Articles from Computational Culture

Text, Speech, Machine: Metaphors for Computer
Code in the Law

As computer software has become increasingly central to commerce and
creativity, lawmakers have retrofitted it into preexisting legal regimes to
regulate its production and distribution. Currently in the United States,
software is eligible for protection under patent law, copyright law, trade
secret law and the First Amendment. Legal determinations of technology such
as software do much to shape its legacy, uses and scope, as recent work in

the history of patent prosecution suggests. 1 But the protean nature of
computer code, which comprises software, has made it particularly
challenging for lawmakers to pin down: computer code is variously treated as

text, speech, or machine under US law. 2 Which legal metaphor prevails in any
given case is contingent upon the particular context in which code is operating
—its composer, its audience, and the nature and uses of the software it
comprises. T he rhetorical-legal construction of these various metaphors
illustrate the complexity and flexibility of code—at once expressive,
functional, political, and literary—as well as the populations lawmakers
imagine to be producing and consuming code. Each of these metaphors
highlights a different property of code, and together they form a set of
ontologies for code.

This article examines three classificatory metaphors for computer code as
they are established in the US legal system. To examine these legal
metaphors for code, | draw on the social history of technology, theoretical
work in judicial reasoning, and legal and cultural debates about the different

kinds of intellectual property protection appropriate for computer code. 3The
tensions in code’s legal definition highlights its protean nature but also its
shifting cast of uses, users, and producers. Yet legal definitions do not fully
determine computer code: some writers of code can and do circumvent its
legal strictures. In these moments, which | visit at the end of this article, we
can see how people might contest legal metaphors as a new technology is
being put to new uses. T he uniquely complex features of computer code,
coupled with its well-documented legal history, makes it an ideal case study
for how new technologies are defined and shaped by the law.

Various US court decisions, legislative records, and law review articles
catalogue the construction of these metaphors and provide the central
sources for my analysis. Narrowing the scope to US law is practical as well as
strategic: the concentration of high-technology firms in the US as well as its
position in global economics and politics has meant that US law often sets the
terms for international law in intellectual property and new technology. | take a
rhetorical approach to these US documents, which allows me to analyze
lawmakers’ assumptions about the users, producers and functions of

http://computationalculture.net
http://computationalculture.net/article/text-speech-machine-metaphors-for-computer-code-in-the-law

computer code. | begin by outlining this approach and then move to my
analysis of the three central metaphors that have emerged for code in law:
code as text, code as speech, and code as machine. Each of these rhetorical-
legal constructions of code is an ontology of code—a snapshot of what code
looks like from one perspective, extended metaphorically to its closest
counterpart with legal precedence.

When new technologies meet legal precedence

Lawmakers rely on precedent for regulation, so they often devise
metaphors to bridge new technologies to those previously established and
regulated. Sometimes these metaphors help to conveying a judicial decision
figuratively, sometimes they help lawmakers reason through a new and
complex technology, and sometimes they set the terms by which a new
technology is governed. Whatever their function in legal discourse, metaphors
can illuminate the unstable identities for technologies when they are new—
before their uses become well-worn grooves through culture and

communication. ® For instance, Thomas Edison’s phonograph was first
classified as a ‘Measuring Instrument’ by the United States Patent Office in
1878 because its primary function at the time was deemed closest to the
documentary function of shorthand. The phonograph pushed the limits of this
patent category, however, and its later reclassification under a new

‘Acoustics’ patent signaled its new uses as an entertainment device. 5 The
phonograph’s shifting classification illustrates the way that legal metaphors
for new technologies can help us chart the path a new technology takes
through different functions, audiences, and means of production.

Figuratively, metaphors appear in court decisions to explain or highlight

certain ideas, just as they do in academic discourse. But, in the law,
metaphors can also serve as actionable language. Central metaphors for
technologies can set the terms of legal discourse, initiating terms or defining
them, therefore shaping the ways that subsequent subjects are treated under

the law. ” For instance, Nard, Barnes and Madison insist that ‘copyright
implications [...] depend in part on the lawyers’ and judges’ selection of the

“right” analogy or metaphor.’ & These legal scholars note that although
copyright law has been extended to software, copyright operates with a basic
paradigm of print: ‘As forms and formats have expanded, the scope of
copyright law has expanded as well, but the underlying policies of the law still
implicitly assume that authors and publishers, and readers follow the well-
understood and established patterns of activity’ (ibid., 387). Referring to this
legal practice of relating new situations to established patterns of activity,
Chaim Perelman and Lucie Olbrechts-Tyteca use the term ‘metaphorical
fusion,” a practice which ‘consecratel[s] the relation between’ the terms under

discussion. ° In other words, legal metaphors can move beyond the figurative
bridging of ideas to determine the governance of new practices—to construct
ontologies of new technologies. In our case of computer code, the metaphors
of text, speech and machine that lawmakers deploy can, at least under law,
render code into a text, speech or machine.

As lawmakers construct metaphors to fit code or any new technology into

preexisting paradigms, they imagine legal subjects for the new precedents or
statutes they craft. They must ask: whom this law will affect? Whose
activities will it promote and whose activities will it proscribe? In other words,
the making of laws implicates certain users and producers—in rhetorical

terms, an audience—of a new technology. '° James Grimmelmann explains
how the construction of this audience of legal subjects draws on social

factors: ‘Every body of law has an internal logic to it, a logic drawn from and
reflected in the social relationships it imagines among the people subject to

it’ 11 These socially-shaped visions often rely on some paradigmatic, ‘normal’
group, such as the ‘average member of the public’ to whom Justice Stevens
referred in Sony v. Universal, the decision allowing users of video tape
recording technology (e.g., Betamax) to record broadcasted programs.
Through a concept of ‘normal’ people, lawmakers’ imaginations of legal
subjects can render some uses, users, and producers of new technologies
more paradigmatic than others, thereby shaping the effective uses, users,

and producers of new technologies. 12

Ideally, at least, lawmakers aspire to write decisions and policies whose
precedent will extend beyond one specific case; ideally, they aim at
universality and timelessness for their rhetorical constructions of audience. Of
course, no audience or rhetorical construction can be objectively universal or
timeless. But, as many legal theorists have argued, the subjective

construction of universality is at the heart of the judicial process.'3 This
universalizing of subjective norms is the framework for Perelman and
Olbrechts-Tyteca’s ‘universal audience,’ in which the ‘normal (in the law) is

determined by one or more reference groups.’14 Sometimes these
hypothetical reference groups are explicitly invoked in legal code and
precedent. For example, the ‘reasonable person’ in tort law can help
determine negligence and, in patent law, the ‘person having ordinary skill in the

art’ (PHOSIT A) can help determine an invention’s patentability.15 Although
these hypothetical constructions of the ‘reasonable person’ and the PHOSIT A
shift across history and context, they are nonetheless codified in the law. T his
legal codification of ‘normal’ people in the ‘universal audience’ can serve to

naturalize certain assumptions within an argument.16

The concept of the ‘universal audience’ enables me to uncover the various
political, historical, and cultural processes that were present at the genesis of
each of our three legal metaphors for code because, as Antonio de Velasco
argues, ‘the universal audience can be seen as that always potentially
contested—and thus always political—site of appeal through which truths,
facts, and presumptions emerge in various contexts of symbolic

production.’” In the legal contexts examined below, the symbolic production
of laws concerning computer code reveals lawmakers’ visions of their
‘universal audience’—the collectivity they imagined to be subject to the new
precedents they set. In other words, as lawmakers determine which
precedents best fit the particular version of code under debate, they envision
who can or should write code. This vision interacts with actual uses of code in
complicated ways—from programmers’ decisions about what code to make

open source, to uses of code in cryptography, to how companies are legally
permitted to interact with each others’ code—and a full examination of these
implications is beyond my means here. Here | focus on the tensions between
lawmakers’ visions of who should write code and who actually does write
code, and through three metaphors employed for code—code as text,
speech, or machine—I explore disparities between the populations of those
who write code and those for whom the law is written.

Computer code as text

Congress amended the 1976 Copyright Act in 1980 to define computer code
as a ‘literary work.’ In establishing this textual metaphor for code, historically
the first of our three legal metaphors, Congress was responding to
recommendations from The National Commission on New T echnological Uses
of Copyrighted Works (CONT U). Congress commissioned CONTU in 1974 to
respond to concerns of the rapidly growing software industry as well as to
address mounting issues in copyright law brought about by computer
technology. The US Copyright Office had permitted copyright registration for
code since 1964, but this practice had not been officially recognized in

copyright statute and its merits had been debated.'® Positing code as a form
of writing,” CONT U’s Final Report recommended that copyright was, indeed, a

suitable form of intellectual property protection for code.'® By 1990, legal
scholars contended that copyright for code was ‘proving to be an effective
and uncontroversial means for protecting program code from exact
duplication’ and ‘virtually all nations [had] recognized the textual character of

program code in deciding to use copyright law to protect it.’?? But at the time,
CONTU’'s recommendations were contentious among members of the

commission as well as legal experts.?’ Examining the debates as this
metaphor was being established can tell us much about how code was
operating in US society in the mid-1970s.

Controversy centered on CONT U's recommendation that machine-readable

computer code?? should be copyrightable. That is, the controversy centered

on establishing the audience for computer code 3 CONTU's recommendation
to extend copyright to works intended for machine audiences invited
controversy because it departed significantly from the longstanding paradigm
that copyright was only available to human-readable works—a paradigm
codified in the 1909 Copyright Act. Although the 1976 Copyright Act officially

overturned the ‘human-readable’ stipulation established in 1909,%4 the
copyright of machine-readable object code was such a radical break that
several subsequent cases debated its legality. Not until an appeals court

ruled decisively on the issue in 1983%° was it made clear that object code was,

indeed, protected under the amended Copyright Act.2°

In a lengthy dissent included in the CONT U Final Report, Commission member
John Hersey, a creative writer, focused on the implications of this novel theory
of machines as audience. Hersey considered object code a ‘device’ or a
‘mechanical form’ rather than a text, and warned that copyright for such a

device ‘forcibly wrenc:h[es]’27 the law, threatening to ‘pollute’ the stock of

existing copyrightable ‘writings’ and perhaps even ‘blur and merge human and
mechanical communication’ (36). He began by highlighting this dramatic
divergence from established assumptions about audience for copyrighted
works:

Works of authorship have always been intended to be circulated
to human beings and to be used by them—to be read, heard, or
seen, for either pleasurable or practical ends. Computer programs,
in their [object code] phase, are addressed to machines. (28)

Although Hersey admitted that machine code can be read by some specially-
trained programmers, he claimed that ‘if a skiled programmer can “read” a
program inits [...], machine-readable form, it is only in the sense that a skilled
home-appliance technician can “read” the equally mechanical printed circuits
of a television receiver’ (30). In his explanation of object code, Hersey likened
object code to a device that controls a drill and argued that few would agree
to copyright protection for this mechanically-instantiated drill instruction. In
contrast to Hersey’s analogy, the larger Commission analogized object code
to writing—albeit functional writing. T hus, both Hersey and CONT U employed
metaphors for their arguments about the nature of code and its audience.

In Hersey’s dissent, we see a theory of what it means to ‘read’ or ‘write’
something: ‘writing’ is an act of communication. Without ‘reading’—by his logic,
the human capability of understanding at the other end—a text cannot
communicate and therefore, it cannot be ‘writing. Hersey’s concern about the
extension of copyright to works for machine audiences suggests that he
imagined a ‘universal audience’ for code similar to the ‘universal audience’ for
the literary works he produced as a creative writer; that is, he imagined only
human readers as an audience. In contrast, CONT U’'s recommendation to
treat object code as a ‘literary work’ implies a theory of reading and writing
that includes not only humans but also machines. If machines are legitimate
audiences for literary works in CONT U’s formulation, then aesthetic quality
and successful communication need not be relevant to the determination of
copyrightability. Indeed, quoting from a case that allowed for an arbitrary
string of words to be copyrighted, CONT U asserted that successful

communication is not a prerequisite for copyright. 228 CONTU also invoked case
law to remind readers that courts are not in the position to judge the

aesthetic value of writing.29 Thus, CONTU’s Final Report implies a wider
‘universal audience’ for copyrightable works than the one imagined by

Hersey 3¢

In addition to their focus on the audience for code, CONT U addressed the
audience for the law itself—those who might enjoy copyright protection for
their computer programs as well as those whose programs the new law might
constrain. Concordant with the ends of copyright law, CONT U was explicitly
interested in supporting a competitive market of creative products from a

wide variety of producers.3! Software producers were increasingly
differentiating themselves from hardware producers at the time; CONTU
observes this and notes that because ‘program writing requires very little

capital investment,’ it was possible for a very diverse marketplace for
software to thrive (ibid.). An increasingly diverse marketplace meant that
copyright was important for computer programs, especially for smaller
operations unable to afford other means of protection (35). Copyright should
be afforded to large and small firms alike, CONT U asserted, and it explicitly
rejected a proposal that large firms be ‘disfavored’ by the new law (25).
Additionally, CONT U acknowledged the end users of computer programs and
recommended that they should have the right to alter programs in order to
meet their needs (13). In all of these assertions, the Commission
demonstrated a keen attention to the audience for the law—those who would
use the new law to their advantage, whose production might be encouraged
or stifled, and who might use the technologies protected by the law.
Commissioner Hersey’s dissent, however, reveals the lacunae in CONT U’s
‘universal audience’ for the law. First, he is concerned with the effect on
independent programmers. Although CONT U considered both small and large
software firms, Hersey claimed that they envisioned these firms only in
corporate contexts. He wrote,

the picture CONT U has been given, where rights in computer
programs are concerned, is that the proprietor is almost invariably
corporate. If there is an individual ‘author,’ it will be an author for
hire, whose creativity is in strict harness and whose property rights
are nonexistent. (35)

Hersey went on to illustrate his argument: CONT U was aggressively lobbied
by major industrial corporations; little input was sought from organizations
representing independent software producers; and CONT U ignored a survey
of ‘smallish’ firms that recommended against copyright protection for
software (35). Hersey warned Congress that ‘copyrighting of the machine
phases of programs would be likely to strengthen the position of the large
firms, to reinforce the oligopoly of these dominant companies, and to inhibit
competition from and among small independents’ (36). His concern for
independent programmers is echoed in later debates about patent protection
for software, as we will see below.

CONT U imagined the legal subjects for software copyright law as limited to
those who make, circulate and use software. Hersey contended, however,
that the general public is also implicated in any law, perhaps because he
foresaw the wider use of software among nonspecialists. He challenged the
commission by arguing that normal citizens would not understand this new
application of copyright: ‘Ask any citizen in the street whether a printed circuit
in @ microprocessor in the emission control of his or her caris a copy of a
literary work, and see what answer you get’ (33). The consequences for this
cognitive dissonance are dire, and apparently go far beyond that of software
production:

But if our government tells the citizens in the street that this is so
and makes it law, what then happens to the citizen’s sense of
distinction between works that speak to the minds and senses of

men and women and works that run machines—or, ultimately, the
citizen’s sense of the saving distinction between human beings
themselves and machines themselves? (33)

Put another way, Hersey warned that legal subjects could be existentially
troubled by the granting of copyright to works intended for non-human
audiences. CONT U acknowledged the potentially dehumanizing danger of
computers in its Final Report, but contended that copyright of computer code
was irrelevant to the issue (26).

Hersey and the larger Commission’s different ‘universal audiences’ for both
computer code and the copyright law that might apply to code reveal some of
the political tension behind CONT U’s recommendation to consider computer
code—especially object code—a ‘literary work. Hersey constructs a ‘universal
audience’ for software copyright law that includes not only the software
industry but also the larger public, and he then uses this construction to
reason about the audience for code. In his vision, the law’s subjects would not
perceive circuit diagrams as ‘texts,” so Hersey’s audience for code excludes
machines. In contrast, CONT U sees machines as legitimate audiences for the
‘writing’ of computer code; works aimed at machine audiences (e.g., object
code) are therefore worthy of copyright. But they imagine a narrower
‘universal audience’ for the law than Hersey; they picture the law’s subjects
only as software users and producers working primarily in corporate contexts.
Congress ignored Hersey’s warnings and adopted the CONT U Report’s
recommendations, so this corporately-inflected ‘universal audience’ for
software copyright set the legal terms for software production in 1980.
Interestingly, Apple v. Franklin, the 1983 decision that affirmed CONTU’s
recommendation that machine-readable code be subject to copyright,
appeared to echo CONT U's bias toward corporate firms. The court opened
their decision with a comparison of the market values of Apple versus Franklin,
asserting that Apple—who won the suit—was a far larger and more
successful company. The establishment of computer code as a ‘literary work’
in copyright law therefore initiated not only an implied legal sorting of human
and machinic audiences for code but also a set of legal imbalances between
corporate and independent audiences for laws regarding code.

The decision to extend copyright to code was pragmatic rather than
aesthetic, but it reflected a nascent approach to code as a form of creative
expression. In 1974, the same year as CONT U was formed, Donald Knuth
famously declared, [p]Jrogramming is best regarded as the process of

creating works of literature, which are meant to be read.’3? Code poetry,
which began in the 1960s and became popular in the 1990s when it was written
in Perl and other flexible, high-level programming languages, blurred the line
between expression and function, dramatically enacting Knuth’s assertion.
Recent approaches to code through Critical Code Studies treat code as a

literary work>3 And a flourishing scene of independent programmers in the
open source movement exchange code online, competing for ‘elegance’ and
leveraging code’s status as a ‘literary work’ under copyright law to protect
their free exchange. As we will see in the next section, the de facto legal
sanctioning of code as creative expression allowed for it to be protected

under the First Amendment.

Code as Speech

The list of activities protected as ‘speech’ under the First Amendment
includes not only the paradigmatic oral expression, but also textual writing,
methods of dress, gestures, visual art, and computer code. Excluded from
speech protections are certain forms of conduct, especially if they endanger
others (e.g., yelling “fire” in a crowded theater). The two series of cases
addressed in this section, Bernstein v. United States (1996-1999) and Universal
City Studios vs. Reimerdes / Corley (2000-2001), weigh whether code is more

like speech or conduct under the First Amendment .34 Both cases construe
code as a kind of speech as well as a form of creative expression, as
suggested by code’s status as a ‘literary work’ under copyright law. In
Bernstein, the trial court reasoned that because code had been allowed
copyright, it had expressive elements that could be protected by the First

Amendment 3° Although copyright law worked to justify code as ‘protected
speech’ in Bernstein, copyright worked against code’s protection as speechin
Universal. In Universal, the entertainment industry’s copyright and trade secret
claims trumped the ‘hacker’ magazine 2600’s free speech claims to distribute
a particular algorithm. In both cases, the chosen metaphor for code was
critical for determining not only what sort of legal protections code was
allowed, but also how lawmakers at the time envisioned code and how it
should be allowed to circulate.

The metaphors at play in Bernstein tested whether cryptographic source code
was ‘speech,” and therefore protected under the First Amendment, or whether
it was a ‘defense article,” and therefore subject to regulations by the US
government. Along with various kinds of weapons, high-level cryptography,
because it is reserved for government communication, is classified as a

‘defense article’ under US State Department regulations.® In Bernstein, the
State Department invoked these regulations to claim that PhD student Daniel
Bernstein's cryptographic code needed to be licensed by them before he
could publish it. However, Bernstein insisted that ‘computer code inscribed on
paper, like any non-English language, is speech protected by the First

Amendment.3” The State Department countered that the source code for
Bernstein's encryption program was not speech but conduct—which is
afforded fewer legal protections—because it was functional rather than
communicative (ibid.).

The District Court decided that ‘source code is speech protected by the First
Amendment’ 38; therefore, Bernstein had the right to circulate his algorithm as
freely as he might ‘speak’ it. Rejecting the State Department’s argument that
functional speech was somehow less like speech, the court argued, ‘An
extension of that argument assumes that once language allows one to
actually do something, like play music or make lasagne, the language is no
longer speech. The logic of this proposition is dubious at best. lts support in
First Amendment law is nonexistent ’39 Here we see metaphors of code’s
functionality to harmless functional writing: cooking and music. When the State
Department persisted in arguing that Bernstein's algorithm was not ‘mere

speech,” the Court chastised them for ‘assuming that the functionality of
speech can somehow be divorced from the speech itself,” implying Speech

Act Theory concepts about speech as action.*? The Court reminded them
that ‘[t]his controversy is before this court precisely because there is no clear
line between communication and its consequences’(ibid.).

US courts had previously established that the language in which
communication happens is immaterial to whether or not it is speech, and in
Bernstein, they insisted that code could also be considered a kind of language:
‘All [languages] participate in a complex system of understood meanings
within specific communities. Even object code, which directly instructs the

computer, operates as a “Ianguage.”’41 Echoing the CONT U debates as well
as the debates surrounding the 1909 Copyright Act, the Court indicated that
machines can participate in communicative acts:

Like source code converted to object code, [a player piano roll]
‘communicates’ to and directs the instrument itself, rather than
the musician, to produce the music. That does not mean it is not
speech. Like music and mathematical equations, computer
language is just that, language, and it communicates information
either to a computer or to those who canread it. (ibid., 1435)

Although the central metaphor of speech is different, the decision in Bernstein
I relies on an argument similar to that in the CONT U Final Report: writing
directed at a computeris a form of ‘communication,” even thoughi it is also
functional. Bernstein’s metaphor of code as functional speech prevailed over
the State Department’s metaphor of code as conduct when the Appeals
Court decided that the government’s ‘prepublication licensing regime
challenged by Bernstein applies directly to scientific expression [...therefore]

it constitutes an impermissible prior restraint on speech."‘2

The debate over code’s status as ‘speech’ illuminates both Bernstein’s and
the US State Department’s construction of audiences for certain forms of
code, as well as the political implications of these constructions. Bernstein
imagined an audience not only of his academic peers but also of private
citizens who desired high-level cryptography for their personal communication.
The State Department agreed that people might want high-level
cryptography for their personal communication, but they envisioned those
people as potential terrorists. Therefore, the Bernstein court’s favoring of
Bernstein’s construction of audience over the State Department’s not only
protected academic speech, but it also expanded the ‘universal audience’ for
cryptographic code to include private citizens. The case pertains to the free
speech rights of the public, the Court argued, because of cryptography’s
growing role in ensuring privacy and anonymity in cellular and digital
communications among private citizens. The Court wrote, ‘Bernstein’s is a suit
not merely concerning a small group of scientists laboring in an esoteric field,
but also touches on the public interest broadly defined.”*® At the heart of the

decision, then, was a new concept about the role of computer code—
specifically, cryptographic code—in public life. By 1999, digital communication

was sufficiently important for the Court to protect its rights of privacy through
protecting the general use of high-level cryptography.

Two years later, a decision in a different case dramatically decreased these
protections for the circulation of code. In direct contrast to Bernstein’s broad
vision of speech protections for code, the court in Universal City Studios, Inc. v.
Corley concluded, ‘T he functionality of computer code properly affects the

scope of its First Amendment protec:tion.’44 The Universal cases pitted
‘hackers’ against the movie industry: the defendants in Universal, associated
with the hacker magazine 2600, had distributed an algorithm online called
‘DeCSS’ that effectively ‘unlocked’ a form of cryptographic anti-piracy

security for DVDs*° The Digital Millennium Copyright Act (DMCA)—a
legislative response to the entertainment industry’s lobby to strengthen
copyright protection—was the operative law in the case and had gone into

effect just prior to Universal*® Represented by Universal Studios, the movie
industry contended that the DMCA’s ‘anti-circumvention’ and ‘anti-trafficking’
provisions outlawed the DeCSS code and its distribution. In accordance with
the DMCA, the industry threatened websites hosting the code with ‘cease and
desist’ letters. However, some sites—such the popular hacker magazine
2600—Ileft the code online, as a political statement against the DMCA and in
support of the free speech protections of code established in Bernstein. In the
arguments and conclusions in the case, litigants professed conflicting visions
of how entertainment should be used and who should be using it. T he
entertainment industry’s imposition of their narrowly constructed audience
onto the more general, actual audience for copyrighted works in Universal
provoked vigorous protests and contentious debates about copyright and
free speech online. In these ‘DeCSS protests,’ people distributed the DeCSS
code in forms such as haikus and images to make the point that code was a
form of creative expression and should be protected as such. In so doing,
they registered their rejection of the court’s narrow perception of audience
and use for these copyrighted works.

The admixture of speech and conduct inthe DeCSS code complicated the
application of the DMCA in Universal just as it had complicated the protection
of code-based cryptography in Bernstein. T he Bernstein Appeals Court had
rejected the government’s argument that any functionality should render
expression a form of conduct because such an argument would be untenable
for future digital communications: ‘T he fact that computers will soon be able
to respond to spoken commands, for example, should not confer on the
government the unfettered power to impose prior restraints on speechin an

effort to control its “functional” aspects.*” The Universal courts also found it
difficult to separate the expressive from the functional in code and were
forced to make a decision on code as an ineluctable combination of both:

[...] computer code can instantly cause a computer to accomplish
tasks and instantly render the results of those tasks available
throughout the world via the Internet. T hese realities of what code
is and what its normal functions are require a First Amendment
analysis that treats code as combining nonspeech and speech

elements, i.e., functional and expressive elements*8

Several prominent computer science professors testified before the court in
Universal v. Reimerdes that although the separation of speech from non-
speech elements was impossible for code, code should be governed as
speech, as it had been in Bernstein, because its unfettered circulation was

essential to research.®

Contrary to Bernstein, however, the courts in Universal decided that the
functional aspects of the code trumped its expressive aspects. The court in
Universal v. Corley declared that ‘the capacity of a decryption program like
DeCSS to accomplish unauthorized — indeed, unlawful — access to materials in
which the Plaintiffs have intellectual property rights must inform and limit the

scope of its First Amendment protec:tion.’50 Again, metaphors for the code in
question were key to the decision. Here, DeCSS is a like an unauthorized key:

CSS is like a lock on a homeowner’s door, a combination of a safe,
or a security device attached to a store’s products. DeCSS is
computer code that can decrypt CSS. Inits basic function, it is like
a skeleton key that can open a locked door, a combination that
can open a safe, or a device that can neutralize the security
device attached to a store’s products. (ibid.)

Extending the allusions to theft, the court went so far as to repeat the
industry’s description of DeCSS as ‘a digital crowbar’ [ibid., 453n.28].

The metaphor changes in Universal v. Reimerdes, where DeCSS’s
resemblance to ‘disease’ and ‘assassination’ reveals the danger the court felt
it posed to society. The Court wrote:

The spread of means of circumventing access to copyrighted
works in digital form, however, is analogous to a propagated
outbreak epidemic. Finding the original source of infection (e.g., the
author of DeCSS or the first person to misuse it) accomplishes
nothing, as the disease (infringement made possible by DeCSS
and the resulting availability of decrypted DVDs) may continue to
spread from one person who gains access to the circumvention

program or decrypted DVD to another.>’

Under Perelman and Olbrechts-Tyteca’s formulation, this metaphor fuses
concepts of code and disease to suggest that code can infiltrate and corrupt
the ‘healthy’ system of DMCA copyright protection. Intertwining the figurative
disease metaphor with another metaphor of danger—assassination—the
Reimerdes court echoes the State Department’s argument about code’s
destructive potential in Bernstein and provides rhetorical proof that code can
‘disable systems upon which the nation depends’:

Computer code is expressive. To that extent, it is a matter of
First Amendment concern. But computer code is not purely
expressive any more than the assassination of a political figure is

purely a political statement. Code causes computers to perform
desired functions. lts expressive element no more immunizes its
functional aspects from regulation than the expressive motives of

an assassin immunize the assassin’s action. 22

As James Boyle writes in his lucid description of Universal v. Reimerdes, ‘it is

here that the defendants lose the battle of the metaphors.®3 These
figurative metaphors direct our attention and fear to code as ‘conduct’ and
help to build the legal metaphor for code as a form of conduct rather than
speech. If code is a digital crowbar, a vector of disease, or a political
assassination, it follows—at least for the courts in Universal—that the
functional qualities of code are too dangerous to protect its expressive
qualities.

One aspect of the Universal courts’ privileging of code’s function over its
expression proved particularly controversial: their declaration that hyperlinking
to DeCSS code was a form of ‘trafficking’ in ‘anti-circumvention devices,” and
therefore, a DMCA violation. In his opinion in Reimerdes, Judge Kaplan
admitted that this interpretation of the DMCA’s anti-trafficking provision
might produce an unfortunate ‘chilling effect’ on expression. However, he
claimed that ‘the potential chilling effect of DMCA liability cannot utterly
immunize web site operators from all actions for disseminating circumvention

technology’ (note his repeated use of the disease-verb ‘immunize’).>* Judge
Kaplan did not specify who a ‘web site operator might be, but given the broad
access to the World Wide Web at the time, this could have included anyone
who used a free online blog or put up their own webpage to post links to the
Web. With this broad access, it was bold to assert that even hyperlinking to
DeCSS code was prohibited by the DMCA. Mitigating this assertion
somewhat, he declared that hyperlinkers must be at least aware of their
actions to be prosecuted (ibid., 341). However, the Court tacitly assumes
users of code (even through simple Web-based interfaces) have both a legal
and a technical savvy that was and is still rare amongst actual Web-writers.
In these cases that construe code as a form of speech, we see several
competing visions of the potential users and writers of code—that is, several
‘universal audiences’ of code imagined by the courts and the litigants. In
Bernstein, the courts struck down the government’s prior restraint on the
scientific expression of cryptographic researchers. They also acknowledged
that while the scientific audience for cryptographic source code was small and
specialized, the case resonated much further. The Bernstein Appeals Court
specifically addressed the rights of US citizens to communicate privately and
indicated that, in this digital age, undue government restrictions on
cryptographic code infringed on those rights. In contrast, although the
Reimerdes Court admits that Linux users might deploy DeCSS for non-
infringing purposes, it declares Linux’s distribution to be too small to balance
against the many others who would use DeCSS for infringing purposes. We
might say that the Universal courts imagine a ‘universal audience’ of DVD-
users who rely—or should rely—on only mass-market software and hardware.
Ironically, the code in Bernstein—an encryption algorithm that might cloak

terrorist activities—was deemed less dangerous than the code in Universal —
a DVD anti-encryption algorithm that had become defunct by the time of the

Corley trial.2° In Bernstein, the potential harm was directed toward the US
government and private citizens, whereas in Universal, the potential harm was
directed at the movie industry. Moreover, the economic interests of the
industry seemed to figure prominently in the Universal courts’ reasoning. T he
passage of the DMCA in 1998 and the terrorist attacks of 9/11/2001 might
explain some of the shift in the courts’ perspectives between Bernstein and
Universal. But comparing the two cases, it appears that the general
population’s use of computer code became a central threat for the
entertainment industry around the turn of the 21st century. Indeed, the
decision in A&M Records, Inc. v. Napster, Inc., contemporary with the decision

in Universal, supports this claim .26

The prevalence of speech through digital means, especially online, makes
code increasingly central to speech protections in the minds of many writers.
For example, a more recent debate about free speech protection of code
concerns Distributed Denial of Service (DDoS) attacks, especially those
defending Wikileaks and conducted by the online force ‘Anonymous.’ If code is
‘speech,’ then are these online protests akin to angry letters and
demonstrations? Or, if code is ‘conduct,” then are they more like riots or sit-
ins? Where does the government’s compelling interest in the speech and code
that we write and use verge into political censorship? In the conclusion, I revisit
these ways that Bernstein and Universal serve as backdrops for contemporary
questions about speech and code onthe Internet as a form of political and
technological protest.

Code as Machine

Programming the first computers in the early 1940s involved physically
configuring the machine rather than writing text. Ironically, this first
manifestation of code—code as configuration of machine—was the last to be
recognized in the law. The software that code comprises is metaphorically a
form of machine in patent law, the intellectual property regime that most
typically pertains to manufacturing contexts. Patent law’s manufacturing
context is one reason patent protection for software constructs corporations

as the paradigmatic writers of code.®” The ontology of code as machine not
only presupposes its producers, but it also highlights its ability to do things in
the world.

The patentability of software was established not by Congress or any
specific deliberation on the wisdom or feasibility of doing so, but instead
through a series of cases concerning algorithms beginning in the 1980s. T his
case trajectory has incrementally led to a more corporate vision of the
‘universal audience’ for computer code in patent law. To locate the origin and
potential implications of this bias toward corporate composers of code, in this
section I outline the trajectory of cases and metaphors that led to patent
protections for computer code. Because the specific case history is
complicated and a full treatment is outside of the scope of this article, | have
zoomed out to analyze the series of cases through their controlling legal

reasoning rather than their specific language.

T he availability of patent protection for computer code has long been
debated and often been proposed, as the CONT U Final Report indicated. In
the 1960s, President Johnson assembled an advisory group to review the US
Patent and Trademark Office’s policies on software patents; the group
concluded in their 1966 report that software should be specifically excluded as

patentable subject matter.28 In the 1970s, several cases concerning patents
on algorithms suggested that software was unpatentable because it was too

close to math, which is not patentable subject matter.>® In the 1980s and early
1990s, various patent cases about chemical processes and ‘business
methods’ chipped away at the assumed prohibition against ‘method’ patents
—and, by extension, software patents. These cases indicated that any

physical component could make a process patentable,®Y and that the use of
the word ‘machine’ in a patent description rendered the described object a

‘physical device’®'—a magical transformation that gestures toward Perelman
and Olbrechts-Tyteca’s ‘metaphorical fusion. The decision that finally
confirmed the patentability of software in the US was State Street Bank v.
Signature Financial Group (1998), which concerned a patent obtained on a
‘business method’ implemented in software. In their decision, the Federal
Circuit Court insisted that any bar on the patentability of ‘business methods’
(and, by metaphorical extension, software) was a misunderstanding, and they

‘take this opportunity to lay this ill-conceived exception to rest /%2 patents for
software had been granted before the decision in State Street, but their official

sanctioning by the court opened the floodgates on applications %3

Patents require extensive legal knowledge and expense to obtain, which
makes them more favorable for larger corporations. Unlike copyright, which is
granted to a qualifying work as soon as it is fixed,” a US patent must be
acquired through an application to the US Patent and Trademark Office
(USPTO). Patents may be obtained on ‘any new and useful process, machine,
manufacture, or composition of matter, or any new and useful improvement
thereof’ (35 US.C.§101) as long as it is ‘novel’ (§102) and ‘nonobvious’ (§103).
Patent applicants must disclose sufficient detail on their invention to ‘enable

any person skilled in the art to which it pertains [the ‘PHOSITA'IP%. . to make
and use the same’ (35 U.S.C. §112). The disclosure ostensibly gives
information about the invention to the public, who may practice the invention
once the limited monopoly expires. It is more expensive and difficult to acquire
a patent than a copyright, but patents allow narrower exceptions for fair use
and stronger protections against infringement. These more robust patent
rights are balanced with a shorter duration than copyright: a US patent lasts

for only 20 years 5°

Because the operating metaphor for code in patent law is machine,
software’s functionality is foregrounded as its dominant characteristic. The
machine metaphor for software also figured prominently in a ‘Manifesto
Concerning the Legal Protection of Computer Programs’ published by several
influential legal theorists and technologists prior to the legal sanctioning of
patents for software in State Street. Prefiguring the speech vs. conduct debate

about code in Bernstein, Samuelson, et al. argue that text is an ill-fitting
metaphor for software because code ‘behaves’. They go on to suggest
‘machine’ as a better metaphor:

Traditional literary works, such as books, do not behave.
Programs, like other machines, do. Programs have a dual character
because they are textual works created specifically to bring about
some set of behaviors. We attempt to capture this intriguing dual
nature of software by describing software as a machine whose

medium of construction happens to be text.5°

The authors indicate that the establishment of an apt legal metaphor for
software is necessary so that its protection under the law will fit software’s
uses, behavior, and market value. But the tensions implied in software’s dual
nature as text and machine renders those both of those legal metaphors
individually inadequate. Rather than retrofitting software into established legal
metaphor, then, the authors propose a new (sui generis) form of protection
specific to software. Congress has not opted to adopt their proposal,
however; nor have they responded fully to the US Supreme Court’s more
recent suggestion to review the patent system for technologies such as

software 87 If and when they do, the highly controversial machine metaphor
for software may be revised. Until then, patent applications for software rely
heavily on calling software a ‘machine,’ thus legally, rhetorically, and
somewhat magically turning their claimed software into machine.

Although the legal status of software patents status is now established in the
US, it is heavily critiqued. Many have argued that software patents are on

shaky legal ground due to their lack of efficacy for encouraging innovation,®
poor quality,®® inability to distinguish between patentable and nonpatentable

algorithms,70 and bias toward larger companies.”! For our purposes, the most
salient critique of software patents is that the code-writing population implied
by patent law is skewed toward larger firms rather than individual or freelance
programmers. T he vast legal and financial resources required to obtain, wield,
and defend against patents imply a relatively corporate, large, and well-
funded ‘universal audience’ for computer code’s protection under patent law.
Because patent costs are not scaled to match applicants’ access to
resources, financial and logistical factors make it comparatively more
expensive for smaller firms to obtain and wield patents to protect their
intellectual property.72 In accusations of infringement, smaller firms are also
disadvantaged by their relative lack of legal knowledge. Because code-writing
occurs in so many different contexts and venues, it is nearly impossible to
know all possible patents that might bear on any particular software project 73
Yet, as in many areas of the law, ignorance of patents is no defense.”* Even if
firms find the patent questionable or the accusation bogus, they will often
license a patent rather than challenging it in court because it is much easier
and cheaper to do so. Because of these dynamics of patent law, small firms,

independent coders, and open source developers75 cannot escape the

8

patent system, even if they do not file for patents themselves.
The bias toward corporate entities in patent law for software stands in

contrast with the diversifying pool of people writing code.”® Increasingly
accessible programming languages, cheaper hardware, and the availability of
tutorials and platforms for code on the Web have made code-writing more
accessible to casual coders. These casual coders may not know that patent
law governs their writing, much less know how to claim their software as
‘novel and ‘nonobvious’ in order to apply for a patent. In Perelman and
Olbrechts-Tytecha’s terms, then, the ‘universal audience’ assumed by patent
law differs significantly from its ‘concrete audience’—the actual pool of
people subject to patent law regarding software. Several legal theorists have
argued that this disparity between various firms’ effective access to

software patents indicates a broken patent system.77 To underscore that
point, independent developers widely reject patent protection for software,
and often instead embrace copyright protection because it does not require

funds, expertise, or registration to obtain. '8

It is not clear if the courts deciding this trajectory of cases about algorithms
for business, manufacturing, and scientific purposes were thinking about the
contexts for software development. But regardless of whether courts and
Congress intended to disfavor smalltime software developers through
changes in patent protection, their actions indicate that they were primarily
considering well-funded, well-organized corporations when making those
changes. As Perelman and Olbrechts-Tyteca suggest, lawmakers need not
know or intend their laws to have certain effects in order for those effects to
occur. And the law can subtly shape technologies for particular groups of
users, producers, and contexts even if it is does not explicitly name or favor
those populations or contexts.

Conclusion: The unrepresented audience fights back

Each legal metaphor for code offers a different paradigm for where code can
go, what it can do, and who is allowed to write and circulate it. By looking more
closely at the metaphors for code, we can see some ways that the law
constructs writers, distributors, and consumers of computer code. Since code
now comprises much of our infrastructure for politics and expression, as well
as the infrastructure for modern life through electricity grids, traffic signals,
and microwaves, the ‘universal audience’ implied when the different legal
metaphors were established may translate into who controls these
infrastructures in the future.

Yet coders are not simply determined by lawmakers. Invested in what the law
has to say about code, various coding communities have pushed back on
lawmakers’ seemingly corporatized ‘universal audience’ for code. Equipped
with some knowledge about contract law, as well as the ability to write code
that functions as a form of law by circumscribing some uses and promoting
others, the ‘concrete audience’ for code has managed to carve space for
themselves to write—if not in official laws, at least in their coding practices.
Some legal subjects have protested what they perceive as a corporate bias
in intellectual property laws currently being written, pointing to the fact that

heavy corporate lobbying influenced the passage of intellectual property laws
such as the DMCA, the America Invents Act, and closed-door negotiations for
ACTA (Anti-Counterfeiting Trade Agreement). Legal and digital protests
against these laws have been particularly vigorous where they constrict the
writing and distribution of computer code: for example, the Electronic
Freedom Foundation has raised money, written briefs to courts, and
conducted online publicity campaigns to try to fight this corporate bias in
intellectual property laws concerning software patents and online music
databases. We can also see resistance in the creative translations of DMCA-
violating DeCSS code into poems and songs by people who perceived the
banning of the DeCSS code as censorship. Other code-based protests
against the corporate bias in laws about code include: open source software
licensing such as the General Public License (GPL); the shuttering of Wikipedia
on 18 January 2012 to protest the Stop Online Piracy Act (SOPA), then under
consideration in Congress; and Distributed Denial of Service (DDoS) attacks
orchestrated by the loosely networked group called ‘Anonymous’ in order to
take down corporate websites.

| contend that Anonymous, the Electronic Freedom Foundation, and the open
source community are highly aware of the political tensions in the rhetorical
construction of ‘universal audience’ for laws, even if they do not call it that.
Their resistance can be pegged, at least partially, to their perception that the
laws regarding computer code were not written with them in mind. If we
conceive of lawmakers implicitly constructing paradigmatic users and
producers of technology through their laws, then we can see protestors of
those laws as critiquing that construction, that ‘universal audience. Perelman
and Olbrechts-Tyteca describe this inter-audience critique as ‘audiences
pass[ing] judgment on one another,” and argued that ‘particular concrete
audiences are capable of validating a concept of the universal audience which

characterizes them.”® James Crosswhite explains how this critique from a
concrete audience can undermine the perceived validity of a ‘universal
audience’:

If the particular audience completely rejects the universal audience
constructed from it, it would weaken the argument that the
conception of the universal audience is the right one. T hus, the
particular audience has a role in validating the universal audience,
in keeping it from losing its relation to the particular audience in

question.8?

Here, we may be reminded of CONT U Commissioner Hersey’s argument that
laws that go against common sense can undermine their own legitimacy.
Perhaps the most successful and longstanding critique of the ‘universal
audience’ for legal governance of code is the GPL, the software license that
provides much of the legal structure for free and open source software
(F/OSS). The GPL, variations of which are used for Mozilla Firefox, and the
Android and Linux Operating Systems, forces those who use and modify

licensed code to circulate their own code under the same terms 8! The GPL’s
progenitor, Richard Stallman, claims it allows for software ‘copyleft’ because

it twists copyright law toward purposes not intended by lawmakers—purposes

more aligned with the programming community to which he belongs.82 When
he created the GPL, then, Stallman was a ‘concrete audience’ member
passing judgment on the ‘universal audience’ lawmakers imagined for
copyright law.

The Universal case series prompted another concrete audience’s critique that
potentially undermined the legitimacy of lawmakers’ ‘universal audience’’
Because creative users of computer code did not see their uses of code
represented in the Universal court’s assertion that code’s functional qualities
should trump its expressive qualities, they exercised their perceived rights to

creatively express themselves in code through DeCSS distributions 83
Anthropologist Gabriella Coleman traces the awakening understanding of the
‘hacker’ community (represented here by F/OSS developers) and their
response to the law’s infringement on their ‘speech’ in the DeCSS cases:

Although Richard Stallman certainly grounded the politics of
software in a liberal vocabulary of freedom, and Daniel Bernstein’'s
fight introduced a far more legally sophisticated idea of the First
Amendment for software, it was only with the DeCSS cases that a
more prolific and specific language of free speech would come to
dominate among F/OSS developers, and circulate beyond F/OSS
proper. In the context of F/OSS development in conjunction with
the DeCSS cases, the conception of software as speech became

a cultural reality 84

As the metaphor of code as speech was consolidated through the DeCSS
cases, non-corporate software communities were galvanized to protect the

freedom of speech for code and other technological expressions.8°

Are the GPL, the DeCSS protests, and other legal or code-based protests
effectively invalidating lawmakers’ ‘universal audience’ and influencing the
users, producers and contexts for code against its legal definitions? Yes, in
some ways. Independent coders have made space for their own coding
practices even if, at times, they seem to go against the paradigms of code in
the law. Code-focused legal protests have partially eroded the effectiveness
of legal authority by defying it or ‘hacking’ it. Millions of lines of code circulate
under the GPL, and the license’s ‘copyleft’ stipulations have been successfully

defended under copyright law.8® Some code communities have developed
alternative laws that better fit their needs. For instance, the Debian open
source community generates pseudo-laws that help to draw them together

and delineate their boundaries 8" In other words, coding communities can use
their laws to construct their own ‘universal audience’ that encompasses them

as well as defines them as a community 88 As Coleman argues, we might
understand this process as ‘jurisgenesis,” Robert Cover's theory of
communities’ construction of laws that diverge from statist interpretations of
the law .89 Official laws are always unevenly enforced—laws regarding code in
particular because of legal difficulties with interpretation and jurisdiction.
Moreover, since code can effectively function as law, creative coders can

essentially program their own visions of audience in their work. As a result,
coding communities can, in practice, shape the ways that the law governs
code, even if they cannot directly change the paradigms constructed by
lawmakers.

As is often noted, code can be a form of law. But in the law, the metaphors
deployed for code complicate that assertion. If code is text, thenit is
authored and read—by humans as well as machines—and it can be creative
and expressive as well as functional. If code is speech, then it earns certain
protections by the US government—at least until it verges closer to conduct
that might endanger certain corporate or governmental interests. If code is
machine, then its functionality can be cordoned off from its expression and
monopolized under the terms of patent law. The fact that code is
simultaneously text, speech and machine in US law provides a window into the
complex manifestations, functions, users and uses of code in contemporary
society.

References

Beauchamp, Christopher. “Who Invented the Telephone?: Lawyers, Patents,
and the Judgments of History,” Technology and Culture 51 (2010): 854—878.
Bosmaijan, Haig. Metaphor and Reason in Judicial Opinions. Carbondale, IL:
Southern lllinois University Press, 1992.

Boyle, James. The Public Domain: Enclosing the Commons of the Mind. New
Haven, CT: Yale University Press, 2008.

Breyer, Stephen. “The Uneasy Case for Copyright: A Study of Copyright in
Books, Photocopies, and Computer Programs,” Harvard Law Review 84 (1970):
281-351.

Burk, Dan. “Patenting Speech,” Texas Law Review 79 (2000): 99-162.
Cardozo, Benjamin. The Nature of the Juridicial Process. New Haven, CT: Yale
University Press, 1921.

Cohen, Julie E. and Mark A. Lemley. “Patent Scope and Innovation in the
Software Industry,” California Law Review 89.1 (2001): 1-57.

Coleman, E. Gabriella. “Code is Speech: Legal Tinkering, Expertise, and
Protest among Free and Open Source Software Developers,” Cultural
Anthropology 24.3 (2009): 420-454.

——. “Three Ethical Moments in Debian.” Center for Critical Analysis, Rutgers
University, Working Paper Series. (2005): 1—-77. Social Science Research
Network. http//dx.doi.org/10.2139/ssrn.805287

Cover, Robert. Narrative, Violence and the Law: The Essays of Robert Cover, Eds.
Martha Minow, Michael Ryan, and Austin Sarat. Ann Arbor, MI: University of
Michigan Press, 1992.

Crosswhite, James. ‘Universality in Rhetoric: Perelman’s Universal Audience.
Philosophy and Rhetoric 22.3 (1989): 157-173.

de Velasco, Antonio. “Rethinking Perelman’s Universal Audience: Political
Dimensions of a Controversial Concept,” Rhetoric Society Quarterly 35.2 (2005):
47-64.

Eschenfelder, Kristen R. and Anuj C. Desai. “Software as Protest: The
Unexpected Resiliency of US.-Based DeCSS Posting and Linking,” The
Information Society 20 (2004): 101-116.

Gard, Ron W. and Elizabeth Townsend Gard, “The Present (User-Generated
Crisis) is the Past (1909 Copyright Act): An Essay Theorizing the ‘Traditional
Contours of Copyright’ Language,” Cardozo Arts & Entertainment Law Journal 28
(2011): 455-695.

Gitelman, Lisa. Always Already New: Media, History, and the Data of Culture.
Cambridge, MA: MIT Press, 2006.

—. Scripts, Grooves and Writing Machines: Representing Technology in the
Edison Era. Stanford, CA: Stanford University Press, 1999.

Grimmelmann, James. “T he Ethical Visions of Copyright Law,” Fordham Law
Review 77 (2009): 2005-2037.

Jaffe, Adam and Josh Lerner. Innovation and its Discontents. Princeton, NJ:
Princeton University Press, 2004.

Klemens, Ben. Math You Can’t Use. Washington, D.C.: Brookings Institution,
2006.

Knuth, Donald. “Computer Programming as an Art,” Literate Programming.
United States: Center for the Study of Language and Information, 1992.
Lessig, Lawrence. Code and Other Laws of Cyberspace. New York: Basic Books,
2000.

Long, Pamela O. “Invention, authorship, ‘intellectual property,” and the origin of
patents: Notes toward a conceptual history,” Technology and Culture 32 (1991):
846—884.

Maastricht Economic and Social Research and Training Centre on Innovation
and Technology, Free/Libre/Open Source Software: Policy Support Project.
“‘Gender: Integrated Report of Findings,” 2006. Last accessed July 20, 2012.
http//flosspols.org/.

MacCormick, Neil. Rhetoric and the Rule of Law: A Theory of Legal Reasoning.
Oxford, UK: Oxford University Press, 2005.

Marino, Mark. “Critical Code Studies,” Electronic Book Review (4 Dec 2006):
http//www.electronicbookreview.com/thread/electropoetics/codology.
Merges, Robert P. “Software and Patent Scope: A Report from the Middle
Innings,” Texas Law Review 85 (2006): 1627—1676.

Nard, Craig A., David W. Barnes, and Michael J. Madison. The Law of Intellectual
Property. New York: Aspen Publishers, 2006.

Perelman, Chaim and Lucie Olbrechts-Tyteca. The New Rhetoric. South Bend,
IN: University of Notre Dame Press, 1969.

Samuelson, Pamela. “Benson revisited: The case against patent protection
for algorithms and other computer program-related inventions,” Emory Law
Journal 39 (1990): 1025-1401.

—. “Symposium: T he Future of Software Protection: Introduction,” University
of Pittsburgh Law Review 47 4 (1986): 905-906.

——. “The Uneasy Case for Software Copyrights Revisited,” The George
Washington Law Review 79 (2012): 1746-1782.

—. “Why Copyright Law Excludes Systems and Processes from the Scope of
lts Protection,” Texas Law Review 85 (2007): 1921-1977.

Samuelson, Pamela, Randall Davis, Mitchell D. Kapor, and J. H. Reichman, “A
Manifesto Concerning the Legal Protection of Computer Programs,” Columbia
Law Review 94.8 (1994): 2308-2431.

Software Freedom Law Center. “BusyBox Developers and Xterasys

http://flosspols.org/
http://www.electronicbookreview.com/thread/electropoetics/codology

Corporation Agree to Settle GPL Lawsuit” (17 Dec 2007). Last accessed July
20, 2012. http//iwww.softwarefreedom.org/news/2007/dec/17/busybox-
xterasys-settlement/.

Stallman, Richard. “Copyleft: Pragmatic Idealism,” GNU Operating System.
Last modified June 10, 2012. http//www.gnu.org/philosophy/pragmatic.html .
Strasser, Matthias. “A New Paradigm in Intellectual Property Law? The Case
Against Open Sources,” Stanford Technology Law Review 4 (2001): 2-70.
Swanson, Kara. “The Emergence of the Professional Patent Practitioner,”
Technology and Culture 50 (2009): 519-548.

Tien, Lee. “Publishing Software as a Speech Act,” Berkeley Technology Law
Journal 15 (2000), Last accessed July 19, 2012.
http//www.law.berkeley.edu/journals/btlj/articles/vol15/index.htm.

Touretzky, David S. “Gallery of CSS Descramblers.” Last modified February
13, 2008. http//www.cs.cmu.edu/~dst/DeCSS/Gallery/index.html .

United States National Commission on New T echnological Uses of
Copyrighted Works (CONT U), Final Report of the National Commission on New
Technological Uses of Copyrighted Works. 31 July 1978, Washington, D.C..
Library of Congress. Last accessed June 18, 2012.
http//people.ischoolberkeley.edu/~bcarver/mediawiki/images/8/89/CONT U.pdf
Vee, Annette. “Carving up the Commons: How Software Patents are
Impacting our Digital Composition Environments,” Computers and Composition
27 (2010): 179-192.

Weber, Steven. The Success of Open Source. Cambridge, MA: Harvard
University Press, 2004.

License:
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License.

Acknowledgements

T his work benefited from comments from Kate Vieira, Tim Laquintano,
Michael Bernard-Donals, Don Bialostosky, Dan Morgan, James Jasinski, and
several anonymous reviewers, and | thank them for their time and attention.
Thanks also to the Computational Culture editorial collective for their support
during the publication process.

1. See Christopher Beauchamp, ‘Who Invented the Telephone?: Lawyers,
Patent and the Judgments of History,” Technology and Culture 51 (2010):
854—-878, and Kara Swanson, ‘The Emergence of the Professional
Patent Practitioner,” Technology and Culture 50 (2009): 519—-548. (up)

2. Introducing a special issue of a law review journal that focused on the
legal protection of software, Pamela Samuelson wrote, ‘Because of the
unique character of software—part ‘writing,” part ‘machine’—a host of
complex problems have been cropping up concerning the extent to
which existing forms of intellectual property law can be adapted to
accommodate software.” Pamela Samuelson, ‘Symposium: T he Future
of Software Protection: Introduction,” University of Pittsburgh Law Review
47 4 (1986): 905-906, 905. (up)

http://www.softwarefreedom.org/news/2007/dec/17/busybox-xterasys-settlement/
http://www.gnu.org/philosophy/pragmatic.html
http://www.law.berkeley.edu/journals/btlj/articles/vol15/index.htm
http://www.cs.cmu.edu/~dst/DeCSS/Gallery/index.html
http://people.ischool.berkeley.edu/~bcarver/mediawiki/images/8/89/CONTU.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

3. Forleading work in the field of intellectual property and computer code,
see work by legal scholars Pamela Samuelson, Dan Burk, Robert P.
Merges, Mark A. Lemley, and Julie E. Cohen. Relevant law review essays
include: Julie E. Cohen & Mark A. Lemley, ‘Patent Scope and Innovation in
the Software Industry,” California Law Review 89.1 (2001): 1-57 (discussing
the various Federal Circuit decisions that led to the patentability of
algorithms); Robert P. Merges, ‘Software and Patent Scope: A Report
from the Middle Innings,” Texas Law Review 85 (2006): 1627-1676
(reviewing the impact of crucial decisions several years earlier that
made software patentable); Pamela Samuelson, ‘Why Copyright Law
Excludes Systems and Processes from the Scope of Its Protection,’
Texas Law Review 85 (2007): 1921-1977 (arguing for the precedence of
Baker v. Selden and subsequent cases that delineate idea from
expression); Pamela Samuelson, ‘The Uneasy Case for Software
Copyrights Revisited,” The George Washington Law Review 79 (2012):
1746—1782 (revisiting and updating Stephen Breyer’'s 1970 Harvard Law
Review article in which he debates the merits of allowing copyright for
software); Dan Burk, ‘Patenting Speech,” Texas Law Review 79 (2000):
99-162 (demonstrating that software is speech and also patentable,
which may open the door for other forms of patented speech); Matthias
Strasser, ‘A New Paradigm in Intellectual Property Law? T he Case
Against Open Sources,’ Stanford Technology Law Review 4 (2001): 2-70
(reviews patent, copyright, and trade law protections for software,
especially regarding the distinctions between source code and object
code). (up)

4. luse lawmakers’ here and throughout to refer to legislators, judges,
courts, congressional committee members, and other people involved in
recommending, making, and shaping laws in a broad sense. In each case
study below, | specify which group of lawmakers are under discussion.
(up)

5. See Lisa Gitelman for a review of how ‘when media are new, they offer a
look into the different ways their jobs get constructed as such’ (6).
Always Already New: Media, History, and the Data of Culture (Cambridge,
MA, 2006). (up)

6. Lisa Gitelman, Scripts, Grooves and Writing Machines: Representing
Technology in the Edison Era (Stanford, CA, 1999): 97-98. Gitelman
reminds us that patents process both old and the new technology
together, as they describe new technology using references to ‘prior
art.’ Patents in new areas, such as Edison’s phonograph, need to be fit
into old classifications, at least until new classifications are devised. (up)

7. Chaim Perelman and Lucie Olbrechts-Tyteca, The New Rhetoric (South
Bend, IN, 1969): 397. A vast body of literature exists on the use of
metaphors and narrative in legal reasoning, although Perelman and
Olbrechts-Tyteca’s work has been useful to rhetorician studying
metaphors in the law. Drawing on Perelman and Olbrechts-T yteca, Haig
Bosmaijian traces the ways metaphors can turn into doctrine as they are
repeated in judicial decisions, for example in the development of the
‘chilling effect’ trope. Bosmajian’s exploration of metaphor has been

11.

12.

13.

14.
15.

central to my thinking here. Haig Bosmajian, Metaphor and Reason in
Judicial Opinions (Carbondale, IL, 1992). (up)

Craig A. Nard, David W. Barnes, and Michael J. Madison, The Law of
Intellectual Property (New York, 2006): 387-88. (up)

Perelman and Olbrechts-Tyteca, The New Rhetoric, 401. (up)

. There are at least two audiences implied in the making of laws for new

technologies: the audience for the law itself, that is, lawyers and other
lawmakers; and the audience for the implications of the law—the people
imagined as the users and producers of new technologies. Although
lawyers and other lawmakers interpret and therefore continue to shape
laws, the latter audience is the more interesting for examining the
perceived functions of new technologies. Consequently, this study
focuses on the audience that lawmakers imagine to be subject to the
law, rather than the lawyer/lawmaker audience for the legal texts
themselves. (up)

James Grimmelman, ‘The Ethical Visions of Copyright Law,” Fordham
Law Review 77 (2009): 2005-2037, 2005. (up)

Here is one relevant section in the Court’s opinion, written by Justice
Stevens: ‘the average member of the public uses a VTR (video tape
recorder) principally to record a program he cannot view as it is being
televised and then to watch it once at a later time. T his practice, known
as ‘time-shifting,” enlarges the television viewing audience. For that
reason, a significant amount of television programming may be used in
this manner without objection from the owners of the copyrights on the
programs’ (421). Sony Corp. of America v. Universal City Studios, Inc.,
464 U.S. 417 (1984). (up)

See the influential legal theorist (and later Supreme Court Justice)
Benjamin Cardozo, The Nature of the Juridicial Process (New Haven, 1921)
for an early discussion of this theory in jurisprudence: ‘the traditions of
our jurisprudence commit us to the objective standard. | do not mean, of
course, that this ideal of objective vision is ever perfectly attained. We
cannot transcend the limitations of the ego and see anything as it really
is. None the less, the ideal is one to be striven for within the limits of our
capacity’ (106). More recent echoes of this theory of the law can be
found in Neil MacCormick, Rhetoric and the Rule of Law: A Theory of Legal
Reasoning (Oxford, UK, 2005). MacCormick argues that ‘universalization
is essential to justification within practical reasoning’ (78) but ‘objective
standards are applicable only through adjudicative subjectivity’ (164).
(up)

Perelman and Olbrechts-Tyteca, The New Rhetoric, 73. (up)

The PHOSIT A is an expert in the given area where the proposed patent
operates; if a PHOSIT A would recognize the proposed patent as part of
the normal practices of the profession, theniit is not ‘novel and is
therefore unpatentable, see 35 US.C. § 103(A). Through common law, a
similar hypothetical personis implied in torts, where the expectations
and knowledge of a ‘reasonable person’ (historically, a ‘reasonable man’)
are integral to determining negligence. A ‘reasonable person’ would not,
for instance, throw a heavy object out of a third floor window

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.
27.
28.

overlooking a busy sidewalk; therefore, anyone who did that would be
legally negligent. (up)

Antonio de Velasco, ‘Rethinking Perelman’s Universal Audience: Political
Dimensions of a Controversial Concept,” Rhetoric Society Quarterly 35.2
(2005): 47-64, 54. (up)

Ibid., 51. (up)

The merits of copyright for software were perhaps most influentially
weighed by Stephen Breyer, ‘The Uneasy Case for Copyright: A Study
of Copyright in Books, Photocopies, and Computer Programs,” Harvard
Law Review 84 (1970): 281-351. (up)

United States National Commission on New T echnological Uses of
Copyrighted Works (CONT U), Final Report of the National Commission on
New Technological Uses of Copyrighted Works, (31 July 1978, Washington,
D.C.: Library of Congress). Hereafter ‘CONT U Report.” (up)

Pamela Samuelson, Randall Davis, Mitchell D. Kapor, and J. H. Reichman,
‘A Manifesto Concerning the Legal Protection of Computer Programs,’
Columbia Law Review 94.8 (1994): 2308-2431, 2429. (up)

Because the commission was structured primarily to address databases
and photocopying rather than intellectual property protection for
computer code, Pamela Samuelson argues that it was not well-
prepared to address the highly technical implications of copyright for
various forms of code (‘CONT U Revisited’). (up)

There are two primary audiences for computer code—human
programmers and the computer itself; ‘source code’ is what
programmers generally write and read, and ‘object code’ is what
computers generally write and read. Source code includes English words
like ADD and JUMP, rendering its odd poetry a plausible case for code
as a ‘literary work.” In contrast, object code—machine-readable code—is
a series of 1’s and 0’s. (up)

Samuelson, ‘CONT U Revisited’; Samuelson, ‘The Uneasy Case,’” 1748.
(up)

The 1976 Copyright Act declared that ‘Copyright protection subsists, in
accordance with this title, in original works of authorship fixed in any
tangible medium of expression, now known or later developed, from
which they can be perceived, reproduced, or otherwise communicated,
either directly or with the aid of a machine or device’ (17 US.C. §102(a),
emphasis added). For further discussion of this break with tradition
established in White-Smith v. Apollo (209 U.S. 1. (1908), concerning player
piano rolls) and the 1909 Copyright Act, see Ron W. Gard and Elizabeth
Townsend Gard, ‘The Present (User-Generated Crisis) is the Past (1909
Copyright Act): An Essay T heorizing the ‘Traditional Contours of
Copyright’ Language,’” Cardozo Arts & Entertainment Law Journal 28
(2011): 455-695. (up)

Apple Computer, Inc. v. Franklin Computer Corp. 714 F. 2d 1240. (3rd Cir.
1983). (up)

Merges, ‘Software and Patent Scope.” (up)

CONTU Report, 31. (up)

CONTU Report, 14. The case they used to illustrate this point was Reiss

29.

30.

31.
32.

33.

34.

35.

36.

37.
38.

39.

40.
41.
42.

v. National Quotation Bureau, Inc. 276 Fed. 717, 719. (S.D.N.Y. 1921). (up)
CONTU Report, 25. The case they invoked was Bleistein v. Donaldson
Lithographing Co. 188 U.S. 239 (1903). (up)

The metaphor of code as functional writing and a disregard for its
communicative effects are echoed in the Appeals Court decision in
Apple v. Franklin, the case that affirmed the copyrightability for object
code. Confirming Apple’s copyright in computer operating system
programs, the Appeals Court decision states that ‘the category of
literary works’ (...) is not confined to literature in the nature of
Hemingway’s For Whom the Bell Tolls’ (Apple v. Franklin at 1249). Both
CONT U’s Final Report and the decision in Apple v. Franklin consciously
echo Bleistein v. Donaldson Lithographing Co., a 1903 case that suggested
a wide potential audience for creative works: ‘if they command the
interest of any public, they have a commercial value (...) and the taste
of any public is not to be treated with contempt’ (252). CONTU and the
Apple v. Franklin Appeals Court indicate that computers are another
type of audience ‘not to be treated with contempt.’ (up)

CONTU Report, 11. (up)

Donald Knuth, ‘Computer Programming as an Art,’ Literate Programming,
(United States: Center for the Study of Language and Information,
1992): ix. (up)

Mark Marino, ‘Critical Code Studies,’ Electronic Book Review (4 Dec 2006),
http//www.electronicbookreview.com/thread/electropoetics/codology .
(up)

Both cases have a complicated procedural history involving several
appeals and shifting plaintiffs and defendants, but the broad
perspective of this article as well as the general consistency in the
trajectory of decisions leads me to referto each case as a relatively
coherent block. When | use ‘Bernstein,” or ‘Universal, |am referring to the
series of cases as a whole. (up)

Burk, 109; Bernstein v. United States Department of State, F. Supp. 1426
(N.D. Cal. 1996) at 1436. Hereafter ‘Bernstein I (up)

Bernstein's algorithm was first constrained under International
Trafficking in Arms Regulations (IT AR); due to federal regulatory
changes, later Bernstein cases refer to Export Administration
Regulations (EAR). (up)

Bernstein I, 1434. (up)

Bernstein v. United States Department of State, F. Supp. 1288 (N.D. Cal.
1997) at 1303. Hereafter ‘Bernstein Il (up)

Bernstein I, 1436. For more on the application of Speech Act Theory to
software, see Lee Tien, who clarifies that we should not be asking, ‘is
software speech?’ but instead, ‘Is Bernstein speaking?’ (n.p.). Tien
explores the difference between the two questions through Speech Act
Theory’s illocutionary force. ‘Publishing Software as a Speech Act;’
Berkeley Technology Law Journal 15 (2000). (up)

Bernstein I, p 1303. (up)

Bernstein I, 1436. (up)

Bernstein v. United States Department of Justice, 176 F.3d 1132 (9th Cir.

43.
44,

45.

46.

47.
48.
49.

50.
o1.
52.
53.
54.
95.
56.
o7.

58.

1999) at 4244. Hereafter, ‘Bernstein v. US DoJ. (up)

lbid., 4242. (up)

Universal City Studios, Inc. v. Corley, 273 F.3rd 429 (2nd Cir. 2001) at 452.
Hereafter ‘Corley.’ In this section, lalso focus on the appeal to that
case, Universal City Studios, Inc.v. Reimerdes, 111 F. Supp. 2d 294
(S.D.N.Y. 2000). Hereafter ‘Reimerdes. (up)

In 2000, Universal City Studios sued Eric Corley, editor of the magazine
2600, for ‘trafficking’ in the DeCSS algorithm, which circumvented the
movie industry’s CSS (Content Scramble System) anti-piracy algorithm.
In 1999, a teenaged Norwegian named Jon Johansen had written DeCSS
ostensibly so that he could play DVDs on his Linux-based computer,
although the algorithm also enabled users to pirate DVDs. He shared the
code online and by the end of 1999, DeCSS was ubiquitous on the Web.
Although I focus here on the Universal v. Corley/Reimerdes case series
because it came first, was higher profile, and contains the most
interesting language about code as speech in the judicial decisions,
there were a number of other ‘DeCSS cases.” For example, in DVD Copy
Control Association v. Bunner the DVD CCA sued Andrew Bunner and
several others posting DeCSS online for misappropriation of trade
secrets and won a preliminary injunction against his posting of the code
as a misappropriate of trade secrets. Bunner went up to the Supreme
Court of California, and the decision ultimately was that Bunner had a
free speech right to post the code. DVD Copy Control Assn., Inc. v.
Bunner, 116 Cal. App. 4th 241, 10 Cal. Rptr. 3d 185, 69 U.S.P.Q.2d 1907
(Cal.Ct. App. 2004). (up)

See Lawrence Lessig’s discussion in of Eldred v. Ashcroft, a Supreme
Court case that challenged the constitutionality of the DMCA, in his
book Code. (up)

Bernstein v. US DoJ, 4235. (up)

Corley, 451. (up)

Touretzky, David S. ‘Gallery of CSS Descramblers,’ last modified Feb
13, 2008, http//www.cs.cmu.edu/~dst/DeCSS/Gallery/index.html. (up)
Corley, 453. (up)

Reimerdes, 332. (up)

Ibid.,, 304. (up)

James Boyle, The Public Domain: Enclosing the Commons of the Mind
(New Haven, CT, 2008): 101. (up)

Reimerdes, 340. (up)

Kristen R. Eschenfelder and Anuj C. Desai, ‘Software as Protest: The
Unexpected Resiliency of US.-Based DeCSS Posting and Linking,” The
Information Society 20 (2004): 101-116. (up)

A&M Records, Inc. v. Napster, Inc., 239 F.3d 1004 (9th Cir. 2001), affirming,
114 F.Supp.2d 896 (N.D. Cal. 2000). See also MGM Studios, Inc. v.
Grokster, Ltd. 545 U.S. 913 (2005). (up)

Many legal scholars have noted this assumption, including Jaffe and
Lerner, Innovation, and Ben Klemens, Math You Can’t Use. (Washington,
D.C., Brookings Institution, 2006). (up)

Samuelson, ‘CONT U Revisited.” (up)

http://www.cs.cmu.edu/~dst/DeCSS/Gallery/index.html

59.
60.
61.
62.
63.
64.

65.

66.
67.

68.
69.
70.

71.
72.
73.

74.

75.

/6.

77.
78.
79.

Gottschalk v. Benson, 409 U.S. 63 (1972); Parker v. Flook, 437 U.S. 584
(1978). (up)

Diamond v. Diehr, 450 U.S. 175 (1981). (up)

In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994). (up)

State Street Bank and Trust v. Signature Financial Group, 149 F.3d 1368
(Fed. Cir. 1998). Hereafter ‘State Street.’ (up)

Merges, ‘Software and Patent Scope.” (up)

The PHOSITA is a hypothetical person, constructed to match each
case. See my earlier discussion about normative populations in the law.
(up)

For an excellent social history of patent law, see Pamela O. Long,
‘Invention, authorship, ‘intellectual property,” and the origin of patents:
Notes toward a conceptual history,” Technology and Culture 32 (1991):
846—-884. (up)

Samuelson, et al., ‘A Manifesto,” 2320. (up)

Bilski et al. vs. Kappos. Bench Opinion. 561 U.S. .(2010), 10. Bilski
offered hope to critics of software patents, but the Supreme Court’s
narrow ruling and passing the buck to Congress dashed those hopes.
(up)

Jaffe and Lerner, Innovation. (up)

Ibid. (up)

Pamela Samuelson, ‘Benson revisited: T he case against patent
protection for algorithms and other computer program-related
inventions,” Emory Law Journal 39 (1990): 1025-1401. (up)

Lessig, Code. (up)

Ibid. (up)

Patent infringement can occur even when the accused infringer was not
aware of the patented original. This is a critical difference from
copyright, in which access to the original must be established in order to
prove infringement. See Klemens, Math You Can’t Use, on the wide
variety of software-writing venues. (up)

The decision in Lough v. Brunswick Corp., 86 F.3d 1113 (Fed. Cir. 1996),
which invalidated a patent on an outboard motor component for an
individual inventor because of his failure to follow a bureaucratic patent
requirement, indicated that inventors are subject to the same
stipulations for patent applications regardless of their knowledge or
level of resources. (up)

The patent application process ‘tilt(s...) to harm open code developers,’
according to Lessig, because of the difficulty of naming ‘inventors’ for
patents or gathering funds amongst developers in a loosely-organized,
often Internet-based project such as F/OSS development (Lessig, Code,
213). (up)

Annette Vee, ‘Carving up the Commons: How Software Patents are
Impacting our Digital Composition Environments,” Computers and
Composition 27 (2010): 179-192. (up)

Jaffe and Lerner, Innovation. (up)

Vee, ‘Software Patents’. (up)

The New Rhetoric, 35. (up)

80.
81.

82.

83.

84.

85.

86.

87.

88.

89.

|—Series Navigation

James Crosswhite, ‘Universality in Rhetoric: Perelman’s Universal
Audience,’ Philosophy and Rhetoric 22.3 (1989): 157-173, 167-8. (up)

See Weber, Success of Open Source, for more on the history of the GPL
and open source software. (up)

Richard Stallman, ‘Copyleft: Pragmatic Idealism,” GNU Operating System,
last modified Jun 10, 2012, http//www.gnu.org/philosophy/pragmatic.htmi.
(up)

These online protests included the sale of t-shirts with the DeCSS
algorithm printed on them, haikus that described the algorithm,
instructions for implementing the algorithm in plain English, and even
recorded musical versions of the code. In his website that catalogues
these playful and problematic DeCSS distributions, David S. T ouretzky,
a computer scientist who testified in Reimerdes, points to this difficulty
of separating form from function in code: ‘lif code that can be directly
compiled and executed may be suppressed under the DMCA (...) but a
textual description of the same algorithm may not be suppressed, then
where exactly should the line be drawn?’ The appellate court declined to
answer this question by commenting on any of the examples that
Touretsky had collected. (up)

E. Gabriella Coleman, ‘Code is Speech: Legal Tinkering, Expertise, and
Protest among Free and Open Source Software Developers,’ Cultural
Anthropology 24.3 (2009): 420-454, 438. (up)

In resistance events such as the DeCSS protests, Coleman goes so far
as to argue that ‘struggles over code (are) not only (about) hackers’
productive freedom but also (about) the very meaning of democratic
citizenship’ (‘Code is Speech,” 449). (up)

Software Freedom Law Center, ‘BusyBox Developers and Xterasys
Corporation Agree to Settle GPL Lawsuit,” Dec 17, 2007, last accessed
July 20, 2012,
http//www.softwarefreedom.org/news/2007/dec/17/busybox-xterasys-
settlement/. (up)

E. Gabriella Coleman, ‘Three Ethical Moments in Debian. Center for
Critical Analysis, Rutgers University, Working Paper Series. (2005): 1-77.
(up)

These audiences are also, of course, exclusionary, and sometimes in
very problematic ways. Critiques of the social structure of free and open
source software development are often focused on issues of gender,
as free and open source software developers are overwhelmingly male.
For an excellent and comprehensive report on gender in free and open
source software, see Maastricht Economic and Social Research and
Training Centre on Innovation and Technology, Free/Libre/Open Source
Software: Policy Support Project, ‘Gender: Integrated Report of
Findings,” (Maastrict, 2006), http://flosspols.org/. (up)

Robert Cover, Narrative, Violence and the Law: The Essays of Robert
Cover, Eds. Martha Minow, Michael Ryan, and Austin Sarat (Ann Arbor, M,
1992), 103-113. (up)

http://www.softwarefreedom.org/news/2007/dec/17/busybox-xterasys-settlement/

<< Heterogeneous Software Engineering: Garmisch 1968, Microsoft Vista,
and a Methodology for Software StudiesWhat is in PageRank? A
Historical and Conceptual Investigation of a Recursive Status Index. >>

http://computationalculture.net/article/heterogeneous-software-engineering-garmisch-1968-microsoft-vista-and-a-methodology-for-software-studies
http://computationalculture.net/article/what_is_in_pagerank

	Articles from Computational Culture
	Text, Speech, Machine: Metaphors for Computer Code in the Law

