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ABSTRACT 

Evaluation of diagnostic performance is critical in many fields including but not limited to 

diagnostic medicine. The Receiver Operating Characteristic (ROC) curve is the most widely 

used methodology for describing the intrinsic performance of diagnostic tests, with the area 

under the curve (AUC) being the most commonly used summary index of overall performance. 

The partial area under the ROC curve (pAUC), when focused on the range of practical/clinical 

relevance, is considered a more relevant summary index than the full AUC. However, several 

conceptual and analytical difficulties frequently prevent the pAUC from being used. First, in 

many diagnostic setting the relevant range is difficult to determine objectively. Second, in theory, 

due to potential use of less information, analysis based on the pAUC could lead to the loss of 

statistical precision and therefore would require larger sample sizes. Through mathematical 

derivation, extensive simulation studies and practical examples, this work investigates statistical 

properties when using the pAUC. First, this work demonstrates that in many practical scenarios 

inferences based on pAUC could be more powerful than inferences based on the full AUC. Thus, 

the use of the pAUC may lead to not only more clinically relevant but also more conclusive 

results in analyses of experimental data. Second, this investigation demonstrates that the 

advantages of pAUC-based inferences depend on the shape of ROC curves. The conventional 

binormal model does not always adequately describe scenarios where the pAUC is more 
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statistically efficient. The bi-gamma family of concave ROC curves is shown to describe 

practically reasonable scenarios where either pAUC or full AUC could be advantageous. 

Programs for sample size estimation based on bi-gamma model are then developed. Finally, this 

work investigates the properties of pAUC-based inferences in scenarios where diagnostic results 

have substantial ties (or a “mass”) at the lowest diagnostic results. For certain type of the ROC 

curves the existence of ties could lead to an increase in statistical efficiency. Forcing a diagnostic 

system to resolve ties could detrimentally affect reliability and conclusiveness of statistical 

inferences. In conclusion, this work provides investigators with insights into and tools for 

generating practically relevant conclusions using pAUC. The public health importance of this 

work stems from the relevance of the ROC analysis at different stages of development and 

regulatory approval of diagnostic systems in medicine. Enhanced methodology for evaluation of 

diagnostic accuracy helps in the development of improved diagnostic systems and could 

accelerate the delivery and clinical adoption of truly beneficial diagnostic technologies and/or 

clinical practices.   
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1.0  INTRODUCTION 

1.1 BACKGROUND 

A basic problem in evaluation of diagnostic performance involves assessment of the accuracy of 

a diagnostic test in identifying a patient with a specific, predefined condition (abnormal subject) 

and a patient without the condition (normal subject). The true status (presence or absence of the 

abnormality in question) of a subject is assumed to be known for all subjects used for accuracy 

evaluation. The diagnostic test results can be measured using a binary scale indicating that the 

subject is assessed as “positive” or “negative”, or an ordinal multi-category (e.g. 7) scale 

typically with larger values representing higher probability of the abnormality being present, or a 

continuous scale indicating the likelihood of a pre-specified abnormality being present. For a 

multi-category diagnostic test, a subject can be classified into a “positive” or “negative” class 

according to whether the test result is greater than or less than a pre-specified threshold. The 

Receiver Operating Characteristic (ROC) analysis is the most widely used methodology to 

investigate this type of research objectives.  

ROC analysis originated from signal detection theory (Green and Swets, 1966) (Egan, 

1975) and has been well developed over the past 50 years in particular as related to diagnostic 

imaging and decision making (Metz, 1989) (Hanley, 1989) (McNeil et al., 1975) (Zhou et al., 

2002). However, many issues remain and new methods are constantly being developed.  
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The ROC curve is the plot of sensitivity versus 1-specificity for all possible decision 

threshold values of c (Figure 1.1). Let X and Y denote the ratings for normal and abnormal 

subjects respectively. Sensitivity, or true positive fraction (TPF), is the probability of test results 

being positive for abnormal subjects, and can be defined as follows: 

( ) ( ) ( )Prsensitivity c TPF c Y c= = >  

Specificity, or true negative fraction (TNF), is the probability of test results being 

negative for normal subjects, and can be defined as follows: 

( ) ( ) ( )Prspecificity c TNF c X c= = ≤  

 

Figure 1.1 ROC curve 

The most commonly used summary index associated with the ROC curve is the area 

under the ROC curve (AUC). It is defined as 

( )
1

0

A ROC f df= ∫  

The AUC has several interpretations. First, it can be interpreted as the weighted average 

value of sensitivity of all possible values of specificity (Zhou et al., 2002), or the weighted 

average value of specificity of all possible values of sensitivity (Metz, 1989). Second, it can be 
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also interpreted as the probability that a test result for a randomly selected abnormal patient 

indicates a greater suspicion of disease than the test result for a randomly selected normal patient 

(Hanley and McNeil, 1982) (Bamber, 1975). If X and Y are continuous (i.e., no ties in results are 

possible), then the AUC can be defined as ( )Pr Y X> . The value of AUC of 1 indicates a perfect 

system whereas the non-informative (i.e., guessing) diagnostic system would have AUC of 0.5. 

An unbiased non-parametric AUC estimate is the area under the empirical ROC curve which is 

the same as the Mann-Whitney form of the two-sample Wilcoxon rank-sum statistic (Shapiro, 

1999). A number of parametric and non-parametric methods based on AUC have been developed 

to make statistical inferences (Zhou et al., 2002) (Pepe, 2003). 

AUC offers a single value to indicate the accuracy of diagnostic performance by 

considering both sensitivity and specificity across all possible threshold values; its major 

limitation is that it summarizes the entire ROC curve including the region which may not be of 

interest or practical relevance, for example, the region with very low specificity levels.  

To remedy this limitation, partial area under the ROC curve (pAUC) can be used to 

describe the intrinsic accuracy of diagnostic tests in the range of practical (clinical) interest. The 

pAUC is frequently defined as 

( )2

1 2
1

,

e

e e e
A ROC f df= ∫  

In practice, a range of ( )0,e  is often used due to the importance of high-specificity range 

in practice (McClish, 1989) (Jiang et al., 1996). Since the pAUC over an arbitrary interval 

( )1 2,e e is equivalent to the difference in pAUC(0,e2) and pAUC(0,e1) , ( )
0

e

eA ROC f df= ∫  will be 

in focus of my work. 
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A number of statistical methods and inferences based on the pAUC using both parametric 

and non-parametric approaches have been developed. These include the parametric estimator of 

the pAUC and its variance using the bi-normal model (McClish, 1989) (Jiang et al., 1996). 

Wieand et al. (1989) proposed a non-parametric method for estimating pAUC and its variance. 

Based on Delong’s approach (DeLong et al., 1988), Zhang et al. (2002) proposed a simpler 

method to compute the variance of pAUC which was subsequently improved by He and Escobar 

(2008). An alternative nonparametric variance estimator of the pAUC using its expected value 

was proposed by Liu et al. (2005). Other non-parametric methods have been developed such as 

empirical likelihood methods, for comparing two pAUCs (Huang et al., 2012) (Qin and Zhou, 

2006) (Chen and Wong, 2009), and semi-parametric regression approaches on pAUC by Dodd 

and Pepe (2003) and Cai and Dodd (2008). However, several conceptual and analytical 

difficulties prevent pAUC from being widely used.  

In general, parametric approaches offer improved efficiency of statistical inferences, but 

could introduce substantial bias if the needed parametric assumptions are not satisfied. Under the 

correctly specified model the relative efficiency of nonparametric estimates of partial AUC can 

be as low as 50% for short ranges of interest (e.g., 0-0.05), but increase beyond 80% efficiency 

for ranges wider than 0-0.2 (Dodd and Pepe, 2003). For the full AUC, results of parametric and 

nonparametric inferences are very similar (Hajian-Tilaki et al., 1997) (Hajian-Tilaki and Hanley, 

2002). However, it is not always easy to verify appropriateness of the parametric assumptions, 

and for mis-specified models parametric estimates of pAUC could easily have bias as high as 

40% (e.g., Dodd and Pepe, 2003). For this reason it is often recommended to use non-parametric 

approaches for inferences about partial AUC (Dodd and Pepe, 2003) (Zhang et al., 2002) (He 

and Escobar, 2008). Non-parametric analysis of pAUC is in primary focus of this work as well.    
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One of these difficulties is that the scale of values of pAUC increases with increasing 

range of interest. To partially overcome this limitation, several partial area indices have been 

proposed (Zhou et al., 2002) (McClish, 1989). A natural transformation of the partial area aimed 

to “standardize” the range of its values can be written as follows (McClish, 1989): 

                       
( ) 2

2

0
2 2

21 121 1
2 2

2 2

e

e
e

eROC f dfeA
A

e ee e

 
−  −   = + = +

  − −   
 

∫
                               (1.1)  

Here, we term this index as the “standardized partial AUC” (spAUC). For ROC curves 

describing better-than-chance performance, eA  varies from 0.5 to 1 regardless of e, and for e=1 it 

reduces to the conventional AUC.  

Second, the relevant range should be pre-specified during study design but it is often 

difficult to determine a priori. In addition, it is often assumed that because of the use of less 

information, analysis based on the pAUC may result in the loss of statistical precision as 

compared with statistical inferences based on the full AUC, and thus its use may require larger 

sample sizes (Zhou et al., 2002) (Obuchowski and McClish, 1997) (Wieand et al., 1989). 

Conjectures about the relative stability of the spAUC with respect to the range of interest and the 

decrease in variance with increasing range are intuitively appealing and could affect the way 

statistical analysis is planned and interpreted. In analyzing experimentally ascertained datasets 

from observer performance studies we frequently encountered scenarios that contradicted the 

two conjectures. The work presented here primarily focuses on the investigation of properties of 

statistical inferences based on the pAUC. 

In diagnostic radiology, it is natural to observe multiple subjects having the same 

diagnostic test results (a tie), in particular at the lowest range, even when the original scale is 
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continuous or pseudo-continuous (e.g. 0-100 confidence rating scale). A tie at the lower rating 

could reflect an important characteristic such as the prevalence of the obviously “normal” 

subjects (e.g., chest images) in a sample, or frequency of the natural absence of a tested 

substance (Schisterman et al., 2006), or assigning default value to subjects with biomarker levels 

below a certain limit of concentration and/or a limit of detection (Perkins et al., 2007). When 

these multiple ties occur at the lowest rating level, the ROC curve includes a straight line 

segment joining the point corresponding to the lowest threshold and the corner point (1, 1). Since 

this type of test results has a spike (mass) at the lower threshold, for brevity we term such a curve 

as an “ROC curve with mass”. For the ROC curve with mass, a parametric mixed model 

combined with Box-Cox transformation and a non-parametric approach based on the Mann-

Whitney statistic for the estimation of AUC has been proposed and discussed (Schisterman et al., 

2006). The parametric mixed model approach can be further used to estimate Youden’s Index 

and determine the optimal threshold for test results with mass (Schisterman et al., 2008). 

However, issues related to the evaluation of a single pAUC and the comparisons of two 

correlated pAUCs associated with ROC curves with mass remain unsolved to date. 

1.2 OBJECTIVES 

The emphasis of this dissertation will be on investigations of statistical properties when 

evaluating diagnostic performance using pAUC. We believe that in many practical scenarios 

inferences based on pAUC could be no less statistically advantageous than inferences based on 

the full AUC. Thus the use of pAUC may actually lead to not only more relevant but also more 

conclusive results in analyses of experimental data and/or require smaller sample sizes in planed 
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studies. This should encourage researchers and practitioners to more frequently apply this highly 

relevant, but currently underused summary index. The results of our investigation could also 

provide foundation for decisions about optimal thresholds to achieve greatest statistical power 

and therefore smaller sample sizes when using pAUC. 

This dissertation includes the following three objectives. 

Objective 1:  

As related to evaluation of a single diagnostic system, we investigate the effect, if any, of 

the range of interest ( )0,e  on statistical inferences when the pAUC(0,e) is used as a summary 

measure of performance. We analyze the properties of nonparametric and parametric estimates 

of standardized pAUCs and their variances. Using extensive simulation studies, we investigate 

the statistical power for different families of ROC curves such as binormal ROC curves, bi-

gamma ROC curves and straight-line ROC curves. Based on the results of this research, we 

develop a program for estimating sample size in the evaluation of a single pAUC in a range of 

practically relevant scenarios.   

Objective 2:  

We extend the developments from objective 1 for the task of comparison of accuracy 

levels of two diagnostic systems on the basis of pAUC computed from the paired data collected 

with each case rated under every modality. First, we analytically investigate conditions for the 

increasing difference in the standardized pAUC with increasing size of the range of interest.  

Based on extensive simulation studies, we investigate the statistical power for comparisons of 

pAUCs over different ranges of interest under the ROC scenarios (such as binormal ROC curves, 

bi-gamma ROC curves and straight-line ROC curves) which lead to different patterns of changes 

in pAUC with increasing range. Based on the result of this research, we develop a program for 
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estimating sample size for comparison of two correlated pAUCs for a variety of practical 

scenarios.   

Objective 3:  

The task of evaluation of diagnostic modalities is often complicated by presence of 

substantial ties in the data. Using mathematical considerations and extensive simulations, we 

investigate the properties of the differences in the pAUCs and statistical power over different 

ranges of interest. The expectation is that the trends of increasing/decreasing variance with 

increasing range of interest would become less pronounced for data with ties at the lowest rating 

value (corresponding to the ROC curve with mass) as compared with data without ties. This 

could affect the expected patterns in statistical power. The results of this investigation will help 

plan the analyses of diagnostic accuracy using data with ties at the lowest rating levels and make 

more informative decisions about the data collection protocols.     
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2.0  FACTS RELATED TO THE PRESEARCH 

2.1 FAMILIES OF ROC CURVE, THEIR AUCS AND PAUCS 

2.1.1 BINORMAL ROC CURVES 

Bi-normal ROC curve is the most widely used model in ROC analysis (Zhou et al., 2002). The 

name “binormal” reflects the shape of ROC curves and stems from the fact that “binormal” ROC 

curve can result from the two (independent) normally distributed random variables. However, the 

use of the binormal ROC curve does not necessarily imply that the test results are assumed to 

follow normal distributions in the subpopulation of normal and abnormal patients. Rather, the 

use of a binormal ROC curve implies that the observed diagnostic result is related (according to a 

certain monotonically increasing transformation, with possible grouping for discrete case) to 

normally distributed latent scores.  

For a pair of latent scores for normal and abnormal patients which follow two normal 

distributions, i.e. ( )2~ ,x xX N µ σ  and ( )2~ ,y yY N µ σ  respectively, the ROC curve can be 

expressed as: 

( ) ( )( )1ROC e a b x−= Φ + Φ  
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where 
( )y x

y

a
µ µ

σ

−
=  x

y

b σ
σ

= and Φ  is the cumulative normal distribution function. This 

relationship between ( ),a b  and the parameters of the distribution of the latent scores is rarely 

used in practice. One of the exceptions is to fit the ROC curve for continuous data using Box-

Cox transformation (Zou and Hall, 2000); however, this relationship is very useful in simulation 

studies. 

The AUC for the binormal ROC can be expressed as:  

( )( )1 1

20 1
aA a b x dx

b
−  

= Φ + Φ = Φ  
+ 

∫  

and the pAUC as:  

( )( )1

0

e

eA a b x dx−= Φ + Φ∫  

Hillis and Metz provided an analytic expression for pAUC in the case of binormal ROC curves 

(Hillis and Metz, 2012), 

( )1

2 2
, ;

1 1
e BVN

a bA F e
b b

− 
= Φ − 

+ + 
 

where ( ), ;BVNF z x ρ  is the standardized bivariate normal distribution function with correlation ρ . 

2.1.2 POWER-LAW ROC CURVES  

Another well-known, but simpler and less flexible (due to a single-parameter type) family of 

ROC curves is described by the “power-law” curves (Egan, 1975) (Hanley, 1988), or Lehman 

family of the ROC curves (Gonen and Glenn, 2010). One of the reasons to consider this model 

was for investigating the consequences of deviation from the binormal assumption (Hanley, 
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1988) and enabling simple inferences using built-in software (Gonen and Heller, 2010). Power-

law ROC curve can result from two exponentially distributed variables. However, the use of the 

power-law ROC curve does not necessarily imply that the test results are assumed to follow 

exponential distributions in the subpopulation of normal and abnormal patients. Rather, similar 

to other parametric ROC curves, the use of a power-low ROC curve implies that the observed 

diagnostic result is related (according to a certain monotonically increasing transformation, with 

possible grouping for discrete case) to exponentially distributed latent scores.  

For a pair of latent scores for normal and abnormal patients which follow two exponential 

distributions, i.e. ( )~ xX Exp θ  and ( )~ yY Exp θ  respectively, the ROC curve (power-law) can 

be expressed as: 

( ) exp x

y

ROC e eθ
θ

 
=   

 
. 

with the AUC of: 

1

0
exp exp 1yx x

y x y

A f df
θθ θ

θ θ θ

    
= = −            

∫ , 

and the pAUC of:  

1

0
exp exp 1yx x

e
y x y

A x dx e
θθ θ

θ θ θ

    
= = −            

∫ . 

2.1.3 BI-GAMMA ROC CURVES 

Bi-gamma family is another of the well-known families of the ROC curves (Egan, 1975) 

(Dorfman et al., 1996) (Faraggi et al., 2003) (Huang and Pepe, 2009). In general bi-gamma ROC 

11 



curves constitute a three-parameter family, however, in practice a subfamily of concave curves 

represented by “constant-shape bi-gamma ROC curves” is used (Dorfman et al., 1996). Similar 

to the binormal ROC curves, the constant shape bi-gamma ROC curves constitute a two-

parameter family, however, it offers more flexible shapes of the practically reasonable concave 

ROC curves (a subfamily of concave binormal ROC curve is a one-parameter family).  

The primary disadvantage of bi-gamma ROC curve lies in the relative complexity of 

computations. However, the computational complexity is alleviated with the development of 

software packages and theoretical investigations of the properties of bi-gamma ROC curves 

(Constantine et al., 1986). A bi-gamma ROC curve can be parameterized with parameters of the 

gamma distribution of the latent (as opposed to actual) ratings for normal and abnormal subjects. 

We note that similar to other ROC models, the underlying assumption of a bi-gamma-type shape 

of the ROC curve does not imply an assumption of a bi-gamma distribution of the actual ratings 

(due to the invariance of the ROC curve with respect to monotonically increasing transformation 

of the ratings). In other words, the distributions of latent ratings are simply intermediate steps for 

parameterization of the ROC curve. The probability density function of the underlying rating 

model of the bi-gamma ROC curve has the following form:   

( )
11 1( ; , )

x
k

kf x k x e
k

θθ
θ τ

−−= , 

In general parameters θ and κ could be different for the latent normal and abnormal 

ratings. The constant-shape bi-gamma ROC curves are obtained by constraining the shape 

parameter κ to be the same for two distributions. When κ approaches 0, the bi-gamma ROC 

curve approaches the shape of a straight-line and when κ>1 the shape of the bi-gamma ROC 

curve resembles a binormal ROC curve due to the fact that gamma distribution approaches to 
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normal distribution when shape parameter κ is large (We note however, that this does not 

guarantee convergence of the ROC curves). When κ=1 the bi-gamma ROC curve is equivalent to 

the power-law ROC curve (Egan, 1975) (Hanley, 1989).  

For a pair of latent scores for normal and abnormal patients which follow two gamma 

distributions, i.e. ( )~ ,x xX Gamma θ κ  and ( )~ ,y yY Gamma θ κ  respectively, the ROC curve can 

be expressed as: 

( ) ( )( )1
y xROC e S S e−= . 

The density of the Gamma distribution is given by
( )

11 1( ; , )
x

k
kf x k x e

k
θθ

θ τ
−−=  and S  denotes 

the survival function of Gamma distribution.  

Due to the relationship between Gamma and Beta distribution the AUC of the bi-gamma 

ROC curve can then be expressed (Constantine et al., 1986) (Hussain, 2012) as: 

( ) ( ) ( )( )( )11
F0

1 1 1 ;2 ,2 ; ,
,

y
yxx y

y
y x x y y x beta x y

x yy x

A x x dx F F
B

θ
κκθ θ

θ
κ κ θ θ κ κ κ κ

θ θκ κ
−−+

 
= − = − =   + 

∫  

where ( )F *;2 ,2y xF κ κ  is the cumulative distribution function (CDF) of an F random variable 

with parameters 2 yκ and 2 xκ , and ( )*; ,beta x yF κ κ  is the CDF of a beta random variable with 

parameters xκ  and yκ . 

As of now there are no simplified expressions for the pAUC, and it is usually computed 

using numerical integration according to the original definition:  

( )( )1

0

e

e y xA S S e dx−= ∫ . 
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2.1.4 STRAIGHT-LINE ROC CURVES 

We define a “straight-line” ROC curve as the curve consisting of two line segments the vertical 

segment connecting the point (0, 0) and the point (0, 1/a), where a>1, and a line segment 

connecting the point (0, 1/a) and the point (1, 1). Namely:  

                                                            ( ) 1 11ROC e e
a a

= + −                                                  (2.1) 

Such a curve describes a theoretically important scenario where diagnostic result 

perfectly separates the most obvious “abnormal” patients, while being non-informative for 

discriminating between normal and abnormal patients in the remaining population. Indeed, using 

a flip of a coin it is possible to create a diagnostic test with operating characteristics anywhere on 

the straight line extending to (1, 1) (Wagner et al., 2010) (Bandos et al., 2010).  Theoretical 

importance of this type of a ROC curve for the current work stems from the ancillary nature of 

the operating points with non-zero FPF. In practice the pure straight-line ROC curves (i.e., with 

empirical points aligned around the straight line) could occur when a diagnostic system is forced 

to produce continuous (untied) results in situations when there is little or no information for 

distinguishing between subjects (Gur et al., 2006). 

Straight-line ROC curve has a constant value of standardized partial AUC regardless of 

the range of interest (Ma et al., 2013); this offers an important scenario for investigating pAUC-

based inferences. 

The name “straight-line” simply reflects the shape of the curve. The ROC curve with a 

straight-line shape would result from the two (independent) random variables with uniform 

distributions. However, due to the ROC invariance property the use of the straight-line ROC 

curve does not necessarily imply that the test results are assumed to follow uniform distributions 
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in the subpopulation of normal and abnormal patients. In general it can be viewed as a curve 

corresponding to a diagnostic result that perfectly separates the most obvious “abnormal” 

patients, while is non-informative for discriminating between normal and abnormal patients in 

the remaining population.  

For a pair of latent scores for normal and abnormal patients which follow two uniform 

distributions, i.e. ( )~ 0,1X U  and ( )~ 0,Y U a  respectively, the ROC curve can be expressed as: 

( ) 1 11ROC e e
a a

= + − . 

and the AUC can be expressed as 

1

0

1 1 11 1
2

A e dx
a a a

 = + − = − 
 ∫ , 

while the pAUC can be expressed as: 

2

0

1 1 1 11 1
2

e

eA e dx e e
a a a a

   = + − = − +   
   ∫ . 

2.2 ESTIMATION OF ROC CURVES 

2.2.1 PARAMETRIC ESTIMATES OF ROC CURVES 

A number of approaches exist for parametric estimation of the ROC curve. The two general 

classes of parametric estimation methods are “distribution-free” and “distribution-based” 

approaches.  
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Distribution-free approaches may place parametric assumption on the shape of the ROC 

curve, e.g., binormal ROC curve, ( ) ( )( )1ROC e a b e−= Φ + Φ , but not on the distributions of 

scores for diseased and non-diseased subjects. For continuous test results, Pepe (2003) proposed 

an estimation method involving the methods of generalized estimating equations and generalized 

linear models which can incorporate covariate information. Zou and Hall (2000) performed MLE 

rank-based estimation of binormal ROC curves. For discrete test results, a maximum likelihood 

approach was introduced by Dorman and Alf (1969).  

Distribution-based approaches, on the other hand, estimate conditional distribution of the 

test results (given subjects’ true status); the ROC curve is then estimated indirectly as the 

composition quantile and distribution function. For example, a naïve distribution-based approach 

for estimating the binormal ROC curve (which is rarely used in practice), assumes a normal 

distribution of the test results. If X  and Y  are the test results for the random samples of m 

normal and n abnormal subjects, based on the invariance principle, the maximum likelihood 

estimate (MLE) of the binormal ROC curve can be expressed as follows (Zhou et al., 2002): 

( ) ( )( )1ˆˆ ˆROC e a b x−= Φ + Φ  

where
( )ˆ ˆ

ˆ
ˆ

y x

y

a
µ µ

σ

−
= , 

ˆˆ
ˆ

x

y

b σ
σ

= , ˆ xµ , ˆ yµ , ˆ xσ  and ˆ yσ  are the ML estimates of the means and 

standard deviations, and Φ  is the cumulative normal distribution function. Given that the 

binormal distribution assumption is restrictive and based on the invariance property of 

monotonic transformation of ROC curves, Faraggi et al. (2003) applied a Box-Cox type power 

transformation to the data, and after obtaining the appropriate transformation used binormal 

model. 
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2.2.2 EMPIRICAL ROC CURVE 

The empirical ROC curve is a collection of the empirical operating points ( ˆFPF and ˆTPF ) 

where The empirical true and false positive fractions are computed as follows: 

( ) 1ˆ

n

j
j

I Y c
TPF c

n
=

 > 
=

∑
, 

( )
[ ]

1ˆ

m

i
i

I X c
FPF c

m
=

>
=

∑
. 

where ( ) 1I x =  if x is true and 0 otherwise. However, frequently the empirical ROC curve is 

plotted by connecting the empirical points with straight line segments. Some analytical methods 

however, do not use the points on the straight-lines (Greenhouse and Mantel, 1950) (Wieand et 

al., 1989) (Zhang et al., 2002) (He and Escobar, 2008). The points on the straight-line segments 

between the empirical points describe operating characteristics which might not be attainable by 

applying specific thresholds to the observable test results. However, these could be attained by 

random guessing between the decisions at the adjacent operating points (Fawcett, 2006) (Wagner 

et al., 2010) (Bandos et al., 2010).  

We will use the term “linearly-interpolated” empirical ROC curve to distinguish it from 

the set of discrete ( ),fpf tpf points. 
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2.3 ESTIMATION OF AUC AND PAUC 

2.3.1 PARAMETRIC ESTIMATES OF AUC AND PAUC 

Parametric analyses based on AUC and partial AUC are reasonably straightforward. The 

previously mentioned methods can be used to estimate smooth ROC curves. Once a smooth 

curve is fitted, the partial area can be estimated for any specified range of interest; its variance 

can be evaluated using the “delta” method based on the variance of the model parameters (Zhou 

et al., 2003). For naïve binormal model, the estimated AUC or partial AUC can be computed as 

follows:  

( )( )1 1

0 2

ˆˆˆ ˆ
ˆ1

aA a b x dx
b

−
 

= Φ + Φ = Φ   + 
∫  

( )( )1

0
ˆˆ ˆ

e

eA a b x dx−= Φ + Φ∫  

where 
( )ˆ ˆ

ˆ
ˆ

y x

y

a
µ µ

σ

−
= , 

ˆˆ
ˆ

x

y

b σ
σ

= , ˆ xµ , ˆ yµ , ˆ xσ  and ˆ yσ are the MLE of the mean and standard 

deviations of the latent scores (e.g., MLE estimates for a and b can be obtained from the probit 

regression model of the discrete test results), and Φ  is the cumulative normal distribution 

function. Or by using analytic expression for pAUC in the case of binormal ROC curves (Hillis 

and Metz, 2012), 

( )1

2 2

ˆˆˆ , ;
ˆ ˆ1 1

e BVN
a bA F e

b b
−

 
= Φ −  + + 

 

where ( ), ;BVNF z x ρ  is the standardized bivariate normal distribution function with correlation ρ . 
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2.3.2 EMPIRICAL ESTIMATES OF AUC AND PAUC  

If { } 1

m
i i

X
=

 and { }
1

n

j j
Y

=
 are the test results for random samples of m normal and n abnormal 

subjects then the estimate of the AUC can be expressed as follows: 

1 1
( , )

ˆ

m n

i j
i j

X Y
A

nm

ψ
= ==
∑∑

 where ( ) 1
2

1
,

0

X Y
X Y X Y

X Y
ψ

<
= =
 >

 

This non-parametric AUC estimator is equal to the area under the empirical ROC curve 

where the points on the plot are connected by straight lines. 

The partial area can be estimated by (He and Escobar, 2008): 

( )
1 1

1ˆ ,
m n

e i j
i j

A X Y
mn

φ
= =

= ∑∑  

where  

( )
0

0

0

1, [ , )
1, , [ , )
2
0, [ , )

j i i

i j j i i

j i i

Y X and X r

X Y Y X and X r

Y X and X r

φ

> ∈ ∞
= = ∈ ∞


< ∈ ∞

 

( )1
0 1xr F e−= −  

and xF  is the empirical distribution of iX . 

For any consecutive ratings 1r and 2r  where 2 1r r< , ( )1 1e FPF r= and ( )2 2e FPF r= , if 

( )1 2,e e e∈ , one can a use linear interpolation to compute the pAUC which can be expressed as 

follows: 

( ) ( ) ( ) ( )( )
( ) ( )

1

1 2 1
1 1

2 1

ˆ ˆ
2e e

e e TPF r TPF r
A A TPF r e e

e e
 − − = + + − −  

. 
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2.4 ESTIMATION OF VARIANCE OF AUC AND PAUC 

In general variance of the parametric AUC and pAUC estimators can be obtained from a 

variance matrix of the estimated parameters (corresponding to the ROC fitting approach) using 

delta method (Zhou et al., 2002). For the naïve fitting of the binormal ROC curve (assuming 

normally distributed test result) the variance estimator attains the following closed-form 

expression in terms of a and b parameters of the binormal model (Obuchowski and McClish, 

1997): 

                                        ( ) ( ) ( ) ( )2 2 ˆ ˆˆˆ ˆ ˆ2 ,eV A f V a g V b fgC a b= + +                                (2.1) 

where: 

( ) ( )2 22 2ˆ ˆ
2

m a nb
V a

mn
+ +

=   

( ) ( ) 2
ˆˆ

2
n m b

V b
mn

+
=  

( )
( )

( ){ }

2

2

2

exp
2 1

2 1

a
b

f h
bπ

  − 
+  = Φ

+
 

( )ˆˆ ˆ,
2
abC a b

n
=  

and 

( )1 2
2 1

1
abh e b

b
− = Φ + + + 

 

When 1e = , this formula will reduce to the variance estimator for full AUC.  
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Due to the close relationship to the Mann-Whitney test statistics (Bamber, 1975), 

variance of the AUC estimator for an empirical ROC curve can be derived from the formula for 

the Wilcoxon statistics proposed by Noether (1967): 

10 01 11
1 1 1ˆ( ) m nVar A

mn mn mn
ξ ξ ξ− −

= + +  , 1,..., , 1,...,i k m j l n∀ = =  

where 

{ } { } lj,A)Y,X()Y,X(E)Y,X(),Y,X(Cov 2
lijiliji10 ≠−== ψψψψξ  

{ } { } 2
01 ( , ), ( , ) ( , ), ( , ) ,i j k j i j k jCov X Y X Y E X Y X Y A i kξ ψ ψ ψ ψ= = − ≠  

{ } { } 22
jiji11 A)Y,X(E)Y,X(Var −== ψψξ  

{ } { }ˆ( , )i jA E X Y E Aψ= =  

For continuous test results which are often encountered in many scenarios such as genetic 

research, He and Escobar (2008) proposed a non-parametric variance estimator for the partial 

area. Alternatively, the variance of empirical estimators of AUC and pAUC can also be 

estimated using a nonparametric bootstrap approaches (Efron and Tibshirani, 1993). The 

variance can be estimated by resampling the normal and abnormal subjects and linearly 

interpolating the empirical ROC curves. Another variance estimator of the pAUC using a non-

parametric approach was proposed by Liu et al. (2005).  If { } 1

m
i i

X
=

 and { }
1

n

j j
Y

=
 are the test results 

for random samples of m normal and n abnormal subjects with distribution functions xF and yF , 

and empirical distribution functions xF and yF respectively, then the asymptotically unbiased 

estimator ˆ
eA of pAUC can be expressed as: 

( ) ( )
1

1 1ˆ
n

e j i y i
j i i

A I Y X S X
mn m= ∈Ρ ∈Ρ

= > =∑∑ ∑   
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where ( ) ( )1y yS z F z= −  , iR  is the rank of iX  among the X’s, that is, ( )
1

m

i k i
k

R I X X
=

= ≤∑ , and 

{ }: (1 ) ii m e R mΡ = − ≤ ≤ . They also showed that:  

2
ˆ ,d e

e eA N A
m n
σ 

→  + 
 

Where: 

2 2 2/ /e H Wσ σ λ σ λ′= +  

( )( )1 12 1 2

1 1W y x ee e
S F s t dsdt Aσ −

− −
= ∨ −∫ ∫ , 

( )max ,s t s t∨ = , 

( )( )12 2 1 2

1H y x ee
S F p dp Aσ −

−
= −∫ , 

( )1 m m nλ λ′ = − = + , 

( ) ( )1x xS z F z= −  and ( ) ( )1y yS z F z= − . 

Moreover, the consistent estimators of 2
Hσ and 2

Wσ , respectively can be obtained: 

( ){ }22 21 ˆˆH y i e
i

S X A
m

σ
∈Ρ

= −∑  ,  
( ) ( )2 21 ˆˆ

1W y i k e
i k

S X X A
m m

σ
≠ ∈Ρ

= ∨ −
− ∑  . 
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3.0  EVALUATION OF A SINGLE PAUC 

The statistical inference regarding diagnostic accuracy of a single modality (diagnostic system, 

classification tool, etc.) is often made on the basis of summary indices such as pAUC and AUC. 

For example, diagnostic accuracy for classifying images as depicting or not-depicting lung 

nodules can be assessed using both point estimation and interval estimation of pAUC and AUC. 

In the evaluation of a single pAUC, we investigated the effect of the size of the range of interest 

(0, e) on statistical inferences regarding the pAUC. We analyzed the properties of the 

nonparametric and parametric estimates of spAUCs and their variances. We derived two 

important properties of the relationship between the spAUC and a defined range of interest, 

which could facilitate a wider and more appropriate use of this important summary index. First, 

we mathematically proved that the spAUC increases with increasing range of interest for 

common ROC curves. Second, using a comprehensive numerical investigation we demonstrated 

that, contrary to common belief, the uncertainty about the estimated spAUC can either decrease 

or increase with an increasing range of interest.  

Our results indicated that the pAUC could offer advantages in some scenarios in terms of 

statistical uncertainty of the estimation. In addition, selection of a wider range would likely lead 

to an increased estimate even in the case of spAUC. We demonstrated that the bi-gamma family 

of the concave ROC curves adequately describes a wide range of scenarios including cases 

where pAUC is statistically advantageous. This family was used to develop sample size 
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estimation software offering a better insight in relative merits of analyzing part of the curve. This 

portion of the research is published in Statistics in Medicine (Appendix A).  

3.1 METHOD 

3.1.1 STANDARDIZED PARTIAL AUC AND ITS PROPERTIES 

Based on the definition of standardized pAUC (1.1), it can be shown that the standardized pAUC 

and the variance of its estimate are always larger than conventional pAUC and the variance of its 

estimate. Indeed since 1/e/(2e-1), is less than 1 for all e≤1: 

2 21 11 2
2 2 2 2e e e e

e eA A A A
  

≥ + − = + − ≥  
  



and 

( ) ( ) ( )
22ˆ ˆ ˆ4

2e e e
eV A V A e V A 

= − ≥ 
 

 . 

Unfortunately, “standardization” of the partial area in (1.1) is not ideal. Indeed, although 

the range of eA  is independent of e, the actual value of eA  for a given ROC curve could depend 

on e. Moreover, as we demonstrate in Proposition 3.1 below, theoretically it can either increase 

or decrease with increasing range while remaining constant only in the case of a “straight-line 

ROC curve” (Chapter 2.1.4) composed of two straight-line segments – one vertical and the other 

passing through the point (1,1). Using equation (2.1) it is easy to see that partial AUC for the 

straight-line ROC curve passing through the point ( ),f t is: 
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( ) ( ) ( ) ( ) ( ){ }2
, , , 1 2 1 1 1 1e straight f tA e t f e t f= − − + − − −

and the standardized partial AUC does not depend on the range of interest (independent of e): 

( ) ( ) ( ), , 1 1 2 1straight f tA t f= − − − (3.1) 

Proposition 3.1  

For any ( )0,1e ∈ , 

i. eA
e

∂
∂


0> ⇔ ( ) ( ) ( )2 1 2 1e eROC e A e A> − + − 

ii. eA
e

∂
∂


0= ⇔ ( ) ( ) ( )2 1 2 1e eROC e A e A= − + − 

iii. eA
e

∂
∂


0< ⇔ ( ) ( ) ( )2 1 2 1e eROC e A e A< − + − 

Proof: 

By straightforward differentiation of (1.1) we obtain: 

( )( ) ( )
22 2 21 1

2 2 2 2
e

e
A e e ee ROC e e e A e
e

−       ∂  = − − − − − −      ∂        



 

Since ( )
2 2

2 1
2 2e e
e eA A e

 
− = − − 

 
 , the derivative of standardized partial AUC can be 

written as follows: 

( )( ) ( )( ){ }
121 2 1 1

2 2
e

e
A ee ROC e e A e
e

−
 ∂

= − − − − − ∂  




The three claims of this proposition immediately follow. 

Proposition 3.1 implies that given the area over the range (0,e), we can determine 

whether a small increase in the range would lead to an increase in the standardized pAUC by 

comparing whether the point on the ROC curve ROC(e) is actually above or below the fixed 
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straight line, that passes through the point (1,1) and has a slope of ( )2 1 eA−  . Alternatively, this 

comparison can be conducted by comparing the negative diagnostic likelihood ratio (1-

ROC(e))/(1-e) with  ( )2 1 eA−  .  

The negative diagnostic likelihood ratio, DLR-(e), is an important characteristic of binary 

diagnostic test (Zhou et al., 2002) (Norman, 1964) (Biggerstaff, 2000) (Bandos et al., 2010). For 

a point on the ROC curve (e,ROC(e)) it is defined as (1-ROC(e))/(1-e). The ROC curve with a 

decreasing negative diagnostic likelihood ratio is practically important. Such an ROC curve 

ensures that starting at any given operating point, a threshold-driven improvement in sensitivity 

will be better than an improvement achieved by randomly selected subjects that were tested 

“negative” at the given operating point (Norman, 1964) (Bandos et al., 2010). Thus, a decreasing 

negative diagnostic likelihood ratio in the region where experimental operating points are 

observed is a natural property for many practical diagnostic tests. 

While results of proposition 3.1 are important for judging the dependence of spAUC on 

small changes in the range of interest, they provide little insight into the more global behavior of 

the spAUC, or the general form of curves with always increasing/decreasing eA . These questions 

are addressed by the following proposition and its corollaries.  

  Proposition 3.2  

If the ROC curve has a decreasing negative diagnostic likelihood ratio in (0, e0), namely, 

( )1
0

1
ROC e

e e
− ∂

< ∂ − 
, then 

 
0eA

e
∂

>
∂


 in the same range. 

Proof:  
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Let us consider e from ( )00,e . Since for any e`∈(0,e)  ( )
`

1
0

1 f e

ROC f
f f =

− ∂
< ∂ − 

, we 

can obtain the following inequality : 

( ) ( ) ( ) ( ) ( )1 1 ` 1
` 1 1 `

1 1 ` 1
ROC e ROC e ROC e

or ROC e e
e e e

− − −
< < − − ×

− − −
 

Hence over the range (0, e], the partial area ( eA ) and the standardized partial area under 

the ROC curve ( )eA  are smaller than the corresponding areas under the straight line ROC curve 

passing though (e, ROC (e)). Indeed: 

( ) ( ) ( )
( ) ( ), , , ( ) , , ( )

0 0

1
1 1 .

1

e e

e ee straight e ROC e straight e ROC e

ROC e
A ROC f df f df A A A

e
− 

= < + − × = ⇒ < − 
∫ ∫    

On the other hand, from (2) we have: 

( ) ( )( ) ( )( ) ( ) ( ), , ( ) , , ( ) , , ( )2 1 2 1 2 1 1.straight e ROC e straight e ROC e straight e ROC eROC e A e A e A= − + − = − +    

Also, since ,( , ( ))e straight e ROC eA A<  , from above we obtain: 

( ) ( ) ( ) ( )2 1 1 2 1 2 1e e eROC e e A A e A> − + = − + −    

Finally, applying the result (i) of proposition 3.1 we obtain  0eA
e

∂
>

∂


.  

 

As we discussed previously in this section, a decreasing negative diagnostic likelihood 

ratio is a natural property for many practical diagnostic tests. We also note that the result of 

proposition 3.2 is directly applicable to concave ROC curves, as it can be demonstrated that 

concavity immediately implies a decreasing diagnostic likelihood ratios. Figure 3.1 illustrates the 

increase of the standardized partial AUC with increasing range for five concave binormal ROC 

curves.  

27 



 

 

Figure 3.1 Values of the standardized partial AUC for concave binormal ROC curves. 

 

We note that proposition 3.2 is directly extendable to the partial area index (McClish, 

1989) (Jiang et al., 1996) as well as to the “non-standardized” partial area. Results summarized 

in this section indicate that in practical scenarios, current approaches to standardization of the 

partial AUC do not necessarily eliminate the effect of the range of interest on values of the 

standardized pAUC. Moreover, increasing range of can frequently increase the apparent level of 

diagnostic performance. In the next two sections we examine the statistical uncertainty in the 

estimated standardized partial AUC.  

3.1.2 VARIANCE OF THE PARAMETRIC ESTIMATE OF SPAUC  

The partial AUC and other ROC related characteristics are typically estimated from a sample of 

m normal and n abnormal subjects with observed diagnostic test results of { } 1

m
i i

x
=
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1
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j j
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correspondingly. We focus here on the relationship between the variance of the spAUC and the 

size of the range of interest. In particular, we examine the common conjecture that variance 

would decrease with increasing range, since a larger range incorporates more available 

information in regards to the operating characteristics.  

We begin by considering a simple variance estimate for the partial area under the 

binormal ROC curve (McClish, 1989). Then, in section 5 we present simulation results that 

demonstrate the generality of the derived conclusions.  

We can compute the variance of the estimated standardized partial AUC as:  

( ) ( )
22

ˆ
ˆ

4
2

e
e

V A
V A

ee
=

 
− 

 

 , where ( )ˆ
eV A  is computed according to (2.1). 

Figure 3.2 demonstrates the variance of the estimated standardized pAUC as a function of 

the length of the range e, for two different binormal as well as straight-line ROC scenarios. 

These scenarios are based on a sample size of 100, (m=n=50) and describe different shapes of 

ROC curves, including concave curves (b=1) and typical improper curves (b=0.5) (Obuchowski 

and McClish, 1997). Each figure shows variance functions for five ROC curves with AUCs of 

0.55, 0.65, 0.75, 0.85, and 0.95. We note that here, as well as in the investigations that follow, we 

consider binormal ROC curves with b≤1 since the corresponding shapes of these ROC curves are 

more common in practical applications including, but not limited to, medical imaging. Indeed, a 

binormal ROC curve with b>1 implies a worse-than-chance performance in evaluations of highly 

suspicious subjects (i.e., in the range of high specificity) – which rarely happens in practice.   

For concave ROC curves (Figure 3.2a) the variance of the full AUC can exhibit both 

patterns, namely, it can be either smaller or larger than variance of the standardized partial AUCs 

on (0, e). The decrease in variance with increasing range is observed only for ROC curves with 
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AUC values greater than 0.75. In the straight-line ROC scenarios for which all standardized 

partial AUCs are exactly the same as the full AUC, the variance of the standardized partial AUC 

increases. As shown in Figure 3.2b, for an improper binormal ROC curve, the variance 

frequently increases with increasing range, in particular the variance of the full AUC (e=1) tends 

to be larger than the variances for standardized partial AUCs over most ranges considered. The 

anticipated decrease in the variance when switching to full AUC is evident only for the ROC 

curve with the largest AUC (0.95) considered herein.  
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                a) b=1                       b)  b=0.5 

 

Figure 3.2 Variance of standardized pAUC(0,e) estimates for binormal ROC curves as a function of the size of the 

range of interest e. 

 

 

Figure 3.3 Variance of standardized pAUC estimates for straight-line ROC curves over (0,e) as a function of the 

size of the range of interest e. 
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These results provide an important indication that there are a number of practical 

scenarios in which the estimated partial AUC may be no less precise than the estimated variance 

for the full AUC. Variance is an important characteristic of the statistical uncertainty, however, 

its usefulness for non-symmetric distributions is limited (e.g., sampling distribution of estimates 

of high pAUC). Furthermore, the trends shown in Figure 3.2 are based on the assumption of 

normality of the test result, and hence might not be generalizable. In order to verify these trends 

we conducted a simulation study as described in the following section. 

3.2 NUMERICAL STUDY 

In this section we considered several families of ROC curves including binormal, bi-gamma and 

straight-line ROC curves. For each scenario, we computed the standardized pAUC by numerical 

integration. We conducted a simulation study to assess the length of the equal-tail 95% range 

(97.5th -2.5th percentile) and variance of the sampling distribution of the standardized pAUC. The 

statistical power was estimated from 1000 results of the bootstrap tests and the sample size was 

computed by established results for Wald-type tests (Flahault, 2005). In the simulation study the 

test results for normal  and abnormal subjects  were generated from normal distributions with 

parameters selected to generate binormal ROC curves with specific values of AUC (ranging 

from 0.55 to 0.95) and for three values for the shape parameter b (1, 0.5 and 0.33). Values for the 

parameters of binormal ROC curves were selected to reflect shapes typically encountered in 

experimental performance assessment studies in diagnostic medicine. For the bi-gamma ROC 

curves the test results were generated from gamma distributions with the same shape parameter 

(Chapter 2.1.3). For the straight-line ROC curves the test results were generated from the 
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uniform distributions of different width. For each scenario we generated 10,000 datasets of with 

m=50 and n=50 subjects.  

For each generated dataset we estimated the empirical ROC curve and, using numerical 

integration, computed the standardized partial AUC over different ranges starting from 0 and 

ending at 0.2, 0.4, 0.6, 0.8, and 1. The difference between the 9750th (largest) and 250th 

(smallest) estimate of the AUC for a given scenario was used to estimate the length of the equal-

tail 95% range of the sampling distribution. We note that transformations (e.g., logit) are often 

used to improve on Wald-type confidence intervals. In the simulation study, however, we have 

the ability to assess the width of distribution more precisely by using percentiles of the simulated 

distribution. 

Scenario 1:  

We first investigated the properties of standardized pAUC for binormal ROC curves. 

Table 3.1 showed that the standardized pAUC increased with increasing range for concave 

binormal ROC curves and improper ROC curves with high AUC, i.e. b=0.5 AUC≥0.85, and for 

b=0.33, AUC=0.95.  
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Table 3.1 Theoretical spAUC for binormal ROC curves with different b’s and full AUCs 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

auc=0.55 0.651 0.642 0.621 0.589 0.550 
auc=0.65 0.710 0.709 0.697 0.676 0.650 
auc=0.75 0.776 0.781 0.777 0.765 0.750 
auc=0.85 0.852 0.860 0.861 0.857 0.850 
auc=0.95 0.942 0.948 0.951 0.951 0.950 

      
b=0.50      

auc=0.55 0.607 0.607 0.595 0.574 0.550 
auc=0.65 0.665 0.676 0.674 0.664 0.650 
auc=0.75 0.734 0.753 0.758 0.756 0.750 
auc=0.85 0.818 0.840 0.848 0.851 0.850 
auc=0.95 0.926 0.940 0.946 0.949 0.950 

      
b=1.0      

auc=0.55 0.518 0.530 0.539 0.547 0.550 
auc=0.65 0.567 0.602 0.626 0.643 0.650 
auc=0.75 0.637 0.690 0.723 0.743 0.750 
auc=0.85 0.739 0.797 0.828 0.845 0.850 
auc=0.95 0.890 0.926 0.941 0.948 0.950 
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The results for the empirical estimator of the standardized pAUC are summarized in 

Tables 3.2 and 3.3. These results closely agree with results from the previous section (Figure 

4.1). In particular, the variances and lengths of the equal-tail 95% ranges of the sampling 

distributions of the estimated standardized pAUCs increase with increasing ranges for the ROC 

curves with lower AUCs (e.g., AUC for concave ROC curves is less than 0.75). With increasing 

“improperness” of the ROC curves (i.e., decreasing b) decreasing trends, even for ROC curve 

with large AUCs, are gradually diminishing. For example, for a binormal ROC curve with 

b=0.33, the variance and length of the equal-tail 95% interval of sampling distribution of 

standardized pAUC increases with increasing range of interest for all considered ROC curves. 

 

Table 3.2 Variance of sampling distributions of standardized pAUC for binormal ROC curves (×10-3) 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

auc=0.55 1.487 1.822 2.300 2.974 3.880 
auc=0.65 1.599 1.845 2.216 2.767 3.486 
auc=0.75 1.494 1.636 1.909 2.309 2.812 
auc=0.85 1.212 1.237 1.370 1.578 1.846 
auc=0.95 0.539 0.496 0.509 0.552 0.613 

      
b=0.50      

auc=0.55 1.467 1.827 2.297 2.915 3.615 
auc=0.65 1.723 1.966 2.307 2.771 3.268 
auc=0.75 1.776 1.833 2.012 2.276 2.563 
auc=0.85 1.539 1.427 1.449 1.534 1.645 
auc=0.95 0.718 0.563 0.512 0.500 0.507 

      
b=1.0      

auc=0.55 1.058 1.852 2.561 3.125 3.407 
auc=0.65 1.763 2.388 2.753 2.954 3.010 
auc=0.75 2.447 2.510 2.449 2.349 2.289 
auc=0.85 2.811 2.162 1.775 1.548 1.462 
auc=0.95 1.537 0.784 0.528 0.423 0.392 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated. 
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Table 3.3 Differences of 2.5% and 97.5% estimated percentiles of sampling distributions of standardized pAUC for 

binormal ROC curves 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

auc=0.55 0.1500 0.1681 0.1890 0.2150 0.2440 
auc=0.65 0.1567 0.1669 0.1838 0.2050 0.2312 
auc=0.75 0.1511 0.1575 0.1714 0.1896 0.2088 
auc=0.85 0.1356 0.1369 0.1448 0.1554 0.1676 
auc=0.95 0.0900 0.0862 0.0890 0.0925 0.0972 

      
b=0.50      

auc=0.55 0.1489 0.1669 0.1867 0.2117 0.2340 
auc=0.65 0.1622 0.1744 0.1886 0.2067 0.2244 
auc=0.75 0.1644 0.1669 0.1748 0.1858 0.1976 
auc=0.85 0.1533 0.1481 0.1495 0.1542 0.1592 
auc=0.95 0.1033 0.0919 0.0867 0.0854 0.0864 

      
b=1.0      

auc=0.55 0.1256 0.1681 0.1986 0.2200 0.2272 
auc=0.65 0.1644 0.1919 0.2057 0.2138 0.2156 
auc=0.75 0.1922 0.1956 0.1943 0.1892 0.1864 
auc=0.85 0.2067 0.1813 0.1652 0.1538 0.1492 
auc=0.95 0.1522 0.1094 0.0886 0.0792 0.0764 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated. 
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Table 3.4 shows that the statistical power for evaluation of a single pAUC for binormal ROC 

curves increases with increasing range for concave binormal ROC curves with AUC less than 

0.75 and decreases with increasing range for improper ROC curves with AUC less than 0.65.  

 

Table 3.4 Statistical power for testing spAUC=0.5 for binormal ROC curves 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

auc=0.55 1.000 0.980 0.832 0.455 0.157 
auc=0.65 1.000 0.999 0.998 0.957 0.771 
auc=0.75 1.000 1.000 1.000 1.000 0.999 
auc=0.85 1.000 1.000 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

      
b=0.50      

auc=0.55 0.961 0.850 0.615 0.341 0.157 
auc=0.65 0.999 0.997 0.978 0.917 0.771 
auc=0.75 1.000 1.000 1.000 1.000 1.000 
auc=0.85 1.000 1.000 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

      
b=1.0      

auc=0.55 0.133 0.145 0.155 0.157 0.152 
auc=0.65 0.559 0.676 0.736 0.754 0.760 
auc=0.75 0.950 0.990 0.998 0.998 0.998 
auc=0.85 1.000 1.000 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 1000 datasets were simulated and 1000 results of 
the bootstrap tests for testing the null hypothesis spAUC=0.5 were performed. 
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Table 3.5 shows the sample size requirements for a two-sided 95% confidence interval 

for a standardized pAUC to be narrower than 0.1 with probability corresponding to 1-β=0.8. 

Sample size was estimated using the method proposed by Flahault et al. (2005). There exists an 

increasing trend in sample size for pAUC-based statistical inference for concave binormal ROC 

curves with AUC ≤ 0.65 and improper ROC curves with AUC ≤ 0.85. 

 

Table 3.5 Sample size requirements for two-sided 95% confidence interval for a standardized pAUC to be narrower 

than 0.1 when the ROC curve has a binormal shape 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

auc=0.55 234 287 362 467 610 
auc=0.65 252 290 348 435 548 
auc=0.75 235 257 300 363 442 
auc=0.85 191 195 215 248 290 
auc=0.95 85 78 80 87 97 

      
b=0.50      

auc=0.55 231 287 361 458 568 
auc=0.65 271 309 363 435 514 
auc=0.75 279 288 316 358 403 
auc=0.85 242 224 228 241 259 
auc=0.95 113 89 81 79 80 

      
b=1.0      

auc=0.55 167 291 403 491 535 
auc=0.65 277 375 433 464 473 
auc=0.75 385 394 385 369 360 
auc=0.85 442 340 279 243 230 
auc=0.95 242 124 83 67 62 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated for evaluating the 
variance of empirical spAUCs. 
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Table 3.6 shows that the estimated sample size for testing the null hypothesis of 

spAUC=0.5 (with power of 80% to detect the simulated difference) frequently decreases with 

increasing range. The increasing trend can be observed only for improper binormal ROC curves 

with AUC less than 0.75. The discrepancy between trends in Tables 3.5 and 3.6 stems from the 

tendency of the spAUC to change with increasing size of the range. 

 

Table 3.6 Sample size requirements for testing spAUC=0.5 when the ROC curve has a binormal shape  

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

auc=0.55 26 35 62 147 609 
auc=0.65 14 17 22 35 61 
auc=0.75 8 8 10 13 18 
auc=0.85 4 4 4 5 6 
auc=0.95 1 1 1 1 1 

      
b=0.50      

auc=0.55 50 63 100 209 567 
auc=0.65 25 25 30 40 57 
auc=0.75 13 11 12 14 16 
auc=0.85 6 5 5 5 5 
auc=0.95 2 1 1 1 1 

      
b=1.0      

auc=0.55 1282 808 661 555 535 
auc=0.65 154 90 68 57 53 
auc=0.75 51 27 19 16 14 
auc=0.85 19 10 6 5 5 
auc=0.95 4 2 1 1 1 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated for evaluating the 
variance of empirical spAUCs. 

 

Scenario 2:  

In this scenario, we investigated the properties of standardized pAUC for straight-line 

ROC curves. As discussed previously, straight-line ROC curves guarantee constancy of the 

standardized pAUC regardless of range of interest. Thus the trend for statistical properties is 

driven purely by sampling variability. 
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In contrast to the binormal scenario,  Tables 3.7, 3.8, 3.9, 3.10 and 3.11, show that with 

increasing range for straight-line ROC curves, the variance and width of the sampling 

distribution always increases, statistical power decreases, and therefore, sample size requirement 

increases.  

Table 3.7 Variance of sampling distributions of standardized pAUC for straight-line ROC curves (×10-3) 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
auc=0.55 1.085 1.708 2.339 2.937 3.269 
auc=0.65 1.478 1.923 2.348 2.748 2.987 
auc=0.75 1.491 1.782 2.087 2.370 2.529 
auc=0.85 1.173 1.316 1.468 1.616 1.708 
auc=0.95 0.483 0.522 0.566 0.606 0.631 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated. 
 

Table 3.8 Differences of 2.5% and 97.5% estimated percentiles of sampling distributions of standardized pAUC for 

straight-line ROC curves 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
auc=0.55 0.128 0.161 0.190 0.214 0.224 
auc=0.65 0.151 0.173 0.190 0.206 0.215 
auc=0.75 0.150 0.164 0.178 0.190 0.196 
auc=0.85 0.133 0.143 0.150 0.156 0.160 
auc=0.95 0.088 0.088 0.093 0.096 0.098 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated. 
 

Table 3.9 Statistical power for testing spAUC=0.5 when the ROC curve has a straight-line shape 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
auc=0.55 0.388 0.226 0.181 0.147 0.133 
auc=0.65 0.988 0.954 0.869 0.776 0.712 
auc=0.75 1.000 1.000 1.000 0.997 0.992 
auc=0.85 1.000 1.000 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 1000 datasets were simulated and 1000 results of 
the bootstrap tests for testing the null hypothesis spAUC=0.5 were performed. 
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Table 3.10 Sample size requirements for two-sided 95% confidence interval for a standardized pAUC to be 

narrower than 0.1 when the ROC curve has a straight-line shape 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
auc=0.55 170 268 367 461 513 
auc=0.65 232 302 369 431 469 
auc=0.75 234 280 328 372 397 
auc=0.85 184 207 230 254 268 
auc=0.95 76 82 89 95 99 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated for evaluating the 
variance of empirical spAUCs. 
 

Table 3.11 Sample size requirements for testing spAUC=0.5 when the ROC curve has a straight-line shape 

Parameters of 
the ROC curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
auc=0.55 170 268 367 461 513 
auc=0.65 26 34 41 48 52 
auc=0.75 9 11 13 15 16 
auc=0.85 4 4 5 5 5 
auc=0.95 1 1 1 1 1 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated for evaluating the 
variance of empirical spAUCs. 

 

Scenario 3:  

In this scenario, we investigate the properties of standardized pAUC for bi-gamma ROC 

curves. Table 3.12 shows that the standardized pAUC for bi-gamma ROC curves with the same 

shape parameter ĸ in the distribution of ratings for diseased and non-diseased subjects always 

increases with increasing range. This increase is expected since the constant shape bi-gamma 

ROC curves are concave (Dorfman et al., 1996), and therefore, according to the proposition 3.2 

the spAUC is always increasing.  
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Table 3.12 Theoretical value of spAUCs for bi-gamma ROC curves with different k’s and full AUCs
 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.55 0.523 0.534 0.542 0.548 0.550 
AUC=0.65 0.583 0.614 0.633 0.645 0.650 
AUC=0.75 0.666 0.708 0.731 0.745 0.750 
AUC=0.85 0.775 0.814 0.835 0.846 0.850 
AUC=0.95 0.914 0.934 0.944 0.948 0.950 

k=2      
AUC=0.55 0.524 0.535 0.543 0.548 0.550 
AUC=0.65 0.587 0.617 0.635 0.646 0.650 
AUC=0.75 0.673 0.712 0.733 0.746 0.750 
AUC=0.85 0.783 0.818 0.837 0.847 0.850 
AUC=0.95 0.919 0.936 0.944 0.949 0.950 

k=1      
AUC=0.55 0.526 0.537 0.544 0.549 0.550 
AUC=0.65 0.596 0.623 0.638 0.647 0.650 
AUC=0.75 0.688 0.720 0.738 0.747 0.750 
AUC=0.85 0.800 0.827 0.841 0.848 0.850 
AUC=0.95 0.929 0.941 0.946 0.949 0.950 

k=1/2      
AUC=0.55 0.530 0.540 0.546 0.549 0.550 
AUC=0.65 0.609 0.631 0.642 0.648 0.650 
AUC=0.75 0.708 0.731 0.743 0.748 0.750 
AUC=0.85 0.820 0.837 0.845 0.849 0.850 
AUC=0.95 0.939 0.945 0.948 0.950 0.950 

k=1/3      
AUC=0.55 0.533 0.543 0.547 0.549 0.550 
AUC=0.65 0.618 0.636 0.645 0.649 0.650 
AUC=0.75 0.720 0.737 0.745 0.749 0.750 
AUC=0.85 0.830 0.842 0.847 0.849 0.850 
AUC=0.95 0.943 0.947 0.949 0.950 0.950 

 

The results for the empirical estimator of the standardized pAUC for bi-gamma ROC 

curves are summarized in Tables 3.13 and 3.14. For κ≥1, the variance as well as the length of 

95% confidence interval decrease with increasing range for higher AUC (AUC greater than or 

equal to 0.85). These results are similar to those obtained for concave bi-normal ROC curves. 

For κ=1, the bi-gamma ROC curves degenerate to power-law ROC curves. For κ<1, the variance 

and the length of 95% confidence interval always increase with increasing range. These results 

are similar to those obtained for straight-line ROC curves. 
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Table 3.13 Variance of sampling distributions of standardized pAUC for bi-gamma ROC curves (×10-3)
 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.55 1.117 1.863 2.550 3.147 3.466 
AUC=0.65 1.757 2.242 2.614 2.876 3.004 
AUC=0.75 2.284 2.292 2.305 2.316 2.333 
AUC=0.85 2.090 1.725 1.561 1.487 1.462 
AUC=0.95 0.870 0.606 0.501 0.451 0.434 

k=2      
AUC=0.55 1.076 1.786 2.448 2.999 3.307 
AUC=0.65 1.759 2.228 2.595 2.865 3.009 
AUC=0.75 2.221 2.238 2.285 2.333 2.368 
AUC=0.85 2.006 1.710 1.585 1.531 1.520 
AUC=0.95 0.819 0.612 0.529 0.492 0.480 

k=1      
AUC=0.55 1.105 1.829 2.490 3.067 3.391 
AUC=0.65 1.744 2.163 2.518 2.831 3.008 
AUC=0.75 2.045 2.086 2.174 2.268 2.336 
AUC=0.85 1.741 1.571 1.530 1.535 1.554 
AUC=0.95 0.658 0.555 0.521 0.511 0.514 

k=1/2      
AUC=0.55 1.129 1.774 2.388 2.968 3.304 
AUC=0.65 1.704 2.118 2.484 2.803 2.998 
AUC=0.75 1.909 2.008 2.166 2.331 2.440 
AUC=0.85 1.443 1.403 1.454 1.530 1.587 
AUC=0.95 0.542 0.518 0.525 0.542 0.558 

k=1/3      
AUC=0.55 1.121 1.787 2.402 2.951 3.266 
AUC=0.65 1.704 2.090 2.492 2.863 3.074 
AUC=0.75 1.739 1.893 2.104 2.318 2.454 
AUC=0.85 1.354 1.398 1.496 1.608 1.676 
AUC=0.95 0.521 0.523 0.544 0.571 0.592 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated. 
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Table 3.14 Differences of 2.5% and 97.5% estimated percentiles of sampling distributions of standardized pAUC 

for bi-gamma ROC curves 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.55 0.129 0.169 0.198 0.220 0.230 
AUC=0.65 0.164 0.186 0.200 0.211 0.215 
AUC=0.75 0.186 0.188 0.187 0.188 0.188 
AUC=0.85 0.178 0.163 0.155 0.151 0.149 
AUC=0.95 0.114 0.096 0.087 0.083 0.081 

k=2      
AUC=0.55 0.128 0.166 0.196 0.214 0.226 
AUC=0.65 0.163 0.184 0.200 0.210 0.215 
AUC=0.75 0.183 0.186 0.186 0.189 0.190 
AUC=0.85 0.174 0.161 0.154 0.151 0.152 
AUC=0.95 0.110 0.096 0.090 0.086 0.085 

k=1      
AUC=0.55 0.128 0.166 0.195 0.217 0.229 
AUC=0.65 0.163 0.183 0.197 0.207 0.214 
AUC=0.75 0.177 0.178 0.180 0.185 0.187 
AUC=0.85 0.162 0.154 0.150 0.151 0.152 
AUC=0.95 0.099 0.091 0.088 0.087 0.088 

k=1/2      
AUC=0.55 0.130 0.164 0.190 0.210 0.225 
AUC=0.65 0.161 0.181 0.195 0.208 0.215 
AUC=0.75 0.171 0.174 0.181 0.189 0.192 
AUC=0.85 0.148 0.148 0.150 0.153 0.155 
AUC=0.95 0.090 0.088 0.089 0.090 0.092 

k=1/3      
AUC=0.55 0.130 0.164 0.192 0.211 0.223 
AUC=0.65 0.161 0.179 0.194 0.209 0.217 
AUC=0.75 0.164 0.171 0.179 0.190 0.196 
AUC=0.85 0.142 0.145 0.151 0.157 0.161 
AUC=0.95 0.089 0.088 0.090 0.093 0.094 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated. 
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Table 3.15 shows that the statistical power for evaluation of a single pAUC for bi-gamma 

frequently decreased with increasing range for AUC<0.85. The increasing trend can only be 

observed for κ>1.  

 

Table 3.15 Statistical power for testing spAUC=0.5 when the ROC curve has a bi-gamma shape 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.55 0.151 0.170 0.170 0.158 0.144 
AUC=0.65 0.652 0.720 0.733 0.717 0.708 
AUC=0.75 0.986 0.995 0.999 0.999 0.997 
AUC=0.85 1.000 1.000 1.000 1.000 1.000 
AUC=0.95 1.000 1.000 1.000 1.000 1.000 

k=2      
AUC=0.55 0.151 0.165 0.153 0.148 0.140 
AUC=0.65 0.704 0.762 0.773 0.773 0.748 
AUC=0.75 0.995 1.000 1.000 0.997 0.997 
AUC=0.85 1.000 1.000 1.000 1.000 1.000 
AUC=0.95 1.000 1.000 1.000 1.000 1.000 

k=1      
AUC=0.55 0.133 0.137 0.141 0.143 0.133 
AUC=0.65 0.782 0.825 0.812 0.772 0.749 
AUC=0.75 0.999 0.998 0.998 0.994 0.989 
AUC=0.85 1.000 1.000 1.000 1.000 1.000 
AUC=0.95 1.000 1.000 1.000 1.000 1.000 

k=1/2      
AUC=0.55 0.185 0.193 0.165 0.138 0.132 
AUC=0.65 0.878 0.862 0.828 0.796 0.760 
AUC=0.75 1.000 1.000 0.999 0.998 0.995 
AUC=0.85 1.000 1.000 1.000 1.000 1.000 
AUC=0.95 1.000 1.000 1.000 1.000 1.000 

k=1/3      
AUC=0.55 0.213 0.208 0.190 0.163 0.152 
AUC=0.65 0.919 0.902 0.864 0.799 0.754 
AUC=0.75 1.000 1.000 1.000 1.000 0.999 
AUC=0.85 1.000 1.000 1.000 1.000 1.000 
AUC=0.95 1.000 1.000 1.000 1.000 1.000 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 1000 datasets were simulated and 1000 results of 
the bootstrap tests for testing the null hypothesis spAUC=0.5 were performed. 

 

We developed a program (Appendix C) for estimating sample size for evaluation of a 

single pAUC under the bi-gamma assumption for the ROC curves.  Table 3.16 shows the sample 

size requirements for a two-sided 95% confidence interval for a standardized pAUC to be 
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narrower than 0.1 with probability corresponding to 1-β=0.8. Sample size was estimated using 

the method proposed by Flahault et al. (2005). For κ≥1, the decreasing trend in sample size can 

only be observed for bi-gamma ROC curves with AUC ≥ 0.85, which was similar to bi-normal 

ROC curves (Table 3.4). For κ<1, sample size requirements always increase with increasing 

range, which was similar to straight-line ROC curves. 

 

Table 3.16 Sample size requirements for two-sided 95% confidence interval for a standardized pAUC to be 

narrower than 0.1 when the ROC curve has a bi-gamma shape
 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.55 157 263 362 450 492 
AUC=0.65 265 330 382 422 438 
AUC=0.75 345 337 339 343 343 
AUC=0.85 317 252 229 216 212 
AUC=0.95 136 91 76 70 67 

k=2      
AUC=0.55 167 280 384 475 520 
AUC=0.65 275 343 399 444 462 
AUC=0.75 335 340 349 358 361 
AUC=0.85 296 253 234 226 224 
AUC=0.95 126 93 80 75 74 

k=1      
AUC=0.55 167 276 367 454 502 
AUC=0.65 277 336 387 435 460 
AUC=0.75 326 332 347 363 373 
AUC=0.85 282 252 241 242 243 
AUC=0.95 107 91 85 83 83 

k=1/2      
AUC=0.55 179 291 400 489 538 
AUC=0.65 279 344 405 456 486 
AUC=0.75 301 317 343 370 387 
AUC=0.85 229 225 234 245 254 
AUC=0.95 90 86 87 91 92 

k=1/3      
AUC=0.55 167 277 380 467 518 
AUC=0.65 257 313 377 430 466 
AUC=0.75 265 287 320 355 380 
AUC=0.85 200 203 223 245 259 
AUC=0.95 90 91 95 102 105 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated for evaluating the 
variance of empirical spAUCs. 
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Table 3.17 Sample size requirements for testing spAUC=0.5 when the ROC curve has a bi-gamma shape
 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.55 829 632 567 536 544 
AUC=0.65 100 68 58 54 52 
AUC=0.75 33 21 17 15 15 
AUC=0.85 11 7 5 5 5 
AUC=0.95 2 1 1 1 1 

k=2      
AUC=0.55 733 572 520 511 519 
AUC=0.65 91 64 56 53 52 
AUC=0.75 29 20 17 15 15 
AUC=0.85 10 7 5 5 5 
AUC=0.95 2 1 1 1 1 

k=1      
AUC=0.55 642 524 505 501 532 
AUC=0.65 74 56 52 51 52 
AUC=0.75 23 17 15 15 15 
AUC=0.85 8 6 5 5 5 
AUC=0.95 1 1 1 1 1 

k=1/2      
AUC=0.55 492 435 443 485 519 
AUC=0.65 56 48 48 50 52 
AUC=0.75 17 15 14 15 15 
AUC=0.85 6 5 5 5 5 
AUC=0.95 1 1 1 1 1 

k=1/3      
AUC=0.55 404 379 427 482 513 
AUC=0.65 48 44 47 51 54 
AUC=0.75 14 13 14 15 15 
AUC=0.85 5 5 5 5 5 
AUC=0.95 1 1 1 1 1 

*data consisted of ratings for 50 normal and 50 abnormal subjects; 10,000 datasets were simulated for evaluating the 
variance of empirical spAUCs. 

3.3 EXAMPLES 

In this section we illustrate the patterns described in the previous sections with an example 

obtained from two datasets from observer performance studies we previously conducted (Gur et 

al., 2009). One dataset (307 cases, 103 abnormal and 204 normal) includes observer’s ratings for 

classification of images as depicting/non-depicting lung nodules. The second dataset (307 cases, 

84 abnormal and 223 normal) includes observer’s ratings for classification of images in regard to 
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presence/absence of subtle interstitial disease. For both datasets the diagnostic ratings were 

provided by a group of radiologists using a pseudo-continuous scale from 0 to 100. 

For each dataset we estimated empirical ROC curves by connecting empirical points with 

straight lines (Zhou et al., 2002) (Pepe, 2003). The estimates of the standardized partial AUCs 

were computed by integration for ranges starting at 0 and ending at 0.2, 0.4, 0.6, 0.8, and 1. 

Variance of the empirical estimator of the standardized partial AUC was estimated using a 

nonparametric bootstrap approach (Efron and Tibshirani, 1993). The bootstrap percentile 

confidence intervals were computed using 10,000 random bootstrap samples. 

   

 

             a) Chest nodules   (AUC=0.843)                        b) Interstitial lung disease (AUC=0.644) 

Figure 3.4 Empirical ROC curves for the two datasets 

 

Figure 3.4 illustrates the empirical ROC curves for the two datasets. Table 3.18 

summarizes the standardized partial area, its bootstrap variance, and the length of the 95% 

bootstrap confidence interval. In agreement with our findings in Chapter 3.1 for both empirical 

ROC curves the standardized partial areas were increasing with increasing range. In agreement 
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with our findings in Chapter 3.2, for the ROC curve with AUC=0.84, the variance estimator of 

the standardized partial area first decreased and then remained virtually unchanged. Since data 

for interstitial disease included very subtle cases, the ROC curve had a relatively low AUC of 

0.64 and the bootstrap variance of standardized partial area for the ROC curve increases over the 

considered ranges. The same trend was observed for the length of the 95% bootstrap confidence 

interval. 

 

Table 3.18 Example: Empirical standardized partial areas and their variance for sample data from studies of 

detection of lung nodules and interstitial disease  

 0-0.2 0-0.4 0-0.6 0-1 
Nodule     

Stand pAUC 0.796 0.819 0.835 0.843 
Standard deviation 0.0270 0.0261 0.0257* 0.0257* 

Length of 95% bootstrap CI 0.1058 0.1020 0.0993 0.0998 
     

Interstitial     
Stand pAUC 0.534 0.579 0.613 0.644 

Standard deviation 0.0206 0.0298 0.0329 0.0334 

Length of 95% bootstrap CI 0.0799 0.1160 0.1271 0.1304 
       *Further increase of the range does not increase the number of included empirical operating points.  

 

3.4 SUMMARY 

In practice inferences based on the partial AUC could be both more clinically relevant and more 

statistically conclusive than inference based on full AUC. 

In many practical problems increasing the range of interest for partial area would lead to 

an increase in the estimated level of diagnostic accuracy, even after application of existing 

standardizations. 
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Effect of the increasing range on the sampling variability depends on the shape of the 

ROC curve.  

There exists ROC curves for which inference based on shorter ranges for partial AUC are 

always preferable. At the same time evaluation of binormal ROC curves can often be more 

efficiently performed using partial AUC over the full range (full AUC). 

The approaches for sample size estimation based on binormal ROCs often mask 

statistical advantages of the partial AUC that may be real in practice.  

We demonstrated that family of constant shape bi-gamma ROC curves allows more 

realistic reflection of properties of pAUC analysis. Bi-gamma family of ROC curves covers 

many practically reasonable and plausible shapes and includes ROC curves that are close to the 

straight line, as well as concave ROC curves that are similar in shape to binormal ROC curves.  
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4.0  COMPARISON OF TWO CORRELATED PAUCS 

In comparison of two diagnostic systems, the primary interest is often in comparing two 

modalities on the basis of pAUC and AUC. Data for this problem is often collected under the 

paired design where each case is rated under every modality. Analysis of data collected under the 

paired design requires addressing the possible correlation between the ratings assigned to the 

same case.  

We analyzed properties of the difference in partial AUC as a function of the size of the 

range of interest and conducted extensive simulation studies of statistical power for comparisons 

of correlated pAUCs in families of binormal, straight-line, and bi-gamma ROC curves.  

We demonstrated that, in contrast to the single standardized partial AUC, the difference 

in two pAUC does not always increases even for concave non-crossing ROC curves. The 

approximate graphical approach was described for determining whether the difference would 

increase with increasing range. In simulation studies we demonstrated that the use of pAUC was 

statistically advantageous in several types of performance curves. For binormal ROC curves with 

low AUC, an increase in range often leads to an increase in spAUCs differences, thereby 

contributing to increasing statistical power. However, when ROC curves approached the shape of 

a specific straight-line shape, the difference in standardized pAUCs became more stable, and the 

statistical power decreased with increasing range. Thus, the relative statistical power for pAUC-

based comparisons is affected not only by the height, but also by the shape of ROC curves. For 
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adequately planning studies based on the pAUC, we propose to use the bi-gamma ROC model 

which includes curves with nearly binormal shape as well as curves with nearly straight-line 

shape. For many practical ROC curves, studies focusing on clinically relevant pAUCs would 

actually require smaller sample sizes than studies based on the full AUC. This portion of the 

research has been submitted in 2014 (Appendix B). 

4.1 METHOD 

The range of clinical interest (relevance) has a natural effect on the magnitude of the partial area 

under the ROC curve (pAUC). Several approaches to standardization of the pAUC (McClish, 

1989) (Jiang et al., 1996) alleviate the problem, but do not address it completely (Ma et al., 

2013). Since the magnitude of differences in standardized pAUCs could directly affect the 

statistical power of comparisons of partial AUCs, to investigate the statistical properties of 

comparisons, it is important to understand the patterns of these differences in standardized 

pAUCs. In addition, knowledge of the conditions when the differences between standardized 

pAUCs increase or decrease helps one to better interpret reported results of analyses based on the 

pAUC.  

The absolute difference in pAUCs always increases for non-crossing ROC curves. 

Indeed, the derivative of the difference is the difference in the ROC points corresponding to the 

end of the range of interest, which does not change signs for non-crossing curves, i.e.: 

( ) ( )( ) ( ) ( )2 1 2 10 0
0

e e
ROC f df ROC f df ROC e ROC e

e
∂

− = − >
∂ ∫ ∫ . 

52 



This relationship however, offers little insight into the ability to declare statistically 

significant differences, since the variability of the pAUC also increases with increasing range 

(Ma et al., 2013). Since the standardized pAUC is a linear function of the pAUC, the test for 

comparison of partial AUCs could be viewed as a test for equality of the standardized pAUC. 

Since the standardized pAUC is more stable with increasing range, its properties are also more 

relevant for investigating statistical power. In contrast with the difference between pAUCs, the 

difference between standardized pAUCs could either increase or decrease. Indeed, based on the 

definition of the spAUC (1.1), the difference between standardized pAUCs can be written as: 

                                                      
2 1 2 1

2 1
2 2

1
2 2

2

e e e e
e e

A A A AA A
e e ee

− −
− = =

−−

                                               (4.1)             

If the increase in the value of 2e-e2 with increasing range cannot compensate for the 

increase in pAUC, the difference in the standardized pAUC will increase. Otherwise, the 

difference in the standardized pAUC will either remain unchanged or decrease. 

The following proposition establishes the fact that the spAUC difference increases as 

long as it is smaller than half of the difference between the negative diagnostic likelihood ratios 

(DLR-) at the end of the range of interest. For a given point (e, ROC(e)) on the ROC curve the 

negative diagnostic likelihood ratio is defined as follows:  

                                              ( ) ( )1
1

ROC e
DLR e

e
− −

=
−

                                                 (4.2)              

We note that the negative diagnostic likelihood ratio for a given point on the ROC curve 

is different from the “likelihood ratio” (which is equal to the slope of the ROC curve at any given 

point). 
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Proposition 4.1: 

For any ( )0,1e ∈ , 

( ){ }2e
e

Asgn sgn DLR e A
e

− ∂∆
= ∆ − ∆ ∂ 


  

where ( ) ( ) ( )2 1
1 2e e eA A A DLR e DLR e DLR e− − −∆ = − ∆ = −    

and 
1 0

sgn( ) 0 0
1 0

if x
x if x

if x

− <
= =
 >

 

Proof: 

Based on the definition of the spAUC (1.1), the difference of the standardized partial areas can 

be written as: 

( ) ( )2 1
2 1 0 0

2
1
2

2

e e

e e

ROC f df ROC f df
A A

ee

−
− =

−

∫ ∫
   

By differentiation of the difference in the spAUCs 2 1
e eA A−   we obtain: 

( )
( ) ( ) ( ) ( )12 1 2 12

2 1 2
1 1
2 2

2

e e e eA A A Aee ROC e ROC e e
ee e

−
 

∂ − −    = − − − −  ∂    −
  

 
 

Since 
2 1

2 1
2

1
2

2

e e
e e

A AA A
ee

−
− =

−

  , the derivative of the difference of the spAUCs can then be written as: 

( )
( ) ( ) ( )( ){ }

12 1 2
2 1

2 1
1 2 1
2 2

e e
e e

A A ee ROC e ROC e e A A
e

−∂ −  
= − − − − − ∂  

 
   
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The conclusion of this proposition follows immediately from the above equation, the definition 

of DLR- and the fact that ( ) ( )22 1e e e− − is positive for any e from (0, 1). 

Negative diagnostic likelihood ratio, DLR-(e), is easy to visualize as the slope of the line 

extending from a given point on the ROC curve to (1, 1). It is known to decrease for any concave 

curve. However, the difference in DLR-‘s of points between two concave ROC curves may either 

increase or decrease. Figure 4.1 illustrates the difference in the DLR-‘s and the difference in the 

spAUCs for two concave binormal ROC curves with AUCs of 0.80 and 0.85 respectively. At the 

FPF point where the ∆DLR-/2 and ∆spAUC curves cross, the difference in the spAUCs reaches 

its maximum value for the ROC curves being compared.                                                                      

 

Figure 4.1 b=1 and lower AUC=0.8 

 

Furthermore, it is possible that two ROC curves are concave with continually increasing 

differences in DLR-‘s, and it is also possible for two concave ROC curves to have a constant 

difference in DLR-‘s. One simple type of a curve that has a constant difference in standardized 

partial AUC is the straight-line ROC curve. From Chapter 2.1.4, we define the straight-line ROC 
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curve as linear ROC curve passing through the point (1, 1) (Ma et al., 2013); the straight-line 

ROC curve with full AUC of A has the following functional form: 

                                                  ( ) ( ) ( )2 1 2 1ROC e A A e= − + −                                                (4.3) 

The straight-line ROC curve has a constant DLR- of 2(1-A) and the standardized pAUC for any 

range of interest is constant and equal to A (Ma et al., 2013). Furthermore, from the 

reformulation of the straight-line ROC curve in terms of its DLR- it can be seen that the 

difference in standardized pAUCs of the two straight-line ROC curves equals to the half of the 

difference in their DLR-‘s. Combined with the fact that at a fixed point an ROC curve has the 

same DLR- as the straight-line ROC curve passing through this point, proposition 1 can be 

reformulated as follows: “The difference in standardized pAUCs increases/decreases if it is 

smaller/larger than the difference in the standardized pAUCs of straight-line ROC curves passing 

through the same points at the end of the range of interest”. Since these standardized pAUCs are 

considered over the same range, the proposition can be equivalently formulated in terms of the 

difference in pAUCs between the ROC curves of interest and the corresponding straight-line 

ROC curves. This enables an approximate visual inspection of changes in the standardized 

pAUCs difference with increasing range by visually comparing the area between the ROC curves 

over the range of interest to the corresponding area between the two straight line-ROC curves 

passing through the same points at the end of the range of interest. In particular, the difference in 

standardized pAUCs reaches its maximum when it is the same as the difference in pAUCs of the 

corresponding straight-line ROC curves. This leads to the Corollary 4.2 and Figure 4.2. The 

shaded area in the left plot of Figure 4.2 shows the difference in pAUCs for two ROC curves 

over the range of interest and the shaded area in the right plot of Figure 4.2 shows the difference 

in pAUCs for corresponding straight-line ROC curves. 
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Figure 4.2 Difference in pAUCs for ROC curves of interest (left) vs. Difference in pAUCs for straight-line ROC 

curves (right) 

 

Corollary 4.2: 

For any ( )0,1e∈  and two ROC curves ROC1(e) and ROC2(e), let 2 1
e e eA A A∆ = −  represents the 

difference in pAUCs over the range (0,e) and let 2, 1,straight straight straight
e e eA A A∆ = −  represents the 

corresponding difference in pAUCs for straight-line ROC curves passing through (e,ROC2(e)) 

and (e,ROC1(e)) correspondingly. If straight
eA∆   is the difference in the standardized pAUCs for 

ROC2 and ROC1, then 

{ }straighte
e e

Asgn sgn A A
e

 ∂∆
= ∆ − ∆ ∂ 


  

1 0
sgn( ) 0 0

1 0

if x
x if x

if x

− <
= =
 >
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Proof: 

From definition of the straight-line ROC curves (4.3) and DLR- it follows that  

( ) / 2straight
eA DLR e−∆ = ∆ . 

Using this fact the Proposition 1 can be rewritten as follows: 

{ } { }2 2straight straighte
e e e e

Asgn sgn A A sgn A A
e

 ∂∆
= ∆ − ∆ = ∆ − ∆ ∂ 


     

The conclusion of this corollary immediately follows from the definition of the 

standardized pAUC. 

Since for two almost-linear ROC curves the difference in the standardized pAUCs is 

approximately constant, to better understand a direct effect of increasing range of interest on the 

statistical power when comparing two partial AUCs we can consider binormal and “almost” 

linear ROC curves. Both binormal and almost linear ROC curves can be encountered in practice 

(Hanley, 1988) (Gur et al., 2007). Thus, it is important to understand the properties of the 

statistical comparison of pAUCs for both types of ROC curves. Statistical power can be affected 

by both the magnitude of the differences attempted to be detected and the sampling variability of 

the estimates.  

The difference between spAUCs will be approximately constant for two ROC curves, 

each with “almost” a linear shape. For example, the standardized pAUC (and hence the 

difference) remains virtually constant for the bi-gamma ROC curve with a small value of the 

shape parameter κ (e.g., ranges from 0.25 to 1.00 for κ=1/3), which we discuss in detail later in 

this chapter. This type of curve, however, cannot be well approximated by a binormal ROC 

curve unless it has an improper shape. Yet, both binormal and “almost” linear types of ROC 

curves could approximate reasonably well some empirical data (Hanley, 1988), and, as we 
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demonstrate later, different types of curves could have substantially different properties during 

statistical comparisons of pAUCs. In the next section we perform a comprehensive numerical 

investigation of the properties of statistical comparisons for several types of ROC curves. 

4.2 NUMERICAL STUDY 

In this section we consider several families of ROC curves. A pair of ROC curves from the same 

family is used to represent the performance of two diagnostic tests being compared. 

Computations of true parameters of these ROC curves, including pAUCs, were conducted using 

numerical integration (Piessens et al., 1983).  

In the simulation studies parameters for each ROC curve were determined, as well as the 

distribution of ratings (diagnostic scores) for 150 normal and 150 abnormal subjects. Pairs of 

ratings for the same subjects (representing results of the two diagnostic tests being compared) 

were correlated by sharing a subject-specific random effect adjusted to generate correlation of 

the targeted magnitude. For each generated dataset, pAUCs were estimated using area under the 

empirical (linearly interpolated) ROC curves over the given range of interest. The statistical test 

for equality of two pAUCs was performed using non-parametric bootstrap approach based on 

1000 resamples of normal and abnormal subjects, separately. Statistical power was estimated 

from 1000 results of the bootstrap tests.    

Scenario 1: 

We first investigated properties of comparisons of pAUCs, 1
eA  and 2

eA , for two binormal 

ROC curves with the same shape parameter b and a constant difference between the full AUCs, 

1A  and 2A . Since the two binormal ROC curves have the same parameter b, they do not cross 
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each other. Thus, as noted in the previous section, the difference in the pAUCs ( 2 1
e eA A− ) 

increases with increasing range. 2 1
e eA A−  reaches a maximum value (equal to the difference in 

full AUCs) at e=1. The standardized difference also increases in most scenarios. 

For this scenario, with increasing range of interest the difference in standardized 

pAUCs 2 1
e eA A−   does not always increase, but does increase rather frequently. Table 4.1 shows 

the differences in the standardized pAUCs when the difference in the full AUCs of the two ROC 

curves is 0.05. The difference in the standardized pAUCs decreases with increasing range of 

interest for ROC curves with high AUCs (e.g., AUC of 0.8 and 0.9 for concave ROC curve with 

b=1, and AUC of 0.9 for improper ROC curve with b=0.5). This agrees with proposition 4.1, 

since in proximity to the point (1, 1), binormal ROC curves with large AUC tend to have a small 

slope, thereby leading to a small difference in DLR-‘s, and eventually to a decreasing difference 

in the standardized pAUCs.  
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Table 4.1 Theoretical 2 1
e eA A−   for binormal ROC curves with same b and a constant difference between full AUCs 

The lower AUC Ranges of false positive fractions 

 0-0.2 0-0.4 0-0.6 0-0.8 0-1 

b=0.33      
AUC=0.60 0.030 0.034 0.038 0.044 0.050 
AUC=0.70 0.034 0.037 0.040 0.045 0.050 
AUC=0.80 0.039 0.040 0.043 0.046 0.050 
AUC=0.90 0.047 0.046 0.046 0.048 0.050 

      
b=0.50      

AUC=0.60 0.030 0.035 0.040 0.045 0.050 
AUC=0.70 0.036 0.040 0.043 0.046 0.050 
AUC=0.80 0.044 0.045 0.046 0.048 0.050 
AUC=0.90 0.058 0.052 0.050 0.050 0.050 

      
b=1.0      

AUC=0.60 0.027 0.038 0.045 0.049 0.050 
AUC=0.70 0.038 0.046 0.049 0.050 0.050 
AUC=0.80 0.056 0.056 0.054 0.051 0.050 
AUC=0.90 0.083 0.067 0.057 0.052 0.050 

 

To investigate properties of the variance of the difference in spAUCs and statistical 

power, we conducted a simulation study. Each generated dataset consisted of ratings for 150 

normal (Xi1, Xi2) and 150 abnormal subjects (Yj1, Yj2) where i, j=1,2…,150. Ratings were 

generated from bivariate normal distributions with a correlation of 0.5. Exploiting the invariance 

property of the ROC curve to monotonically increasing transformation of the ratings, the 

distributions of ratings of normal subjects were set to bivariate normal distribution with mean 

μ=(0,0)T, and variance covariance matrix 1 0.5
0.5 1

 
Σ =  

 
. 

Parameters for the distributions of ratings of abnormal subjects were selected to reflect 

the pre-specified shape of ROC curves and areas under these curves while preserving the 

correlation of 0.5 between ratings corresponding to the same subjects.  

Table 4.2 summarizes the estimated variance of difference in spAUCs between two 

binormal ROC curves with a difference of 0.05 in full AUCs. The results show that the variance 
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frequently increases with increasing range. The decreasing trend can only be observed for ROC 

curves with high AUC (e.g., AUC of 0.8 and 0.9 for concave ROC curve with b=1, and AUC of 

0.9 for improper ROC curve with b=0.5). This trend looks as similar to the difference in 

spAUCs.  

 

Table 4.2 Variance of empirical 2 1
e eA A−   for binormal ROC curves with same b and a constant difference between 

full AUCs (×10-4) 

The lower AUC Ranges of false positive fractions 

 0-0.2 0-0.4 0-0.6 0-0.8 0-1 

b=0.33      
AUC=0.60 6.654 7.724 9.301 11.377 13.883 
AUC=0.70 7.209 7.644 8.804 10.533 12.596 
AUC=0.80 5.475 5.581 6.218 7.333 8.642 
AUC=0.90 3.549 3.497 3.746 4.116 4.601 

      
b=0.50      

AUC=0.60 6.617 7.358 8.823 10.670 12.493 
AUC=0.70 7.032 7.035 7.640 8.666 9.695 
AUC=0.80 6.908 6.665 6.750 7.202 7.653 
AUC=0.90 4.429 3.519 3.264 3.260 3.383 

      
b=1.0      

AUC=0.60 7.001 8.646 9.499 9.911 9.955 
AUC=0.70 9.826 10.569 10.763 10.470 10.178 
AUC=0.80 12.026 9.078 7.524 6.601 6.271 
AUC=0.90 8.406 4.805 3.391 2.762 2.568 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated. 

 

Table 4.3 summarizes the estimated statistical power for comparisons of pAUCs of two 

binormal ROC curves with a difference of 0.05 in full AUCs. The results show that the statistical 

power frequently increases with increasing range. The decreasing trend in statistical power can 

only be observed for improper ROC curves (b<1) with relatively high AUCs (e.g., AUC=0.9).  

The observed increase of statistical power or decrease of sample size requirements with 

increasing range could be affected by the concurrent tendency of the difference in spAUCs to 
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increase. To circumvent this difficulty we investigated a family of straight-line ROC curves (4.3) 

in which the difference in true spAUC remains constant regardless of the range.  

 

Table 4.3 Statistical power for comparisons of two partial AUCs of bi-normal ROC curves with differences in full 

AUCs of 0.05 

Parameters for 
the lower ROC 

curve  

Ranges of false positive fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

AUC=0.60 0.196 0.215 0.235 0.246 0.256 
AUC=0.70 0.281 0.309 0.327 0.323 0.332 
AUC=0.80 0.382 0.395 0.404 0.412 0.423 
AUC=0.90 0.722 0.711 0.698 0.688 0.686 

      
b=0.50      

AUC=0.60 0.211 0.244 0.261 0.265 0.277 
AUC=0.70 0.245 0.317 0.337 0.333 0.340 
AUC=0.80 0.379 0.407 0.425 0.431 0.432 
AUC=0.90 0.775 0.798 0.791 0.782 0.781 

      
b=1.0      

AUC=0.60 0.175 0.236 0.286 0.304 0.327 
AUC=0.70 0.245 0.308 0.336 0.367 0.377 
AUC=0.80 0.333 0.435 0.474 0.504 0.513 
AUC=0.90 0.794 0.860 0.885 0.887 0.888 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated and 1000 results of the bootstrap tests for testing the null hypothesis 2 1 0e eA A− =   
were performed. 

 

Table 4.4 summarizes the sample size requirements for comparisons of pAUCs of two 

binormal ROC curves with a difference of 0.05 in full AUCs. The sample size was computed 

using code provided in Appendix B based on the original sample of 150 diseased and 150 non-

diseased subjects. The results show that the sample size requirements frequently decrease with 

increasing range. The increasing trend in sample size requirements can only be observed for 

improper ROC curves (b<1) with relatively high AUCs (e.g., AUC=0.9).  
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Table 4.4 Sample size requirements for comparisons of two partial AUCs of bi-normal ROC curves with differences 

in full AUCs of 0.05 (between-modality correlation of 0.5) 

Parameters for 
the lower ROC 

curve  

Ranges of false positive fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
b=0.33      

AUC=0.60 870 787 758 692 654 
AUC=0.70 734 657 648 612 593 
AUC=0.80 424 411 396 408 407 
AUC=0.90 189 195 208 210 217 

      
b=0.50      

AUC=0.60 866 707 649 620 588 
AUC=0.70 639 518 487 482 457 
AUC=0.80 420 388 376 368 360 
AUC=0.90 155 153 154 154 159 

      
b=1.0      

AUC=0.60 1131 705 552 486 469 
AUC=0.70 801 588 528 493 479 
AUC=0.80 452 341 304 299 295 
AUC=0.90 144 126 123 120 121 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated for evaluating the variance of difference in empirical spAUCs. 
 

 

Scenario 2: 

In this section we investigate the properties of comparisons of pAUCs ( 1
eA  and 2

eA ), in the 

case of two straight-line ROC curves (4.3) with constant differences of 0.05 between the full 

AUCs. As discussed previously, for these ROC curves the difference in the spAUCs was also 

0.05 regardless of the range of interest.  

Ratings with bivariate uniform distribution and AUCs of Ai (i=1, 2) were generated by 

probability integral transformation of bivariate normal random variables with adjusted 

correlations (Rachev, 2003) (Hotelling and Pabst, 1936). The marginal distributions were 

X1∼Uniform(0,1) X2∼Uniform(0,1) for normal subjects and Y1∼Uniform(0,1/(2-2A1)) and 

Y2∼Uniform(0,1/(2-2A2)) for abnormal subjects, respectively. The variance covariance matrix 
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used was 
1 0.5

0.5 1
 

=  
 

∑ for both normal and abnormal subjects. Generated ratings were then 

used to conduct a bootstrap test for equality of two pAUCs (as described previously). The 

estimated variance and statistical power are summarized in Table 4.5 and 4.6.  

Results in Table 4.5 demonstrate that the variance of the difference in spAUCs in the case 

of two straight-line ROC curves always increases with increasing range of interest.  

 

Table 4.5 Variance of difference between spAUCs of two straight-line ROC curves with differences in full AUCs of 

0.05 (×10-4) 

The AUC for 
lower ROC 

curve 

Ranges of false positive fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
AUC=0.60 5.741 7.445 9.081 10.390 11.136 
AUC=0.70 6.465 7.563 8.629 9.280 9.531 
AUC=0.80 6.017 6.758 7.338 7.799 7.952 
AUC=0.90 3.385 3.733 4.076 4.362 4.487 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated. 
 

 

Results in Table 4.6 demonstrate that statistical power for comparisons of pAUCs in the 

case of two straight-line ROC curves always decreases with increasing range of interest. Results 

in Table 4.7 demonstrated that the sample size requirements increased with increasing range. 

This should also hold quite well for “almost” or nearly straight-line ROC curves. In the 

next section, we verified our findings using a flexible, bi-gamma, family of ROC curves that 

cover both nearly-linear ROC curves as well as binormal-looking ROC curves.  
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Table 4.6 Statistical power of comparisons of two partial AUCs of straight-line ROC curves with differences in full 

AUCs of 0.05 

The AUC for 
lower ROC 

curve 

Ranges of false positive fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
AUC=0.60 0.525 0.438 0.384 0.345 0.335 
AUC=0.70 0.489 0.433 0.383 0.363 0.355 
AUC=0.80 0.561 0.517 0.492 0.448 0.442 
AUC=0.90 0.783 0.754 0.710 0.696 0.691 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated and 1000 results of the bootstrap tests for testing the null hypothesis 2 1 0e eA A− =   
were performed. 
 
 
 
 

Table 4.7 Sample size requirements of comparisons of two partial AUCs of straight-line ROC curves with 

differences in full AUCs of 0.05 (data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with 

between-modality correlation of 0.5) 

The AUC for 
lower ROC 

curve 

Ranges of false positive fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
AUC=0.60 270 351 428 489 524 
AUC=0.70 304 356 406 437 449 
AUC=0.80 283 318 346 367 374 
AUC=0.90 159 176 192 205 211 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated for evaluating the variance of difference in empirical spAUCs. 
 

 

Scenario 3: 

In this section we investigated the properties of comparisons of pAUCs of two correlated 

bi-gamma ROC curves with a fixed difference in full AUCs. We introduced bi-gamma ROC 

curves and demonstrated the merits in Chapter 2.1.3.   

Figure 4.3 illustrates the three types of bi-gamma ROC curves each with AUC equal to 

0.8 and κ=3, 2, 1, 1/2 and 1/3, which are the values used in the simulation study. 
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Figure 4.3 Bi-gamma ROC curves with AUC=0.8 

 

Since the two bi-gamma ROC curves have the same shape parameter κ, they do not cross 

each other. Thus the difference in the pAUCs ( 2 1
e eA A− ) increases with increasing range. 2 1

e eA A−  

reaches a maximum value (equal to the difference in full AUCs) at e=1.  

For this scenario, with increasing range of interest the difference in standardized 

pAUCs 2 1
e eA A−   decreases for ROC curves with high AUC. Table 4.8 shows the differences in the 

spAUCs where the difference in the full AUCs between the two ROC curves is remains 0.05. 

The difference in the spAUCs decreases with increasing range of interest for ROC curves with 

high AUCs (e.g., AUC of 0.8 and 0.9 for bi-gamma ROC curve with κ≥1, and AUC of 0.7, 0.8 

and 0.9 for bi-gamma ROC curve with κ<1). This agrees with proposition 4.1, since in the 

proximity of the point (1,1) concave bi-gamma ROC curves with large AUC tend to have a small 

slope, thereby leading to a small difference in DLR-‘s, and eventually to a decreasing  difference 

in the spAUCs.  
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Table 4.8 Theoretical 2 1
e eA A−   of two bi-gamma ROC curves with differences in full AUCs of 0.05

 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.60 0.033 0.042 0.046 0.049 0.050 
AUC=0.70 0.045 0.049 0.050 0.050 0.050 
AUC=0.80 0.058 0.055 0.053 0.051 0.050 
AUC=0.90 0.074 0.062 0.055 0.051 0.050 

      
k=2      

AUC=0.60 0.034 0.043 0.047 0.049 0.050 
AUC=0.70 0.046 0.049 0.050 0.050 0.050 
AUC=0.80 0.058 0.055 0.052 0.051 0.050 
AUC=0.90 0.072 0.060 0.054 0.051 0.050 

      
k=1      

AUC=0.60 0.038 0.044 0.048 0.049 0.050 
AUC=0.70 0.049 0.050 0.050 0.050 0.050 
AUC=0.80 0.058 0.054 0.052 0.050 0.050 
AUC=0.90 0.067 0.058 0.053 0.051 0.050 

      
k=1/2      

AUC=0.60 0.042 0.047 0.049 0.050 0.050 
AUC=0.70 0.051 0.051 0.050 0.050 0.050 
AUC=0.80 0.057 0.053 0.051 0.050 0.050 
AUC=0.90 0.060 0.055 0.052 0.050 0.050 

      
k=1/3      

AUC=0.60 0.045 0.048 0.049 0.050 0.050 
AUC=0.70 0.052 0.051 0.050 0.050 0.050 
AUC=0.80 0.056 0.052 0.051 0.050 0.050 
AUC=0.90 0.057 0.053 0.051 0.050 0.050 
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Table 4.9 Variance of empirical spAUC difference for two non-crossing concave bi-gamma ROC curves with 

differences in full AUCs of 0.05
 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.60 6.906 8.680 9.833 10.398 10.696 
AUC=0.70 8.712 8.891 8.989 9.010 8.980 
AUC=0.80 9.072 7.690 7.057 6.821 6.717 
AUC=0.90 5.623 4.160 3.509 3.198 3.081 

      
k=2      

AUC=0.60 6.805 8.332 9.319 10.076 10.371 
AUC=0.70 8.758 9.005 9.279 9.305 9.291 
AUC=0.80 9.288 7.759 7.323 7.078 7.007 
AUC=0.90 4.995 3.870 3.487 3.274 3.214 

      
k=1      

AUC=0.60 6.826 8.297 9.476 10.389 10.765 
AUC=0.70 8.297 8.670 9.017 9.345 9.451 
AUC=0.80 7.922 7.159 6.880 6.732 6.704 
AUC=0.90 4.362 3.665 3.540 3.550 3.587 

      
k=1/2      

AUC=0.60 6.360 7.579 8.844 9.936 10.525 
AUC=0.70 7.963 8.207 8.680 9.269 9.568 
AUC=0.80 6.736 6.616 6.662 6.857 7.057 
AUC=0.90 3.831 3.654 3.720 3.870 3.934 

      
k=1/3      

AUC=0.60 6.441 7.641 8.912 10.237 10.799 
AUC=0.70 6.829 7.422 8.219 8.874 9.156 
AUC=0.80 6.167 6.491 6.957 7.467 7.685 
AUC=0.90 3.414 3.443 3.620 3.852 3.952 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated for evaluating the variance of difference in empirical spAUCs; bold-faced 
scenarios correspond to curves in Figure 4.3. 
 

 

Each simulated dataset consisted of correlated pairs of ratings generated from a gamma 

distribution. Due to the invariance property of the ROC curves, without any loss of generality, 

we set θ=1 for latent ratings of abnormal subjects. We then selected θ for the latent normal 

ratings to reflect the targeted area under the ROC curve (given κ of 2, 1, or ½). The between-

modality correlation of 0.5 was established using a Gaussian copula model (Nelsen, 1999).  
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Table 4.10 summarizes the statistical power for comparisons of pAUCs of two bi-gamma 

ROC curves with a difference in full AUCs of 0.05. The results show that statistical power 

frequently increases with increasing range for κ≥1, but always decreases with increasing range 

for κ ≤ ½. Even for κ≥1 the decreasing trend in statistical power can be observed for ROC curves 

with high AUCs, but with increasing κ (i.e., higher curvature) the use of the full AUC becomes 

increasing more beneficial (statistically more powerful). For example, for scenarios with κ=1 the 

statistical power increases with increasing range of interest when AUC<0.8, whereas, for κ=2 (or 

higher curvature) the increasing pattern is observed for most scenarios, except for AUC of 0.9. 
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Table 4.10 Statistical power for comparisons of two partial AUCs of concave non-crossing bi-gamma ROC type 

curves with differences in full AUCs of 0.05 
 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.60 0.242 0.300 0.309 0.328 0.340 
AUC=0.70 0.302 0.364 0.380 0.386 0.382 
AUC=0.80 0.482 0.515 0.526 0.528 0.537 
AUC=0.90 0.882 0.884 0.873 0.875 0.865 

      
k=2      

AUC=0.60 0.267 0.306 0.309 0.323 0.339 
AUC=0.70 0.357 0.400 0.412 0.418 0.415 
AUC=0.80 0.488 0.525 0.528 0.535 0.519 
AUC=0.90 0.903 0.887 0.859 0.830 0.822 

      
k=1      

AUC=0.60 0.295 0.327 0.333 0.324 0.323 
AUC=0.70 0.370 0.418 0.418 0.408 0.401 
AUC=0.80 0.561 0.582 0.555 0.521 0.526 
AUC=0.90 0.900 0.867 0.829 0.810 0.806 

      
k=1/2      

AUC=0.60 0.359 0.374 0.356 0.345 0.332 
AUC=0.70 0.463 0.454 0.413 0.391 0.384 
AUC=0.80 0.616 0.562 0.525 0.496 0.491 
AUC=0.90 0.887 0.837 0.792 0.768 0.745 

      
k=1/3      

AUC=0.60 0.419 0.415 0.368 0.335 0.322 
AUC=0.70 0.494 0.460 0.433 0.407 0.395 
AUC=0.80 0.596 0.553 0.525 0.485 0.461 
AUC=0.90 0.849 0.808 0.761 0.741 0.736 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated and 1000 results of the bootstrap tests for testing the null hypothesis 2 1 0e eA A− =   
were performed; bold-faced scenarios correspond to curves in Figure 4.3. 

 

It is interesting to note that despite the substantial discrepancy in observed trends among 

bi-gamma curves with different κ’s, visually they may not look very different. Figure 4.3 

illustrates three bi-gamma curves with AUC of 0.8 and κ=1/3, 1, and 3, respectively; the 

corresponding trends in statistical power are presented in bold-face in Table 5.10.  

We developed a program (Appendix D) to compute sample size for comparisons of two 

partial AUCs of bi-gamma ROC curves, the result were shown in Table 4.11.  For κ<1, sample 
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size requirements increased with increasing range; for κ=1, sample size requirements increased 

with increasing range only for AUC≥0.8; for κ>1, sample size requirements increased with 

increasing range only for AUC≥0.9.  

 

Table 4.11 Sample size requirements for comparisons of two partial AUCs of bi-gamma ROC type curves with 

differences in full AUCs of 0.05 
 

Parameters for 
lower ROC curve 

Ranges of false positive fractions 
0-0.2 0-0.4 0-0.6 0-0.8 0-1 

k=3      
AUC=0.60 730 581 538 514 505 
AUC=0.70 549 450 429 419 419 
AUC=0.80 324 290 283 289 293 
AUC=0.90 119 122 132 140 142 

      
k=2      

AUC=0.60 669 553 525 509 505 
AUC=0.70 508 433 421 418 420 
AUC=0.80 303 282 283 292 297 
AUC=0.90 115 123 135 145 149 

      
k=1      

AUC=0.60 558 501 500 504 508 
AUC=0.70 432 398 407 417 425 
AUC=0.80 265 270 284 300 309 
AUC=0.90 113 129 146 159 164 

      
k=1/2      

AUC=0.60 446 443 472 498 511 
AUC=0.70 357 364 394 419 433 
AUC=0.80 237 263 290 313 326 
AUC=0.90 120 141 161 176 183 

      
k=1/3      

AUC=0.60 389 414 460 496 515 
AUC=0.70 325 351 391 423 440 
AUC=0.80 232 267 298 324 337 
AUC=0.90 127 150 170 185 192 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated for evaluating the variance of difference in empirical spAUCs. 

 

Full versus partial AUC 

The three families of ROC curves we investigated lead to different trends in the 

“usefulness” of the partial AUC as compared with the inferences based on the full AUC. In 
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particular, for concave binormal ROC curves, comparisons of full AUCs leads to a higher 

statistical power than comparisons of partial AUCs over any range. Conversely, within the 

family of straight-line ROC curves comparisons of full AUCs always have smaller statistical 

power than comparisons of partial AUCs. The family of concave bi-gamma ROC curves could 

favor either the full or the partial AUC (in terms of statistical power) depending on the shape 

parameter κ (nearly straight-line ROC curves for κ<1, and binormal-looking ROC curve for 

κ>1).  

In practice, bi-gamma and binormal ROC curves may look similar; however, the sample 

size requirement for the AUC and the pAUC could be quite different. Figure 4.4 illustrates 

binormal (b=1), bi-gamma (κ=1), and straight-line ROC curves with a full AUC of 0.8. For 

comparisons of these curves to the curves of the same shape but with a true AUC of 0.85, in 

order to achieve the same power as that computed for pAUC(0, 0.2) (for 150 diseased and 150 non-

diseased subjects as shown in table 3), using the full AUC we would need 88 diseased subjects 

for the concave binormal ROC curve, 163 diseased subjects for the bi-gamma ROC curve and 

204 diseased subjects for the straight-line ROC curve.  
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Figure 4.4 Binormal ROC curve (b=1), Bi-gamma ROC curve (κ=1) and a straight-line ROC curve with AUC=0.8 

 

Table 4.12 summarizes sample size requirements for comparisons of full AUCs to 

achieve the same power as comparisons of pAUCs (0, 0.2) for the same ROC curves estimated 

based on 150 diseased and 150 non-diseased subjects. We observe that in agreement with our 

findings in scenarios 1-3, for concave binormal ROC curves, improper binormal ROC curves 

with an AUC less than or equal to 0.8, and bi-gamma ROC curve with κ>1 and an AUC less than 

or equal to 0.8, using the full AUC leads to smaller sample size requirements as compared with 

the requirements for using the pAUC over (0, 0.2). In contrast, for other scenarios, using the 

pAUC requires a smaller sample size. 
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Table 4.12 Sample size requirements for inferences based on full AUC to achieve the same power as comparison of 

pAUC (0, 0.2) shown in tables 2-4 

family Shape 
parameter of 
ROC curves 

AUC for lower ROC curve 

 0.6 0.7 0.8 0.9 

Binormal b=0.33 107 123 133 163 

 b=0.50 107 101 128 148 

 b=1.00 69 89 88 115 
      Straight-line  261 222 204 187 
      Bi-gamma κ=3 99 113 131 158 

 κ=2 113 125 139 192 

 κ=1 135 136 163 198 

 κ=1/2 165 189 203 220 

 κ=1/3 206 198 210 200 
*Based on 150 diseased and 150 non-diseased subjects; shaded cells indicate scenarios where use of partial AUC is 
preferable over full AUC; bold-faced results correspond to scenarios with ROC curves of shape shown in Figure 2 

4.3 EXAMPLES 

In this example we provide analysis of a small dataset for comparing accuracy of two diagnostic 

modalities evaluated using 50 diseased and 50 non-diseased subjects. We simulated diagnostic 

ratings from bi-gamma distributions with a correlation of 0.5 for diseased subjects and 50 non-

diseased subjects, respectively. We estimated empirical ROC curves by connecting empirical 

points with straight lines. The estimates of the standardized pAUC were computed by integration 

over the ranges starting at 0 and ending at 0.2, 0.4, 0.6, 0.8 and 1. Variances of the differences in 

estimated standardized pAUCs were estimated using non-parametric bootstrap approach (Efron 

and Tibshirani, 1993). The bootstrap percentile confidence intervals, and corresponding p-values 

were computed using 10,000 random bootstrap samples. 

Table 4.13 summarizes the differences in standardized pAUCs, their bootstrap variances, 

and the 95% bootstrap confidence intervals. In this example, the differences in standardized 

pAUCs decreased with increasing range, while the variances remained relatively stable across all 
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ranges of interest. As illustrated in Figure 4.5, the two ROC curves do not cross. The difference 

in the full AUCs was not statistically significant (p=0.118) while the difference in partial AUCs 

over the range (0, 0.2) was statistically significant (p=0.041). 

 

Table 4.13 Results for comparisons of correlated ROC curves presented in example #1.
 

 

Ranges of false positive fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Difference in 

spAUCs 0.1122 0.0988 0.0867 0.0788 0.0784 

Bootstrap CI      
2.5% percentiles 0.0056 -0.0056 -0.0152 -0.0200 -0.0196 

97.5% percentiles 0.2100 0.2031 0.1876 0.1800 0.1792 
Bootstrap variance 0.0027 0.0028 0.0027 0.0026 0.0026 

p-value 0.041 0.062 0.100 0.117 0.118 
 
 
 
 
 

 
Figure 4.5 Empirical estimates of correlated ROC curve from example #1 
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It is important to highlight that the sample sizes estimated for the bi-gamma family of the 

ROC curves are different than estimates obtained from a standard approach assuming a binormal 

ROC model (Obuchowski and McClish, 1997). In particular, under the binormal model, for 80% 

statistical power in comparisons of concave ROC curves with areas 0.8 and 0.85 one would need 

sample sizes of 452 for the pAUC over (0, 0.2) and 295 for the full AUC, while in the case of the 

improper ROC curve with b=1/3 the required sample sizes would be 424 and 407. In fact, we 

were not able to find the scenarios under which the sample size estimation for concave binormal 

ROC curves would favor inferences based on the pAUC. In contrast, assuming bi-gamma model 

with κ=1/3, the sample sizes for the partial and the full AUC would be 232 and 337 respectively. 

This suggests that there may be advantages to using the pAUC in practical scenarios where the 

underlying distributions of ratings are reasonable but not necessarily binormal.  

4.4 SUMMARY 

In some practical scenarios comparison of two ROC curves based on the partial AUC could be 

both more clinically relevant and more statistically conclusive than inference based on full AUC. 

Increase of the range of interest could lead to either an increase or decrease in difference 

between two partial areas. And effect of the increasing range on the sampling variability depends 

on the shape of the performance curve.  

For ROC curves with nearly straight-line shape comparisons based on shorter range of 

partial AUC are always preferable. At the same time, the comparison of two correlated binormal 

ROC curves can be more efficiently performed using full AUC. Thus, approaches for sample 
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size estimation based on binormal ROC models often mask statistical the possible advantages of 

using partial AUCs.  

We demonstrated that family of constant shape bi-gamma ROC curves allows more 

realistic and flexible reflection of properties of pAUC analysis. Bi-gamma family of ROC curves 

provides better coverage of practically reasonable and plausible shapes. It can accommodate 

ROC curves that are close to the straight line, as well as ROC curves that are similar to the 

binormal ROC curves. The developed R program allows estimating sample size for comparison 

based on pAUCs for the bi-gamma ROC curves with different values of the shape parameter.  
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5.0  PARTIAL AREA UNDER THE ROC CURVE WITH MASS 

Diagnostic test results (ratings) often have ties in particular in the region of low rating levels. 

These ties could results from various phenomena including absence of apparent signs of disease 

in a subsample of subjects (including some actually diseased), natural absence of a tested 

substance, or artificial assignment of a default value to subjects with biomarker levels below a 

predetermined threshold or below the limit of detection. The corresponding ROC curves have 

straight-line shape (with no deterministic operating points) in the regions with low specificity, 

and sometimes called ROC curve with mass (at ‘0’).  ROC curves with mass can be constructed 

from any given ROC curve by replacing the right-most part with a straight-line segment (or 

equivalently by grouping data below a certain threshold). 

In this chapter we investigate statistical properties of evaluation of a single diagnostic test 

as well as a comparison of performance levels of two diagnostic modalities using pAUC over 

different ranges for ROC curves with mass. We demonstrate that due to virtual absence of 

empirical points in the ranges with low specificity, the selection of wider range leads to 

increasing power for ROC curves with mass obtained from originally concave binormal ROC 

curves and decreasing power for ROC curves with mass obtained from the originally straight-

line ROC curves. However, the increasing or decreasing trend tends to gradually disappear after 

the point where mass occurs, and thus the statistical power becomes stable. For comparison of 
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two full AUC of the ROC curves with nearly straight-line shape, statistical power is higher for 

ROC curves with mass than that for curves without mass.  

Thus, as similar as the regular ROC curve, the statistical power for ROC curve with mass, 

and thereby sample size requirement for inferences based on pAUC are affected by the shape of 

the performance curves. The presence of “mass” (i.e., grouping diagnostic results below certain 

level) can alleviate the decrease in variability, but it can disturb the estimated accuracy levels if 

the grouped results are informative. However, if the diagnostic results below a certain threshold 

have little information, grouping could be beneficial.  

5.1 METHOD 

In evaluation of a single pAUC, as a direct application of proposition 2 (Ma et al., 2013), since 

ROC curves having a mass does not change concavity, the standardized pAUC increases with 

increasing range for concave binormal ROC curves, whether these have mass, or not. 

In comparison of two correlated pAUCs, we presented previously two conditions that 

determine whether the difference in standardized pAUCs increases or decreases in the proximity 

of the FPF of interest. Here we can demonstrate that, for all types of ROC curves with mass, the 

increasing or decreasing trend of the difference in standardized pAUCs beyond the point where 

mass occurs will remain the same as the difference up to the point at which mass occurs. In other 

words, if the difference in standardized pAUCs increases or decreases in the proximity of the 

FPF where mass occurs, then the difference in standardized pAUCs keeps increasing or 

decreasing beyond that point. 
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5.2 NUMERICAL STUDY 

In this section we consider ROC family of curves under the distribution assumptions of 

normality and uniformity for underlying continuous test results. For each scenario, i.e. binormal 

ROC curves and straight-line ROC curves, we investigate statistical inferences based on pAUC 

and AUC for conventional ROC curves, partial ROC curve with mass at FPF equal 0.5, and 

partial ROC curve with mass at FPF equal 0.2. The partial ROC curves with mass have exactly 

the same shapes as the conventional curves in the range before the mass occurs. For example, 

Figure 5.1 to 5.3 show the concave binormal ROC curves, partially concave binormal ROC 

curves with mass at FPF equal 0.5, and partially concave binormal ROC curves with mass at FPF 

equal 0.2 respectively, where the full range curves have AUC ranging from 0.65 to 0.95. 

 

 

Figure 5.1 Concave binormal ROC curves 
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Figure 5.2 Partial concave binormal ROC curves with mass at FPF equal 0.5 

 

 

 

Figure 5.3 Partial concave binormal ROC curves with mass at FPF equal 0.2 
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5.2.1 EVALUATION OF A SINGLE PAUC 

1. Standardized pAUC 

We previously showed that the standardized pAUC increases with increasing range for concave 

binormal ROC curves and partially concave binormal ROC curves with mass, and it remains 

constant for straight-line ROC curves and partially straight-line ROC curves with mass. 

Table 5.1 shows that standardized pAUC increases with increasing range. However, the 

linear segment on ROC curves with mass results in a smaller increasing trend for the 

standardized pAUC, namely, the standardized pAUC of partially concave binormal ROC curves 

with mass tends to be smaller than the concave binormal ROC curves beyond the point where 

mass occurs. This trend contributes to the almost constant standardized pAUC for partially 

concave binormal ROC curves.  
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Table 5.1 Theoretical standardized pAUC for concave binormal ROC curves and corresponding partial binormal 

ROC curves with mass 

Concave 
binormal ROC 

curves 

Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Regular ROC 

curves      

auc=0.55 0.5180 0.5300 0.5395 0.5466 0.5500 
auc=0.65 0.5667 0.6016 0.6263 0.6430 0.6500 
auc=0.75 0.6373 0.6902 0.7228 0.7426 0.7500 
auc=0.85 0.7390 0.7974 0.8281 0.8445 0.8500 
auc=0.95 0.8899 0.9260 0.9411 0.9480 0.9500 

      
Mass at FPF=0.5      

auc=0.55 0.5180 0.5300 0.5388 0.5428 0.5439 
auc=0.65 0.5667 0.6016 0.6249 0.6351 0.6380 
auc=0.75 0.6373 0.6902 0.7214 0.7349 0.7387 
auc=0.85 0.7390 0.7974 0.8272 0.8399 0.8434 
auc=0.95 0.8899 0.9260 0.9409 0.9470 0.9487 

      
Mass at FPF=0.2      

auc=0.55 0.5180 0.5247 0.5268 0.5276 0.5278 
auc=0.65 0.5667 0.5877 0.5941 0.5966 0.5974 
auc=0.75 0.6373 0.6715 0.6819 0.6861 0.6873 
auc=0.85 0.7390 0.7804 0.7930 0.7981 0.7995 
auc=0.95 0.8899 0.9192 0.9282 0.9318 0.9328 

 

 

2. Variance of standardized pAUC 

We conducted a simulation study to assess variance of standardized pAUC for binormal and 

straight-line ROC curves and the corresponding ROC curves with mass. In the simulation study 

for the binormal model data were generated from normal distributions with equal variance and 

parameters selected to generate binormal ROC curves with AUC ranging from 0.55 to 0.95.  For 

the straight-line ROC curve the test results for normal and abnormal subjects were generated 

from uniform distributions. To generate ROC curves with mass, we replaced all ratings below 

the predetermined threshold corresponding to the FPF where mass occurs by the ratings at that 

threshold. For each scenario, we generated 1000 datasets with ratings for 150 normal and 150 
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abnormal subjects. pAUCs were estimated using area under the linearly-interpolated empirical 

ROC curve over the range of interest. The methods for constructing ROC curves with mass and 

the estimation method for pAUC were the same throughout this section.  

For concave ROC curves as well as concave ROC curves with mass, the variance trend 

can exhibit different patterns, namely, it can either decrease or increase with increasing range. 

The decrease in variance with increasing range can be observed for ROC curves with AUC 

values greater than 0.75. This is a similar trend for ROC curves without mass. However, the 

decreasing/increasing trend tends to be smaller beyond the point where mass occurs. Thus, for 

the ROC curve originally having increasing variance, the variance of full AUC tends to be 

smaller for partial concave ROC curves with mass than the corresponding concave ROC curves 

without mass, and vice versa.  

For straight-line ROC curves as well as straight-line ROC curves with mass, the variance 

of standardized pAUC increases with increasing range. This is a similar trend for straight-line 

ROC curves without mass. However, the increasing trend in variance, diminishes beyond the 

point where mass occurs. This leads to a smaller variance of full AUC for straight-line ROC 

curves with mass as compared with the straight-line ROC curves without mass. (Table 5.2) 
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Table 5.2 Variance of standardized pAUC for concave binormal and straight-line ROC curves and 

corresponding partial ROC curves with mass (×10-4) 

 
Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Regular 

binormal curves      

auc=0.55 3.312 5.592 7.836 9.706 10.607 
auc=0.65 5.937 8.235 9.498 10.104 10.202 
auc=0.75 8.254 8.548 8.402 7.995 7.750 
auc=0.85 10.072 7.290 5.877 5.099 4.801 
auc=0.95 5.161 2.631 1.748 1.385 1.281 

      
Partial binormal 
curves with mass 

at FPF=0.5 
     

auc=0.55 3.312 5.592 7.649 9.022 9.476 
auc=0.65 5.937 8.234 9.171 9.633 9.808 
auc=0.75 8.254 8.546 8.178 8.009 7.995 
auc=0.85 10.072 7.288 5.804 5.222 5.083 
auc=0.95 5.161 2.631 1.758 1.445 1.366 

      
Partial binormal 
curves with mass 

at FPF=0.2 
     

auc=0.55 3.228 4.700 5.376 5.677 5.764 
auc=0.65 5.699 6.451 6.912 7.133 7.199 
auc=0.75 7.894 6.867 6.790 6.806 6.816 
auc=0.85 9.763 6.614 6.042 5.880 5.842 
auc=0.95 5.087 2.792 2.348 2.211 2.176 

      
Regular straight-
line ROC curves      

auc=0.55 3.718 5.492 7.423 9.373 10.391 
auc=0.65 5.070 6.542 8.128 9.591 10.206 
auc=0.75 5.180 6.141 7.080 8.046 8.595 
auc=0.85 3.946 4.369 4.943 5.386 5.607 
auc=0.95 1.576 1.694 1.844 1.964 2.028 

      
Partial straight-
line curves with 
mass at FPF=0.5 

     

auc=0.55 3.718 5.492 7.371 8.768 9.227 
auc=0.65 5.070 6.542 8.043 9.063 9.395 
auc=0.75 5.180 6.141 7.039 7.716 7.938 
auc=0.85 3.946 4.369 4.918 5.282 5.401 
auc=0.95 1.576 1.694 1.847 1.952 1.986 

      
Partial straight-
line curves with 
mass at FPF=0.2 

     

auc=0.55 3.713 5.104 5.738 6.020 6.101 
auc=0.65 5.064 6.217 6.729 6.955 7.020 
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auc=0.75 5.194 5.860 6.174 6.314 6.354 
auc=0.85 3.949 4.297 4.459 4.531 4.552 
auc=0.95 1.579 1.672 1.715 1.734 1.739 

* Data consisted of ratings for 150 normal and 150 abnormal subjects; 1000 datasets were simulated for evaluating
the variance of empirical spAUCs. 

3. Statistical power in a single modality

We investigated the statistical power for tests based on pAUC and AUC in a one-sample 

problem for binormal and straight-line ROC curves and the corresponding ROC curves with 

mass. The statistical test of the null hypothesis for standardized pAUC equal 0.5 versus the 

alternative hypothesis for standardized pAUC greater than 0.5 was performed using a 

nonparametric bootstrap approach based on 1000 resamples of 50 normal and 50 abnormal 

subjects. Statistical power was estimated from 1000 results of the bootstrap results.  

Table 5.3 shows that in the case of concave binormal ROC curves as well as partially 

concave binormal ROC curves with mass, the statistical power in a one-sample problem always 

increases with increasing range. The statistical power is similar for concave full binormal ROC 

curves and the corresponding partially concave binormal ROC curves with mass at 0.5. The 

statistical power for partially concave binormal ROC curves with mass at 0.2 remains nearly a 

constant after FPF=0.4, and is smaller than the statistical power for the corresponding concave 

full binormal ROC curves. The smaller statistical power for ROC curves with mass results 

primarily from the smaller standardized pAUC as we had demonstrated when evaluating a single 

pAUC. 

For straight-line ROC curves as well as for straight-line ROC curves with mass, the 

statistical power decreases with increasing range. The decreasing trend diminished after the point 

where mass occurs. This results in a higher statistical power for testing pAUC over wider ranges 

for straight-line ROC curves with mass as compared with full range straight-line ROC curves.  

Table 5.2 (continued) 
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Table 5.3 Statistical power for concave binormal and straight-line ROC curves and corresponding partial 

ROC curves with mass 

 
Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Regular 

binormal curves      

auc=0.55 0.089 0.096 0.106 0.120 0.129 
auc=0.65 0.370 0.494 0.594 0.641 0.686 
auc=0.75 0.789 0.926 0.969 0.982 0.992 
auc=0.85 0.989 0.999 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

      
Partial binormal 
curves with mass 

at FPF=0.5 
     

auc=0.55 0.093 0.101 0.123 0.123 0.134 
auc=0.65 0.396 0.497 0.600 0.646 0.694 
auc=0.75 0.815 0.926 0.969 0.983 0.991 
auc=0.85 0.982 0.997 0.999 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

      
Partial binormal 
curves with mass 

at FPF=0.2 
     

auc=0.55 0.091 0.091 0.093 0.091 0.092 
auc=0.65 0.387 0.484 0.540 0.563 0.568 
auc=0.75 0.780 0.914 0.964 0.978 0.979 
auc=0.85 0.984 0.999 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

      
Regular straight-
line ROC curves      

auc=0.55 0.409 0.252 0.182 0.158 0.128 
auc=0.65 0.997 0.970 0.895 0.792 0.727 
auc=0.75 1.000 1.000 1.000 0.996 0.989 
auc=0.85 1.000 1.000 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

      
Partial straight-
line curves with 
mass at FPF=0.5 

     

auc=0.55 0.409 0.252 0.183 0.154 0.152 
auc=0.65 0.997 0.970 0.894 0.819 0.785 
auc=0.75 1.000 1.000 1.000 0.997 0.995 
auc=0.85 1.000 1.000 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

      
Partial straight-
line curves with 
mass at FPF=0.2 

     

auc=0.55 0.407 0.275 0.237 0.224 0.217 
auc=0.65 0.998 0.978 0.936 0.922 0.913 
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auc=0.75 1.000 1.000 0.999 0.999 0.999 
auc=0.85 1.000 1.000 1.000 1.000 1.000 
auc=0.95 1.000 1.000 1.000 1.000 1.000 

*Data consisted of ratings for 150 normal and 150 abnormal subjects; 1000 datasets were simulated and 1000 results
of the bootstrap tests for testing the null hypothesis spAUC=0.5 were performed. 

5.2.2 COMPARISON OF CORRELATED PAUC 

1. Difference in standardized pAUCs

We first investigated the properties for comparisons of pAUCs ( 1
eA  and 2

eA ) for two concave 

binormal ROC curves and the corresponding partially concave binormal ROC curves with mass. 

We considered pairs of concave binormal ROC curves that are were constrained to have a 

constant difference of 0.05 between full AUCs. The corresponding partially concave binormal 

ROC curves with mass have exactly the same shape as the full range curves throughout the range 

before the mass occurs. 

We previously proved that in general, for ROC curves with mass, if the difference in 

standardized pAUCs increases or decreases in the proximity of the FPF where mass occurs, the 

difference in standardized pAUCs keeps increasing or decreasing after that point, as well. For 

straight-line ROC curves and straight-line ROC curves with mass, the difference in standardized 

pAUCs remains constant across the entire range from 0 to 1.  

Table 5.4 shows the differences between the standardized pAUCs when the difference in 

the full range AUCs of the two concave binormal ROC curves is 0.05. We show that for larger 

AUCs (namely, average of 0.825 and 0.925) the difference in standardized pAUCs is greater for 

ROC curves with mass as compared with the corresponding full ROC curves beyond the point 

where mass occurs. In addition, for lower AUCs (namely, average of 0.725 or 0.625) the 

Table 5.3 (continued) 
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difference in spAUCs tends to be smaller for ROC curve with mass as compared with the 

corresponding full range ROC curves beyond the point where mass occurs.  

 

Table 5.4 Theoretical difference in standardized pAUCs for comparisons of two concave binormal ROC curves and 

comparisons of corresponding partial binormal ROC curves with mass 

Average AUC 
Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Regular ROC 

curves      

auc=0.625 0.0267 0.0378 0.0447 0.0487 0.0500 
auc=0.725 0.0385 0.0465 0.0494 0.0502 0.0500 
auc=0.825 0.0555 0.0561 0.0537 0.0512 0.0500 
auc=0.925 0.0835 0.0672 0.0574 0.0519 0.0500 

      
Mass at FPF=0.5      

auc=0.625 0.0267 0.0378 0.0444 0.0472 0.0480 
auc=0.725 0.0385 0.0465 0.0495 0.0507 0.0510 
auc=0.825 0.0555 0.0561 0.0540 0.0529 0.0527 
auc=0.925 0.0835 0.0672 0.0577 0.0536 0.0525 

      
Mass at FPF=0.2      

auc=0.625 0.0267 0.0338 0.0360 0.0369 0.0372 
auc=0.725 0.0385 0.0448 0.0467 0.0474 0.0477 
auc=0.825 0.0555 0.0579 0.0586 0.0589 0.0590 
auc=0.925 0.0835 0.0735 0.0704 0.0692 0.0688 

 

 

2. Variance of the difference in standardized pAUCs 

We computed the variance of the difference in standardized pAUCs for two concave binormal 

curves and the corresponding partially concave binormal ROC curves with mass. The paired 

ROC curves we compared have a constant difference of 0.05 between the full AUCs. In the 

simulation study, for binormal model the test results for normal and abnormal subjects were 

generated from bivariate normal distributions with correlation of 0.5. Exploiting the invariance 

property of the ROC curve to monotonically increasing transformation of the ratings, the 

distributions of ratings for normal subjects were set to bivariate normal distribution with mean 
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μ=(0,0)T, and a covariance matrix 1 0.5
0.5 1

 
Σ =  

 
. Parameters for the distributions of ratings for 

abnormal subjects were selected to reflect areas under the curves while preserving a correlation 

of 0.5 between ratings corresponding to the same subjects. Each generated dataset consisted of 

ratings for 150 normal (Xi1, Xi2) and 150 abnormal subjects (Yj1, Yj2) where i, j=1,2…,150. To 

generate ROC curves with mass, we replaced the ratings below the threshold corresponding to 

the FPF where mass occurs by the values at that threshold. For each scenario, we generated 1000 

datasets with ratings for 150 normal and 150 abnormal subjects.  

Table 5.5 shows that similar to one-sample problem, concave binormal ROC curves as 

well as the partially concave binormal ROC curves with mass exhibit variance trends that can 

either decrease or increase with increasing range. The decrease in variance with increasing range 

is observed for ROC curves with average AUC values greater than or equal to 0.825. In other 

words, considering binormal ROC curves with mass will not change the trend in variance of the 

difference in standardized pAUCs. However, the decreasing/increasing trend tends to diminish 

after the point where mass occurs. Thus, for a ROC curve that originally has an increasing 

variance, the variance of the full AUC tends to be smaller for partially concave ROC curves with 

mass than the corresponding concave ROC curve, and vice versa.  
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Table 5.5 Variance of difference in standardized pAUCs for concave binormal and corresponding partially concave 

ROC curves with mass (×10-4) 

Average AUC 
Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Regular 

binormal curves      

auc=0.625 6.206 8.826 9.902 10.466 10.622 
auc=0.725 9.227 9.819 9.808 9.622 9.399 
auc=0.825 12.309 9.341 7.675 6.687 6.309 
auc=0.925 8.930 4.989 3.510 2.839 2.635 

      
Partial binormal 
curves with mass 

at FPF=0.5 
     

auc=0.625 6.206 8.819 9.787 10.572 10.878 
auc=0.725 9.227 9.814 9.604 9.707 9.801 
auc=0.825 12.309 9.339 7.658 7.043 6.915 
auc=0.925 8.930 4.987 3.528 3.012 2.888 

      
Partial binormal 
curves with mass 

at FPF=0.2 
     

auc=0.625 5.917 7.203 7.965 8.328 8.436 
auc=0.725 8.758 8.325 8.645 8.855 8.922 
auc=0.825 11.830 8.704 8.182 8.061 8.036 
auc=0.925 8.785 5.287 4.639 4.453 4.409 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of 
0.5; 1000 datasets were simulated for evaluating the variance of difference in empirical spAUCs. 
 

3. Statistical power in comparison of two partial AUCs 

Using simulations we investigated the statistical power for comparisons of two concave 

binormal, straight-line, and the corresponding ROC curves with mass. The statistical test of the 

null hypothesis, or the difference in standardized pAUCs equal 0, was performed using 

nonparametric bootstrap approach based on 1000 resamples of 150 normal and 150 abnormal 

subjects with ratings generated for corresponding ROC curves with a difference between the full 

AUCs of 0.05. Statistical power was estimated from 1000 results of the bootstrap results.  

Table 5.6 showed that for concave ROC curves as well as for partially concave ROC 

curves with mass, the statistical power for two sample comparisons never decreases with 

92 



increasing range. The statistical power for partially concave binormal ROC curves with mass at 

FPF value of 0.2 remains almost a constant after FPF value of 0.6. The statistical power for 

partially concave binormal ROC curves having average AUCs equal to wither 0.625 or 0.725, is 

smaller than that for the corresponding concave full binormal ROC curves. In contrast, the 

statistical power for partially concave binormal ROC curves having average AUCs equal to 

wither 0.825 or 0.925 is greater than that for concave full binormal ROC curves. However, this 

could be driven primarily by the difference in AUCs alone. 

Thus, we estimated statistical power for comparisons of two partially concave ROC 

curves with mass with a constant actual difference in AUC of 0.05.  Table 5.6 shows that for 

lower AUCs (namely, average of either 0.625 or 0.725), the statistical power in the family of 

partially concave binormal ROC curves is greater than the corresponding family of full binormal 

ROC curves. When AUC is larger (namely either average of 0.825 or 0.925), statistical power 

for comparisons is greater in the family of full binormal ROC curves. 

Table 5.6 also showed that for straight-line ROC curves as well as for straight-line ROC 

curves with mass, the statistical power decreases with increasing range. The decreasing trend 

tends to diminish after the point where mass occurs. This leads to a higher statistical power for 

comparisons of straight-line ROC curves with mass as compared with conventional straight-line 

ROC curves.  
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Table 5.6 Statistical power for comparison of pAUCs within classes concave binormal ROC curves, straight-line 

ROC curves, and corresponding partial ROC curves with mass 

Average AUC 
Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Regular 

binormal curves      

auc=0.625 0.179 0.248 0.285 0.304 0.313 
auc=0.725 0.220 0.275 0.327 0.349 0.360 
auc=0.825 0.335 0.445 0.475 0.499 0.513 
auc=0.925 0.779 0.861 0.880 0.886 0.890 

      
Partial binormal 
curves with mass 

at FPF=0.5 
     

auc=0.625 0.179 0.248 0.291 0.286 0.286 
auc=0.725 0.220 0.275 0.327 0.343 0.344 
auc=0.825 0.335 0.445 0.479 0.508 0.511 
auc=0.925 0.779 0.861 0.884 0.889 0.889 

      
Partial binormal 
curves with mass 

at FPF=0.2 
     

auc=0.625 0.186 0.243 0.252 0.253 0.258 
auc=0.725 0.233 0.305 0.316 0.320 0.320 
auc=0.825 0.354 0.506 0.550 0.564 0.564 
auc=0.925 0.796 0.899 0.911 0.913 0.913 

      
      

Regular straight-
line ROC curves      

auc=0.625 0.490 0.418 0.363 0.322 0.322 
auc=0.725 0.488 0.439 0.393 0.374 0.362 
auc=0.825 0.543 0.511 0.478 0.443 0.432 
auc=0.925 0.792 0.748 0.713 0.686 0.683 

      

Partial straight-
line curves with 
mass at FPF=0.5 

     

auc=0.625 0.490 0.418 0.372 0.328 0.320 
auc=0.725 0.488 0.439 0.398 0.370 0.362 
auc=0.825 0.543 0.510 0.480 0.461 0.448 
auc=0.925 0.792 0.748 0.713 0.689 0.682 

      

Partial straight-
line curves with 
mass at FPF=0.2 

     

auc=0.625 0.497 0.417 0.385 0.379 0.374 
auc=0.725 0.488 0.438 0.416 0.404 0.402 
auc=0.825 0.546 0.512 0.497 0.492 0.488 
auc=0.925 0.789 0.760 0.752 0.738 0.736 
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*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of
0.5; 1000 datasets were simulated and 1000 results of the bootstrap tests for testing the null hypothesis 2 1 0e eA A− =   
were performed. 

Table 5.7 Statistical power for concave binormal ROC curves and corresponding partial ROC curves with mass 

(fixed AUC difference=0.05) 

Average AUC 
Ranges of False Positive Fractions 

0-0.2 0-0.4 0-0.6 0-0.8 0-1 
Regular 

binormal curves 
without mass 
auc=0.625 0.185 0.260 0.318 0.347 0.363 
auc=0.725 0.226 0.317 0.364 0.387 0.394 
auc=0.825 0.366 0.454 0.491 0.504 0.505 
auc=0.925 0.799 0.871 0.882 0.891 0.889 

Partial binormal 
curves with mass 

at FPF=0.5 
auc=0.625 0.202 0.275 0.339 0.349 0.350 
auc=0.725 0.232 0.323 0.369 0.399 0.405 
auc=0.825 0.353 0.428 0.473 0.487 0.485 
auc=0.925 0.780 0.847 0.862 0.871 0.869 

Partial binormal 
curves with mass 

at FPF=0.2 
auc=0.625 0.264 0.381 0.401 0.406 0.409 
auc=0.725 0.255 0.380 0.404 0.407 0.404 
auc=0.825 0.340 0.453 0.479 0.490 0.495 
auc=0.925 0.696 0.814 0.831 0.831 0.832 

*Data consisted of pairs of ratings for 150 normal and 150 abnormal subjects, with between-modality correlation of
0.5; 1000 datasets were simulated and 1000 results of the bootstrap tests for testing the null hypothesis 2 1 0e eA A− =   
were performed. 

5.3 SUMMARY 

A substantial number of ties at the lowest diagnostic rating could affect the shape of the ROC 

curves. 

Table 5.6 (continued) 
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Ties corresponding to grouping of informative diagnostic scores (corresponding to a 

concave part of the ROC curve) lead to a lower ROC curve with a straight line segment in the 

range of low specificities (ROC curve with mass). However, differences between the two ROC 

curves with mass could increase or decrease depending on the shape and height of the ROC 

curves.  

The effect of the increasing range on the sampling variability depends on the shape of the 

ROC curve with a mass. Concave binormal ROC curves as well as the partially concave 

binormal ROC curves with mass exhibit variance trends that can either decrease or increase with 

increasing range. Variance trends always increase with increasing range for straight-line ROC 

curves as well as the partially straight-line ROC curves with mass. 

One of the important implications of these results is that in some scenarios having ties at 

the lowest diagnostic rating can actually be beneficial for the assessment of performance. If the 

grouped results are barely informative (e.g., unobserved results below detection limit are similar 

for diseased and non-diseased), presence of ties would actually decrease the sampling variability 

of the estimated AUC. This concurs with previous findings that some “well-defined” tasks 

forcing diagnostic system to break the ties could detrimentally affect reliability and 

conclusiveness of statistical inferences (Gur et al., 2007).  
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6.0  CONCLUSION AND DISCUSSION 

The results of this work provide useful insights primarily for the design of the diagnostic 

performance studies; however, they also have important implications of the analysis of the 

studies. In particular, the results indicate that a conjecture about larger sample sizes requirements 

of pAUC over shorter range is frequently incorrect and should not discourage planning analysis 

based on pAUC, since the use of pAUC can lead to an actually more efficient analysis. Similarly, 

grouping of the diagnostic results could also in some cases be beneficial for the future statistical 

analysis. However, obtained results should not be directly used for selecting type of analysis 

after collecting the data since ad hoc alterations of the analysis can affect the error rate. 

Development of methods for controlling error rate in analysis where the range of interest, or 

range of grouping, should be selected is the topic of the future research. Similarly, the current 

result provide important basis for future exploration of methods for estimating the statistically 

optimal range of interest for given ROC curves.   

In light of obtained results on statistical efficiency it is important to note that selection of 

range of interest for pAUC should be driven primarily by clinical/practical considerations, which 

may override any statistical considerations. For example, if consideration of pAUC over a certain 

range of specificity is considered to be clinically important and leading to conclusions potentially 

different from conclusions based on full AUC, pAUC should be used even if it is statistically less 

efficient under the expected conditions. Selection of the range of interest is driven by the 
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operating points that can be used for medical decision making. Medical decision making could 

be influenced by various factors including the cost/benefit of the consequences of performing a 

diagnostic test and prevalence of the “disease” in the population (Metz, 1978). Thus, although 

the ROC curve and all results obtained in this work do not depend on prevalence, in practice the 

expected prevalence of the disease in the target population, as well as cost-benefit structure could 

have a substantial effect on decision regarding the integration range for pAUC. 

 

6.1 EVALUATION OF A SINGLE PAUC 

When evaluating a single pAUC, we investigated two important properties of the pAUC which 

should facilitate a wider and more appropriate use of this important summary index. First, for 

ROC curves typically encountered in practical applications the spAUC actually increases with 

increasing range of interest. For example, the spAUC is always increasing for concave ROC 

curves and also, when considering short ranges for improper (b<1) binormal ROC curves. 

Second, the statistical uncertainty of the estimated spAUC in general, and its variance in 

particular, could frequently be smaller than those of the full AUC. In particular, a decrease of the 

variance with increasing range (as often conjectured) can be observed only in the case of 

concave binormal ROC curve (b=1) with AUC of at least 0.75, or in the case of improper 

binormal ROC curves with increasingly larger AUCs. This decrease in the width of distribution 

with increasing range for large AUCs, is likely to be the result of the true value of standardized 

pAUC approaching its upper boundary. We demonstrated that in the case of straight-line ROC 
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curves, where standardized pAUC is a constant, the variance increases regardless of how high 

the ROC curve is.   

Our findings have direct practical implications for the design and analysis of diagnostic 

performance studies in which it is common to disregard partial area indices in favor of inferences 

based on full area under the ROC curve. Specifically, our results on the statistical uncertainty of 

estimation indicate that in a number of practical scenarios inferences based on the pAUC could 

be no less statistically advantageous than inferences based on the full AUC. A program 

(Appendix C) was developed to estimate the sample size. As compared with the binormal model, 

statistical inferences for the bi-gamma model based on partial AUC required smaller sample 

sizes than full AUC when shape parameter was less than 1. Our results on the values of the 

standardized pAUC indicate that the estimates should always be interpreted in the context of the 

range of interest, even if standardization is employed. Using a wider range of interest than that 

which is of clinical interest clinically could lead to overoptimistic estimates of performance in 

practically relevant scenarios. 

6.2 COMPARISON OF TWO CORRELATED PAUCS 

First of all, a number of practically reasonable types of non-crossing ROC curves could have 

statistically significant differences in partial AUCs, but not in full AUCs. Secondly, depending 

on the expected shape of the ROC curve, planning for future studies based on pAUC could lead 

to smaller sample size requirements. Thirdly, we demonstrated that comparisons of pAUCs 

computed over a wider range of two non-crossing ROC curves could have smaller statistical 

power. Statistical power for the pAUC over a wider range (and the full AUC in particular) tends 
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to increase with increasing range for ROC curves that have higher curvature in the range of 

higher FPFs. In cases of flatter ROC curves, and in particular in cases where the curve is nearly-

linear in shape in the range of higher FPFs, the statistical power frequently decreases with 

increasing range.  

Experimentally different shapes of ROC curves can be encountered that are both 

reasonable and plausible. As we illustrated, very similar curves visually could have drastically 

different properties in terms of pAUC-based inferences. Binormal ROC curves are reasonably 

straightforward to fit and these provide good approximation for a large number of different types 

of ROC curves (Hanley, 1988). Yet, this family does not include curves with nearly straight-line 

shapes, which could be experimentally observed, thereby leading to a different relationship 

between inferences based on partial and full AUC. The binormal ROC model offers only one 

type of concave curves for which it is always more beneficial to use in the analysis the full AUC 

rather than the pAUC. Although improper binormal ROC curves provide a somewhat different 

picture, these are not likely to be used in sample size estimations due to the unrealistic hooks 

associated with improper curves. For planning purposes, it is important to have a tool that is 

flexible enough to allow for the diversity in the shape of the performance curve in different 

applications. Hence, the bi-gamma family of ROC curves has been advocated by several 

investigators (Constantine et al., 1986) (Dorfman et al., 1996) (Faraggi et al., 2003) (Huang and 

Pepe, 2009). The bi-gamma family represents a flexible family that consists of concave ROC 

curves that includes both bi-normal looking curves and curves with nearly straight-line shapes. 

As such, the bi-gamma family of ROC curves offers an important tool for planning for future 

studies aimed at comparing pAUCs under different ROC curves with varying shapes. As we 

demonstrated, sample size for bi-gamma ROC curves can be adequately estimated using the code 
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we provide and, for some parameters, the estimates could be quite different from those obtained 

under the assumption of binormality. We developed a program (Appendix D) to estimate the 

sample size. Therefore, in studies where differences in pAUCs are more relevant, there may be 

no need to resort to comparisons of full AUCs simply because of perceived smaller sample size 

requirement.  

6.3 PARTIAL AREA UNDER THE ROC CURVE WITH MASS 

Investigations of the properties of comparisons of pAUCs are complicated by the fact that the 

rating data are not truly continuous, namely, ties are possible. Ties could result from evaluations 

of normal images, the properties of the diagnostic tool, or the assignment of a default value to all 

subjects with biomarker levels below a predetermined threshold or below the limit of detection. 

Therefore, it is important that we understand the properties of statistical inference for this type of 

data. 

We provide some insight into the properties that may be useful for the design and 

analysis of comparisons of ROC curves with mass. For partially concave binormal ROC curves 

with mass, increasing the range of interest leads to increasing power, therefore, the statistical 

inferences based on the full AUC provide maximum power hence the lowest sample size 

requirement. For concave binormal ROC curves with expected high AUC, (e.g. average AUC 

greater than 0.825), the statistical power for partially concave binormal ROC curves with mass 

can be higher than that for conventional concave binormal ROC curves. For a fixed difference in 

the AUC in the case of partially concave binormal ROC curves, the opposite result was 

observed. 
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In contrast, for partial straight-line ROC curves with mass, increasing the range of 

interest will not affect statistical power thereby sample size requirement. Thus statistical 

inferences based on more clinically relevant pAUC could be advantageous due purely to its 

clinical relevance rather than based on statistical considerations. Furthermore, the statistical 

power for comparing full AUCs from partial straight-line ROC curves with mass are higher than 

for conventional straight-line ROC curves.  

In practice, ROC curves with mass could be observed for different experimental reasons. 

If there is no useful information contained in a tie, breaking it up is equivalent to randomly 

assigning ratings, and thus gives us a partial straight-line looking empirical ROC curve. Our 

results demonstrate that in this scenario breaking up ties would not result in any statistical 

advantage. Our results also demonstrate that if there exists useful information in the tie (e.g. 

assigning default value to subjects with biomarker levels below a limit of detection), breaking up 

the tie correctly will result in less biased estimates, which agrees with works on the inference for 

ROC curves with limits of detection (Schisterman et al., 2006).  

Increased efficiency of inferences based on the AUC from the grouped data agrees with 

the consequences of the randomized estimator (Lehmann and Casella, 1998). In particular, 

according to the Rao-Blackwell Theorem (Lehmann and Casella, 1998), for any randomized 

estimator that is not a function of a sufficient statistic, there always exists a better estimator 

depending only on the sufficient statistics. For a straight-line ROC curve, the AUC estimator for 

continuous data can be considered as a randomized estimators, the sensitivity at FPF=0 can be 

shown  to be a sufficient statistic for the entire ROC curve, and the empirical AUC estimator for 

the grouped data can be considered as a Rao-Blackwell estimator.   
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Compared with the results for conventional ROC curves (Appendix B), there are similar 

trends in statistical power when a wider range selection is taken into consideration, namely, 

increasing the range leads to increasing power for binormal ROC curves and decreasing power 

for straight-line ROC curves. However, for ROC curves with mass, this increasing or decreasing 

trend tends to gradually diminish after the point where mass occurs, and thus the statistical power 

becomes stable (almost a constant).  

Our findings may have direct practical implications for the design and analysis of 

diagnostic performance assessments when one expects a performance curve with mass. The 

statistical inference based on full AUC for ROC curve with mass could be advantageous as 

compared with a regular ROC curve without mass in terms of achievement of greater statistical 

power and lower sample sizes. However the effect of mass is affected by the shape of ROC 

curves. In the case of ROC curve with nearly straight-line segments, allowing for ties could 

provide statistical advantages as compared to breaking them.  
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APPENDIX A 

ON USE OF PARTIAL AREA UNDER THE ROC CURVE FOR EVALUATION OF 

DIAGNOSTIC PERFORMANCE 

Ma H, Bandos A, Rockette H, Gur D. “On use of partial area under the ROC curve for evaluation 

of diagnostic performance”, Statistics in Medicine 2013; 32: 3449-3458.  

The part of results was presented in Chapter 3. 
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APPENDIX B 

ON THE USE OF PARTIAL AREA UNDER THE ROC CURVE FOR COMPARISON 

OF TWO DIAGNOSTIC TESTS 

Ma H, Bandos A, Gur D. “On the use of partial area under the ROC curve for comparison of 

two diagnostic tests” (submitted to Biometrical Journal, 2014). 

The part of results was presented in Chapter 4. 
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APPENDIX C 

R PROGRAM FOR ESTIMATING SAMPLE SIZES FOR BI-GAMMA ROC CURVES 

IN EVALUATION OF SINGLE PARTIAL AUC 

#Input:  
#k is shape parameter for gamma distribution 
#auc is AUC for the bi-gamma ROC curve 
#range is partial area we focus on 
#CI is length of pre-specified confidence interval 
#pow is the pre-specified statistical power 
#alpha is the significance level 
#Output: estimated sample sizes  
 
rm(list=ls()) 
sample.size.bigamma<-function(k,auc,range,pow,alpha,CI){ 
 
set.seed(19840825) 
#Tuning parameters 
n.sim=500 #the higher the better, but slower 
n.iter=100 #the higher the better, but slower 
 
pAUC.thresholds<-range 
theta.x=NULL 
theta.y=1 
diff.pAUC=CI 
 
eroc<-function(q){ 
    x=q[,1] 
    y=q[,2] 
    thresholds<-sort(unique(c(x,y)),decreasing=TRUE)  
    matrix.thresholds.x<-matrix(rep(thresholds,length(x)),nrow=length(x),byrow=TRUE) 
    matrix.thresholds.y<-matrix(rep(thresholds,length(y)),nrow=length(y),byrow=TRUE) 
    matrix.x<-matrix(rep(x,length(thresholds)),nrow=length(x)) 
    matrix.y<-matrix(rep(y,length(thresholds)),nrow=length(y)) 
    matrix.comp.x<-(matrix.x>matrix.thresholds.x) 
    matrix.comp.y<-(matrix.y>matrix.thresholds.y) 
    fpf<-apply(matrix.comp.x,2,mean) 
    tpf<-apply(matrix.comp.y,2,mean) 
    coordinate.temp<-cbind(fpf,tpf) 
    coordinate<-rbind(coordinate.temp,c(1,1)) 
    return(coordinate) 
} 
 
pAUC<-function(r){  
    fpf=r[,1] 
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    tpf=r[,2] 
    p_area<-NULL 
    for (i in 1:length(pAUC.thresholds)){         
        fpf_l=fpf[max(which(fpf<=pAUC.thresholds[i]))] 
        tpf_l=tpf[max(which(fpf==fpf_l))] 
         
        fpf_r=fpf[min(which(fpf>=pAUC.thresholds[i]))] 
        tpf_r=tpf[min(which(fpf==fpf_r))]     
         
        if (fpf_l==fpf_r) temp=c(pAUC.thresholds[i],tpf_l) else{ 
            lambda=(pAUC.thresholds[i]-fpf_l)/(fpf_r-fpf_l) 
            tpf.pAUC.thresholds=tpf_l*(1-lambda)+tpf_r*lambda 
            temp=c(pAUC.thresholds[i],tpf.pAUC.thresholds) 
        }     
       
        temp.eroc<-cbind(fpf,tpf) 
        coordinate.pAUC=rbind(temp.eroc[1:max(which(fpf<=pAUC.thresholds[i])),],temp) 
        fpf0=coordinate.pAUC[,1] 
        tpf0=coordinate.pAUC[,2] 
        fpf1=c(0,coordinate.pAUC[,1]) 
        tpf1=c(0,coordinate.pAUC[,2]) 
        midline=0.5*(tpf0+tpf1[1:length(tpf0)]) 
        delta=fpf0-fpf1[1:length(fpf0)] 
        p_area[i]=sum(delta*midline)     
    } 
    return(p_area) 
} 
 
for (i in 1:length(k)){ 
    for (j in 1:length(auc)){ 
        theta.x[j+length(auc)*(i-1)]=qf(1-auc[j], df1=2*k, df2=2*k)  
    } 
} 
 
sim.var<-function(t.par.x,t.par.y){ 
    temp.x=replicate(n.sim, rgamma(n.iter,shape=t.par.x[1],scale=t.par.x[2])) 
    temp.y=replicate(n.sim, rgamma(n.iter,shape=t.par.y[1],scale=t.par.y[2]))      
    sim.xy<-lapply(1:n.sim,function(i) cbind(temp.x[,i],temp.y[,i])) 
    temp.eroc=lapply(sim.xy,eroc) 
    temp.pauc=sapply(temp.eroc,pAUC) 
    var.temp.spauc=var(temp.pauc)/4/(range-range^2/2)^2 
    return(var.temp.spauc)         
} 
 
sim.v=sim.var(t.par.x=c(k,theta.x),t.par.y=c(k,theta.y))*n.iter 
n=ceiling((qnorm(1-alpha/2)+qnorm(pow))^2*sim.v/(CI/2)^2) 
return(n) 
} 
 
#example 
sample.size.bigamma(k=10,auc=0.8,range=0.2,alpha=0.05,pow=0.8,CI=0.1) 
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APPENDIX D 

R PROGRAM FOR ESTIMATING SAMPLE SIZES FOR COMPARISONS OF BI-

GAMMA ROC CURVES USING PAUC 

#Input:  
#k is shape parameter for gamma distribution 
#auc1 is the lower AUC for the two bi-gamma ROC curves 
#auc2 is the higher AUC for the two bi-gamma ROC curves 
#range is partial area we focus on 
#pow is the pre-specified statistical power 
#alpha is the significance level 
#Output: estimated sample sizes  
 
sample.size.bigamma<-function(k,auc1,auc2,range,rho,alpha,pow){ 
set.seed(19840818) 
library(copula) 
 
#Tuning parameters 
n.sim=500 #the higher the better, but slower 
n.iter=100 #the higher the better, but slower 
 
pAUC.thresholds<-range 
delta=auc2-auc1 
theta.x1=theta.x2=NULL 
theta.y1=theta.y2=1 
 
gamma.gen<-function(t.par){ 
    temp.copula<-
mvdc(normalCopula(rho),c("gamma","gamma"),list(list(shape=t.par[1],scale=t.par[2]),list(shape=t.p
ar[3],scale=t.par[4]))) 
    return(rMvdc(n.iter,temp.copula)) 
} 
 
eroc<-function(q){ 
    x=q[,1] 
    y=q[,2] 
    thresholds<-sort(unique(c(x,y)),decreasing=TRUE)  
    matrix.thresholds.x<-matrix(rep(thresholds,length(x)),nrow=length(x),byrow=TRUE) 
    matrix.thresholds.y<-matrix(rep(thresholds,length(y)),nrow=length(y),byrow=TRUE) 
    matrix.x<-matrix(rep(x,length(thresholds)),nrow=length(x)) 
    matrix.y<-matrix(rep(y,length(thresholds)),nrow=length(y)) 
    matrix.comp.x<-(matrix.x>matrix.thresholds.x) 
    matrix.comp.y<-(matrix.y>matrix.thresholds.y) 
    fpf<-apply(matrix.comp.x,2,mean) 
    tpf<-apply(matrix.comp.y,2,mean) 
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    coordinate.temp<-cbind(fpf,tpf) 
    coordinate<-rbind(coordinate.temp,c(1,1)) 
    return(coordinate) 
} 
 
pAUC<-function(r){  
    fpf=r[,1] 
    tpf=r[,2] 
    p_area<-NULL 
    for (i in 1:length(pAUC.thresholds)){         
        fpf_l=fpf[max(which(fpf<=pAUC.thresholds[i]))] 
        tpf_l=tpf[max(which(fpf==fpf_l))] 
         
        fpf_r=fpf[min(which(fpf>=pAUC.thresholds[i]))] 
        tpf_r=tpf[min(which(fpf==fpf_r))]     
         
        if (fpf_l==fpf_r) temp=c(pAUC.thresholds[i],tpf_l) else{ 
            lambda=(pAUC.thresholds[i]-fpf_l)/(fpf_r-fpf_l) 
            tpf.pAUC.thresholds=tpf_l*(1-lambda)+tpf_r*lambda 
            temp=c(pAUC.thresholds[i],tpf.pAUC.thresholds) 
        }     
       
        temp.eroc<-cbind(fpf,tpf) 
        coordinate.pAUC=rbind(temp.eroc[1:max(which(fpf<=pAUC.thresholds[i])),],temp) 
        fpf0=coordinate.pAUC[,1] 
        tpf0=coordinate.pAUC[,2] 
        fpf1=c(0,coordinate.pAUC[,1]) 
        tpf1=c(0,coordinate.pAUC[,2]) 
        midline=0.5*(tpf0+tpf1[1:length(tpf0)]) 
        delta=fpf0-fpf1[1:length(fpf0)] 
        p_area[i]=sum(delta*midline)     
    } 
    return(p_area) 
} 
 
for (i in 1:length(k)){ 
    for (j in 1:length(auc1)){ 
        theta.x1[j+length(auc1)*(i-1)]=qf(1-auc1[j], df1=2*k, df2=2*k)  
    } 
} 
 
for (i in 1:length(k)){ 
    for (j in 1:length(auc2)){ 
        theta.x2[j+length(auc2)*(i-1)]=qf(1-auc2[j], df1=2*k, df2=2*k)  
    } 
} 
 
sim.var<-function(t.par.x,t.par.y){ 
    temp.x=replicate(n.sim, gamma.gen(t.par.x)) 
    temp.y=replicate(n.sim, gamma.gen(t.par.y))      
    sim.xy1<-lapply(1:n.sim,function(i) cbind(temp.x[,1,i],temp.y[,1,i])) 
    sim.xy2<-lapply(1:n.sim,function(i) cbind(temp.x[,2,i],temp.y[,2,i])) 
    temp.eroc1=lapply(sim.xy1,eroc) 
    temp.eroc2=lapply(sim.xy2,eroc) 
    temp.pauc1=sapply(temp.eroc1,pAUC) 
    temp.pauc2=sapply(temp.eroc2,pAUC) 
    sim.diff=temp.pauc2-temp.pauc1 
    return(var(sim.diff))         
} 
 
roc1=function(x){ 
    
pgamma(qgamma(x,shape=k,scale=theta.x1,lower.tail=FALSE),shape=k,scale=theta.y1,lower.tail=FALSE) 
} 
roc2=function(x){ 
    
pgamma(qgamma(x,shape=k,scale=theta.x2,lower.tail=FALSE),shape=k,scale=theta.y2,lower.tail=FALSE) 
} 
 
diff.pAUC=integrate(roc2,lower=0,upper=range)$value-integrate(roc1,lower=0,upper=range)$value 
var.alter<-sim.var(t.par.x=c(k,theta.x1,k,theta.x2),t.par.y=c(k,theta.y1,k,theta.y2)) 
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n=ceiling((qnorm(1-alpha/2)+qnorm(pow))^2*var.alter*n.iter/(diff.pAUC)^2) 
return(n) 
} 
 
#example 
sample.size.bigamma(k=3,auc1=0.8,auc2=0.85,range=0.2,rho=0.5,alpha=0.05,pow=0.8) 
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