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Abstract:

Nowadays, more and more high-throughput genomic data sets are publicly available; there- 

fore, performing meta-analysis to combine results from independent studies becomes an 

essential approach to increase the statistical power, for example, in the detection of differen- 

tially expressed genes in microarray studies. In addition to meta-analysis, researchers also 

incorporate pathway or clinical information from external databases to perform integrative 

analysis. In this thesis, I will present three projects which encompass three types of integra- 

tive analysis. First, we perform a comprehensive comparative study to evaluate 12 microarray 

meta-analysis methods in simulation studies and real examples by using four quantitative 

criteria: detection capability, biological association, stability and robustness, and we pro- 

pose a practical guideline for practitioners to choose the most appropriate meta-analysis 

method in real applications. Second, we develop a meta-clustering method to construct co- 

expressed modules from 11 major depressive disorder transcriptome datasets, incorporated 

with GWAS and pathway information from external databases. Third, we propose a com- 

putationally feasible algorithm to call genotypes with higher accuracy by considering family 

information from next generation sequencing data for two purposes: (1) to propose a new 

genotype calling algorithm for complex families, and (2) to extend our algorithm to incor- 

porate external reference panels to analyze family-based sequence data with a small sample
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size. In conclusion, we develop several integrative methods for omics data analysis and the

result improves public health significance for biomarker detection in biomedical research and

provides insights to help understand the underlying disease mechanisms.
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1.0 INTRODUCTION

1.1 DEVELOPMENT OF OMICS TECHNOLOGY

RNA microarray is an important technology for studying gene expression, which can quan-

tify the amount of mRNA transcripts present in a collection of cells, and has been widely

used to identify differential expressed (DE) genes in biomedical research. Many microar-

ray platforms were commonly used such as dual- label cDNA; oligonucleotide platforms;

Affymetrix GeneChip or Illumina BeadChip. These high-throughput technologies provide

us an opportunity to measure thousands of genes and can help identify disease patients or

identify candidate genes that contribute to tumor progression, and also improve in cancer

diagnostic and prognosis. However, limitations of microarray technology are the quality and

amount of RNA, and can only provides gene-based information.

In the past decade, Genome-Wide Association Studies (GWAS) have generated a consid-

erable amount of gene- and disease-related information. GWAS usually test for the associa-

tion between genotype and phenotype on hundreds of thousands to millions SNPs simulta-

neously and provides unbiased of large scale investigation of DNA structural (SNP and other

variants) changes. GWAS have been successfully identified thousands of associated SNPs for

many common diseases [Hindorff et al., 2009], but heterogeneity and various sources of noise

have limited the discovery of disease mechanisms. In the beginning of GWAS in the past

era, many data sets have small sample sizes due to high costs, however, GWAS typically has

small effect sizes, and such disease-related loci can be detected only by very large sample

sizes, and most of GWAS do not replicate their finding in subsequent studies.

Next Generation Sequencing (NGS) is the most advanced technology, which can be used

for systematically searching the rare variants and help people discover the disease mecha-

1



nisms. In 2010, the 1,000 Genome Project has generated publicly available database and

provided a deep characterization of human genome sequence for people to understand the re-

lationship between genotype and phenotype, which is the central goal in biomedical research

[Abecasis et al., 2010]. Unlike GWAS (generate one genotype at each locus), NGS technology

generated millions of short segments of sequence “reads” (25 - 250 base), then we need to

strongly rely on comprehensive computational analysis to assemble millions of “short-reads”

into full sequence. Over 95% of variants in genome regions have allele frequency of 1% or

higher were accessible in NGS technology is the major advantage, however, short reads make

assembly hard, and does not allow the assessment of copy number accurately. In addition,

the cost of NGS data set still high and not affordable for many small labs.

1.2 INFORMATION INTEGRATION

In the past decade, more and more biological high-throughput genomic data sets were pub-

licly available, especially for transcriptomic study of microarray experiments. Combining

results from independent studies is an essential way to increase the statistical power to de-

tect differential expressed (DE) genes because the signal from single study is weak (due to

limited sample sizes or small effect sizes), especially for complex diseases such as major de-

pressive disorder (MDD); hypertension or Diabetes. Most of published papers of integrative

analysis were meta-analysis for DE gene in microarray study. In addition to meta-analysis,

incorporating external database such as GWAS or pathways, and integration of clinical data

were also alternative ways of integrative analysis. In this section, we will briefly introduce

three ways of integrative analysis which are relevant to three topics of my dissertation: (1)ge-

nomic meta-analysis; (2)integration of external database and (3)integration of family-based

data.

2



1.2.1 “Horizontal” and “Vertical” genomic meta-analysis

In the comprehensive literature review for microarray meta-analysis proposed by Tseng et al.

[2012], the genomic information integration from transcriptomic studies can be combined

“horizontally” (Figure 1(A): combines different sample cohorts for the same molecular event)

or “vertically” (Figure 1(B): combines different molecular events usually in the same sample

cohort, for example, transcriptome profile, genotypes, DNA copy number variation, methy-

lation, microRNA, proteome and phenome. Such as The Cancer Genome Atlas (TCGA;

http://cancergenome.nih.gov/)). In addition to increase the statistical power, genomic meta-

analysis can also provides robust and accurate validation across independent studies, and

the result can guide future experiments. In Tseng et al. [2012], they also indicated that

many meta-analysis methods have been proposed and used in published applications, but

the hypothesis behind the analysis needs more attention. In chapter 2, we performed a

comprehensive comparative study of microarray meta-analysis method.

1.2.2 Integration of external database

There were many external databases of integration analysis were publicly available and can

be used for genomic research. Unlike microarray study, we are unable to get whole data sets

or SNPs list from most of GWAS publications to replicate their results, however, there is a

database called GWAS catalog collected a list of SNPs/genes reported by GWAS publications

[Hindorff et al., 2009], this database contains many entries of disease- or trait-associated

SNPs with p-values less than 10−5 from all published GWAS which has PubMed ID and

SNPs/genes list were updated every six months. We can easily incorporate the information

from GWAS catalog database to validate our finding in GWAS or use it as external reference

to support our finding.

Pathway analysis (also known as gene set analysis) is a useful statistical tool to test DE

gene sets under certain biological function from established pathway databases. A collection

of annotated gene sets for pathway analysis such as molecular signatures database (MSigDB:

http://www.broadinstitute.org/gsea/msigdb/index.jsp), this database contains pre-defined

biological categories such as Gene Ontology (GO); the Kyoto Encyclopedia of Genes and

3



Genomes (KEGG); Biocarta gene sets; Reactome gene sets which can be used to perform

the enrichment analysis to understand the underlying biological mechanism. The integrative

analysis incorporated by external databases mentioned above (GWAS and biological pathway

databases) were implemented in Chapter 3.

1.2.3 Integration of family-based data

Next generation sequencing (NGS) is the advanced technology for rare variants detection,

which strongly rely on accurate genotype calls. We can incorporate the family information

from family-based sequencing data because modeling inheritance of alleles can help achieve

more accurate variants and reduce sequencing error in NGS platforms. Chen et al. [2013]

proposed a genotype calling method by considering family structure in trios that can achieve

more accurate genotype calls as compared with one without considering the family structure

(reduce genotype calling error rate by 50%). In chapter 4, we proposed an algorithm to

integrated family information for genotype calling method of complex families.

1.3 MICROARRAY META-ANALYSIS

In this section, I will introduce the microarray meta-analysis for detecting candidate marker

and co-expression module, which motivate me to perform the comparative study of microar-

ray meta-analysis in chapter 2 and developed a co-expression meta-clustering method chapter

3.

1.3.1 Meta-analysis for candidate marker detection

The general steps and key issues for meta-analysis are (1) collect relevant microarray studies

for targeted disease hypothesis; (2) extract useful data sets (for example, raw data, p-values

or effect sizes); (3) the inclusion/exclusion criteria for microarray studies; (4) use appropriate

meta-analysis method to combine multiple studies and (5) analyze data sets and interpret the

results. In steps (1)-(3), our first concern to collect the studies is the heterogeneity between
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studies, which may be caused by different experimental settings, study design, chip platforms,

or statistical method for each individual analysis. For the issue of inclusion/exclusion criteria,

it can be arbitrary chosen by ad-hoc expert opinion, näıve sample size threshold or chip

platforms without an objective quality control procedure. Step (4) and (5) include the

selection of meta-analysis method under certain hypothesis and the result interpretation.

Many microarray meta-analysis methods have been developed and applied in the litera-

ture. First, the most common way to combine multiple studies is to combine p-values from

each single study. The traditional meta-analysis method can be traced back to 1930s, Fisher

[1925] and the minimum p-value method [Tippett et al., 1931], and later new methods were

implemented by Stouffer [Stouffer, 1949] and maximum p-value method [Wilkinson, 1951].

It is well-known that the Fisher statistic follows the chi-square distribution, which can be

dominated by single extremely significant p-value (maybe just simply due to the large sam-

ple sizes). A recent published meta-analysis called adaptive weighted (AW) Fisher’s method

proposed by Li and Tseng [2011] can avoid the potential bias from Fisher’s method. In brief,

the AW Fisher’s method searches through all possible weights to find the best adaptive

weight with the smallest derived p-value from multiple studies and the heterogeneity can be

elucidated. Song and Tseng [2012] developed r-th ordered p-value (rOP) method to consider

a robust form of maximum p-value method to identify markers differentially expressed in

“majority” of studies. Second, another typical meta-analysis method is to combine effect

sizes, either using fixed effect model (FEM) or random effect model (REM). The FEM as-

sumes there is no heterogeneity between studies and the overall effect size was estimated

by weighted effect size from each single study. Misuse of the FEM method to heterogeneity

case will under-estimate the overall effect size (when the underlying assumption of FEM

method was violated). REM method is the one takes heterogeneity between studies into

consideration, which gives different effect size to each single study. The most common vi-

sualization tool for FEM and REM methods is the forest plot, which shows the mean effect

size of single study and its confidence interval (usually 95%) and as well as combined effect.

Third, combining statistical ranks provides another meta-analysis method. The advantage

of the rank-based methods do not require normality assumption and will not be dominated

by extremely small p-value because of the large sample sizes.
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Many meta-analysis methods have been developed and successfully applied to multi-

ple microarray studies, however, there is currently no clear guideline for people to choose

the meta-analysis method properly. In the literature, there were two comparative studies

have systematically compared multiple meta-analysis methods [Hong and Breitling, 2008;

Campain and Yang, 2010], but the conclusion from these two comparative papers were

suggestive with limited insights to guide practitioners. The selection of appropriate meta-

analysis method depends both statistical and biological considerations, and this motivates

the comparative study in chapter 2

1.3.2 Meta-analysis for detecting co-expression module

Gene co-expression study is an alternative way to look at gene changes of transcriptome

studies. Genes are co-expressed if the patterns of expression are highly correlated across

samples in a data set, and may reflect possible shared function by similar expression pattern

between genes. It has been shown co-expressed genes may arise through multiple biological

pathways including cellular co-expression and common regulatory pathways [Lee et al., 2004;

Gaiteri et al., 2010]. In the literature, co-expression analysis have been used to build gene

networks, and to identify communities, modules, or genes with shared functions [Dobrin

et al., 2009; Elo et al., 2007]. In a gene co-expression network, nodes represent genes and

nodes are connected if two corresponding genes are highly correlated (co-expressed). Zhang

et al. [2005] proposed a general framework for weighted gene co-expression network analysis

(WGCNA). They assigns a connection weight for each gene pair to build co-expression

network instead of using a binary index of 0 (unconnected) or 1 (connected). Due to the

instability of module detection in each single study, this motivates me to develop meta-

clustering method to combine multiple microarray studies to construct co-expressed module

in chapter 3.
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1.4 OVERVIEW OF THE THESIS

1.4.1 Comprehensive study of microarray meta-analysis methods

More and more transcriptomic microarray studies have been generated and deposited in the

public domain, such as ArrayExpress from EBI (http://www.ebi.ac.uk/arrayexpress/), Stan-

ford Microarray Database (SMD, http://genome-www5.stanford.edu/), and Gene Expression

Omnibus (GEO) from NCBI (http://www.ncbi.nlm.nih.gov/geo/). In genomic research, mi-

croarray meta-analysis has become popular, which is a set of statistical tools for combining

results (can be p-values, effect sizes or ranks) from multiple studies target on same disease

with similar hypothesis setting. In chapter 2, we proposed a comprehensive comparative

analysis to evaluated 12 meta-analysis methods. First, we categorized the 12 meta-analysis

methods (6 methods combine p values; 2 methods combine effect sizes and 4 methods com-

bine rank statistics were briefly reviewed in the section 2.2.3) according to the three type of

hypothesis the best tested in the simulation study (see more detail section 2.3). Second, four

quantitative evaluation criteria (detection capability, biological association, stability and ro-

bustness) were used in six large-scale microarray applications (each data set contains 4 to

8 studies) to evaluate 12 meta-analysis methods were summarized in section 2.3.3. Third,

we also proposed an entropy measure in section 2.3.5 to understand the data structure of p

values of “homogeneity” or “heterogeneity” between studies if no priori information can be

obtained. Finally in the section 2.4 we will give a guideline to help practitioners select the

proper meta-analysis method in their applications.

1.4.2 Co-expression meta-clustering method and DNA variant Genome Wide

Association Studies

In addition to DE gene analysis, co-expression analysis can be used to investigate the tran-

scriptional co-regulation and gene correlations, and such results can help people build gene

networks, or investigate the modules of genes set with shared biological functions by incorpo-

rating pathway database. In chapter 3, we integrated expression (mRNA level) and GWAS

(SNPs in DNA level) studies of the molecular bases of major depressive disorder (MDD). Our
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central hypothesis is that stable brain co-regulation modules identified by meta-analysis of

multiple transcriptome studies may overlap with sets of genes and associated SNPs related to

MDD. In section 3.2.2, we developed meta-clustering method of gene co-expression analysis

by combining 11 transcriptome studies from postmortem brain of human subjects with major

depressive disorder (MDD) and non-psychiatric controls subjects. Fifty co-expression mod-

ules were identified by clustering using penalized k-medoids [Tseng, 2007], then we performed

enrichment analysis by comparing gene sets identified by GWAS (genes were identified by

significant SNPs within pre-defined nucleotide distance from the coding region of each gene)

for various sets of disorders. In the result and discussion sections, we also compared the

meta-clustering approach by combining co-expression structures from multiple studies with

the clustering result of single study and the performance was evaluated by considering vari-

ous gene sets collected from GWAS. The purpose of this study is to provide insight into the

biology of complex disease such as MDD. First, using robust clustering method to identify

modules from large-scale disease related data sets. Second, incorporating the external re-

sources (for example, GWAS results, pathway database, etc) to identify key network nodes

(genes) from robust module may potentially target to modulate the biological function.

1.4.3 Genotype calling and haplotyping in families

Next generation sequencing (NGS) is the advanced technology which not only looks beyond

the common variants (minor allele frequency > 5%) detected by GWAS, but also systemati-

cally detect the rare variants, which may help us discover the underlying disease mechanisms

more completely. However, next generation sequencing data strongly rely on advanced sta-

tistical and computational methods to generate accurate genotypes and haplotypes. Recent

studies indicated LD-aware approach and using trio-based NGS data set can obtain more

accurate genotype calls and phased haplotypes (Chen et al., 2013; Li et al., 2012). In chap-

ter 4, we extended the current method from analyzing trios to nuclear family or family with

multi-generations with affordable computational complexity. Since many sequencing projects

contain limited sample sizes, we also developed a method to analyze family-based structure

with small sample sizes by incorporating external references as high throughput sequencing
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data sets become available in 1,000 Genomes Project [Abecasis et al., 2010]. In section 4.2.2,

we focused on developing the procedure by looping over all possible parent-offspring trios to

update the probability of observed genotype given the true genotype simultaneously, which

is a pivotal step in the hidden Markov model (HMM). Through simulation studies (see sec-

tion 4.4), we evaluate the performance by using the genotype error calling rate and phasing

error (as haplotypes are provided), and we show that incorporating more offspring within

family (or complex family with multiple generations) can achieve more accurate genotype

calls than trios only, especially in low to modest depth in sequencing data. Specifically, our

new method can help obtain more accurate genotypes by incorporating external references

when analyzing sequencing data with small sample sizes.

9



Figure 1: Types of information integration of genomic studies.

(A) Horizontal genomic meta-analysis that combines different sample cohorts for the same

molecular event. (B) Vertical genomic integrative analysis that combines different molecular

events usually in the same sample cohort [Tseng et al., 2012]. “This Figure is used with

permission”
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2.0 META-ANALYSIS METHODS FOR COMBINING MULTIPLE

EXPRESSION PROFILES: COMPARISONS, STATISTICAL

CHARACTERIZATION AND AN APPLICATION GUIDELINE

This paper has been published in BMC bioinformatics Chang et al. [2013].

2.1 INTRODUCTION

Microarray technology has been widely used to identify differential expressed (DE) genes

in biomedical research in the past decade. Many transcriptomic microarray studies have

been generated and made available in public domains such as the Gene Expression Om-

nibus (GEO) from NCBI (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress from EBI

(http://www.ebi.ac.uk/arrayexpress/). From the databases, one can easily obtain multiple

studies of a relevant biological or disease hypothesis. Since a single study often has small

sample size and limited statistical power, combining information across multiple studies is

an intuitive way to increase sensitivity. Ramasamy et al. [2008] proposed a seven-step prac-

tical guidelines for conducting microarray meta-analysis: “(i) identify suitable microarray

studies; (ii) extract the data from studies; (iii) prepare the individual datasets; (iv) an-

notate the individual datasets; (v) resolve the many-to-many relationship between probes

and genes; (vi) combine the study-specific estimates; (vii) analyze, present, and interpret

results”. In the first step although theoretically meta-analysis increases the statistical power

to detect DE genes, the performance can deteriorate if problematic or heterogeneous stud-

ies are combined. In many applications, the data inclusion/exclusion criteria are based on

ad-hoc expert opinions, a näıve sample size threshold or selection of platforms without an
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objective quality control procedure. Kang et al. [2012] proposed six quantitative quality

control measures (MetaQC) for decision of study inclusion. Steps (ii)-(v) are related to data

preprocessing. Finally, Steps (vi) and (vii) involve the selection of the meta-analysis method

and interpretation of the result and are the foci of this paper.

Many microarray meta-analysis methods have been developed and applied in the liter-

ature. According to a recent review paper by Tseng et al. [2012], popular methods mainly

combine three different types of statistics: p values, effect sizes and ranks. In this chapter,

we include 12 popular as well as state-of-the-art methods in the evaluation and comparison.

Six methods (Fisher, Stouffer, adaptively weighted Fisher, minimum p value, maximum p

value and r-th ordered p value) belonged to the p value combination category, two methods

(fixed effects model and random effects model) belonged to the effect size combination cate-

gory and four methods (RankProd, RankSum, product of ranks and sum of ranks) belonged

to the rank combination category. Details of these methods and citations will be provided

in the method section. Despite the availability of many methods, pros and cons of these

methods and a comprehensive evaluation remain largely missing in the literature. To our

knowledge, Hong and Breitling [2008] and Campain and Yang [2010] are the only two com-

parative studies that have systematically compared multiple meta-analysis methods. The

number of methods compared (three and five methods, respectively) and the number of real

examples examined (two and three examples respectively with each example covering 2-5 mi-

croarray studies) were, however, limited. The conclusions of the two papers were suggestive

with limited insights to guide practitioners. In addition, as we will discuss in the Method

section, different meta-analysis methods have different underlying hypothesis setting targets.

As a result, the selection of an adequate (or optimal) meta-analysis method depends heavily

on the data structure and the hypothesis setting to achieve the underlying biological goal.

In this chapter, we compare 12 popular microarray meta-analysis methods using simu-

lation and six real applications to benchmark their performance by four statistical criteria

(detection capability, biological association, stability and robustness). Using simulation, we

will characterize the strength of each method under three different hypothesis settings (i.e.

detect DE genes in “all studies”, “majority of studies” or “one or more studies”; see Method

section for more details). We will compare the similarity and grouping of the meta-analysis

12



methods based on their DE gene detection results (by using a similarity measure and multi-

dimension scaling plot) and use an entropy measure to characterize the data structure to

determine which hypothesis setting may be more adequate in a given application. Finally,

we give a guideline to help practitioners select the best meta-analysis method under the

choice of hypothesis setting in their applications.

2.2 METHODS

2.2.1 Real data sets

Six example data sets for microarray meta-analysis were collected for evaluation in this

paper. Each example contained 4-8 microarray studies. Five of the six examples were of the

commonly seen two-group comparison and the sixth example contained relapse-free survival

outcome for breast cancer. We applied the MetaQC package to assess quality of the studies

for meta-analysis and determined the final inclusion/exclusion criteria [Kang et al., 2012].

The principal component analysis (PCA) bi-plots and the six QC measures are summarized

in Figure S1 and Table S2 and S3. Details of the data sets are available in Table S1.

2.2.2 Underlying hypothesis settings

Following the classical convention of Birnbaum [1954] and Li and Tseng [2011] (see also Tseng

et al. 2012), meta-analysis methods can be classified into two complementary hypothesis

settings. In the first hypothesis setting (denoted as HSA), the goal is to detect DE genes

that have non-zero effect sizes in all studies:

HSA : H0 :
K⋂
i=1

{θk = 0}versus Ha :
K⋂
k=1

{θk 6= 0} (2.1)

where θk is the effect size if study k. The second hypothesis setting (denoted as HSB),

however, aims to detect a DE gene if it has non-zero effect size in “one or more” studies:

HSB : H0 :
K⋂
i=1

{θk = 0}versus Ha :
K⋃
k=1

{θk 6= 0} (2.2)
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In most applications, HSA is more appropriate to detect conserved and consistent candidate

markers across all studies. However, different degrees of heterogeneity can exist in the studies

and HSB can be useful to detect study-specific markers (e.g. studies from different tissues

are combined and tissue-specific markers are expected and of interest). Since HSA is often

too conservative when many studies are combined, Song and Tseng [2012] proposed a more

practical and robust hypothesis setting (namely HSr) that targets on DE genes with non-zero

effect sizes in “majority” of studies, where majority of studies is defined as, for example, more

than 50% of combined studies (i.e. r ≥ 0.5 ·K). The robust hypothesis setting considered

was:

HS r : H0 :
K⋂
i=1

{θk = 0} versus Ha :
K∑
k=1

I{θk 6= 0} ≥ r (2.3)

A major contribution of this chapter is to characterize meta-analysis methods suitable for

different hypothesis settings (HSA, HSB and HSr) using simulation and real applications and

to compare their performance with four benchmarks to provide a practical guideline.

2.2.3 Implementation and methods

Microarray meta-analysis implementation Assume that we have K microarray studies to

combine. For study k (1 ≤ k ≤ K), denote by xgsk the gene expression intensity of gene

g (1 ≤ g ≤ G) in sample s (1 ≤ s ≤ Sk; Sk the number of samples in study k), and

ysk the disease/outcome variable of sample s. The disease/outcome variable can be binary,

multi-class, continuous or censored, representing the disease state, severity or prognosis

outcome (e.g. tumor versus normal or recurrence survival time). The goal of microarray

meta-analysis is to combine information of K studies to detect differentially expressed (DE)

genes associated with the disease/outcome variable. Such DE genes serve as candidate

markers for disease classification, diagnosis or prognosis prediction and help understand the

genetic mechanisms underlying a disease. In this chapter, before meta-analysis we first

applied penalized t statistics to each individual study to generate p values or DE ranks for

a binary outcome [Tusher et al., 2001]. In contrast to traditional t-statistics, the penalized

t-statistic adds a fudge parameter s0 to stabilize the denominator (T = (X̄ − Ȳ )/(ŝ + s0);

X̄ and Ȳ are means of case and control groups) and to avoid a large t-statistic due to
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small estimated variance ŝ. The p values were calculated using the null distributions derived

from conventional non-parametric permutation analysis by randomly permuting the case and

control labels for 10,000 times [Pesarin and Salmaso, 2010]. For censored outcome variables,

Cox proportion hazard models and log-rank tests were used [Cox, 1972]. Meta-analysis

methods were then used to combine information across studies and generate meta-analyzed

p values. To account for multiple comparisons, the Benjamini and Hochberg procedure was

used to control false discovery rate (FDR) [Benjamini and Hochberg, 1995]. All methods

were implemented using the ”MetaDE” package in R [Wang et al., 2012a]. Data sets and all

programming codes are available at http://www.biostat.pitt.edu/bioinfo/publication.htm.

Microarray meta-analysis methods According to a recent review paper [Tseng et al., 2012],

microarray meta-analysis methods can be categorized into three types: combine p values,

combine effect sizes and combine ranks. Below, we briefly describe 12 methods that were

selected for comparison.

I. Combined p values

Fisher The Fisher’s method sums up the log-transformed p values obtained from individ-

ual studies [Fisher, 1925]. The combined Fisher’s statistic χ2
Fisher = −2

∑k
i=1 log(pi) follows a

χ2 distribution with 2k degrees of freedom under the null hypothesis (assuming null p value

are uniformly distributed). Note that we perform permutation analysis instead of such para-

metric evaluation for Fisher and other methods in this paper. Smaller p values contribute

larger scores to the Fisher’s statistic.

Stouffer Stouffer’s method sums the inverse normal transformed p values. Stouffer’s

statistics TStouffer =
∑k

i=1 zi√
k

(zi = Φ−1(pi), where Φ is standard normal c.d.f) follows a stan-

dard normal distribution under the null hypothesis [Stouffer, 1949]. Similar to Fisher’s

method, smaller p values contribute more to the Stouffer’s score, but in a smaller magni-

tude.

Adaptively weighted (AW) Fisher The AW Fisher’s method assigns different weights to

each individual study (χ2
AW = −ΣK

k=1wk · log(Pk), wk = 0 or 1) and it searches through

all possible weights to find the best adaptive weight with the smallest derived p value [Li

and Tseng, 2011]. One big advantage of this method is its ability to indicate which studies

contribute to the evidence aggregation and elucidates heterogeneity in the meta-analysis.
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For Fisher, Stouffer and minP methods targeted on HSB, candidate markers differentially

expressed in one or more studies are detected with no indication of which studies are involved

in differential expression. For example, Fisher’s method gives the same statistical significance

for gene A with p values= (0.1, 0.1, 0.1, 0.1) and gene B with p values= (0.0001, 1, 1, 1); the

two genes, however, have very different biological interpretations. The adaptively weighted

Fisher’s method (AW) was developed to improve biological interpretation and statistical

power. AW considered a weighted Fisher score U(w1, ..., wk) = −2
∑

k wk · log pk (where

weight wk equals 0 or 1) and the test statistic was defined as the smallest p value of all

2k − 1 possible weighted Fisher score (i.e. TAW = minw1,...,wK
p(U(w1, ..., wK))), where

p(U(w1, ..., wK)) is the p value of U(w1, ..., wk). The resulting best adaptive weight (i.e.

W ∗ = arg minw1,...,wK
p(U(w1, ..., wK))) provides indication of which studies contribute to

the statistical significance of meta-analysis. For example, w∗ = (1, 1, 1, 1) for gene A shows

statistical significance in all four studies and w∗ = (1, 0, 0, 0) for gene B shows statistical

significance in only the first study. AW method is admissible under classical two-sample

Gaussian scenario and it generally has better statistical power than traditional Fisher and

minP methods in various kinds of alternative hypothesis in HSB. For more details, refer to

Li and Tseng [2011].

Minimum p value (minP) The minP method takes the minimum p value among the K

studies as the test statistic [Tippett et al., 1931]. It follows a beta distribution with degrees

of freedom α = 1 and β = K under the null hypothesis. This method detects a DE gene

whenever a small p value exists in any one of the K studies.

Maximum p value (maxP) The maxP method takes the maximum p value as the test

statistic [Wilkinson, 1951]. It follows a beta distribution with degrees of freedom α = K and

β = 1 under the null hypothesis. This method targets on DE genes that have small p values

in “all” studies.

r-th ordered p value (rOP) The rOP method takes the r-th order statistic among sorted 

p values of K combined studies. Under the null hypothesis, the statistic follows a beta 

distribution with degrees of freedom α = r and β = K − r + 1. The minP and maxP 

methods are special cases of rOP. In Song and Tseng [2012], rOP is considered a robust form of 

maxP (where r is set as greater than 0.5 · K) to identify candidate markers differentially 

expressed in "majority" of studies.
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II. Combined effect size

Fixed effects model (FEM) FEM combines the effect sizes across K studies by assuming

a simple linear model with an underlying true effect size plus a random error in each study.

Random effects model (REM) REM extends FEM by allowing random effects for the

inter-study heterogeneity in the model [Choi et al., 2003]. The meta-analysis method by

combining effect sizes from several studies is a t-test based modeling approach. The effect size

for a certain gene in the ith study, and i = 1, 2, ..., K is defined as di = T̄i−C̄i

Si
, where T̄i, C̄i and

Si denote the means of treatment and control group and the estimate of the pooled standard

deviation, respectively. An unbiased estimate for di is obtained as d
′
i = di−3di/(4(ni−2−1))

and the estimated variance of the unbiased effect size is σ̂2
di

= (n−1
it +n−1

ic )+d2
i ((nit+nic))

−1,

where ni = nit + nic is the sample size in the ith study; nit and nic are the sample sizes of

treatment and control group in the ith study respectively. From the number of studies k, a

hierarchical model is given as

di = θi + εi, εi ∼ N(0, s2
i )

θi = µ+ δi, δi ∼ N(0, τ 2)

where s2
i is the variance within certain study k; τ 2 is the variance (random effect) between

studies and µ is the overall mean, which is the parameter of interest. di and s2
i given by d

′
i

and σ̂2
di

are described above. τ 2 = 0 means that there is no variance between studies, hence

the hierarchical model reduces to a fixed effects model (FEM), di = µ + εi, εi ∼ N(0, s2
i ).

Otherwise, the hierarchical model is a random effects model (REM), di = µ + δi + εi,

εi ∼ N(0, s2
i ) and δi ∼ N(0, τ 2). The τ̂ 2 can be estimated by a method proposed by

DerSimonian and Laird [1986].

III. Combined rank statistics

RankProd (RP) and RankSum (RS) RankProd and RankSum are based on the common

biological belief that if a gene is repeatedly at the top of the lists ordered by up- or down-

regulation fold change in replicate experiments, the gene is more likely a DE gene [Hong

et al., 2006]. In detail, suppose there are n studies with (niT , niC) replicates, i = 1, 2, ..., k.

Below is the algorithm of finding up-regulated differential genes from Rank Product method
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proposed by Hong et al. [2006]. In the beginning, the pair-wise ratios within each study of

their fold-changes were calculated (i.e., for study i, Tij/Cil, j = 1, 2, ..., niT , l = 1, 2, ..., niC ,

and form ki = niT × niC comparisons:

(1) Define the statistic of rank product RP up
g = (ΠiΠkr

up
g,i,k)

1/k, where k = k1 + k2 + · · ·+ kn,

and rupg,i,k is the position of gene g in the list of genes in the ith study under kth comparison

sorted by decreasing pair-wise ratios calculated before.

(2) Do permutations in each array independently for B times and calculate the statistics

RP
up(1)
g , RP

up(2)
g , ..., RP

up(B)
g , the same in step (1).

(3) The permutation p-value and FDR assessed by permutation within each gene can be

obtained by

pg = (1/GB)ΣbΣgI(|RP up(b)
g | ≤ RP up

g )

FDRg =
(1/B)

∑
b

∑
g I(|RP up(b)

g | ≤ RP up
g )∑

g I(|RP up(b)
g | ≤ RP up

g )

In rank sum (RankSum) method, the statistic RSupg = (
∑

i

∑
k r

up
g,i,k)

1/k was used to

replace the statistic RP up
g from the algorithm of rank product (RankProd) mentioned above.

This method only considers gene ranks rather than absolute expression values, which leads

to its robustness against heterogeneity across different studies.

Product of ranks (PR) and Sum of ranks (SR) These two methods apply a näıve product

or sum of the DE evidence ranks across studies Dreyfuss et al. [2009]. Suppose Rgk represents

the rank of p value of gene g among all genes in study k. The test statistics of PR and SR

are calculated as PRg =
∏K

k=1Rgk and SRg =
∑K

k=1Rgk, respectively. P values of the test

statistics can be calculated analytically or obtained from a permutation analysis. Note that

the ranks taken from the smallest to largest (the choice in the method) are more sensitive

than ranking from largest to smallest in the PR method, while it makes no difference to SR.
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2.2.4 Characterization of meta-analysis methods

MDS plots to characterize the methods The multi-dimensional scaling (MDS) plot is a use-

ful visualization tool for exploring high-dimensional data in a low-dimensional space [Borg,

2005]. In the evaluation of 12 meta-analysis methods, we proposed a similarity measure

between two ordered DE gene list (more detail in the section 2.2.6) for every pair of methods

to quantify the similarity of their DE analysis results in a given example. A dissimilarity

measure is then defined as one minus the adjusted DE similarity measure and the dissimilar-

ity measure is used to generate an MDS plot of the 12 methods. In the MDS plot, methods

that are clustered in a neighbourhood indicate that they produce similar DE analysis results.

Entropy measure to characterize data sets As indicated in the Section of underlying hypoth-

esis settings, selection of the most suitable meta-analysis method(s) largely depends on their

underlying hypothesis setting (HSA, HSB and HSr). The selection of a hypothesis setting for

a given application should be based on the experimental design, biological knowledge and the

associated analytical objectives. There are, however, occasions that little prior knowledge or

preference is available and an objective characterization of the data structure is desired in a

given application. For this purpose, we developed a data-driven entropy measure to charac-

terize whether a given meta-analysis data set contains more HSA-type markers or HSB-type

markers [Martin and England, 2011]. The algorithm is described below:

1. Apply Fisher’s meta-analysis method to combine p values across studies to identify the

top H candidate markers. Here we use H = 1, 000. H represents the rough number of

DE genes (in our belief) that are contained in the data.

2. For each selected marker, we defined the standardized minus p value score for gene g

in the kth study as lgk = − log(pgk)/ −
∑K

k=1 log(pgk). Note that 0 ≤ lgk ≤ 1, large lgk

corresponds to more significant p value pgk, and
∑K

k=1 lgk = 1.

3. The entropy of gene g is defined as eg = −
∑K

k=1 lgk log(lgk). A box-plots of entropies of

the top H genes is generated for each meta-analysis application.

Intuitively, a high entropy value indicates that the gene has small p values in all or most

studies and is of HSA or HSr-type. Conversely, genes with small entropy have small p values

in one or only few studies where HSB-type methods are more adequate. When calculating
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lgk in step 2, we capped − log(pgk) at 10 to avoid contributions of close-to-zero p values that

can generate near-infinite scores. The entropy box-plots helps determine an appropriate

meta-analysis hypothesis setting if no pre-set biological objective exists.

2.2.5 Evaluation criteria

For objective quantitative evaluation, we developed the following four statistical criteria to

benchmark performance of the methods.

Detection capability The first criterion considers the number of DE genes detected by

each meta-analysis method under the same pre-set FDR threshold (e.g. FDR= 1%). Al-

though detecting more DE genes does not guarantee better “statistical power”, this cri-

terion has served as a surrogate of statistical power in previous comparative studies [Wu

et al., 2005]. An implicit assumption underlying this criterion is that the statistical pro-

cedure to detect DE genes in each study and the FDR control in the meta-analysis are

accurate (or roughly accurate). To account for data variability in the evaluation, we boot-

strapped (i.e. sampled with replacement) the samples in each study for B = 50 times and

calculated the number of detected DE genes under the pre-set FDR threshold with 5%. De-

note by rmeb the rank of detection power performance (the smaller the better) of method

m (1 ≤ m ≤ 12) in example e (1 ≤ e ≤ 6) and in the bth 1 ≤ b ≤ 50 bootstrap sim-

ulation. The mean standardized rank (MSR) for method m and example e is calculated

as MSRme =
∑B

b=1(rmeb/#of methods compared)/B and the aggregated standardized rank

(ASR) is calculated as ASRm =
∑6

e=1(MSRme)/6, representing the overall performance of

method m across all six examples. Table S4 shows the MSR and ASR of all 12 methods and

Figure 3 (in the result section) shows plot of mean number of detected DE genes with error

bars of standard errors for each method ordered by ASR. We note that MSR and ASR are

both standardized between 0 and 1. The standardization in MSR is necessary because in

the breast cancer survival example we cannot apply FEM, REM, RankSum and RankProd

as they are developed only for a two-group comparison.

Biological association The second criterion requires that a good meta-analysis method

should detect a DE gene list that has better association with pre-defined “gold standard”
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pathways related to the targeted disease. Such a “gold standard” pathway set should

be obtained from biological knowledge for a given disease or biological mechanism un-

der investigation. However, since it is well-known that pathway collections are always

incomplete and erroneous, such prior knowledge may be missing or arguable by differ-

ent experts. To facilitate this evaluation without bias, we developed a computational

and data-driven approach to determine a set of surrogate disease-related pathways out

of a large collection of pathways by combining pathway enrichment analysis results from

each single study. Specifically, we first collected 2,287 pathways (gene sets) from MSigDB

(http://www.broadinstitute.org/gsea/msigdb/): 1,454 pathways from “GO,” 186 pathways

from “KEGG,” 217 pathways from “BIOCARTA” and 430 pathways from “REACTOME”,

respectively. We filtered out pathways with less than 5 genes or more than 200 genes and

2,113 pathways were left for the analysis. DE analysis was performed in each single study

separately and pathway enrichment analysis was performed for all the 2,113 pathways by the

Kolmogorov-Smirnov (KS) association test. Denote by puk the resulting pathway enrichment

p value for pathway u (1 ≤ u ≤ 2, 113) and study k (1 ≤ k ≤ K). For a given study k,

enrichment ranks over pathways were calculated as ruk = ranku(puk). A rank-sum score for

a given pathway u was then derived as su =
∑K

k=1 ruk. Intuitively, pathways with small

rank-sum scores indicate that they are likely associated with the disease outcome by aggre-

gated evidence of the K individual study analyses. We chose the number of top D pathways

that had the smallest rank-sum scores as the surrogate disease-related pathways and used

these to proceed with the biological association evaluation of meta-analysis methods in the

following.

Given the selected surrogate pathways D, the following procedure was used to evaluate

performance of the 12 meta-analysis methods for a given example e (1 ≤ e ≤ 6). For each

meta-analysis method m (1 ≤ m ≤ M = 12), the DE analysis result was associated with

pathway u and the resulting enrichment p value by KS-test was denoted by P̃med (1 ≤ d ≤ D).

The rank of P̃med for method m among 12 methods was denoted by vmed = rankm(P̃med).

Similar to the detection power evaluation, we calculated the mean standardized rank (MSR)

for method m and example e as MSRme =
∑D

d=1(vmeb/#of methods compared)/D and the

aggregated standardized rank (ASR) as ASRm =
∑6

e=1(MSRme)/6, representing the overall
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performance of method m. To select the parameter D for surrogate disease-related pathways,

Supplement Figure S4 shows the trend of MSRme (on the y-axis) versus D (on the x-axis)

as D increases. The result indicated that the performance evaluation using different D only

minimally impacted the conclusion when D > 30. We choose D = 100 throughout this

paper.

Note that we used the KS test, instead of the popular Fisher’s exact test because each

single study detected variable number of DE genes under a given FDR cutoff and the Fisher’s

exact test is usually not powerful unless a few hundred DE genes are detected. On the other

hand, the KS test does not require an arbitrary p value cutoff to determine the DE gene list

for enrichment analysis.

Stability The third criterion examines whether a meta-analysis method generates stable

DE analysis results. To achieve this goal, we randomly split samples into half in each study

(so that cases and controls are as equally split as possible). The first half of each study

was taken to perform the first meta-analysis and generate a DE analysis result. Similarly,

the second half of each study was taken to perform a second meta-analysis. The generated

DE analysis results from two separate meta-analyses were compared by the adjusted DE

similarity measures (described in the next section). The procedure was repeated for B = 50

times. Denote by Smeb the adjusted DE similarity measure of method m of the bth simulation

in example e. Similar to the first two criteria, MSR and ASR are calculated based on Smeb

to evaluate the methods.

Robustness The final criterion investigates the robustness of a meta-analysis method

when an outlying study is randomly added to the meta-analysis. For each of the six real

examples, we randomly picked one irrelevant study from the other five examples and added

it to the meta-analysis. The adjusted DE similarity measure was calculated between the

original meta-analysis and the new meta-analysis with an added outlier. A higher adjusted

similarity measure shows better robustness againt inclusion of the outlying study. This

procedure is repeated until all irrelevant studies are used. The MSR and ASR are then

calculated based on the adjusted DE similarity measures to evaluate the methods.
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2.2.6 Similarity measure between two ordered DE gene lists

To compare results of two DE detection methods (from single study analysis or meta-

analysis), a commonly used method in the literature is to take the DE genes under a certain

p value or FDR threshold, plot the Venn diagram and compute the ratio of overlap. This

method, however, greatly depends on the selection of the FDR threshold and is unstable.

Another approach is to take the generated ordered DE gene lists from two methods and com-

pute the non-parametric Spearman rank correlation [Spearman, 1904]. This method avoids

the arbitrary FDR cutoff but gives, say, the top 100 important DE genes and the bottom

100 non-DE genes equal contribution. To circumvent this pitfall, Li et al. [2011] proposed a

parametric reproducibility measure for ChIP-seq data in the ENCODE project. Yang et al.

[2006] introduced an OrderedList measure to quantify similarity of two ordered DE gene

lists. For simplicity, we extended the OrderedList measure into a standardized similarity

score for the evaluation purpose in this paper. Specifically, suppose G1 and G2 are two

ordered DE gene lists (e.g. ordered by p values) and small ranks represent more significant

DE genes. We denote by On(G1, G2) the number of overlapped genes in the top n genes of

G1 and G2. As a result, 0 ≤ On(G1, G2) ≤ n and a large On(G1, G2) value indicates high

similarity of the two ordered lists in the top n genes. A weighted average similarity score is

calculated as S(G1, G2) =
∑G

n=1 e
−αn ·On(G1, G2), where G is the total number of matched

genes and the power α controls the magnitude of weights emphasized on the top ranked

genes. When α is larger top ranked genes are weighted higher in the similarity measure.

The expected value (under the null hypothesis that the two gene rankings are randomly gen-

erated) and maximum value of S can be easily calculated: Enull(S(G1, G2)) =
∑G

n=1 e
−αn · n

2

G

and max(S(G1, G2)) =
∑G

n=1 e
−αn · n We apply an idea similar to the adjusted Rand index

[Hubert and Arabie, 1985] used to measure similarity of two clustering results and define the

adjusted DE similarity measure as

S∗(G1, G2) =
S(G1, G2)− Enull(S(G1, G2))

max(S(G1, G2))− Enull(S(G1, G2))
(2.4)

This measure ranges between −1 to 1 and gives an expected value of 0 if two ordered gene

lists are obtained by random chance. Yang et al. [2006] proposed a resampling-based ROC
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method to estimate the best selection of α. Since the number of DE genes in our examples

is generally high, we choose a relatively small α = 0.001 throughout this paper. We have

tested different α and found that the results were similar (Figure S7).

2.3 RESULTS

2.3.1 Simulation setting

We conducted simulation studies to evaluate and characterize the 12 meta-analysis methods

for detecting biomarkers in the underlying hypothesis settings of HSA, HSB or HSr. The

simulation algorithm is described below:

1. We simulated 800 genes with 40 gene clusters (20 genes in each cluster) and other 1,200

genes do not belong to any cluster. The cluster indexes Cg for gene g(1 ≤ g ≤ 2, 000)

were randomly sampled, such that
∑
I{Cg = 0} = 1, 200 and

∑
I{Cg = c} = 20, (1 ≤

c ≤ 40).

2. For genes in cluster c(1 ≤ c ≤ 40) and in study k(1 ≤ k ≤ 5), we sampled
∑′

ck ∼

W−1(Ψ, 60), where Ψ = 0.5I20×20 + 0.5J20×20, W−1 denotes the inverse Wishart distri-

bution, I is the identity matrix and J is the matrix with all elements equal 1. We then

standardized
∑′

ck into
∑

ck, where the diagonal elements are all 1’s.

3. 20 genes in cluster c was denoted by the index of gc1,...,gc20 , i.e. Cgcj = c, where 1 ≤ c ≤ 40

and 1 ≤ j ≤ 20. We sampled gene expression levels of genes in cluster c for sample n as

(X
′

gc1nk
, . . . , X

′

gc20nk
)
T ∼ MVN(0,

∑
ck) where 1 ≤ n ≤ 100 and 1 ≤ k ≤ 5, and sample

expression level for the gene g ∼ N(0, σ2
k) which is not in any cluster for sample n, where

1 ≤ n ≤ 100, 1 ≤ k ≤ 5 and σ2
k was uniformly distributed from [0.8, 1.2], which indicates

different variance for study k.

4. For the first 1,000 genes (1 ≤ g ≤ 1, 000), kg (the number of studies that are differentially

expressed for gene g) was generated by sampling kg = 1, 2, 3, 4, 5, respectively. For the

next 1,000 genes (1, 001 ≤ g ≤ 2, 000), kg = 0 represents non-DE genes in all five studies.
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5. To simulate expression intensities for cases, we randomly sampled δgk ∈ {0, 1}, such that∑
k δgk = kg. If δgk = 1, gene g in study k was a DE gene, otherwise it was a non-DE

gene. When δgk = 1, we sampled expression intensities µgk from a uniform distribution

in the range of [0.5, 3], which means we considered the concordance effect (up-regulated)

among all simulated studies. Hence, the expression for control samples are Xgnk = X
′

gnk,

and case samples are Ygnk = X
′

g(n+50)k + µgk · δgk, for 1 ≤ g ≤ 2, 000, 1 ≤ n ≤ 50 and

1 ≤ k ≤ 5

In the simulation study, we had 1,000 non-DE genes in all five studies (kg = 0), and 1,000

genes were differentially expressed in 1 − 5 studies (kg = 1, 2, 3, 4, 5). On average, we had

roughly the same number (∼ 200) of genes in each group of kg = 1, 2, 3, 4, 5. See Figure S2

for the heatmap of a simulated example (red represents up-regulated genes). We applied the

12 meta-analysis methods under FDR control at 5%. With the knowledge of true kg, we were

able to derive the sensitivity and specificity for HSA and HSB, respectively. In HSA, genes

with kg = 5 were the underlying true positives and genes with kg = 0−4 were the underlying

true negatives; in HSB, genes with kg = 1− 5 were the underlying true positives and genes

with kg = 0 were the true negatives. By adjusting the decision cutoff, the receiver operating

characteristic (ROC) curves and the resulting area under the curve (AUC) were used to

evaluate the performance. We simulated 50 data sets and reported the means and standard

errors of the AUC values. AUC values range between 0 and 1. AUC= 50% represents a

random guess and AUC= 1 reaches the perfect prediction. The above simulation scheme

only considered the concordance effect sizes (i.e. all with up-regulation when a gene is DE in

a study) among five simulated studies. In many applications, some genes may have p-value

statistical significance in the meta-analysis but the effect sizes are discordant (i.e. a gene is

up-regulation in one study but down-regulation in another study). To investigate that effect,

we performed a second simulation that consider random discordant cases. In step 5, the µgk

became a mixture of two uniform distributions: πgk ·Unif [−3,−0.5]+(1−πgk) ·Unif [0.5, 3],

where πgk is the probability of gene g(1 ≤ g ≤ 2, 000) in study k(1 ≤ k ≤ 5) to have

a discordant effect size (down-regulated). We set πgk = 0.2 for the discordant simulation

setting.
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2.3.2 Simulation results to characterize the methods

The simulation study provided the underlying truth to characterize the meta-analysis meth-

ods according to their strengths and weaknesses for detecting DE genes of different hypothesis

settings. The performances of 12 methods were evaluated by receiver operating characteris-

tic (ROC) curves, which is a visualization tool that illustrates the sensitivity and specificity

trade-off, and the resulting area under the ROC curve (AUC) under two different hypothesis

settings of HSA and HSB. Table 1 shows the detected number of DE genes under nomi-

nal FDR at 5%, the true FDR and AUC values under HSA and HSB for all 12 methods.

The values were averaged over 50 simulations and the standard errors are shown in the

parentheses.

Figure 2 shows the histograms of the true number of DE studies (i.e. kg) among the

detected DE genes under FDR= 5% for each method. It is clearly seen that minP, Fisher,

AW, Stouffer and FEM detected HSB-type DE genes and had high AUC values under HSB

criterion (0.98-0.99), compared to lower AUC values under HSA criterion (0.79-0.9). For

these methods, the true FDR for HSA generally lost control (0.41-0.44). On the other hand,

maxP, rOP and REM had high AUC under HSA criterion (0.96-0.99) (true FDR = 0.068-

0.117) compared to HSB (0.75-0.92). maxP detected mostly HSA-type of markers and rOP

and REM detected mostly HSr-type DE genes. PR and SR detected mostly HSA-type DE

genes but they surprisingly had very high AUC under both HSA and HSB criteria. The

RankProd method detected DE genes between HSr and HSB types and had a good AUC

value under HSB. The RankSum detected HSB-type DE genes but had poor AUC values

(0.5) for both HSA and HSB. Table 1 includes our concluding characterization of the targeted

hypothesis settings for each meta-analysis method (see also Figure S5 of the ROC curve and

AUC of HSA-type and HSB-type in 12 meta-analysis methods). Figure S3 shows the result

for the second discordant simulation setting. The numbers of studies with opposite effect size

are represented by different colours in histogram plot (green: all studies with concordance

effect size; blue: one study has opposite effect size with the remaining; red: two studies have

opposite effect size with the remaining). In summary, almost all meta-analysis methods could

not avoid inclusion of genes with opposite effect sizes. Particularly, methods utilizing p-values
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from two-sided tests (e.g. Fisher, AW, minP, maxP and rOP) could not distinguish direction

of effect sizes. Stouffer was the only method that accommodated the effect size direction

in its z-transformation formulation but its ability to avoid DE genes with discordant effect

sizes seemed still limited. Owen [2009] proposed a one-sided correction procedure for Fishers

method to avoid detection of discordant effect sizes in meta-analysis. The null distribution

of the new statistic, however, became difficult to derive. The approach can potentially be

extended to other methods and more future research will be needed for this issue.

2.3.3 Results of the four evaluation criteria

Detection capability Figure 3 shows the number of DE genes identified by each of the 12

meta-analysis methods (FDR= 10% for MDD and breast cancer due to their weak signals

and FDR= 1% for all the others). Each plot shows mean with error bars of standard error

for 50 bootstrapped data sets. Table S4 shows the MSR and ASR for each method in the

six examples. The methods in Figure 3 are ordered according to their ASR values. The

top six methods with the strongest detection power were those that detected HSB-type DE

genes from the conclusion of Table 1: Fisher, AW, Stouffer, minP, FEM and RankSum. The

order of performance of these six methods was pretty consistent across all six examples. The

next four methods were rOP, RankProd, maxP and REM and they targeted on either HSr

or HSA. PR and SR had the weakest detection capability, which was consistent with the

simulation result in Table 1.

Biological association Figure 4 shows plots of mean with error bars of standard error from

the pathway association p values (minus log-transformed) of the top 100 surrogate disease-

related pathways for the 12 methods. Table S5 shows the corresponding MSR and ASR.

We found that Stouffer, Fisher and AW had the best performance among the 12 methods.

Surprisingly we found that although PR and SR had low detection capability in simulation

and real data, they consistently had relatively high biological association results. This may

be due to the better DE gene ordering results these two methods provide, as was also shown

by the high AUC values under both hypothesis settings in the simulation.

Stability Figure 5 shows the plots of mean with error bars of standard error of stability
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calculated by adjusted DE similarity measure. Table S6 contains the corresponding MSR

and ASR. In summary, RankProd and RankSum methods were the most stable meta-analysis

methods probably because these two nonparametric approaches take into account all possible

fold change calculations between cases and controls. They do not need any distributional

assumptions, which provided stability even when sample sizes were small [Breitling and

Herzyk, 2005]. The maximum p value method consistently had the lowest stability in all

data sets, which is somewhat expected. For a given candidate marker with a small maximum

p value, the chance that at least one study has significantly inflated p values is high when

sample size is reduced by half. The stability measures in the breast cancer example were

generally lower than other examples. This is mainly due to the weak signals for survival

outcome association, which might be improved if larger sample size is available.

Robustness Figure 6 shows the plots of mean with error bard of standard error of robustness

calculated by adjusted DE similarity measure between the original meta-analysis and the

new meta-analysis with an added outlier. Table S7 shows the corresponding MSR and ASR

values. In general, methods suitable for HSB (minP, AW, Fisher and Stouffer) have better

robustness than methods for HSA or HSr (e.g. maxP and rOP). The trend is consistent in

the prostate cancer, brain cancer and IPF examples but is more variable in the weak-signal

MDD and breast cancer examples. RankSum was surprisingly the most sensitive method to

outliers, while RankProd performs not bad.

2.3.4 Characterization of methods by MDS plots

We applied the adjusted DE similarity measure to quantify the similarity of the DE gene or-

ders from any two meta-analysis methods. The resulting dissimilarity measure (i.e. one

minus adjusted similarity measure) was used to construct the multidimensional scaling

(MDS) plot, showing the similarity/dissimilarity structure between the 12 methods in a

two-dimensional space. When two methods were close to each other, they generated similar

DE gene ordering. The patterns of MDS plots from six examples generated quite consistent

results (Figure S6). Figure 7(a) shows an aggregated MDS plot where the input dissimilarity

matrix is averaged from the six examples. We clearly observed that Fisher, AW, Stouffer,
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minP, PR and SR were consistently clustered together in all six individual and the aggre-

gated MDS plot (labeled in red). This is not surprising given that these methods all sum

transformed p value evidence across studies (except for minP). Two methods to combine ef-

fect sizes and two methods to combine ranks (FEM, REM, RankProd and RankSum labeled

in blue) are consistently clustered together. Finally, the maxP and rOP methods seem to

form a third loose cluster (labeled in green).

2.3.5 Characterization of data sets by entropy measure

From the simulation study, selection of a most suitable meta-analysis method depends on the

hypothesis setting behind the methods. The choice of a hypothesis setting mostly depends

on the biological purpose of the analysis; that is, whether one aims to detect candidate

markers differentially expressed in “all” (HSA), “most” (HSr) or “one or more” (HSB) studies.

However, when no biological prior information or preference exists, the entropy measure can

be objectively used to determine the choice of hypothesis setting. The analysis identifies

the top 1,000 genes from Fisher’s meta-analysis method and the gene-specific entropy of

each gene is calculated. When the entropy is small, the p values are small in only one or

very few studies. Conversely, when the entropy is large, most or all of the studies have

small p values. Figure 7(b) shows the box-plots of entropy of the top 1,000 candidate genes

identified by Fisher’s method in the six data sets. The result shows that prostate cancer

comparing primary and metastatic tumor samples had the smallest entropy values, which

indicated high heterogeneity across the three studies and that HSB should be considered

in the meta-analysis. On the other hand, MDD had the highest entropy values. Although

the signals of each MDD study were very weak, they were rather consistent across studies

and application of HSA or HSr was adequate. For the other examples, we suggest using the

robust HSr unless other prior biological purpose is indicated.
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2.4 CONCLUSIONS AND DISCUSSIONS

2.4.1 An application guideline for practitioners

From the simulation study, the 12 meta-analysis methods were categorized into three hy-

pothesis settings (HSA, HSB and HSr), showing their strengths for detecting different types

of DE genes in the meta-analysis (Figure 2 and the second column of Table 2). For exam-

ple, maxP is categorized to HSA since it tends to detect only genes that are differentially

expressed in all studies. From the results using four evaluation criteria, we summarized the

rank of ASR values (i.e. the order used in Figure 3- Figure 6) and calculated the rank sum

of each method in Table 2. The methods were then sorted first by the hypothesis setting

categories and then by the rank sum. The clusters of methods from the MDS plot were also

displayed. For methods in the HSA category, we surprisingly see that the maxP method

performed among the worst in all four evaluation criteria and should be avoided. PR was

a better choice in this hypothesis setting although it provides a rather weak detection ca-

pability. For HSB, Fisher, AW and Stouffer performed very well in general. Among these

three methods, we note that AW has an additional advantage to provide an adaptive weight

index that indicates the subset of studies contributing to the meta-analysis and characterizes

the heterogeneity (e.g. adaptive weight (1,0,...) indicates that the marker is DE in study

1 but not in study 2, etc.). As a result, we recommend AW over Fisher and Stouffer in

the HSB category. For HSr, the result was less conclusive. REM provided better stability

and robustness but sacrificed detection capability and biological association. On the other

hand, rOP obtained better detection capability and biological association but was neither

stable nor robust. In general, since detection capability and biological association are of

more importance in the meta-analysis and rOP has the advantage to link the choice of r in

HSr with the rOP method (e.g. when r = 0.7 · K, we identify genes that are DE in more

than 70% of studies), we recommend rOP over REM.

Below, we provide a general guideline for a practitioner when applying microarray meta-

analysis. Data sets of a relevant biological or disease hypothesis are firstly identified, prepro-

cessed and annotated according to Step (i) - (v) in Ramasamy et al. [2008]. Proper quality
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assessment should be performed to exclude studies with problematic quality (e.g. with the

aid of MetaQC as we did in the six examples). Based on the experimental design and bi-

ological objectives of collected data, one should determine whether the meta-analysis aims

to identify biomarkers differentially expressed in all studies (HSA), in one or more studies

(HSB) or in majority of studies (HSr). In general, if higher heterogeneity is expected from,

say, heterogeneous experimental protocol, cohort or tissues, HSB should be considered. For

example, if the combined studies come from different tissues (e.g. the first study uses periph-

eral blood, the second study uses muscle tissue and so on), tissue-specific markers may be

expected and HSB should be applied. On the contrary, if the collected studies are relatively

homogeneous (e.g. use the same array platform or from the same lab), HSr is generally

recommended, as it provides robustness and detects consistent signals across the majority of

studies. In the situation that no prior knowledge is available to choose a desired hypothesis

setting or if the researcher is interested in a data-driven decision, the entropy measure in

Figure 7(b) can be applied and the resulting box-plot can be compared to the six examples

in this paper to guide the decision. Once the hypothesis setting is determined, the choice of

a meta-analysis method can be selected from the discussion above and Table 2.

2.4.2 Conclusion

In this paper, we performed a comprehensive comparative study to evaluate 12 microarray

meta-analysis methods using simulation and six real examples with four evaluation criteria.

We clarified three hypothesis settings that were implicitly assumed behind the methods.

The evaluaion results produced a practical guideline to inform biologists the best choice of

method(s) in real applications.

With the reduced cost of high-throughput experiments, data from microarray, new se-

quencing techniques and mass spectrometry accumulate rapidly in the public domain. In-

tegration of multiple data sets has become a routine approach to increase statistical power,

reduce false positives and provide more robust and validated conclusions. The evaluation

in this paper focuses on microarray meta-analysis but the principles and messages apply

to other types of genomic meta-analysis (e.g. GWAS, methylation, miRNA and eQTL).
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When next-generation sequencing technology becomes more affordable, sequencing data will

become more prevalent as well and similar meta-analysis techniques will apply. For these dif-

ferent types of genomic meta-analysis, similar comprehensive evaluation could be performed

and application guidelines should be established as well.
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Figure 2: The histograms of the true number of DE studies were detected as DE

genes under FDR = 5% in each method.
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Table 1: The detected number of DE genes (at FDR= 5%), the true FDR, AUC values

under HSA and HSB and the concluding characterization of targeted hypothesis setting of

each method.

maxP rOP minP Fisher AW Stouffer

detected # 321 522 1005 1000 1000 974

(se) (2.2) (2.35) (0.85) (1.06) (1.05) (1.5)

True FDR (HSA) 0.068 0.18 0.447 0.444 0.444 0.43

(se) (0.008) (0.012) (0.0006) (0.0007) (0.0008) (0.0009)

True FDR (HSB) 0.007 0.011 0.016 0.017 0.016 0.022

(se) (0.0005) (0.0004) (0.0006) (0.0006) (0.0007) (0.0006)

AUC (HSA) 0.996 0.964 0.8 0.82 0.79 0.89

(se) (0.0003) (0.0014) (0.0005) (0.0005) (0.0005) (0.0006)

AUC (HSB) 0.75 0.833 0.99 0.99 0.99 0.99

(se) (0.0013) (0.01) (0.0001) (0.0001) (0.0001) (0.0005)

Characterization HSA HSr HSB HSB HSB HSB

PR SR FEM REM RankProd RankSum

detected # 136 186 948 411 391 105

(se) (2.51) (2.3) (1.75) (2.86) (3.31) (1.514)

True FDR (HSA) 0.008 0.01 0.415 0.117 0.13 0.389

(se) (0.0003) (0.0004) (0.0009) (0.0015) (0.0014) (0.0008)

True FDR (HSB) 0 0 0.022 0.007 0 0

(se) (0) (0) (0.0007) (0.0004) (0) (0)

AUC (HSA) 0.986 0.99 0.917 0.99 0.916 0.504

(se) (0.0003) (0.0002) (0.0009) (0.0002) (0.0011) (0.0046)

AUC (HSB) 0.981 0.95 0.984 0.92 0.934 0.496

(se) (0.0004) (0.0008) (0.0004) (0.0011) (0.0012) (0.0025)

Characterization HSA HSA HSB HSr HSB HSB
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Figure 3: The plot of mean numbers of detected DE genes with error bars of

standard error from 50 bootstrapped data sets for the 12 meta-analysis methods.

Note that FEM, REM, RankProd and RankSum cannot be applied to survival

examples.
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Figure 4: Plot of mean values of − log10(p) with error bars of standard error

from KS-test based on the top 100 surrogate pathways. Note that FEM, REM,

RankProd and RankSum cannot be applied to survival examples.
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Figure 5: Plot of mean with error bars of standard error of stability in six

examples based on the adjusted similarity between DE results of two randomly

split data sets. Note that FEM, REM, RankProd and RankSum cannot be

applied to survival examples.

37



●
● ●

●
● ●

●

●

●

● ●

●

Prostate Cancer (Normal v.s Primary)

A
dj

us
te

d 
si

m
ila

rit
y 

m
ea

su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●
●

●
●

●

●

● ●

●

Prostate Cancer (Primary v.s Metastasis)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
●

●
●

● ●

●

●
●

●

●

Brain Cancer (AA v.s GBM)

A
dj

us
te

d 
si

m
ila

rit
y 

m
ea

su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●
●

●

●

● ●

●

MDD

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
●

●

●

●
●

●

●

●

●

●

IPF

A
dj

us
te

d 
si

m
ila

rit
y 

m
ea

su
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
in

P

A
W

F
is

he
r

S
to

uf
fe

r

R
an

kP
ro

d

P
R

S
R

R
E

M

F
E

M

rO
P

m
ax

P

R
an

kS
um

●

●

●

●

●
●

●

●

Breast Cancer

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
in

P

A
W

F
is

he
r

S
to

uf
fe

r

R
an

kP
ro

d

P
R

S
R

R
E

M

F
E

M

rO
P

m
ax

P

R
an

kS
um

Figure 6: Plots of mean with error bars of standard error of robustness in six ex-

amples based on the adjusted similarity between DE results with/without adding

one irrelevant noise study. Note that FEM, REM, RankProd and RankSum can-

not be applied to survival examples.

38



(a)

(b)

Figure 7: (a) Multi-dimensional scaling (MDS) plot of all 12 methods based on

the average dissimilarity matrix of six examples. Colors (red, green and blue)

indicate clusters of methods with similar DE detection ordering. (b) The box-

plots of entropies in six data sets. High entropies indicate that high consistency

of DE gene detection across studies (e.g. MDD). Low entropies show greater

heterogeneity in DE gene detection (e.g. prostate cancer).
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Table 2: Ranks of method performance in the four evaluation criteria.

Targeted Detection Biological Stability Robustness Rank MDS∗1

HS Capability Association Sum

PR HSA 12 4 4 6 26 1

SR HSA 11 6 9 7 33 1

maxP HSA 9 10 12 11 42 2

rOP HSr 7 5 10 10 32 2

REM HSr 10 11 5 8 34 3

Fisher HSB 1 2 3 3 9 1

AW HSB 2 3 6 2 13 1

Stouffer HSB 3 1 8 4 16 1

minP HSB 4 7 7 1 19 1

RankProd HSB 8 8 1 5 22 3

RankSum HSB 6 12 2 12 32 3

FEM HSB 5 9 11 9 34 3
∗1: same number means the methods are clustered together in MDS plot
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3.0 A CONSERVED BDNF, GLUTAMATE-, GABA-ENRICHED GENE

MODULE RELATED TO HUMAN DEPRESSION IDENTIFIED BY GENE

COEXPRESSION META-ANALYSIS AND DNA VARIANT

GENOME-WIDE ASSOCIATION STUDIES

This paper has been published in BMC bioinformatics Chang et al. [2014].

3.1 INTRODUCTION

Major depressive disorder (MDD) is a common psychiatric disease with an estimated preva-

lence 3% for a current episode and 5.2% for a lifetime disorder [Hasin et al., 2005],a high rate

of recurrence [Mueller et al., 1999], a higher prevalence in women [Weissman et al., 1993], and

a heritability of 37% (95% CI = 31% - 42%) [Sullivan et al., 2000]. Transcriptome (the set

of all expressed genes in a tissue sample) and genome-wide association studies (GWAS) have

separately provided clues to mechanisms of MDD, although not to the anticipated extent.

Transcriptome studies mostly focus on changes in gene expression in disease states (altered

expression), but also provide unique opportunities for assessing the less-investigated changes

in the coordinated function of multiple genes (altered coexpression) [Gaiteri et al., 2013],

2013. GWAS seek to identify genetic markers for diseases, and have generated some findings

in MDD [Rietschel et al., 2010; Shi et al., 2010; Muglia et al., 2008; Lewis et al., 2010;

Shyn et al., 2009], but overall results from GWAS meta-analyses have been disappointing

[Ripke et al., 2012; Hek et al., 2013], potentially due to complexity of the disease and hetero-

geneity of patient cohorts. GWAS and transcriptome studies are highly complementary in

that they provide unbiased and large scale investigation of DNA structural (single nucleotide
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polymorphisms (SNP) and other variants) and functional (RNA expression) changes across

conditions, although these two approaches are only beginning to be integrated [Kupfer et al.,

2011; Cristino et al., 2013].

Gene arrays allow for the unbiased quantification of expression (mRNA transcript lev-

els) for 10,000 to 20,000 genes simultaneously. Since gene transcript levels represent the

integrated output of many regulatory pathways, the study of all expressed genes provides

an indirect snapshot of cellular function under diverse conditions. For instance, using post-

mortem brain samples, this approach has implicated dysregulated BDNF, GABA, glutamate

and oligodendrocyte functions in MDD [Tripp et al., 2012; Klempan et al., 2007; Sequeira

et al., 2009; Choudary et al., 2005; Guilloux et al., 2011]. However, current studies are

still few, were performed in heterogeneous cohorts, and utilized early and rudimentary ver-

sions of gene arrays. Moreover, gene array studies are subject to similar limitations as early

GWA studies, in that large number of genes are tested in few subjects (n=10-100). Typical

analyses identify 1-10% of genes affected in the illness (differentially expressed genes), are

characterized by high rates of false discovery, and may be confounded by numerous clinical

(drug exposure, subtypes, duration, etc.), demographic (age, sex, race), technical parameters

(RNA integrity, brain pH, postmortem interval for brain collection), or other potential co-

segregating factors of unknown origin (See Kupfer et al., 2011 for discussion). Conditions of

postmortem brain collection also preclude the reliable identification of acute state-dependent

gene changes, but are appropriate for investigating stable long-term disease-related homeo-

static adaptations.

Gene coexpression studies offer complementary perspectives on gene changes in the con-

text of transcriptome studies. Here, two genes are defined as coexpressed in a dataset if their

patterns of expression are correlated across samples. Coexpression has been shown to re-

flect possible shared function between these genes, and may arise through multiple biological

pathways including cellular coexpression and common regulatory pathways (e.g., hormone

signaling, transcription factors) [Lee et al., 2004; Gaiteri et al., 2010]. Hence, coexpression

links have been used to build gene networks, and to identify communities, or modules, of

genes with shared functions [Dobrin et al., 2009; Elo et al., 2007]. Notably, by incorporating

multiple interactions among large number of genes, the study of gene coexpression networks
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provides an approach to tackle the complexity of biological changes occurring in complex

polygenic disorders [Gaiteri et al., 2010]. See Gaiteri et al., 2013 for a general review.

Concepts and methods for integrating functional (transcriptome) and structural (DNA

polymorphism GWA) studies of the molecular bases of complex neuropsychiatric disorders

such as MDD need to be developed to harness the potential of systematic large-scale molec-

ular and genetic investigations of the brain. Here, our central hypothesis states that stable

brain co-regulation modules identified through meta-analysis of multiple transcriptome stud-

ies may overlap with sets of genes and associated variants (SNPs) related to MDD. Based

on the continuum of pathological changes between MDD and other brain disorders [Sibille

and French, 2013] and co-morbidity with selected medical illnesses including cardiovascular

diseases and metabolic syndrome [Pan et al., 2012; Musselman et al., 1998], we also pre-

dicted that MDD coexpression modules may be enriched in genes identified by GWAS for

other psychiatric and brain disorders and potentially for medical illnesses related to depres-

sion, together identifying functionally-coherent gene sets implicated in MDD-related disease

processes.

3.2 MATERIALS AND METHODS

Figure 8 illustrates the meta-clustering and validation methods of the approach. In step I, we

identified 50 robust co-regulation modules in human brains by combining 11 transcriptome

datasets collected from several brain regions in different cohorts of subjects with MDD and

non-affected comparison subjects. Steps II and III were performed to identify MDD-related

gene modules, and exclude other gene modules linked to biological functions not related to

MDD. In step II, we collected different sets of genes located nearby SNPs identified by GWAS

for MDD, neuropsychiatric disorders, related traits, and for systemic diseases often associ-

ated with psychiatric disorders, and perform gene set analysis to identify MDD-related gene

module(s). In step III, we performed functional annotations of gene module members by us-

ing 2,334 gene sets collected from MSigDB (http://www.broadinstitute.org/gsea/msigdb/).

We also organized genes identified by SNPs in published GWAS into three categories (cancer
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studies, human body indices and unrelated diseases) and treated them as a non-MDD-related

negative control gene sets in step IV.

3.2.1 Transcriptome data sets

Eleven MDD microarray datasets generated in our lab were used here. Cohorts and brain ar-

eas investigated are listed in Table 3 and details were provided in [Wang et al., 2012b; Sibille

et al., 2004]. Among these studies, six used Affymetrix Human Genome U133 Plus 2.0

platforms (Affymetrix Inc., Santa Clara, CA), two used Affymetrix Human Genome U133A

platforms, and the remaining three used Human HT-12 arrays from Illumina (Illumina Inc,

San Diego, CA). For gene matching across studies, when multiple probes or probe sets match

to one gene symbol, we choose the probe set with the largest variation (largest interquartile

range; IQR) to represent the gene [Gentleman et al., 2005]. For preprocessing, data were

log-transformed (base 2). Non-expressed (small mean intensity) and non-informative (small

standard deviation) genes were filtered out. To perform such filtering for 11 studies simulta-

neously, we calculated the ranks of row means and row standard deviations of each gene in

each single study. The ranks were summed up across 11 studies and used as criteria to filter

out non-expressed and non-informative genes. Figure S8 provides a diagram and results of

the transcriptome dataset preprocessing procedures.

3.2.2 Meta-clustering of transcriptomic data to construct co-expression gene

modules

The 11 transcriptome studies were combined to construct co-expression gene modules using

a meta-clustering technique described below. Denote by Xgsk the gene expression intensity

of gene g, sample s and study k, and Xgk = (Xg1k, . . . , XgSk) the vector of gene expression

intensities of gene g and study k. Define the dissimilarity measure between gene i and

gene j for a given study k as d
(k)
i,j = 1 − |cor(Xik, Xjk)|, where cor(Xik, Xjk) is the Pearson

correlation of the two gene vectors. To combine the dissimilarity information of the K = 11

studies, we took mean of meta-dissimilarity measure between gene i and gene j as d(gi, gj) =

Mean(d
(1)
ij , d

(2)
ij , . . . , d

(K)
ij ). Given the meta-dissimilarity measure, the Penalized K-medoids
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clustering algorithm was then applied to construct co-expression gene modules [Tseng, 2007].

The target function to be minimized by Penalized K-medoids is shown below:

L(C) =
G∑
i=1

∑
gi∈Ch

d(gi, gh) + λ · |S| (3.1)

where the clustering result C = (C1, . . . , CH , S) contains H non-overlapping gene clusters

(i.e. H gene modules C1, . . . , CH) and a set of scattered genes S that cannot be clustered

into any of the tight gene modules, gh denotes the medoid gene of cluster h such that

its average dissimilarity to all other genes in the cluster is minimal, |S| is the size of the

scattered gene set S and λ is a tuning parameter controlling tightness of detected gene

modules and the number of scattered genes discarded to S. The first term of the target

function L(C) calculates the total sum of within-cluster dispersion and is essentially the K-

medoids algorithm (an extended form of K-means using arbitrary non-Euclidean dissimilarity

measure). The second penalty term allows scattered genes not to be clustered into any gene

module. For example, if the distances of a gene gi to all cluster medoids are greater than

λ, minimizing L(C) will assign the gene into the scattered gene set S, instead of into any

gene cluster. Intuitively, smaller λ generates tighter clusters and allow more genes into

scattered gene set S. The rationale for the choice of this approach was based on finding in

the literature, where comparative studies show that many genes are not tightly co-expressed

with any gene clusters and methods that allow scattered gene assignment generates tighter

gene modules that are biologically more informative [Thalamuthu et al., 2006].

3.2.3 Parameter selection and evaluation of meta-clustering

We tested different parameter settings of H = 50 or 100 modules, and λ such that β =

0%, 25% or 50% of genes are left to scattered gene set S. In all performance of the 2× 3 = 6

combinations for the meta-clustering method, a biological validation was performed using bi-

ological pathway information. We searched ten keywords (“GABA”, “Insulin”, “Diabetes”,

“Immune”, “Thyroid”, “Estrogen”, “Depression”, “Alzheimer”, “Parkinson” and “Hunting-

ton”) in MSigDB and finally obtained 98 MDD-related pathways. In each clustering result,

Fishers exact test was applied to each module to correlate with each of the 98 MDD-related
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pathways and eight GWAS gene lists and the p-values were generated. Wilcoxon signed rank

test was used to compare any pair of clustering results (from different parameter setting) so

that the best parameter setting could be determined.

3.2.4 Evaluation of robustness and stability of meta-clustering method

To evaluate the robustness of the meta-clustering results, we used the Adjusted Rand Index

(ARI) as a measurement of consistency between two clustering results [Hubert and Arabie,

1985]. We randomly selected a subset of studies from 11 MDD studies and calculated the

ARI to assess the similarity of the obtained modules compared to those obtained using

the 11 MDD studies. The procedure was repeated 100 times and the averaged ARI was

calculated. For the stability of meta-clustering method, the mean and standard deviation

of ARIs were obtained by bootstrapping method [Efron, 1979], where the 11 MDD studies

were bootstrapped 100 times.

3.2.5 Genome-wide association studies (GWAS)-related gene categories

Eight neuropsychiatry-related candidate gene lists and three gene lists from presumably

unrelated disorders or traits were identified from relevant GWAS. Individual genes were

identified by the presence of GWAS significant SNPs within a given nucleotide distance from

the coding region of that gene.

I. The first gene list was obtained from a published GWAS for neuroticism [van den Oord

et al., 2008]. Neuroticism is a personality trait that reflects a tendency toward negative

mood states, and that is linked to several internalizing psychiatric conditions. That

GWAS involved 1,227 healthy individuals with self-report of no diagnosis of or treatment

for schizophrenia, schizoaffective disorder or bipolar disorder and personality measures

of neuroticism. In van den Oord et al. [2008],Genotyped data were generated from

Affymetrix GeneChip Human Mapping 500K using BRLMM algorithm. 449 SNPs were

selected by p value less than 0.001, and 155 genes were identified to have contained one

or more selected SNPs in the 10 kilobases (kb) up- and down-stream extension of the

coding regions.
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II. The second gene list was obtained from the MDD 2000+ project that included a meta-

analysis of MDD studies with 2,431 MDD cases and 3,673 controls [Wray et al., 2010].

Similarly, 532 SNPs with p value less than 0.001 were mapped to gene coding regions

(including 10kb upstream and downstream regions) and 159 genes were identified.

III. The third gene list was obtained from a mega-analysis of GWAS for MDD [Ripke et al.,

2012]. The associated 202 SNPs’ p values were less than 10−5 and 52 genes were identified

using the University of California Santa Cruz Human Genome Browser, hg18 assembly

(UCSC hg18) with build 36.3. Gene symbols from the build version 36.3 in the National

Center for Biotechnology Information (NCBI) database were used.

IV. The fourth candidate gene list was obtained from a mega-GWAS of bipolar disease which

contained 7,481 patients and 9,250 controls [Sklar et al., 2011]. 6,887 SNPs were iden-

tified when p value less than 0.001. By mapping the SNPs to gene coding region using

SNPnexus software (http://snp-nexus.org/), 602 genes were obtained.

V. For the fifth to eighth gene lists, we interrogated the Catalog of Published Genome-

Wide Association Studies [Hindorff et al., 2009] (http://www.genome.gov/gwastudies/).

The database (as of 01/31/13; time of the latest data analysis update) contained 10,183

entries of disease- or trait-associated SNPs with p values smaller than 10−5 in 1,491

GWAS studies. We manually regrouped the disorders and traits into 4 categories: (1)

all MDD-related studies, (2) all neuropsychiatric disorder studies, (3) all neurological

disorder and brain phenotypes studies, (4) all medical illnesses sharing increased risk

with MDD. Note that list #3 was included in list #2 and list #2 was included in list

#1. Lists #4 is independent and non-overlapping with others. The associated four gene

lists were then compiled, and genes were uniquely included when the mapped SNP was

within the gene region including a 100 kb upstream and downstream.

VI. As negative controls, we identified in the catalog of published GWAS three gene sets

presumably not related to psychiatric diseases: (a) 65 publications (270 genes) of cancer

GWAS studies; (b) 42 publications (459 genes) of human body indices GWAS studies

(HBI: genetic phenotypes for human, for example: height, weight, eye color, etc.); and

(c) 33 publications (187 genes) of GWAS studies for common disease traits not related

to brain function or major mental illnesses.

47



3.2.6 Meta-analysis to aggregate evidence of association of each module with

the GWAS gene lists

We performed Fisher’s exact test to examine the significance of the association of genes within

each co-expresion module with individual GWAS-derived gene lists, using the 10,000 genes

evaluated in transcriptome meta-analysis (Figure S8) as background. To assess statistical

significance of association of each identified module from meta-clustering method, we applied

the Stouffer’s method to combine the p values obtained from Fisher’s exact test of the

association between gene modules and eight GWAS gene sets. The Stouffer’s statistics

TStouffer =
Σk
i=1φ

−1(Pi)√
k

where φ the cumulative distribution function of a standard normal

distribution [Stouffer, 1949]. The p values were assessed for each of the 50 modules by

conventional permutation analysis (B=500).

3.2.7 Pathway analysis and enrichment analysis of GWAS gene lists

For biological association, 2,334 annotated pathways (gene sets) were obtained from MSigDB

(www.broadinstitute.org/gsea/msigdb/), which consists of 880 canonical pathways (217 Bio-

carta gene sets, 180 KEGG gene sets, 430 Reactome gene sets and 53 other gene sets) and

1,454 pathways from Gene Ontology (GO). For each of the gene module, gene set (pathway)

analysis was performed for the 2,334 pathways and 11 GWAS gene lists (including 3 negative

controls). Fisher’s exact test was performed to assess the biological association between gene

modules and given gene sets. To account for multiple comparisons, Benjamini and Hochberg

procedure was used to control the false discovery rate (FDR).

3.3 RESULTS

3.3.1 Data preprocessing and parameter determination

16,443 genes were retained after gene matching across the 11 studies. Cohorts 10 and 11

were from older platforms with fewer probesets representing only 12,703 genes (Figure S8).
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In order to minimize the loss of information from gene matching, we allowed 20% missing

values during matching, i.e., we kept genes with at least 9 existing measurements out of

11 studies. 13,500 genes were retained after filtering out lower sum rankings of median

row means, and 10,000 genes after further filtering out lower sum rankings of median row

standard deviations. We then tested different parameter settings for the number of modules

(H = 50 or 100), and genes (tuned the λ values for controlling tightness of detected gene

modules and the number of scattered genes set) for β =0%, 25% or 50% of genes left out of

the gene set S. In all tests of the Penalized K-medoids meta-clustering method (2 × 3 = 6

combinations), we performed a validation by biological pathway information content. For all

clustering results, Fisher’s exact test was applied to each module to correlate with each of the

98 MDD pathways and eight GWAS gene lists described in the methods, and p values were

generated. The Wilcoxon signed rank test was used to compare any pair of clustering results

(from different parameter settings) so that the best parameter setting could be determined.

The result shows that there was no significant difference (by Wilcoxon signed rank test)

between H = 50 and H = 100 cluster except β = 0% (i.e., keep all genes), and the minimum

p value of gene set analysis in H = 50 was always lower than that in H = 100 in β = 25%

and β = 50%. It is reasonable to set the noise level in clustering method because noise will

increase if we combined more studies. We chose H = 50 because the mean of the − log 10(p)

in 50 modules (3.2793) was higher than 100 modules (3.0224) in β = 25%, and the mean of

the − log 10(p) in 50 modules (3.1896) was higher than 100 modules (3.0588) in β = 50%. 50

modules also provide adequate number and sizes of gene modules for the purpose of further

analyses. Given H = 50, we compared the performance with different choices of β. β = 25%

performed better than β = 0% (p= 0.0004 using Wilcoxon signed rank test), and there was

no significant difference between β = 25% and β = 50% (p= 0.0856). Finally, we selected

H = 50 and tuning parameter λ such that β = 25% genes are left to scattered gene set S

throughout this paper.
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3.3.2 Construction of 50 meta-modules from 11 MDD studies

Using the parameters determined above, we performed a meta-analysis of module gene mem-

bership to identify the top 50 conserved meta-modules across 11 MDD transcriptome studies.

A total of 10,000 genes were clustered using the Penalized K-Medoid method. 7,797 genes

were clustered into K = 50 modules and 2,203 genes (β =∼ 25%) were determined as scat-

tered genes with no conserved expression pattern. We performed subsampling and bootstrap

methods to assess the stability of the resulting clusters. Subsets (n = 8, 9 or 10) of the 11

studies were randomly selected and the meta-clustering procedure was similarly applied. The

resulting meta-modules were compared with the meta-modules obtained using the 11 MDD

studies using adjusted Rand index (ARI= 0.47, 0.52 and 0.63 for n = 8, 9, 10). We also

generated bootstrapped samples in each study and repeated the meta-clustering procedures.

Comparison of meta-modules generated from bootstrapped samples with original samples

generated an average ARI= 0.45 (standard deviation 0.025) in 100 repeated bootstrapping

simulations. In the literature, an ARI of ∼0.5 is interpreted as reproducible clustering re-

sult [Thalamuthu et al., 2006], hence demonstrating good stability under data perturbation

(subsampling and bootstrapping) for the 50 meta-modules obtained by combining 11 studies.

3.3.3 Association of meta-modules with eleven GWAS-determined gene lists

We examined association of the 50 meta-modules with the eight GWAS gene lists using

Fisher’s exact test. The results are shown in Supplementary Table S8. Module #35 is found

to have significant associations (p<0.05) with the six psychiatric disorder related GWAS

gene sets (p= 0.03 for the neuroticism GWAS gene set; p= 0.03 for MDD 2000+ project;

p=0.0001 for Mega-GWAS MDD; p=0.03 for Mega-GWAS of bipolar disorder; p=0.008 for

the catalog of GWAS studies of neuropsychiatric disorder; p=0.03 for the catalog of GWAS

studies of neurological disorders and brain phenotypes) and two studies with borderline p

values (p=0.05 for the catalog of MDD-related GWAS studies; p=0.05 for the catalog of

GWAS studies of Medical illnesses sharing clinical risk with MDD). We combined the p

values of the eight psychiatric disorder related GWAS gene sets by Stouffer meta-analysis

method. The p value of module #35 is 4×10−5 after the permutation test. In contrast, there
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was no association with cancer (p=1.00), human body indices (p=0.18) and other control

diseases (p=0.46) GWAS gene sets. Figure 9(a) shows the heatmaps of log-transformed

p values from pathway analysis for the 50 modules obtained from MDD cases and controls

combined analysis and 50 modules obtained from controls only analysis. It shows that module

#35 (highlighted in green) from the combined cases and controls analysis is enriched in genes

contained in six MDD-related GWAS gene sets, but not enriched in the three negative control

GWAS gene sets. None of the other 49 modules showed such consistent pattern.

3.3.4 Pathway analysis of meta-module #35

Many GWAS-hit genes (overlapping genes between 88 genes in module #35 and 8 GWAS

lists) were related to synaptic function, signal transduction, and neuronal development and

morphogenesis (Table 4). Of specific interest, and consistent with current hypotheses for the

molecular pathology of MDD, was the inclusion of brain-derived neurotrophic factor (BDNF )

and other factors implicated in development and maintenance of cell circuits (Ephrin recep-

tors EPHA3 and EPHA5 ; Netrin G1 (NTNG1 ); SLITRK3 and SLITRK5 ), of GABA-

related genes (GABBR2, GABRA4 and CALB1 ), glutamate receptors (GRM1 and GRM7 )

and other signaling neuropeptides previously implicated in mechanisms of psychiatric disor-

ders [reelin (RELN ) and gastrin-releasing peptide (GRP)]. Together, these results suggest

that module #35 may include multiple components of functionally-relevant local cell circuits

(Table 5)
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Figure 8: Overall analytical strategy.

In step I, 50 co-regulation modules were generated using meta-clustering of gene clusters

identified by the penalized K-medoids method across 11 transcriptome MDD and matched

controls studies. In step II modules enriched from most of selected GWAS studies related

to MDD, neuropsychiatric disorder and traits, including systemic disease linked to psychi-

atric disorders were identified. In step III, the biological functions represented by genes

included in each module were defined by pathway analysis from 2,334 gene sets of MSigDB

(www.broadinstitute.org/gsea/msigdb). In step IV, SNPs from the Catalog of GWAS were

organized into three categories: cancer GWAS, human body indices GWAS and GWAS for

common diseases and medial illnesses unrelated to MDD or other brain function. Three

additional categories were defined as non-MDD-related negative control gene sets. (Note: In

order to have better performance of heatmap in module #35, we first performed the hier-

archical clustering with complete agglomeration method to aggregated samples with similar

expression among all 88 genes, and the genes were sorted by the correlation from high to

low of selected gene in the top)

52



Table 3: Description of cohorts in 11 MDD microarray platforms

Cohort Region Code Platform # of probes # of genes # of subjects

1 ACC MD1 ACC

Affymetrix

40,610 19,466 32Human Genome

U133 Plus 2.0

2 AMY MD1 AMY

Affymetrix

40,610 19,621 28Human Genome

U133 Plus 2.0

3 ACC MD2 ACC

Illumina

48,803 25,159 20HumanHT 12

(v3)

4 ACC MD3 ACC

Illumina

48,803 25,159 50HumanHT 12

(v3)

5 AMY MD3 AMY

Affymetrix

48,803 25,159 42HumanHT 12

(v3)

6 ACC BA25 F

Affymetrix

53,596 19,572 26Human Genome

U133 Plus 2.0

7 ACC BA25 M

Affymetrix

53,596 19,572 26Human Genome

U133 Plus 2.0

8 DLPFC BA9 F

Affymetrix

53,596 19,572 32Human Genome

U133 Plus 2.0

9 DLPFC BA9 M

Affymetrix

53,596 19,572 28Human Genome

U133 Plus 2.0

10 OFC NY BA47

Affymetrix

20,338 12,703 24Human Genome

U133A

11 DLPFC NY BA9

Affymetrix

20,338 12,703 26Human Genome

U133A
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Figure 9: Consistent association of genes in module #35 with MDD-related gene categories.

(a) Heatmap of log10-transformed p values from Fisher’s exact test for 50 modules obtained from MDD cases and matched

controls and 8 MDD related GWAS and 3 negative controls. (b) Heatmap of log10-transformed p values from Fisher’s exact

test for 50 modules obtained from controls and 8 MDD related GWAS and 3 negative controls. The green rectangle identifies

module #35.
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Table 4: Functional groups of 88 genes in module #35

Functional groups Gene Symbols

Transmembrane cellular

CLSTN2, SYT4, LRRC8B, GPR6, TMEM158

localization

ST8SIA3, GABBR2, NRN1, ST6GALNAC5

GLT8D2, MPPE1, GNPTAB, PVRL3, SLC35B4

SLC35F3, KCNG3, SLC30A9, PTGER4, CYP46A1

GABRA4, UST, LOC646627, NTNG1, TMEM200A

TMEM70, RFTN1, GRM1, TMEM132D, KCNV1

EPHA3, CDH12, EPHA5, BEAN, SLITRK3

FREM3, GRM7, CD82, SLITRK5, VLDLR

Neuronal development BDNF, SLITRK3, RPGRIP1L, MAEL, NTNG1,

and morphogenesis RELN, LAMB1, SLITRK5, MYCBP2d

GABA and glutamate GRM1, GRM7, GABBR2, GABRA4

Cell adhesion
PPFIA2, CDH12, FREM3, CLSTN2, PVRL3,

RELN, LAMB1

Transcription regulation
EGR3, DACH1, HDAC9, ATOH7, SLC30A9

ATF7IP2, ZNF436, MYCBP2
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Table 5: Top 15 enriched pathways in module #35

Pathways P value

METABOTROPIC GLUTAMATE GABA B LIKE RECEPTOR ACTIVITY 0.0003

REACTOME CLASS C3 METABOTROPIC GLUTAMATE PHEROMONE RECEPTORS 0.0005

G PROTEIN SIGNALING COUPLED TO CAMP NUCLEOTIDE SECOND MESSENGER 0.002

CAMP MEDIATED SIGNALING 0.002

GLUTAMATE RECEPTOR ACTIVITY 0.003

G PROTEIN COUPLED RECEPTOR PROTEIN SIGNALING PATHWAY 0.003

G PROTEIN SIGNALING COUPLED TO CYCLIC NUCLEOTIDE SECOND MESSENGER 0.008

CYCLIC NUCLEOTIDE MEDIATED SIGNALING 0.01

NEUROPEPTIDE HORMONE ACTIVITY 0.015

REACTOME GPCR LIGAND BINDING 0.02

KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION 0.03

G PROTEIN COUPLED RECEPTOR ACTIVITY 0.03

SECOND MESSENGER MEDIATED SIGNALING 0.04

HORMONE ACTIVITY 0.04

REACTOME EICOSANOID LIGAND BINDING RECEPTORS 0.04
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3.3.5 Control studies

To demonstrate the improvement of meta-clustering versus single study clustering, we com-

pared the histograms of p values obtained under those different conditions. In Figure 10 ,

the histogram of the minus log-transformed p values of the Stouffer statistic was first plotted

for the 50 meta-modules obtained from the case and control combined analysis. Module

#35 with 88 genes is shown to have an aggregated minus log-transformed p value at 4.4 (i.e.

p= 4 × 10−5). We then applied the penalized K-medoid method with the same parameter

setting (K = 50 clusters and 25% of scattered genes) for each single study. The 11 single

study histograms of Stouffer p values showed overall much weaker statistical significance

than for module #35. Particularly, none of the 550 modules from 11 single study cluster

analysis was enriched (p value threshold 0.05) in more than three GWAS results (Figure 10).

Only four out of the 550 modules had more than 14 genes ( 15% of the 88 genes; indicated by

blue arrows in Figure 10) that overlapped with module #35. Hence, the meta-clustering ap-

proach efficiently combined weak signals in single studies to identify a stable and biologically

more meaningful gene module. In other words, module #35 would not have been discovered

without combining 11 studies.

We next tested the meta-clustering approach using transcriptomic data from control

subjects only (i.e., removing all MDD subjects) from the same 11 studies. Out of the

50 modules generated, no module was enriched in more than two GWAS studies (p value

threshold 0.05) among the eight GWAS results (see heatmap in Figure 9(b)), indicating that

the inclusion of the MDD cases was necessary for the detection of significant module/GWAS

overlap (i.e., module #35). We also tested the meta-clustering approach using transcriptomic

data from MDD subjects only (i.e., removing all control subjects) from the same 11 studies.

Among the 50 modules generated, one module (module #15 with 169 genes) was enriched

in six out of the 8 GWAS categories (p<0.05) but notably not in the gene set corresponding

to the Mega GWAS MDD (p=0.29) and to MDD-related studies (p=0.43) in the catalog

of GWAS (data not shown here). This module only has 3 genes overlapped with the 88

genes (ST8SIA3, GRM7 and MYCBP2 ) of module #35 extracted from the case and control

combined analysis. Pathway analysis of this module indicated an over-representation of
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signal transduction pathways. Overall, the statistical significance of results using MDD data

only was lower and potentially inconclusive (i.e., at background noise level)

Together these results indicate that combining MDD and control subjects in meta-

clustering approaches increased the significance and robustness of the results, as demon-

strated by the identification of the tight module of 88 genes with high relevance to current

biological knowledge about MDD.

Module #35 

(88 genes) 

Module #30 

(16 overlap genes) 

Module #32 

(18 overlap genes) 

Module #17 

(23 overlap genes) 

Module #31 

(17 overlap genes) 

Figure 10: Histograms of the − log10(p) of the Stouffer statistic from 50 modules

of meta-analysis of 11 MDD studies and each single study.

Module #35 with 88 genes (red arrow and double-cross) have largest − log10 transformed p

value of Stouffer’s statistic 4.4. The other four blue arrows and double crosses indicated that

these four modules in all single studies have more than 14 (15% of the 88 genes in module

#35) overlapped with module #35. See detailed description in text.
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3.4 DISCUSSION

Using methods we developed to identify conserved co-expression modules across transcrip-

tome datasets, we report the identification of a module consisting of 88 genes that is sig-

nificantly enriched in genetic variants located nearby genes otherwise associated with major

depression and related phenotypes. The finding of a significant intersection of two un-

biased large-scale approaches (transcriptome and GWAS) provide robust evidence for the

putative recruitment and contribution to molecular and cellular mechanisms of MDD of a

biological module that is formed by the identified gene set. This module includes numerous

genes encoding proteins implicated in neuronal signaling and structure, including glutamate

metabotropic receptors (GRM1, GRM7 ), GABA-related proteins (GABRA2, GABRA4,

CALB1 ), and neurotrophic and development-related molecules [e.g., BDNF, reelin (RELN ),

Ephrin receptors (EPHA3, EPHA5 )]. These findings are consistent with current hypotheses

of molecular mechanisms of MDD, notably with the GABA, glutamate and neurotrophic hy-

potheses of depression [Sibille and French, 2013; Luscher et al., 2010; Belmaker and Agam,

2008; Nestler et al., 2002; Duman and Monteggia, 2006]. This biological “internal valida-

tion”, combined with control studies showing that these results could not be achieved using

single studies (due to weak signal) demonstrates that integrating transcriptome data, gene

co-expression modules and GWAS results can provide a novel and powerful framework to im-

prove understanding of MDD and other complex neuropsychiatric disorders. This approach

also provided here a set of putative interacting molecular partners, potentially reflecting a

core biological module that is recruited and implicated in biological mechanisms of MDD.

The meta-clustering approach in this paper has the following novelty and advantages.

(1) Meta-analysis : Our result indicated that a meta-analysis of gene clustering to combine

multiple transcriptome studies can identify more accurate and robust gene modules, since

the same clustering method applied to single studies did not lead to the identification of any

significant and/or neuropsychiatry-related module. (2) Cluster analysis allowing “scattered

genes”: Gene co-expression modules were identified by penalized K-medoid. This clustering

technique searches for tight gene modules and allows some genes to be scattered. This means

that they are not included in the final set of modules/clusters, unlike other traditional clus-
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tering methods, such as hierarchical clustering, K-means or self-organizing maps that force

all genes into clusters. In genomic applications, it was shown that allowing scattered genes

can improve clustering performance with better biological knowledge discovery [Thalamuthu

et al., 2006]. (3) Integration and validation with external databases : Integration with rich

GWAS and pathway knowledge databases for biological and disease interpretation identified

a robust module with 88 genes that is consistent with current knowledge about depression,

hence providing some level of “internal control” for the methods. (4) Case and control

combined co-expression analysis : We showed that the combination of case and control co-

expression analysis was necessary to reveal the co-expression perturbation originating from

the disease. This is an important observation as co-expression studies rely on subtle differ-

ences in expression patterns compared to differential expression between two groups. Hence

disease-related co-expression modules could have been predicted to be unique to the disease

groups and “diluted” when combined with control data. However, we show that the opposite

is true, resulting in increased power in the combined dataset. For technical validation, we

have performed the following: First, we fine-tuned the parameters to be used in the final

meta-clustering analysis (i.e., number of modules, percentage of allowed scattered genes in

penalized K-medoid method) and tested those parameters in three studies using “surrogate”

information, i.e., gene families and biological pathways broadly associated with psychiatric

disorders (See Methods section). Second, subsampling and bootstrap simulation were ap-

plied to investigate the stability of the identified gene modules. Third, three non-psychiatric

related GWAS gene sets (cancer, human body indexes and disease traits unrelated to mental

functions) served as negative controls.

Co-expression links between genes are inferred from microarray expression studies but

do not refer to any specific mechanism underlying these correlations. In fact, any mecha-

nism that synchronously regulates transcription of multiple genes may potentially generate

co-expression relationships, including biophysical sources (e.g., transcription factors, spatial

configuration of chromosomes, mRNA degradation, miRNA or other upstream regulation,

histone acetylation and methylation patterns), technical effects (e.g., batch processing, RNA

quality), cell biological sources (e.g., cellular admixture of the sampled tissue, brain region),

and importantly synchronized activities across cells under homeostatic equilibria correspond-
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ing to “control” states, trait conditions, or chronic disease states for instance. Here, results

in module #35 identify a set of genes whose products are distributed across cell types, cel-

lular compartments and biological processes (Tables 4-5) that together contribute to various

and potentially complementary biological processes, and whose collective function may be

related to pathological processes implicated in depression.

The biological content of the identified gene module is notable in that it brings together 

multiple genes that have been otherwise associated with depression and other neuropsychi- 

atric disorders through multiple studies both in humans and animal models, in addition to the 

genetic links (i.e., GWAS) that were used here to identify them. Such commonly associated 

genes include those coding for BDNF, and GABA- and glutamate receptors, for instance 

[Tripp et al., 2012; Klempan et al., 2007; Sequeira et al., 2009; Choudary et al., 2005; Guilloux 

et al., 2011]. Prior findings often refer to differential expression, e.g. reduced BDNF [Guilloux 

et al., 2011], or reduction in calbindin (CALB1 ) positive GABA neurons [Rajkowska et al., 

2006]. Here, reports of conserved co-regulated patterns between these genes suggests that 

changes in the fine-tuning and synchronization of the function of these gene products across 

cells and pathways may contribute to pathophysiological mechanisms related to brain 

dysfunction in MDD. The fact that these results implicate genes that are likely to be expressed 

across cell types or to regulate ensembles of cells (i.e. neurotrophic and neuro-maintenance 

factors) is consistent with mechanisms expected for polygenic com- plex disorders. Moreover, 

the identification of module #35 through overlap with GWAS findings for traits (i.e., 

neuroticism) and other neuropsychiatric disorders (Figure 9) also suggests that those genes 

may participate in basic cellular functions that are implicated in a continuum of biological 

states (i.e., from normal to disease brain functions), consistent with a dimensional 

understanding of biological mechanisms of brain disorders. The fact that borderline 

significance in gene overlap was also observed for categories of disorders sharing clinical risk 

with MDD (i.e., cardiovascular diseases, inflammation and metabolic syndrome) suggest that 

the same gene sets may also contribute to dysfunctions in peripheral organs through 

pleiotropic functions of common genes, hence providing putative biological links for the 

clinical and symptom co-morbidity. Follow-up studies of co-expression patterns obtained in 

datasets across these disorders may be necessary to further investigate these interesting hints.
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So while these studies provide insight into the biology of complex disorders, one may rea-

sonably ask how they may contribute to the generation of novel hypotheses and predictions.

Two directions are worth mentioning. First, for the purpose of therapeutic development and

target identification, the application of graph theory and other network analysis may help

identify critical genes within the identified module or upstream factors, as potential medi-

ators of the function of this module in disease state. Preliminary analyses of the network

properties of module #35 did not provide clear insight into hub genes or other parameters

of interest (data not shown); however these studies may be confounded by circular analyses

within the same datasets. Thus, testing these hypotheses in other large-scale disease related

datasets are needed to, firstly, refine gene membership into the identified module, in view of

the reasonable and significant conservation of module structure across datasets, although not

to absolute levels; and, secondly, to identify key network nodes with conserved cross-studies

functions, as potential targets to modulate the functional outcome of the identified gene

module. Finally, an additional and important outcome of these studies is that they provide

a focused set of genes, which can be used for follow-up genetic association studies, hence

potentially mitigating the problem of reduced statistical power of large scale genome-wide

studies.

There are several limitations to this study. First, there is a bias when selecting gene sets

from the catalog of published GWAS results since the targeted markers (SNPs) are updated

every six months, and many more SNPs were reported in the past five years when GWAS

have achieved greater sample size (including studies with more than 10,000 participants)

and detection of markers with very small effect size. However, large sample sizes will also

introduce a bias towards false positive markers. A related limitation is that the choice of

markers (or gene) was based on fixed and arbitrary thresholds (i.e., p value and genomic

distance). Moreover, we used only a small fraction of the datasets and pre-defined path-

ways related to psychiatric disease to decide on the number of clusters and sets of scattered

genes during the method development phase, so the result of the clustering approaches may

still show some instability and may vary based on different numbers of clusters and ap-

plied thresholds. Indeed, although we performed extensive validation analyses to select the
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clustering parameters and increase stability of modules, the 88 genes in module #35 will in-

evitably vary slightly under additional data perturbation (e.g., when adding additional MDD

or related studies). An additional limitation is that generating gene co-expression modules

using cluster analyses is known to be sensitive to small data perturbation. To mitigate these

effects, we combined multiple studies and concentrated on tight modules by leaving out scat-

tered genes. While this approach increased the power of the meta-clustering method, it also

meant combining datasets from different brain regions, hence potentially diluting the effects

of local co-regulation patterns that may be important for disease mechanisms. So these

results should be considered proof-of-concept, rather than experimentally and biologically

optimized. Finally, it is important to note that changes in gene co-expression are difficult

to confirm by independent measures. Indeed co-expression links rely on large sample size

and we previously showed that the sample-to-sample variability in array-based measures of

expression is typically lower than the variability obtained using alternate measures such as

quantitative PCR [Gaiteri et al., 2010], so the ultimate test of the added value of these

meta-co-expression studies will need to come from additional independent studies. Nonethe-

less, this study allowed the identification of a focused set of genes for use in future genetic

association studies, and together demonstrates the importance of integrating transcriptome

data, gene co-expression modules and GWAS results, paving the way for novel and com-

plementary approaches to investigate the molecular pathology of MDD and other complex

brain disorders.
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4.0 THE ANALYSIS OF FAMILY-BASED SEQUENCE DATA

4.1 INTRODUCTION

Next generation sequencing is an advanced technology which can identify common variants

(minor allele frequency > 5%) as well as those done by typical GWAS, and systematically

search for rare variants. Recently, the 1,000 Genome Project has provided characterization

of human genome sequence variation for us to understand the relationship between genotype

and phenotype [Abecasis et al., 2010]. Family-based sequencing studies have unique advan-

tages and strengths in controlling population stratification, studying parent-of-origin effects,

identifying rare causal variants and detecting de novo mutations [Ott et al., 2011; Laird and

Lange, 2006; Ng et al., 2010a; Ng et al., 2009; Ng et al., 2010b; Zhu et al., 2010]. Sequencing

has also been proven successful in studying Mendelian disorders in families [Ng et al., 2009;

Roach et al., 2010; Boileau et al., 2012]. Numerous family-based sequencing projects (often

in the design of large number of trios/nuclear families or a mixture of unrelated individuals

and small families) have been carried out or launched to study complex diseases [Sanders

et al., 2012; Neale et al., 2012; ORoak et al., 2012; Boomsma et al., 2013; Pilia et al., 2006].

Many ongoing sequencing projects include nuclear families (two parents with one or more

offspring) or multi-generational families. Chen et al. [2013] proposed a method of genotype

calling by considering family structure in trios that can achieve more accurate genotype

calls in great amounts as compared with the one without considering the family structure

(reduces genotype calling error rate by 50%). However, to our knowledge, there is no ex-

isting method that jointly models family constraints and LD patterns in complex pedigree

(nuclear and extended families). Existing approaches include methods that focus on single

sites or methods that split pedigrees into trios or treat all sequenced samples as unrelated
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individuals. Among the few existing methods for genotype calling of family-based sequence

data, most methods consider family constraints at each marker [Li et al., 2012; Peng et al.,

2013].

In this chapter, we described a novel method and developed a software which called

“FamLDCaller” (Genotype calling method incorporated by LD and family structure. We

used “FLDC” for abbreviation) for genotype calling and phasing in nuclear and extend fam-

ilies. Firstly, we extend the current method from analyzing trios to nuclear family or family

with multi-generations in a computationally efficient manner. Here we focus on developing

the procedure by looping over all possible parent-offspring trios to update the probability

of observed genotype given the true genotype simultaneously, which is a pivotal step in

the hidden Markov model (HMM). Through two simulated studies, which are with/wothout

alignment and experimental errors. We evaluate the performance by using the genotype error

calling rate and phasing error (as haplotypes are provided), and we show that incorporating

more offspring within family (or complex family with multiple generations) can have more

accurate genotype calls than trios only, especially in low to modest depth in sequencing data.

Secondly, we extend the method to analyze a small number of samples using the external

reference panels. This is motivated by many pilot projects, which often include a limited

number of samples (e.g. one or two trio) and LD information is not available in the study

population. External reference panels (e.g. the 1,000 Genome Project) will be useful in this

scenario to facilitate genotype calling and phasing if the LD pattern in the study population

is well captured. Through both simulated and real studies, we show that our methods out-

perform the existing methods that do not use LD information or ignore the complex family

constraints.

4.2 METHODS

4.2.1 Describing chromosomes as imperfect mosaics

Li and Stephens [2003] indicated that the haplotypes of each individual can be described as
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in specific, unrelated samples for same ethnicity are always sharing short stretch of the 

chromosomes, so each samples is a “mosaic” of haplotypes. And this approach has been 

successfully applied to genotype imputation and haplotype reconstruction [Li et al., 2010; 

Marchini et al., 2007; Scheet and Stephens, 2006]. This approach has also been used in 

genotype calling for sequence data. In this section, we briefly review the HMM method for 

model unrelated samples for the sequence data. More details can be found in our early paper 

[Chen et al., 2013]. First, allele from individual haplotype was sampled from reference panels 

consistent with observed data at each position. Second, using HMM method to update the 

haplotype for each individual, and the pair of haplotypes can be described as an imperfect 

mosaic of other reference panels.

Suppose all markers are bi-allelic, the first step is to calculate P (Ri|Gi), the likelihood of

observed read Ri given an underlying true genotype Gi at position i for all candidate variant

sites. P (Ri|Gi) can be defined by the following formula by assuming independent errors:



P (Ri = B,E|Gi = {A,A})

=
∏

j (1− ej)I(bj=1)(1
3
ej)

I(bj 6=1)
for homozygous genotype A/A

P (Ri = B,E|Gi = {A,B})

=
∏

j{
1
2
(1− ej)I(bj=1)(1

3
ej)

I(bj 6=1)

+1
2
(1− ej)I(bj=2)(1

3
ej)

I(bj 6=1)} for heterozygous genotype A/B.

where B and E represent the vectors of base calls and corresponding error probabilities for

position i and allele j (j = 1: first allele and j = 2: second allele) in each subject (bj and ej

are corresponding elements of B and E). bj = 1 means the j-th allele in observed reads is

identical with the j-th allele from underlying true genotype and I is an indicator function.

We then define the probability the probability of an underlying true genotype Gi given

the mosaic state Si, P (Gi|Si). The function T (Si) was defined as the number of different
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alleles for genotype Gi. So P (Gi|Si) was defined by:



(1− εi)2 {T (Si) = 0 or T (Si) = 2} and T (Si) = T (Gi)

εi(1− εi) {T (Si) = 0 or T (Si) = 2} and |T (Si)− T (Gi)| = 1

ε2
i {T (Si) = 0 or T (Si) = 2} and |T (Si)− T (Gi)| = 2

(1− εi)2 + ε2
i T (Si) = 1 and T (Si) = T (Gi)

2εi(1− εi) T (Si) = 1 and T (Si) 6= T (Gi)

where εi is the cumulative effects of mutation and gene conversion (we called it mosaic error

rate here) at marker i. Then we can calculated the emission probability of P (Ri|Si) as:

P (Ri|Si) = ΣGi
P (Ri|Gi)× P (Gi|Si) (4.1)

Finally the transition probability P (Si+1|Si) in the HMM was defined by:

P (Si+1 = (w, v)|Si = (x, y))

=


θ2
i

H2 w 6= x and y 6= v

(1− θi)θi
N +

θ2
i

H2 w 6= x and y = v or w = x and y 6= v

(1− θi)2 +
2(1− θi)θi

H +
θ2
i

H2 w = x and y = v

where θi is the mosaic transition rate from position i− 1 to position i, and H is the number

of haplotypes in the reference panel. Our goal is to calculate P (Gi|R), the probability of a

genotype at position i conditional on all sequence reads:

P (Gi|R) = ΣSi
P (Gi|Si)× P (Si|R) (4.2)

by looping all possible state Si. Baum’s forward-backward algorithm was used to calculate

P (Si|R) and P (Gi|R) [Rabiner, 1989].
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4.2.2 Procedure for modeling nuclear family

Chen et al. [2013] proposed a strategy for parent-offspring trios with computationally efficient

modeling of LD and the constraint due to Mendelian inheritance. We extended their proposed

algorithm from analyzing trios to nuclear families by looping over all possible trios within

each family. Consistent with their paper, we denote Rfk, Rmk and Rck as the read data from

k-th possible trio within a nuclear family, Gfk, Gmk and Gck as the underlying true genotype

for the father, mother and child, and the genotype likelihood was denoted by P (Rfk|Gfk),

P (Rmk|Gmk) and P (Rck|Gck). The procedure for each iteration was described below:

I. At position i, we randomly select a child in family and corresponding parents, denoted

by R̄i1 = (Rf(i)1, Rm(i)1), Rc(i)1).

II. First update parental haplotypes by sampling a mosaic state Sf(i)1 for father, then emis-

sion probability can be written as P (R̄i1|Sf(i)1) =
∑

g P (R̄i1|Gf(i)1 = g) × P (Gf(i)1 =

g|Sf(i)1), and P (R̄i1|Gf(i)1 = g) =
P (R̄i1, Gf(i)1 = g)
P (Gf(i)1 = g)

=
∑

gm
P (Rf(i)1|Gf(i)1 = g) ×

P (Rm(i)1|Gm(i)1 = gm) × P (Rc(i)1|Gc(i)1 = transmit(gf , gm)), where transmit(gf , gm) re-

turns the genotype for child conditional on ordered parental genotypes Gf and Gm.

III. Updates maternal haplotypes at position i conditional on the sampled genotype for the

first parent. P (R̄i1|Si1, Gf(i)1 = gf ) =
∑

g P (Rf(i)1|Gf(i)1 = gf ) × P (Rm(i)1|Gm(i)1 =

gm)× P (Rc(i)1|Gc(i)1 = transmit(gf , gm)).

IV. Randomly select second child (Rc(i)2) and corresponding parents updated from previous

trio loop, and repeat step I - step III until all children (Rc(i)k, k = 1, 2, . . . , nl where nl is

number of children in family l) are used in each family.

V. Update next family and repeat step I - step IV until all families are used.

Each round of updates generates a new ordered haplotypes for each family (can be unrelated

individual, parent-offspring trio, nuclear family or family with multiple generations), the

consensus haplotype was generated by assigning the most frequently sampled allele at each

position. Figure 11 illustrates the example of updating haplotypes for each iteration in a

nuclear family with three offspring. For each iteration, we randomly selected one offspring

to form a trio (“random” here means we try to avoid keep using first offspring to update

parents’ haplotype in each iteration), and update the haplotypes of parents and offspring
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(step II. and III. of the procedure). We than randomly selected second offspring to form a

trio with parents’ haplotypes updated from previous step, repeated step II. and III. until

all possible trios were looped in each family. This method can also be applied to multi-

generational family in a similar manner by looping through all offspring in a random order

in each iteration.

4.2.3 Use of phased reference panels

Public reference panels (e.g. 1KG Project and HapMap Project) can provide extra LD

information for genotype calling and have been successful in facilitate imputation. For

genotyping sequence data, most existing software do not use the information from reference

panel. Our method and implementation can incorporate phased reference panels efficiently

into our genotype calling procedure. It has two advantages: 1) we will be able to call a small

number of sequenced families/individuals using LD information from a similar population

with phased haplotypes available; 2) the computation will be efficient because we don’t have

to call all individuals but only sequenced individuals. This approach is particularly useful

for sequencing studies with a small sample sizes.

4.2.4 Simulated data

In the first simulation scheme, we considered 80 nuclear families, and each family has two

founders and four offspring. To be realistic, we generated 12 regions with 1 Mb length of

haplotypes, and each region contains 10,000 haplotypes generated from a coalescent model

to mimicking the LD pattern, population demographic history and local recombination rates

of European ancestry samples [Schaffner et al., 2005]. We randomly sampled haplotypes

for founders in each family and simulate the Mendelian transmission for the haplotypes of

offspring. The short read were simulated by assuming depth at each site follows a Poisson

distribution and defined per-based sequencing error rate. Each sample was sequenced at

depth 2x, 6x and 10x by assuming per base error (denoted as “BE” in all Tables and Fig-

ures throughout this chapter) rate of 0.01 (Phread scaled base quality of Q20). In order to

compare with the “TrioCaller” software proposed by Chen et al. [2013], we considered the
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following procedure when calling genotypes in each nuclear family: we selected first child to

form into a trio and treated other three children as unrelated subjects (result from “Trio-

Caller”), and then included the second child into consideration at a time until all children

were used.

In the second simulation scheme, we further considered sequencing and alignment errors

using the 1000 Genome Project (1000GP) data. We simulated founders entire genomes by

randomly selecting a pair of haplotypes from the 1000GP CEU population (March 2012

Phase 1 release). For non-founders, we simulated cross-overs in the parental haplotypes

based on the genetic map in the HapMap data, and then generate offspring genotypes by

randomly selecting one haplotype from each parent. We then simulated paired-end 100bp

reads according to Poisson distribution on the genome, with a mean insertion size of 400bp

and a standard deviation of 50bp, and a sequencing error rate of 0.01 per base. We used

BWA to align simulated reads to the reference of hg19 and carried out standard procedure

for variant calling using Genome Analysis Toolkit (GATK) [McKenna et al., 2010] including

indel-realignment and base quality realignment. The list of known indels from 1000GP was

provided to GATK for re-alignment prior to variant calling in different depths 5x, 10x, 20x

and 30x with 3,005,070 sites on chromosome 1. There are five families, and each family has

14 members (see pedigree in Figure S9). We considered the simulation settings similar to

our first simulation scheme: we selected nuclear family (parents and three offspring) in each

big family, then we selected first child to form into a trio and treated another two children

as unrelated subjects, and included the second child into consideration at a time until all

children were used. In addition, we also selected complex family with three generations from

each big family.

Next, we investigate if the reference panels can help increase genotyping accuracy. We

designed a simulation study by considering 2, 3 and 4 parent-offspring trios with depth 2x,

6x and 10x with per-base error rate of 0.01(Q20). For reference panels, we considered 10,

20, 40 and 60 founders from 1000 genome project.
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4.3 EVALUATION CRITERIA

First, we evaluated the performance of genotype calls using genotype mismatch rate between

genotypes estimated by our proposed algorithm and surrogated gold standard genotypes

from simulated data, especially in heterozygous sites, which is more sensitive case in geno-

type accuracy. Second, we calculated the number of mismatched alleles between estimated

haplotypes by our proposed algorithm and haplotypes from simulated data to evaluate the

haplotyping accuracy. Third, we also evaluated the Mendelian error by calculating the num-

ber of mismatching alleles between each offspring and corresponding parents.

4.4 SIMULATION RESULTS

4.4.1 Overall performance of genotype accuracy

We evaluated the performance of our proposed algorithm for genotype calling method in sim-

ulation studies and real data analysis. We have two goals: (1) extended the existing method

for analyzing trio-based data sets to handle complex family with multiple offspring and/or

generations; (2) proposed a function to analyze a small number of family-based samples in-

corporating the external reference panels, such as subjects from 1,000 Genome Project. For

goal one, We first evaluated the genotype accuracy when adding more offspring in each fam-

ily. Figure 12 shows the mean of the genotype mismatch rate of heterozygous calls and SNP

with minor allele frequency (MAF) < 5% summarized from twelve simulated haplotypes. It

shows the clear pattern that adding more offspring per family can reduce the genotype mis-

match rate (see also Table 6), especially in low depth (2x). The genotype mismatch rate of

heterozygous calls can reduced from 4.5% to 4.38% to 4.18% to 3.94% when one, two, three

and all four offspring were considered, respectively. Sequencing depth also contributed to

genotype accuracy: as 80 trios and 240 unrelated samples were sequenced, the genotype mis-

match rates of heterozygous calls reduced from 4.48% to 0.875% to 0.257% as depth increase

from 2x to 6x to 10x. The advantage of our proposed method makes clear that adding more
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offspring can achieve more accurate genotype calls, especially at low sequencing depths. The

second simulation scheme considered alignment and experimental errors also target on the

first purpose. Table 7 shows the genotype mismatch rate of heterozygous calls. In general,

GATK has high genotype mismatch rate, especially with depth 5x (16.4%) and 10x (2.7%)

and our proposed method greatly outperform the results from GATK. When all three off-

spring were all considered in our algorithm, the genotyping errors of heterozygous SNPs

can reduced from 16.4% and 2.7% to 0.9% and 0.4% at 5x and 10x coverage, respectively.

Genotype mismatch rate will keep decreasing when adding more offspring when using our

proposed method, especially at low depth 5x. The genotype discordance error rate can be

reduced from 0.92% to 0.84% to 0.77% by considering one, two and three offspring in each

family at 5x coverage. Furthermore, Our proposed method can handle the complex family

structure (genotype mismatch rate are 0.86%, 0.37%, 0.24% and 0.25% at depths 5x, 10x,

20x and 30x, respectively)

4.4.2 Performance of haplotyping

Haplotype reconstruction plays an important role for follow-up analysis such as genotype im-

putation; and studying the population history. The phasing error rates were calculated by

the mean number of mismatched alleles between reconstructed haplotypes by using our pro-

posed algorithm and haplotypes from simulated data (we assumed the simulated haplotypes

was underlying truth). The first simulation results from twelve simulated haplotypes were

summarized in Figure 13 and Table 8. In summary, at low depth 2x, adding more offspring in

each family can keep reducing the genotype mismatch rate. For instance, the phasing error

rate can reduce 25% when all four offspring were taken into consideration compared with

trio-based (only considers one offspring). Similar to genotype accuracy, sequencing depth

contributed to phasing error rate, but our proposed algorithm still showing its advantage to

lower the phasing error when adding more offspring.
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4.4.3 Performance on Mendelian errors

Since our proposed method considered the family constraint (we considered trio at a time

within whole family structure), we can also lower the Mendelian errors. We calculated

the Mendelian errors by calculating the total number of Mendelian inconsistent genotypes

divided by the total number of offspring in simulated data set. In our first simulation study

without considering alignment and experimental errors, the mean number of Mendelian

errors of our proposed method when considering all four offspring compared with trio-based

method in simulated data can be dropped from 13.86 to 9.04, 3.74 to 2.37 and 1.42 to 0.63

at 2x, 6x and 10x coverage, respectively (see Figure 14 and Table 9). The second simulation

result was summarized in Table 10 which showed the mean number of Mendelian errors for

each offspring with considering alignment and experimental errors. As compared with the

results from GATK, our proposed method can reduce the mean number of Mendelian error

from 28212.6 and 6475.1 to 718.3 and 227.73 SNP at 5x and 10x coverage, respectively. In

addition, when adding more offspring into consideration, our algorithm can achieve lower

Mendelian errors, especially with low depth 5x: the mean number of Mendelian errors can

be reduced from 1118.1 to 962.2 to 718.3 when considering one, two and three offspring in

each family, respectively.

4.4.4 Performance of incorporating reference panels

Next, we proceed to evaluate the genotype mismatch rates, phasing errors and Mendelian

errors by incorporating external references when sequencing data with small sample sizes for

our second purpose (see the simulation results summarized in Figure 15 to Figure 17 and

Table 11 to Table 13). In summary, for limited number of sequencing data, our proposed

algorithm by incorporating external references can also provide the accurate genotypes, and

reduce the phasing errors and Mendelian errors. For example, the genotype mismatch rates

dropped from 7% to 4% to 2.8% to 2.4%; the phasing error rates dropped from 0.2% to 0.12%

to 0.08% to 0.07% and the mean number of Mendelian errors dropped from 5.92 to 3.21 to

1.92 to 1.46 when incorporating 10, 20, 40 and 60 founders from 1,000 Genome Project

for 2 sequenced trios at 2x coverage. Sequencing depth is also a key factor for genotype
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accuracy, and we found that increasing the number of external references (founders) can be

a good way to compensate the depth. For example, the genotype mismatch rate at coverage

2x incorporated by 60 founders is 2.4%, which is similar to the genotype mismatch rate at

coverage 6x incorporated by 10 founders (∼2%); the genotype mismatch rate at coverage

6x incorporated by 60 founders is 0.55%, which is similar to the genotype mismatch rate at

coverage 10x incorporated by 10 founders (0.056%).

4.5 PERFORMANCE ON REAL DATA

We applied our methods to an ongoing sequencing project, which has a total of 2,499 sample

and includes 623 families with an average depth 10X (unpublished data). We focused on

chromosome 20 and calculated the mismatch rate between the called genotypes from our

method and the available genotypes from DNA microarray chips. Then, we compared the

mismatch rate using our methods with that using other existing method BEAGLE [Browning

and Browning, 2009]. In summary, our method outperforms the results from BEAGLE.

For all SNPs, the genotype mismatch rate of BEAGLE and our method are 1.012 × 10−3

and 7.75 × 10−4; For heterozygous SNPs, the genotype mismatch rate of BEAGLE and

our method are 1.863 × 10−3 and 1.539 × 10−3. We will continue our investigation when

more sequence data are available. Specifically, we also investigated few small regions on

chromosome 20 using different states (100, 200 and 400), as a result, the genotype mismatch

rate for heterozygous calls can reduced from 1.53× 10−3 to 1.22× 10−3 to 1.04× 10−3 when

100, 200 and 400 states were used.

We also applied our method to the 1,000 Genomes Project on deep sequenced trios for our

second purpose to incorporate external panels when analyzing family-based sequencing data

with small sample size. There are two trios with one trio from CEU and the other from YRI.

These two trios have been genotyped on OMNI chip. For CEU trio, the genotype mismatch

rate are 1.483× 10−3 and 1.776× 10−3 for all and heterozygous SNPs, respectively; for YRI

trio, the genotype mismatch rate are 1.886× 10−3 and 2.345× 10−3 for all and heterozygous

SNPs, respectively.
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4.6 IMPLEMENTATION AND SOFTWARE AVAILABILITY

We have implemented our methods efficiently in a C++ program FamLDCaller, which is

available from http://genome.sph.umich.edu/wiki/FamLDCaller.

4.7 DISCUSSION

In this chapter, we proposed a computationally feasible algorithm to call genotypes more

accurately by considering multiple offspring in family-based next generation sequencing data

set. In the simulation studies, we showed our proposed algorithm can obtain more accurate

genotype calls, lower phasing errors and Mendelian errors compared with the result from

trios-based method. In each iteration of MCMC step, we updated each parent multiple times

by incorporating multiple offspring within each family. Our proposed method outperforms

the results from Genome Analysis Toolkit (GATK) proposed by McKenna et al. [2010],

which is the most popular tools for site discovery and generate genotype likelihoods for each

sample, but they did not consider the family structure, which plays an important role for

reducing genotyping error and Mendelian errors, especially for the data with low depth. In

addition, our proposed algorithm provides a function to incorporate the external panels from

1,000 genome project when analyzing small number of family-based NGS data set (e.x. 2 ∼

4 trios). With the high cost of NGS data set and such price still not affordable in many labs,

the only way is to sacrifice the sample sizes or depths with limited budget. Our proposed

method in the simulation study showed that we can achieve satisfying result by incorporating

more founders if possible and the performance was as well as the same data set with high

depth.
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Figure 11: Example of updating haplotypes for each iteration in one nuclear

family with three offspring.
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Figure 12: Genotype mismatch rate of heterozygous calls and SNPs with maf <

5% (Simulation I). C1: trios; C2: nuclear families of two offspring; C3: nuclear families

of three offspring and C4: nuclear families of four offspring.

Table 6: Genotype mismatch rate of heterozygous calls and SNPs with maf < 5% (Simu-

lation I)

2x 6x 10x
80 trios, 240 unrelated 0.0448 0.00875 0.00257

Heterozygous 80 nuclear families (twooffspring) , 160 unrelated 0.0438 0.00758 0.00203
calls 80 nuclear families (three offspring), 80 unrelated 0.0419 0.00643 0.00153

80 nuclear families (four offspring) 0.0394 0.00523 0.00108
80 trios, 240 unrelated 0.00925 0.00195 0.000554

SNPs with 80 nuclear families (twooffspring) , 160 unrelated 0.00889 0.00166 0.000458
maf < 5% 80 nuclear families (three offspring), 80 unrelated 0.00842 0.00145 0.00036

80 nuclear families (four offspring) 0.00793 0.00114 0.000263
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Table 7: Genotype discordance rate of heterozygous calls (Simulation II)

Depth 5 5 10 10 20 20 30 30
Method GATK FLDC GATK FLDC GATK FLDC GATK FLDC

F3 0.164 0.0092 0.0277 0.0042 0.00454 0.0026 0.00313 0.00256
F4 0.164 0.0084 0.0277 0.0037 0.00454 0.0025 0.00313 0.00255
F5 0.164 0.0077 0.0277 0.0032 0.00454 0.0024 0.00313 0.00253
F6 0.1638 0.0086 0.0276 0.0037 0.00453 0.0024 0.00312 0.00250
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Figure 13: Phasing error rate (Simulation I). C1: trios; C2: nuclear families of two

offspring; C3: nuclear families of three offspring and C4: nuclear families of four offspring.
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Table 8: Phasing error rate (Simulation I)

2x 6x 10x
80 trios, 240 unrelated 2e-05 1.37e-05 1.09e-05

BE = 20 80 nuclear families (twooffspring) , 160 unrelated 1.72e-05 9.27e-06 6.68e-06
80 nuclear families (three offspring), 80 unrelated 1.53e-05 5.45e-06 3.36e-06

80 nuclear families (four offspring) 1.4e-05 2.8e-06 7.22e-07
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Figure 14: Mendelian error (Simulation I). C1: trios; C2: nuclear families of two

offspring; C3: nuclear families of three offspring and C4: nuclear families of four offspring.
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Table 9: Mendelian error (Simulation I)

2x 6x 10x
80 trios, 240 unrelated 13.86 3.737 1.422

BE = 20 80 nuclear families (twooffspring) , 160 unrelated 13.06 3.422 1.142
80 nuclear families (three offspring), 80 unrelated 11.23 2.946 0.8898

80 nuclear families (four offspring) 9.035 2.366 0.6297

Table 10: Mendelian error (Simulation II)

Depth 5 5 10 10 20 20 30 30
Method GATK FLDC GATK FLDC GATK FLDC GATK FLDC

F3 28212.6 1118.1 6475.1 483.27 927.267 182.2 628.2 163.5
F4 28212.6 962.2 6475.1 350.13 927.267 134.6 628.2 126.3
F5 28212.6 718.3 6475.1 227.73 927.267 93.87 628.2 86.1
F6 33427 350.6 7420.6 99.3 1161.2 46 804.5 39.1
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Figure 15: Genotype discordance rate of heterozygous calls (Simulation III).

ref10: 10 founders; ref20: 20 founders; ref40: 40 founders and ref60: 60 founders.
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Table 11: Genotype discordance rate of heterozygous calls (Simulation III)

reference (# of founders) 10 20 40 60
BE = 20 2x 0.071 0.0406 0.0281 0.0246
2 trios 6x 0.0195 0.0104 0.0068 0.00549

10x 0.00555 0.00297 0.00204 0.00187
BE = 20 2x 0.0658 0.0384 0.0279 0.0248
3 trios 6x 0.0204 0.0114 0.00736 0.00556

10x 0.00544 0.00306 0.00205 0.00189
BE = 20 2x 0.0646 0.0383 0.0272 0.0239
4 trios 6x 0.0189 0.0117 0.0072 0.00578

10x 0.005 0.00285 0.00199 0.00168
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Figure 16: Phasing error rate (Simulation III). ref10: 10 founders; ref20: 20 founders;

ref40: 40 founders and ref60: 60 founders.
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Table 12: Phasing error rate (Simulation III)

reference (# of founders) 10 20 40 60
BE = 20 2x 0.00234 0.00121 0.000852 0.000702
2 trios 6x 0.00254 0.000917 0.000485 0.000372

10x 0.00174 0.000506 0.000373 0.000194
BE = 20 2x 0.00138 0.000725 0.000536 0.000455
3 trios 6x 0.00149 0.000631 0.000333 0.000212

10x 0.00109 0.000218 0.000152 0.000119
BE = 20 2x 0.0011 0.000569 0.000413 0.000312
4 trios 6x 0.00101 0.000461 0.000251 0.000194

10x 0.00071 0.000142 0.00011 7.43e-05
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Figure 17: Mendelian error (Simulation III). ref10: 10 founders; ref20: 20 founders;

ref40: 40 founders and ref60: 60 founders.
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Table 13: Mendelian error (Simulation III)

reference (# of founders) 10 20 40 60
BE = 20 2x 5.917 3.208 1.917 1.458
2 trios 6x 2.208 1 0.75 0.4167

10x 0.1667 0.3333 0.1667 0.04167
BE = 20 2x 5.611 2.889 1.667 1.583
3 trios 6x 2.139 1.083 0.7222 0.5833

10x 0.3333 0.1944 0.1389 0.2222
BE = 20 2x 5.229 3.042 1.708 1.5
4 trios 6x 1.604 1.521 0.7083 0.4792

10x 0.2292 0.1042 0.1875 0.2083
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5.0 CONCLUSIONS AND FUTURE DIRECTIONS

5.1 SUMMARY OF CONTRIBUTIONS

In chapter 2, we provided a practical guideline for users to choose the most appropriate

meta-analysis method when combining microarray data sets. For instance, if we are looking

at the study-specific markers (e.g. microarray data sets with different tissues target on

same disease trait, which means we expected “heterogeniety” between studies), the meta-

analysis methods target on HSB (DE genes has non-zero effect size in “one or more” studies)

can identify tissue-specific DE genes. Among the meta-analysis methods target on HSB we

compared in this project, we will suggest to use adaptive weighted (AW) Fisher’s method

because this method provides an additional information of adaptive weight index (0: non-

significant or 1: significant) and its performance is comparable to Fisher’s and Stouffer’s

methods (see Table 2). When there is no prior information can be obtained, one can also

uses our proposed entropy measure to understand the data structure (see Figure 7 (b)).

In addition, HSA or HSr-typed meta-analysis methods are more appropriate to detected

conserved and consistent DE genes across all studies.

In chapter 3, we developed a meta-clustering method to identified modules consistently

co-expressed in all 11 transcriptomic MDD studies. Around 7,500 genes (we filtered out 25%

scattered genes) were clustered into 50 co-expressed modules, and integrated with external

databases, such as pathway database (MSigDB) and catalog of GWAS database (see overall

analytical strategy in Figure 8). One robust module with 88 genes was significantly enriched

in eight lists of genetic markers located nearby genes associated with major depression and

related phenotype such as neuropsychiatric disorders; brain or neurological functions; disease

sharing clinical risk with MDD (Diabetes, Hypertension, etc) (more detail was described in
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section 3.2.5 and Figure 9). In pathway analysis, these 88 genes was enriched in GABA

or Gultamate-related pathways, which may share the similar biological function of brain

(more detail was described in sections of 3.2.7, 3.3.4 and Table 5). We also showed that our

meta-analyzed co-expression modules can achieve more accurate and robust gene modules

(see section 3.3.5 and Figure 10).

In chapter 4, we proposed a computationally efficient algorithm and developed a software

“FamLDCaller” to call genotypes of next generation sequencing (NGS) data sets incorpo-

rated by family structures of nuclear family (multiple offspring) or complex family (more

than two generations) (Objective 1). We showed that we can achieve more accurate geno-

type calls and reduced the Mendelian and phasing errors by adding more offspring in each

family from the results of simulation studies and real data analysis, especially with low cov-

erage data sets. In addition, Our proposed software “FamLDCaller” includes a function to

incorporate samples from reference panels such as 1,000 Genome Project to call genotypes of

family-structured NGS data sets with small sample sizes (Objective 2). We concluded more

accurate genotypes can be achieved when incorporating more references.

In conclusion, the thesis first performed a comprehensive comparative study of twelve mi-

coarray meta-analysis methods, which can be categorized according to three types of hypoth-

esis settings they best tested (see simulation result in section 2.3.2) and we provided an appli-

cation guideline for practitioners based on our proposed four quantitative evaluation criteria

applied in six real examples (see discussion in section 2.4.1). Second, the thesis then presented

a meta-clustering method to combine 11 MDD microarray studies to construct conserved co-

expressed modules incorporated by GWAS result and pathway databases. Third, we devel-

oped a software “FamLDCaller” (http://genome.sph.umich.edu/wiki/FamLDCaller) which

can be analyzed (1) in NGS data set with family structures of nuclear or complex families;

(2) in NGS data set with small sample sizes incorporated by publicly available reference

panels from 1,000 Genome Project. Taken together, this thesis provides several advantages

of integrative analysis of omics data: (1) good summary of meta-analysis methods of mi-

croarray studies; (2) the needs of meta-clustering method to generate robust co-expressed

modules and further integrate with GWAS and pathway databases; (3) Genotype callings

method integrating family structure.
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5.2 FUTURE DIRECTIONS

Below I will briefly discuss possible future direction from this thesis.

5.2.1 Consistency of differential expression (DE) changes in Adaptive weighted

Fisher

In chapter 2, only Stouffer’s method (belongs to HSB) and REM (belongs to HSr) methods

can avoid detecting markers with discordance effect sizes when combining multiple microar-

ray studies from the simulation study target on the case discordance effect sizes (see simula-

tion result in section 2.3.2 and Figure S3). However, Stouffer’s method became unstable as

number of studies increased and is too sensitive to extremely small p-values in few studies;

REM method is not robust enough to detect all the concordance markers. As a result, most

developed meta-analysis methods were not designed to handle the case of discordance effect

sizes, which is a common issue in real applications. In order to detect concordant DE genes,

we can simply perform a post hoc filtering procedure by removing any detected biomarkers

with discordant directions based on significant studies defined by adaptive weight Fisher’s

method (only check studies with “1” from the adaptive weighted vector w∗, see how w∗ was

generated from AW Fisher’s method in section 2.2.3). Alternatively, we may modify the

hypothesis setting and define a new concordant-based AW statistic. We expect the later

approach will perform better and will be our future direction.

5.2.2 MetaClustering-clusters

In chapter 3, we applied the meta-clustering method “PPAM” by taking the mean of dissim-

ilarity measure matrix (dissimilarity measure between gene i and gene j for a given single

study k was defined by d
(k)
i,j = 1− |cor(Xik, Xjk)|, where cor(Xik, Xjk) is the Pearson corre-

lation of the two gene vectors.) from K (K = 11) MDD transcriptome studies (see Figure

18 (A): MetaClustering-Distances). Here we aim at detecting conserved co-expressed pat-

tern in most or all studies. There is an alternative way to perform meta-clustering method

at clusters level in co-expression analysis. We can apply clustering method to each single
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study separately and combine the clustering results in the following step (see Figure 18 (B):

MetaClustering-Clusters). Here we will combine the clustering results constructed from each

studies, hence my proposed future direction will aim at detecting co-expressed gene modules

in “majority” of studies.

5.2.3 Allowing for non-autosomal genotype calling and short indels

Trio-based genotype calling method proposed by Chen et al. [2013], our developed method

“FamLDCaller” can not only handles nuclear or complex family structures, but also and

allows people to use external database (e.x. 1,000 Genome Project) as reference panels

to obtain more accurate genotype calls when analyzing family-structured NGS data sets

with small sample sizes. In the future, our method can be modified to handle X and Y

chromosomes. For males, the model can be reformulated to handle a haploid case where

each hidden state is one haplotype rather than a pair. In the same principle, for females, we

can calculate P (Ri|Si), where Si = (Si,f , Si,m), Si,f is a pair of reference haplotype and Si,m

is a reference haplotype. The transmission and emission probabilities need to be modified

accordingly. In addition, although our methods focus on SNPs and haplotypes, they can

be modified to accommodate short insertions or deletions by reconstructing P (Gi|Si) and

P (Ri|Gi), to include a modified error model and the information about read depth.
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Figure 18: General workflow of meta-clustering methods to combine co-

expressed genes in different approaches. A. Meta-clustering Distance; B. Meta-

clustering Clusters. “This Figure is used with permission by Rui Chen’s in his Doctoral

Thesis proposal proposed in 2014”
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     APPENDIX: SUPPLEMENTARY FIGURES AND TABLES
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Prostate cancer studies (normal vs. primary) Prostate cancer studies (primary vs. metastasis) 

Brain cancer studies (AA vs. GBM) Major depression disorder studies 

Lung disease studies Breast cancer studies (survival) 

Figure S1: Meta QC.
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Figure S2: Heatmap of simulated example (red color represents up-regulated

genes).
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Figure S3: The histograms of the true number of DE studies among detected

DE genes under FDR=5% in each method for discordance case (green color rep-

resents all concordance effect sizes; blue color represents one study has opposite

effect size and red color represents two studies have opposite effect size).

92



0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Surrogate biological performance (Prostate Cancer: Normal v.s. Primary)

Pathways

C
um

ul
at

iv
e 

m
ov

in
g 

av
er

ag
e

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maxP
minP
Fisher
Stouffer
AW

rOP
REM
FEM
RankSum
RankProd

SR
PR
Lapointe
Singh
Varambally

Wallace
Welsh
Yu

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Surrogate biological performance (Prostate Cancer: Primary v.s. Metastasis)

Pathways

C
um

ul
at

iv
e 

m
ov

in
g 

av
er

ag
e

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maxP
minP
Fisher
Stouffer

AW
rOP
REM
FEM

RankSum
RankProd
SR
PR

Lapointe
Varambally
Yu

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Surrogate biological performance (Brain Cancer: AA v.s. GBM)

Pathways

C
um

ul
at

iv
e 

m
ov

in
g 

av
er

ag
e

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maxP
minP
Fisher
Stouffer
AW

rOP
REM
FEM
RankSum
RankProd

SR
PR
Petalidis
Freije
Phillips

Sun
Gravendeel

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Surrogate biological performance (MDD)

Pathways

C
um

ul
at

iv
e 

m
ov

in
g 

av
er

ag
e

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maxP
minP
Fisher
Stouffer
AW

rOP
REM
FEM
RankSum
RankProd

SR
PR
MD1_ACC_M
MD1_AMY_M
MD2_ACC_F

MD2_ACC_M
MD2_DLPFC_F
MD2_DLPFC_M
MD3_ACC_F

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Surrogate biological performance (IPF)

Pathways

C
um

ul
at

iv
e 

m
ov

in
g 

av
er

ag
e

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maxP
minP
Fisher
Stouffer
AW

rOP
REM
FEM
RankSum
RankProd

SR
PR
KangA
KangB
Konishi

Pardo
Vuga
Yang

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Surrogate biological performance (Breast)

Pathways

C
um

ul
at

iv
e 

m
ov

in
g 

av
er

ag
e

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MaxP
MinP
Fisher
Stouffer

AW
rOP
SR
PR

Desmedt
Loi
Miller
Pawitan

Sotiriou2006
Wang

Figure S4: Cumulative moving average to determine D = 100.
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Figure S5: The ROC curves and AUC for the hypothesis settings of HSA-type

and (red line) HSB-type (black line) in each meta-analysis method.
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Figure S6: Multidimensional scaling (MDS) plots of individual data sets.
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Figure S7: Stability and Robustness plot for α = 0.0001, 0.005 and 0.01.

96



Figure S8: Diagram of pre-processing procedure of 11 MDD transcriptome data

sets.

Number of samples and number of matched genes in each single (MDD) study. In matching

step, we allowed 20% missing studies, then 16,443 genes were identically matched among

11 studies. 13,500 genes were kept by filtering out lower sum ranks of median row means;

10,000 genes were kept by filtering out lower sum ranks of median row standard deviations.
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Figure S9: Pedigree of complex family simulated from 1,000 genome project.
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Table S1: Detailed data sets description

Author Year Platform Sample Size Source
(Case/Controls)

Welsh 2001 HG-U95A 34(25/9) public.gnf.org/cancer/
Prostate Cancer Singh 2002 HG-U95Av2 102(52/50) www.broad.mit.edu

Studies Lapointe 2004 cDNA 103(62/41) GSE3933
(Normal v.s Yu 2004 HG-U95Av2 83(65/18) GSE6919

Primary) Varambally 2005 HG-U133 Plus 2 13(7/6) GSE3325
Wallace 2008 HG-U133A2 89(69/20) GSE6956
Nanni 2006 HG-U133A 30(23/7) GSE3868

Prostate Cancer Lapointe 2004 cDNA 71(62/9) GSE3933
Studies Varambally 2005 HG-U133 Plus 2 13(7/6) GSE3325

(Primary v.s Yu 2004 HG-U95Av2 90(65/25) GSE6919
Metastasis Tomlins 2006 cDNA 49(30/19) GSE6099

Freije 2004 HG-U133A,B 85(59/26) GSE4412
Phillips 2006 HG-U133A,B 100(76/24) GSE4271

Brain Cancer Sun 2006 HG-U133 Plus 2 100(81/19) GSE4290
Studies Petalidis 2008 HG-U133A 58(39/19) GSE1993

Gravendeel 2009 HG-U133 Plus 2 175(159/16) GSE16011
Paugh 2010 HG-U133 Plus 2 42(33/9) GSE19578

Yamanaka 2006 Agilent 29(22/7) GSE4381
MD1 AMY 2009 HG-U133 Plus 2 28(14/14) Dr. Sibille
MD1 ACC 2009 HG-U133 Plus 2 32(16/16) Dr. Sibille
MD3 ACC 2009 HumanHT-12 44(22/22) Dr. Sibille

MDD Studies MD2 ACC M 2010 HG-U133 Plus 2 18(9/9) Dr. Sibille
MD2 ACC F 2010 HG-U133 Plus 2 26(13/13) Dr. Sibille

MD2 DLPFC M 2010 HG-U133 Plus 2 28(14/14) Dr. Sibille
MD2 DLPFC F 2010 HG-U133 Plus 2 32(16/16) Dr. Sibille

MD3 AMY 2009 HumanHT-12 42(21/21) Dr. Sibille
Pardo 2005 Codelink 24(13/11) GSE2052
Yang 2007 Agilent 43K 29(20/9) GSE5774
Vuga 2009 Codelink 7(4/3) GSE10921

Lung Disease Konishi 2009 Agilent 4x44K 38(23/15) GSE10667
Studies (IPF) KangA 2011 Agilent 4x44K 63(52/11) Dr. Kaminski

KangB 2011 Agilent 8x60K 96(75/21) Dr. Kaminski
Larsson 2008 HG-U133 Plus 2 12(6/6) GSE11196
Emblom 2010 cDNA 58(38/20) GSE17978

Loi 2007 HG-U133A 125 GSE6532
Miller 2005 HG-U133A,B 236 GSE3494

Pawitan 2005 HG-U133A,B 159 GSE1456
Breast Cancer Sotiriou2006 2006 HG-U133A 187 GSE2990

Studies Desmedt 2007 HG-U133A 198 GSE7390
Wang 2005 HG-U133A 286 GSE2034

Sotiriou2003 2003 cDNA 110
vantVeer 2002 cDNA 97
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Table S2: MetaQC results

Data set Study IQC EQC CQCg CQCp AQCg AQCp Rank
1. Welsh 4.38 0.53* 54.63 64.08 18.9 39.09 2.25

2. Yu 6.64 0.9* 46.91 55.48 14.84 26.2 2.33
Prostate Cancer 3. Lapointe 2.1* 1.33* 27 53.98 6.28 18.29 3.17
Studies (Normal 4. Singh 1.14* 0.95* 14.67 19.21 3.85 18.34 4.17

v.s Primary) 5. Varambally 4.38 1.06* 8.7 3.29 2.55 2.41 4.92
6. Wallace 7.86 0.27* 0* 27.05 0* 3.69 5.33
7. Nanni 0.75* 0.7* 0.88* 4.2 0.63* 11.45 5.83

Prostate Cancer 1. Varambally 6.4 0.27* 16.88 23.86 5.5 11.66 1.5
Studies (Primary 2. Yu 4.74 0.94* 6.77 13.73 1.43* 6.4 2
v.s Metastasis) 3. Lapointe 3.3 0.8* 2.91 4.08 2.95 5.95 2.67

4. Tomlins 1.3* 0.51* 0.21* 0.21* 0.1* 0.41* 3.83
1. Sun 4.96 2.64 151.63 128.5 61.12 48.82 1.5

2. Petalidis 4.24 1.17* 148.97 122.39 56.74 75.83 2.83
Brain Cancer 3. Freije 5.27 2.52 89.34 68.09 43.31 20.49 3

Studies 4. Phillips 4.81 1.73* 84.93 56 37.22 25.31 3.83
5. Gravendeel 6.27 1.13* 38.53 48.98 11.9 35.74 4.17

6. Paugh 1.51* 1.26* 1.62* 0.17* 1.7* 1.77* 6
7. Yamanaka 0.1* 0.56* 0.92* 0.94* 1.85* 0.31* 6.67

1. MD2 ACC F 8.48 1.08* 34.48 54.49 11.9 10.6 1.83
2. MD2 DLPFC F 7.87 1.13* 34.58 32.29 6.33 6.91 2.67
3. MD2 DLPFC M 2.55 2.08* 24.36 46.97 3.54 20.54 3

MDD Studies 4. MD1 ACC M 5.03 0.45* 23.25 50.38 4.29 10.74 3.67
5. MD3 ACC F 0.74* 1.05* 9.33 9.31 4.8 4.62 5.5
6. MD2 ACC M 2.99 1.04* 7.41 9.4 3.36 0.96* 5.83
7. MD1 AMY M 1.97* 0.11* 5.47 23.76 1.93* 7.83 6.17
8. MD3 AMY F 1.56* 0.96* 0.96* 0.15* 0.38* 2.31 7.33

1. KangA 6.64 0.34* 140.41 85.47 39.01 40.71 2.17
2. KangB 5.46 0.64* 94.08 45.06 27.4 22.56 2.33
3. Konishi 6.76 0.77* 17.99 31.45 5.99 21.42 3

Lung Disease 4. Yang 4.07 0.44* 26.61 23.7 9.57 18.41 4.17
Studies (IPF) 5. Pardo 4.44 0.35* 15.6 29.98 14.56 17.09 4.5

6. Vuga 2.28 0.39* 1.41* 17.32 1.02* 14.5 6
7. Larsson 1.85* 1.32* 0.54* 4.83 0.12* 1.26* 6.33
8. Emblom 0.03* 0.19* 1.68* 0.07* 0.68* 0.56* 7.5
1. Pawitan 3.63 4 29.79 116.82 21.99 83.85 2.25

2. Loi 6.64 4 13.9 66.34 7.32 62.05 2.58
3. Sotiriou2006 1.3* 0.38* 49.91 134.6 14.3 72.17 3.33

Breast Cancer 4. Miller 6.14 4 7.64 47.17 4.24 30.76 3.58
Studies 5. Desmedt 6.26 4 5.09 14.94 3.24 17.21 4.42

6. Wang 6.03 3.52 0.75* 25.72 2.48 26.01 5.17
7. Sotiriou2003 2.15* 1.37* 0.28* 4.62 0.07* 2.58 6.83

8. vantVeer 0.03* 0.26* 0.14* 1.83* 0.15* 0.8* 7.83
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Table S3: Data sets and number of matched genes

Disease # of studies # of studies Comparison # of matched
passed MetaQC genes

Prostate cancer 7 6 Binary 6,940
(normal vs. primary)

Prostate cancer 4 3 Binary 4,260
(primary vs. metastastasis)

Brain cancer 7 5 Binary (AA vs. GBM) 6,019
(AA vs. GBM)

Major Deoressive 8 6 Binary 6,000
Disorder (MDD) (Normal vs. MDD)

Idiopathic Pulmonary 8 6 Binary 5,481
Fibrosis (IPF) (Normal vs. IPF)
Breast cancer 8 6 Survival time 10,688

(Relapse free survival)
Based on the QC, the study ”Nanni” was removed from 7 prostate cancer studies comparing
normal and primary cancer patients; the study ”Tomlins” was removed from 4 prostate cancer
studies com-paring primary cancer patients and metastasis cancer patients. In the 7 brain
cancer studies, the ”Paugh” and ”Yamanaka” studies were removed. In the case of major
depression disorder (MDD) studies, we removed the study ”MD3 AMY F”. Studies ”Larsson”
and ”Em-blom” were removed from 8 lung disease studies. In breast cancer survival data sets,
two cDNA data sets ”Sotiriou2003” and ”vantVeer” were removed.

Table S4: Mean standardized rank (MSR) and aggregated standardized rank (ASR) for

detection capability

Fisher AW StoufferminPFEMRankSsumrOPRankProdmaxPREM SR PR
Prostate cancer (normal v.s. primary) 0.08 0.17 0.25 0.34 0.42 0.51 0.63 0.61 0.78 0.80 0.980.93

Prostate cancer (primary v.s. metastasis) 0.08 0.17 0.25 0.33 0.55 0.45 0.51 0.71 0.70 0.83 0.921.00
Brain cancer (AA v.s. GBM) 0.08 0.17 0.27 0.40 0.40 0.54 0.57 0.65 0.75 0.75 0.921.00

MDD 0.17 0.22 0.26 0.51 0.55 0.48 0.49 0.52 0.72 0.83 0.850.90
IPF 0.08 0.17 0.27 0.32 0.42 0.49 0.67 0.60 0.81 0.76 0.970.95

Breast Cancer 0.13 0.33 0.41 0.38 NA NA 0.63 NA 0.75 NA 0.990.89
Aggregated standardized ranks 0.11 0.20 0.29 0.38 0.47 0.49 0.58 0.62 0.75 0.79 0.940.95
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Table S5: Mean standardized rank (MSR) and aggregated standardized rank (ASR) for

biological association

StoufferFisher AW PR rOP SR minPRankProdFEMmaxPREMRankSum
Prostate cancer (normal v.s. primary) 0.42 0.38 0.380.41 0.44 0.53 0.49 0.58 0.63 0.69 0.75 0.80

Prostate cancer (primary v.s. metastasis) 0.36 0.38 0.390.42 0.36 0.52 0.49 0.55 0.68 0.72 0.78 0.86
Brain cancer (AA v.s. GBM) 0.44 0.45 0.400.54 0.42 0.64 0.47 0.50 0.56 0.65 0.72 0.73

MDD 0.27 0.29 0.400.28 0.42 0.28 0.56 0.68 0.80 0.84 0.81 0.88
IPF 0.35 0.41 0.360.40 0.45 0.48 0.52 0.63 0.66 0.72 0.76 0.78

Breast Cancer 0.45 0.45 0.480.42 0.52 0.56 0.71 NA NA 0.92 NA NA
Aggregated standardized ranks 0.38 0.39 0.400.41 0.43 0.50 0.54 0.59 0.67 0.75 0.76 0.81

Table S6: Mean standardized rank (MSR) and aggregated standardized rank (ASR) for

stability

RankProdRankSumFisher PR REM AW minPStouffer SR rOPFEMmaxP
Prostate cancer (normal v.s. primary) 0.08 0.17 0.40 0.38 0.27 0.46 0.70 0.72 0.71 0.92 0.70 1.00

Prostate cancer (primary v.s. metastasis) 0.08 0.17 0.38 0.43 0.35 0.39 0.58 0.66 0.73 0.84 0.90 1.00
Brain cancer (AA v.s. GBM) 0.08 0.17 0.37 0.40 0.30 0.50 0.74 0.68 0.77 0.67 0.83 1.00

MDD 0.04 0.04 0.23 0.19 0.82 0.45 0.45 0.58 0.36 0.67 0.78 0.90
IPF 0.08 0.17 0.38 0.44 0.32 0.52 0.49 0.61 0.76 0.92 0.82 1.00

Breast Cancer NA NA 0.18 0.32 NA 0.50 0.51 0.59 0.70 0.80 NA 0.89
Aggregated standardized ranks 0.07 0.14 0.32 0.36 0.41 0.47 0.58 0.64 0.67 0.80 0.81 0.97

Table S7: Mean standardized rank (MSR) and aggregated standardized rank (ASR) for

robustness

minP AW FisherStoufferRankProd PR SR REMFEMrOPmaxPRankSum
Prostate cancer (normal v.s. primary) 0.20 0.27 0.23 0.34 0.56 0.520.54 0.59 0.65 0.80 0.79 1.00

Prostate cancer (primary v.s. metastasis) 0.17 0.21 0.24 0.33 0.47 0.530.65 0.65 0.70 0.81 0.79 0.94
Brain cancer (AA v.s. GBM) 0.24 0.29 0.31 0.40 0.52 0.540.59 0.63 0.57 0.76 0.71 0.94

MDD 0.55 0.51 0.56 0.59 0.33 0.470.37 0.55 0.52 0.49 0.58 0.97
IPF 0.21 0.31 0.29 0.35 0.47 0.490.62 0.51 0.74 0.76 0.73 1.00

Breast Cancer 0.57 0.60 0.62 0.51 NA 0.490.62 NA NA 0.40 0.70 NA
Aggregated standardized ranks 0.32 0.37 0.37 0.42 0.47 0.510.57 0.59 0.64 0.67 0.72 0.97
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Table S8: Meta modules and GWAS gene lists(cases and controls)

Cluster # of genes Neuroticism MDD2000+ Mega MDD Mega bipolar MDD
Neuropsychiatric

Neurological
Medical

Disorder

disorders
illnesses

and brain
sharing

phenotypes
clinical risk

with MDD

1 94 1.0000 1.0000 1.0000 0.9055 0.4510 0.8924 0.8395 0.8220

2 114 1.0000 0.2349 1.0000 0.9529 1.0000 0.2977 0.3431 0.7862

3 187 1.0000 0.1919 0.4421 0.3674 0.5863 0.3231 0.1025 0.0138

4 165 0.1287 0.1483 1.0000 0.3726 0.5012 0.1193 0.0206 0.2418

5 132 0.2638 1.0000 0.0616 0.1788 0.1648 0.2689 0.2783 0.0085

6 118 0.2244 0.2469 1.0000 0.3611 0.5722 0.1871 0.2630 0.0997

7 203 0.0183 1.0000 1.0000 0.6054 0.0016 0.0147 0.0086 0.0925

8 233 0.0991 0.4377 1.0000 0.0160 0.5230 0.4444 0.8360 0.0448

9 130 0.2581 1.0000 1.0000 0.7913 1.0000 0.7638 0.9700 0.5708

10 161 0.7094 1.0000 0.0870 0.1290 0.7387 0.4564 0.6628 0.2194

11 215 1.0000 1.0000 1.0000 0.5324 0.6805 0.3474 0.5406 0.3031

12 251 0.0406 0.4572 0.1799 0.4642 0.2199 0.1237 0.0533 0.3904

13 94 1.0000 0.5357 1.0000 0.0152 0.7858 0.5150 0.4018 0.8220
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14 369 0.5340 0.5419 0.6882 0.7633 0.7186 0.8008 0.8453 0.8263

15 146 0.6735 1.0000 1.0000 0.9446 0.2104 0.5232 0.1982 0.6833

16 154 0.3256 1.0000 1.0000 0.4530 0.4555 0.7367 0.6037 0.9340

17 85 0.4775 1.0000 1.0000 0.4685 0.4008 0.4368 0.6153 0.2051

18 32 1.0000 1.0000 1.0000 0.1441 1.0000 1.0000 0.7005 0.0600

19 204 1.0000 0.6810 0.4713 0.8537 0.8469 0.7052 0.5611 0.9968

20 109 0.5656 0.0577 0.2871 0.6651 0.2581 0.2634 0.1874 0.5807

21 263 0.5969 0.7250 1.0000 0.9644 0.1331 0.3495 0.6833 0.3448

22 53 1.0000 1.0000 0.1512 0.6498 0.2110 0.6272 1.0000 0.9213

23 189 0.4209 1.0000 1.0000 0.9863 0.8148 0.9823 0.9754 0.9793

24 97 1.0000 1.0000 0.2598 0.9837 0.2066 0.3399 0.5916 0.2994

25 68 1.0000 1.0000 1.0000 0.7781 1.0000 1.0000 0.9671 0.8335

26 293 0.8965 1.0000 1.0000 0.5548 0.5155 0.2725 0.3434 0.3939

27 126 1.0000 1.0000 1.0000 0.7707 0.6082 0.5633 0.7316 0.3741

28 181 0.7512 0.6583 0.1061 0.4739 0.3356 0.5812 0.5972 0.3378

29 131 0.6334 1.0000 1.0000 0.9744 0.0607 0.4185 0.5165 0.5784

30 231 0.5258 1.0000 1.0000 0.3574 0.9781 0.9838 0.0930 0.6435

31 224 0.5092 0.1067 1.0000 0.2154 0.1542 0.1782 0.1621 0.3536

32 178 1.0000 0.6557 0.4260 0.7507 0.9468 0.5633 0.2519 0.0726

33 117 1.0000 1.0000 1.0000 0.8679 0.8535 0.8488 0.9786 0.9964

34 236 0.8380 1.0000 0.5223 0.8624 0.7401 0.2262 0.5955 0.8679
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35 88 0.0287 0.0339 0.0001 0.0284 0.0537 0.0078 0.0293 0.0524

36 149 0.6810 1.0000 1.0000 0.4190 0.9138 0.8481 0.6814 0.9228

37 156 0.3312 1.0000 1.0000 0.0277 0.9233 0.8721 0.1851 0.3050

38 122 0.6070 1.0000 0.0536 0.9645 0.8651 0.5343 0.5629 0.3433

39 91 1.0000 0.5241 1.0000 0.0041 1.0000 0.9753 0.9930 0.9874

40 142 0.6633 0.3189 1.0000 0.9373 0.6731 0.6692 0.4926 0.4969

41 192 0.7716 1.0000 1.0000 0.0542 0.6043 0.2308 0.3575 0.4075

42 113 1.0000 1.0000 1.0000 0.9512 1.0000 0.9900 0.9922 0.9714

43 114 0.5820 0.2349 0.2981 0.6992 1.0000 0.9904 0.9343 0.7862

44 186 1.0000 1.0000 1.0000 0.5050 0.8077 0.7529 0.9428 0.9934

45 112 0.5755 1.0000 1.0000 0.3167 0.8409 0.6540 0.3230 0.6051

46 198 1.0000 1.0000 0.4611 0.5769 0.6253 0.3853 0.0378 0.9066

47 167 1.0000 0.1521 1.0000 0.6939 0.5093 0.7979 0.8841 0.6691

48 148 0.6786 0.3368 1.0000 0.9863 0.6951 0.8444 0.9883 0.5413

49 119 0.5978 0.6220 1.0000 0.7307 1.0000 0.9922 0.9990 0.9776

50 117 0.2216 1.0000 1.0000 0.5338 0.5676 0.8488 0.8777 0.9964
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