e., the discrete, serial, and no interactive 

information processing) of the DTS models. Levelt and colleagues (1991) conducted a series of 

time-course experiments to determine whether phonological coactivation of semantic 

competitors exists. In their study, healthy adults participated in an acoustic lexical decision task, 

which also involved object naming (the dual naming-lexical decision task) in different SOA 

conditions. Participants named a line drawing as quickly as possible. They were also required to 

perform the lexical decision task with one of the four types of probes acoustically presented 

shortly after the presentation of a picture and before the naming response. The probe word could 

be identical to the picture name (e.g., sheep), semantically related (e.g., goat), phonologically 

related to the target (e.g., sheet), phonologically related to a semantic competitor (e.g., goal), or 

unrelated (e.g., knife).  
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The hypothesis was that during lexical selection, lexical decisions for the semantically 

related probe word should be delayed. Similarly, during the process of phonological encoding, 

lexical decisions for the phonologically related probe word should be delayed. If the semantic 

competitor was phonologically active, lexical decision latencies on the word “goal” should be 

delayed. The results showed that lexical decisions for probes either semantically or 

phonologically related to the target were delayed when the probes were presented shortly after 

picture onset. However, when the probe was phonologically related to a semantic competitor, no 

significant delay in response was found. Levelt and colleagues interpreted these findings as that 

the phonological activation occurred for a single target node only, so semantic competitors were 

activated at the semantic level, but their corresponding phonological forms were not activated. 

According to their logic, the mixed errors, which require the activation of a phonological node 

for the semantic competitors, cannot be explained under this theoretical framework.  

The argument of the non-existence of phonological coactivation is illustrated in Figure 6 

(a), where lexical selection is followed by phonological encoding only for the selected node. 

That is, during the first step, only the target node is selected for the concept among a set of one 

or more meaning-related nodes. During the second step, the selected target node becomes 

phonologically encoded, and then the articulatory plan is executed. Figure 6 (b) shows semantic 

activation during two types of phonological activation. For the first step, activation of the target 

node increases until the moment of selection, but drops to zero as soon as the second step begins 

for the selected node. There is no overlapping between semantic and phonological activation for 

the target node during the first and second steps. On the other hand, the phonological activation 

for the semantic competitor stays at zero. Under this framework, the Levelt (1989, 1992) and the 

Levelt et al. (1999) models posit that phonological encoding begins only after lexical selection.  
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Figure 6. “The discrete two-step theory of the word retrieval process.  

Note: (a) Steps showed that lexical activation and selection of one node is followed by phonological encoding step 

only for the selected node in the prior step. (b) Schematic diagram of the semantic and phonological activation levels 

for the target and other lexical node across the time course. Semantic activation of the target lexical node is 

indicated as [solid line] and the phonological activation level for the selected lexical node is indicated as [dotted 

line] activation. For the phonological activation for the semantic alternatives, they are all marked as [dashed line].)” 

(from Levelt et al., 1991, p. 124).  

 

Regarding the mixed errors, DTS model views that the probability of a mixed error, Pm, 

is predicted as the product of the probability of a semantic error, Ps, multiplied by the probability 

of a phonological error, Pp (i.e., Pm = Ps ×  Pp) because each error type occurs independently at 

different steps without interaction. Thus, it is postulated that the chances of a mixed error’s 

occurrence are few in naturally occurring speech errors (Levelt et al., 1999). The DTS model 

handles these error patterns by adopting the post-lexical editing mechanism proposed by 

Butterworth (1989). The post-lexical editing mechanism uses lexical criteria for filtering outputs 

before the production steps of speech. It is assumed that the editing mechanism recognizes an 

error sensitively when the word error is only semantically related, only phonologically related, or 

non-related to the target word. Thus, if the erroneous word is both semantically and 

phonologically related to the target word, the editor tends to fail to recognize the error during the 

word retrieval. 
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2.1.3.2 Interactive-activation (IA) model  

Like the DTS model, the IA model assumes that two steps are involved in word retrieval 

processing. However, the IA models’ major difference from the DTS models is that bidirectional 

spread of activation between nodes at adjacent levels is allowed. This subsection delineates the 

characteristics and the word retrieval process in the IA models in detail and then discusses the 

phonological coactivation and uses mixed errors as key evidence to support the IA models’ 

perspective on the interactivity.  

Ignoring the articulatory/motor aspect of the IA model, the three levels that are involved 

in the lexical selection and the phonological encoding steps is the focus here (Dell & 

O’Seaghdha, 1991; Foygel & Dell, 2000): semantic layer, lexical layer and phonological layer 

(Figure 7). Dell (1986) argued that the nodes in each layer are connected to the nodes in the 

adjacent layers and their connections have certain weights. Depending on how strongly two 

nodes are connected, the value of their weight is determined. Thus, if the nodes have strong 

connection to each other with high weights, the activation of one node will strongly affect the 

activation of the other node. The transmission of the activation can also run in a forward (to the 

upper) direction or backward (to the lower representation level) direction. For example, an 

activated word cat spreads activation down to the corresponding phonological nodes /k/, /a/, /t/ 

and up to the connected semantic features for the cat. Since several semantically related lexical 

nodes such as rat and dog share the semantic features, those semantic competitors are activated 

at the lexical representation level as well. Then, the corresponding phonological node for each 

semantic competitor also becomes activated: e.g., the activation of /r/, /a/, /t/ for rat, and /d/, /o/, 

/g/ for dog. These activated phonological nodes also spread feedback to the preceding level to 

transmit the activation level to the corresponding lexical node. Because of this two-way spread 
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Figure 7. “Lexical network structure in the spreading-activation production model  

(from Dell & O’Seaghdha, 1991, p.605). 

Note: In this figure, two semantic features (highlighted) are shared by the three lexical nodes “dog”, “cat” and “rat.” 

 

of activation, two steps (i.e., lexical selection and phonological encoding) are not independent. In 

other words, each step influences the other, making the network highly interactive. Finally, the 

most active node at the lexical layer is selected and its grammatical encoding is conducted, such 

as the grammatical categorization (e.g., noun, verb), gender, number for nouns, etc.  

The spread of activation has three components, spreading, summation, and decay, which 

are applied to all of the nodes (target or not) in the lexical network all the time (Dell, 1986). 

Unless the activation level of a node is zero, some portion of its activation level is sent to the 

connected nodes, which is called the spreading operation. The spreading activation levels of all 

connected nodes are added at the final destination node, which is the summation operation. The 

activated node does not hold that activation level. Instead, it decreases exponentially over time 
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toward zero, which is the decay operation. These operations are expressed in an equation as 

follows.  

 

Here, A (j, ti) stands for the activation level of node j at a particular time ti and A (j, ti ‒ 1 ) 

stands for the activation level of the same node j at a preceding time ti ‒ 1. The c1, c2, c3, … ck are 

all nodes directly connected to node j, and the p1, p2, p3, … pk  are spreading rates associated with 

the connections between c1, c2, c3, … ck and node j. Lastly, q means the decay rate and is always 

greater than zero but less than 1. If it is assumed that node j is the current node being translated 

into other nodes at the adjunct levels, the activation level of the current node can be calculated as 

the activation level of node j at a preceding time, plus the sum of all activated levels of 

connected nodes ck with node j with spreading rate pk, and multiplied by (1 ‒ q). Thus, in the case 

of node j at time ti, if the decay rate q is near zero, the activation level of node j will be great. 

However, as the time ti increases, the decay rate will become bigger and will result in decreasing 

the activation level of node j. Dell highlighted that the activation level depends on the values of p 

and q, and the structure of the network.  

Regarding the time course of semantic and phonological activation, Dell and O’Seaghdha 

(1992) demonstrated that there is a distinct time course of activations between these levels, 

which is consistent with the results of Levelt et al. (1991). This finding supports the notion that 

the time course is globally modular and the processing is serial and forward. However, one 

important feature is that activation at a certain representation level is accompanied by top-down 

and bottom-up spreading activation with the pre- and the post-level’s representation. This 

feedforward and feedback contributes to some local interaction. Thus, as Figure 8 shows, when 
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there is activation at the phonological representation level, some activation occurs on at the 

levels of prior and next representation levels. Dell & O’Seaghdha (1992) argued that this finding 

supports the contention that activation is exchanged between nodes at adjacent levels. This 

interactive activation between adjacent levels accounts for the mixed errors. 

Thus, the perspective of the IA model on mixed errors differs from that of the DTS 

model. Activation of semantic and phonological information at the same time as well as the 

spreading interactive activation is the key mechanisms of the mixed effect as accounted for by 

the IA model. For example, the competitor word rat obtains activation directly from shared 

semantics of the target word cat, and from feedback from shared phonemes of the /cat/ and /rat/. 

It is possible that the top-down (i.e., feedforward) and the bottom-up (i.e., feedback) information 

processing give more activation value to the word rat and result in a much better chance of being 

selected and articulated as a mixed error rather than a purely semantic or phonological lexical 

error. 

 

Figure 8. The activation of the phonological nodes as a function of time (from Dell & O’Seaghdha, 1991, p.612). 
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Since the IA model assumes that the semantic and phonological influences are not 

independent (Dell et al., 1997), the probability of mixed errors’ occurrence becomes different 

from that in the DTS model where the chances are very slim. This was supported by several 

studies about normal speech errors (Dell & Reich, 1981; Harley, 1984) and experimental studies 

of picture naming tasks for non-aphasic speakers (Martin, Weisberg, & Saffran, 1989). In 

addition, Martin et al. (1989) found that mixed errors occurred more than those that were either 

just semantically or just phonologically related. In essence, these differences between IA and 

DTS models in terms of the phonological coactivation and chance of mixed errors result in a 

different perspective on the interactivity. Furthermore, these make a distinct argument on the 

locus of word frequency effect in the two steps that will be discussed in the following sections.  

2.1.4 Effect of Word Frequency  

2.1.4.1 Mechanism of word frequency in lexical access  

Lexical nodes or phonological nodes are selected depending on the the highest activated node. 

Activation then spreads to the corresponding node in the next (e.g., Levelt et al., 1999; Levelt, 

1992) or adjunct levels through interactive spreading activation (e.g., Dell & O’Seaghdha, 1991; 

Dell, 1986).  

From the literature, Miozzo & Caramazza (2003) summarized two hypotheses for the 

psycholinguistic mechanism behind word frequency in lexical access: 1) the activation level 

hypothesis and 2) the selection threshold hypothesis. First, the activation level hypothesis 

suggests that HF words are processed faster because they have a higher level of resting 

activation, thus less activation is required to reach a selection threshold than LF words  
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Figure 9. “Schematic illustration of the activation level and the selection threshold assumed by the activation level 

hypothesis (A) and by the selection threshold hypothesis (B) for high- and low-frequency words” (From Miozzo & 

Caramazza, 2003, p. 230). 

 

(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Goodglass & Wingfield, 1997; McClelland 

& Rumelhart, 1981) (see Figure 9A). The selection threshold hypothesis proposes that HF and 

LF words have the same resting activation level, but the selection threshold of lexical nodes 

differs depending on the word frequency. HF words have lower selection threshold than LF 

words (e.g., Jescheniak & Levelt, 1994; Morton, 1969) (see Figure 9B). Thus, with equal 

amounts of activation as input, levels of activation will be increased identically for both HF and 
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LF nodes. However, due to the lower threshold of HF words, those words reach the selection 

threshold faster than LF words, which will then have a high probability to be selected. 

Although there is ongoing debate about which hypothesis accounts best for the word 

frequency effect, either hypothesis provides insight into the non-target words’ frequency effect 

during naming behavior (Miozzo & Caramazza, 2003). According to the activation level 

hypothesis, if the non-target words are HF, they will interfere the target word’s retrieval more 

than LF non-target words due to their highly activated level. Whereas according to the selection 

threshold hypothesis, there would not be a significant effect on word retrieval between two 

frequency types of non-target words. This is because the resting activation levels as well as the 

amount of activation change of HF and LF non-target words are equal. In the case of LF non-

target words interfering more than HF non-target words, other hypotheses may be required. This 

will be discussed further in section 2.1.5.2.  

Derived from these hypotheses, time is an important aspect of specific node selection. No 

matter how likely word frequency is to affect the activation level in reaching a selection 

threshold under the two different hypotheses, the dynamics of activation level are time-

dependent. Under both hypotheses, HF words are selected faster than LF words. In this sense, 

RT is a more sensitive measurement than accuracy in word frequency effect studies, which may 

increase statistical power accordingly.  

2.1.4.2 Evidence of word frequency effect 

There is considerable evidence supporting the effects of word frequency on naming performance. 

Most studies have used a picture-naming task to explore the frequency effect in single word 

production. Oldfield and Wingfield (1965) first reported this effect. They conducted a study to 

examine whether the latency in naming was related to relative frequencies of the objects named 
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in healthy adults. The names of thirty-six objects were collected from the Thorndike-Lorge Word 

List, which contained a frequency count derived from written English (Thorndike & Lorge, 

1944). Participants were asked to name the objects as quickly as possible, as they were presented 

with simple black outline drawings. The onset of the spoken verbal responses (i.e., naming 

latencies) was recorded and measured. When analyzing the correlation between logarithm 

frequency and naming latencies, a linear relationship was found between them. That is, the 

higher the frequency occurrence, the shorter the latency.  

The word frequency effect has been detected not only in non-aphasic speakers but also in 

PWA through picture-naming tasks (e.g., Cuetos et al., 2002; Feyereisen et al., 1988; Gordon, 

2002; Nickels & Howard, 1994; Wilshire, 2002). For example, Cuetos et al. (2002) found that 

word frequency was one of the prominent lexical variables shown by the greatest number of 

Spanish aphasic patients who were having problems in word retrieval across diverse aphasic 

types. Seven different properties of target words were analyzed as predictors including visual 

complexity, object familiarity, imageability (i.e., the ease of generating an image when a given 

word is presented), animacy, age of acquisition, word frequency, and word length (i.e., in 

number of syllables in the object name). The word frequency data were derived from a corpus of 

written texts with two million words. In multiple regression analyses conducted on the naming 

accuracy scores, seven independent variables significantly predicted participants’ naming, which 

accounted for 62% of the variance in naming accuracy. Along with age of acquisition, object 

familiarity, and visual complexity, word frequency made a significant independent effect on 

naming performance of the group as a whole and of many individual patients. The independent 

contribution of the word frequency factor was consistent with previous studies (e.g., Barry, 

Morrison, & Ellis, 1997; Ellis & Morrison, 1998). Cuetos et al. (2002) showed that several 
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lexical properties such as imageability, animacy, age of acquisition, word frequency, and word 

length can affect word retrieval. Although word frequency had a significant independent effect 

on naming performance, an appropriate statistical way of examining the lexical variables’ effects 

as covariates is necessary to increase the statistical power and alleviate confounding effects. 

Beyond word-level production, very few studies have demonstrated the frequency effect 

in the production of multi-word utterances such as phrases or sentences. However, consistent 

findings of a robust effect of word frequency have been reported (Alario et al., 2002; Goral, 

Levy, Swann-Sternberg, & Obler, 2010). Alario et al. (2002) investigated the word frequency 

effect on adjective and noun retrieval during the production of phrases through two experiments. 

In Experiment 1, healthy adults were asked to name the pictures of common objects in the form 

of adjectival noun phrases (NPs) which consist of determiner + adjective + noun (e.g., “the blue 

kite”) as fast and accurately as possible. Each NP was composed of HF or LF adjectives and 

nouns. Among 32 pictures, 16 were HF words (average: 174 occurrences per million in Francis 

& Kucera, 1982; range: 58–662) and 16 were LF words (average: 13 occurrences per million; 

range: 1–36). Each picture was presented in eight different colors, among which four had HF 

names (average: 136 occurrences per million; range: 85–169) and four had LF names (average 

frequency: 30 occurrences per million; range: 8–52) (Alario et al., 2002, p.306). To assess the 

reliability of the study, they replicated Experiment 1 in Experiment 2 where the procedures were 

identical, but the participant population and the picture stimuli did not overlap those of 

Experiment 1. In Experiment 2, 25 HF words (average: 148 occurrences per million; range: 46–

662) and 25 LF words (average: 9 occurrences per million; range: 1–20) (Alario et al., 2002, 

p.309) were used. Participants’ response latencies and error rates were analyzed and it was found 

that both noun and adjective frequencies significantly affected naming latencies. The latencies 
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were shorter for the HF nouns and adjectives. There was no significant interaction between the 

two word categories. They interpreted these results as the additivity of the frequency effect of 

nouns and adjectives. The same results were found in Experiment 2 (see Figure 10). This 

experiment offered an important finding: the frequency effect for the noun of the NP was 

observed not only when the noun was in the first position of the utterance but also when it was in 

the last position of the utterance. 

 

Figure 10. Naming latencies (ms) for the production of adjectival NPs in Experiments 1 and 2 as a function of the 

frequency of the noun. The data is collapsed for adjective frequency (from Alario et al., 2002, p.311). 

 

However, caution is required when interpreting the results of the previous studies. They 

did not provide rationales for determining HF and LF words, which undermines the validity of 

setting up the independent variable—frequency. In particular, when words are categorized into 

HF and LF groups, there should be a valid principle that those words are discrete in terms of 

frequency. However, most of the studies did not address whether these two groups were discrete. 

In addition, the standard for defining HF and LF words varies across studies. For example, in the 

first experiment of Alameda and Cuetos (1995), the average of the HF nouns was 174 

occurrences per million with a range of 58–662, and the average of the LF nouns was 13 with 



37 

range of 1–36. It is not explained why a word with 58‰ is grouped as one of the HF words and a 

word with 36‰ is grouped as one of the LF words.  

2.1.4.3 Debate on the locus of a frequency effect 

Although there is general agreement that there is a strong word frequency effect on the 

phonological encoding step, it is still debated whether the lexical selection step is also affected 

by word frequency. This section will review the different findings and views on the loci of word 

frequency effects.  

Jescheniak and Levelt (1994) hypothesized that the access to a lexical node's syntactic 

information, which includes its grammatical gender, is independent of phonological node 

activation. Thus, the activation of a word's grammatical gender can be used to determine the 

frequency effect on the lexical selection step. Before they tested the hypothesis, they first 

examined if robust word frequency effects existed during the noun retrieval process. Twelve 

native Dutch speakers participated in a picture-naming task. Twenty-four pictures represented 

HF words (those occurring more than 60 in 1 million words) and the 24 others represented LF 

words (those that occur less than 12 in 1 million words). All of these 48 experimental items were 

de words (masculine words in Dutch) and intermixed with 48-filler items which are het words 

(feminine words in Dutch). Each of the 96 items was presented three times to examine the word 

frequency effect through a repetition task and to examine the locus of word frequency effect 

through a gender decision task. The results showed that naming latencies for pictures with LF 

words was longer than naming latencies for pictures with HF words. Even after participants 

named the pictures three times, the size of the frequency effect remained consistent (see Figure 

11). This finding supports the notion that relatively few repetitions do not influence the 

frequency effect observed in picture naming tasks with healthy adults.  
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Jescheniak and Levelt (1994) also examined the performances of Dutch speakers on a 

gender decision task to examine whether word frequency affects the lexical selection step, which 

required grammatical gender retrieval for the target pictures. They assumed that if there is a 

robust frequency effect on the grammatical encoding in the lexical selection step, HF words 

would reduce the response latency on the grammatical gender decision task. The Dutch-speaking 

participants were instructed to decide on the singular definite article that the name of the 

presented picture object should take. They pushed a de button for masculine and feminine words 

or a het button for neuter words. As a result, faster responses were observed for HF words than 

for LF ones the first time the pictures were presented. However, the effect quickly reduced in 

subsequent presentations (see Figure 12). The authors interpreted that this transient frequency 

effect is at odds with the nature of the robust frequency effect. They concluded that lexical 

selection step is insensitive to word frequency.  

In order to investigate whether word frequency affects only phonological encoding, 

Jescheniak and Levelt (1994) adopted a homophone production task. Homophones have different 

word meanings, but have the same pronunciation. Theoretically, they are different at the concept 

level and at the lexical representation level, but share the word form at the phonological 

representation level. The authors hypothesized that if word frequency affects only the 

phonological representation level the LF homophone would be accessed just as quickly as its HF 

twin because the phonological representation is shared. However, if word frequency affects the 

lexical representation level, the LF homophone should be retrieved more slowly than the HF 

homophone. To test this hypothesis, Jescheniak and Levelt (1994) used the English-Dutch 

translation paradigm. Twenty native Dutch speakers who had good English skills were given a 

high frequency (e.g., forest) and a low frequency (e.g., bunch) English written word that  
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appeared on the screen and they produced the Dutch translation (e.g., Dutch homophone bos for 

both forest and bunch). During the translation task, the phonological representation nodes of 

Dutch were accessed. Frequency-matched LF controls and HF controls were used to compare the 

response times. Note that the HF control was determined by its lemma frequency being roughly 

the sum of the lemma frequencies of the homophones (e.g., sum of frequencies of bos [bunch] 

and bos [forest]). If the participants translated the LF homophone as quickly as the HF control, 

this finding would support the hypothesis that word frequency operates in the phonological 

representation level instead of the lexical representation level. Alternatively, if the participants 

translated the LF homophone as slowly as LF control, it would support that lexical selection 

depends on word frequency. The results showed that the LF homophones were as fast as the HF 

controls and faster than the LF controls (see Figure 13). The authors termed this phenomenon as 

the homophone effect and argued that this finding of the LF homophone behaving like the HF 

homophone twin supports that the locus of frequency effect is at the phonological encoding step 

rather than at the lexical selection step. 

 

Figure 11. Picture naming latencies (from Jescheniak & 

Levelt 1994, p.829). 

 

Figure 12. Gender decision latencies (from 

Jescheniak & Levelt, 1994, p.832). 
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Figure 13. Difference scores from Experiment 6 (from Jescheniak & Levelt (1994), p. 638). 

Note: LF = low frequency; HF = high frequency. 

The findings of Jescheniak and Levelt (1994) have been challenged by Gahl (2008). Gahl 

investigated the homophone frequency effect on the response durations by analyzing roughly 

90,000 tokens of homophones in the Switchboard corpus of American English telephone 

conversations. She found that retrieval times for HF words (e.g., time) were significantly shorter 

than those for the LF homophone twins (e.g., thyme). Caramazza et al. (2001) investigated 

whether naming latencies for homophonic words (e.g., nun) are influenced by the frequency of a 

specific word (i.e., that of nun) or a cumulative-homophone frequency (i.e., the sum of the 

frequencies of nun and none). Thirty native English speakers named three sets of pictures and 

their naming latencies were measured through: 1) homophone-name pictures; 2) pictures 

matched to specific word frequency; and 3) pictures matched to cumulative-homophone 

frequency. The results showed that there was no difference in naming latencies between the 

homophone-name pictures and the pictures matched to specific word frequency. Participants’ 

naming latencies were slower than the pictures matched to cumulative-homophone frequency. 

This finding is at odds with the homophone effects previously found by Jescheniak and Levelt. 

Rather, naming latencies for homophonic words turned out to be determined by their specific-
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word frequencies. In other words, the naming latencies are determined by the frequency of the 

pairing of a specific semantic representation and a word form, rather than the surface frequency 

of that particular string of sounds. The same results were found in a different language using 

Spanish-English translation task that replicated the Jescheniak and Levelt’s (1994) experiment.  

In addition, Cuetos et al. (2010) examined whether picture-naming latencies of 

homophones were predicted better in the picture-naming task based on cumulative homophone 

frequency than on specific-word frequency. Their finding was consistent with Caramazza et al. 

(2001), Shatzmana and Schiller (2004) and Gahl (2008), which supports that naming of 

homophones does not benefit from the shared phonological representation of HF homophone 

twins. Taken together, these findings support the interpretation that the frequency effect has its 

locus at the level where the different members of a homophone set are distinguished from each 

other—at the lexical selection step.  

 Jescheniak and Levelt’s (1994) vanishing frequency effect has been also challenged. 

Navarrete et al. (2006) conducted two experiments to determine whether lexical selection is 

affected by word frequency. In Experiment 1, sixteen native Spanish speakers were asked to 

generate an utterance as fast and accurately as possible by using the sentence structure of “Este 

es nuevo” (Thismasc is newmasc) or “Aquella es vieja” (Thatfem is oldfem) when a picture was 

presented. To avoid the massive repetition of the same utterance pattern, two semantic features 

of the objects were adopted: distance (close/far) and appearance (new/old). Figure 14a depicts a 

car that is far from the participant’s point of view and new. Figure 14b depicts a car that is close 

to the participant’s point of view and old with a blurred image. In Experiment 2, participants 

undertook a gender decision task for the same pictures. They decided whether the picture’s name 

was masculine or feminine, while ignoring the object’s distance and appearance. In both 
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Experiment 1 and 2, retrieving phonological representation was not required, but retrieving 

lexical representation was necessary to process the grammatical encoding for the target nouns in 

order to decide the gender for the nouns. 

 

Figure 14. Two examples of the picture stimuli in Experiment 1 (from Navarrete et al., 2006, p. 1684). 

 

Word frequency repetition effects were significant in terms of the error rates and 

response latency. That is, lower error rates and shorter response latencies were found for the HF 

pictures than for the LF pictures. Frequency and repetition did not significantly interact with 

each other. The results of Experiment 2 revealed that there was a robust word frequency effect in 

the gender decision task over repetition (see Figure 15). Counter to Jescheniak and Levelt’s 

(1994) interpretation, this finding indicates that the grammatical encoding is influenced by word 

frequency, which implies that lexical selection is sensitive to the frequency effect.  
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Figure 15. “Average response latencies for high-frequency and low-frequency sets broken by repetition in 

Experiments 1 and 2” (from Navarrete et al., 2006, p. 1686). 

 

Unlike other studies where healthy adults were recruited to determine the locus of the 

frequency effect (Caramazza et al., 2001; Cuetos et al., 2010; Gahl, 2008; Jescheniak & Levelt, 

1994; Navarrete et al., 2006), Kittredge, Dell, Verkuilen, and Schwartz (2008) investigated the 

locus of the frequency effect through the error analysis of fifty individuals with aphasia using a 

picture-naming task. Drawing on Foygel and Dell’s (2000) model where the frequency of the 

target word is responsible for the weights of either its lexical-semantic connections or its lexical-

phonological connections, Kittredge et al. (2008) hypothesized that if frequency only affects 

phonological encoding, it should be responsible for the incidence of phonological errors. They 

also argued that if frequency also affects lexical selection, it should be responsible for the 

incidence of semantic errors, and if it affects both steps of word retrieval, both error types would 

be predicted. The analyzed error types and error categories are described in detail in Table 1. 

Note that Kittredge and colleagues focused on three main error categories: semantic, 

phonological (collapsing across formal and non-word responses), and omission (collapsing 

across “no response” and “description” omissions). Mixed, unrelated, and miscellaneous errors, 

categorized as “other”, were not analyzed statistically.  
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Table 1. Error types for observation and error category for data analysis in Kittredge et al. (2008) 

Error type Description 
Example 

(for pineapple) 

Error category 

for data analysis 

Semantic 

errors 

Synonym of the target or coordinate, 

superordinate or subordinate member of 

its category 

apricot “Semantic  

errors” 

Formal errors Any word response that meets the 

PNT’s phonological similarity criterion 

pillow “Phonological 

errors” 

Mixed errors Response that meets both semantic and 

phonological similarity criteria 

banana “Other” 

Unrelated  Response that meets neither semantic 

nor phonological similarity criteria and 

is not visually related to the target 

gun “Other” 

Non-word  Neologism that is not also a blend, 

which either did or did not meet the 

PNT’s phonological similarity criterion 

pineme or fepe “Phonological 

errors” 

Description Description of the target, often with 

semantic or phonologically relevant 

information 

you eat it “Omission” 

No response, 

omission,  

Null or semantically empty response I don’t know “Omission” 

Miscellaneou

s error 

Other types of errors including visual 

errors 

 “Other” 

 

The results revealed that HF words resulted in fewer word retrieval errors. Although the 

frequency effect was strong in the phonological errors as demonstrated in previous studies (e.g., 

Feyereisen et al., 1988; Goldrick & Rapp, 2007; Schwartz et al., 2004), the lower-frequency 

words resulted in more semantic errors and errors of omission as well. This indicates that word 

frequency influences multiple steps of the word retrieval process, including lexical selection and 

phonological encoding.  

There are several notable points in the Kittredge et al. (2008) study. First, a large sample 

of patients was analyzed, which increased the external validity. Second, a multinomial logistic 
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regression model enabled a statistical analysis of error data from heterogeneous patients. Third, 

this study confirms that the error analysis can be used to determine the locus of the frequency 

effect. As reviewed, one of the primary sources used in developing the two steps of the word 

retrieval models (i.e., lexical selection and phonological encoding) stemmed from speech errors 

of PWA. In summary, by tracking the errors, the damaged step(s) affected by word frequency in 

the word retrieval process can be determined.  

However, the Kittredge et al. (2008) experiment was not designed to answer how word 

frequency affects the first step. They assumed that the frequency effect on the first step was due 

to the spreading activation along the bidirectional connections linking lexical representation 

retrieval and phonological representation retrieval. In order to attribute the reason to the 

interactive activation between two steps, they would have had to include mixed errors in their 

error analysis or use alternative methods. If there are enough mixed errors obtained to compute 

statistical analyses, the interactivity can be tested since mixed errors are the primary evidence to 

support the IA model, as previously reviewed.  

It may be hard to detect a frequency effect on lexical selection by measuring only the 

number of semantic or phonological errors as in Kittredge et al., (2008). In order to identify the 

word frequency’s influence on the retrieval process as a temporal measure, examining RTs is 

necessary in naming tasks where the duration to reach the selection threshold level and/or the 

resting activation level is involved.  

http://www.sciencedirect.com.pitt.idm.oclc.org/science/article/pii/S0749596X10000604#b0185
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2.1.5 Picture-Word Interference (PWI) Paradigm 

2.1.5.1 Rationales to use PWI task 

Based on the prominent characteristics of aphasia addressed in the definition of aphasia (McNeil 

& Pratt, 2001), inefficiency in accessing the appropriate representation node in the lexical 

retrieval process is expected to manifest in more errors and delayed response time for PWA. If 

inefficient access affects the duration of retrieving words, measuring RT will provide evidence 

concerning the loci of language processing deficits with temporal sensitivity (Rogers, Redmond, 

& Alarcon, 1999). Also, the time-dependent nature of the word frequency effect mechanism 

supports the importance of measuring RT.  

The PWI paradigm can be applied in order to detect the frequency effect at different 

lexical processing steps. The PWI, a variant of the Stroop task, is a widely used technique for 

exploring the effects of the semantic context on lexical access (Sailor, Brooks, Bruening, Seiger-

Gardner, & Guterman, 2009). Since PWI tasks provide information about the time course of 

production, it may help to understand the locus of the word frequency effect while naming by 

showing the separate contributions of the various stages of word production (Dell & 

O’Seaghdha, 1992; Hashimoto & Thompson, 2010; Levelt et al., 1991; Wilshire, Keall, Stuart, & 

O’Donnell, 2007).  

 Pictures are presented to a participant along with written or spoken word distractors in 

the PWI task. By manipulating the SOA between picture and distractor, the nature of the two 

stages of lexical access in speaking can be experimentally investigated. This is based on a 

general finding that semantic interference (i.e., semantic inhibition) occurs at a negative SOA 

(e.g., SOA of -150ms) whereas phonological effects (i.e., phonological facilitation) occurs at a 

positive SOA (e.g., SOA of 0ms and +150ms) (e.g., Damian & Martin, 1999; Schriefers et al., 
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1990). In this task, participants are asked to ignore the distractor words and to name the pictures 

as quickly and accurately as possible (Damian & Martin, 1999; Rosinski, 1977; Schriefers et al., 

1990; Starreveld & La Heij, 1996).  

According to the literature, PWA show similar semantic and phonological results as 

healthy adults on the PWI task. This suggests that the PWI task allows for estimating the time 

course of activation across the lexical process steps for control groups as well as for PWA 

(Hashimoto & Thompson, 2010; Rogers et al., 1999; Wilshire et al., 2007). In particular, 

Hashimoto and Thompson (2009) showed that there were similar time courses of activation—

earlier semantic inhibition and later phonological facilitation—across lexical processes for PWA 

and healthy adults. Not only was there an increased number of errors for PWA compared to the 

control group, but increased RTs in naming were also found when semantic and phonological 

written distractors were presented to PWA. Further, similar characteristics of errors (e.g., high 

rates of NRs, semantic paraphasias, and semantic-competitor errors) were observed for both 

groups during the PWI task. In a situation where a consensus on the locus of the frequency effect 

was not made for the healthy adults, the findings of Hashimoto and Thompson (2009) suggests 

that the locus of the frequency effect in the PWI task informs understanding of the nature of the 

word frequency effect in PWA as well as healthy adults. 

In spite of the PWI tasks benefits, the distinct time course is less transparent when using 

written word distractors. For example, (Glaser & Düngelhoff, 1984) showed a semantic 

interference effect with the SOA around 0ms during the PWI task with written word distractors. 

When the same type of distractors (i.e., written words) was used in Starreveld and La Heij 

(1996), the phonological facilitation effects were found with SOA ranging from -200ms to 

+100ms which covers the SOA = 0 for the semantic interference effect of Glaser and Düngelhoff 
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(1984), when the same type of distractors (i.e., written words) was used. Damian & Martin 

(1999) supported this distractor type sensitivity of RTs in the PWI task. With visual distractors, 

semantic interference appeared with the SOA ranging from 0ms to +200ms and the phonological 

facilitation effect appeared with the SOA ranging from -200ms to + 100ms. However, when 

spoken distractors were presented, a semantic interference effect appeared at earlier SOAs and a 

phonological facilitation effect at later SOAs (see Figure 16).  

Given that “in the picture-word interference procedure, a longer processing duration of 

the distractor word translates into a larger negative SOA at which an effect can be obtained” 

(Damian & Martin, 1999, p. 5), visual distractors may have more rapid access to their semantic 

nodes than auditory distractors and result in a smaller negative SOA for semantic distractors. 

Damian & Martin attributed this discrepancy between two distractor types to the parallel 

processing of visually presented distractors, which is not the case for auditorily presented 

distractors. Therefore, semantic effects appear at an early or negative SOA due to the longer 

processing duration of auditory distractors. Considering that the purpose of this study is to 

identify the frequency effect on lexical selection, using spoken words as distractors will allow 

the demonstration of an inhibition effect at an early time point with a phonological effect 

appearing at a later time point by avoiding the parallel processing inherent with visual distractors. 

One might question whether RTs for the condition of mixed distractors can be used to 

examine the interactivity. The theoretical rationale for this originates from Damian & Martin 

(1999) where interactivity was identified by using mixed distractors. They hypothesized that 

with the DTS model; RTs for the mixed distractors should yield the same semantic interference 

effect as semantically related but phonologically unrelated distractors at a negative SOA.  

Further, they should yield facilitation effects comparable to those obtained from phonologically 
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related but semantically unrelated words at a positive SOA. Conversely, these patterns are not 

predicted from the IA model.   

 

 

Figure 16. “Experiment 1: Effects of semantically and phonologically related distractors (unrelated minus related 

condition) varied by distractor modality (visual vs. auditory) and stimulus-onset asynchrony” (from Damian & 

Martin, 1999, p.5). 

 

Results from Damian and Martin (1999) showed a significant semantic interference for 

semantic distractors and attenuated semantic interference effects in semantically and 

phonologically related (i.e., mixed) distractors at the earliest SOA (-150ms). However, 

facilitation effect size for phonological distractors was small. At the 0ms SOA, the facilitation 
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effect size was increased although the semantic interference for semantic distractors was still 

greater than that of phonological facilitation. The semantic interference effect at the -150ms SOA 

for semantically and phonologically related distractors was entirely eliminated. At the longest 

SOA (+150ms), a greater phonological facilitation effect size was shown compared to the 

reduced semantic interference. Unlike the preceding two SOAs (i.e., -150ms and 0ms), semantic 

and phonological effects were added to the semantically and phonologically related distractor 

words (see Figure 17). Damian and Martin interpreted this additive relationship as a complete 

independence of lemma and lexeme stages, supporting the discrete two-step model. They also 

identified an interactive mechanism between semantic and phonological relatedness from the 

findings of the non-additive relationship which was shown at SOA = -150ms and 0ms. These 

results showed that there was interactivity between the two steps. Thus, Damian & Martin’s 

(1999) finding supports the idea that presenting mixed distractors at a -150ms or 0ms SOA for 

different frequency target items can be used to examine whether word frequency impacts 

interactivity using RTs.  

 

 

Figure 17. “Effects of semantically related, phonologically related, and semantically and phonologically related 

distractors varied by stimulus-onset asynchrony” (from Damian & Martin, 1999, p.11). 
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2.1.5.2 Distractor frequency effect in PWI 

Response latencies within the PWI task can vary as a function of the relationship between target 

and distractor words (Finocchiaro & Navarrete, 2013). As previously reviewed, HF distractors 

that interfere more with a target word’s retrieval can be interpreted under the activation level 

hypothesis (Miozzo & Caramazza, 2003). A finding of no difference between HF and LF 

distractors can be accounted for by the selection threshold hypothesis. Two contradicting 

viewpoints (competitive lexical selection versus non-competitive lexical selection) relevant to 

distractor frequency effects have been proposed. The predominance of evidence suggests that LF 

distractors produce more interference than HF distractors (Dhooge & Hartsuiker, 2010, 2011; 

Miozzo & Caramazza, 2003). According to the competitive model, the speed of selecting target 

lexical nodes is dependent on the activation levels of non-target nodes because distractor words 

share a semantic relationship with the target words (e.g., dog-cat). As a result, the distractor 

words increase the activation levels of non-target lexical nodes during the selection process and 

therefore interfere with the selection of the target nodes, compared to the case where they do not 

share any relationship (e.g., dog-phone). Accordingly, this phenomenon can be understood under 

the activation level hypothesis (Miozzo & Caramazza, 2003). HF distractor words have stronger 

interference effects on the retrieval of target words than LF distractor words. Several studies 

support this view under PWI by measuring picture-naming latencies to provide evidence for 

semantic interference or the semantic inhibition effect in order to explain competitive selection 

processes operating at the lexical level (Damian & Martin, 1999; Hutson, Damian, & Spalek, 

2013; La Heij, 1988; Levelt et al., 1999; Roelofs, 2003).  

Conversely, the non-competitive model holds that a lexical node is selected without 

influencing the activation level of non-target nodes (e.g., Caramazza, 1997; Dell, 1986; Dhooge 
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& Hartsuiker, 2010, 2011; Miozzo & Caramazza, 2003; Rapp & Goldrick, 2000; Stemberger, 

1985). Miozzo and Caramazza (2003) found that LF distractor words interfere more with 

retrieving target words in the PWI task than HF distractor words. The traditional competitive 

lexical selection model cannot explain this phenomenon, where HF should interfere more. To 

account for this finding, the non-competitive account or “response exclusion hypothesis” (REH) 

was suggested (Mahon, Caramazza, Peterson, & Vargas, 2007). This hypothesis assumes that the 

target response can be produced only if the single-channel output buffer, which is located at the 

post lexical level, is not occupied by non-target words. That is, non-target words must first be 

cleared in the output buffer before articulating the target picture name. With respect to the 

frequency of non-target words, the REH proposes that HF distractors are rejected earlier in the 

buffer, and therefore interfere with picture naming less than the LF distractors.  

Given that distractor frequency has not been shown to have consistent effects on lexical 

selection, controlling the distractor frequencies to examine the variable of primary interest, 

examining the effects of target word frequency on lexical selection, may be risky. For example, 

if HF distractors are chosen as stimuli and there happens to be a change on RTs depending on the 

target items’ frequency, one could claim that the RT change resulted from the influence of HF 

distractors, not from the influence of target frequencies. Following the competitive hypothesis, 

the HF distractors can be interpreted as the main cause for inhibiting the retrieval of target items, 

which delays the lexical retrieval time. Thus, it is challenging to interpret the presence of the 

word frequency effect. In order to avoid this, a wide range of distractor frequencies should be 

assessed rather than choosing either (or both) HF and LF distractors. These effects should be 

tested using a regression model, as mentioned above, where a continuous variable can be entered 

as a predictor to examine its effect along with other variables’ effect on the dependent variable.  
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Without examining it directly, it is not clear whether there is an interaction between 

target word frequency and distractor frequency at different processing steps. So far, no studies 

have directly addressed this issue. Thus, analysis of interaction effect on RT under PWI task 

needs to be assessed using semantic, phonological and mixed distractor conditions.  

2.2 SUMMARY AND STATEMENT OF PURPOSE 

In reviewing AAC technologies currently available for PWA, limitations were noticed; primarily 

a lack of consideration of PWA’s superior HF word retrieval being brought into the process of 

developing AAC systems. Given that a graphic symbol-based AAC interface provides semantic 

representation, a question was raised whether this HF word advantage can be expected in PWA’s 

AAC performance. Due to the lack of consensus on the effect of frequency on lexical selection, 

areas relevant to this debate were discussed. These areas include: characteristics of word retrieval 

deficits in PWA, two steps of lexical access, word retrieval models, evidence for a robust 

frequency effect, the mechanism of the word frequency effect, and the PWI paradigm as an 

alternative way to investigate the locus of the word frequency effect.  

The evidence of error types leads the proposal of a mechanism involved in the retrieval 

process that is closely related to the two-step assumption: lexical selection and phonological 

encoding. Despite the robust effect of word frequency, the locus of frequency has remained 

subject to controversy. Jescheniak & Levelt (1994) argued that the locus of the frequency effect 

is at the phonological encoding step using evidence from the gender-decision task and the 

homophone-naming task. However, contradictory results have also emerged (e.g., Caramazza et 

al., 2001; Cuetos et al., 2010; Kittredge et al., 2008).  
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The controversy about the locus of the frequency effect was discussed under the two 

currently influential models—the DTS and the IA models. Although both models are based on 

the two-step assumption, several different perspectives on the word retrieval mechanism were 

discussed. The primary discrepancy was the interactivity between the two steps. Drawing on the 

DTS model where interactivity is not accepted, Jescheniak & Levelt, (1994) claimed that there 

was no frequency effect on lexical selection. Conversely, using the IA model, Kittredge et al. 

(2008) argued that word frequency affects both lexical selection and phonological encoding 

because strongly activated phonological-representation-nodes transmitted feedback to the prior 

step. This controversy is illustrated in the theoretical schematic of the current study in Figure 18.  

 

 

Figure 18. Theoretical Schematic of the current study 
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Limitations in previous studies were discussed with regard to word frequency effects on 

lexical selection. Although Kittredge et al. (2008) argued that lexical selection engaged 

interactivity in the frequency effect , mixed errors that have played a critical role to support the 

interactivity were missing in their data analysis. In addition, only errors were analyzed, which 

failed to identify the influence of word frequency on the retrieval process. The need to use RTs is 

highlighted by working on identifying the locus of the frequency effects in the PWI paradigm. 

The current study sought to investigate the word frequency effect in lexical selection by 

measuring RTs using the PWI paradigm with healthy adult participants. The rationale for using 

the PWI paradigm in a normal healthy population was to gain a firmer understanding of the word 

frequency effects in healthy individuals that could then be extended to PWA. This extension may 

be justified under a unified model of lexical access that can account for both non-aphasic and 

aphasic speech errors (Dell et al., 1997; Rapp & Goldrick, 2000) under the assumption that 

speech and language performance exits on a continuum from normal to aphasic (McNeil, 1982)  

(also known as the continuity hypothesis; Dell et al., 1997; Freud, 1953; Schwartz et al., 2006). 

Specific aims and hypotheses are as follows. 

Specific Aim 1 is to investigate whether word frequency affects lexical selection 

during a PWI task. According to the DTS model, only phonological encoding is influenced by 

word frequency due to the absence of feedback activation at the semantic representation level 

(e.g., Jescheniak & Levelt, 1994). In contrast, in the IA model, word frequency is considered to 

affect both steps and interactivity is assumed to play a role in spreading the frequency effect to 

the higher step (e.g., Dell, 1990; Kittredge et al., 2008).  

Hypothesis 1a proposes that for both the semantic and mixed distractor conditions, RTs 

will decrease as the target item’s frequency increases. Findings in previous studies that showed a 
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word frequency effect on the lexical selection (Caramazza et al., 2001; Cuetos et al., 2010; Gahl, 

2008; Kittredge et al., 2008; Navarrete et al., 2006) would be consistent with this pattern, and an 

interactive network model would be most consistent with these findings. Generalized linear 

mixed models (GLMMs) were used for analysis to accommodate the nesting of responses within 

the individual. Section 3.8 addresses a rationale and provides a detailed description of GLMMs. 

An alternative hypothesis 1b proposes that there will be no significant change in RTs for 

both semantic and mixed distractor conditions as a function of the target’s frequency. This 

alternative hypothesis is consistent with Jescheniak & Levelt (1994), consistent with the DTS 

model.  

An additional alternative hypothesis 1c proposes that for the semantic distractor condition, 

there will be a significant effect of word frequency on RT. However, for the mixed distractor 

condition, no significant effect on the dependent variable is hypothesized. The rationale for this 

alternative hypothesis is that word frequency’s effect on lexical selection will oppose the 

traditional view on the locus of frequency effect. The absence of a frequency effect on the mixed 

distractor condition will account for the non-involvement of indirect route for the influence of 

word frequency on the lexical selection via the interactive network (Dell & O’Seaghdha, 1991; 

Dell, 1986; Foygel & Dell, 2000). In this case, a direct route for the frequency effect on the 

lexical selection will be proposed.  

Specific Aim 2 investigates whether the target item’s frequency interacts with the 

distractors frequency during lexical selection using the PWI task. Given the influence of the 

distractors’ frequency on the target item’s retrieval in PWI, the second aim of this study sought 

to identify the existence of an interaction between the target items’ frequency and the frequency 
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of the distractors for the different distractor conditions. As in Specific Aim 1, GLMM was used 

to accommodate the nesting of responses within an individual.  

As outlined above, either of two contradicting viewpoints make predictions regarding the 

distractor’s frequency effect in the PWI task and the interaction between distractor frequency and 

target word frequency. One is that lexical selection is competitive, and thus the speed with which 

a target lexical node is selected depends on the activation levels of non-target (i.e., distractor) 

nodes (e.g., La Heij, 1988; Levelt et al., 1999; Roelofs, 2003). According to this argument, HF 

distractors should interfere more with target retrieval than LF distractors. The opposing view is 

that lexical selection is not competitive and the speed with which a target lexical node is selected 

is independent of the activation levels of non-target (i.e., distractor) nodes (e.g., Caramazza, 

1997; Dell, 1986; Rapp & Goldrick, 2000; Stemberger, 1985). Recently, a series of studies have 

shown that LF distractors interfere more with the picture naming than HF distractors, which is at 

odds with the studies based on the competitive hypothesis (Dhooge & Hartsuiker, 2010, 2011; 

Hutson et al., 2013; Miozzo & Caramazza, 2003).  

Hypothesis 2a proposes that there will be a significant RT interaction between the target 

items' frequency and the distractor frequency. The Competitive hypothesis will be supported if 

HF distractors interfere more with retrieval of target items than LF distractors (Damian & Martin, 

1999; Hutson et al., 2013; La Heij, 1988; Levelt et al., 1999; Roelofs, 2003). If LF distractors 

interfere more with retrieval of target items than HF distractors, the non-competitive hypothesis 

will be supported (Caramazza, 1997; Dell, 1986; Dhooge & Hartsuiker, 2010, 2011; Miozzo & 

Caramazza, 2003; Rapp & Goldrick, 2000; Stemberger, 1985). 

An alternative hypothesis 2b proposes that no significant interaction effect will be shown 

for RTs. This finding will be interpreted to support the position that the target word frequency 
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independently modulates the lexical retrieval speed without being influenced by distractor 

frequency. 

Specific Aim 3 proposed to investigate whether there is a difference between RT and 

response type when examining the frequency effect for healthy adults during the PWI task. 

Due to the issue of sensitivity of measurement, the frequency effect may be observed differently 

depending on the dependent variable. A discrete variable was applied into the GLMM to answer 

this question and the findings were compared with a continuous variable, RT.  

Section 2.1.4.1 addressed the psycholinguistic mechanism of word frequency in lexical 

access (Miozzo & Caramazza, 2003). It was proposed that either resting activation level 

(Coltheart et al., 2001; Goodglass & Wingfield, 1997; McClelland & Rumelhart, 1981) or the 

selection threshold level (e.g., Jescheniak & Levelt, 1994; Morton, 1969) plays a major role in 

determining the retrieval speed depending on the word frequency. In brief, according to the 

activation level hypothesis, HF words are processed faster because they have a higher level of 

resting activation, and can reach a selection threshold faster than LF words (Coltheart et al., 

2001; Goodglass & Wingfield, 1997; McClelland & Rumelhart, 1981). The selection threshold 

hypothesis proposes that HF and LF words start from the same resting activation level, but HF 

words are retrieved faster due to the lower selection threshold than LF words (e.g., Jescheniak & 

Levelt, 1994; Morton, 1969). Both hypotheses emphasized the temporal measures of target word 

selection. As HF words are selected faster than LF words through the time-dependent mechanism, 

RT observed in the PWI paradigm is expected to provide a more sensitive measurement than 

error analysis.  

Hypothesis 3a proposes that RT will yield a higher sensitivity to word frequency effects 

than response type analysis. Alternative hypothesis 3b is that there is no difference in detecting 
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the frequency effect between two dependent variables. Applying the psycholinguistic mechanism 

of word frequency to distractor frequency, hypothesis 3b will support the assumption that PWI 

task modulates not only the response time for each distractor condition but also the number of 

errors. This finding will extend the time-dominant feature of the PWI paradigm to the potential 

of creating the erroneous naming behavior of healthy adults.  

2.3 SIGNIFICANCE 

2.3.1 Theoretical Significances 

The debate about the locus of the frequency effect in lexical processing is ongoing. The heart of 

this debate is whether word frequency influences lexical selection as well as phonological 

encoding. This study will provide evidence for one of the two or both positions by analyzing the 

difference in semantic and phonological distractors in the PWI paradigm.  

In addition, it is uncertain whether the feedback activation from phonological encoding, 

which is strongly affected by the frequency effect, is transmitted to lexical selection, as Kittredge 

et al. (2008) argued. This study investigates the effects of word frequency on the interactivity 

between the two steps by analyzing the RTs and the number of mixed errors during a PWI task 

for mixed distractors. The findings about whether word frequency influences the interaction 

mechanism will help determine whether word frequency influences lexical selection through 

feedback from the second step, apart from the direct influence to lexical selection.  

http://www.sciencedirect.com.pitt.idm.oclc.org/science/article/pii/S0749596X10000604#b0185
http://www.sciencedirect.com.pitt.idm.oclc.org/science/article/pii/S0749596X10000604#b0185
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2.3.2 Clinical Significances 

A consistent report on the advantage of HF words’ influence on RT and accuracy can be used as 

a rationale for prioritizing HF words in an AAC system as well as in the selection of treatment 

stimuli and tasks. However, it is questionable whether the word frequency effect occurs in 

graphic symbol-based AAC systems. Graphic symbols used in AAC provide semantic prompts 

for each word (e.g., ‘water’) that contains its relevant semantic features (e.g., a symbol 

presenting a glass and liquid in it). PWA with impaired reading ability have to rely heavily on 

semantic cues in graphic symbols. This study will provide evidence of whether word frequency 

influences lexical selection and it will provide information relevant to determining whether word 

frequency effects can be expected in the graphic symbol-based AAC system for PWA in their 

daily communication.  

Since this study presents distractors with a variety of frequencies, it will provide evidence 

as to whether an interaction between the target item’s frequency and the distractor item’s 

frequency is present. In the case of an interaction effect between the target and distraction items’ 

frequency, the HF word advantage will be diminished depending on the neighboring symbols’ 

frequency. Such a finding would indicate that careful vocabulary organization is required when 

creating an AAC application.  
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3.0 RESEARCH DESIGN AND METHODS 

3.1  PARTICIPANTS 

Fifty healthy adults participated in this experiment. A-priori estimates for an appropriate sample 

size was based on the statistical literature (Kreft & de Leeuw, 1998; Maas & Hox, 2005; 

Schwab, 2002), a power analysis (see 3.1.1 ‘sample size’ for details), and several word 

frequency studies that ranged from sixteen to fifty participants (Cuetos et al., 2010; Jescheniak & 

Levelt, 1994; Kittredge et al., 2008; Navarrete et al., 2006).  

All participants met the following inclusion criteria: (1) Monolingual native American 

English speakers, determined by asking potential participants whether they had used or 

understood any languages other than English when they were learning to speak as a child; (2) 

between 40 and 64 years old; (3) score above 13.86 on the listening Computerized Revised 

Token Test (CRTT-L) (McNeil, Pratt, Szuminsky, Sung, Fossett, Fassbinder, & Lim, 2015); (4) 

A score above 25 on the CFL form of the Word Fluency Measure (WFM; Borkowski, Benton, & 

Spreen, 1967) which is known to involve the processes of initiation, verbal fluency, memory and 

ability to organize thinking (Lezak, Howieson, & Loring, 2004); (5) a score above 18 on the 

Raven’s Coloured Progressive Matrices (CPM A, B, AB forms; Raven, 1962) to test individual’s 

nonverbal reasoning ability; (6) performance that yielded a ratio (the delayed recall/immediate 

recall×100) greater than .70 on the immediate and delayed story retell subtest from the Arizona 
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Battery for Communication Disorders of Dementia (ABCD) (Bayles & Tomoeda, 1993), a 

measure used to screen out individuals with early dementing disease or primary intermediate-

term memory disorders. Additionally, considering the task requirements of experiment requiring 

participant’s intact vision and hearing, all participants passed; (7) a vision screening involving 

the reduced Snellen chart at 20/40 or better with a viewing distance that was equal to that of the 

computer screen in the experiment; (8) a pure-tone air-conduction hearing screening via 

conventional headphones at 25 dB HL at 0.5, 1, 2, and 4 kHz in at least one ear and (9) a score of 

22 or above on the Northwestern University Auditory Test No. 6 (NU-6) (Tillman & Carhart, 

1966; Wilson, Zizz, Shanks, & Causey, 1990), a test of spoken word recognition. In addition to 

screening tests, an object naming task from the Porch Index of Communicative Ability (PICA) 

(Porch, 1981) was conducted to evaluate the individual’s object naming behavior as a potential 

covariate. 

Exclusion criteria included a self-reported history of neurological damage or language, 

speech, and hearing impairment. Participants using hearing aid were excluded. 

Potential participants were recruited from the Clinical Translational Science Institute 

(CTSI) Research Participant Registry and from recruitment flyers that were posted on buildings 

of the University of Pittsburgh. 

In total, nine individuals were excluded from participation due to the following reasons: 

five failed to meet one of the screening test criterion including pure tone air conduction and 

CRTT-L; three were non-native American English speakers; one fell asleep in the middle of the 

experimental task.  
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3.1.1 Sample Size 

Under the statistical framework of the multi-level effect models, where level-1 (i.e., items) is 

nested within level-2 (i.e., participants), sample size was calculated considering level-2. The 

rationale for this is based on the results of a simulation study by Maas and Hox (2005), which 

showed that level-1 sample size does not significantly affect the estimates in multi-level effect 

model analysis. Findings revealed that level-2 sample size influenced the accuracy of the 

estimates (regression coefficients and variances) and their standard errors.  

The nature of the data derived for the two dependent variables, response types (i.e., 

discrete) and RTs (i.e., continuous), was considered when determining level-2 sample size. 

Regarding response types, Schwab's (2002) guideline was followed to determine the sample size 

for multinomial logistic regression, which is an extension of binary logistic regression. This 

equation allows for more than two categories for the dependent variable (Starkweather & Moske, 

2011). According to Schwab (2002), sample size guidelines for multinomial logistic regression 

require a minimum of 10 participants per independent variable. In the current study, there are 

two primary independent variables (i.e., target item’s frequency and the interaction of target × 

distractor’s frequency). Therefore, at least 20 participants are needed to obtain enough statistical 

power. 

Optimal Design (OD) Software (Version 3.01) (Raudenbush, Spybrook, Congdon, Liu, & 

Martinez, 2011; available online at http://sitemaker.umich.edu/group-based/optimal_design_ 

software), was used to determine the level of statistical power with regard to RTs, which is based 

on a ratio scale. The OD program allows for appropriate power analysis for multi-level and 

longitudinal research (Raudenbush et al., 2011; Spybrook, Raudenbush, Liu, & Congdon, 2011). 

Two approaches can be used in the OD program for conducting a power analysis: a “power 
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determination approach,” or an “effect size approach” (Spybrook et al., 2011, pp. 6-7). The 

former is used when the effect size is already determined and the calculation of sample size is the 

main interest of the researchers to achieve a specific power (e.g. 0.80). This option represents the 

power on the y-axis. On the other hand, the latter is used when the researchers seek to compute 

the minimum detectable effect sizes (MDES) (Bloom, 1995) that can be observed at a specified 

level of power and significance level for any given sample size. By using either approach, a 

power analysis can be conducted to reach the same conclusions.  

In the current study, the effect size approach was adopted, which shows MDES on the y-

axis. This was because in previous studies (e.g., Kittredge et al., 2008) based on multi-level 

effect models, authors did not provide effect sizes due to the technical limitation of computing R
2
 

from the models. It is regrettable that other word-frequency-effect-locus studies that used 

different statistical approaches did not also provide information about effect size as a reference 

for the current study. When the effect size is unknown, selecting an option with the MDES on 

the y-axis from the OD program is more logical (Spybrook et al., 2011). The MDES range 

considered in the current study was between 0.2 and 0.3, which represents a small to medium 

effect size according to Cohen (1988). Following Spybrook et al., (2011), an alpha level was set 

to 0.05, level-1 n to 43 (number of items per each distractor condition), and power to 0.80. From 

the MDES curve, the required sample size to achieve a small to medium effect size was observed 

when J = 28 for effect size = 0.3 and J = 57 for effect size = 0.2 (see Figure 19). Here J 

represents number of subjects. Within a range of two J measures, Kittredge et al.’s (2008) sample 

size (J = 50) was used as one of the empirical rationales. In their study, a statistical power for 

determining the word frequency effect on lexical selection was obtained with 50 participants.  
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Figure 19. The power curve obtained by the Optimal Design (OD) program 

Note. J indicates the total number of clusters used to achieve statistical power (F = 0.80). The alpha level and the 

power were set to 0.05 and 0.80 respectively. Two MDES points for 0.2 and 0.3 (effect size, delta; δ) are labeled 

with J (J = number of subjects).  

 

 

This sample size of 50 is supported by literature. According to Kreft and de Leeuw 

(1998), level 2 sample size of 50 is known to be a frequently occurring number, and 30 is the 

smallest acceptable number in practice. From their perspective, the decision in the current study 

was made to take a more conservative approach and recruit additional participants than that 

required by the estimated power analysis for an effect size of 0.3 because power may be reduced 

in case of a lower delta level. Combining the two sample sizes obtained respectively for each of 

the dependent variables—20 for discrete variable, 50 for continuous variable, the larger 

minimum sample size (i.e., 50) was selected for this study. 
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3.1.2 Screening and Descriptive Measures 

Demographic characteristics of the remaining participants who passed screening tests and 

completed the full experiment are described in Table 2. Fifty participants (37 females and 13 

males) consisted of 33 white and 17 black individuals with ages ranging from 40 to 64 years old 

(mean = 56.36; SD = 6.17) and education years ranging from 10 to 25 years (mean = 16.37; SD 

= 2.95). The mean score of the PICA naming test was 14.90 (SD = 0.22; max = 15.0; min = 14.0). 

In screening tests, the mean score of the NU-6 was 24.96 (SD = 0.20; max = 25; min = 24); the 

mean score of the CRTT-L was 14.48 (SD = 0.30; max = 14.89; min = 13.86); the mean score of 

the ABCD was 0.96 (SD = 0.08; max = 1.14; min = 0.70); the mean score of the WFM was 

46.04 (SD = 10.05; max = 64; min = 26); and the mean score of the RCPM was 31.88 (SD = 

4.32; max = 36; min = 19). 



67 

Table 2. Participant biographical data and descriptive performance measures 

Participant Sex Race Age 

Education 

level 

(years) 

PICA 

naming 

Vision by 

Reduced 

Snellen 

chart at 

20/40 or 

better 

Pure-tone 

air-

conduction 

(at 25 dB HL 

at 0.5, 1, 2, 

and 4 kHz) 

a
NU-6 

(cut off 

score 

= 22) 

b
CRTT-

L (cut 

off score 

=13.86) 

c
ABCD 

ratio 

(cut off 

score 

= .70) 

d
WFM 

(cut 

off 

score 

= 25) 

e
RCPM 

(cut off 

score 

= 18) 

1 Female Black 40 12 15 Pass Pass 25 14.32 0.93 57 35 

2 Female White 53 16 14.8 Pass Pass 25 14.51 0.87 31 29 

3 Female White 59 16 15 Pass Pass 25 14.77 1.00 41 34 

4 Female White 57 18 15 Pass Pass 25 14.62 0.92 43 34 

5 Male White 49 16 15 Pass Pass 25 14.44 1.00 51 33 

6 Female White 44 15 15 Pass Pass 25 14.89 1.00 36 35 

7 Male White 64 17 15 Pass Pass 25 14.10 1.00 32 36 

8 Male White 53 19 14.2 Pass Pass 25 14.27 0.87 33 31 

9 Male White 64 16 15 Pass Pass 25 13.97 0.80 26 35 

10 Male Black 47 12 14.3 Pass Pass 25 13.86 0.87 36 29 

11 Male White 59 16 15 Pass Pass 24 14.47 0.88 47 35 

12 Female Black 64 15 15 Pass Pass 25 14.26 1.00 32 25 

13 Female White 54 18 15 Pass Pass 25 14.60 1.00 35 35 

14 Female Black 44 20 14.5 Pass Pass 25 14.45 1.08 62 31 

15 Female White 57 22.5 15 Pass Pass 24 14.81 0.94 52 36 

16 Female Black 43 14 14 Pass Pass 25 14.23 0.70 53 27 

17 Female White 44 14 15 Pass Pass 25 14.83 1.00 46 34 

18 Female White 59 19 15 Pass Pass 25 14.46 1.00 43 32 

19 Female Black 48 14 14.5 Pass Pass 25 14.02 1.08 47 31 

20 Female Black 50 10 15 Pass Pass 25 14.13 1.07 49 22 

21 Female White 50 25 15 Pass Pass 25 14.75 1.00 46 35 

22 Female White 57 16 15 Pass Pass 25 14.64 0.79 47 35 

23 Male Black 61 16 15 Pass Pass 25 14.68 1.00 63 32 

24 Male White 59 22 14.7 Pass Pass 25 14.70 0.88 54 35 

25 Female White 56 16 15 Pass Pass 25 14.63 0.93 51 33 

26 Female White 59 14 15 Pass Pass 25 14.64 1.14 52 30 

27 Female Black 57 14 14.8 Pass Pass 25 14.38 1.00 58 22 



68 

Table 2 (Continued) 

Participant Sex Race Age 

Education 

level 

(years) 

PICA 

naming 

Reduced 

Snellen 

Pure-tone 

air-

conduction 
a
NU-6 

b
CRTT-

L 

c
ABCD 

ratio 
d
WFM

 e
RCPM

 

28 Female White 56 17 15 Pass Pass 25 14.62 0.94 36 33 

29 Female White 56 16 15 Pass Pass 25 14.67 0.93 41 36 

30 Male White 64 18 15 Pass Pass 25 14.64 1.00 32 34 

31 Male Black 56 16 14.8 Pass Pass 25 14.43 1.09 41 31 

32 Male Black 55 14 14.8 Pass Pass 25 14.15 1.00 36 27 

33 Female White 62 15 15 Pass Pass 25 14.76 0.80 53 36 

34 Female Black 60 18 15 Pass Pass 25 14.83 1.00 64 34 

35 Female White 63 16 15 Pass Pass 25 14.79 1.00 62 36 

36 Female Black 57 13 15 Pass Pass 25 14.78 1.08 49 31 

37 Male White 61 16 15 Pass Pass 25 14.04 0.93 42 33 

38 Male White 60 23 15 Pass Pass 25 14.71 1.00 52 35 

39 Female White 61 18 15 Pass Pass 25 14.57 0.88 55 36 

40 Female Black 58 20 15 Pass Pass 25 13.91 1.00 51 31 

41 Female White 62 12 15 Pass Pass 25 14.41 1.00 49 34 

42 Female Black 57 14 15 Pass Pass 25 13.94 0.93 40 19 

43 Female Black 61 12 15 Pass Pass 25 13.96 0.93 27 20 

44 Female White 56 17 14.8 Pass Pass 25 14.66 1.06 51 35 

45 Female White 61 16 15 Pass Pass 25 14.60 0.94 36 29 

46 Female White 64 18 15 Pass Pass 25 14.70 1.00 53 29 

47 Female Black 59 15 15 Pass Pass 25 13.90 1.00 45 29 

48 Female White 62 18 15 Pass Pass 25 14.78 1.00 59 36 

49 Female White 61 17 15 Pass Pass 25 14.79 1.00 64 36 

50 Female White 55 17 15 Pass Pass 25 14.68 0.94 41 33 

Mean (13M;37F) (33W;17B) 56.36 16.37 14.90 (50 Pass) (50 Pass) 24.96 14.48 0.96 46.04 31.88 

SD   6.17 2.95 0.22   0.20 0.30 0.08 10.05 4.32 

Note: 
a
NU-6 = Northwestern University Auditory Test No. 6 (Tillman & Carhart, 1966; Wilson et al., 1990); 

b
CRTT-L = the listening Computerized Revised 

Token Test (McNeil et al., 2015); 
c
ABCD ratio = Arizona Battery for Communication Disorders of Dementia (Bayles & Tomoeda, 1993), determined by number 

of delayed recall items/number of immediate recall items × 100; 
d
WFM = CFL form of the Word Fluency Measure (Borkowski et al., 1967); 

e
RCPM = Raven’s 

Coloured Progressive Matrices (Raven, 1962). 
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3.2 STIMULI 

3.2.1  Target Items 

The Philadelphia Naming Test (PNT) (Roach, Schwartz, Martin, & Grewal, 1996), consisting of 

a set of 175 pictures, was used as the target stimuli. The PNT is a picture-naming test developed 

to collect a large corpus of naming responses from a standardized set of items. It has favorable 

psychometric properties and has been used in many studies investigating the underlying nature of 

aphasic naming deficits (e.g., Dell et al., 1997; Schwartz et al., 2006). The pictured items were 

selected on the basis of their high familiarity, name agreement, and good image quality (black-

and-white line drawings of minimal complexity and confusability). Target names are all basic 

level concepts (i.e., not subordinate or superordinate; no targeting of famous faces or landmarks) 

and cover a relatively wide range of word lengths (1 to 4 syllables), and semantic categories 

(animals, body parts, clothing, food, furniture, tools, vehicles etc.). A high percentage of concept 

familiarity and name agreement are also reported (97% correct) from the naming performance of 

unimpaired controls (Dell et al., 1997; Roach et al., 1996).  

In the current study, several lexical variables including target items’ frequency, age of 

acquisition (AoA), neighborhood density, word length, and imageability were included in order 

to examine the effect of the primary predictors in the GLMMs while controlling for the 

confounding effects of the lexical variables. In addition, when allocating 175 PNT target items 

into four distractor conditions, these lexical variables were controlled across the conditions. The 

description of the databases used to match lexical variables follows.  

Frequency was matched though the Celex corpus (Baayen, Piepenbrock, & Van Rijn, 

1993; available at http://Celex.mpi.nl). This corpus is based on 16.6 million written and 1.3 

http://celex.mpi.nl/
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million spoken words and is commonly used for word frequency studies in psycholinguistic 

research.  

Unlike Kittredge et al. (2008) who extracted AoA information from the published norms 

for the American version of the MacArthur Communicative Development Inventories (MCDI), 

or CDI (Fenson, Tomasello, Mervis, & Stiles, 1994), the current study used a different AoA 

database. Only three categorical scales are used in the MCDI database (i.e., infants from 8 to 16 

months; toddlers from 16 to 30 months; ages from 30 months). Thus, there is a chance that 

statistical power may be low, resulting in a failure to identify the co-varying effect of AoA on 

items. Also, the full corpus consists of 795 items (520 objects and 275 actions), which limits the 

full coverage of the PNT object items as well as their distractors. Thus, the current study utilized 

Kuperman, Stadthagen-Gonzalez, & Brysbaert's (2012) corpus, which presents AoA ratings for 

30,121 English content words (nouns, verbs, and adjectives), using the web-based crowdsourcing 

technology offered by the Amazon Mechanical Turk. It reports as high validity and reliability as 

those collected in laboratory conditions, and reaches 93% for a subsample of 2,500 monosyllabic 

words. The database is available at http://crr.ugent.be/archives/806/. 

Next, phonological neighborhood density, which refers to the number of each word’s 

phonological neighbors, was obtained by deleting one phoneme from the given word. The 

current study used the Cross-Linguistic Easy-Access Resource for Phonological and 

Orthographic Neighborhood Densities online database (CLEARPOND; Marian, Bartolotti, 

Chabal, & Shook, 2012); available at http://clearpond.northwestern.edu/englishpond.html). Since 

auditory stimuli were used in the current study, phonological neighbor type was selected with the 

neighbor metric of ‘deletion.’  

http://clearpond.northwestern.edu/englishpond.html
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In addition, imageability was derived from the MRC Psycholinguistic Database 

(Coltheart, 1981), which contains 150,837 words and information on many lexical variables. A 

high rate indicates high imageability. The database is available at http://www.psych.rl.ac.uk.  

Finally, word length was determined as the number of phonemes in the word. This information 

was extracted from CLEARPOND (Marian et al., 2012). 

3.2.2  Outliers and Distribution of Lexical Properties 

After obtaining lexical properties for the stimuli, the descriptive statistics and a histogram of 

word frequency of target items, a variable of most interest in the current study, were obtained to 

determine outlier that may confound the research outcome. The mean of frequency for the 175 

target items was 1194.40 (SD = 2815.90; min = 2, max = 29231). As shown in Figure 20, some 

extreme values were identified that may be considered outliers. In order to determine the outliers, 

frequency values were transformed to z-scores for all 175 items with cut-off score of +3.29 or -

3.29 (equivalent to an alpha level of 0.001). Three items exceeded +3.29, as shown in Table 3. 

Since extreme values included in the analysis can result in a possible confounding effect on the 

results, those three target items (i.e., hand, man, house) were excluded from the analysis. Each 

outlier was removed from semantic, phonological, and mixed distractor conditions, thus all four 

conditions had an identical number of stimuli with an n of 43. 
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Figure 20. Histogram of 175 target word frequency 

 

Table 3. Z-scores of three items that exceed z = 3.29 

Distractor 

condition Item Frequency Z score 

Semantic hand 12983 4.18644 

Phonological man 29231 9.95653 

Mixed house 10864 3.43393 

 

For the remaining 172 items, the skewness of variables was examined along with means, 

SDs and ranges to determine appropriate statistical approaches (parametric vs. non-parametric) 

for further analysis. According (Bulmer, 1967), a distribution less than −1 or greater than +1 was 



73 

interpreted as highly skewed, and a distribution between −1 and −½ or between +½ and +1 was 

interpreted as moderately skewed. As shown in Table 4, distributions of target words’ frequency 

(3.01) and length (5.47), and distractor frequency (5.47) were highly and positively skewed. 

Target words’ AoA (0.63), density (0.88) and distractor words’ AoA (0.89), density (0.99) were 

moderately and positively skewed. A moderate-negative skewness was shown in target words’ 

imageability (-0.79). Accordingly, non-parametric approaches were utilized in the current 

statistical analyses. Details are addressed in the section of 3.8. ‘Statistical Analysis’. 

 
Table 4. Descriptive statistics of 172 PNT target word and paired distractor word properties 

 PNT target words  Distractors 

 Mean SD Range Skewness  Mean SD Range Skewness 

Frequency 906.64 1424.37 2-9384 3.01  398.71 785.62 0-7528 5.47 

AoA 4.97 1.32 2.50-9.16 0.63  6.22 1.93 2.78-14.88 0.89 

Density 1.15 1.25 0-5 0.88  0.90 1.07 0-4 0.99 

Length 4.28 1.69 1-10 1.05  4.79 1.49 2-9 0.49 

Imageability 596.24 28.49 486-644 -0.79  585.87 31.07 507-652 -0.34 

Note: PNT = Philadelphia Naming Test; AoA = age of acquisition; Density = Phonological neighborhood density; 

Length = number of phonemes.  

 

3.2.3  Distractors 

Among the error categories used in Schwartz et al. (2006) and Dell et al. (1997), semantic, 

phonological, mixed, and unrelated word distractors that indicate errors in the process of lexical 

access were presented aurally. Since PWA generated those error types due to damage in either 

one or both of the two lexical steps, the current study matched the distractor types with the four 

error types. Each distractor condition consisted of 43 items making the sum of items 172. Each 

distractor item was paired with the target item.  

Each distractor was presented at a different SOA concurrently with the corresponding 

picture stimulus. The details on how distractors were developed for the experiment of the current 
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study are illustrated as follows. The current study selected semantic and mixed distractors within 

the same category to increase the inhibition effect. This was based on the evidence that semantic 

distractors can show an inhibition effect when the distractors are from the same semantic 

category (e.g., CAR to the target item TRUCK), or a facilitation effect when the distractors are 

semantically associated (e.g., BUMPER to the target item TRUCK) (Caramazza, Alario, & 

Costa, 2005). Semantic categories of the distractors included body, animals, furniture, 

vegetables, fruits, cooking tools, containers, accessories, buildings, rooms, tools, household 

devices, persons, occupations, sports, plants, geography, rooms, clothes, shoes, weapons, musical 

instrument, and vehicles, which are identical to those of the target items. The unrelated words 

belonged to one of the same semantic categories of target items but did not share the same 

category of the matched target items. None of the distractors overlapped with the PNT word list. 

The same database sources for the target’s lexical variables (i.e., the frequency, AoA, 

neighborhood density, Imageability, and word length) were used when developing distractor 

items for the experiment.  

3.2.4  Lexical Properties of Target Words and Distractors 

Lexical properties of the 172 PNT target words and paired distractors for the four distractor 

conditions where semantic, phonological, mixed, and unrelated distractors, were presented in the 

PWI task are summarized in Table 5 and Table 6. 

Due to the non-normal distribution of variables, the Kruskal-Wallis test was performed 

for target words and distractors separately as a function of distractor conditions. This was done in 

order to determine whether lexical properties of target words and distractors would be controlled 

across all four distractor conditions. None of lexical variables were significantly (p < .05) 
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different between distractor conditions. There was no significant difference among distractor 

conditions in the frequency, χ
2
 = 1.421, p = .701; AOA, χ

2
 = 3.274, p = .351, neighborhood 

density, χ
2
 = 1.569, p = .666, word length, χ

2
 = 3.659, p = .301, or imageability, χ

2
 = 068, p = 

.995. 
 

Table 5. 172 Target items’ mean and standard deviation for five lexical variables 

Lexical variable 
Distractor 

condition 

Actual n for 

SPSS 
Mean SD Range 

Word frequency 

 

Semantic 

Phonological 

Mixed 

Unrelated 

43 

43 

43 

43 

966.88 

885.42 

548.49 

1225.77 

1684.57 

1210.34 

662.65 

1810.72 

27-9384 

2-4620 

33-2937 

16-7780 

AoA 

 

Semantic 

Phonological 

Mixed 

Unrelated 

43 

42 

43 

43 

5.10 

5.12 

4.70 

4.95 

1.33 

1.10 

1.14 

1.63 

2.89-8.17 

2.95-8.50 

2.50-7.55 

2.60-9.16 

Density 

 

Semantic 

Phonological 

Mixed 

Unrelated 

43 

43 

43 

43 

0.95 

1.09 

1.35 

1.19 

1.13 

1.17 

1.46 

1.22 

0-4 

0-4 

0-5 

0-4 

Length 

 

Semantic 

Phonological 

Mixed 

Unrelated 

43 

43 

43 

43 

4.49 

4.44 

4.23 

3.98 

1.82 

1.68 

1.48 

1.79 

1-9 

2-10 

2-7 

2-9 

Imageability Semantic 

Phonological 

Mixed 

Unrelated 

33 

29 

37 

36 

596.70 

597.52 

597.35 

593.64 

29.95 

22.84 

25.65 

34.39 

522-644 

543-642 

550-462 

486-369 
Note: ‘Actual n for SPSS’ indicates the number of items which were derived from lexical database and used for 

statistical analysis.  

 

Table 6 shows the lexical properties of the distractors. None of lexical variables showed a 

significant (p < .05) difference between distractor conditions and there was no significant (p < 

.05) difference in the frequency, χ
2
 = 7.619, p = .055, AOA, χ

2
 = 3.402, p = .334, neighborhood 

density, χ
2
 = 2.723, p = .436, word length, χ

2
 = 0.941, p = .816, and imageability, χ

2
 = 4.855, p = 

.183.
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Table 6. 172 Distractors’ mean and standard deviation for five lexical variables 

Lexical variable 
Distractor 

condition 

Actual n for 

SPSS 
Mean SD Range 

Word frequency 

 

Semantic 

Phonological 

Mixed 

Unrelated 

43 

43 

43 

43 

338.51 

689.00 

187.70 

379.63 

497.69 

1346.99 

258.13 

498.20 

6-2644 

4-7528 

1-1441 

0-2517 

AoA 

 

Semantic 

Phonological 

Mixed 

Unrelated 

43 

42 

43 

43 

6.07 

6.23 

6.65 

5.90 

1.97 

1.68 

2.21 

1.80 

3-10.22 

3.38-9.82 

3.58-14.88 

2.78-11.22 

Density 

 

Semantic 

Phonological 

Mixed 

Unrelated 

42 

42 

40 

43 

1.02 

1.00 

0.85 

0.74 

0.98 

1.19 

1.14 

0.98 

0-4 

0-4 

0-4 

0-3 

Length 

 

Semantic 

Phonological 

Mixed 

Unrelated 

43 

42 

40 

43 

4.79 

4.90 

4.63 

4.84 

1.71 

1.43 

1.41 

1.41 

2-9 

3-8 

2-8 

2-8 

Imageability Semantic 

Phonological 

Mixed 

Unrelated 

25 

29 

27 

27 

586.20 

578.86 

586.19 

595.78 

29.67 

33.83 

33.60 

25.21 

508-645 

507-647 

515-652 

527-635 

3.3 APPARATUS 

This study collected all experimental data with an ASUS X550CA Notebook PC. E-Prime 2.0 

(Schneider, Eschman, & Zuccolotto, 2002) was used to control the presentation of stimuli, 

timing operations, and data acquisition. Visual stimuli were the 172 PNT pictures. All pictures 

were extracted from the Moss Rehabilitation Research Institute (http://mrri.org), which are 

digitized at a size of approximately 18×20cm. Each picture was presented as a black line drawing 

on a white background. The auditory distractors were recorded by a female American English 

native speaker and presented to participants via headphones. In order to analyze response types 

and RTs, participants’ verbal responses were all recorded using an Olympus digital voice 

recorder VN-702PC. 

http://mrri.org/
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3.4 DESIGN 

In order to establish a baseline, picture-naming without distractors was conducted before the 

experimental data collection. Pictures were presented in random order across participants. In the 

experimental condition, all participants named 172 PNT items while hearing auditory distractors 

consisting of 43 items for semantic, phonological, mixed distractor, and unrelated distractor 

conditions. Paired pictures and distractors were presented in random order across participants. 

This study manipulated the SOA between picture and distractor referencing the 

procedures established at +150ms for semantic, mixed, and unrelated distractor conditions, and -

150ms for the phonological distractor condition. These values are based on the literature 

demonstrating an inhibition effect of semantically related words on picture naming latencies, 

which appears at an early SOA (- 150ms) (distractor precedes picture) and the facilitation effect 

of phonologically related words that occurs at (0ms [distractor and picture presented 

concurrently], + 150ms [picture precedes distractor]) when distractors are presented auditorily 

(Damian & Martin, 1999; Sailor et al., 2009; Schriefers et al., 1990).  

3.5  PROCEDURE 

The overall procedure of the current study is depicted in Figure 21. All experimental procedures 

including informed consent was obtained by the author from each potential participant before 

he/she participated in the research study. The screening tests and the experimental tasks each 

took about 40 minutes. Two 10 minutes-breaks were given, one after the screening tests and the 
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other one after the Baseline task. An approximate total duration was between 1.5 to 2 hours 

including the time for obtaining informed consent.  

 

 

Figure 21. Study flowchart 

All data were collected within a one-day visit. Hearing screening tests were administered 

in the Auditory Processing Laboratory of the Department of Communication Sciences and 

Disorders at the University of Pittsburgh, and remaining screening tests and experimental tasks 

were implemented in a lab located in the same facility on the day of the appointment. In order to 

avoid distracting the participant’s attention during the experiment, the investigator sat to the side 

and slightly behind the participants' field of vision and did not interact with the participant until 

each task was completed.  
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Enrolled participants were tested individually in a quiet room and at a comfortable viewing-

distance in front of the computer display. First, a baseline task instruction was provided on the 

screen as shown in Appendix B. Then, a plus sign (+) was presented for 500 ms to serve as a 

participant’s visual fixation point on the screen. After a blank interval of 500ms, ten practice 

picture items were presented sequentially. Whenever the participant completed naming a single 

picture, the principal investigator clicked a mouse button to display the next picture. Between 

pictures, a 500ms blank interval, a 500ms fixation with a beep sound and another 500ms blank 

interval appeared (see Figure 22). After confirming participant’s understanding of the picture  

naming task, individual PNT picture was presented on the monitor with the same procedures 

described above. To avoid order effects of items across participants and between the Baseline 

and PWI tasks, pictures were presented in a random order. 

 
Figure 22. Baseline Task procedure 
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After finishing the Baseline task, participants had a 10 minute-break. An instruction for 

the PWI task was given to the participants (see Appendix B), which asked them to ignore the 

distractor words and name the pictures as quickly as possible. As shown in Figure 23, this was 

followed by a fixation cross at the center of the screen for 500ms with a beep sound in each 

individual trial. After a blank interval of 500ms, 10 practice items along with paired distractors 

were presented. Depending on the distractor type, either at the SOA= -150ms (for semantic, 

mixed, and unrelated distractors), or the SOA= +150 (for phonological distractors) was selected 

based on Damian and Martin (1999). Thus, distractors were presented 150 ms before or 150 ms 

after the picture onset. All distractors were presented auditorily via headphones. The 

experimenter clicked a mouse button as soon as a participant responded. This was followed by a  

 

Figure 23. Diagram of the PWI Task Procedure 
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500ms blank interval and a 500ms fixation slide with a beep sound and then another 500ms 

blank interval, designed to appear before the onset of next target picture. After confirming that 

participants understood the instruction and named practical picture items as fast as they could, 

they were asked to name the randomly ordered 172 picture items while hearing paired 

distractors. The procedures with the experimental stimuli were identical to the practice 

procedures for the PWI task, as described above. 

Each participant’s verbal responses were recorded for analyses of RTs and response 

types. RTs were operationally defined as latencies from the onset of picture stimuli to the onset 

of the speech sound for the correct response. Due to cases of participants’ false starts (e.g., 

clearing throat or use of interjection), poor voice key activation in the E-Prime was expected 

when it came to detecting the onset of the speech sound. Thus, manual examination of the speech 

wave forms using an audio file editing program, Audacity®  (version 2.1.1; Retrieved from 

http://audacityteam.org/download on April 1, 2015) was used. In order to reliably determine the 

onset of speech sound, acoustic characteristics of each vowel and consonant for initial sounds of 

172 target words were considered based on the literature (Kent & Read, 1992; Speech 

Waveforms by Mannell, R. Retrieved from http://clas.mq.edu.au/speech/acoustics/ 

waveforms/speech_waveforms.html on April 1, 2015). The key acoustic features of vowels and 

consonants that were taken into account in the current study are described in Appendix E. After 

obtaining a list of speech sounds onsets for Baseline and the PWI task separately, the time 

information extracted from the speech waveforms was synchronized with the one from the E-

Prime report by matching the onset time of the acoustic signal (i.e. the beep sound).  

For response type analysis, each individual’s verbal response was dictated on the 

response sheet (see Appendix C) for 172 items of Baseline and PWI tasks. Those were evaluated 
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based on the description of response types illustrated in Appendix D and then the initial letter of 

each type was inserted in the response sheet as follows: C = correct response, S = semantic error, 

P = phonological error, M = mixed error, and O = others. For statistical data analysis, these 

initial letters were then coded as 1 = C, 2 = S, 3 = P, 4 = M, and 5 = O. If the responses were real 

words, orthographical transcription was used (e.g., “candle”). Whereas. if the response was not a 

real word, broad phonetic transcription was used by two raters. 

3.6  INTER-RATER RELIABILITY 

Ten percent of the total responses from 50 participants (i.e., 5 participants’ samples) were 

randomly selected for the inter-rater reliability test between the author as a first rater and a 

research assistant as a second rater. The second rater was a senior undergraduate student in the 

Department of Communication Science and Disorders at University of Pittsburgh, who met 

eligibility criteria including: 1) completion of 'Speech Science' course, which was a prerequisite 

for this position due to the nature of task that dealt with a wide range of acoustic characteristics; 

2) having a research experience in analyzing speech sound waves using Audacity software; 3) 

understanding of error patterns for people with neurogenic language disorders; and 4) completion 

of all required IRB training courses for accessing human subject data. 

Before the actual analysis by the second rater, a one-day training was completed focusing 

on 1) reviewing the acoustic characteristics of vowels and consonants; 2) measuring and labeling 

the onset of each speech sound from speech waveforms in the audio file editing program; 3) 

analyzing response types of participants. First and second raters did the analyses independently.  
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The two raters’ coded response types as well as RT data were computed for inter-rater 

reliability. The reliability of response type was calculated by Cohen’s chance-corrected kappa 

statistic (Cohen, 1960) to account for chance agreement. The intra-class correlation coefficient 

(ICC) (Shrout & Fleiss, 1979) was used for the continuous RT measures. 

The results of the response type analysis were Kappa = 0.819 with p <  .001 for the 1,720 

data (172 items × 10 samples), which is interpreted as an almost perfect agreement: As a rule of 

thumb, values of Kappa from 0.21 to 0.40 are considered fair agreement, from 0.41 to 0.60 

moderate agreement, from 0.61 to 0.80 substantial agreement, and from 0.81 to 1.00 almost 

perfect agreement (Landis & Koch, 1977). Discrepancies between the two raters were resolved 

by consensus before the actual data analysis step for the full data set.  

ICCs were computed for a one-way model for the RT dependent measure. In the one-way 

random-effects model, the n targets are rated by a different set of k raters randomly drawn from 

the population of potential raters. The ICC ranges between 0.00 and 1.00. Values that are closer 

to 1.00 represent stronger reliability. As a rule of thumb, values above 0.75 are interpreted as 

good reliability. However, in clinical studies, values above 0.90 tend to be required to ensure 

reasonable levels of association (Portney & Watkins, 2009). Results showed that the estimated 

correlation between individual ratings was 0.996 with 95% CI (0.9960, 0.9967), indicating 

extremely high correspondence between ratings within a target.  
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3.7 STATISTICAL ANALYSIS 

3.7.1  Prescreening Procedures for Potential Covariates 

Before preforming primary data analysis, potential covariates were prescreened to increase the 

statistical power and alleviate the adverse effects on estimated coefficients. Predictors that might 

show significant correlation with dependent variables but low correlations with the other 

predictors were determined as potential covariates that would be entered into the models for 

analysis. The details of the procedures are as follows: 

Step 1. The Spearman’s rank correlation test was conducted between predictors and 

continuous dependent variable RTs with a cut off value of p < .10 using StataSE 14 (StataCorp) 

to identify the potential predictors of the dependent variables. Also, considering the nature of 

non-normality, rank biserial correlation coefficients (Cureton, 1968; also known as Somers' D) 

were obtained with the same cut off. Somers’ D is known as a nonparametric statistic for the 

point biserial correlation.  

Step 2. For those predictors that were screened at step 1, the presence of the 

multicollinearity among predictors was evaluated by creating a correlation coefficient matrix 

(Mansfield & Helms, 1982; Neter, Kutner, Nachtsheim, & Wasserman, 1996). Using two highly 

correlated independent variables in the same model results in less predictive power and adversely 

affects reliable estimates of the individual coefficients by increasing the estimated standard 

deviations of the regression coefficients (Mansfield & Helms, 1982; Neter, Kutner, Nachtsheim, 

& Wasserman, 1996). Based on the rule of thumb, predictor correlation coefficients that were 

equal and above the cut off value .70, were interpreted as high correlation (Hinkle, Wiersma, & 

Jurs, 2003; Mukaka, 2012). One of the two variables that might show high correlation was 
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removed from the model to reduce the collinearity. The decision of which of the two predictors 

to remove depended on the predictors’ scientific or practical implication for current and future 

studies. Predictors with high implication remained in the models. 

Step 3. The predictors that met the requirements of step 1 and 2 were chosen as potential 

covariates for primary data analysis. Only those covariates that contribute significantly to the 

dependent variables were retained in the final model. 

3.7.2  Generalized Linear Mixed Models (GLMMs) 

Multilevel-effect models take into account person-specific variability, to recognize the partial 

interdependence between responses and to account for the clustered nature of the data (Hofmann, 

1997; Raudenbush & Bryk, 2002; Terhorst, 2008). Thus, variation in RTs for items within a 

participant (Baayen, Davidson, & Bates, 2008; Baayen & Milin, 2010), individual differences in 

the resting activation level and selection threshold per each item, along with the effects of 

covariance of other lexical variables (e.g., AoA, density) in the nested data structure (Kittredge et 

al., 2008; Raudenbush & Bryk, 2002) were expected to be accounted for by using this approach.  

Non-normality of fixed variables was reported in section 3.2.2 ‘Outliers and distribution 

of lexical properties’. The dependent variable, RT also showed high positive skewness (19.99) 

(interpreted according to Bulmer [1967]). In this situation, GLMMs are known to be a flexible 

approach for analyzing dependent variable that are not normally distributed in multilevel effect 

models. In addition, GLMM allows for researchers to conduct analysis for continuous as well as 

discrete data (Bolker et al., 2009; Garson, 2013; McCulloch, Searle, & Neuhaus, 2008).  

All analyses were computed within StataSE 14 (StataCorp). The package gllamm was 

used to run GLMM. Tests are two‐tailed and the initial alpha level was set at 0.05. Multiple 
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comparisons were corrected using Bonferroni correction, which is a commonly used method for 

several planned comparisons as a protection against Type I error (Portney & Watkins, 2009). 

3.7.2.1  Fixed effect, random effect, covariates, and dependent variable 

With the two-level structure of the data, level-1 examined the predictors and covariate effects in 

dependent variables in terms of the item, and level-2 examined the predictors and covariate 

effects in the same dependent variables in terms of participants. 

To achieve specific aim 1, target word frequency was designated as a fixed predictor of 

level-1 (items) and RT was set as the dependent variable. For specific aim 2, distractor frequency 

was examined as a covariate in the models, and then the fixed effect was replaced with the 

interaction between the target word frequency and distractor frequency. For specific aim 3, either 

the fixed effect of target word frequency or the fixed effect of interaction between targets and 

distractors was examined as binary data for response type (0 for a non-occurrence of a particular 

response type, 1 for an occurrence of a particular response type).  

For each model, the level-2 (individuals’) intercept was considered a random effect, 

which showed the individual difference in the dependent variables. Potential covariates such as 

AoA, density, length, imageability at item-level, age, education years, and PICA naming scores 

at an individual-level were entered into the models in order to increase statistical power 

(Scherbaum & Ferreter, 2009). Covariates that were significant on the dependent variable 

remained in the final models.  

Note that providing a well-established set of distractor conditions is important to evaluate 

the specific aims. In other words, unlike the Baseline, where distractors were not presented, 

participants should show different patterns of behavior depending on the distractor type provided 

during the PWI task. For example, increased RT with implementation of the semantic distractor 
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condition compared to RT in unrelated distractor conditions indicates that the semantic 

distractors played a role in lexical selection at the semantic representation level (i.e., inhibition 

effect). Conversely, decreased RTs in the phonological distractor condition compared to RT in 

unrelated conditions reflects the phonological encoding stage (i.e., facilitation effect). Increased 

RT in the mixed distractor condition compared to RT in the unrelated condition, reflects the 

interaction between two representation levels (i.e., inhibition effect). Once this assumption is 

verified, the results of the main analysis can be interpreted under the two-step word retrieval 

model. Thus, additional GLMM analyses were added with different fixed predictor and 

dependent variables. To support specific aims 1 and 2, the RTs interaction of task type and 

distractor type were entered as fixed predictors. Meanwhile, to support specific aim 3, where 

response types were analyzed, the fixed predictor was replaced with the interaction of task type 

and response type, and the number of responses (i.e., data count for each individual’s response 

types) was set as the dependent variable. 

3.7.2.2  Estimation 

Numerous methods of estimation are available and in general, researchers most frequently 

choose Maximum Likelihood (ML). ML estimation allows for choosing estimates of parameters 

for which the likelihood of observing the outcome Y is at a maximum (Snijders & Bosker, 1999). 

Other estimation method, such as restricted maximum likelihood (ReML), was not considered 

because ReML estimates are biased when using GLMM (Noh & Lee, 2007).  Therefore, 

calculations cannot be used with GLMM (Grilli & Rampichini, 2006). 
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3.7.2.3  The models 

In this section, three multilevel models were fitted into GLMM using gllamm syntax in StataSE 

14 were explored depending on the characteristics of dependent variables: identity-gamma 

models, binary-logit models, and Poisson models. For specific aim 1 and 2 where continuous data, 

RTs, were used, the simple form of the two-level hierarchical linear models (Hofmann, 1997; 

Raudenbush & Bryk, 2002) was extended and fitted to the GLMM. 

Level-1: Yij = β0j + β1j Xij + rij, 

Level-2: β0j = γ00 + γ01 Wj + u0j, β1j = γ10 + γ11 Wj + u1j, 

where there are i = 1, ... , nj level-1 units nested with j = 1, ... , J level-2 units. Yij is the 

outcome measure for item i in participant j. Xij is a level-1 predictor for item i in participant j (i.e., 

target word frequency or the interaction between targets’ and distractors’ frequencies were tested 

as predictors at level-1 in the current study). β0j and β1j are intercept and slope estimated 

separately for each participant and rij is the level-1 residuals. At level-2, γ00 and γ01 are level-2 

coefficients. Wj is a level-2 predictor for participant j. u0j and u1j are level-2 residuals.  

According to the description of Raudenbush & Bryk (2002) (pp. 293-294), the sampling 

model for a two-level model with continuous outcomes might be expressed as  

Yij | uij ~ NID (uij, σ
2
), 

meaning that the level-1 outcome Yij, given the predicted value, uij, is normally and 

independently distributed with an expected value of uij and a constant variable, σ
2
.  

However, as addressed earlier, the data are positively skewed for RTs and some predictor 

variables. Considering the non-normally distributed uij, an adjustment of the distribution type 

was made. Instead of a Gaussian model, which has a normal and symmetric distribution, an 
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identity-gamma model was selected in the current study for analyzing RTs. This model is 

frequently selected for positively skewed, untransformed, continuous data (Anderson, Verkuilen, 

& Johnson, 2010; Hardin & Hilbe, 2007). 

Binary-logit models were fitted using gllamm for the hierarchical binary data. From the basic 

models above, a transformed predicted value ηij is replaced with uij. The logit link for binary data 

is characterized as:  

ηij = log{φij / (1 - φij)}, 

where ηij is the log of the odds of occurrence of a certain response type and φij is the probability 

of that occurrence.  

For count outcomes, a Poisson model (Poisson, 1837) was used with a log link function. 

Counts refer to a simple counting of events and count data may be the form of a rate of 

occurrence (Hardin & Hilbe, 2007). The log link is,  

ηij = log (λij),  

where λij is the even rate. 
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4.0 RESULTS 

The summaries and results of the statistical analyses related to the research questions are 

provided in this section. The first subsection describes the response time (RT) results, with topics 

including: 1) rescreening test results potentially used as covariates for the continuous variable, 

RT; 2) results of interaction effects between task type and distractor type on RT used to 

determine whether the PWI task reflects well the lexical retrieval mechanism; 3) results of target 

word frequency effects on RT in three different distractor conditions (semantic, phonological and 

mixed conditions) in the PWI task used to address specific aim 1; and 4) interaction effects of 

target word frequency and distractor frequency on RT in the same distractor conditions used to 

address specific aim 2. A similar content structure was applied to the second subsection, but with 

response type as the dependent variable.  

When deciding the optimal GLMM, several characteristics of the dependent variables 

were taken into account. That is, special cases of family of distributions and link functions were 

applied into gllamm syntax to estimate models. In addition, different statistical methods for 

examining the correlation coefficient were used analyze the prescreening tests for potential 

covariates. Details are illustrated at each subsection.  
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4.1 RESPONSE TIME (RT) 

4.1.1 Analysis of Potential Covariates 

Prior to GLMM analysis, associations between a dependent variable, RT and several variables 

for both level-1 (item) and level-2 (individual) were evaluated to identify the potential predictors 

of the dependent variables with the cut off value of p < .10. The nonparametric Spearman’s rank 

order correlation coefficient (ρ) was used to estimate relationships among variables. Each 

correlation was based on all pairs with no missing values were. For those statistically significant 

(p< .10) predictors, correlations with other predictors were examined if the correlation 

coefficient was equal or above the cut off value (rs = .70) in order to reduce collinearity.  

Table 7 summarizes the correlation coefficients for various variables that were 

considered in the baseline. Different variables at level-1 were included depending on the task 

type (i.e., variables about lexical properties of distractor were only considered in the PWI task), 

and separate matrixes of Spearman’s rank correlation coefficients were computed for Baseline 

and the PWI task. There were significiant correlations between RT and target word proeprties 

including frequency (rs = -0.13, p < .001), AoA (rs = 0.23, p < .001), density (rs = -0.12, p 

< .001), and length (rs = 0.16, p < .001) at the alpha level =.10 (2-tailed). In addition, significiant 

correlations were found between RT and demographic properties including age (rs = -0.02, p 

< .10) and education years (rs = -0.05, p < .001), and a performance variable PICA (rs = 0.02, p 

< .001). As shown in the matrix, none of these variables were equal or greater than rs = .70 for 

detecting collinearity. Thus, all eight variables were entered to the models initially, then after an 

exploration for a parsimonious model, non-significant covariates were eliminated from the model.  
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Table 7. Spearman’s rank correlation coefficients (ρ) matrix for Baseline 

  
 

Item properties 
 

Individual properties 

  RT(ms) Freq. AoA Density Length Image 
 

Age Edu. PICA 

RT(ms) 1 
         

Target words 
         

     Freq. -0.13
***

 1  
        

     AoA 0.23
***

 -0.47
***

 1 
       

     Density -0.12
***

 0.18
***

 -0.20
***

 1 
      

     Length 0.16
***

 -0.48
***

 0.37
***

 -0.39
***

 1 
     

     Image -0.02
*
 0.16

***
 -0.09

***
 -0.24

***
 0.13

***
 1 

    
Demographics 

         
     Age -0.06

***
 0.00 0.01 0.00 0.00 0.00 

 
1 

  
     Edu.  -0.05

***
 0.00 0.00 0.00 0.00 0.00 

 
0.18

***
 1 

 
     PICA 0.02

**
 0.00 0.01 0.00 0.00 0.00 

 
0.46

***
 0.07

***
 1 

*
p < .10, 

**
p < .01, 

***
p < .001. 

Note: RT = response time (ms); PNT = Philadelphia Naming Test; AoA = age of acquisition; Density = 

phonological neighborhood density; Length = word length; Image = imageability; Edu = education years; PICA = 

Porch Index of Communicative Ability (Porch, 1981); Correlation coefficients in bold font meet or exceed the 

predetermined p < .10 for identifying covariates.  

 

Table 8 shows the correlation coefficients derived from the PWI task. Significiant (p 

< .10; 2-tailed) but low (ranging from .10 to .14) correlations were found between RT and target 

word proeprties including frequency, AoA, density, and length. In addition, there were 

significiant but low (ranging from .02 to .08) correlations between RT and distracor word 

proeprties including word frequency, density, and imageability. Signficiant and low correlation 

coefficients between the demographic properties of age, education years, and PICA scores and 

the dependent variable were found. None of these variables met or exceeded the predetermined 

rs = .70 criteria for detecting collinearity. Thus, eleven variables were entered to the models 

initially, then non-significant covariates were eliminated for a parsimonious model.  
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Table 8. Spearman’s rank correlation coefficients (ρ) matrix for PWI task 

  

Item properties 

 

Individual 

properties  Target words  Distractor words 

 

RT Freq. AoA Density Length Image 

 

Freq. AoA Density Length Image 

 

Age Edu. PICA 

RT(ms) 1 
               

Target words 
               

       Freq. -0.12*** 1.00*** 
              

       AoA 0.14*** -0.47*** 1 
             

       Density -0.10*** 0.18*** -0.20*** 1 
            

       Length 0.12*** -0.48*** 0.37*** -0.38*** 1 
           

       Image -0.02* 0.16*** -0.09*** -0.24*** 0.12*** 1 
          

Distractors 
                

       Freq. -0.03*** 0.18*** 0.02** 0.03** -0.08*** -0.10*** 
 

1 
        

       AoA  -0.01 -0.06*** 0.06*** 0 -0.07*** -0.14*** 
 

-0.38*** 1 
       

       Density 0.02* 0.01 0.05*** 0.02* -0.03*** 0.14*** 
 

0.19*** -0.11*** 1 
      

       Length 0.01 -0.14*** -0.01 -0.13*** 0.21*** 0.02* 
 

-0.41*** 0.26*** -0.49*** 1 
     

       Image 0.03* -0.19*** 0.02 -0.27*** 0.07*** 0.09*** 
 

0.19*** -0.16*** -0.08*** 0.12*** 1 
    

Demographics 
               

       Age -0.08*** -0.01 0.01 0 0 0 
 

0 0 0 0 0 
 

1 
  

       Edu.  -0.05*** 0 0 0 0 0 
 

0 0 0 0 0 
 

0.18*** 1 
 

       PICA 0.06*** 0 0 0 0 0 
 

0 0 0 0 0 
 

0.46*** 0.06*** 1 

*
p < .10, 

**
p < .01. 

***
p < .001. 

Note: RT = response time (ms); PNT = Philadelphia Naming Test; AoA = age of acquisition; Density = phonological neighborhood density; Length = word 

length; Image = imageability; Edu = education years; PICA = Porch Index of Communicative Ability (Porch, 1981); Correlation coefficients in bold font meet or 

exceed the predetermined p < .10 for identifying covariates.  
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In addition to the information about the potential covariates, other information can also 

be obtained from Tables 7 and 8. The coefficient of determination is calculated as the proportion 

of variablity in one variable that can be determined from the relationship with the other variable. 

The coefficient of determination for target word frequency on RT was 1.69% (r
2 

= 0.0169) in 

Baseline and 1.44% (r
2
= 0.0144) in the PWI task. Relative to Cohen’s (Cohen, 1988) 

recommended interpretaton of effect size, these data revealed a small effect size (where r
2 

= 

0.01= small effect; r
2
= 0.09 = medium effect; r

2
= 0.25 = large effect). However, it may be 

unwise to guage the magnitude of the relationship between RT and word frequency solely by this 

effect size calculation because it does not consider data dependency for each participant. This 

limitation points to the importance of examining the relationships between variables under multi-

level effect models.  

4.1.2 Interaction Effect Between Task Type and Distractor Type 

In this section, the interaction effect between task type and distractor type was reported. Task 

type consists of Baseline and the PWI task. Distractor type includes semantic, phonological, 

mixed, and unrelated. The primary purpose of this analysis is to determine if the semantic, 

phonological, and mixed distractor conditions represented well the semantic representation level, 

phonological representation level, and their intermediate stage of interaction by showing 

inhibition, facilitation, and combined effects respectively. Interpretations for specific aims 1 and 

2 can be derived from the two-step theory if the interaction is found to be significant. 

Mean RTs are illustrated in Table 9 for Baseline and the PWI tasks respectively for all 

four distractor types. A decreased RT in the PWI task was observed compared to Baseline. This 

decrease seems to be due to a learning effect from the repeated use of the 172 items, which was a 
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predicted phenomenon from the literature. Identifying the task effect is not the research question 

of interest; an interaction effect of task type and distractor type was the focus of the current study. 

When an interaction effect was found, a significant difference in RT between distractor types 

was tested with reference to the unrelated distractor condition, which was used in the PWI task.  

Table 9. Mean RT (ms) for Baseline and PWI Task 

Distractor Type 
Baseline 

 
PWI task 

Mean SD n 
 

Mean SD n 

Semantic 833.72 406.11 2091 
 

767.54 376.9 2070 

Phonological 853.39 462.84 2053 
 

595.6 386.93 2079 

Mixed 790.71 410.87 2091 
 

719.27 301.17 2090 

Unrelated 829.32 760.42 2068 
 

696.15 322.51 2047 

Total (N=172) 826.66 530.52 8303 
 

694.59 354.3 8286 

 The GLMM was estimated in order to examine the interaction of task type and distractor 

type on RT. Considering hierarchical continuous data with a positively skewed distribution, 

identity-gamma models were employed by using gllamm syntax. Task type, distractor type, and 

their interactions were entered as a fixed effect along with confounding variables identified in the 

previous subsection. Confounding variables that showed no significant effect on RT were 

removed to obtain a parsimonious model. These results are reported in Table 10. 

With a reference combination of Baseline × unrelated, a significant interaction effect was 

found for all three distractor types of interest: PWI × semantic (Coef. = 58.58, p < .001), PWI × 

phonological (Coef. = -155.51, p < .001), and PWI × mixed (Coef. = 48.51, p < .001). These 

interaction effects are depicted in Figure 24, Figure 25, and Figure 26 for semantic, phonological, 

and mixed distractors respectively.  
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Table 10. Effects of task type and distractor type and interaction effect (task × distractor) 

  Coef. SE P CI 

Task type 
    

       Baseline (ref.) - - - - 

       PWI -104.25
***

 7.89 0.000 [-119.71, -88.79] 

Distractor type 
    

       Semantic -7.27 8.7 0. 403 [-24.31, 9.77] 

       Phonologic 0.76 9.21 0. 934 [-17.29, 18.81] 

       Mixed -31.16
***

 8.38 0.000 [-47.59, -14.72] 

       Unrelated (ref.) - - - - 

Task × Distractor 
    

       Baseline × Unrelated (ref.) - - - - 

       PWI × Semantic 58.58
***

 11.68 0.000 [35.69, 81.46] 

       PWI × Phonologic -155.51
***

 11.46 0.000 [-177.97, -133.05] 

       PWI × Mixed 48.51
***

 11.02 0.000 [26.92, 70.11] 

Item properties        
    

       Target word frequency -0.01
***

 0.00 0.000 [-0.01, -0.00] 

                 ʺ         AoA 31.34
***

 1.81 0.000 [27.80, 34.89] 

                 ʺ         length 11.19
***

 1.63 0.000 [8.00, 14.39] 

                 ʺ         image -0.16
*
 0.07 0. 014 [-0.29, -0.03] 

Individual properties 
    

        Age 2.68
***

 0.35 0.000 [2.00, 3.36] 

        Education years -4.56
***

 0.72 0.000 [-5.98, -3.15] 

        PICA naming -202.30
***

 5.64 0.000 [-213.35, -191.26] 

Random part Variance SE 
  

Level-2 variance 6183.32 254.1 
  *

p < .05, 
**

p < .01, 
***

p < .001. 

Note: n of level 1 units = 12,907, n of level 2 units = 50. 

Covariates that appeared for both Baseline and the PWI task were entered in the model. 

ref. = reference, Coef. = coefficient, SE = standard error, CI = confidence interval, PWI = Picture word interference, 

AoA = age of acquisition.  

 

 
Figure 24. Mean RT of the semantic distractor condition and the unrelated distractor condition during Baseline and 

PWI task. 
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Figure 25. Mean RT of the phonological distractor condition and the unrelated distractor condition during Baseline 

and PWI task. 

 

 

 

Figure 26. Mean RT of the mixed distractor condition and the unrelated distractor condition during Baseline and 

PWI task. 

 

Due to the significant interactions of task type and distractor type, two additional 

identity-gamma models were analyzed for determining the simple main effect of distractor type 

for Baseline and PWI respectively, with reference to the unrelated distractor condition. An 
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additional identity-gamma model was used for determining the simple main effect of distractor 

type for PWI with reference to mixed distractors. A Bonferroni adjusted alpha level was set at p 

< .016 (= 0.05/3 contrast). 

A non-significant change in RT was found in the semantic distractor condition (Coef. = -

3.54, p = .659) and the phonological distractor condition (Coef. = 8.43, p = .307) (see Table 11). 

Despite controlling the lexical variables that are frequently reported to affect RT, participants 

showed a significant decrease in RT in the mixed distractor condition compared to the unrelated 

distractor condition (Coef. = -25.93, p < .01).  

 

Table 11. Effects of distractor type in Baseline 

  Coef. SE P CI 

Distractor type 
    

       Semantic -3.54 8.02 0.659 [-19.27, 12.18] 

       Phonological  8.43 8.26 0.307 [-7.75, 24.61] 

       Mixed -25.93
**

 8.04 0.001 [-41.69, -10.17] 

       Unrelated (ref.) - - - - 

Item properties        
    

       Target word frequency 0.00
*
 0.00 0.022 [-0.01, -0.00] 

                 ʺ         AoA 40.01
**

 2.62 0.000 [34.87, 45.15] 

                 ʺ         length 16.88
***

 2.05 0.000 [12.87, 20.89] 

Individual properties 
    

        Age 12.95
***

 0.56 0.000 [11.85, 14.04] 

        Education years -39.03
***

 1.27 0.000 [-41.51, -36.55] 

        PICA naming -155.13
***

 4.63 0.000 [-164.20, -146.06] 

Random part Variance SE 
  

Level-2 variance 22168.75 1053.27 
  

*
p < .016, 

**
p < .01, and 

***
p < .001.   

Note: Distractor type, a predictor of interest was evaluated at p < .016 (=0.05/3 contrast) using Bonferroni correction. 

n of level 1 units = 8,255, n of level 2 units = 50. 

Coef = coefficient, SE = standard error, CI = confidence interval, ref. = reference, AoA = age of acquisition.  
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In the PWI task with the influence of a distractor (see Table 12), a significant increase in 

RT in the mixed distractor condition was shown compared to the unrelated distractor condition 

(Coef. = 18.17, p < .025). In addition, unlike Baseline, a significantly increased RT was shown 

with the semantic distractor where they were presented in the PWI task (Coef. = 52.55, p < .001). 

A significantly decreased RT was shown with the phonological distractor condition (Coef. = -

138.03, p < .001) compared to unrelated distractor condition. All significant effects are depicted 

in Figure 27.  

 

Table 12. Effects of Distractor Type in PWI task 

  Coef. SE P CI 

Distractor type 
    

       Semantic 52.55
***

 7.39 0.000 [38.07, 67.02] 

       Phonological -138.03
***

 6.48 0.000 [-150.73, -125.33] 

       Mixed 18.17
*
 7.28 0.013 [3.89, 32.44] 

       Unrelated (ref.) - - - 
 

Item properties        
    

       Target word frequency -0.01
***

 0.00 0.000 [-0.01, 0.00] 

                 ʺ         AoA 25.36
***

 2.3 0.000 [20.85, 29.86] 

                 ʺ         length 12.02
***

 1.71 0.000 [8.66, 15.37] 

Individual properties 
    

        Education years -15.90
***

 15.77 0.000 [-17.88, -13.92] 

        PICA naming 63.92
***

 6.82 0.000 [45.55, 82.30] 

Random part Variance SE 
  

Level-2 variance 6028.1 386.58 
  

*
p < .016, 

**
p < .01, and 

***
p < .001. 

Note: Distractor type, a predictor of interest was evaluated at p < .016 (=0.05/3 contrast) using Bonferroni correction.  

n of level 1 units = 8,237, n of level 2 units = 50. 

ref. = reference, Coef = coefficient, SE = standard error, CI = confidence interval, AoA = age of acquisition.  
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Figure 27. RT (ms) in four distractor types for Baseline and the PWI task.  

Table 13 shows the results when the mixed distractor condition was set as a reference. 

Compared to the mixed condition, participants showed approximately 34ms delayed RT in the 

semantic condition (Coef. = 33.69, p < .001), but 153ms RT reduction in the phonological 

condition (Coef. = -156.46, p < .001), which means that the RT in the mixed condition fell 

between the RTs of the semantic and phonological conditions.  
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Table 13. Effects of distractor type in PWI task: When the mixed condition is set as a reference 

 Fixed part Coef. SE P CI 

Distractor type   
    

       Semantic 33.69
***

 7.62 0.000 [18.76, 48.63] 

       Phonological -153.46
***

 6.68 0.000 [-166.55, -140.37] 

       Mixed (ref.) - - -  

       Unrelated -17.95
*
 7.32 0.014 [-32.30, -3.60] 

Item properties        
    

       Target word frequency -0.01
***

 0.00 0.000 [-0.01, -0.00] 

                 ʺ         AoA 25.45
***

 2.30 0.000 [20.93, 29.97] 

                 ʺ         length 11.80
***

 1.73 0.000 [8.41, 15.18] 

Individual properties     

        Age 5.51
***

 0.45 0.000 [4.64, 6.39] 

        Education years -14.10
***

 0.87 0.000 [-15.80, -12.41] 

        PICA naming -219.54
***

 7.66 0.000 [-234.55, -204.53] 

Random part Variance SE     

Level-2 variance 10582.49 621.40    
*
p < .016, 

**
p < .01, and 

***
p < .001. 

Note: A distractor type, a predictor of interest was evaluated at p < .016 (=0.05/3 contrast) using Bonferroni 

correction.  

n of level 1 units = 8,237, n of level 2 units = 50. 

ref. = reference, Coef = coefficient, SE = standard error, CI = confidence interval, AoA = age of acquisition.  

 

4.1.3 Word Frequency Effect 

Three sets of GLMM models addressed the first research question of this study; they examined 

the effects of word frequency on the RT in semantic, phonological, and mixed distractor 

conditions. For hierarchical continuous data, RTs showed a positively skewed distribution when 

identity-gamma models were estimated under the GLMM. Associations with target word 

frequency were examined along with other covariates for the semantic, phonological, mixed, and 

unrelated distractor conditions.  

The analysis was undertaken in two steps. The first step (modeled without covariates) 

included one predictor of interest as a fixed effect aimed to examine whether target word 
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frequency influenced RT. The second step (modeled with covariates) added all potential 

covariates to the previous model in order to investigate whether the coefficient of word 

frequency effect changed after considering the effects of all confounding variables at level-1 (i.e., 

item) and level-2 (i.e., individual) of the model. Consistent findings in terms of significance in 

both models were considered as a robust effect of word frequency on RT in a certain distractor 

condition. Separate analyses were conducted for four distractor conditions in the PWI task. 

In Table 14, the first model (without covariates) summarizes the significant effect of 

word frequency on RT in the semantic distractor condition. As a unit of word frequency 

increased by100, the RT was reduced 2ms (Coef. = -0.02, p < .001). Even with the addition of 

nine covariates that had shown significant effects on RT, a significant word frequency effect was 

Table 14. Word frequency effect on RT for the semantic distractor condition  

in PWI task: Coefficient estimates and standard errors 

Fixed part 
  Model w/o covariates 

 
Model w/ covariates 

  Coef. SE 
 

Coef. SE 

Level-1: Item 

  

  

 

  
       Target word frequency -0.02

***
 0 -0.06

***
 0.01 

                 ʺ         AoA   -26.36
***

 7.08 

                 ʺ         density   -16.91
*
 6.69 

                 ʺ         length   -29.38
***

 7.3 

                 ʺ         image   -0.80
*
 0.32 

       Distractor frequency   0.13
***

 0.02 

                 ʺ         density   23.54
**

 7.96 

                 ʺ         image   -1.08
**

 0.31 

Level-2: Individual   
  

        Age   4.71
**

 1.47 

        PICA naming   -164.32
***

 40.35 

Random part   Variance SE 
 

Variance SE 

Level-2 Variation   10612.53 -1360.53 
 

19668.94 6185.97 
*
p < .05, 

**
p < .01, and 

***
p < .001. 

Note: For Model w/ covariates, n of level 1 units = 1,102, n of level 2 units = 50; Coef = coefficient, SE = standard 

error. 
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observed (Coef. = -0.06, p < .001). As the coefficient increased in the second model, RT was 

reduced by 6ms for each increase of one unit (100) of word frequency. 

With regard to the covariate of distractor frequency, it was found that as the unit 

increases by 100, the RT increased by 13ms. Other significant covariates that occurred with 

changes in RT for the target words included AoA, density, length, imageability, and the 

distractor’s density and imageability. Also, age and PICA naming score had a significant effect 

on RTs in the semantic distractor condition.  

The data in Table 15 shows a significant word frequency effect on RT in the models 

without (Coef. = -0.02, p < .001) or with covariates (Coef. = -0.01, p < .01) for the phonological 

distractor condition. When covariates were added, the coefficient was reduced, resulting in a 1 

ms decrease of RT for each increase of 100 units of word frequency.  

Table 15. Word frequency effect on RT for the phonological distractor condition  

in PWI task: Coefficient estimates and standard errors 

Fixed part 
  Model w/o covariates 

 
Model w/ covariates 

  Coef. SE 
 

Coef. SE 

Level-1: Item 

  

  

 

  
       Target word frequency -0.02

***
 0.00 -0.01

**
 0.00 

                 ʺ         length   11.86
*
 5.03 

                 ʺ         image   -0.63
**

 0.22 

       Distractor density           9.00
*
 4.5 

Level-2: Individual   
  

       Age   13.01
***

 0.97 

       Education years   7.15
*
 3.51 

       PICA naming   -356.16
***

 34.96 

Random part   Variance SE 
 

Variance SE 

Level-2 Variation   17036.07 1529.02 
 

25549.39 2581.85 
*
p < .05, 

**
p < .01, and 

***
p < .001. 

Note: For Model w/ covariates, n of level 1 units = 1,404, n of level 2 units = 50; Coef = coefficient, SE = standard 

error. 
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In this phonological distractor condition, significant covariates include target word length 

(Coef. = 11.86, p < .05), imageability (Coef. = -0.63, p < .01), distractor’s density (Coef. = 9.00, 

p < .05), age (Coef. = 13.01, p < .001), education years (Coef. = 7.15, p < .05), and PICA naming 

score (Coef. = -356.16, p < .001). Distractor frequency did not have a significant influence on 

RT.  

Table 16 summarizes the significant effects of word frequency in the first (Coef. = -0.03, 

p < .001) and second models (Coef. = -0.05, p < .01) for the mixed distractor condition. When 

covariates were added, the absolute coefficient was increased with 100 units of word frequency 

yielding a 5 ms decrease in RT for the mixed distractor condition.  

Table 16. Word frequency effect on RT for the mixed distractor condition  

in PWI task: Coefficient estimates and standard errors 

Fixed part 
  Model w/o covariates 

 
Model w/ covariates 

  Coef. SE 
 

Coef. SE 

Level-1: Item 

  

  

 

  
       Target word frequency -0.03

***
 -0.01 -0.05

***
 0.01 

                 ʺ         AoA   34.77
***

 4.27 

                 ʺ         length   -16.09
***

 3.65 

                 ʺ         image   1.20
***

 0.2 

       Distractor frequency   0.08
***

 0.02 

Level-2: Individual   
  

       Education years   -5.86
***

 1.83 

       PICA naming   -184.07
*
 36.66 

Random part   Variance SE 
 

Variance SE 

Level-2 Variance   20402.36 -4516.79 
 

12123.72 1507.77 
*
p < .05, 

**
p < .01, and 

***
p < .001. 

Note: For Model w/ covariates, n of level 1 units = 1,803, n of level 2 units = 50; Coef = coefficient, SE = standard 

error. 

 

With regard to the covariate of distractor frequency, as the unit of distractor frequency 

increases by 100, the RT increased by 8ms (Coef. = 0.08, p < .001). Other significant covariates 

include target word AoA (Coef. = 34.77, p < .001), length (Coef. = -16.09, p < .001), 

imageability (Coef. = 1.20, p < .001), education years (Coef. = -5.86, p < .001) and PICA 

naming score (Coef. = -184.07, p < .05).  
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4.1.4 Interaction Effect (Target Word Frequency × Distractor Frequency) 

Interaction effects of target word frequency and distractor frequency on RT were examined 

focusing on semantic, phonological, and mixed distractor conditions in the PWI task. In identity-

gamma models, potential covariates that showed significant effects on the dependent variable 

remained in the final model. The results are shown in Table 17.  

A significant interaction effect was shown only with the mixed distractor condition (Coef. 

= 36.67, p < .05). As shown in Figure 28, RTs for high frequency distractors were larger than for 

low frequency distractors. However, RT there significantly more delayed for high frequency 

target words than low frequency target words. This trend was reversed in the condition of low 

frequency distractors.  

Table 17. Effect of interaction between target word frequency and distractor frequency on RT for three different 

distractor conditions in the PWI task 

Fixed part 
Semantic distractor 

 
Phonological distractor 

 
Mixed distractor 

Coef. SE 
 

Coef. SE 
 

Coef. SE 

Level-1: Item 
  

 

  

 

  
       Target high freq. -15.55 18.16 37.82 19.81 -15.45 12.04 

       Distr. high freq. 26.78 21 -52.79
**

 16.32 6.9 14.4 

       Target high × Distr. high 34.45 25.62 2.94 22.49 39.55
*
 19.35 

       Target word AoA 
  

26.96
**

 8.22 36.67
***

 4.41 

                 ʺ         density -28.23
***

 5.85 
    

                 ʺ         length 
  

20.14
***

 5.5 -6.98
*
 3.45 

                 ʺ         image -1.15
***

 0.2 -1.18
***

 0.26 0.67
***

 0.19 

Level-2: Individual 
      

        Age 5.19
**

 1.69 11.58
***

 1.18 2.668
*
 1.13 

        Education years 
  

-33.38
***

 2.42 
  

        PICA naming -191.12
***

 50.19 -252.91
***

 29.49 -218.96
***

 29.66 

Random part Variance SE 
 

Variance SE 
 

Variance SE 

Level-2 Variation 9967.44 1647.61 
 

17984.64 2029.67 
 

12164.49 2376.98 
*
p < .05, 

**
p < .01, and 

***
p < .001. 

Note: For the semantic distractor condition, n of level 1 units = 1,576, n of level 2 units = 50; 

For the phonological distractor condition, n of level 1 units = 1,355, n of level 2 units = 50; 

For the mixed distractor condition, n of level 1 units = 1,803, n of level 2 units = 50; 

Coef = coefficient, SE = standard error. 
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Figure 28. Mean RT of target word frequency and distractor frequency in the mixed condition in PWI task. 

Note: HF = high frequency, LF = low frequency. 

Further analyses to identify simple effects for HF and LF distractors were implemented 

separately with adjusted alpha level at p = .016 (i.e., 0.05/3 contrasts) by Bonferroni correction.  

For HF distractors, target words with HF did not show significant RT change compared to the LF 

target words (Coef. = 15.51, p = .303, CI [-14.03, 45.05]). Non-significance was found for LF 

distractors between HF and LF target words as well (Coef. = -12.06, p = .325, CI [-36.06, 11.94]). 

For HF target words, there was no significant difference between HF and LF distractors (Coef. = 

293.23, p = .892, CI [-3959.45, 4545.91]). 
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4.2 RESPONSE TYPE 

4.2.1 Analysis of Potential Covariates 

Prior to GLMM analysis, associations between a binary dependent variable and five different 

response types and several continuous variables for both level-1 (item) and level-2 (individual) 

were evaluated to identify the potential predictors. A cut off value of p < .10 was used. Somers' 

Ds were obtained based on all pairs of data values where missing values did not occur (i.e., pair-

wise deletion). Likewise, collinearity of potential covariates (all are continuous data) was 

checked with cut off value rs = .70.  

Table 18 shows the coefficients for the binary data for five different response types at 

Baseline. Correct responses were singificantly correlated with AoA (Coef. = -0.27, p < .001), 

length of target word (Coef. = -0.15, p < .001), age (Coef. = 0.13, p < .01), education years (Coef. 

= 0.22, p < .001), and PICA score (Coef. = 0.08, p < .01) at the alpha level =.10 (two tailed). 

Semantic errors were singificantly correlated with AoA (Coef. =0.15 , p < .001), length of target 

word (Coef. = 0.12, p < .01), age (Coef. = -0.12, p < .01), education years (Coef. = -0.16, p< .01), 

Table 18. Rank-biserial correlation: Coefficient and standard errors of  

Somers' D for Baseline 

  Correct Semantic Phonological Mixed Others 

Item properties 
     

     AoA -0.27 (0.03)
***

 0.15 (0.04)
***

 0.11 (0.43) 0.67 (0.06)
***

 0.30 (0.07)
***

 

     Density 0.04 (0.03) 0.06 (0.04) 0.55 (0.19)
**

 -0.31 (0.08)
***

 -0.15 (0.07)
*
 

     Length -0.15 (0.03)
***

 0.12 (0.04)
**

 -0.33 (0.16)
*
 0.39 (0.09)

***
 0.09 (0.07) 

     Imageability -0.05 (0.04) 0.03 (0.05) 0.33 (0.36) 0.17 (0.07)
*
 -0.02 (0.09) 

Individual 

properties      

     Age 0.13 (0.04)
**

 -0.12 (0.05)
**

 0.47 (0.23)
*
 -0.16 (0.10)

*
 -0.13 (0.08)

*
 

     Education yrs 0.22 (0.04)
***

 -0.16 (0.05)
**

 -0.40 (0.29) -0.32 (0.09)
***

 -0.30 (0.07)
***

 

     PICA 0.08 (0.03)
**

 -0.08 (0.04)
*
 -0.07 (0.24) -0.16 (0.08)

*
 -0.04 (0.06) 

*
p < .10, 

**
p < .01. 

***
p < .001.  

Note: PNT = Philadelphia Naming Test, AoA = age of acquisition.  
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and PICA score (Coef. = -0.08, p < .10). Phonological errors were correlated singificantly with 

density (Coef. = 0.55, p < .01), length of target word (Coef. = -0.33, p < .10), and age (Coef. = 

0.45, p < .10). Mixed errors were correlated singificantly with AoA (Coef. = 0.67, p < .001), 

density (Coef. = -0.31, p < .001), length (Coef. = 0.39, p < .001), imageability of target word 

(Coef. = 0.17, p < .10), age (Coef. = -0.16, p < .10), education years (Coef. = -0.32, p < .001), 

and PICA score (Coef. = -0.16, p < .10). Other error types were correlated singificantly with 

AoA (Coef. = 0.30, p < .001), density of target word (Coef. = -0.15, p < .10), age (Coef. = -0.13, 

p < .10) and education years (Coef. = -0.30, p < .001). 

Correct responses were correlated singificantly with target words’ AoA (Coef. = -0.12, p 

< .01), and distractors’ length (Coef. = -0.07, p < .10), along with age (Coef. = 0.12, p < .001), 

education years (Coef. = 0.18, p < .001), and PICA score (Coef. = 0.08, p < .01). Semantic errors 

were correlated singificantly with taret word density (Coef. = 0.15, p < .001), length (Coef. = -

0.07, p < .10), age (Coef. = -0.10, p < .10), education years (Coef. = -0.12, p  

< 0.01), and PICA score (Coef. = -0.07, p < .10). There were no variables that met the cut off p  

value for phonological errors (see Table 19).  

Mixed errors were correlated singificantly with taret word AoA (Coef. = 0.48, p < .001), 

density (Coef. = -0.22, p < .10), length (Coef. = 0.34, p < .001), and with distractors frequency 

(Coef. = -0.25, p < .01), and length (Coef. = 0.29, p < .01) age (Coef. = -0.19, p < .10), education 

years (Coef. = -0.35, p < .001), and PICA score (Coef. = -0.13, p < .10). Other types of errors 

were correlated singificantly with the taret words’ AoA (Coef. = 0.30, p < .01), density (Coef. = -

0.16, p < .10), length (Coef. = 0.23, p < .01), age (Coef. = -0.21, p < .10), and education years 

(Coef. = -0.38, p <.001). Since none of these variables yielded correlations equal to or greater 

than rs = .70 for detecting collinearity, all potential covariates listed above were entered into the 
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models when investigating word frequency and interaction effects of target word frequency and 

distractor frequency (section 4.2.3 and 4.2.4). Note that non-significant covariates were 

eliminated from the model to obtain parsimony. 

Table 19. Rank-biserial correlation: Coefficient and standard errors of  

Somers' D for PWI task 

  Correct Semantic Phonological Mixed Others 

Item properties 

(Target words)      

     AoA -0.12 (0.03)
**

 -0.00 (0.04) 0.15 (0.10) 0.48 (0.07)
***

 0.30 (0.09)
**

 

     Density -0.05 (0.03) 0.15 (0.04)
***

 0.02 (0.13) -0.22 (0.09)
*
 -0.16 (0.09)

*
 

     Length -0.03 (0.03) -0.07 (0.04)
*
 -0.03 (0.10) 0.34 (0.08)

***
 0.23 (0.09)

**
 

     Imageability -0.02 (0.04) 0.04 (0.05) 0.14 (0.13) -0.01 (0.10) -0.11 (0.10) 

(Distractors) 
     

     Frequency -0.01 (0.04) 0.04 (0.04) 0.08 (0.14) -0.25 (0.09)
**

 0.09 (0.09) 

     AoA 0.03 (0.03) -0.06 (0.04) 0.14 (0.14) 0.07 (0.10) -0.07 (0.10) 

     Density 0.03 (0.03) -0.01 (0.04) -0.06 (0.11) -0.13 (0.09) -0.01 (0.08) 

     Length -0.07 (0.03)
*
 0.03 (0.04) 0.10 (0.11) 0.29 (0.08)

**
 0.07 (0.08) 

     Imageability 0.04 (0.05) -0.07 (0.06) -0.07 (0.14) -0.04 (0.11) 0.015 (0.14) 

Individual 

properties      

     Age 0.12 (0.03)
***

 -0.10 (0.04)
*
 0.07 (0.12) -0.19 (0.09)

*
 -0.21 (0.10)

*
 

     Education yrs 0.18 (0.04)
***

 -0.12 (0.04)
**

 0.11 (0.13) -0.35 (0.09)
***

 -0.38 (0.08)
***

 

     PICA 0.08 (0.03)
**

 -0.07 (0.03)
*
 0.12 (0.09) -0.13 (0.08)

*
 -0.10 (0.08) 

*
p < .10, 

**
p < .01. 

***
p < .001.  

Note: PNT = Philadelphia Naming Test, AoA = age of acquisition.  

Correlation coefficients in bold font meet or exceed the predetermined p < .10 for identifying covariates.  

4.2.2 Interaction Effect Between Task Type and Response Type   

The interaction effect between task type and response type involving possible association with 

the count variable from each individual was examined using a two-level model, with items 

nested within individuals as in other GLMMs. For hierarchical count data, Poisson models were 

analyzed using gllamm syntax. Task type, response type, and their interactions were entered as 

fixed predictors along with confounding variables including age, education years, and PICA 

naming performance. Unlike RT analysis, an odds ratio (OR) was used instead of a coefficient to 

help interpretation of discrete (i.e., non-continuous) data. By using an OR, the odds that an 
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outcome will occur given a particular exposure, can be compared to the odds of the outcome 

occurring in the absence of that exposure. An OR of 1 is interpreted as “exposure does not affect 

odds of outcome”; OR > 1 is referred to as “exposure associated with higher odds of outcome” 

and OR < 1 means “exposure associated with lower odds of outcome” (Szumilas, 2010, p. 227). 

Like other models used in this study, confounding variables that showed no significant effect on 

the dependent variable, were removed for a parsimonious model. 

The data consisted of a number of responses for the five response types, including correct 

response, semantic error, phonological error, mixed error, and “other” error types. Participant’s 

responses including “I don't know”, visual misinterpretation, part of picture, description/circum-

locution, no response, unrelated, and non-word were categorized as “other.” Mean number of 

responses, for each response type, is summarized for Baseline and the PWI task respectively in 

Table 20. Correct responses (96.87% in Baseline; 96.55% in PWI) were produced most 

frequently by participants in both tasks, followed by number of semantic errors (1.92% in 

Baseline; 2.27% in PWI). Phonological errors were least frequently produced in both tasks 

(0.03% in Baseline; 0.23% in PWI). While other errors (0.70%) and mixed errors (0.48%) were 

produced less than semantic errors in Baseline, mixed errors (0.49%) were observed slightly 

more frequently than other errors (0.47%) in the PWI task. 

Table 20. Mean number of response for each response type  

in Baseline and PWI task 

  Baseline 
 

PWI task 

Response type Mean SD n 
 

Mean SD n 

Correct 166.62 4.55 50 
 

166.06 4.44 50 

Semantic 3.30 2.67 50 
 

3.90 2.53 50 

Phonological 0.06 0.24 50 
 

0.40 0.64 50 

Mixed 0.82 1.12 50 
 

0.84 1.27 50 

Others 1.20 1.71 50 
 

0.80 1.56 50 



111 

In order to investigate whether there is a significant interaction between task type and 

response type, Poisson models were estimated using gllamm syntax. Due to the nature of the 

count variable that was computed for each individual (not for each item), individual 

characteristics including age, education years, and PICA score were entered as covariates in the 

model. None of individual characteristics had a significant effect on the dependent variable. To 

compare the number of semantic, phonological and mixed errors, which are related to the word 

retrieval process, mixed errors was set as the reference in the model. Mean number of mixed 

errors is ranked 2
nd

 in Table 21 and its mean and SD were relatively constant between Baseline 

and the PWI task, which helped interpret the interaction effect in graphs by providing a constant 

slope. As a result, except for phonological errors (OR = 2.85, p = .01), no interaction effects 

were found for correct (OR = 0.97, p = .901), semantic (OR = 1.15, p = .557), and other errors 

(OR = 0.65, p = .152). In addition, no main effect for task was found (OR = 1.02, p = .913) (see 

Table 21). For the error types that showed no significant interaction, an effect of response type is 

reported as follows. Compared to the mixed errors, significant increases in correct (OR = 203.20, 

p < .001), and semantic errors (OR = 4.02, p < .001) were shown but non-significant change was 

observed for the other type of errors (OR = 1.46, p = .060).  

Further analysis of phonological errors revealed a significant interaction effect. One 

Poisson model for task type effect and two Poisson models for the effect of response type (one 

for Baseline and one for the PWI task), were implemented with adjusted alpha level at p = .016 

(i.e., .05/3 contrasts) by Bonferroni correction. Compared to the number of mixed errors, 

participants produced significantly fewer phonological errors in both Baseline (OR = 0.07, p 

< .001) and the PWI task (OR = 0.48, p < .01) (see Table 22 and Table 23).  
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Table 21. Effects of task type and response type, and interaction effect (task × response) 

Fixed part OR SE P CI 

Task type 
    

      Baseline (ref.) - - - - 

       PWI 1.02 -0.22 0.913 [0.67, 1.58] 

Response type 
    

       Mixed (ref.) - - - - 

       Correct 203.20
***

 -31.81 0.000 [149.50, 276.17] 

       Semantic 4.02
***

 -0.7 0.000 [2.86, 5.67] 

       Phonological 0.07
***

 -0.04 0.000 [0.02, 0.24] 

       Others 1.46 -0.3 0.06 [0.98, 2.18] 

Task × Response type 
    

       Baseline × Mixed (ref.) - - - - 

       PWI × Correct        0.97 -0.21 0.901 [0.63, 1.50] 

       PWI × Semantic 1.15 -0.28 0.557 [0.72, 1.86] 

       PWI × Phonological 6.51
**

 -4.28 0.004 [1.80, 23.58] 

       PWI × Others 0.65 -0.2 0.152 [0.36, 1.17] 

Random part Variance SE 
  

Level-2 Variance 9.49E-20 -4.70E-12 
  *

p < .05, 
**

p < .01, 
***

p < .001. 

Note: n of level 1 units = 500, n of level 2 units = 50. 

None of covariates was included in the model due to the failure to show a significance at p < .05; OR = odds ratio, 

SE = standard errors, CI = confidence interval, ref = reference. 

 

 

 

Table 22. Effects of response type in Baseline 

Fixed part OR SE P CI 

Response type 
    

       Mixed (ref.) - - - - 

       Correct 203.20
***

 -31.81 0.000 [149.50, 276.17] 

       Semantic 4.02
***

 -0.7 0.000 [2.86, 5.67] 

       Phonological 0.07
***

 -0.04 0.000 [0.02, 0.24] 

       Others 1.46 -0.3 0.060 [0.98, 2.18] 

Random part Variance SE 
  

Level-2 Variance 3.08E-18 -3.78E-11 
  *

p < .016, 
**

p < .01, 
***

p < .001. 

Note: n of level 1 units = 250, n of level 2 units = 50. 

OR = odds ratio, SE = standard errors, CI = confidence interval, ref = reference. 
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Table 23. Effects of response type in PWI task 

Fixed part OR SE P CI 

Response type 
    

       Mixed (ref.) - - - - 

       Correct 197.69
***

 -30.58 0.000 [145.99, 267.71] 

       Semantic 4.64
***

 -0.79 0.000 [3.33, 6.48] 

       Phonological 0.48
**

 -0.13 0.006 [0.28, 0.81] 

       Others 0.95 -0.21 0.825 [0.62, 1.47] 

Random part Variance SE 
  

Level-2 Variance 3.37E-27 -1.25E-15 
  *

p < .016, 
**

p < .01, 
***

p < .001.  

Note: n of level 1 units = 250, n of level 2 units = 50. 

 

The number of phonological errors in the PWI task was approximately seven times 

greater than the number in the Baseline (OR = 6.67, p <  .01) (See Table 24). This interaction is 

depicted in Figure 29.  

Table 24. Effects of task type for phonological errors 

Fixed part OR SE P CI 

      Baseline (ref.) - - - - 

       PWI 6.67
**

 -4.13 0.002 [1.98, 22.43] 

Random part Variance SE 
  

Level-2 Variance 9.41E-20 -3.82E-10 
  *

p < .016, 
**

p < .01, 
***

p < .001. 

Note: n of level 1 units = 100, n of level 2 units = 50. 

 

 

 

Figure 29. Mean numbers of phonological and mixed errors during Baseline and PWI task. 
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From among the three primary error reponse types, participants generated significantly 

more semantic errors followed by mixed errors and then phonological errors. The biggiest 

difference between two task types was that phonological errors increased significantly in the 

PWI task (see Figure 30). 

 

Figure 30. Number of responses for five different response types in Baseline and PWI task. 

Note: Significant mean differences were indicated by 
*
p < .016, 

**
p < .01, 

***
p < .001 among response types and 

between task type. 
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4.2.3 Word Frequency Effect 

For hierarchical binary data, taking the form of 0 for a non-occurrence of a particular response 

type and 1 for an occurrence of a particular response type for each item, binomial models were 

analyzed using gllamm syntax. Associations with predictors including target word frequency 

along with other covariates were examined in GLMMs focusing on semantic, phonological and 

mixed errors.  

These results are reported in Table 25. None of models yielded a significant effect of 

word frequency on semantic, phonological, or mixed errors. All error types produced an OR = 

1.00, which indicates that word frequency did not affect the odds of the outcome.  

Table 25. Word frequency effect on semantic, phonological, and mixed errors in PWI task:  

Odds ratio and standard errors 

Fixed part 
Semantic errors 

 
Phonological errors 

 
Mixed errors 

OR SE 
 

OR SE 
 

OR SE 

Level-1: Item 
  

 

  

 

  
       Target word frequency 1.00 0.00 1.00 0.00 1.00 0.00 

                 ʺ         AoA 
    1.59

***
 -0.18 

                 ʺ         density 1.19
**

 -0.06     
                 ʺ         length 

    1.20
*
 -0.11 

       Distractor length 
    1.28

*
 -0.14 

Level-2: Individual 
      

        Education years 
    0.85

*
 -0.06 

        PICA naming 0.47
*
 -0.17     

Random part Variance SE 
 

Variance SE 
 

Variance SE 

Level-2 Variance 0.12 -0.08 
 

0.01 -0.52 
 

0.24 -0.26 
*
p < .05, 

**
p < .01, and 

***
p < .001.  

Note: For the semantic errors, n of level 1 units = 8600, n of level 2 units = 50. 

For the phonological errors, n of level 1 units = 8600, n of level 2 units = 50. 

For the mixed errors, n of level 1 units = 8351, n of level 2 units = 50. 

OR = odds ratio, SE = standard errors, AoA = age of acquisition.   
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4.2.4 Interaction Effect (Target Word Frequency × Distractor Frequency) 

Interaction effects of target word frequency and distractor frequency on binary responses for 

semantic, phonological, and mixed error types were examined by estimating GLMM. Potential 

covariates of item properties and demographic characteristics were entered into the models, and 

yielded a significant effect on the dependent variable for the final model. The results are shown 

in Table 26. No models yielded a significant interaction effect between target word frequency 

and distractor frequency on semantic, phonological, or mixed errors. All yielded an OR = 1.00, 

which indicates that word frequency did not affect the odds of the outcome.  

Table 26. Effect of interaction between target word frequency and distractor frequency on semantic, 

phonological, and mixed errors in PWI task: Odds ratio and standard errors 

Fixed part 
Semantic errors 

 
Phonological errors 

 
Mixed errors 

OR SE 
 

OR SE 
 

OR SE 

Level-1: Item 
  

 

  

 

  
       Target high freq. 2.56

***
 -0.59 5.32

*
 -1.21 0.81 -0.34 

       Distr. high freq. 1.4 -0.37 1.99 -1.82 0.47 -0.19 

       Target high × Distr. high 0.75 -0.24 0.33 -0.35 0.53 -0.42 

       Target word AoA 
    1.83

***
 -0.2 

                 ʺ         density 1.17
**

 -0.07     
Level-2: Individual 

      
        Education years 

    0.83
*
 -0.06 

        PICA naming 0.47
*
 -0.17     

Random part Variance SE 
 

Variance SE 
 

Variance SE 

Level-2 Variance 0.13 -0.08 
 

0.01 -0.51 
 

0.35 -0.25 
*
p < .05, 

**
p < .01, and 

***
p < .001. 

Note: For the semantic errors, n of level 1 units = 8600, n of level 2 units = 50. 

For the phonological errors, n of level 1 units = 8600, n of level 2 units = 50. 

For the mixed errors, n of level 1 units = 8551, n of level 2 units = 50. 

OR = odds ratio, SE = standard errors, freq. = frequency, Distr. = distractor, AoA = age of acquisition.   
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5.0 DISCUSSION 

In this study the word frequency effect was examined by adopting a PWI paradigm to provide 

empirical evidence to address the locus of the word frequency effect. As a starting point, some 

assumptions were made about the distractor conditions used in the current study to support the 

main findings and their application to the study’s specific aims. The assumptions were that in 

Baseline, where distractors were not presented, participants’ RTs would not be significantly 

different among distractor types implicating that no inhibition and facilitation effects exist due to 

the absence of distractors. However, in the PWI task, it was predicted that participants would 

show significantly different patterns of naming behavior in terms of RTs depending on the 

distractor conditions representing each computational step of lexical access plus their 

interactions. That is, it was predicted that, relative to the Baseline, there would be significantly: 

1) increased RTs in the semantic distractor condition (i.e., an inhibition effect); 2) decreased RTs 

in the phonological distractor condition (i.e., a facilitation effect); and 3) increased RTs in the 

mixed distractor condition but less increased RT than in the semantic distractor condition due to 

the influence of a facilitation effect derived from the phonological prompts of the distractors.  

The results showed no significant differences among distractor types in Baseline except 

for the mixed distractor condition. Participants showed significantly reduced RTs in the mixed 

distractor condition compared to the neutral, unrelated distractor condition. This outcome 

violates the assumptions above. However, a negative coefficient for the mixed distractor 
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condition in the Baseline task switched to a positive coefficient in the PWI task. This indicates 

that mixed distractors affected the naming performance strongly enough to change the direction 

of the coefficient. Thus, this finding strongly supports the interpretation that the established 

mixed distractor stimuli successfully played a role in revealing the interactive connection 

between the two steps. Few studies have successfully demonstrated an interactive stage with a 

PWI paradigm. A successful manipulation of the network between the two steps by using mixed 

distractors provides evidence for the word frequency effect’s location within the interactive 

mechanism.  

Importantly, findings from the PWI task provide strong evidence that each of the 

assumptions were in fact met. There were significantly increased RTs in the semantic distractor 

condition compared to the neutral, unrelated distractor condition. This indicates that semantic 

distractors successfully manipulated lexical selection at the semantic representation level by 

showing an inhibition effect. Conversely, significantly decreased RTs in the phonological 

distractor condition indicates that those distractors affected phonological encoding. Lastly, 

increased RTs were observed in the mixed distractor condition. The amount of RT increased was 

less than the amount in the semantic distractor condition and more than the amount in the 

phonological distractor condition. This result suggests that both inhibition and facilitation effects 

occurred during picture naming when mixed distractors were presented. In conclusion, these 

results support the two-step interactive model.  

In order to address the first research aim, the following section discusses the RT findings 

relative to the word frequency effect for each distractor condition. 
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5.1 LOCUS OF WORD FREQUENY EFFECT 

The results of the PWI experiment reveal that word frequency significantly affects RTs in the 

semantic, phonological, and mixed distractor conditions. Negative coefficients that were 

obtained for all conditions indicate that participants named the HF picture items faster than LF 

items, showing a HF word advantage at all lexical access steps. This finding is at odds with 

Jescheniak & Levelt (1994) who proposed that word frequency affects only the phonological 

stage of processing. Simultaneously, by showing the effects on RTs in both semantic and 

phonological distractor conditions, the results of this study support the argument that the locus of 

the frequency effect is evidenced not only at phonological encoding but also at lexical selection 

(Caramazza et al., 2001; Cuetos et al., 2010; Gahl, 2008; Kittredge et al., 2008; Navarrete et al., 

2006).  

Indeed, the results are consistent with the Kittredge et al. (2008) proposed role of 

interactivity in word frequency effects on lexical selection. From the studies of error analysis for 

PWA, they had assumed that the effect on lexical selection was due to the transmission of 

activated phonological nodes to the semantic representation level via the spreading activation 

feedback. As discussed above, their data provided inconclusive evidence because the mixed 

errors that play a critical role to support the interactivity, was not included in their analysis. The 

current study successfully manipulated the interactive network between the lexical and 

phonological stages by using mixed distractors, demonstrating that word frequency affects both 

stages, presumably by shared spreading activation. This is interpreted as support for the IA 

model (Dell & O’Seaghdha, 1991; Dell, 1986; Foygel & Dell, 2000) where the two steps are not 

completely independent of each other but influence the other through an interactive network. 

Based on the findings of reduced RT with increased word frequency in the semantic distractor 
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condition, as well as in the mixed distractor condition, a direct and indirect route for the word 

frequency effects on lexical selection seems plausible. This not only identifies the presence of 

the word frequency effect on lexical selection, it also provides a plausible mechanism or route 

for that influence.  

In addition, by providing each coefficient for the semantic, phonological, and mixed 

distractor conditions, a relative magnitude of RT change as a function of word frequency was 

identified within a single study, which has not been explored in the literature. In other words, not 

only the existence of a word frequency effect at each lexical retrieval step, but also how much 

each step is affected by the frequency effect was revealed. Consistent with the literature, the 

robust frequency effect on RT in the phonological distractor condition was identified. However, 

its magnitude (Coef. = -0.01) was relatively small compared to those in the semantic (Coef. = -

0.06) and the mixed distractor conditions (Coef. = -0.05). This finding led to a conclusion that 

the word frequency effect on the lexical selection and the interaction between steps is stronger 

than expected. Note that a direct comparison about the frequency effect on phonological 

encoding between this study and previous studies is challenging for several reasons: 1) technical 

issues on computing effect sizes from GLMMs; 2) different experimental tasks used in studies 

that may induce different RT ranges across participants; and 3) different data type (i.e., binary 

data in the literature as HF and LF words, but continuous data in the current study) that requires 

appropriate statistical approaches to obtain effect sizes.  

Regarding the covariate results, the results haves revealed that not only word frequency, 

but also other confounding factors such as a target or distractor word’s AoA, density, length, 

image, and such biographical and performance variables as age, education years, and PICA 
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scores are related to the RT. Despite an apparent influence of these factors on performance, word 

frequency effects across the three major distractor conditions were robust.  

Contrary to some previous research, the impact of each lexical variable differed 

depending on the location of the lexical access step. Generally, researchers have found better 

performance with earlier AoA, higher imageability, shorter word length (Cuetos et al., 2002; 

Nickels & Howard, 1995; Plaut & Shallice, 1993) without considering processing step. 

Regarding phonological neighborhood density, some researchers have argued that high density 

words impact the ease of word productions due to the more phonological information recalled 

and reinforced feedback to a target lemma (e.g., Dell & Gordon, 2003; MacKay & Burke, 1990; 

Middleton & Schwartz, 2010; Vitevitch, 2002). Others reported the opposite due to the 

competing phonologically related words that block retrieval of the target word (e.g., Maylor, 

1990; Newman & German, 2005; Schacter, 1999). The current study showed a negative effect of 

imageability that appeared in the semantic and phonological distractor conditions, while a 

positive effect was shown in the mixed distractor condition. Imageable objects with richer 

semantic representations do not always result in better naming performance at the lexical 

selection or phonological encoding steps. Also, some variables that significantly impacted RTs 

did not appear significant in some distractor conditions. That is, there was no AoA or density 

influence on RTs in the phonological distractor condition, although such influence was present in 

the semantic distractor condition.  

Compared to the influences of lexical variables at each processing step, individual-level 

variables such as age and PICA scores showed a robust impact on RTs. Interestingly, education 

years did not show either a consistent positive or negative influence on RTs. Older participants 

showed a significantly greater delayed response time than younger participants, and higher 
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scores on the PICA test related to better performance. The different impacts between lexical 

variables and individual variables for the distractor conditions seem to be due to the high 

association of the lexical variables with lexical retrieval processing. Further studies will be 

needed to address the influence of lexical variables at each lexical retrieval step. This discussion 

will focus on the word frequency and distractor frequency effects.  

Finally, there were several reasons to adopt hierarchical multilevel effect models in this 

study. Variation in RTs during picture naming, due to individual differences, was predicted due 

to differences in resting activation level and/or selection thresholds. Additionally, confounding 

factors such as lexical properties and demographic characteristics could affect variability. As 

predicted, a large variance between individuals was found in the models and these individual 

differences were considered when computing the estimates. The approach using GLMM 

enhanced the sensitivity of the study by increasing power by decreasing type II error.  

In conclusion, the RT findings from this study support the first hypothesis; that there 

would be a decrease in RTs in both the semantic and mixed distractor conditions as the target 

item’s frequency increases. These findings are inconsistent with the established DTS model 

(Jescheniak & Levelt, 1994) that word frequency has a selective influence at the phonological 

encoding step. By demonstrating the indirect word frequency effect on the lexical selection step 

via the interactive lexical network, the bi-directional spreading of activation of IA models was 

supported (Kittredge et al., 2008). Also, findings further extended understanding of the word 

frequency effect on lexical selection. That is, not only its indirect influence, but also how its 

direct influence operates during lemma selection.  
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5.2 DISTRACTOR FREQUENCY EFFECT AND ITS INTERACTION WITH 

TARGET WORD FREQUENCY 

The second specific aim was to investigate whether the target item’s frequency interacts with 

distractor frequency during lexical selection. Since the literature did not provide information 

about the relationship between target word frequency and distractor word frequency, it was 

expected that the current study would extend the understanding of distractor frequency effect in 

the PWI task.  

Two hypotheses were proposed: competitive lexical selection and non-competitive 

lexical selection. In summary, the competitive hypothesis predicts that the speed of selecting 

target lexical nodes is dependent on the activation levels of non-target nodes. Therefore, HF 

distractor words have stronger interference effects on the retrieval of target words than LF 

distractor words (Damian & Martin, 1999; Hutson et al., 2013; La Heij, 1988; Levelt et al., 1999; 

Roelofs, 2003). The non-competitive hypothesis predicts that a lexical node is selected without 

influencing the activation level of non-target nodes, and thus, LF distractor words should 

interfere more in a PWI task (Caramazza, 1997; Dell, 1986; Dhooge & Hartsuiker, 2010, 2011; 

Mahon et al., 2007; Miozzo & Caramazza, 2003; Rapp & Goldrick, 2000; Stemberger, 1985). 

This hypothesis views the distractor frequency effects as occurring post-lexically, while the LF 

distractors are held longer than HF distractors, resulting in more interference. 

Before examining the interaction between target word frequency and distractor frequency, 

it is necessary to discuss the GLMM results for each distractor condition in order to understand 

the fundamental impact of the distractor frequency on picture naming. Note that in the models, 

the distractor frequency effect was entered as a covariate predictor to examine its effect on RT 

holding the effect of target word frequency. Results showed that an increase in distractor 
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frequency led to delayed RT in semantic and mixed distractor conditions, supporting the 

competitive hypothesis. Consistent with the competitive hypothesis, HF distractor words 

interfered more with the retrieval of target words than LF distractor words during the lexical 

selection step. This is at odds with work claiming that LF distractors interfered more (Dhooge & 

Hartsuiker, 2010, 2011; Mahon et al., 2007; Miozzo & Caramazza, 2003; Rapp & Goldrick, 

2000). This distractor frequency effect was not found for the phonological distractor condition. 

Following Miozzo and Caramazza (2003), it seems that interaction with the facilitation effect of 

the phonological distractors led to the disappearance of the distractor frequency effect. 

A significant interaction effect between target word frequency and distractor frequency 

was observed only in the mixed distractor condition, indicating that the interference of distractor 

frequency type depends on the target frequency type. The mean RT of HF target words was 

higher than the LF target words when HF distractors were provided and the pattern was reversed 

when the LF distractors were presented although the difference of interference was small. The 

magnitude of difference between the mean RT of HF target words and the mean RT of LF target 

words was higher in the HF distractor condition than in the LF distractor condition. A possible 

interpretation would be that HF distractors in the mixed distractor condition seemed to influence 

lexical retrieval of target words but their influence was mitigated in the interactive network by 

the partial facilitation effect that propagated back from the phonological representation level. 

However, findings of no simple main effect of distractor frequency type makes it hard to argue 

that a certain type of distractor word’s frequency had a stronger interference effects on the 

retrieval of a certain type of target word’s frequency.  

In sum, based on positive (+) coefficients of distractor frequency on RTs shown in Table 

14 and 16, the competitive hypothesis seems to account for the overall structure of the distractor 
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frequency effect in the current study. In addition, findings regarding the interaction effect in the 

mixed distractor condition support the hypothesis 2a that the target word’s frequency does not 

independently modulate the lexical retrieval speed without being influenced by distractor 

frequency. However, it is difficult to select either of these hypotheses to account for the 

significant interaction effect.  

5.3 RESPONSE TYPE ANALYSIS  

A large number of correct responses were observed at Baseline and in the experimental 

conditions. There was no significant difference in the errors between Baseline and the PWI task 

except for the number of phonological errors. However, it was not necessarily phonological 

distractors that led to the increase in phonological errors. It appears that the distractors in the 

experimental setting caused some participants to generate phonological errors, an atypical type 

of error, for healthy adults. There was also a small variance at level-2 in the models, which 

means that there was little variance across participants in terms of the number of errors. 

Focusing on the errors in the PWI condition, a significant increase in semantic errors and 

a significant decrease in phonological errors were shown compared to the number of mixed 

errors. This finding is consistent with the observation that semantic and mixed errors are the 

most frequent error types in healthy adults (Dell & Reich, 1981; Harley, 1984; Martin et al., 

1989; Schwartz et al., 2006).  

Regarding specific aim 3, non-significant word frequency and non-significant interaction 

effects were found between target word and distractor frequencies across all error types. It turns 

out that error rates are too low for healthy adults to be meaningful. Thus, the first hypothesis of 
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specific aim 3 was supported:  examining RT provides a sensitive dependent measure with which 

to investigate the word frequency effect in a PWI paradigm by increasing the statistical power. A 

better dependent variable for indexing the word frequency effect (Miozzo & Caramazza, 2003) is 

captured by analyzing RT rather than errors when the PWI paradigm is used; at least when 

assessing healthy adults. Although the amount of phonological errors increased in the distractor 

conditions, it would be premature to conclude that the PWI paradigm can be used to create 

erroneous naming behavior in healthy adults or to assess the normal-to-aphasic continuum 

(continuity hypothesis) using the experimental design of the current study.  

5.4 CLINICAL IMPLICATION 

Many studies of aphasia treatment have focused on the recovery of language impairment due to 

acquired brain damage (Basso, Capitani, & Vignolo, 1979; Kiran & Thompson, 2003; Nickels, 

2002; Rose, Douglas, & Matyas, 2002; Shewan & Kertesz, 1984). In order to achieve the 

ultimate goal of aphasic intervention, which is maximizing quality of life (Simmons-Mackie & 

Kagan, 2007; WHO, 2001), extending researchers’ and clinicians’ attention to the functional 

and/or preserved language ability is required. In this sense, the current study has clinical 

implications for aphasia treatment focusing on PWA’s relatively well-preserved word retrieval 

ability for HF words. Findings showed that HF word advantage can be gained across all lexical 

retrieval steps. Accordingly, no matter where the damage is located in the lexical processing 

network, PWA with semantic network damage should still benefit from the HF word advantage 

with the relatively retained phonological encoding, and the PWA with phonological network 

damage may benefit with their relatively retained lexical selection before they articulate a word. 
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Via the interactive network between two steps, the damaged network expects to be strengthened 

by other nodes in adjacent representation levels that are connected to the weak target nodes. With 

frequently usable words, the treatment goal for aphasia may be more related to the improvement 

of daily communication. Yet to be determined is the influence of word forms. In order to expand 

the findings from the literature and to enhance understanding about the word frequency effect on 

retrieving nouns, the current study focused only on nouns. Many word forms are used in our 

language production. Thus, future research needs to examine the locus of word frequency effect 

for a wide range of word forms.  

In addition, findings have implications for the current AAC treatment for PWA. Many 

graphic symbol-based AAC systems that were developed for PWA do not consider HF word 

advantage on the AAC vocabulary selection and organization. Identifying the locus of the word 

frequency effect, thus, was considered important in the present study to provide a rationale with 

which to prioritize HF words in the AAC system. From this study, word frequency was 

confirmed to be a relevant psycholinguistic variable for lexical selection. Thus, we can predict 

that a HF word advantage can be expected when using a graphic symbol-based interface where 

semantic information is represented. More importantly, based on the findings about the direct 

and indirect influence of word frequency on lexical selection, improved AAC performance is 

anticipated with well-organized access to the HF word symbols.  

Findings about the distractor frequency effect during lexical access provided another 

possibility regarding AAC vocabulary organization. Non-target symbols can interfere with 

selecting a symbol or word when the non-targets are semantically related. Therefore, organizing 

words in a semantic hierarchy would not be necessary or viable for effective communication 

using an AAC system. Rather, allocating the highest frequency words on the main page of the 
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interface seems practical for efficient lexical selection using symbols. Then the remaining HF 

words can be organized by grammatical categories. Based on the evidence about the interaction 

effect between the target word’s frequency and the distractor frequency (non-target words), the 

magnitude of interference from non-target word on retrieving words in the AAC interface would 

differ depending on the target word’s frequency type (i.e., HF or LF words). However, HF words 

are not necessarily affected more by HF non-target words than LF non-target words. Thus there 

are less constraints when allocating those words.  

As the results of this study demonstrate, lexical level variables as well as individual-level 

variables may affect word retrieval. In addition to these variables, other interface variables may 

affect the performance too. Thus, additional word frequency effect studies that include the 

factors of AAC technology and AAC speakers will be required to explicate these interactions. 

Additionally, for the same reason that was mentioned above for the clinical implication for 

apahsia treatment, the current study focused only on nouns. AAC, and other interventions, must 

utilize not only nouns but also pronouns, verbs, adjectives, and preposition when considering 

word frequency effects (Hill 2010). Thus, when the word frequency effect studies are conducted 

for AAC speakers in the future, all of these form classes need to be included in order to assess 

the generalizability of the findings of this study.  

The clinical motivation for investigating the WF effect was its application to AAC. 

However, findings can be extended to selecting stimuli for treatment for PWA or other 

populations. Additionally, PWI task may be applicable to locating the areas of impairment in 

PWA as well with other clinical populations. 
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5.5 LIMITATIONS 

In spite of the advantages of using word frequency as a continuous variable and the use of the 

GLMM, the present study has a limitation to be addressed in terms of the statistical method. In 

order to examine the interaction effect between target word frequency and distractor frequency, 

the continuous variable had to be sorted into HF and LF words when using gllamm syntax in 

StataSE 14. Medians of target word frequencies and distractor frequencies were used as cut off 

points to divide the frequencies into two groups because of the non-normal distribution. For 

normal distributions, the mean, median, and mode can be used as a central value, but for a 

skewed distribution, the median is typically used (Gravetter & Wallnau, 2013). Although 

meaningful results were found to account for the interaction effect from the mixed distractor 

condition, discrepancies were shown between the GLMM results where continuous variables 

were entered and the GLMM results where categorical variables were entered. As expected, the 

latter GLMM failed to show the main effect of target word frequency and/or distractor frequency 

effect due to the low sensitivity of the measurement. Because the primary purpose of the latter 

GLMM was to examine the interaction effect, non-significant main effects were ignored in the 

current study.  

Another limitation is related to the target item stimuli. Since this study adopted a PWI 

paradigm, the PNT pictures were used, which have been demonstrated to have high familiarity, 

high name agreement, and good image quality (Roach et al., 1996). In the current study, the 

lexical properties including word frequency, word length, phonological neighborhood density, 

and imageability were all controlled. Also, pictures were presented in a random order with and 

without the paired auditory distractors. Thus, possible confounding effects that pertained to the 

pictures were controlled. However, as the coefficients showed, the amount of RT change relative 
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to the change of word frequency units was relatively small. For example, in the semantic 

condition, as a unit of word frequency increased by 100, the RT was reduced 2ms. The small 

amount of change seems to be due to the relatively high performance of participants with the LF 

words and relatively poor performance with the HF words for some participants. In order to 

improve the sensitivity of the stimuli, providing some cognitive stress such as a time-constrained 

environment during their picture naming could be considered for future studies (Silkes, McNeil, 

& Drton, 2004). In addition, conducting the same research procedure for PWA and comparing 

the results with the ones for healthy adults will be helpful to determine if the low sensitivity of 

the stimuli was due to the influence of the demographic characteristic.  

Lastly, unrelated or involuntary reactions such as interjection (e.g., um, ah), cough, and 

yawn that preceded their verbal responses, were shown from some participants. Follow-up 

analysis showed that among 16,589 verbal responses that were included for the RT analysis, the 

total number of these reactions was 488 (2.94% to the total verbal responses): 425 interjections 

(2.56%), 19 throat clearings (0.11%), 13 laughs (0.08%), 8 coughs (0.05%), 7 yawns (0.04%), 11 

carrier phrases (e.g., “that’s a”) (0.07%), 2 hiccups (0.01%), 2 sighs (0.01%), and 1 sniffle 

(0.01%). A close observation was made on the majority of interjections revealing that many of 

interjections were used by some participants as an effort to retrieve a word. Along with other 

involuntary reactions, the possibility exists that interjections might affect the onset of speech 

sounds, resulting in longer RTs. However, these interjections were dispersed across conditions 

and did not appear to have a differential effect on the experimental conditions. Thus, there is no 

likely effect on the results obtained.  
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6.0 CONCLUSION 

The purpose of the current study was to identify the locus of the word frequency effect in order 

to provide theoretical and empirical justification for the use of AAC systems for PWA. The 

picture-word interference (PWI) paradigm was used to investigate these effects in healthy adults 

and the responses were analyzed using GLMMs to achieve three specific aims.  

Specific aim 1 investigated whether word frequency affects lexical selection during a 

PWI task. Results showed that word frequency affects not only phonological encoding, but also 

the lexical selection and the interaction between these two stages of processing. This finding 

supports the rejection of the established viewpoint, derived from DTS models, that word 

frequency has a selective influence at the phonological encoding step.  

Specific aim 2 investigated whether the target item’s frequency interacts with the 

distractor’s frequency during lexical selection, within the PWI task. No interaction effect was 

found at lexical selection or at phonological encoding. A significant interaction effect was found 

at the locus between the two steps without a simple main effect of distractor frequency type. 

Overall, these findings are consistent with the competitive hypothesis. However, to account for 

the mechanism of the interaction effect at the interactive network, further research is needed.  

Specific aim 3 investigated whether there is a difference between RT and response type, 

when examining the frequency effect for healthy adults during the PWI task. As predicted, the 

frequency effect was observed differently depending on the type of dependent variable. Due to 
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the issue of sensitivity of measurement, neither the word frequency effect nor the interaction 

effect between target word frequency and distractor frequency was observed when errors were 

investigated. RT was found to be a sensitive measurement when investigating the word 

frequency effect while using the PWI paradigm and in general, error type was not.  

Although some limitations regarding the statistical approach and stimuli were identified, 

this study provides empirical data addressing the debate on the locus of the frequency effect on 

lexical retrieval that is prominent in aphasiology and psycholinguistics. In addition, the study 

extends the understanding of the characteristics of the word frequency effect and the interactive 

mechanism in the lexical retrieval process. These findings will help to develop theory-driven 

AAC treatment approaches, which are expected to enhance the autonomy and expand social 

networks for PWA.  
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APPENDIX A 

PNT Target Picture Items and Paired Distractor Stimuli For 

Semantic, Phonological, Mixed, and Unrelated Distractor Conditions 

 

Semantic distractor 

condition (n=43) 

 Phonological distractor 

condition (n=43) 

 Mixed distractor 

condition (n=43) 

# Target Distractor 

 

Target Distractor 

 

Target Distractor 

1 zebra buffalo dice diaper scissors sickle 

2 octopus squid  grapes grave  apple apricot 

3 celery onion  Eskimo escalator  balloon babble 

4 owl eagle  necklace nest  pineapple papaya 

5 strawberries watermelon  camera candy  lamp lantern 

6 cannon missile  binoculars biscuit  skull scapula 

7 vest cardigan  ruler ruby  dog donkey 

8 vase pitcher  cowboy cocktail  carrot cabbage 

9 bridge tunnel  calendar caramel  bus buggy 

10 fireplace radiator  can cactus  tent temple 

11 dragon unicorn  cane cave  flashlight flame 

12 pyramid sphinx  saddle sack  camel calf 

13 typewriter printer  piano picture  goat goose 

14 hammer drill  wig wizard  sandwich salad 

15 fork chopstick  drum drugstore  tractor truck 

16 helicopter airplane  pencil pentagon  train trolley 

17 towel napkin  table tail  basket bag 

18 lion tiger  fan family  horse hound 

19 ghost angel  pen pebble  pie pizza 

20 pipe cigarette  belt beggar  pumpkin potato 

21 football hockey  slippers slingshot  squirrel skunk 

22 rope chain  map mango  cake custard 

23 candle torch  queen quilt  bat bear 
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(continued) 

 
Semantic distractor 

condition (n=43)  

Phonological distractor 

condition (n=43)  

Mixed distractor 

condition (n=43) 

# Target Distractor  Target Distractor  Target Distractor 

24 closet pantry  ring river  nurse nun 

25 van sedan  cat canopy  nail needle 

26 bread cookie  nose notebook  elephant elk 

27 leaf petal  stethoscope steak  turkey turtle 

28 kitchen bathroom  ear easel  seal seahorse 

29 bottle cup  king kidney  spoon spatula 

30 glass mug  plant plastic  hat helmet 

31 church library  fish field  sailor salesman 

32 tree moss  window wing  butterfly bumblebee 

33 bed couch  letter lemon  heart hexagon 

34 eye mouth  baby bacon  skis skate 

35 well reservoir  waterfall wallet  pear peach 

36 wagon cart  pillow pianist  harp harmonica 

37 bowl jar  corn court  broom brush 

38 dinosaur mammoth  garage garment  monkey mole 

39 banana orange  comb coach  rake razor 

40 fireman lifeguard  desk devil  pig panda 

41 bench sofa  anchor antique  mountain mound 

42 cow lamb  mustache mud  duck dove 

43 boot heel  chimney chin  spider sparrow 

 
Unrelated distractor condition 

(n=43) 

# Target Distractor 

1 cheerleaders eggplant 

2 zipper bicycle 

3 snail ocean 

4 pirate squash 

5 sock radio 

6 volcano snack 

7 bride rocket 

8 saw golf 

9 ambulance oven 

10 whistle garden 

11 iron ankle 

12 scarf bamboo 

13 crown pin 
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(continued) 

 

Unrelated distractor condition 

(n=43) 

# Target Distractor 

14 cross peanut 

15 scale kangaroo 

16 glove parrot 

17 snake broccoli 

18 beard plate 

19 toilet jelly 

20 clown pelican 

21 clock valley 

22 knife ant 

23 suit garlic 

24 hair stapler 

25 shoe tank 

26 flower elevator 

27 star toaster 

28 ball jacket 

29 sun dormitory 

30 top cucumber 

31 kite boat 

32 foot cottage 

33 book gym 

34 key basil 

35 crutches doughnut 

36 hose prince 

37 thermometer doll 

38 microscope cereal 

39 frog wrench 

40 bell attic 

41 door cherry 

42 bone guitar 

43 chair jaw 

Note: Each distractor was created considering the distractors used in previous PWI studies and 

description of error types in literature. Semantic distractors are semantically related words within the 

same semantic category as the paired target items. Phonological distractors are words of which the first 

syllable corresponds to the first syllable of paired target items. Mixed distractors share a same semantic 

category and a phonological sound for at least first consonant or vowel with paired target items. Unrelated 

words are not semantically or phonologically related to the paired items. No item was repeated in any 

condition.  
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APPENDIX B 

Instructions Provided to Participants in Baseline and PWI Tasks 

 

1. Instruction provided through E-Prime for the Baseline Task  

“I am going to ask you to name some pictures. 

When you see a plus sign (+) on the computer screen with a beep sound, 

a picture will appear on it. 

Your job is to name the picture as fast as you can when you see it. 

Please use only one word.” 

 

2. Instruction provided through E-Prime for the PWI task  

“This time you will again name some pictures as fast as you can when you see a 

plus sign (+) on the computer screen with a beep sound. 

However, this time you will hear spoken words with the picture. 

Your job is to name the picture as soon as possible and pay no attention to the 

spoken words. 

Sometimes the words will be spoken after you see the picture. In that case, don’t 

wait until the spoken word is finished, but name the picture as fast as you can. 

Again, use only one word to name the picture. 

We’ll practice before we begin.” 

 

3. In the middle of both tasks, the following written instruction was provided once: 

“Keep naming the picture as soon as possible.”
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APPENDIX C 

Example of Response Sheet 

Participant ID:  

Date:  

Examiner: 

 Response Time (RT): Obtained based on E-Prime outcome report. 

 Response Type: C = correct response, S = semantic error,  

P = phonological error, M = mixed error, or O = others. 

Indicate a specific subtype of “Others” from followings: 

I don't know, omission of more than 50% of number of phonemes, 

description/circumlocution, part of picture, no response, visual 

misinterpretation, non-word, and unrelated word. 

  Baseline PWI 

#  Target word 
Distractor 
type Response 

Response 
type RT (ms) 

Target 
word 

Distractor 
type Response 

Response 
type RT (ms) 

1 sun Unrelated       belt Phonological       

2 ruler Phonological       scale Unrelated       

3 banana Semantic       wig Phonological       

4 waterfall Phonological       sailor Mixed       

5 towel Semantic       crutches Unrelated       

6 ring Phonological       ear Phonological       

7 cane Phonological       wagon Semantic       

8 stethoscope Phonological       typewriter Semantic       

9 dragon Semantic       volcano Unrelated       

10 corn Phonological       snake Unrelated       
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APPENDIX D 

Response Type Analysis 

 

The first response of participant to each item was examined and checked for correctness. Correct 

response should be identical to the target word except for the following words: “snare drum” for 

“drum”; “ink pen” for pen”; “fall” for “waterfall”; “firefighter” for “fireman.” Therefore, if a 

participant said “snare drum” for a picture “drum”, it was regarded as a correct response. These 

words were excluded from the RT analysis because the phonemes that are unmated with the ones 

of a target word can result in confounding influence on examining frequency effect on lemma 

and lexeme of the target word.  

Incorrect responses, which were not covered by the specifically identified exceptions, 

were considered to be errors. All errors were to be sorted out into four error categories. Three 

major error types including semantic, phonological, and mixed errors were defined based on the 

guideline of Schwartz et al. (2006):  

(1) “Semantic” is a synonym of the target, or a coordinate (e.g., toad for frog), superordinate 

(e.g., cup for glass) or subordinate member of its category (e.g., bible for book). Noun 

associates are also included in the semantic error category (e.g., bride for wedding), whereas 

non-noun associates are not; they are considered to be  “Other” type of errors  and coded in 

the category “description/circumlocution” (e.g., bride for getting married; or marrying). 



139 

(2) “Phonological” is any word response (excluding proper nouns or non-words) that meets the 

Philadelphia Naming Test’s phonological similarity criterion. This criterion requires that the 

target and the error start or end with the same phoneme, that they have a phoneme in common 

at another corresponding syllable or word position, aligning words left to right, or that they 

have more than one phoneme in common in any position (excluding unstressed vowels) (e.g., 

“peer” for “pillow”). 

(3) “Mixed” is a response that meets both the semantic and the phonological similarity criterion. 

(4) Other types of errors will be grouped as “other” which will include no response, “don’t 

know” response, omission of more than 50% of number of phonemes (e.g., “vol” for 

“volcano”), description/circumlocution (“woman wearing a wedding gown” for “bride”), 

naming a picture part (e.g., “car” for a picture of “garage” where a “car” is parked inside), 

visual misinterpretation (e.g., “wrench” for “bone”), non-word, and unrelated words that do 

not meet neither of the criteria of semantic and phonological errors. Repeating a name 

produced earlier in the list is regarded as unrelated type of errors (i.e., perseverations). Note 

that in the case of “omission”, not all incomplete words are errors. If the number of phonemes 

is more than 50% of full phonemes, the incomplete words were treated as complete response. 

For example, if the response is /vɑl/ for “volcano”, the number of phonemes is less than 50% 

(3 out of 7) so it is not considered as “volcano”. However, if the response is /vɑlkeɪ/, more 

than 50% phonemes are produced, thus, the response is considered as “volcano.” 
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APPENDIX E 

Acoustic Characteristics of Vowels and Consonants 

 

The onset of each speech sound was examined by taking into account following acoustic 

characteristics of phonemes provided by Kent and Read (1992) and an online lecture, Speech 

Waveforms by Mannell (Retrieved from http://clas.mq.edu.au/speech/acoustics/waveforms 

/speech_waveforms.html on April 1, 2015). Note that in the case of appearing creaks resulting 

from a perturbation of vocal fold vibration, the break of the continuous waveform was ignored as 

long as the waveform showed one single word in the current study. Repeated initial phonemes 

which did not compose a whole single word were excluded from the data analysis.  

 

1. Vowels 

All voiced have periodic waves. The intensity of the vowels rises rapidly at the start, and then 

gradually drops. 

 

2. Consonants 

1) Stops 

a. /p/ /t/ /k/: These voiceless oral stops have characteristic of aperiodic sound commencing 

abruptly with a burst. The bursts are very short and are followed by aspiration.  
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b. /b/ /d/ /g/: These voiced oral stops have an initiation of voicing that precedes the stop 

burst. In the case of unclear voicing, the bursts occur immediately before the onset of the 

vowel.  

2) Fricatives 

a. /f/ /ɵ/ /s/ /ʃ/ /h/: These voiceless fricatives have a gradually increasing aperiodic pattern 

but no bursts. These sounds have relatively long fricative aspiration compared to the 

aspiration of the voiceless stops and affricate. /s/ /ʃ/ have the stronger voiceless fricatives 

than /f/ /ɵ/ and /h/ do.  

b. /v/ /ð/ /z/ /ʒ/: These voiced fricatives have periodic pattern. For the strong fricatives /z ʒ/, 

the mixture of periodicity and aperiodicity may be seen before the vowel. 

3) Affricates 

a. /tʃ/: This voiceless affricate has a weak burst. Then a very strong aspiration appears 

before the onset of voicing.  

b. /dʒ/: The burst in this voiced affricate’s waveform is barely discernable. It would look 

similar to the waveform of the voiced fricative /z/.  

4) Nasals  

Voiced nasals /m/ /n/ /ƞ/ have relatively periodic pattern without bursts like vowels but 

have weaker intensity than vowels. 

5) Liquids and glides 

Voiced liquids /l/, /r/ and voiced glides /w/ /j/ look like voiced nasals.  
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