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ABSTRACT

Human, rat, and mouse studies have demonstrated the existence of a population of adipose-derived adult
stem (ADAS) cells that can undergo multilineage differentiation in vitro. However, it remains unclear
whether these cells maintain their multilineage potential in vivo. The aim of this study was to examine the
in vitro and in vivo characteristics and behavior of a potential population of murine ADAS (muADAS)
cells isolated from the visceral fat of the abdominal cavity of C57BL/10J mice. We used flow cytometry to
examine the cells’ expression of CD29, CD31, CD45, CD34, CD44, CD144, CD146, Flk1, and Sca-1. The
isolated cell population was CD45 negative, which precludes contamination by hematopoietic cells, but
was partially positive for Sca-1 and CD34: 2 stem-cell markers. After induction in conditioned medium,
the muADAS cells gained the ability to undergo adipogenic, osteogenic, chondrogenic, myogenic, and
hematopoietic differentiation in vitro. The muADAS cells readily differentiated to form bone and car-
tilage in vivo for up to 24 weeks, but their ability to regenerate muscle or reconstitute bone marrow was
found to be limited.

INTRODUCTION

RESEARCHERS TRADITIONALLY HAVE BELIEVED that stem

cells in adult tissues can generate only the types of cells

present within the tissues in which the stem cells reside;

however, increasing numbers of papers have reported the

detection of pluripotent stem and progenitor cells in various

types of adult tissues, including bone marrow, muscle, brain,

skin, and adipose tissue.1–6 These cells, which purportedly

can differentiate toward various lineages both in vitro and in

vivo, could serve as the basis for a wide variety of tissue

regeneration and repair applications. Unfortunately, the iso-

lation of pluripotent stem cells from most of the tissue

sources investigated has practical limitations. Often, the

source tissue is not abundant, or cell harvesting relies on an

invasive technique (e.g., bone marrow isolation) or is clini-

cally impossible (e.g., brain tissue isolation). Ideal stem cell

sources would be easily accessible and available in unlimited

amounts. Because adipose tissue fits these criteria, it is an

attractive candidate as a stem cell source. Scientists recently

have demonstrated that certain cells isolated from sub-

cutaneous or visceral fat tissue can differentiate into a vari-

ety of cell types in vitro, including adipocytes, osteoblasts,

chondrocytes, and myoblasts.6–8 These cells have been

termed ‘‘adipose-derived adult stem (ADAS) cells’’ because

they are self-renewing and can be induced to differentiate

toward various mesodermal lineages.9,10

Adipose tissue, which is abundant, expendable, and easy to

obtain from the body, is derived from the mesoderm and

contains 2 different cell populations: mature adipose cells

and stroma vascular fraction (SVF) cells.11 SVF cells isolated

from rat adipose tissue have exhibited multipotent differ-

entiation in vitro.10,12 The aim of our study was to deter-

mine whether visceral adipose tissue from mice contains

Growth and Development Laboratory, Children’s Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of

Pittsburgh, Pittsburgh, Pennsylvania.

TISSUE ENGINEERING
Volume 12, Number 7, 2006
# Mary Ann Liebert, Inc.

1891



a population of adipose-derived mesodermal stem cells that

can undergo multilineage differentiation in vitro and in vivo.

The existence of such stem cells would validate the notion

that these cells reside in adipose tissue and can be used to

improve the healing of various types of tissues.

MATERIALS AND METHODS

Animals

The normal mice (C57BL/10J and BALB/cJ), mdx mice

(C57BL/10ScSn DMDmdx/J), SJL/J mice, and SCID mice

used in this study were purchased from The Jackson La-

boratory (Bar Harbor, ME). The Children’s Hospital of

Pittsburgh’s Institutional Animal Care and Use Committee

approved all animal protocols used for these experiments.

Cell harvest and culture

For isolation of murine adipose-derived adult stem

(muADAS) cells, visceral adipose tissue was excised sepa-

rately from six C57BL/10J mice and five BALB/cJ mice

(4–8 weeks of age), finely minced, and digested using

0.075% collagenase type XI (Sigma, St. Louis, MO) for

45 min at 378C. Enzyme activity was neutralized by treat-

ment with Dulbecco’s modified Eagle’s medium (DMEM)

containing 10% fetal bovine serum (FBS). The cell sus-

pension was centrifuged at 1200g for 10 min to separate the

floating adipocytes from the SVF. The SVF was resuspended

in ammonium chloride (160 mM), incubated at room tem-

perature for 10 min to lyse contaminating red blood cells,

and then centrifuged as described above. After filtration of

the cell suspension through a 100-mm nylon strainer to re-

move cellular debris, cell number and viability were de-

termined using trypan blue exclusion. The SVF cells were

plated in T75 flasks overnight in control medium (DMEM,

10% FBS, 1% penicillin/streptomycin) at 378C in 5% carbon

dioxide (CO2). After incubation for 24 h, the flasks were

washed extensively uisng phosphate buffered solution (PBS)

to remove residual nonadherent cells. The adherent muA-

DAS cells were expanded using serial passaging.

Characterization of muADAS cells

Flow cytometry was used to characterize muADAS cells

obtained from C57BL/10J and BALB/cJ mice and grown for 4

passages and 10 passages under control conditions. Cultured

cells were trypinized, spun, and washed in cold PBS 1X

(Mediatech, Herndon, VA) containing 2% FBS. The cells then

were divided into aliquots and were spun to form a pellet. Cells

were blocked using mouse serum (Sigma) diluted 1:10 in PBS

and rat anti-mouse CD16/CD32 (BD PharMingen, San Diego,

CA) for 10 min on ice. The primary antibodies (applied in

optimal amounts) included a biotin-conjugated rat anti-mouse

monoclonal antibody against CD34 and CD29 (surface pro-

teins used to define mesenchymal stem cells and progenitor

cells) followed by streptavidin-APC, PE-conjugated mouse

anti-Sca-1, and FITC-conjugated mouse anti-CD45 and

anti-CD44 (all from BD PharMingen, San Diego, CA). To

exclude dead cells, 7-aminoactinomycin D (Via-Probe, BD

PharMingen) was added to each tube. Live cells were analyzed

using a FACSCalibur flow cytometer (Becton Dickinson, San

Jose, CA) and CellQuest software (Becton Dickinson). Ana-

lysis of surface protein expression was performed using ap-

propriate gating on viable CD45-negative cells to eliminate

contaminating hematopoietic cells. The isotype antibody

control samples obtained for each individual cell population

were used to set the dot-plot intercepts used for the analysis.

In vitro adipogenic differentiation assay

A previously described method was used to analyze adi-

pogenesis.6 Trypsin/ethylenediaminetetraacetic acid was

used to harvest the muADAS cells, which then were replated

in 6-well plates (100,000 cells per well) in control medium to

allow attachment. Twenty-four h later, the medium was re-

placed with new control medium or adipose medium (con-

trol medium plus insulin [10 mM], dexamethasone [1mM],

isobutyl-methylxanthine [0.5 mM], and indomethacin [200

mM] [all from Sigma-Aldrich]). Cultures were maintained

for 14 days, and medium was changed every 2 days. The

cultures then were assessed using Oil Red O stain, which

serves as an indicator of intracellular lipid accumulation.

The cells were fixed for 10 min at room temperature in 10%

neutral buffered formalin and were washed with distilled

water. They then were incubated in Oil Red O reagent for

30 min and washed 3 times with distilled water. The cells

were counterstained with hematoxylin for 1 min.

In vitro chondrogenic differentiation assay

Pellet culturing was performed as described previ-

ously.13–15 Cells (n ¼ 250,000) were placed in a 15-mL

conical polypropylene tube and were centrifuged at 600g

for 5 min; they then were left on the bottom of the tube

and cultured in control medium or defined medium: high-

glucose DMEM supplemented with 1% ITSþPremix (BD

Biosciences, Bedford, MA), L-ascorbic acid-2-phosphate

(0.1 mM, Wako Pure Chemical Industries, Ltd. Osaka,

Japan), dexamethasone (1�10�7 M, Sigma), proline (400 mg/

mL, Sigma), and bone morphogenetic protein 4 (BMP4)

(500 ng/mL, R&D Systems). After the addition of 1 mL of

chondrogenic medium to each tube, the pelleted cells were

incubated at 378C in 5% CO2. The medium was changed

every 2 to 3 days. Pellets were harvested at different time

points (Days 7, 14, 21) and were embedded in paraffin as

detailed in the standard protocol (available on the Cambrex

Company website). Chondrogenesis was confirmed by use

of the histologic stain Alcian blue at a low pH to stain

the highly sulfated proteoglycans that are characteristic of

cartilaginous matrix. After that, sections were counter-

stained with nuclear fast red, which specifically stains cell

nuclei.
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In vitro osteogenic differentiation assay

The in vitro osteogenic assay was performed as de-

scribed previously.6 Osteogenic differentiation was in-

duced by culturing muADAS cells in osteogenic medium

(OM, control medium supplemented with dexamethasone

[0.1 mM], ascorbate-2-phosphate [50 mM], and b-glycer-

ophosphate [10 mM] [all from Sigma]). The medium was

changed every 3 days. Osteogenesis was assessed using von

Kossa staining and observation of alkaline phosphatase

(ALP) activity 2 and 4 weeks after initial osteogenic in-

duction, as described previously.16 The cells were incubated

in OM for 2 weeks and rinsed with PBS. The commercially

available Sigma AP kit 86-c (Sigma) then was used to detect

ALP activity. The cells used for von Kossa staining were

incubated in OM for 4 weeks and fixed at room temperature

with 4% paraformaldehyde for 1 h. They were rinsed with

distilled water and then were incubated for 30 min in 1%

silver nitrate solution in the dark. The cells then were rinsed

again with distilled water and exposed to ultraviolet light for

60 min. Secreted calcified extracellular matrix appeared as

black nodules after von Kossa staining.

In vivo chondrogenic and osteogenic

differentiation assays

muADAS cells were seeded at a density of 1.5� 106 cells

in 75-cm2 flasks and were grown to 50% confluence. On the

day of transduction, cells were washed twice with sterile

PBS and were incubated for 16 h with a mixture of 2 mL of

retro-LacZ viral suspension (1� 106–5� 106 cfu/mL),

18 mL of DMEM supplemented with 10% FBS, and poly-

brene (8 mg/mL) in 5% CO2 at 378C. This same solution was

replaced every 16 h for 32 h. The percentage of LacZ-posi-

tive transduced cells (muADAS-LacZ cells) was determined

using X-galactosidase (gal) staining. The aforementioned

technique also was used to transduce muADAS-LacZ cells

with a retro-BMP4 virus. Medium containing 10 mL of

retro-BMP4 viral suspension (5� 105 cfu/mL), 10 mL of

DMEM with 10% FBS, and polybrene (8 mg/mL) was added

to the flasks. muADAS-LacZ cells were cultured in this

medium for 48 h, with medium changes performed every

16 h. After transduction, the muADAS-LacZ-BMP4 cells

were cultured in 6-well plates until the cultures reached

confluence. The culture medium was collected after 48 h,

centrifuged at 2000 rpm and 4oC for 5 min to remove cellular

debris, and then used to perform a BMP4 bioassay. A pre-

viously described BMP4 assay was used to determine the

level of functional BMP4 secreted by the transduced cells.17

After detection of bioactive BMP4 in the culture medium

(100 � 22 ng/million cells/24 h) of muADAS-LacZ-BMP4

cells, 3� 105 cells in a 100-mL cell suspension were seeded

on the surface of a 6 mm� 6 mm piece of sterile collagen

sponge (Gelfoam, Pharmacia & Upjohn Co., Ann Arbor,

MI). After the Gelfoam absorbed all the cell suspension,

3 mL of DMEM supplemented with 10% FBS was added to

each well; the wells then were placed in a cell incubator

overnight.

Animal surgery was performed on the following day.

Samples were implanted into the skeletal muscle pouch of

the gluteofemoral muscle of each SCID mouse. The mice

were examined radiographically and then killed at different

times (2, 4, 5, and 24 weeks) after cell implantation. The

harvested tissue samples obtained 2, 4, and 5 weeks after

cell implantation were treated with CRYO-GEL Embed-

ding Medium (Cancer Diagnostics, Inc., Birmingham, MI),

rapidly frozen, and stored at –808C. Frozen sections were

fixed in 1% glutaraldehyde for 1 min and then were washed

3 times in PBS. Some of the sections were stained in X-gal

solution and counterstained with eosin. Other sections were

stained in X-gal solution and immunostained with collagen

type II (1:200 dilution, Santa Cruz Biotech, Santa Cruz,

CA) and osteocalcin (1:200 dilution, Santa Cruz Biotech),

as detailed in the manufacturer’s protocol (Vectastain Elite

ABC kit, Vector Laboratories, Burlingame, CA). Some of

the 24-week samples were frozen and sectioned, whereas

others were decalcified and embedded in paraffin. The

frozen sections were stained in X-gal solution and coun-

terstained with eosin. The paraffin-embedded sections were

stained with Alcian blue and eosin. Some sections were

immunostained for collagen type II or osteocalcin in ad-

dition to b-gal (1:200 dilution, Abcam, Inc., Cambridge,

UK).

In vitro and in vivo myogenic

differentiation assays

Myogenic differentiation was induced by culturing

muADAS cells in myogenic medium (MM: control med-

ium supplemented with dexamethasone [0.1 mM, Sigma],

hydrocortisone [50 mM, Sigma], and 5% horse serum) for

4 weeks and was confirmed using desmin staining. The cells

were rinsed twice with PBS, fixed for 1 min with methanol,

and again washed several times with PBS. The cells were

blocked with 5% horse serum at room temperature for 1 h

and then were incubated with the primary antibody rabbit

immunoglobulin G (IgG) anti-desmin (1:250 in PBS, Sig-

ma) overnight at 48C. After being rinsed thoroughly with

PBS, cells were incubated with biotinylated anti-rabbit IgG

antibody (1:250, Sigma) for 1 h at room temperature. The

cells then were rinsed with PBS and incubated for 30 min at

room temperature with streptavidin conjugated Cy3 fluor-

ochrome (1:300, Sigma). Slides were viewed with a Nikon

Diaphot 300 fluorescence microscope (Nikon, Garden City,

NY).

In vivo myogenic differentiation was evaluated by in-

jection of muADAS cells into the skeletal muscle of

mdx mice, which model Duchenne muscular dystrophy.18

muADAS cells from passages 3 to 5 were grown to 60%

confluence in control medium. To enable tracking of cells

after injection into gastrocnemius muscles, muADAS cells

were genetically engineered to express the LacZ reporter
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gene (muADAS-LacZ cells), as described above for the in

vivo chondrogenic and osteogenic assays. The cells were

harvested, mixed with FluoSpheres (Molecular Probes,

Eugene, OR) in 20 mL of Hanks’ balanced salt solution

(HBSS, Invitrogen, Grand Island, NY), and injected

(5� 105 cells per injection) into a single site within the

gastrocnemius muscles of 8-week-old mdx mice. Injected

gastrocnemius muscles were harvested on Day 15 and were

stained for LacZ and dystrophin. For LacZ staining, the

sections were fixed in 1% glutaraldehyde, incubated over-

night with X-gal substrate at 378C, and counterstained with

eosin. The sections were mounted in Gel/Mount (M01,

Biomeda, Plovdiv, Bulgaria) and observed with a light

microscope (Nikon Eclipse E800). For dystrophin staining,

slides were fixed with acetone and blocked with 5% horse

serum. The primary antibody was rabbit anti-dystrophin

(1:1000, gift from Dr. T. Partridge). Sections then were

washed in PBS and were incubated with biotinylated anti-

rabbit IgG (1:300, Vector) followed by streptavidin-Cy3

(1:500, Sigma). The dystrophin-positive myofibers were

visualized using fluorescence microscopy.

In vitro and in vivo hematopoietic

differentiation assays

In vitro differentiation of the muADAS cells toward the

hematopoietic lineage was induced by culturing the cells in

methylcellulose as described previously.19 muADAS cells

(n ¼ 1� 105) in 1 mL of Methocult GF M3434 culture

media (Stem Cell Technologies, Vancouver, Canada) were

plated in a 35-mm petri dish and cultured in a humidified

5% CO2 atmosphere maintained at 378C. Colonies were

counted 10 days after plating. Colonies from triplicate

cultures were individually lifted from the methylcellulose

culture and were centrifuged to glass slides with a Cytospin

(Shandon Southern, Sewickley, PA). Cells then were

stained using the HEMA 3 Stain Set (Biochemical Science,

Inc., Swedesboro, NJ).

In vivo hematopoietic differentiation of the muADAS

cells was determined by transplantation of muADAS cells

into 8- to 10-week-old SJL/J mice that had been subjected to

a single lethal dose of radiation (10 Gy) 1 day before cell

transplantation. We used this alternative strain of mouse to

distinguish the differentiated donor cells (CD45.2 positive)

from the SJL/J host cells (CD45.2 negative), as described

previously.19 Cells (1� 105, 5� 105, or 1� 106 in 400 mL of

HBSS) were injected intraperitoneally or intravenously into

the tail vein. Mice were given acidified water and autoclaved

food.

RESULTS

Phenotypic characterization of the muADAS cells

The visceral adipose tissue from 1 mouse yielded ap-

proximately 7.0� 106 nucleated cells. Within 4 passages

after the initial plating of the primary culture, muADAS

cells appeared as a monolayer of large, flat cells. As the cells

approached confluence, they acquired a spindle-shaped or

fibroblast-like appearance. We used flow cytometry to eval-

uate the expression of CD45, Sca-1, CD34, CD44, and

CD29 cell-surface antigens on the muADAS cells obtained

from C57BL/10J and BALB/cJ mice. The muADAS cells

from both mouse strains were negative for CD45, a he-

matopoietic cell surface marker (Fig. 1A). Approximately

31% and 10% of the muADAS cells were Sca-1 and CD34

positive, respectively (Fig. 1B). muADAS cells were neg-

ative for CD31, CD144, CD146, and flk-1 at the time of

flow cytometry analysis (after 4 passages; data not shown).

Because we observed similar results in cells obtained from

both strains (Fig. 1C), we used only C57BL/10J mice for

the remainder of the study. Flow cytometry analysis re-

vealed that the muADAS cell marker profile changed dur-

ing expansion. After passage 10, the cells showed increased

Sca-1 expression (74.94%) and decreased CD34 expression

(3.25%) (Fig. 1D).

muADAS cells undergo adipogenic

differentiation in vitro

To determine whether muADAS cells undergo adipo-

genesis, we cultured muADAS cells in adipogenic medium.

Oil Red O staining performed 2 weeks later revealed cy-

toplasmic lipid droplets, which are indicative of the adi-

pogenic phenotype. These results indicate that the

muADAS cells cultured in adipogenic medium underwent

adipogenic differentiation (Fig. 2A), whereas muADAS

cells maintained in control medium did not (Fig. 2B).

muADAS cells undergo chondrogenic

differentiation in vitro

In the chondrogenic assay, the seeded muADAS cells

initially formed a flat disk of cells that gradually expanded

into a rounded pellet. After 21 days in culture, sections of

pellet showed early cartilage formation, as indicated by

Alcian blue staining (pH 1), which is specific for cartila-

ginous matrix (Fig. 2C). In contrast, cells cultured in

control medium resulted in only light Alcian blue staining

(Fig. 2D).

muADAS cells undergo osteogenic

differentiation in vitro

muADAS cells cultured in osteogenic medium for 14

days expressed endogenous ALP (Fig. 2E). Moreover,

mineralized nodular structures formed within 4 weeks, as

confirmed by von Kossa staining (Fig. 2G). In contrast,

muADAS cells cultured in control medium showed no

evidence of ALP expression or formation of calcified ex-

tracellular matrix (Fig. 2F, H).
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muADAS cells undergo chondrogenic

and osteogenic differentiation in vivo

We transduced the muADAS cells with a retrovirus con-

taining the LacZ gene, a reporter gene that we used to track

the fate of our donor cells in vivo. The LacZ gene trans-

duction efficiency was 61%. X-gal staining enabled us to

track the muADAS-LacZ cells on the basis of their b-gal

expression (blue nuclei) (Fig. 3A). We then cotransduced

these cells with a retrovirus containing the BMP4 gene.17

The cotransduced muADAS cells secreted 100 � 22 ng of

BMP4/million cells/24 h. Twenty-eight days after implan-

tation of 3� 105 muADAS cells cotransduced with LacZ and

BMP4 into the host mice, bone formation was visible using

radiographic examination (Fig. 3B). Histologic analysis

showed that the muADAS cells differentiated toward

chondrogenic and osteogenic lineages in vivo (Fig. 3 C–F).

Radiographic analysis 24 weeks after cell implantation

showed solid bone formation (Fig. 4A). Histologic results

indicated that cortical-like bone tissue and cartilage formed

in the area of ectopic ossification (Fig. 4B, C). Immuno-

staining of b-gal and collagen type II or osteocalcin supports

the histologic findings that the implanted muADAS cells

continued to survive and participate in the generation of

ectopic bone and cartilage for up to 24 weeks (Fig. 4B–F).

muADAS cells’ ability to undergo myogenic

differentiation in vitro and in vivo

We examined the muADAS cells’ myogenic differ-

entiation in vitro by staining for desmin and in vivo by

staining for dystrophin and evaluating muscle regeneration

after implanting muADAS cells into the skeletal muscle of

mdx mice. muADAS cells cultured for 6 weeks in myo-

genic medium expressed desmin (Fig. 5A). To determine

the in vivo myogenic capacity of muADAS cells, we in-

jected 5� 105 muADAS-LacZ cells into the gastrocnemius

muscles of mdx mice. We killed the mice 15 days after

injection and harvested the injected muscles to examine

b-gal and dystrophin expression. Fifteen days after injection,

we detected few LacZ-positive myofibers, which resulted

from the fusion of donor-derived transduced muADAS

cells with host myofibers (Fig. 5B, arrow). We also detected

few dystrophin-positive myofibers in the injected muscle

(data not shown). Our findings suggest that muADAS

cells undergo limited myogenic differentiation in vitro and

in vivo.

In vitro and in vivo hematopoietic

differentiation by muADAS cells

To evaluate the hematopoietic differentiation of muA-

DAS cells in vitro, we plated them in semisolid methylcel-

lulose medium supplemented with cytokines known to

promote myeloid differentiation. Of the 6 populations of

muADAS cells examined, 1 formed typical hematopoietic

colonies after 10 days in culture (Fig. 5C). HEMA 3 Stain

Set staining also revealed granulomonocytic colonies

(Fig. 5D).

We also injected 4 populations of muADAS cells

intravenously (tail vein) or intraperitoneally into lethally

FIG. 1. (A) Flow cytometric analysis of CD45, (B) Sca-1, and CD34 expression on murine adipose-derived adult stem (muADAS)

cells at passage 4. muADAS cells were CD45 negative, but 31% of them were Sca-1 positive and 10% were CD34 positive. (C) The

marker profiles of muADAS cells from both C57BL/10J and BALB/cJ mice were similar. (D) CD34 expression was lower whereas

Sca-1 expression was higher on C57BL/10J cells at passage 10.
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FIG. 2. Murine adipose-derived adult stem (muADAS) cells accumulated lipid-filled droplets when cultured for 2 weeks in adipogenic

medium. (A) Oil Red O staining revealed lipid-filled intracellular vacuoles (magnification 40�). (B) muADAS cells maintained in

control medium remained negative for Oil Red O staining (magnification 40�). (C) We observed positive Alcian blue staining, which

indicates the presence of sulfated proteoglycans, in the cells cultured 3 weeks in chondrogenic medium (magnification 60�).

(D) muADAS cells maintained in control medium were only slightly positive after Alcian blue staining (magnification 60�).

(E) muADAS cells grown in osteogenic medium exhibited ALP activity (magnification 10�). (F) The cells cultured in control medium

remained von Kossa negative (magnification 10�). (G) von Kossa staining revealed calcified extracellular matrix (black) in muADAS

cells cultured for 4 weeks in osteogenic medium (magnification 10�). (H) The cells maintained in control medium remained von Kossa

negative (magnification 10�). (Color images available online at www.liebertpub.com/ten.)

1896 ZHENG ET AL.

http://www.liebertonline.com/action/showImage?doi=10.1089/ten.2006.12.1891&iName=master.img-001.jpg&w=351&h=559


irradiated SJL/J recipient mice. The intravenous injection of

1� 106 muADAS cells per mouse (n ¼ 4 mice) induced

immediate mouse death, a result that parallels findings re-

ported by other researchers.11 After intraperitoneal trans-

plantation of muADAS cells into 4 lethally irradiated SJL/J

mice, the treated mice and control mice died within 3 weeks

of transplantation. We also investigated the effect of in-

travenous injection (into the tail vein) of fewer cells (1� 105

and 5� 105) into lethally irradiated mice (n ¼ 8 mice, 4 per

quantity of cells). The mice did not immediately die, which

indicates that injection of the decreased quantities of cells

did not cause fat boluses in these mice. However, the treated

mice and control mice died within 3 weeks of transplanta-

tion. This finding demonstrates that the muADAS cells

failed to reconstitute the bone marrow and hence failed to

provide radiation protection to treated mice.

DISCUSSION

The results of this study demonstrate that a population of

cells isolated from the visceral fat of mice can undergo

FIG. 3. (A) Murine adipose-derived adult stem (muADAS) cells were transduced with a retrovirus containing the LacZ gene and were

identifiable by their LacZ-expressing nuclei after b-galactosidase staining (magnification 20�). (B) Radiographic examination showed

intramuscular bone formation in SCID mice 28 days after implantation of muADAS cells cotransduced to express LacZ and BMP4.

(C) In vivo chondrogenesis by muADAS cells was determined by colocalization of round chondrocytes with blue nuclei (arrow) after

staining for LacZ/eosin (magnification 60�) and (D) by positive immunostaining for LacZ/collagen type II (brown) (magnification 60�).

(E) In vivo osteogenesis by muADAS cells was confirmed by colocalization of blue cells in the newly formed bone tissue (arrow,

magnification 60�) (F) with osteocalcin (brown) (arrow, magnification 60�).
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multilineage differentiation in vitro and in vivo. This

muADAS cell population contains fibroblast-like cells that

are easy to expand in vitro without specific serum supple-

mentation. The muADAS cells used in our study differ-

entiated toward the adipogenic, osteogenic, chondrogenic,

and myogenic lineages when cultured in the presence of

established lineage-specific differentiation factors. The

ability of muADAS cells to undergo multilineage differ-

entiation suggests that a stem cell population exists within

mouse adipose tissue. The observed multilineage differ-

entiation may also be attributed to the presence of multiple

populations of lineage-committed progenitor cells within

adipose tissue (e.g., pre-osteoblasts, pre-myoblasts, or pre-

adipocytes), multipotent cells from other sources (e.g., blood

vessels or pericytes), or a combination of these populations.

muADAS cell populations obtained from excised adipose

tissue are known to contain pre-adipocytes that differenti-

ate into mature adipocytes. The adipogenic differentiation

FIG. 4. Ectopic bone formation 24 weeks after implantation of muADAS-LacZ-BMP cells into muscle pockets of SCID mice.

(A) Radiographic examination. (B) The histology of ectopic bone tissue (arrows, 20�). (C) In vivo ectopic bone tissue included some

areas of cartilage, as shown by Alcian blue staining (magnification 40�). (D) Chondrogenesis of murine adipose-derived adult stem

(muADAS) cells was shown by positive immunostaining for colocalization of collagen type II (red)/b-galactosidase (green) (arrow,

magnification 40�). In vivo osteogenesis by muADAS cells was confirmed (E) by LacZ/eosin (magnification 60�) and (F) by positive

immunostaining for colocalization of osteocalcin (red)/b-gal (green) (arrow, magnification 60�).
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exhibited by the muADAS cells also could be due to the

commitment of existing pre-adipocytes rather than to the

differentiation of multipotent cells. However, such an ex-

planation is unconvincing in the case of humans, because as

few as 0.02% of the SVF cells in adipose tissue excised

from humans are pre-adipocytes that can undergo adipo-

genic differentiation.6 Therefore, the large-scale adipo-

genesis observed in our study more likely resulted from the

differentiation of muADAS cells themselves.

Our observations of muADAS cells under control con-

ditions also revealed changes in their expression of CD34

and Sca-1, both of which are progenitor cell surface mar-

kers. Our analysis of muADAS cells at 10 passages in-

dicated that 74.94% expressed Sca-1 and 3.25% expressed

CD34. In comparison, the expression of Sca-1 and CD34 by

muADAS cells at 4 passages was 31% and 10%, respec-

tively. We are investigating whether these changes in the

marker expression profile reflect the different proliferation

rates of stem cells and differentiated cells. Because we iso-

lated the cells from visceral fat, the involvement of myo-

genic precursor cells or satellite cells in the observed

myogenic differentiation is unlikely. Furthermore, the

freshly isolated muADAS cells did not express the myo-

genic marker desmin. Desmin was only expressed when

muADAS cells were cultured in myogenic medium. This

finding suggests that the myogenic differentiation observed

in this study was not due to the activity of myogenic pre-

cursors or proliferating myoblasts within the muADAS cell

population.

The circulatory system, which contains potentially mul-

tipotent cells such as pericytes and marrow-derived me-

senchymal stem cells, is another possible source of stem cell

contamination of the muADAS cell population. Disruption

of the blood supply during isolation could have resulted in

the release of hematopoietic progenitors, which are known

to give rise to hematopoietic lineages in vivo and in vitro; 11

however, flow cytometry revealed no CD45-positive cells in

the muADAS cell population. In addition, prior research

revealed no hematopoietic cells in muADAS cell cultures at

2 to 3 passages.9,20 Although our in vitro data suggest that

the muADAS cells might have at least limited hemato-

poietic potential, muADAS cells transplanted intravenously

or intraperitoneally failed to prevent the death of lethally

irradiated SJL/J mice. The immediate death of the mice

after intravenous injection of muADAS cells could be due

to the formation of a fat bolus in critical organs such as

the brain or heart. The inability of intraperitoneally and

intravenously injected muADAS cells to reconstitute the

hosts’ bone marrow suggests that the in vivo hematopoietic

potential of these cells is, at best, limited. Because of these

findings, definitive confirmation of the existence of multi-

potent stem cells within adipose tissue will require the

isolation and characterization of multiple clones.

Researchers have demonstrated that bone marrow–

derived mesenchymal stem cells can differentiate toward

osteogenic and chondrogenic lineages in vivo, and pre-

liminary data suggest that these cells can facilitate the re-

pair of bone and cartilage defects.21–24 However, harvesting

bone marrow is an invasive procedure, and the marrow

contains only a limited number of progenitor cells. Many

studies of ADAS cells have focused on the cells’ ability to

differentiate toward various lineages in vitro or their po-

tential to repair bone and cartilage in vivo; few studies have

investigated the long-term fate of donor ADAS cells in-

fluenced by BMP4 in vivo. The results presented here de-

monstrate that ADAS cells transduced with a retrovirus

containing LacZ and BMP4 genes and implanted into the

skeletal muscle of mice differentiated toward the chon-

drogenic and osteogenic lineages and continued to survive

within ectopic bone tissue 6 months after implantation.

Moreover, radiographic analysis revealed that the ectopic

bone formed in vivo maintained its size for 5 months (from

4 to 24 weeks after implantation, Figs. 3B, 4A). Histologic

analysis also revealed a greater amount of dense bone and

cartilage in the samples obtained 24 weeks after im-

plantation than in those harvested 4 weeks after implanta-

tion. These observations indicate that the ectopic cartilage

and bone tissue formed by the transduced muADAS cells

was stable and persistent, which suggests that ADAS cells

could serve as a good cell source for bone and cartilage

regeneration.

In conclusion, these observations validate the notion

that muADAS cells could serve as a cell source for gene

FIG. 5. (A) Murine adipose-derived adult stem (muADAS) cells

cultured for 6 weeks in myogenic medium expressed desmin (red,

magnification 20�). Hoechst staining (blue) revealed the cell nu-

clei. (B) Few muADAS cells participated in muscle regeneration,

as determined by the number of LacZ-positive myofibers in the

mdx mouse muscle 15 days after injection (magnification 20�,

bottom left-hand corner insets, 60�). (C) Large colonies com-

posed of small cells were found in methylcellulose cultures of

muADAS cells (magnification, 5�). (D) After picking, cytospin-

ning, and staining the colonies with Wright-Giemsa stain, we

observed granulomonocytic cells (magnification 100�).
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therapy. The limited ability of those cells to undergo

myogenic and hematopoietic differentiation restricted their

utility for muscle regeneration and reconstitution of bone

marrow. On the other hand, their high capacity for bone and

cartilage repair and their long-term survival under the in-

fluence of BMP4 in vivo suggest that they might be a useful

cell source for osteogenic and chondrogenic applications.

The origin of these multipotent cells isolated from adi-

pose tissue remains unclear and will be the focus of future

research.
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