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Memristor, the fourth passive circuit element, has attracted increased attention from vari-

ous areas since the first real device was discovered in 2008. Its distinctive characteristic to

record the historic profile of the voltage/current through itself creates great potential in fu-

ture circuit design. Inspired by its high scalability, ultra low power consumption and similar

functionality to biology synapse, using memristor to build high density, high power efficiency

neuromorphic circuits becomes one of most promising and also challenging applications. The

challenges can be concluded into three levels: First, at device level, memristors as emerg-

ing nano devices greatly suffer from process variations. Some materials also demonstrate

stochastic switching behavior. All these impacts should be considered and efficiently mod-

eled. Considering that memristor devices can be realized in different memristive materials,

a general modeling method of process variations and stochastic switching behavior that is

independent with device’s physical models is preferred; Second, at circuit level, cross-point

array fabrication is usually employed in realizing high density memristive circuits. How-

ever, current cross-point simulation is either not accurate enough or not efficient for large

scale simulation, like 1024×1024 array. An efficient and flexible cross-point array simulation

platform is necessary to explore the performance of memristive cross-point arrays in neuro-

morphic computation; Third, at application level, how to apply and evaluate the emerging

memristor in neuromorphic circuit design is unclear. Many modification need to be carried

out in neural network algorithms and circuit realizations to take memristor’s advantages as

well as alleviate its shortages. Generally, although memristor is widely accepted as one of
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the most important keys for future high efficient, low power computation, how to design

high performance realistic memristive neuromorphic circuits remains a open question, which

is the major study topic in this thesis.

At device level, I designed a series of models for general memristors to study the impact

of process variations and stochastic behavior on memristor device and memristive circuits.

First I analyzed the impact of the geometry variations on the electrical properties of TiO2-

based memristors, including line edge roughness (LER) and thickness fluctuations (TF).

A simple algorithm was proposed to generate a large volume of geometry variation-aware

three-dimensional device structures for Monte-Carlo simulations. Then a statistical model is

extracted accordingly. Simulations show that the statistical model is 3∼4 magnitude faster

than the Monte-Carlo simulation method, with only ∼2% accuracy degradation. In addition,

the stochastic switching behaviors have been widely observed in metal oxide memristors. To

facilitate the investigation on memristor-based hardware implementation, we built a stochas-

tic behavior model of TiO2 memristive devices based on the real experimental results. These

models could be extended to general memristors to study the impact of process variations

and stochastic behavior on memristor operations.

At circuit level, I integrated a full set of device models and variation models into the cross-

point array structure to evaluate its performance. By efficiently formulating the entire cross-

point array, the simulator is 2∼3 orders of magnitude faster than traditional SPICE simulator

without accuracy degradation. In this way, designers could look into the memristive cross-

point array with scale and accuracy which has never been achieved before. The results

firstly show how sneaking current leakage map changes in crossbar arrays, and quantitatively

evaluate the impact of circuit, device and variation parameters. This simulator paves the

road for further application-level studies.

At application level, I focused our study on memristor-based neuromorphic circuits with

the models and tools developed in front. I first proposed a few low power neuromorphic

components with memristors, including memristor-based synapse “macro cell”, memristor-

based stochastic neuron and memristor-based spatio-temporal(MST) synapse. These designs

employee memristors to achieve ultra high power efficiency, and have high tolerance to pro-

cess variations and stochastic behaviours. In addition, all these components are friendly to
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cross-point array integration so they could be applied to large scale neuromorphic circuit

applications.

I also extended my study to large scale neuromorphic circuit for artificial neural network

(ANN) applications. In one work, I explore the potential of a memristor crossbar array

that functions as an auto-associative memory and apply it to Brain-State-in-a-Box (BSB)

neural networks, which belongs to traditional neural networks for spatial pattern recognition.

More specifically, the recall and training functions of a multi-answer character recognition

process based on BSB model are studied. The robustness of the BSB circuit is analyzed and

evaluated based on extensive Monte-Carlo simulations, considering input defects, process

variations, and electrical fluctuations. The results show that the hardware-based training

scheme proposed in the work can alleviate and even cancel out majority of the noise issue. In

another work, I further studied the memristor-based hardware realization of spiking neural

network (SNN) for temporal pattern learning, which is the third generation and also the

latest generation of neural networks. A temporal pattern learning application is applied to

evaluate the performance of MST synapses in neural networks. The learning ability when

utilizing STDP and ReSuMe learning rules were examined. The simulation results show that

MST synapses can realize online spike-timing-based learning at nano-second scale with an

average energy consumption of 36.7pJ and 64.0pJ per spike for STDP and ReSuMe learning

rules, respectively. The energy consumption in recall process is only 14.6pJ per spike. The

simple design structure, enhanced functionality, fast execution, and high energy efficiency of

MST synapses potentially lead to highly scalable neuromorphic hardware designs.

In conclusion, in this thesis I introduce a complete hardware design flow of memristor-

based neuromorphic circuits from device level to application level. The impact of variation-

s, device parameters and circuit operation schemes are studied at different levels to give

a accurate and complete evaluation of memristors’ performance in neuromorphic circuits.

Moreover, a series of modifications and designs at different levels are also carried out to

optimize the performance of memristor-based neuromorphic circuits. Our result shows that

memristor-based neuromorphic computation could be ∼ 2orders of magnitude power effi-

cient than traditional CMOS computation, and is an ideal platform for “brain-like” high

performance computation.
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1.0 INTRODUCTION

1.1 MOTIVATION

In the development history of microprocessors, the continuation of Moore’s law was guaran-

teed first by the increase of transistor integration density and then by multi-core technolo-

gy Moore et al. (1965). Although in von Neumann computing systems, computing efficiency

of solid state circuits keeps improving by following technology scaling, the data transporta-

tion (communication) efficiency between CPU cores and storage systems starts drifting down

and dominating the energy consumption of the entire system. This phenomenon is referred

to as the memory wall Wulf and McKee (1995).

Information is generally stored in solid state circuits as the electrical charge on capacitors,

e.g., in SRAM and registers. Data transportation is realized by moving the charge from one

location to another. Thus, the communication cost is determined by two factors, i.e., the

amount of the charge relocated and the distance between the source and the destination.

Reducing the communication cost can be realized by decreasing these two factors, such as

lowering the power supply voltage in dynamic voltage scaling Pillai and Shin (2001) and sub-

threshold designs Wang et al. (2006), or shortening the distance between the computing cores

and memories in distributed systems Bertsekas and Tsitsiklis (1989). Notably, these methods

can help alleviate the issue but can not break the memory wall because computation and

memory are always separated in von Neumann computing systems. Moreover, as transistors

reach the quantum regime, the scaling benefit slows down and may eventually diminish

Haensch et al. (2006). Based on the Gedanken model from thermodynamics, once the critical

device dimension reduces to 5nm and below, the minimum energy of a logic bit switching

would dramatically increase Zhirnov et al. (2003). These facts indicate that traditional
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von Neumann computing systems based on CMOS technologies will enjoy less performance

increment and energy efficiency from device scaling as well as performance enhancement. To

date, a lot of research efforts have been investigated on novel computing architectures for

more powerful computation capability and the emerging devices offering increased functional

diversity ITRS (2013).

Among various novel computing architectures, neuromorphic computation system, or say,

“brain-like” computation system, is taken as one of the most promising candidate for next-

generation high performance low power computation systems. In recent years, neuromorphic

hardware systems built upon the conventional CPU, GPU Oh and Jung (2004), or FPGA

Omondi and Rajapakse (2006) gained a great deal of attention from industry, government

and academia. Such systems can potentially provide the capabilities of biological percep-

tion and cognitive information processing within a compact and energy-efficient platform

Camilleri et al. (2007); Partzsch and Schuffny (2011). For example, the spike-timing-based

computation (a.k.a neuromorphic computing) inspired by the working mechanism of human

brains effectively reduces the data communication cost and consequently, achieves very high

computation efficiency: On the one hand, since both the frequency of the spikes and their

relative timing carry on the transmitted information, the spikes can be very short and sparse

that minimizes the amount of the relocated electrical charge; On the other hand, neuromor-

phic computing also minimizes the data communication distance by distributing the data

into the memories (i.e., synapses) close to the associated computing units (i.e., neurons)

throughout the entire system. For example, TrueNorth – the latest spike-timing-based neu-

romorphic hardware prototyped by IBM achieved an extremely low energy consumption of

45pJ per spike in data communication Merolla et al. (2011).

Conventional CMOS implementation of synapse designs suffer from large area, high pow-

er consumption, and low-level parallelism. In TrueNorth, for example, each neurosynaptic

core contains an array of 1024 × 256 synapses built on SRAM cells. The majority of sys-

tem energy was consumed on retaining synaptic weights, programming synapses in learning

process, and reading out the stored weights in recall function. Moreover, since SRAM array

cannot support a truly parallel execution, TrueNorth runs at only 1KHz even though the

operating frequency within each neurosynaptic core is 1MHz Seo et al. (2011). Algorithm
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enhancement can alleviate the situation but cannot fundamentally resolve it. Thus, a more

efficient hardware-level solution is necessary.

As one of the emerging devices, memristor has attracted great attention from various

areas since it is claimed as the fourth passive basic circuit element to complete the circuit

theory. The existence of the memristor was predicted in circuit theory about forty year ago

Chua (1971b). In 2008, the physical realization of a memristor was firstly demonstrated

by HP Lab through a TiO2 thin-film structure Strukov et al. (2008b). Afterwards, many

memristive materials and devices have been rediscovered Yang et al. (2013). Intrinsically, a

memristor behaves similarly to a synapse: it can remember the total electric charge/flux ever

to flow through it Di Ventra et al. (2009); Chua (2011). Moreover, memristor-based memories

can achieve a very high integration density of 100 Gbits/cm2, a few times higher than flash

memory technologies Ho et al. (2009). These unique properties make it a promising device

for massively-parallel, large-scale neuromorphic systems Xia et al. (2009); Jo et al. (2010).

All in all, memristor-based neuromorphic circuit is widely accepted as a promising so-

lution to realize neuromorphic computation. However, as a technology in its infant stage,

it still has many immaturities at current stage and requires careful analysis, the details of

which will be explained in the following.

1.1.1 Device to device variation

As process technology shrinks down to decananometer (sub-50nm) scale, device parameter

fluctuations incurred by process variations have become a critical issue affecting the electrical

characteristics of devices Asenov et al. (2003). The situation in a memristive system could

be even worse when utilizing the analog states of the memristors in design: variations of

device parameters, e.g. the instantaneous memristance, can result in the shift of electrical

responses, e.g. current. The deviation of the electrical excitations will affect memristance

because the total charge through a memristor indeed is the historic behavior of its current

profile. Previous works on memristor variation analysis mainly focused on its impacts on non-

volatile memory design Ho et al. (2009). However, the systematic analysis and quantitative

evaluation on how process variations affect the memristive behavior still needs to be done.
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The device geometry variations significantly influence the electrical properties of nano-

devices Roy et al. (2006). For example, the random uncertainties in lithography and pattern-

ing processes lead to the random deviation of line edge print-images from their ideal pattern,

which is called line edge roughness (LER) Oldiges et al. (2000). Thickness fluctuation (TF)

is caused by deposition processes in which mounds of atoms form and coarsen over time. As

technology shrinks, the geometry variations do not decrease accordingly. In this work, we

propose an algorithm to generate a large volume of three-dimensional memristor structures

to mimic the geometry variations for Monte-Carlo simulations. The LER model is based

on the latest LER characterization method for electron beam lithography (EBL) technol-

ogy from top-down scanning electron microscope (SEM) measurement Jiang et al. (2009).

Besides the geometry variations, other process variations such as random discrete doping

(RDD) could also result in the fluctuations of the electrical properties of devices. However,

because the existing memristors are all based on the thin film deposition technology, the

local randomness of RDD is not as significant as geometry variations and is not covered in

this work.

1.1.2 Device controllability and stochastic behaviour

At current stage, a large gap exists between the theoretical memristor characteristics and

the experimental data obtained from real device development, raising severe concerns in fea-

sibility of memristor-based hardware design. For instance, the memristor theory expresses

a continuous and stable memristance change. This is the foundation of using memristors to

represent synapses in bio-inspired system. Though an arbitrary intermediate state can be

obtained by carefully setting current compliance and period in a single metal oxide mem-

ristor, e.g., TiO2 device, the corresponding realization at large scale, e.g., cross-point array,

is very difficult after including intrinsic design constrains, process variations, environmental

fluctuations, etc. Keeping a memristor in its ON or OFF state (corresponding to Ron or

Roff ), on the contrary, is much more controllable. Thus, more precisely, most memristors

nowadays are utilized as memristive switches Medeiros-Ribeiro et al. (2011).
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Moreover, memristor behaves stochastically and hence even a single memristive device

demonstrates large variations in performance. More specific, the static states of a single

memristive switch, i.e., Ron and Roff , are not fixed values, but have large variations with

skewed distributions and heavy tails Yi et al. (2011). The switching mechanism of a mem-

ristive switch, that is, its dynamic behavior, performs as a stochastic process Yang et al.

(2009). Previous statistical analyses on memristors were limited to the binary switching as

storage elements. However, as an analog device in neural network application, it is more

important to understand and model memristor’s stochastic characteristics.

1.1.3 Large scale cross-point array analysis

Memristor has demonstrated the similar functions as synapse. Accordingly, memristor cross-

point array could be the densest realization of the synapse network among groups of neurons.

In human brains, one neuron is usually connected to over thousands of other neurons, which

means very large scale cross-point arrays are necessary for direct mapping of synapse network

among neurons. However, to simulate the synapse behavior of large scale memristor cross-

point array is extremely time-consuming in traditional circuit simulators that were designed

for memory applications but not neural network applications. Thus, a circuit simulation

platform specially designed for cross-point array as synapse network is an necessary bridge to

connect the memristor-based synapse to the memristor-based neuromorphic circuit designs.

1.1.4 Circuit performance analysis base on applications

With enough understanding of memristor devices and memristor cross-point arrays, we can

start to explore the realization of ANN algorithms in memristor-based neuromorphic cir-

cuits. The study in this area still remains nearly blank at current stage. Though some

previous works have analyzed the simple learning behaviors of memristor based synaptic

circuits Snider (2008); Jo et al. (2010); Ambrogio et al. (2013); Thomas (2013), the study

of the input-output feature of memristor cross-point array is still missing. Moreover, the

impact of process variations, signal fluctuations, defects and other physical limitations on

memristor-based neuromorphic circuit performance are not yet quantitatively studied.

5



Furthermore, even though single memristor has been demonstrated with similar functions

as synapses, they are still far from even partially mimicking a real biological system. One

example is reproducing spatio-temporal property, which is an important synaptic feature

denoting the capabilities of not only modulating the strength and rate of an input spike

(i.e., spatial weighting) but also adaptively adjusting the synaptic weight according to the

relative timing relationship between input and output spikes (i.e., temporal weighting). The

requirement of the latter capability is based on the observation that information in biological

visual systems is mainly carried by the timing of the first spike and the number of spikes

Keat et al. (2001); Gollisch and Meister (2008).

Nowadays, the temporal weighting property usually is realized at software level by inte-

grating temporal synapse models into spike-timing-based learning algorithms Maass (1997);

Caporale and Dan (2008); Ponulak and Kasinski (2010). We note that most of synapse

designs are based on only multi-level/analog resistance states of memristors by assuming a

constant synaptic weight once learning is completed. Such a design without adaptive learn-

ing ability may realize either temporal or spatial memory function separately, but cannot

offer the combined spatio-temporal property. Moreover, although STDP function has been

widely demonstrated on memristors theoretically and experimentally, these designs often

require precise neural signals supplied by carefully designed pulse modulators Snider (2008);

Jo et al. (2010); Ambrogio et al. (2013); Thomas (2013). The incurred design cost is also

generally unaffordable for a large-scale neural network implementation.

1.2 CONTRIBUTIONS

To comprehensively address the difficulties mentioned in Section 1.1, my study on memristor-

based neuromorphic circuits is across device, circuit and application levels. Particularly, the

contributions of this thesis can be concluded in the following aspects:
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1.2.1 Memristor variation model

For device to device variation, I first investigate the impacts of geometry variations on

the electrical properties of memristors and explore their implications to circuit design. An

algorithm for fast generation of three-dimensional memristor structures is proposed to mimic

the geometry variations incurred by EBL technology. The generated samples are used for

Monte-Carlo simulations. Then I develop a fast statistical model to simulate the electrical

properties of TiO2 thin-film memristors. Starting with the theoretical model of a TiO2 thin-

film memristor, I explore the influences of geometry variations on the electrical parameters of

the device. On top of that, a statistical model with the merits of both high accuracy and low

runtime cost is proposed. Compared to the previous model, our statistical model significantly

improves the runtime cost by 3 ∼ 4 orders of magnitude; and reduces the input data set

down to a few variables. The simulation accuracy maintains within ∼ 2% discrepancy in the

whole working region of the memristor device.

1.2.2 Memristor stochastic model

For device stochastic behavior, I build a stochastic behavior model of TiO2 memristive de-

vices based on the real measurement results Medeiros-Ribeiro et al. (2011); Yi et al. (2011) in

order to better facilitate the exploration of memristive switches in hardware implementation.

The model bypasses material-related parameters while directly linking the device analog be-

havior to stochastic functions. Simulations show that the proposed stochastic device model

fits well to the existing device measurement results.

1.2.3 Efficient memristor cross-point array simulator

For circuit simulations, I firstly proposed a full dynamic simulation platform of nonlinear

memristor crossbar memory, where experimental verified memristor model, nonlinear selector

model, stochastic variation model and possible process variations are considered. After

taking the regular shape of crossbar array, the simulation process can be speed ed up by 2∼3

orders of magnitudes faster than in SPICE simulation via solving the nonlinear model in
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MATLAB environment and pre-calculating its Jacobian matrix. All of these contribute to a

simulation study on memristor cross-point array with accuracy and scale which has not been

shown before. It can also give us a much deeper insight on the impact of sneak path current

leakage, the impact of writing scheme, and the relationship between single memristor device

performance and the corresponding crossbar performance.

1.2.4 Memristor-based neuromorphic circuit components

For memristor-based neuromorphic circuit applications, a few memristor-based neuromor-

phic circuit components are conducted, including the “macro cell” synapse design, memristor-

based stochastic neuron and memristor-based spatio-temporal (MST)synapse.

“Macro cell” synapse : Macro cell is a practicable neuromorphic circuit design to

overcome the gap between the theoretical and real characteristics of memristive devices. A

macro cell design is composed of a group of parallel connected memristive switches. It obtains

multiple logic states by leveraging device’s stochastic behavior. The macro cell sacrifices the

design density for better feasibility. However, it is still more efficient than traditional CMOS

implementations through floating gates or capacitors Srinivasan et al. (2005). As a weight

storage unit, macro cell synapse can be easily adapted into a cross-point array for high

density weight storage. With aid of a feedback attempt scheme, the conductance of a macro

cell quickly converges to the desired value.

Memristor-based stochastic neuron : A binary stochastic neuron design can be

realized with a single memristive switch, using an external voltage to control its ON-OFF

probability. The design can be extended to continuous stochastic neuron by replacing the

memristive switch with the proposed macro cell. The number of switches in macro cell and

the external voltage signal together control the mean and deviation of noise.

Memristor-based spatio-temporal (MST)synapse : Instead of simplifying synapse

designs, we tend to enrich the functionalities of synapses and reduce the complexity of

neurons, as illustrated in Fig. 1. The new approach is closer to the fact in biological nervous

system and enables a more efficient hardware implementation. In particular, a memristor-

based spatio-temporal (MST) synapse design was invented with the following features:
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Traditional Approach Our Approach

Precise modulation Weighting (spatial)

LTD

LTP
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(temporal & spatial)

Deactivate by 
output spike

MST

MST

MST

MST

LTD

RESET impact < SET impact

LTP

RESET impact < SET impact

Learning

Recall

× No temporal weighting from synapse
× Complex neuron design

 Spatio-temporal weighting from synapse
 Simple neuron design 

RESET impact > SET impact RESET impact > SET impact

Figure 1: Comparison of traditional approach with MST synapse approach.

• A simple and dense structure that can be easily integrated in cross-point array for massive

connections.

• Relaxed requirements on the control precision of spike signals so that design complexity

of neurons reduces and communication energy efficiency improves.

• Good support of typical synaptic properties, including spike-timing-based recall and synap-

tic weight tuning.

• Successful demonstration of spiking-timing-based learning ability by using fundamental

STDP Caporale and Dan (2008) and ReSuMe Ponulak and Kasinski (2010) learning

rules.

1.2.5 Memristor-based neurmorphic circuit for spatial pattern recognition

In studying the input-output feature of memristor cross-point arrays, we found this typical

array structure can naturally provide the capability of connection matrix storage and matrix-

vector multiplication. Moreover, it offers a huge number of connections. Therefore, we

exploit the application of the memristor cross-point arrays in neuromorphic hardware design
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and use the Brain-State-in-a-Box (BSB) model Hu et al. (2012, 2013b), an auto-associative

neural network, to illustrate the potential of memristor crossbars in complex and large scale

pattern associations and classifications.

Two methods are proposed to configure the memristance of memristor cross-point ar-

rays. The mapping method converts a software generated connection matrix into hardware

memristor crossbars when memristors can be precisely configured. We present a fast approx-

imation technique so that a matrix can be mapped to pure circuit element relations. Key

design parameters and physical constraints have been extracted and carried into the study

of the accuracy and robustness of the BSB circuit. Interestingly, the large random process

variations of the memristive devices Hu et al. (2011b); Medeiros-Ribeiro et al. (2011) have

little adverse impact, due to the inherent random noise tolerance of the BSB model.

The training method mimics the training process in the software algorithm and iterative-

ly adjusts the memristor cross-point arrays to the required status. Many physical constraints

in circuit implementations have been considered, including limited data access, limited accu-

racy of signal detection, non-ideal memristor characteristics Strukov et al. (2008b), process

variations and defects. Our design generates the programming pattern for iterative training

using the sign of input signals and the magnitude differences between the output signals and

the expected outputs. By avoiding directly reading the memristance values of cross-point

arrays, the proposed scheme significantly reduces the design complexity and avoids analog-

to-digital converter (ADC) circuits. We demonstrate the effectiveness of our training scheme

by performing the recall operation with the BSB recall circuit and comparing the results

with those from software algorithms Lillo et al. (1994); Perfetti (1995); Park (2010).

1.2.6 Memristor-based spiking neurmorphic circuit for temporal pattern recog-

nition

With the MST synapse which can mimic the spatio-temporal feature of synapse, we are able

to build efficient memristor-based neuromorphic circuit to realize the spiking neural network

for temporal learning algorithms. we studied the usage of MST synapses in spiking neural

networks for a temporal pattern learning task with both STDP and ReSuMe learning rules.
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Our result shows that the learning task can be accomplished at nano-second scale with on

average 36.7pJ and 64.0pJ per learning spike for STDP and ReSuMe learning rules, respec-

tively. And the recall energy consumption is only 14.6pJ per recall spike. Even with All

the simulations are conducted with the latest experimentally-grounded TaOx physical model

from HP Labs Strachan et al. (2013), making great promise of the credibility of the work.

Even the MST synapse design based on TaOx devices has limited synaptic conductance tun-

ing range, our result shows that it can still provide sufficient learning ability in neural network

applications with assist of appropriate learning rules. Further increase of memristance range

will alleviate the situation and makes more learning rules practical. Note that the micro

model of TaOx devices used in this work has a low resistance range of 70Ω ∼ 670Ω Strachan

et al. (2013). Applying nano-scale devices can significantly increase the memristance value

to 100KΩ ∼ 1MΩ Jo et al. (2010) and further reduce energy per spike to the sub-pJ region.

1.3 THESIS ROADMAP

The rest of the paper is organized as follows: Chapter 2 introduces preliminary knowl-

edge on memristor, synapse and neural networks Chapter 3 describes the modeling work

of memristors on device variation and stochastic behavior. Chapter 4 briefly explains the

MATLAB-based memristor cross-point array simulator and verifies the result. Chapter 5

introduces the memristor-based neuromorphic circuit components. Chapter 6 details the

implementation of BSB neural network with memristor-based neuromorphic circuit for spa-

tial pattern recognition. Chapter 7 describes the implementation of spiking neural network

with memristor-based neuromorphic circuit for temporal pattern recognition. Chapter 8

concludes the thesis.
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2.0 PRELIMINARY

2.1 MEMRISTOR

2.1.1 Theoretical memristors

The original definition of the memristor is derived from circuit theory: besides resistor,

capacitor and inductor, there must exist the fourth basic two-terminal element that uniquely

defines the relationship between the magnetic flux (ϕ) and the electric charge (q) passing

through the device Chua (1971a), or

dϕ = M · dq. (2.1)

Considering that magnetic flux and electric charge are the integrals of voltage (V ) and

current (I) over time, respectively, the definition of the memristor can be generalized as:

 V = M(ω, I) · I
dω

dt
= f(ω, I)

(2.2)

Here, ω is a state variable; M(ω, I) represents the instantaneous memristance, which

varies over time. For a “pure” memristor, neither M(ω, I) nor f(ω, I) is an explicit function

of I Strukov et al. (2009).
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Figure 2: TiO2 thin-film memristor. (a) structure, and (b) equivalent circuit.

2.1.2 Memristor devices

2.1.2.1 TiO2 thin-film memristor In 2008, HP Lab demonstrated the first intentional

memristive device by using a Pt/TiO2/Pt thin-film structure Strukov et al. (2008a). The

conceptual view is illustrated in Fig. 2(a): two metal wires on Pt are used as the top and

bottom electrodes, and a thick titanium dioxide film is sandwiched in between. The sto-

ichiometric TiO2 with an exact 2:1 ratio of oxygen to titanium has a natural state as an

insulator. However, if the titanium dioxide is lacking a small amount of oxygen, its con-

ductivity becomes relatively high like a semiconductor. We call it oxygen-deficient titanium

dioxide (TiO2−x) Niu et al. (2010). The memristive function can be achieved by moving the

doping front: A positive voltage applied on the top electrode can drive the oxygen vacancies

into the pure TiO2 part and therefore lower the resistance continuously. On the other hand,

a negative voltage applied on the top electrode can push the dopants back to the TiO2−x

part and hence increase the overall resistance. For a TiO2-based memristor, RL (RH) is used

to denote the low (high) resistance when it is fully doped (undoped).

Fig. 2(b) illustrates a coupled variable resistor model for a TiO2-based memristor, which

is equivalent to two series-connected resistors. The overall resistance can be expressed as

M(w) = RL · ω +RH · (1− ω). (2.3)

Here ω (0 ≤ ω ≤ 1) is the relative doping front position, which is the ratio of doping front

position over the total thickness of TiO2 thin-film.
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The velocity of doping front movement v(t), which is driven by the voltage applied across

the memristor V (t) can be expressed as

v(t) =
dω

dt
= µv ·

RL

h2
· V (t)

M(ω)
(2.4)

where, µv is the equivalent mobility of dopants, h is the total thickness of the TiO2 thin-film;

and M(ω) is the total memristance when the relative doping front position is ω.

Bulk model is a general model derived from the mathematical definition of memristor,

which assumes a flat doping front moving up or down. However, in reality, filamentary

conduction has been observed in nano-scale semiconductors: the current travels through

some high conducting filaments rather than passes the device evenly Kim et al. (2006)Kim

et al. (2007). The doping front is formed so randomly that a few filaments dopes much

faster than others, observed as hot spots on the device. This is called as filament conduction

phenomenon. The way we solved the conflict between the bulk and filament models in this

work can be explained as follows: when cutting the device into many tiny tiny filaments as

we shall describe in Section 3.1.1, it is reasonable to assume a small flat doping front exists in

each filament. Therefore, bulk model can be used for each small flat doping front movement.

Recent experiments showed that µv is not a constant but grows exponentially when the

bias voltage goes beyond certain threshold voltage Strukov and Williams (2009). Neverthe-

less, the structure of TiO2 memristor model, i.e., Eq. (2.4), still remains valid.

2.1.2.2 Spintronic memristor The spintronic memristor relies on the existence of do-

main wall in MTJ free layer Lou et al. (2008) and properly controlling the domain wall. There

have been many research activities on manipulating domain walls Parkin (2009)Tatara and

Kohno (2004)O. Boulle and Klaui (2011). Very recently, NEC Lab reported the free layer

switching though the domain wall movement Matsunaga et al. (2011), which indeed is a

spintronic memristor.

Among all the spintronic memristive devices , the one based on magnetic tunneling

junction (MTJ) could be the most promising one because of its simple structure Wang et al.

(2009)Wang and Chen (2010). The basic structure of magnetic memristor could be either

giant magneto-resistance (GMR) or tunneling magneto-resistance (TMR) MTJs. We choose
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Figure 3: TMR-based spintronic memristor. (a) structure, and (b) equivalent circuit.

TMR-based structure shown in Fig. 3(a) as the objective of this work because it has a bigger

difference between the upper and the lower bounds of total memristance (resistance).

An MTJ is composed of two ferromagnetic layers and an oxide barrier layer, e.g. MgO.

The bottom ferromagnetic layer is called reference layer, of which the magnetization direction

is fixed by coupling to a pinned magnetic layer. The top ferromagnetic layer called free layer

is divided into two magnetic domains by a domain-wall: the magnetization direction of one

domain is parallel to the reference layer’s, while the magnetization direction of the other

domain is anti-parallel to the reference layer’s.

The movement of the domain wall is driven by the spin-polarized current, which passes

through the two ferromagnetic layers. For example, applying a positive voltage on free

layer can impel the domain wall to increase the length of the magnetic domain with a

magnetization direction parallel to the reference layer’s and hence reduce the MTJ resistance.

On the other hand, applying a positive voltage on reference layer will reduce the length of the

magnetic domain with a magnetization direction parallel to the reference layer’s. Therefore,

the MTJ resistance increases. If the width of the domain with the magnetization direction

anti-parallel (parallel) to the reference layer’s is compressed to close to zero, the memristor

has the lowest (highest) resistance, denoted as RL (RH).

As shown in Fig. 3, the overall resistance of a TMR-base spintronic memristor can be

modeled as two parallel connected resistors with resistances RL/ω and RH/(1− ω), respec-

tively Wang and Chen (2010). This structure has also been experimentally proved Lou et al.

(2008). Here ω (0 ≤ ω ≤ 1) represents the relative domain wall position as the ratio of the
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domain wall position (x) over the total length of the free layer (L). The overall memristance

can be expressed as

M(α) =
RL ·RH

RH · ω +RL(1− ω)
. (2.5)

How fast the domain-wall can move is mainly determined by the strength of spin-polarized

current. More precisely, the domain-wall velocity v(t) is proportional to the current density

J Li and Zhang (2004). We have

J(t) =
V (t)

M(ω) · L · z
, (2.6)

and

v(t) =
dω(t)

dt
=

Γv
L
· Jeff (t), Jeff =

 J, J ≥ Jcr

0, J ≤ Jcr.
(2.7)

Here Γv is the domain wall velocity coefficient, which is related to device structure and

material property. L and z are the total length and width of the spintronic memristor,

respectively. The domain wall movement in the spintronic memristor happens only when

the applied current density (J) is above the critical current density (Jcr) Li and Zhang (2004);

Bazaliy and et al (1998); Zhang and Li (2004); Liu et al. (2005); Tatara and Kohno (2004).

2.1.3 Characteristics of realistic memristive devices

Compared to theoretical characteristics of ideal devices, many non-ideal features have been

revealed in real memristive devices. Large device to device variation is one of the issue

since memristor is still in its infancy and its compact nano-size structure also aggravate

the problem. Since memristor is using the same fabrication process as traditional CMOS

technology, the CMOS process variation analysis method will be adopted in our following

analysis scheme.

More importantly, although a single memristor can be carefully tuned to arbitrary analog

states, this approach cannot be generalized to a large-scale implementation, e.g., a cross-

point array with a large number of memristors. We have to face the unfortunate reality that

only memristive switches presenting binary states are available in memristive system design

Ha and Ramanathan (2011).
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Moreover, the stochastic behavior in dynamic switching process and large variations in

static states have been widely observed in experimental results of metal oxide materials,

such as TiO2 based memristive switches. In brief, the time to successfully change the state

of a single memristive switch is not deterministic but follows a wide lognormal distribution

Medeiros-Ribeiro et al. (2011). And its resistance in ON or OFF state (Ron or Roff , respec-

tively) is not a fixed value, but follows a skewed, heavy tail distribution Yi et al. (2011).

These non-ideal characteristics shall be considered in hardware implementations built with

memristive switches.

There are many physical memristor models based on insight mechanisms Yang et al.

(2009); Miao et al. (2009); Pickett et al. (2009). These models are deterministic so cannot

reflect the large variation induced by stochastic switching behavior. Stochastic models can

better link the statistical measurement data to probability functions. However, the existing

stochastic models are limited to only the binary switching behaviors Medeiros-Ribeiro et al.

(2011); Yi et al. (2011). Without considering the stochastic switching of memristor, the

intermediate analog state cannot be captured.

2.2 SYNAPSE THEORY

Originally synapse is used in biological systems, representing the communication channel of

electrical/chemical signals. Later on, the use of synapse was expended to computer science

and neuromorphic hardware in developing brain-like computing systems. The use of synapse

was then expended to neuromorphic hardware in developing brain-like computing systems.

Though the meanings of synapse in these areas share high similarity, there are many subtle

differences.

2.2.1 Biological Synapse

The weighting function of biological synapse has been widely taken as a spatio-temporal

process, that is, a synapse starts participating in the weighting function only after it is
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activated by the input spikes from pre-neurons Gollisch and Meister (2008). For instance,

the low response variability of retinal ganglion cells shows that the most important info of

a firing event by visual neurons is reserved by the timing of the first spike and the number

of spikes Keat et al. (2001). Experiments also show that the timing of the first spike after

stimulus onset carries the majority of the visual info Gollisch and Meister (2008).

The tuning of synaptic strength has two important properties: long term potentiation

(LTP) represents a long lasting strength potentiation once a synapse receives strong and

positive stimulus from active connections, and long term depression (LTD) is an opposite

process. The effects of LTP and LTD are strongly related to the spiking time, initial synaptic

strength, and type of post-synaptic cells Bi and Poo (1998). More importantly, biological

synapses have self-learning abilities, e.g., spike-timing-dependent plasticity (STDP) Bi and

Poo (1998). Experiment of cultured hippocampal neurons showed that within a critical

correlation time window, the post-synaptic spiking that peaked after synaptic activation

caused LTP, whereas the post-synaptic spiking before synaptic activation resulted in LTD

Bi and Poo (1998).

2.2.2 Artificial Neural Network (ANN) Synapse

ANNs are computational models that mimic nervous systems for machine learning and pat-

tern recognition. ANN synapses are expressed by highly abstracted models of the biological

version. Usually here synaptic strength is converted to synaptic weight, since it could be

negative in ANN meanings.

There are different ways to employ ANNs in recall process. For instance, feedforward

neural network can be considered as spatial mapping, in which synapses maintain constant

weights and provide consistent weighting functions, while a neuron output is determined by

its net-input at each time step. In contrast, spiking neural networks can provide temporal

mapping: a neuron accumulates the net-input and fire a spike once the accumulation reaches

the threshold. One of these procedures is refined as the leaky-integrate-and-fire (LIF) model

[16]. Synaptic weights are either keep consistent, result in rate-coded recall where information

is carried by rate of spikes, or updated dynamically depending on the timing of spikes,
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lead to temporal-coded recall that information is carried by precise timing of spikes For

the latter part, STDP learning rule is a well-known example, which is abstracted from

the biology observation; The hierarchical temporal memory (HTM) model HTM (2011)also

employee the temporal feature of synapse in a highly abstracted manner: each synapse has a

permanence value that consistently decreases over time, and the permanence value increases

only when the synapse receives an input spike that activate it. Synaptic weight changes to

1 if permanence value is beyond threshold, otherwise it is 0. However, spatial and temporal

weighting properties of synapse in ANNs are separated since it is usually considered as a

single number.

The synaptic weight modification can integrate into the learning process. Among a vari-

ety of learning algorithms in ANN family, Hebbian rule and Delta rule are two fundamental

methods. In Hebbian rule, the synaptic weight between two neurons increase (decreases)

when they activate simultaneously (separately). Delta rule improves Hebbian rule’s learning

quality by consider output signal as feedback to minimize the spatial error between target

signal and output signal. Note that basic Hebbian and Delta rules are spatial learning algo-

rithms because their weight modifications are determined solely by the signals at the current

time step. For spiking neural networks, STDP rule can be regarded as an improved version

of Hebbian rule in temporal space as it considers the time correlation between pre-spike and

post-spike to modify the synaptic weight. Similar as Delta rule, ReSuMe improves STDP

rule’s performance by minimizing the temporal difference between target spikes and output

spikes. Both STDP and ReSuMe are temporal learning algorithms and they will be detailed

in Section II.B.

2.2.3 Electronic Synapse

ANN algorithms have obtained great achievement in many applications. However, the per-

formance of such pure software-level applications is severely limited by the traditional von

Neumann architecture, as the “memory wall” problem we mentioned before.

The use of synapse has been expended to neuromorphic hardware in developing brain-

like computing systems. Neuromorphic circuits tend to mimic biological models and employ

19



I
N
P
U
T

O
U
T
P
U
T

Synapse network
a group of m neurons
with activity pattern F

a group of n neurons
with activity pattern T

Figure 4: A simple example of neural network.

the same operation flows in weighting, tuning, and learning processes. Previously, SRAM,

floating gates, capacitors have been used in developing electronic synapses Mead and Ismail

(1989). As aforementioned, these designs are severely constrained by parallelism scale and

implementation size Merolla et al. (2011); Seo et al. (2011). Another prominent trend is

designing electronic synapses and neurons in analog or mixed-signal format. The process

variations and signal fluctuation can dramatically affect the system performance, which

however can be partially amortized by synapse’s learning ability.

The recently re-discovered memristor devices at nanometer scale Jo et al. (2010) demon-

strate synapse-alike behaviors, offering a more efficient way to implement electronic synapses.

For instance, Snider et al. successfully realized LTP, LTD, and STDP in a TiO2 device con-

trolled by pulse width modulators (PWM) Snider (2008). The similar functions were also

obtained in Ag/Si memristor synapse by using time division multiplexing (TDM) Ambrogio

et al. (2013). Very recently, a 1T1R-based HfO2 synapse was demonstrated with pulse shape

filters in pre- and post-neurons Thomas (2013). These demonstrations remain at single de-

vice level and require complicated neuron circuits. To the best knowledge of authors, the

spatio-temporal feature has never been presented in electronic synapse designs.
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2.3 NEURAL NETWORK

Figure 4 illustrates a simple example of a neural network, in which two groups of neurons

are connected by a set of synapses. We define ai,j as the synaptic strength of the synapse

connecting the jth neuron in the input group and the ith neuron in the output one. The

relationship of the activity patterns F of input neurons and T of output neurons can be

described in matrix form:

Tn = An×m × Fm, (2.8)

where matrix A, denoted as the connection matrix, consists of the synaptic strengthes be-

tween the two neuron groups. The matrix-vector multiplication of Eq. (2.8) is a frequent

operation in neural network theory to model the functionally associated with neurons in

brains.

2.3.1 Brain-state-in-a-Box neural network for spatial learning

The BSB model is an auto-associative neural network with two main operations: training

and recall Anderson et al. (1977). The mathematical model of BSB recall function can be

represented as Wu et al. (2011):

x(t+ 1) = S(α ·Ax(t) + β × ·x(t)), (2.9)

where, x is an N dimensional real vector, and A is an N-by-N connection matrix. Ax(t) is a

matrix-vector multiplication, which is the main function of the recall operation. α is a scalar

constant feedback factor. β is an inhibition decay constant. S(y) is the “squash” function

defined as follows:

S(y) =


1, if y ≥ 1

y, if −1 < y < 1

−1, if y ≤ −1

. (2.10)

For a given input pattern x(0), the recall function computes Eq. (2.9) iteratively until con-

vergence, that is, when all the entries of x(t+ 1) are either ‘1’ or ‘−1’.

The most fundamental BSB training algorithm is given in Figure 5, which bases on the

extended Delta rule Anderson et al. (1977). It aims at finding the weights so as to minimize
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Figure 5: BSB training algorithm using Delta rule.

the square of the error between a target output pattern and the input prototype pattern.

A large α helps improve the training speed but may cause non-convergence. On the other

hand, if α is too small, the convergence needs many iterations. The best α usually can be

obtained through experimentation. In neuromorphic hardware, the training terminates once

its error drops below a predefined threshold, represented by a reference voltage in this work.

A typical application of the BSB model is optical character recognition(OCR) for printed

text Schultz (1993). A multi-answer character recognition method based on the BSB model

has been developed to improve reliability and robustness for noisy or occluded text images

Wu et al. (2011). The method first performs a training (pattern memorization) operation

on all BSB models such that they “remember” different character patterns. Once trained,

input character images can be processed through multiple BSB modules in parallel for the

recall (pattern recognition) operation. When all recalls are complete, a set of candidates is

selected based on the convergence speed and provided for cogent confabulation-based word

or sentence completion Qiu et al. (2013, 2011). This method will be used to evaluate the

reliability and robustness of the proposed memristor-based BSB recall circuit.
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Figure 6: A spike-timing-based model for spatio-temporal pattern recognition. (a) The

overview of the spike-timing-based model for vision system; (b) A general LPE flow; (c) An

example of spatio-temporal pattern conversion: the image “5” is partitioned and converted

to multiple spike-timing trains.

2.3.2 Spiking neural network for temporal learning

Spiking neural networks with temporal codes mimic human vision system for spatio-temporal

pattern recognition, demonstrating very high efficiency. Fig. 6(a) illustrates that in human

retina, visual signals from 108 photoreceptor cells are projected to 106 retinal ganglion cells

(RGCs) in a form of spike trains (temporal codes) through temporal encoding Meister and

Berry II (1999). These spikes are then processed and learned through spike-timing-based

recall and spike-timing-based learning processes Hu et al. (2013a). We will take such a

temporal pattern learning task in Section 7.2 as a case study to examine the performance of

MST synapses. The application requires the following three main functions:

Temporal Encoding: We use latency-phase encoding (LPE) in Fig. 6(b) to explain

how to convert a spatial pattern (e.g., sensory stimuli) into a single spike-timing train Hu

et al. (2013a). For a pattern vector, the different locations of variables are encoded into the

different phase delays of sinusoid waves. And the amplitude of a variable is represented by

the relative timing within the time window of a spike-timing train. Limited by the capacity

of spike-timing train, large patterns usually are partitioned and converted into multiple

spike-timing trains, as shown in Fig. 6(c). This is so-called spatio-temporal pattern.
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Figure 7: Spike-timing-based learning rules and diagrams of neuron connections. (a) STDP

learning rule; (b) ReSuMe learning rule.

Spike-timing-based Recall: Unlike spike-rate-based recall, in which the information

communication is mainly determined by the rate of input spikes, spike-timing-based recall

concerns more on their relative timing. In spike-timing-based recall, the relative timing

between input and output spikes changes the temporal weight of a synapse (e.g., activated

or deactivated) and enables the neural network to produce the desired temporal patterns.

The spatial weights of synapses remain unchanged during the entire recall process.

Theoretically, two design approaches can be used to realize the spike-timing function.

One attempt is to convert input spike signals into decayed traces to represent the temporal

impact. For example, many neuromorphic circuits incorporate an input spike train Si(t)

with a shape modulation term ati(t) at the input neuron. Si(t) is then transferred into

the convolution form ati(t) ∗ Si(t) and passed to the synapse, as illustrated in Fig. 7(b).

The synapse performs only spatial weighting function and its weight remains constant in

recall. However, complex neuron designs, such as PWM and TDM components, usually are

required to provide precise timing controls Snider (2008); Ambrogio et al. (2013). Another

approach is adopting temporal synapse which changes synaptic weights over time Ponulak

and Kasinski (2010). It can greatly simplify the neuron design. However, synapse’s spatial

weight is unclear and the synapse design itself becomes very complex.
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Spike-timing-based Learning: Most of the spike-timing-based (temporal) learning

algorithms can be generalized from the fundamental STDP and ReSuMe learning rules. Let’s

take a simple structure of one synapse connecting two neurons as an example.

In STDP learning process, the post-neuron is forced to fire the target spike train St(t).

If an input spike at the pre-neuron Si(t) occurs within a predefined positive correlation time

window (TPcorr) before St(t), such as 0 ≤ ∆t = St(t) − Si(t) < TPcorr, implying the two

neurons have a positive correlation, the synaptic weight in between increases. In contrast,

a connection of two negative correlated neurons within a negative correlation time window

(TNcorr) shall be weakened. Fig. 7(a) shows a typical dependence of the synaptic weight

change rate on ∆t.

The learning efficiency of STDP severely relies on the correlation of the input and target

spikes. When a target spike is uncorrelated to any of the input spikes, the STDP learning

process fails. Thus, more input neurons firing at various patterns are needed to increase the

learning capacity of neural networks.

Unlike STDP, the ReSuMe learning rule requires output spikes to participate in the

learning process and introduces a cost function to minimize the error between the target and

the output spikes. As illustrated in Fig. 7(b), input spikes are first converted to decayed

traces and then combined with the target spikes. The produced output spike will be fed

back to synapses to assist weight updating. As such, the change of synaptic weight woi from

pre-neuron i to post-neuron o can be described as follows:

d

dt
woi(t) = [St(t)− So(t)][at +

∫ ∞
0

ati(s)Si(t− s)ds], (2.11)

where at is a constant that helps speed up the learning process, and ati(t) is a shape modula-

tion term which converts Si(t) to decayed traces. Eq. (2.11) implies that the synaptic weight

woi is updated when St(t) 6= So(t). The direction and magnitude of the weight tuning are

determined by the sign of St(t)− So(t) and the convolution term ati(t) ∗ Si(t), respectively.
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3.0 MEMRISTOR MODELS FOR CIRCUIT SIMULATION

3.1 MEMRISTOR VARIATION MODEL

3.1.1 Mathematical analysis

The actual length (L) and width (z) of a memristor is affected by LER. The variation of

thickness (h) of a thin film structure is usually described by TF. As a matter of convenience,

we define that, the impact of process variations on any given variable can be expressed as a

factor θ =
ω′

ω
, where ω is its ideal value, and ω′ is the actual value under process variations.

The ideal geometry dimensions of the TiO2 thin-film memristor and spintronic memristor

used in this work are summarized in TABLE 1.

3.1.1.1 TiO2 thin-film memristor In TiO2 thin-film memristors, the current passes

through the device along the thickness (h) direction. Ideally the doping front has an area

S = L · z. To simulate the impact of LER on the electrical properties, the memristor device

is divided into many small filaments between the two electrodes. Each filament i has a

cross-section area ds and a thickness h. Fig. 8 demonstrates a non-ideal 3D structure of a

TiO2 memristor (i.e., with geometry variations in consideration), which is partitioned into

many filaments in statistical analysis.

Table 1: The Device Dimensions of Memristors.

Length(L) Width(z) Thickness(h)
Thin-film 50 nm 50 nm 10 nm
Spintronic 200 nm 10 nm 7 nm

26



0
10

20
30

40
50

0

10

20

30

40

50

0

5

10

l

z

h

i

3−D model for TiO2 memristor

Figure 8: An example of 3D TiO2 memristor structure, which is partitioned into many

filaments in statistical analysis.

As shown in Fig. 8, ideally, the cross-section area of a filament is ds/s of the entire device

area and its thickness is h. Thus, for filament i, the ideal upper bound and lower bound of

the memristance can be expressed as

Ri,H = RH ·
S

ds
, and Ri,L = RL ·

S

ds
. (3.1)

Here, θi,s represents the variation ratio on the cross-section area ds, which is caused

by 2-D LER. Similarly, θi,h is the variation ratio on thickness h due to TF. The resistance

of a filament is determined by its section area and thickness, i.e., R = ρ · h
s
, where ρ is

the resistance density. Therefore, the actual upper and the lower bound under the process

variations can be expressed as

R′i,H = Ri,H ·
θi,h
θi,s

, and R′i,L = Ri,L ·
θi,h
θi,s

. (3.2)

If a filament is small enough, we can assume it has a flat doping front. Then, the actual doping

front velocity in filament i considering process variations can be calculated by replacing the

ideal values with actual values in Eq.(2.4). We have

v′i(t) = µv ·
R′i,L
h′2
· V (t)

M ′
i(ω
′
i)
. (3.3)
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Here h′ and M ′
i are the actual thickness and memristance of filament i. Then, we can get a

set of related equations for filament i, including the doping front position

ω′i(t) =

∫ t

0

v′(τ) · dτ, (3.4)

the corresponding memristance

M ′
i(ω
′
i) = ω′i ·R′i,L + (1− ω′i) ·R′i,H , (3.5)

and the current through the filament i

I ′i(t) =
V (t)

M ′
i(ω
′
i)
. (3.6)

By combining Eq. (3.3) – (3.6), the doping front position in every filament i under

process variations a′i(t) can be obtained by solving the differential equation

dω′i(t)

dt
= µv ·

R′i,L
h′2
· V (t)

ω′i(t) ·R′i,L + (1− ω′i(t)) ·R′i,H
. (3.7)

Eq. (3.7) indicates that the behavior of the doping front movement is dependent on the

specific electrical excitations, e.g., V (t).

For instance, applying a sinusoidal voltage source to the TiO2 thin-film memristor such

as

V (t) = Vm · sin(2πf · t), (3.8)

the corresponding doping front position of filament i can be expressed as:

ω′i(t) =
Ri,H −

√
R2
i,H − A ·B(t) · 2

θ2i,h
+ 2C[1] · A · θi,s

θi,h

A
. (3.9)

Where, A = Ri,H−Ri,L, B(t) = µv ·Ri,L ·Vm ·cos(2πf ·t), and C[1] is an initial state constant.

The term B(t) accounts for the effect of electrical excitation on doping front position.

The terms θi,s and θi,h represent the effect of both LER and TF on memristive behavior.

Moreover, the impact of the geometry variations on the electrical properties of memristors

could be affected by the electrical excitations. For example, we can set ω(0) = 0 to represent
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the case that the TiO2 memristor starts from M(0) = RH . In such a condition, C[1] becomes

0, and hence, the doping front position ω′i(t) can be calculated as:

ω′i(t) =
Ri,H −

√
R2
i,H − A ·B(t) · 2

θ2i,h

A
, (3.10)

which is affected only by TF and electrical excitations. LER will not disturb ω′i(t) if the

TiO2 thin-film memristor has an initial state ω(0) = 0.

The overall memristance of the memristor can be calculated as the total resistance of all

n filaments connected in parallel. When n goes to ∞, we can have

R′H =
1∫∞

0
1/R′i,H · di

= RH ·
1∫∞

0
θi,h/θi,s · di

, (3.11)

and

R′L =
1∫∞

0
1/R′i,L · di

= RL ·
1∫∞

0
θi,h/θi,s · di

. (3.12)

The overall current through the memristor is the sum of the current through each filament:

I ′(t) =

∫ ∞
0

I ′i(t) · di. (3.13)

The instantaneous memristance of the overall memristor can be defined as

M ′(t) =
V (t)

I ′(t)
=

1∫∞
0

1/M ′
i · di

. (3.14)

Since the doping front position movement in each filament will not be the same because

h′i varies due to TF (and/or the roughness of the electrode contact), we define the average

doping front position of the whole memristor as:

ω′(t) =
R′H −M ′(t)

R′H −R′L
. (3.15)
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Figure 9: An example of 3D TMR-based spintronic memristor structure, which is partitioned

into many filaments in statistical analysis.

3.1.1.2 Spintronic memristor Since the length of a spintronic memristor is usually

much longer than the other two dimensions, the impact of the variance in length on the

spintronic memristor’s electrical properties can be ignored. In our analysis, the device can

be chopped into infinite segments along the length direction as shown in Fig. 9. For a

segment i, the upper and lower bounds of memristance are:

R′i,H = Ri,H ·
θi,h
θi,z

, and R′i,L = Ri,L ·
θi,h
θi,z

. (3.16)

Here we assume the ideal memristance changes linearly within the domain wall, orMi changes

linearly from Rj,L to Rk,H when j < i < k. Here j and k are the two segments at the two

boundaries of domain wall and connected to the magnetic domains with either the low or

the high resistance states. The memristance of each segment is

M ′
i =

 R′i,L, i < ω′

R′i,H , i ≥ ω′
(3.17)

So for overall resistance R′H and R′L, we have

R′H =
1∫∞

0
1/R′i,H · di

= RH ·
1∫∞

0
θi,z/θi,h · di

, (3.18)
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and

R′L =
1∫∞

0
1/R′i,L · di

= RL ·
1∫∞

0
θi,z/θi,h · di

. (3.19)

Then the memristance of the whole device is

M ′(ω′) =
1∫ ω′

0

1

R′i,L
di+

∫ 1

ω′

1

R′i,H
di

=
1∫ ω′

0

1

Ri,L

· θi,z
θi,h

di+

∫ 1

ω′

1

Ri,H

· θi,z
θi,h

di

(3.20)

Here the width of each segments zi varies segment by segment due to the LER effect. The

statistical behavior of spintronic memristors can still be evaluated by Monte-Carlo simulation

in Section 3.1.3.

We assume the current density applied on the domain wall J′(t) is the one of the segments

i where the domain wall located in the middle:

J ′(t) = J ′i =
V (t)

M ′(ω′) · L · z′i
. (3.21)

Then the domain wall velocity under process variations can be calculated as:

v′(t) = v′i =
dω′(t)

dt
=

Γv
L
· J ′eff (t),

J ′eff =

 J ′, J ′ ≥ Jcr

0 , J ′ < Jcr

(3.22)
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Figure 10: The flow of 3D memristor structure generation including geometry variations.

3.1.2 3D memristor structure modeling

Analytic modeling is a fast way to estimation the impact of process variations on memristors.

However, we noticed that in modeling some variations analytically, e.g. simulating the

LER may be beyond the capability of analytic model Jiang and et.al (2009). The data on

silicon variations, however, is usually very hard to obtain simply due to intellectual property

protection. To improve the accuracy of our evaluations, we create a simulation flow to

generate 3-D memristor samples with the geometry variations including LER and thickness

fluctuation. The correlation between the generated samples and the real silicon data are

guaranteed by the sanity check of the LER characterization parameters. The flow is shown

in Figure. 10.

Many factors affecting LER show different random effects. Usually statistical parameters

such as the auto-correlation function (ACF) and power spectral density (PSD) are used to

describe the property of LER. ACF is a basic statistical function of the wavelength of the

line profile, representing the correlation of point fluctuations on the line edge at different

position. PSD describes the waveform in the frequency domain, reflecting the ratio of signals
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with different frequencies to the whole signal. Considering that LER issues are related to

fabrication processes, we mainly target the nano-scale pattern fabricated by electron beam

lithography (EBL). The measurements show that under such a condition, the line edge profile

has two important properties: (1) the line edge profile in ACF figure demonstrates regular

oscillations, which are caused by periodic composition in the EBL fabrication system; and

(2) the line edge roughness mainly concentrates in a low frequency zone, which is reflected

by PSD figure Jiang and et.al (2009).

To generate line edge samples close to the real cases, we can equally divide the entire

line edge into many segments, say, n segments. Without losing the LER properties in EBL

process, we modified the random LER modeling proposed in Ban et al. (2009) to a simpler

form with less parameters. The LER of the ith segment can be modeled by

LERi = LLF · sin(fmax · xi) + LHF · pi. (3.23)

The first term on the right side of Eq. (3.23) represents the regular disturbance at the low

frequency range, which is modeled as a sinusoid function with amplitude LLF . fmax the

mean of the low frequency range derived from PSD analysis. Without loss of generality, a

uniform distribution xi ∈ U(−1, 1) is used to represent an equal distribution of all frequency

components in the low frequency range. The high frequency disturbances are also taken into

account by the second term on the right side of Eq. (3.23) as a Gaussian white noise with

amplitude LHF . Here pi follows the normal distribution N(0, 1) Jiang and et.al (2009). The

actual values of LLF , LHF and fmax are determined by ACF and PSD.

To ensure the correlation between the generated line edge samples with the measurement

results, we introduce four constraints to conduct a sanity check of the generated samples:

• σLER: the root mean square (RMS) of LER;

• σLWR: the RMS of line width roughness (LWR);

• Sk: skewness, used to specify the symmetry of the amplitude of the line edge; and

• Ku: kurtosis, used to describe the steepness of the amplitude distribution curve.
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Table 2: The Parameters/Constraints In LER Characterization.

Parameters Constraints

LLF 0.8 nm σLER 2.5nm ∼ 3.5nm
fmax 1.8 MHz σLWR 4.0nm ∼ 5.0nm
LHF 0.4 nm Sk 0.1nm ∼ 0.2nm

/ / Ku 2.5nm ∼ 3.5nm

The above four parameters are widely used in LER characterization and can be obtained

from measurement results directly Jiang and et.al (2009). Only the line edge samples that

satisfy the constraints will be taken as valid device samples. TABLE 2 summarizes the

parameters used in our algorithm, which are correlated with the characterization method

and experimental results in Jiang and et.al (2009). And Fig. 11 shows the LER characteristic

parameters distribution among 1000 Monte-Carlo simulations.

Even the main function has captured the major features of LER, it is not enough to

mimic all the LER characteristics. The difference between LER data and simulation results

in the fact that some generated samples are not qualified compared to the characteristic

parameters, or the constraints of the real LER profile. Thus, sanity check which screens

out the unsuccessful results is necessary. Only those samples in red rectangles shown in

Fig. 11 satisfy the constraints and will be used for the device electrical property analysis.

The criteria of the sanity check are defined based on the measurement results of LER data.

The thickness fluctuation is caused by the random uncertainties in sputter deposition

or atomic layer deposition. It has a relatively smaller impact than the LER and can be

modeled as a Gaussian distribution. Since the memristors in this work have relatively bigger

dimensions in the horizontal plane than the thickness direction (shown in TABLE 1), we

also considered roughness of electrode contact in our simulation: The means of the thickness

of each memristor is generated by assuming it follows the Gaussian distribution. Each

memristor is then divided into many filaments between the two electrodes. The roughness

of electrode contracts is modeled based on the variations of the thickness of each filament.

Here, we assume that both thickness fluctuations and electrode contact roughness follow

Gaussian distributions with a deviation σ = 2% of thin film thickness.
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Figure 11: LER characteristic parameters distribution among 1000 Monte-Carlo simulations.

Constraints are shown in red rectangles.

Fig. 8 is an example of 3D structure of a TiO2 thin-film memristor generated by the

proposed flow. It illustrates the effects of all the geometry variations on a TiO2 memristor

device structure. According to Section 3.1.1, a 2-D partition is required for the statistical

analysis. In the given example, we partition the device into 25 small filaments with the ideal

dimensions of L = 10nm, z = 10nm, and h = 10nm. Each filament can be regarded as

a small memristor, which is affected by either only TF or both LER and TF. The overall

performance of device can be approximated by paralleled connecting all the filaments.

Similarly, Fig. 9 is an example of 3D structure of a TMR-based spintronic memristor.

Since the length of a spintronic memristor is much longer than its width and height, only

1-D partition along the length direction is required. In this case, the device is divided into

200 filaments. Ideally, each filament has L = 1nm, z = 10nm, and h = 7nm. Each filament

i is either in the low resistance state R′i,L or the high resistance state R′i,H , with considering

the effects of both LER and TF. The overall performance of device can be approximated by

paralleled connecting all the filaments.

3.1.3 Experimental results

3.1.3.1 Simulation setup To evaluate the impact of process variations on the electrical

properties of memristors, we conducted Monte-Carlo simulations with 10,000 qualified 3-
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Table 3: Memristor Devices and Electrical Parameters

TiO2 thin-film memristor Strukov et al. (2008a)
RL(Ω) RH(Ω) µv(m2 · s−1 · V−1) / Vm (V) f (Hz)

100 16000 10−14 / 1 0.5

Spintronic memristor Wang and Chen (2010)
RL(Ω) RH(Ω) Γv(nm3· C−1) Jcr (A / nm2) Vm (V) f (Hz)
2500 7500 2.01× 10−14 2.00× 10−8 2 10M

D device samples generated by our proposed flow. A sinusoidal voltage source shown in

Eq. (3.8) is applied as the external excitation. The initial state of the memristor is set

as M(ω = 0) = RH . The device and electrical parameters used in our simulations are

summarized in TABLE 3. Both separate and combined effects of geometry variations on

various properties of memristors are analyzed, including:

• the distribution of RH and RL;

• the change of memristance M(t) and M(ω);

• the velocity of wall movement v(ω);

• the current through memristor i(t); and

• the I-V characteristics.

3.1.3.2 TiO2 thin-film memristor The ±3σ (minimal/maximal) values of the de-

vice/electrical parameters as the percentage of the corresponding ideal values are summarized

in TABLE 4. For those parameters that vary over time, we consider the variation at each

time step of all the devices. The simulation results considering only either LER or TF are

also listed. To visually demonstrate the overall impact of process variations on the mem-

ristive behavior of TiO2 memristors, the dynamic responses of 100 Monte Carlo simulations

are shown in Fig. 12.

TABLE 4 shows that the static behavior parameters of memristors, i.e., RH and RL, are

affected in a similar way by both LER and thickness fluctuations. This is consistent to our

analytical results in Eq. (3.11) and (3.12), which show that θs and θh have the similar effects

on the variation of R′H and R′L.
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Figure 12: Simulation results for TiO2 thin-film memristors. The blue curves are from 100

Monte-Carlo simulations, and red lines are the ideal condition. From top left to right bottom,

the figures are RH vs. RL; M(t) vs. t; v vs. ω; ω vs. t; I vs. t; and I −V characteristics.

However, thickness fluctuation shows a much more significant impact on the memristive

behaviors such as v(t), ω(t) and M(ω), than LER does. It is because the doping front

movement is along the thickness direction: v(t) is inversely proportional to the square of the

thickness, and ω(t) is the integral of v(t) over time as shown in Eq. (3.3) and (3.4). For the

same reason, thickness fluctuations significantly affect the instantaneous memristance M(ω)

as well.

Because the thickness of the TiO2 memristor is relative small compared to other di-

mensions, we assume the doping front cross-section area is a constant along the thickness

direction in our simulation. The impact of LER on ω(t) or v(t), which is relatively small

compared to that of the thickness fluctuations, is ignored in TABLE 4.

An interesting observation in Fig. 12 is that as the doping front ω moves toward 1 (fully

doped), the velocity v regularly grows larger and reaches its peak at the half period of the

sinusoidal excitation, i.e. t=1s. This can be explained by Eq. (3.5): the memristance

is getting smaller as ω moves toward 1 (fully doped). With the same input amplitude, a
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smaller resistance will result in a bigger current and therefore a bigger variation on v(t).

Similarly, memristance M(ω) reaches its peak variance when ω is close to 1 (fully doped).

We also conduct 10,000× Monte Carlo simulations on the same samples by applying

a square wave voltage excitation. The amplitude of the voltage excitation is ±0.5V. The

simulation results are also shown in TABLE 4. The results of the static behavior parameters,

i.e., RH and RL, are exactly the same as those with sinusoidal voltage inputs because they are

independent of the external excitations, The results of the memristive behavior parameters

such as v(t), ω(t) and M(ω) show similar trends as those with the sinusoidal voltage inputs.

Based on Eq. (3.9), ω(t)’s variance is sensitive to the type and amplitude of electrical

excitation, because B(t) greatly affects the weight of the thickness fluctuation parameter.

That is why the thickness fluctuation has a significantly impact on the electrical properties

of memristors under sinusoidal and square voltage excitations.

3.1.3.3 Spintronic memristor The ±3σ values of the device/electrical parameters

based on 10,000 Monte-Carlo simulations are summarized in TABLE 5. The visual demon-

stration of 100 Monte-Carlo simulations is shown in Fig. 13.

For the spintronic memristor, the impact of LER on the electrical properties of memris-

tors is more than that of thickness fluctuation. This is because the direction of the domain

wall movement is perpendicular to the direction of spin-polarized current. The impact of

thickness fluctuations on very small segments cancel each other during the integral along the

direction of the domain wall movement.

“LER only” simulation results show that the +3σ corner of LER has more impact on

the electrical properties than that of −3σ corner. This is because the line width variation

is the dominant factor on the variation of electrical properties of spintronic memristors, and

the line edge profiles used in our LER parameters have a right-biased feature Jiang and

et.al (2009). Since normal distribution is assumed for the variations of thickness, σh has

approximately symmetric impact on ±3σ corners.

The impact of LER on the memristive parameters v(t), ω(t) and M(ω) is also larger

than thickness variation. Again, the impact of thickness fluctuations on very small segments

cancel each other during the integral along the direction of the domain wall movement.
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Figure 13: Simulation results for spintronic memristors. The blue curves are from 100 Monte-

Carlo simulations, and red lines are the ideal condition. From top left to right bottom, the

figures are RH vs. RL; M(t) vs. t; v vs. ω; ω vs. t; I vs. t; and I − V characteristics.
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Table 4: 3σ min./max. of TiO2 memristor parameters

Sinusoidal LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH&RL -5.4 4.1 -5.5 4.8 -6.4 7.3
M(ω) -5.4 4.1 -37.1 20.8 -36.5 24.1
ω(t) 0.0 0.0 -13.3 27.5 -14.7 27.4
v(ω) 0.0 0.0 -9.3 15.6 -10.4 16.9
i(ω) -4.7 5.7 -9.3 15.7 -10.7 17.2

Power -4.7 5.7 -8.8 14.1 -10.1 15.6

Square wave LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH&RL -5.3 3.7 -6.2 5.2 -6.6 6.9
M(ω) -5.3 3.7 -17.8 13.2 -15.4 14.4
ω(t) 0.0 0.0 -12.1 16.6 -13.0 15.6
v(ω) 0.0 0.0 -11.6 17.7 -12.5 16.7
i(ω) -4.0 5.2 -11.7 17.7 -12.6 17.6

Power -4.0 5.2 -7.7 9.8 -8.5 10.1

Similarly, we also conduct Monte Carlo simulations by applying a square wave voltage

excitation. The amplitude of the voltage excitation is ±1V. The similar trends as that of

sinusoidal excitations are observed.

3.1.4 Similarities and differences

TiO2 thin-film memristors and TMR-based spintronic memristors have many similarities. For

example, the device dimensions are both in nanometer-scale; the overall memristances can

be expressed by simple equations with only three parameters RH , RL, and ω; the memristive

functions are obtained by changing the position of doping front or magnetic domain.

However, according to the different device structures and physical mechanisms, there are

some significant distinctions between the characteristics of these two types of memristors.

Although the memristive behaviors of these two memristors both come from the movement of

the boundary between two segments with different resistance states, the relationship between

the total memristance of the memristor M and the boundary position ω are quite different:

In a TiO2-based memristor, M(ω) is a linear function of ω. In a spintronic memristor, M is

inversely proportional to ω because the direction of the domain wall movement is perpendic-

ular to the direction of spin-polarized current. This fundamental difference introduces very

different electrical responses of these memristors even under the same process variations.
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Table 5: 3 σ min./max. of spintronic memristor parameters

Sinusoidal LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH&RL -15.3 22.9 -6.1 5.8 -16.4 20.9
M(ω) -15.1 23.3 -11.0 11.0 -16.3 21.1
ω(t) -9.7 8.1 -8.4 9.5 -11.8 8.1
v(ω) -10.7 22.1 -9.1 9.9 -21.5 22.5
i(ω) -18.5 18.5 -8.9 10.1 -17.7 17.8

Power -18.4 18.6 -8.3 9.4 -17.8 17.8

Square wave LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH&RL -15.8 22.0 -5.3 5.7 -15.9 24.2
M(ω) -15.6 21.8 -8.5 9.7 -17.0 25.5
ω(t) -13.1 13.8 -7.5 7.7 -17.2 16.2
v(ω) -16.5 20.7 -10.0 8.3 -20.1 25.2
i(ω) -19.5 17.1 -9.0 9.3 -22.1 20.5

Power -19.4 17.1 -7.6 7.7 -20.9 19.6

For a TiO2 memristor, thickness fluctuation is the primary variation source that affects

the device electrical properties, while LER demonstrates a more important effect in a TMR-

based spintronic memristor. On one hand, the static parameters of TiO2-based memristors,

i.e., RH and RL, show less sensitivity to the process variations compared to spintronic mem-

ristors. On the other hand, the memristive behavior parameters of TiO2-based memristors,

i.e., v(t), ω(t) and M(ω), are more affected from the process variations than spintronic mem-

ristors. These similarities and differences will be important references when different types

of memristors are chosen for various applications and manufacturing environments.

3.1.5 Conclusion

In this work, we evaluate the impact of geometry variations on the electrical properties of

TiO2-based memristors and spintronic memristors, by conducting analytic modeling analy-

ses and Monte-Carlo simulations. We investigate the different responses of the static and

memristive parameters of memristors under various process variations and analyze their

implication for the electrical properties of memristors. A simple LER sample generation al-

gorithm is also proposed to speed up the related Monte-Carlo simulations. To author’s best

knowledge, this is the first work that conducts the quantitative evaluation and comparison

on the impact of geometry variations to these two types of memristors.
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3.2 STATISTICAL MEMRISTOR MODEL

The filament-based geometric variation model is powerful for device variation analysis, how-

ever, it is very time-consuming in large scale Monte-Carlo simulations. An fast statistical

memristor variation model is preferred to speed up the simulation within acceptable error.

3.2.1 Statistical analysis of memristor model

When the device variations are within the reasonable range, we can assume the ratio between

the actual device parameter and its designed value as a polynomial expression, or x′ = η · x.

Here η is a coefficient representing the effects of process variations. Our goal is to find an

efficient methodology to compute the variation-aware coefficient η. The total memristance

M ′, which is a time-varying parameter, can be uniquely defined by R′H , R′L, and ω′(t). In

this section, we will examine the variations of R′H , R′L, and ω′(t) first, and then derive the

corresponding process-variation aware memristor model.

3.2.1.1 Distribution of R′H and R′L For a given TiO2 memristor, we use R′H and R′L

to denote its actual highest and lowest total memristances, respectively. With considering

the impact of Random Doping Defect (RDD), Eq. 3.2 could expand to:

R′H,i =

∫ h′i

0

ρoff
s′i(ω′i)

· ω′i, and R′L,i =

∫ h′i

0

ρon
s′i(ω′i)

· ω′i (3.24)

As Eq. 3.24 shows, the geometry variations(h′i and s′i) influence both R′H and R′L simul-

taneously within the filament i. It indicates R′H and R′L are correlated. However, they are

not fully correlated because of the randomness in ρon and ρoff incurred by RDD. We define

γ = ρon/ρoff , which can be modeled by a normal distribution as γ = µγ · (1 + σγ ·D). Here

µγ = RH/RL and D ∼ N(0, 1). The actual value of σγ will be determined by the particular

device structure, material and fabrication process. In our following simulations, we assume

σγ = 2%.
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Figure 14: The Distribution of R′L from 10,000 Monte-Carlo simulations and the fitting curve

of Eq. (3.25).

To obtain the distributions of R′H and R′L, we conducted Monte-Carlo simulations with

10,000 3D device samples. Our results show that the distributions of both R′H and R′L are

close to normal distributions and can be approximated by

R′L = RL · (µRL + σRL · E), (3.25)

and

R′H = RH · (µRH + σRH · E) · (1 + σγ ·D). (3.26)

Here, two independent random numbers E ∼ N (0, 1) and D ∼ N (0, 1) are introduced. E

represents the correlation between R′H and R′L due to the same geometry variation sources.

D represents the impact of RDD, which affects the ratio between ρoff and ρon.

Figure 14 compares the approximated normal distribution shown in Eq. (3.25) and the

actual distribution of R′L from Monte-Carlo simulations. The mean square root error incurred

by the normal distribution approximation is only 4.4%.

3.2.1.2 Distribution of ω′ As shown in Eq. 3.7, the calculation of the average doping

front ω′ requires time-consuming filament-based simulations. If we can somehow extract the

actual ω′ directly from the designed value ω with the consideration of process variations, the

simulation cost can be improved.
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Considering the fact that RH � RL in a TiO2 memristor, a simple approximation of

Eq. 3.9 can be:

ω(t) = 1−
√

1−X, (3.27)

where,

X =
2µv
γ · h2

· (
∫ t

t0

V (t) · dt+ ω0 −
1

2
· ω2

0). (3.28)

Eq. 3.28 shows that the variation of ω can be directly linked to the variation of X,

which has three independent contributions: (1) the variation of thin-film thickness h, (2)

the impact of RDD that is represented by γ, and (3) the magnetic flux of the input signal

ϕ =
∫
V dt. Interestingly, LER does not impact ω′, as also proved by the simulations in Hu

et al. (2011a).

Impact of flux ϕ and boundary condition.

If there are no process variations, the average doping front ω will be uniquely determined

by the magnetic flux ϕ, as shown in Eq. 3.28. However, after taking into account the process

variations, the historical profile of the electrical excitations (instead of only the absolute value

of ϕ) will introduce the additional variations of ϕ by interacting with the device process

variations such as thin film thickness h′ and RDD γ′,

To understand how the historical profiles of ϕ, e.g., the amplitude and the time duration

etc., affect the variation of ω, we conducted the Monte-Carlo simulations with 10,000 3D

device samples and trace the position of the doping front ω′(t) for every device. A sinusoid

input signal V = Vap ·sin (2πf · t) with a fixed frequency f = 0.5Hz is applied. The +3σ and

−3σ variations of ω(t = 1s) when varying Vap from 0.1V to 1.2V are shown by the curves

labeled with “3D, +3sigma” and “3D, -3sigma” in Figure 15, respectively. Here the results

show that the deviation of the actual value ω′(t = 1s) from the designed value ω(t = 1s),

normalized against ω(t = 1s). We note that the absolute value of ϕ = Vap/(πf), which is

proportional to Vap.

The simulation results show that the 3σ variance of ω′ is approximately proportional to

ϕ, except at the boundary when ω′ is close to 1 (or the total memristance is close to R′L): a

big overshoot of the +3σ corner at Vap = 1.1V is observed. This is because X is proportional

to ϕ and ω changes rapidly when X is approaching 1, as shown in Eq. 3.27–3.28.
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A close look at this boundary situation is shown in Figure 16, which records the movement

history of the doping fronts of 100 device samples when Vap = 1.1V . The RED curve is

the theoretical result while the 100 BLUE curves come from Monte-Carlo simulation. The

average doping fronts of some devices with large process variations hit the device boundary

during the movements and cause the large variance of ω′ at the +3σ corner. The devices

at the −3σ corner do not enter the non-linear region in Eq. 3.27 yet, and correspondingly,

“3D, -3sigma” in Figure 15 do not have abnormal disturbance.

Further increasing the flux ϕ, i.e., increasing Vap from 1.1V to 1.2V makes the variance of

ω′ drop, as also shown in Figure 15. Under this scenario, the amplitude of ϕ is so large that

the average doping front of most of the simulated devices have reached the device boundary.

These devices with a constant ω′ = 1, however, will not contribute to the statistics of the

variances of average doping fronts. A new concept named “effective flux”, which includes

the constraints of device boundary, can be expressed as

ϕeff =


∫ t
t0
Vap · dt (ω′ < 1)

h2(RH +RL)/(2µvRL) (ω′ ≥ 1).
(3.29)

Impact of process variations.

The complexity of Eq. 3.27 and 3.28 make it infeasible to find a simple analytical expres-

sion of the variance of the ω′ even if we assume both h′ and γ′ follow normal distributions.

However, we are still able to construct a polynomial-based ω′ model by taking the means

and the variances of h′ and γ′ as the variables.

By running extensive numerical simulations under various conditions, we found the actual

ω′ can be modeled as the product of the designed value ω and a coefficient η that describes

the influence of process variations as:

ω′ = η · ω, (3.30)

where, η can be expressed by an heuristic formula (partially from the first order Taylor

expansion of Eq. 3.27 and 3.28 as

η =
1

(1 + ϕ · ε1 + ϕ · ε2 · (w1 · E + w2 ·G)) · (1 + σγ ·D)
. (3.31)

46



Table 6: Statistical model of TiO2 thin-film memristor.

Variation Parameters: µRH , σRH , µRL , σRL , σγ
Coefficients: w1, w2, ε1, ε2
Independent Random Numbers: D ∼ N (0, 1), E ∼ N (0, 1), G ∼ N (0, 1).

Memristance boundary:
R′H = RH · (µRH + σRH · E) · (1 + σγ ·D)
R′L = RL · (µRL + σRL ) · E

Input flux:

ϕeff =

{ ∫ t
t0
Vap · dt (ω′ < 1)

h2(RH +RL)/(2µvRL) (ω′ ≥ 1)
Doping front position:

ω′ = η · ω
η = 1

(1+ϕ·ε1+ϕ·ε2·(w1·E+w2·G))·(1+σγ ·D)

Memristance:
M ′(ω) = R′L · ω

′ +R′H · (1− ω
′)

Similar to the definitions we used in Section 3.2.1.1, D and E are two independent

random numbers that represent the impact of RDD and geometry variations, respectively.

To avoid overestimating the impacts of geometry variations on the ω′, a new random number

G ∼ N (0, 1) is introduced to remove the impact of LER. ε1 and ε2 are two scalars extracted

from the actual simulations. The coefficients w1 and w2 represent the weights of E and G,

where w2
1 + w2

2 = 1.

3.2.1.3 Distribution of M ′ By modeling R′H , R′L and ω′ with normal distribution ap-

proximations and heuristic polynomial approximations, the total memristance M ′ of a TiO2

memristor can be simply calculated by M ′(ω) = R′L · ω′ + R′H · (1 − ω′). Table 6 summa-

rizes the main steps and equations included in our proposed statistical model of the TiO2

memristor.

3.2.2 Model generation flow

In this section, we describe the parameter extraction methodology for the generation of the

statistical model of TiO2 memristors. Some critical implementation considerations are also

discussed.

Based on the discussion in Section 3.2.1, we propose a four-step extraction methodology

to obtain the corresponding statistical model parameters.

47



Step 1: Model input characterization.

In the electrical testing of a memristor device, only three parameters can be measured

directly: R′H , R′L and I(t). The measurement of I(t), which is a time-vary variable, requires

two doping front ω movements following both 0 → 1 and 1 → 0 directions under certain

electrical excitations: as we discussed in Section 3.2.1.2, the electrical excitations must be

carefully controlled to avoid the case where the doping front hits the device boundary. The

absolute value of the flux ϕ can be simply calculated as the integral of the applied voltage

over time. The actual data can come from either the electrical testing or the Monte-Carlo

simulations with detailed device modeling.

Step 2: Distribution generations for R′H and R′L.

The PDF of R′L can be modeled as a normal distribution as shown in Eq. 3.25. The

mean µRL and variance σRL can be easily extracted from the statistical data generated in

Step 1. Though R′H in Eq. 3.26 does not strictly follow a normal distribution, a mean of µRH

can still be extracted. By being exposed to the same geometry variations, σRH ≈ σRL in Eq.

3.26. As we shall show in Section 3.2.3, modeling R′H as a normal distribution approximation

introduces very marginal discrepancy and has limited impact on the accuracy of ω modeling.

Finally, the variance of σγ needs to be provided by material-level characterizations.

Step 3: Distribution generation for ω′.

For every device sample, the resistance of the memristor and doping front location at a

given time stamp tj can be simply calculated as:

M ′(tj) =
V (tj)

I(tj)
, ω′(tj) =

R′H −M ′(tj)

R′H −R′L
. (3.32)

Based on the calculated samples, the distribution of M ′(tj) and ω′(tj) can be generated

with the mean µω and the variance σω of ω′(tj). Then two scalars – ε1 and ε2 in from Eq.

(3.30) and (3.31) can be extracted.

We proposed a heuristic method to generate w1 and w2: We start with an assumption

that w1 = 1 and w2 = 0. The corresponding µ̂M and σ̂M are calculated from the distri-

bution of M ′. At this moment, we have σ̂M > σM and µ̂M 6= µM by overestimating the

impact of geometry variations. The mismatch between measurement data and the simulated

parameters, i.e., µ̂M and σ̂M could be large. Continuously decreasing w1 can reduce the
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mismatch between the distributions of the simulated data and the measurement data. Then

the optimal approximations of w1 and w2 can be obtained under the best fitting condition.

Step 4: Model verification and improvement.

After constructing the statistical models by extracting all necessary parameters, the static

and dynamic behaviors of TiO2 memristors under various electrical excitations can be simply

simulated without conducting the time-consuming Monte-Carlo simulations. However, we

can still run Monte-Carlo simulations by taking into account the device samples to verify

the accuracy of our proposed models.

The accuracy of our proposed model may be improved by optimizing the termination

conditions of the parameter optimization iterations. The detailed algorithm written in pseu-

docode is shown as below:
Algorithm 1: Statistical Model for Computer Simulation

E = N (0, 1), G = N (0, 1), D = N (0, 1)
generated at the beginning of simulation;
1: ϕ(n+ 1) = ϕ(n) + V (n+ 1) · dt
2: if abs(ϕ(n+ 1)) > ϕeff
3: ϕ(n+ 1) = sign(ϕ(n+ 1)) · ϕeff
4: end if
5: η(n+ 1) = 1

(1+ϕ(n+1)·ε1+ϕ(n+1)·ε2·(w1·E+w2·G))·(1+σγ ·D)

6: vel(n+ 1) = µv · RLh2 ·
V (n+1)
M(n)

7: ω(n+ 1) = a(n) + vel(n+ 1) · dt
8: ω′(n+ 1) = η(n+ 1) · ω(n+ 1)
9: Check boundary condition of ω′(n+ 1)

10: If ω′(n+ 1) reaches boundary
11: ϕ(n+ 1) = 0
12: end if
13: M ′(n+ 1) = R′L · ω

′(n+ 1) +R′H · (1− ω
′(n+ 1))

14: return M

3.2.3 Simulation results

Because of the lack of published data of memristor device variations, we use Monte-Carlo

simulation results as the baseline to validate our proposed statistical models. Three pa-

rameters that are used to generate our statistical models – R′H , R′L and I(t), are simulated

by using the 3D device structure examples. However, there is nothing prevent us from us-

ing electrical testing data of memristor devices as the input of our model generation. The

parameters of the generated statistical model are summarized in Table 7.

In this section, we verify the effectiveness of our proposed statistical model by comparing

the results of various electrical properties with that of Monte-Carlo simulations based on 3D

device structure samples. A total of 10,000 Monte-Carlo simulations are running.
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Test 1: Fixed input signal. A sinusoid input signal V = Vap · sin (2πf · t) with Vap = 1V

and f = 0.5Hz is applied to the simulated memristor device. Figure 17, Figure 18, and

Figure 19 show the simulation results of ω′(t), M ′(t), and I−V characteristics, respectively.

The results of our statistical model (labeled “stat”) approximate the results of the Monte-

Carlo simulations with the 3D device samples (labeled “3D”) very well: On average, our

statistical model shows only∼ 2% difference from the one of the 3D Monte-Carlo simulations,

for the memristances at the ±3σ corners. Table 8 summarizes the variances of each electrical

property at each corner.

Test 2: Frequency Dependency. The same sinusoid input signal is applied with Vap = 2V

while changing f from 2Hz to 10Hz. Again, our statistical model demonstrates a good

approximation in the whole range, as shown in Figure 20.

Test 3: Impact of Flux. In this test, the input signal is still a sinusoid signal with a

fixed f = 0.5Hz. We vary Vap from 0.1V to 1.2V and measure ω and M at t = 1s. For an

ideal device without any process variations, ω reaches to 1 when Vap = 1.26V . Hence, there

is no need to raise Vap beyond it. The comparisons of ω and M vs. various Vap are shown

in Figure 15 and Figure 21, respectively. Our results show that the memristance M results

from our statistical model fits well with that of the Monte-Carlo simulation results in most

of the working region. A large discrepancy is observed on ω curves only when Vap is high

∼ 1.1V .

The difference between the results of 3D Monte-Carlo simulation and our statistical

Table 7: Statistical model parameters

Variation Parameters Coefficients

µRH 0.994 ε1 -0.028
µRL 0.994 ε2 0.072
σRH 2.16% w1 0.98
σRL 2.16% w2 0.2
σγ 2%

Table 8: Variance between 3D model and statistical model.

a− t M − t V − I
+3σ 4.97% 2.03% 2.20%
−3σ 5.05% 2.12% 1.99%
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Figure 17: Comparison of ω′(t) at ±3σ corners.

4000

8000

12000

16000

20000

0 0.5 1 1.5 2

M
em

ri
st

an
ce

 (Ω
)

t (s)

3D, +3sigma 3D, -3sigma Stat, +3sigma Stat, -3sigma Theoratical 

Figure 18: Comparison of M ′(t) at ±3σ corners.
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Figure 19: Comparison of I − V at ±3σ corners.
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model simulations at Vap = 1.1V is due to the nonlinear relationship between ϕ and ω

when ω is close to 1. After memristance enters into the low resistance region, continuing to

increase the flux may not necessarily raise the variance of ω = 1 because the doping fronts

will hit the device boundary. The two simulations then merge into each other. In real design,

we recommend the designer not operate the memristors in the low resistance region when

utilizing its analog state.

Runtime Comparison.

The proposed statistical model of the TiO2 memristor can significantly improve runtime

cost. For instance, 10,000 device-based Monte-Carlo simulations Hu et al. (2011a) took ∼ 2

hours in a MATLAB environment, while the same number of simulations using the proposed

statistical model only spent ∼ 2 seconds.

3.3 STOCHASTIC MEMRISTOR MODEL

To better describe the stochastic memristive switching in both static states and dynamic

switching process, we proposed a stochastic model for TiO2 memristive switch based on

both the inspection of the physical mechanisms Yang et al. (2009); Pickett et al. (2009) and

the statistical analysis of experimental data Yu et al. (2011); Gaba et al. (2013).

3.3.1 On and OFF Static States

The static stochastic behavior can be described by the distributions of RL and RH . In

TiO2 memristor, the initial barrier width w follows a normal distribution and the device

resistance exponentially depends on w. Therefore the distribution of state resistance follows

the lognormal probability density function (pdf) function, which is Yang et al. (2009):

fx(x;µ, σ) = exp

(
−(lnx/µ)2

2σ2

)
/
(
xσ
√

2π
)
, x > 0. (3.33)

Here, µ is the normal mean and σ is the standard deviation. Note that RL or RH does

not change within a given static state for each switching cycle since we use post-probability
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function to predict the static state after each dynamic switching behavior. Therefore, we

can use lognormal function (Lognorm) to generate the sampling data, such as

RL = Lognorm(µ
RL
, σ

RL
), and RH = Lognorm(µ

RH
, σ

RH
). (3.34)

3.3.2 Dynamic Switching Process

The dynamics in TiO2 memristor is a complex oxide electroforming process. It can be

explained as an electro-reduction and vacancy creation process caused by high electric fields

and enhanced by electrical Joule heating. Usually the barrier width w is used to model

the vacancy channeling mechanism. Although the vacancy channeling mechanism has been

evidenced by experiments Yang et al. (2009), it is difficult to match it to a pure physical

model. Instead, our model is based on the analysis of three major behaviors; we start with a

mathematical analysis of the analog stochastic switching behavior from the statistical aspect,

and then bridge the parameters in mathematical expression with the physical excitation. At

last, the impact of over tune is integrated into the stochastic model.

Analog Stochastic Switching Behavior: The stochastic resistance changing has been

observed in high frequency measurement at low voltage Pickett et al. (2009). The time depen-

dency of switching probability can be approximated by the cumulative probability function

(CDF) of lognormal distribution, such as Medeiros-Ribeiro et al. (2011):

P (Success switch) =
1

2
erfc

[
−(lntswitch/µt)

2

√
2σ2

t

]
. (3.35)

Here, tswitch represents the pulse width of activation time. And µt and σt are related to the

external voltage V .

Instead of studying the complicated physical mechanism and its impact, we use mathe-

matical method to analyze the ON-OFF switching probability. According to Eq. 3.35, the

ON-OFF switching probability can be approximated by a CDF of lognormal distribution,

differentiation of P (Success switch) at tswitch, then is a pdf of the lognormal distribution,

such as
dP (Success switch)

dtswitch
= ftswitch(tswitch;µt, σt). (3.36)
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Eq. (3.36) describes the distribution of the increment of switching probability dP (Success switch)

at time tswitch when applying a signal with a short pulse width dtswitch.

The switching mechanism of a memristive device is intrinsic. Hence, the characteristic

of the stochastic behavior remains unchanged and follows the same probability function

during its switching process. From its physical meaning perspective, Eq. (3.36) reflects the

increment of switching probability at time tswitch, which can be associated to the resistance

change ∆R. Physically, a successful switching event with a pulse of tswitch indicates that the

device resistance changes from RL to RH , or vice versa, that is, ∆R = |RH −RL|.

Considering that both ON and OFF switching are the cumulative results of the analog

resistance changing and the increment of switching probability is directly reflected by the

change of resistance, the change of analog resistance at time tswitch can be generated by

mapping to the distribution of the increment of switching probability, leading to

dR

dt
= (RH −RL) · ftswitch(tswitch;µt, σt). (3.37)

Time & Voltage Dependency of Switching Probability describes the switching prob-

ability of memristive switch under applied voltage V and activation time tswitch. The switch-

ing process resulted from the cumulative impact of input signals can be modeled with CDF

function. The lognormal switching time distribution comes from the nonlinear switching

dynamics of the devices. Considering that the median switch time (µt) is exponentially de-

pendent on the applied voltage amplitude V , we approximate µt as an exponential function,

such as:

µt = exp(aV + b), (3.38)

where a and b are fitting parameters.

Since σt has only a weak dependence on V , we can approximate the relationship between

σt and V by a hard threshold squashing function, such as

σt =


σ
thres H

(σt ≥ σ
thres H

)

c · V + d (σ
thres L

< σt < σ
thres H

)

σ
thres L

(σt ≤ σ
thres L

)

. (3.39)
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Where, c and d are fitting parameters. σ
thres H

and σ
thres L

are the upper and lower boundaries,

respectively. Our model applies two individual sets of fitting parameters to ON and OFF

switching processes.

The Resistance Shifting Due To Over Tune: Over tune stands for the behavior when

one or more external voltage pulses continue being applied in the switching direction after the

state switching of memristor already succeeds. For example, apply an ON switching signal

to a device already in ON state. Based on the vacancy channeling mechanism, the over

tune in OFF state continues eliminating the oxygen vacancy until all the oxygen vacancies

disappear and the device becomes an insulator. In ON state, the over tune creates more

oxygen vacancies to form more conducting channels. The device mechanism becomes less

appropriate to be modeled with barrier width w since the channel frontier no longer exists.

The resistance shifting in real devices is even more complex after including thermal, electron

kinetic energy, and other physical issues. During over tune, a memristor device remains in

the same static state and the resistance shifting follows the static resistance distribution.

However, a systematic impact on µ
RL

and µ
RH

has been observed Yi et al. (2011).

Here, we use a statistical method to analyze the impact of over tune on the resistance

shifting. The charge q flowing through the device is used as the input variable, which has

a direct impact on the number of oxygen vacancies and the device resistance. To exhibit

the trend of resistance shifting, a linear approximation can be assumed between the passing

charge q and the mean shifting µ
shift

as Strukov et al. (2008a):

µ
shift

= e · q = e · V
M
· t. (3.40)

Here, e is the fitting parameter that describes the shift speed of mean, M is the current

memristor resistance. The new µ
RL

and µ
RH

can be calculated from Eq. (3.39):

µ′
RL

= µ
RL
− µ

on−shift = µ
RL
− eon · q, µ′RL ≥ 0. (3.41a)

µ′
RH

= µ
RH

+ µ
off−shift = µ

RH
+ eoff · q. (3.41b)

Though more complicated fitting equations can be established, such an approach is imprac-

tical and unnecessary at current stage considering of insufficient experimental data available.
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Figure 22: The static state distribution of a TiO2 memristor device.

The resistance shifting caused by over tune is constrained within the target resistance state,

demonstrating less impact on the overall memristor characteristic compared to the ON-OFF

switching.

3.3.3 Stochastic Model Verification

We verified the proposed stochastic model from perspectives of static states and dynamic

switching process.

Static States: Fig. 22 shows the resistance distributions of a memristive switch in ON

and OFF states. The blue bars in the figure are real measurement data of a TiO2 memristor

device Yi et al. (2011). The results show that the lognormal distribution fits well to the real

device data in ON state. However, in OFF state, the heavy tail is captured but the median

value is slightly skewed. Though the distribution of RH is not perfectly fitted, the error in

distribution fitting of RH has ignorable impact in the circuit simulation since RH is more

than two orders of magnitude higher than RL.

Dynamic Switching Process: Fig. 23 shows the time dependencies of ON and OFF

switching probability at different applied voltages. The results have high approximation

to the experimental results Medeiros-Ribeiro et al. (2011). The error mainly comes from

the approximation of the relationship between σt and V . As aforementioned, establishing a

more reliable estimation of σt requires more experimental data. Fig. 24 shows the simulated

analog resistance changing process of a TiO2 memristor to better demonstrate the time and
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Figure 23: The time dependency of ON (a) and OFF (b) switching at different external

voltage V .
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Figure 24: The analog switching process of a TiO2 memristor.

voltage dependency of switching probability and the resistance shifting due to over tune.

The external voltage is set as 3.0V to switch the memristor from RH to RL. The 100 curves

in the figure represent the resistance changings by repeating 100 times of the ON switching

procedure for the same device. The distribution of 100 tests agrees well with the switching

probability curve at −3.0V in Figure 3(a): about 40% of the curves reach RL before 0.1S.

Considering the obvious stochastic behavior of memristive device at nanometer regime,

traditional device modeling based on curve fitting is not enough. In this work, we built

a stochastic model for TiO2 memristor by bridging the key physical mechanisms and the

experimental data fitting. The model combines the stochastic characteristics in static states

and dynamic switching process together, and extends the stochastic study to the analog state

while still holding high approximation to the existing data. The accurate and fast estimation

on the distribution of device’s analog states makes the proposed model more meaningful for

higher level circuit and system designs. This model can be generalized to other metal oxide

memristors Yu et al. (2011); Gaba et al. (2013) for the same stochastic nature, that is,

the percolation property of the thin dielectric soft breakdown. The proposed model can

be further enhanced by integrating with reliable physical model that precisely describes

59



the stochastic switching mechanism. The complex and slow physical model generates the

required distribution data to develop the proposed fast stochastic model.

3.4 SUMMARY

In this chapter we propose a complete scheme including three models to simulate the device to

device variation and stochastic behavior of memristor devices. These models are independent

to device physical models and could be integrated together to study the overall impact on

different memristor devices. The result form single device study could be used for higher

level simulations.
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4.0 EFFICIENT SIMULATOR FOR MEMRISTIVE CROSS-POINT

ARRAY SIMULATION

After we have the variation models for single memristor devices, a efficient simulator specially

designed for cross-point array simulation is needed because memristor cross-point array is

the most common architecture for memristive circuits and also friendly to neuromorphic

designs. In neural network algorithms, large matrix is needed to represent the synapse

network among neurons, take the brain for example, one neuron is usually connected to

more than one thousand of other neurons, thus to directly mimic the neuron network of

the brain, at least a 1k-by-1k matrix is needed to represent the synapse network among

1k neurons. This corresponds to the similar size of cross-point arrays in hardware, which

means, a simulator needs to at least simulate the dynamic behavior of 1 million memristors

for each cross-point array during the simulation. However, current simulators are not fully

aware of the importance of memristor cross-point array and no special design is applied to

it to accelerate the simulation, and the simulation is very time-consuming. To author’s best

knowledge, so far no 1k-by-1k cross-point array has been simulated in the published works.

4.1 MATLAB-BASED SIMULATION OVERFLOW

The MATLAB simulation process is shown in Figure. 25. With experiment data and models

of memristors and selectors, we want to automate the process of evaluating their performance

as memory elements in crossbar arrays. It is preferred that the simulation process could be

easily updated with new data and models, then with designed benchmarks the performance

could be evaluated.

61



Figure 25: Matlab simulation flow

For a N − by − N crossbar array, we could define the voltage on top of the memristor

as Vtop, the voltage between memristors and selectors as Vmid and the voltage on bottom

of selectors as Vbot. The entire non-linear differential equations are coded in matrix format

and stored as sparse matrix. Later it is solved using the fsolver provided by MATLAB, to

speed up the simulation process, first, we pre-define the initial value for each voltage point

in the crossbar, second, we pre-calculate the Jacobian matrix to get the trajectory for each

variable. In this way, the special designed simulation process could achieve 2 3 orders of

magnitude faster than the general purpose SPICE simulation process.

4.2 SIMULATION SETUP

In simulations, all devices data and model parameters are taken from macro scale devices

to ensure the same scalability except the wire resistance is take from 50nm technology. The

initial states of memristors and their variation are modelled from the same device sample.
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Figure 26: Memristor crossbar model

And the device to device variation is reflected by the noise in static model parameters

of memristor and selector generated at the beginning of simulation, which will then held

unchanged during the simulation. Last but not least, the stochastic switching behaviour is

reflected by the noise in dynamic model parameters of memristors generated at each cycle

of the simulations.

4.2.1 Cross-point array model

The memristor cross-point array contains two sets of parallel conductive interconnects cross-

ing perpendicularly, and at every crosspoint there is a memristor, as shown in Figure. 26.

Every memristor can be accessed by selecting the corresponding word-line and bit-line. Al-

though passive memristor cross-point array has potentially the highest storage density ben-

efited from memristor’s simple structure (4F 2 per device), it has substantial sneak path

leakage issue caused by half-selected and unselected devices, which will cause misprogram-

ming and misreading. To clearly and accurately analyse the impact of sneak path, we use

experiment verified device models rather than simplified switch models in the simulation.
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Figure 27: I-V curve of TaOx memristor device compact model

The interconnect resistance Rwire between two adjacent junctions is set to 0.65 Ω for a 4F 2

cross-point structure according to the International Technology Roadmap for Semiconductors

for 50 nm technology. The wire and device capacitance is not considered in this simulation,

since its impact could be approximated as delay constants in addition to this work.

4.2.2 Memristor model

The memristor model used in this work is the latest TaOx device model from HP lab Strachan

et al. (2013). It accurately describes the static and dynamic behaviour of the memristor,

especially reflect the time dependency of the switching behaviour, which is missing in the

switch model. Figure. 27 shows the I-V curves of the device with fixed maximum/minimum

voltages but different sweeping frequency. It could be observed that longer sweeping time

(slower sweeping frequency) results in smaller switching voltage amplitude as well as more

conductive ON-state. Thus misprograming may still happen when a device has a long enough

signal applying across it, although its voltage amplitude is lower than the designed switching

voltage. And this factor could only be reflected by dynamic simulations rather than transient

analysis.
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Figure 28: I-V curve of selector model based on TiN tunnelling device, the fitting error at

high voltage probably comes from the compliance current limitation.

4.2.3 Selector model

Currently most memristors are linear or slightly non-linear devices, including the TaOx

device showed above. Although crossbar memory with linear devices could be written and

read in small size, the severe sneaking path current leakage limits its further development. It

is generally believed that non-linearity is necessary for the passive crossbar memory. One of

the most important reasons is that introducing the non-linear element could greatly reduce

or even eliminate the sneak path current leakage, thus increase the possible number of devices

within one crossbar memory and alleviate the requirements on memristor’s other properties,

such as ON/OFF resistance, ON-OFF ratio and etc. Although memristor with intrinsic non-

linearity is more preferred for fabrication, Considering the total device as a serial connection

of linear memristor and non-linear selector is more helpful for the quantitative investigation

of the non-linearity, and more practical at current stage.

We use tunnelling barrier device as our selector in this simulation. The selector’s I − V

performance curve is shown in Figure. 28, which is well fit with Eq.(4.1) when −2V< V <

2.5V. a,b and c are fitting parameters. The curve differs from experimental data at high

voltage amplitude (> 2V) because of the current compliance in measurement environment.
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Figure 29: I-V curve of Nonlinear device with TaOx memristor in series connection with the

TiN selector.

In this case, we could assume that without current compliance, the data points could follow

the fitting curves and in that case the selector device may be eternally shorted.

I = a · sinh(
V

b
) · exp( |V |

c
) (4.1)

The I − V performance curve of the integrated non-linear memristor device is shown in

Figure. 29.

4.2.4 Variation model

The variation model of memristor we proposed in Chapter 3 could be used here. However,

since we also have the latest variation data from HP labs for TaOx memristor devices, we

will just apply it here for our study.

4.2.4.1 Cycle-to-cycle variation model Many metal-insulator-metal based memris-

tors have natural stochastic property. This property exhibits as two parts in a single device:

first, the dynamic switching behaviour is stochastic, especially in slow-switching process ex-

cited by low switching voltage; second, the resulted static resistance states are stochastic,
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Figure 30: Distribution of HRS/LRS from the 2 billion on/off cycles of single TaOx device.

a,e are the overall resistance distribution for HRS and LRS, respectively. b,c,d and f,h,i

stand for the first billion cycles, next 0.5 billion cycles and the last 0.5 billion cycles for HRS

and LRS, respectively.

appearing as the variations in ON state and OFF state resistance. The impact of stochastic

switching could be avoided by using high switching voltage for fast switching or extended

switching time to ensure the successful switching. However, the stochasticity in ON/OFF

state resistance, or to say, cycle-to-cycle variation could not be ignored.

It is hard to explicitly study the cycle-to-cycle variation because its heavy coupling with

device-to-device variations caused by immature fabrication process at current stage. As the

fabrication process is also fast developing, it is more preferred to choose the best device now

to study its property as our future standard. We select the best endurance data published so

far for the same TaOx device, this device has satisfying endurance as well as stable switching

behaviour and large ON/OFF ratio.

The distribution of 2 billion on/off cycles of single TaOx device is shown in Figure. 30. At

a first glance the it seems hard to find a suitable probability density function(pdf) to fit the

distribution since there exits multiple peaks. However, the peaks could be separated in three

sets for both ON and OFF state data: 1 1 billion cycles, 1 1.5 billion cycles and 1.5 2 billions
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cycles. By examining the six part of empirical data with 17 existing popular parametric

distributions, we found that the General Extreme Value(GEV) distribution has the best

fitness, as shown in Figure. 30. By the extreme value theorem, the GEV distribution is used

as an approximation to model the maxima of long(finite) sequences of random variables. If

we separate the memristor into many filaments, the overall resistance could be approximated

as that of the most conductive filament if and only if the most conductive filament is much

more conductive than all of others and nearly all the current travels though it. Thus, the nice

fitness of GEV distribution implies that a good device with stable switching behaviour and

high endurance should have only one stable functional conductive channel. In simulation we

take the first 1 billion endurance data as our sample to extract the ON/OFF state resistance

and initial state variation.

4.2.4.2 Device-to-device variation model The device-to-device variation in memris-

tor crossbar could be improved after the fabrication process of memristor device is settled.

So far the device-to-device variation in experiment is still too high and not within our inter-

est. To consider the impact of device-to-device variation in future, we would like to assume

it follows a Gaussian distribution or at least a lognormal distribution if the heavy tail issue

could not be eliminated. Thus in simulation, we add Gaussian noise directly to the mod-

el, or on the parameter within the exponential part of the model, which will result in a

near-lognormal distribution in current passing devices.

4.3 ACCURACY AND EFFICIENCY EVALUATION

The simulation result is verified with SPICE simulation. Since large scale simulation is

too time consuming in LTSPICE, we only verified the transient simulation up to 64-by-64

crossbar size and the dynamic simulation up to 4-by-4 crossbar size. The simulation result

are shown in Figure. 31. Both simulation result achieve perfect match between SPICE

simulation and MATLAB simulation. To test the efficiency of our simulator, we conduct

more simulations. The test platform is Thinkpad W520 8GB with MATLAB 2009b 32-bits.
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Figure 31: Simulation examples. (a) Simulation setup; (b) Static simulation result of voltage

map for 64-by-64 linear cross-point array; (c) Dynamic simulation result of voltage on selected

device for 4-by-4 linear cross-point array.
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Figure 32: Simulation speed of linear cross-point array with different size.

For transient simulation of pure memristor cross-point array, it takes about 1 minute for 512-

by-512 scale; for dynamic simulation of pure memristor cross-point array with 2000 steps

and 10ps per step, the performance figure is shown in Figure. 32. We can observe that the

simulation time linearly grows with the complexity. For comparison, the 128-by-128 scale

simulation takes about 50 minutes and it is about 4 to 5 orders of magnitude faster than

the LTSPICE simulator. For memristor+selector simulations, generally it is about 2 3 times

slower than the pure memristor simulation because of the complexer model.

4.4 SUMMARY

In summary, linear memristor cross-point arrays are feasible for traditional level-based neu-

rormorphic circuit design. However, the cross-point array size is limited to a small val-

ue(below 16-by-16 in current simulation), for neuromorphic design that requires larger neu-

ral network connections, selectors are necessary in the cross-point array and spiking neural

network should be implemented to realize the neural network application.
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5.0 MEMRISTOR-BASED NEUROMORPHIC CIRCUIT COMPONENTS

As we got variation model and circuit simulation tool for memristive circuits, we can begin

the design of neuromorphic circuit. Similar to neural network models, neuromorphic circuit

is composed of synapses for weight storage and neurons for computation. And in this chapter

we will introduce a few memristor-based synapse and neuron designs.

5.1 “MARCO CELL” FOR HIGH-DEFINITION WEIGHT STORAGE

Storing high-precision continuous weight is beyond the capability of a single memristive

switch. We proposed a macro cell design composed of a group of parallel connected mem-

ristive switches for weight storage.

5.1.1 Characterization of multiple memristive switches

Multiple memristive switches connected in serial or in parallel can provide multi-level con-

ductance(resistance) values by simply combining the ON and OFF states of these devices.

Comparing the two connection topologies, the design of parallel connection can be easily

adapted on crossbar arrays. Also, it can provide a linear function of the read-out current,

mitigating the pressure on sensing circuit. Thus, a group of parallel connected memristive

switches is adopted in our design. The programming/detecting on the different ON and OFF

combinations is realized through the peripheral circuit.

Here we take 9 parallel connected TiO2 memristive switches as an example. Figure. 33

shows the distribution of its overall conductance Gall. To evaluate the impact of resistance
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Figure 33: The conductance distribution of parallel connected memristive switches.

in OFF state, we gradually increase the device number in ON state and remain the others in

OFF state. The simulation result shows that the mean and deviation of Gall linearly grows

as the number of ON memristive switches increases. Moreover, when all the memristive

switches are in OFF state, the variation is negligible, indicating the variation in OFF State

has little impact on the total conductance. In other words, the ON-state variation dominates

the distribution of Gall. Thus, with more memristors in a macro cell, it can achieve larger

conductance range, roughly proportional to GON times number of memristors.

5.1.2 “Marco cell” design

The parallel connection of memristive switches can be easily adopted in crossbar arrays.

Let’s use a 3-by-3 memristive switch cross-point array in Figure 34(a) as an example. By

combining the three inputs wires together and connecting the three output wires, the 9

memristive switches in this structure are parallel connected. We name such a structure as a

macro cell.

The given example has 10 possible ON-OFF device combinations, corresponding to 10

different conductance levels. Ideally, the 10 conductance levels can be differentiated by tun-

ing the number of memristive switches in ON state. Unfortunately, as the simulation result
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Figure 34: (a) A macro cell containing of 9 memristive switches on a 3x3 crossbar. (b) Parti-

tioning a 6x6 memristive switch crossbar to obtain a 2x2 macro cell crossbar for continuous

weight storage.

in Figure. 33 shows that the large resistance variation of ON state causes overlapping of con-

ductance distribution, which is problematic in realizing traditional digitalized data storage

for lacking of noise margin between adjacent levels. However, it also indicates continuous

analog weight storage since a macro cell can achieve any arbitrary conductance within the

overlapping range. For instance, the total conductance Gall of the macro cell in Figure 34(a)

ranges from 0.53 ·10−5S to 1.2 ·10−4S. The unreachable conductance ranges from 1.1 ·10−7S

S to 0.53 · 10−5S, corresponding to the region from the upper bound of 9 switches in OFF

state to the lower bound when only one switch is in ON state.

The proposed macro cell design can be easily adopted on larger crossbar structure. Fig-

ure 34(b) shows an example in which a 6x6 memristive switch crossbar is partitioned into 4

macro cells to implement a 2x2 weight matrix. The design sacrifices density while offering

a practical and reliable way to realize continuous resistance state for analog information

storage and computation via binary switching memristors. The largest advantage of such a

design is the dramatical decrement of programming complexity: a complex and slow feed-

back scheme is necessary when tuning a memristor to a specific analog state. In contrast,

binary switching of memristors can adopt the existing memory programming scheme that is

simple and reliable.

Compared with the crossbar array implementation by using floating gates or capacitors,

the two-terminal memristor enables a much simpler structure. Moreover, the charge-based
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CMOS devices require certain dimension to guarantee data accuracy, while the memristor

technology can easily shrink to nanometer regime. Thus, though a macro cell design employs

multiple memristors, it still can provide better area efficiency (1 ∼ 2 orders of magnitude)

over CMOS technologies.

5.1.3 Feedback attempt scheme

A simple feedback attempt scheme can be used to achieve target conductance in a macro cell.

Figure. 33 illustrates the conceptual diagram of the programming scheme for demonstration

purpose only. First, the number of memristive switches in ON state is determined to tune

the overall conductance roughly. The output current is detected to check if the target

conductance G has been reached. A feedback control then is given to finely tune the macro

cell memristor conductance. If the detected current is not within the absolute error threshold

E, an ON state memristor is randomly selected to reset and then set again. Under a given

operation condition, the target conductance may not be obtained within a certain number

of tryouts, indicating that either one or more memristors are too conductive or too resistive.

We need to gradually reduce or increase the memristor number on ON state until the total

conductance falls into tunable range. Then, restart the programming through the random

attempt scheme.

In weight storage unit design, voltage pulses are used to control the switching of memris-

tive switches. The pulse width tswitch is fixed, which is determined by the speed requirement.

The amplitude V with ∼ 100% switching probability is required to ensure the deterministic

switching.

Figure 35 summarizes the average and the worst-case reconfiguration cycles to approach

the different target conductance. The target conductance GTar can be generated by compar-

ing to a reference current signal. Each data in the figures represents the statistical results of 1

million samples. The simulation results show that reconfiguration cycles increases linearly as

the target conductance rises, while dramatically increases as the threshold error E decreases.

More importantly, it shows that the proposed feedback attempt scheme can already achieve

high precision programming within affordable attempts: any target conductance can be ap-
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Figure 35: Average (a) and Worst-case (b) reconfiguration cycles to reach target conductance

with different absolute error E.

proached within on average 25 attempts with the error of E = 0.1 · 10−5S, corresponding to

only 1% of the achievable conductance range. In the worst-case study, when E = 0.3 ·10−5S,

the macro cell reaches the target conductance within 50 attempts in most cases. A rough

calculation of (Gmax − Gmin))/2E implies that the macro cell can achieve at least 17 non-

overlapping conductance levels rather than 10 levels obtained from ON/OFF combinations.

If more attempts are affordable, we can increase to 50 non-overlapping conductance levels

by reducing E to 0.1 · 10−5S.

5.2 MEMRISTOR-BASED STOCHASTIC NEURON

The stochastic switching process is a severe issue for non-volatile memories with memristive

switches. However, with careful design, it can be leveraged in designing stochastic neurons.

Generally, stochastic neurons can be categorized into the binary neuron and the continuous

value stochastic neuron.
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Figure 36: Binary/Continuous value stochastic neuron design

Figure 37: Output example of binary stochastic neuron
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5.2.1 Binary stochastic neuron

Binary stochastic neuron generates random binary pulse signals, which uses external voltage

signals to control the probability of 0 (OFF) or 1 (ON) generation. Figure. 36 illustrates the

design of a binary stochastic neuron with a memristive switch. The operation timing diagram

is given in the inner set of the figure. Figure. 37 shows a output pulse example of binary

stochastic neuron. Figure. 38 shows the voltage dependency of ON and OFF switching of a

TiO2 memristive switch. Each curve has a fixed pulse width. The voltage dependency shows

a normal dependency between the applied voltage and the switching probability, where tswitch

has a log impact on the means and deviations of switching distributions.

Accordingly, the binary stochastic neuron can control the probability of random numbers

by applying a fixed pulse width tswitch and adjusting voltage amplitude V . Figure. 38 also

demonstrates the trade-off between tswitch and the tunable range of V . The longer pulse

width results in the lower applied voltage and the wider tunable range, which alleviates the

hardware design complexity but the speed of circuit operation exponentially reduces. The

shorter pulse width makes the circuit run much faster, at the cost of smaller tunable range

and the increased risk of device damage.

5.2.2 Continuous value stochastic neuron

Continuous value stochastic neuron generates random pulse signal. The voltage amplitude

of the pulse signal is an analog value, which falls into a given distribution with controllable

mean and noise. As illustrated in Figure. 36, a continuous value stochastic neuron can be

constructed by replacing the single memristive switch in a binary stochastic neuron with a

macro cell. The noise and mean are controlled by the external voltage signal and the number

of memristive switches in a macro cell. An output example of continuous value stochastic

neuron is shown in Figure. 39.

Figure. 40 shows the means and standard deviations of the noise generated by the pro-

posed continuous value stochastic neuron. The designs with different macro cells containing

N = 4, 9, 16, 25 memristive switches are compared. The means and the deviations of total

conductance are controllable through the applied voltage. When a zero-mean noise signal is
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Figure 39: Output example of binary stochastic neuron
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required, an offset current/voltage source can be added at the output Vs to cancel out the

mean shifting considering that the voltage amplitude dependency of mean follows a normal

CDF.

The variation comes from both the stochastic ON switching process and the randomness

of ON state resistance. When V > −3.95V , the major contribution to variation comes

from stochastic switching. Hence, the standard deviation decreases as the absolute voltage

amplitude drops down. When V < −3.95V , a memristive switch has > 80% probability to

successfully change to ON state, as shown in Figure. 38. Thus, the randomness of ON state

dominates and the deviation is saturated. After all, using memristive switches, it is possible

to replace the traditional continuous stochastic neuron with memristive switch based circuit

to obtain higher area/power efficiency.

5.3 MEMRISTOR-BASED SPATIO-TEMPORAL(MST) SYNAPSE

In this work, we propose a compact spatio-temporal synapse design based on memristor

technology, which supports both spatial and temporal weighting functions at the same time.

5.3.1 Design concept

A spatio-temporal synapse shall support two types of weighting functions:

• Spatial weighting that modulates the signal through the synapse. The spatial weight is

tunable and adjustable in learning process whereas remains unchanged in recalls.

• Temporal weighting which is sensitive to the relative timing of pre-synaptic and post-

synaptic signals in both recall and learning processes. The temporal weight reflects

synapse’s status of ON or OFF (that is, activated or deactivated), which is determined

by the correlation strength of the two connected neurons.

Based on the concept, we propose a memristor-based spatio-temporal (MST) synapse

that is depicted in Fig. 41(a). M1 realizes the temporal weighting and the conductance of

M2 (i.e., G2) represents the spatial weight. For ease of explanation, we assume M1 and M2
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Figure 41: MST synapse design and I-V characteristics. (a) MST structure and equivalent

circuit; (b) Conceptual layout in cross-point array; (c) DC-sweep I-V curves of the MST

synapse, M1, and M2 when applying a small voltage (top figures) or a large voltage (bottom

figure).

utilize the same device structure and therefore have the same ON and OFF resistance states

(RON and ROFF) and the identical switching dynamics.

To protect the spatial weight G2 in recall, we connect M2 with resistor R in parallel

so as that the majority of the voltage across the synapse can apply to M1. The following

inequality corresponding to the worst-case situation when M1 and M2 are respectively at

ON and OFF states shall be satisfied:

RON > ROFF ·R/(ROFF +R). (5.1)

Assume ROFF = k · RON and R = x · RON, Eq. (5.1) turns to k + x > kx, which indicates

that x ≤ 1 shall be satisfied because k > 1. Here, we set x = 1 and make R = RON. By

adjusting the voltage across the synapse, M1 can be switched alone without impacting M2.

The state change of M2, however, is always associated with M1’s switching.

The MST synapse’s structure is also illustrated in Fig. 41(a). M2 and R isolated by a

thin insulator can be stacked above M1. The overall structure is quite similar to a double

layer resistive random access memory (RRAM) device. The layout in Fig. 41(b) shows that
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Figure 42: The I-V curve of a TaOx device. Reproduced based on Strachan et al. (2013).

MST synapse has an area of 6F 2, which is slightly larger than RRAM cell size of 4F 2. Here,

F represents the technology feature size. More important, the two-terminal structure can

be easily integrated into cross-point array, which has been widely investigated and explored

in high-density synapse design.

5.3.2 MST synapse characterization

To be more realistic and specific, we adopt the latest TaOx device model that was strongly

grounded in experimental data Strachan et al. (2013). TaOx has been identified by HP

Labs as one of the most promising memristor material for high density, low power, high

endurance, and fast programming Jo et al. (2010); Yang et al. (2010). The current-voltage

(I-V) characteristic based on TaOx device model is shown in Fig. 42. A sufficient positive

SET pulse (negative RESET pulse) makes the TaOx device switch toward ON (OFF) state.

The change of memristance not only depends on the voltage amplitude but also relates to

the sweep speed. Note that the proposed MST synapse can be easily extended to other types

of memristor technologies.
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Figure 43: The state transition diagram of MST synapse under spiking excitations.

5.3.2.1 DC Response We first analyze the I-V characteristic of MST synapse and show

the simulation results in Fig. 41(c). The corresponding I-V curves of M1 and M2 are also

included for reference. Obviously, when the voltage on synapse is too small to meet TaOx

device’s SET/RESET threshold under a given sweep time, neither M1 nor M2 can change.

As the synapse voltage increases gradually, M1 will first reach switching condition. The top

three I-V curves in Fig. 41(c) demonstrate that the temporal component M1 can be freely

switched ON/OFF while the spatial component M2 remains unchanged. The bottom three

I-V curves in Fig. 41(c) implies that an even larger voltage amplitude is required to trigger

the two-stage switching behavior including both M1 switching and M2 weight tuning. In

summary, a MST synapse exhibits the weighted switching feature under a small excitation

and its weight could be programmed if the applied voltage is sufficiently large.

5.3.2.2 Response to Spiking Excitation Spiking neural network is more favorable in

hardware implementations for high power efficiency Seo et al. (2011). Instead of the complex

synaptic signals in modulated format in Fig. 7, simple square pulses can be used for MST

synapses as the input (output) spikes at the pre-neuron (post-neuron). To be consistent

with TaOx operation, we use SET/RESET pulses to represent the positive/negative voltage

across a MST synapse. Here, we set the pulse width as 500ps.
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Fig. 43 summarizes the state transition diagram of MST synapse by varying SET/RESET

pulses at different voltage amplitudes. Considering that the temporal component M1 is

either ON or OFF1 while the spatial component M2 could be unchanged, tuning to ON, or

tuning to OFF, a synapse could have six possible transition states. However, based on the

analysis in Fig. 41(c), the situations of “M1 ON & M2 is tuning to OFF” and “M1 OFF &

M2 is tuning to ON” can never occur in MST synapse operation and hence are excluded.

Notably, M2’s tuning rate is not a constant value but determined by the present temporal

state and spatial weight of synapse as well as the applied voltage.

5.3.3 Synaptic properties of MST synapse

In this section, the synaptic properties of MST synapse including the spike-timing-based

recall ability and synaptic weight tunability will be examined and verified. Furthermore,

STDP as the fundamental spike-timing-based learning rule will be applied to study MST

synapse’s learning characteristics.

5.3.3.1 Spike-timing-based recall In a spike-timing-based rcall, M1 could switch to

perform the temporal feature. For instance, the example in Fig. 44(a) shows that a pre-spike

initializes a positive SET pulse through the synapse, making it activated. A post-spike results

in a negative RESET pulse, which eventually deactivates the synapse. The spatial component

M2, however, remains at its initial value during the entire procedure. The spatial weighting

function is reflected by the overall volume of charge through the synapse. To monitor the

change of synaptic weight in recall, we apply a low DC signal of 0.2V in the simulation.

There are three types of typical timing situations in spike-timing-based recall. We ex-

amine and study the MST synapse behavior for each case separately.

Case 1: The pre-neuron fires much faster than the post-neuron, forming a multi-spike

train with many SET pulses and much fewer RESET spikes. The MST synapse behavior

under such excitations is shown in Fig. 44. M1 turns ON at the first SET pulse and remains

ON until a RESET pulse comes. Because of the over-tune induced memristance shift Hu et al.

1For simplicity, we refer M1’s ON/OFF state as the MST synapse state in the rest of this paper.
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Figure 44: MST synapse in spike-timing-based recall – Case 1.
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Figure 45: MST synapse in spike-timing-based recall – Case 2.

0 5 10 15 20 25 30
-2

0

2

Time (ns)

V
o

lt
a

g
e

 (
V

)

0 5 10 15 20 25 30
0

5

10

15

Time (ns)

C
o

n
d

u
c
ta

n
c
e

 (
m

S
)

0 5 10 15 20 25 30
0

2

4

6

Time (ns)

C
h

a
rg

e
 (

p
Q

)

(a)

(b)

(c)

M1 M2, M2 initialized in OFF

M1 M2,                                   M2 initialized in ON

Passing charge with M2 initialized in OFF

Passing charge with M2 initialized in ON

Figure 46: MST synapse in spike-timing-based recall – Case 3.
85



(2014), the conductance of M1 could increase further if two SET pulses fire in consequence.

Even though, M1 can still be switched OFF by extending the duration or number of the

RESET pulses. Notably, during the whole recall process, the value of M2 remains constant

and determines the total charge through the synapse. More specific, the charge accumulation

is faster when M2 is RON but much slower if M2 is ROFF.

Case 2: If the pre- and post-neurons are strongly correlated, their firing events occur

alternatively and appear as a sequence of SET/RESET pulses through the synapse. Under

this circumstance, M1 (and the synapse) switches between ON and OFF states but M2 is

not affected, as shown in Fig. 45. The charge accumulation through the synapse is at a low

rate when the synapse is OFF but increases significantly once the synapse turns on. This

process is robust and repeatable.

Case 3: A backward multi-spike train is generated when the burst of the post-neuron is

much faster and more frequent than that of the prost-neuron. As the opposite situation of

Case 1, the spike-train through the synapse is in a form of many RESET pulses and a few

SET pulses. During the sequence of RESET pulses, the synapse is OFF and thus not much

charge can pass through it. Certainly, M1 can be re-activated by any SET pulse. And M2

keeps at the initial value without any change.

5.3.3.2 Weight tunability As the basis of learning process, the weight tunability of

MST synapse including both LTP and LTD will be examined. Note that the tuning targets

at only the spatial weight of M2, not for M1 that represent the activation status of the

synapse. As shown in Fig. 43, spikes with large amplitude at the pre-/post-neurons (or

strong SET/RESET pulses) enable the tuning process.

For ease of explanation, we give an example shown in Fig. 47. Assume a strong correlation

exists between pre- and post-neurons. They fire alternatively, appearing as a sequence of

SET/RESET pulses through the synapse. In the first 10 cycles, the spikes generated at the

pre-neuron is stronger than at the post-neuron. As a result, M2 gradually shifts toward ON

state with better conductivity, successfully demonstrating the LTP feature. The scenario in

the following 10 cycles is opposite: the stronger spikes at the post-neuron makes the RESET

procedure more efficient. Thus, the effective conductance of M2 when the synapse turns
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Figure 47: The tunability of MST synapse.

ON gradually reduces, implying a LTD behavior. The change of MST synaptic strength

(conductance) is reflected by the charge passed through the synapse, as shown in Fig. 47(c).

In summary, the positive stimuli corresponding to stronger-SET:weaker-RESET com-

bination enables LTP feature. And the LTD can be realized under the circumstance of

weaker-SET:stronger-RESET pulses, implying negative stimuli.

Note that M1 takes majority of the pulse voltage and hence can reach ON or OFF

state all the times. On the contrary, the conductance of M2 slowly changes because only a

small amount of voltage applies on it. Moreover, a very asymmetric tuning curve of M2 can

be observed in Fig. 47(b). This is because TaOx devices intrinsically have asymetricity in

switching mechanism Strachan et al. (2013). Thus, the selection of memristor device has a

critical impact on the tunability of MST synapse.

5.3.4 MST synapse with different memristors

Since the MST synapse design in Section III.A employees two identical memristors, a resistor

R is needed to protect G2 in recall process. However, the resistor R could be absorbed into

the M2 model, then the MST synapse design could be generalized to two memristors M1 and

M2 with different low resistance states RON, high resistance states ROFF, tuning-ON voltage
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amplitudes VS and tuning-OFF voltage amplitudes VR, the following constrains need to be

satisfied in recall process with pulse amplitude V for the worst-case scenarios:

{
VM1,S

V ≤ RM1,ON

RM1,ON+RM2,OFF

VM1,R

V ≤ RM1,ON

RM1,ON+RM2,OFF
VM2,S

V >
RM2,OFF

RM1,ON+RM2,OFF

VM2,R

V >
RM2,ON

RM1,ON+RM2,ON

. (5.2)

To choose the combination of memristors, M1 is firstly chosen as the reference, then the

range of M2 could be decided by Eq. (5.2). Fig. 48 gives a graphic view of the constrains

in Eq. (5.2), k = RM1,OFF/RM1,ON, gray area is the working region that satisfies all the

constrains. Without lose of generality, we assume VM1,R > VM1,S, solving the constrains in

Fig. 48 generates the optimal V for maximum ON-OFF ratio of M2. The result is listed in

Eq. (5.3),


V = VM1,R + VM2,S

Y =
RM2,OFF

RM1,OFF
=

VM2,S

VM1,R·k

X =
RM2,ON

RM1,ON
=

VM2,R

VM1,R+VM2,S−VM2,R
RM2,OFF

RM2,ON
=

VM2,S·(VM1,R+VM2,S−VM2,R)
VM1,R·VM2,R

. (5.3)

From Eq. (5.3), it shows that larger VM2,S helps increase the ON-OFF ratio of M2 and k

plays an important role in the maximum high resistance state of M2.
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5.4 SUMMARY

In this section we introduce the memristor-based neuromorphic circuit components including:

“Marco cell”, which enables multiple binary and unstable memristive switches to construct a

multi-level and stable memristor device for high-definition weight storage; Memristor-based

stochastic neuron, on the other side, take advantage of the stochastic behavior of memristor

to construct compact true random number generator which is widely used in neuromorphic

designs; Last but not least, a Memristor-based spatio-temporal(MST) synapse is proposed

to enrich the functionality of synapse, expends its function from spatial analog value storage

to spatio temporal weight storage. This is important for the efficient realization of spiking

neural network on hardware. For these neuromorphic circuit components, “Marco cell”

and stochastic neuron are based on TiO2 memristor, while MST synapse is based on TaOx

memristor.
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6.0 MEMRISTOR-BASED ANALOG NEUROMOPHIC CIRCUITS

In this chapter we introduce the hardware realization of level-based neural network. The

Brain-State-in-a-Box neural network model is used as an example to study the performance

of memristor-based neuromorphic circuit for spatial pattern recognition.

6.1 DESIGN METHODOLOGY

In this section, we will conceptually explain how to program a memristor cross-point array to

store the information of connection matrix. One straightforward way, the mapping method,

is to map the connection matrix to a memristor cross-point and then directly program the

memristors to specified resistance values. A natural way, the training method, mimics the

software training algorithm and adjusts the memristors iteratively to reach the required

input/output function. Since there are many limitations in hardware implementation, a set

of modifications to the algorithm are required.

6.1.1 Mapping a connection matrix to a cross-point array

6.1.1.1 Cross-point array vs. matrix Let’s use the N-by-N memristor crossbar array

illustrated in Figure 49 to demonstrate its the matrix computation functionality. Here,

we apply a set of input voltages VT
I = {VI,1, VI,2, . . . , VI,N} on the word-lines (WL) of the

array, and collect the current through each bit-line (BL) by measuring the voltage across a

sensing resistor. The same sensing resistors are used on all the BLs with resistance rs, or

conductance gs = 1/rs. The output voltage vector is VT
O = {VO,1, VO,2, . . . , VO,N}. Assume
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Figure 49: A memristor cross-point array
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the memristor sitting on the connection between WLi and BLj has a memristance of mi,j.

The corresponding conductance is gi,j = 1/mi,j. Then the relation between the input and

output voltages can be represented by

VO = CVI. (6.1)

Here, C can be represented by the memristances and the load resistors as

C = DGT = diag(d1, . . . , dN )×


g1,1 . . . g1,N
g2,1 . . . g2,N

...
. . .

...
gN,1 . . . gN,N


T

, (6.2)

where, di = 1/(gs +
∑N

i=1 gi,j). To differentiate the mathematical connection matrix A in

neural network, we use C to describe the physical relation between VI and VO. Thus, all

the terms in C must be positive values.

Please note that some non-iterative neuromorphic hardware uses the output currents IO

as output signals. Since the BSB algorithm discussed in this work is an iterative network,

we take VO as output signals, which can be directly fed back to inputs for the next iteration

without extra design cost.

6.1.1.2 A fast approximation mapping function Eq. 6.1 indicates that a trained

memristor cross-point array can be used to construct the positive matrix C, and transfer the

input vector VI to the output vector VO. However, C is not a direct one-to-one mapping

of conductance matrix G as indicated in Eq. 6.2. Though a numerical iteration method

can be used to obtain the exact mathematical solution of G, it is too complex and hence

impractical when frequent updates are needed.

For simplification, gi,j ∈ G satisfies gmin ≤ gi,j ≤ gmax, where gmin and gmax respectively

represent the minimum and the maximum conductances of all memristors in the cross-point

array. Thus, a simpler and faster approximation solution to the mapping problem is defined

as:

gj,i = ci,j · (gmax − gmin) + gmin. (6.3)
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A decayed version of C, which is Ĉ can be approximately mapped to the conductance matrix

G of the memristive array. Plugging Eq. 6.3 in Eq. 6.2, we have

ˆci,j =
ci,j · (gmax − gmin) + gmin

gs + (gmax − gmin) ·
∑N

j=1 ci,j +N · gmin
. (6.4)

Note that many memristor materials, such as TiO2 memristor, demonstrate a large

gmax/gmin ratio Strukov et al. (2008a). Thus, a memristor at the high resistance state

under a low voltage excitation can be regarded as an insulator, that is, gmin ' 0. Moreover,

the BSB recall matrix A is a special matrix with a small
∑N

j=1 ci,j. For example, all the BSB

models used for character recognition in our experiments have
∑N

j=1 ci,j < 5 when N = 256.

And
∑N

j=1 ci,j can be further reduced by increasing the ratio of gs/gmax. As a result, the

impact of
∑N

j=1 ci,j can be ignored. These two facts indicate that Eq. (6.4) can be further

simplified as

ĉi,j ≈ ci,j ·
gmax
gs

. (6.5)

In a summary, with the proposed fast approximation function, the memristor cross-point

array performs as a decayed connection matrix Ĉ between the input and output voltage

signals.

6.1.1.3 Transformation of BSB Recall Matrix To construct a memristor-based BSB

recall circuit, our first task is to transfer the matrix A in the mathematical BSB recall

model to a memristor array with physical meaning. A memristor is a physical device with

conductance g > 0. Therefore, all elements in matrix C must be positive as shown in

Eq. (6.2). However, in the original BSB recall model, ai,j ∈ A could be positive or negative.

We propose to split the positive and negative terms of A into two matrixes A+ and A– as

a+
i,j =

 ai,j, if ai,j > 0

0, if ai,j ≤ 0
, and (6.6a)

a−i,j =

 0, if ai,j > 0

−ai,j, if ai,j ≤ 0
. (6.6b)
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As such, Eq. 2.9 becomes

x(t+ 1) = S
(
A+x(t)−A–x(t) + x(t)

)
, (6.7)

Here for the default case we set α = β = 1. The two connection matrices A+ and A– can

be mapped to two memristor crossbar arrays M1 and M2 in a decayed version Â
+

and Â
–
,

respectively, by following the mapping method in Eq. (6.3).

6.1.2 Training memristor cross-point arrays in BSB model

A software generated connection matrix can be mapped to the memristor crossbar arrays

based on the assumption that every memristor in the crossbar could be perfectly programmed

to the required resistance value. However, the traditional crossbar programming method

faces accuracy and efficiency limitations due to the existence of the sneak paths Heittmann

and Noll (2012). Although some recent works were presented to improve the write/read

ability of memristor crossbars by leveraging the device nonlinearity Yang et al. (2012), the

controllability of analog state programming is still limited. In spite of preparing the mem-

ristor crossbars with open-loop writing operations, we propose a close-loop training method

which iteratively tunes the entire memristor crossbar to the target state. This technique is

based on a modification of the software training algorithm.

Let’s use the Delta rule in Figure. 5 as an example. A weight ai,j corresponds to the analog

state of the memristor at the cross-point of the ith row and the jth column in a cross-point

array. A weight updating ∆ai,j involves multiplying three analog variables: α, tj−yj, and xi.

Though these variables are available in training scheme design, the hardware implementation

to obtain their multiplication demands unaffordable high computation resources. Thus, we

simplify the weight updating function by trading off the convergence speed as:

∆ai,j = α · sign(tj − yj) · sign(xi). (6.8)

Here, sign(tj−yj) and sign(xi) are the polarities of tj−yj and xi, respectively. They could

be either +1 or −1. sign(tj − yj) · sign(xi) represents the direction of the weight change. At

each training iteration, the rate of the weight changes remains constant which is controlled

by the learning rate alpha.
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The simplification minimizes the circuit design complexity meanwhile ensuring the weight

change in the same direction as that of the Delta rule. As a tradeoff, more iteration may be

required to reach a robust weight set since the weight change is not the steepest descent as

that in Figure. 5. However, the modification will not affect the training quality much since

the decision criterion of the algorithm remains as the error between output patterns and

prototype patterns.

6.2 HARDWARE DESIGN AND ROBUSTNESS ANALYSIS

In this section, we will provide the design details of the recall and training circuits for BSB

model. Then the types of noise affecting the quality of the BSB circuit will be classified and

analyzed.

6.2.1 BSB recall circuit

To realize the BSB recall function at circuit level, we first convert the normalized input

vector x(t) to a set of input voltage signals V(t). The corresponding functional description

of the voltage feedback system can be expressed as:

V(t+ 1) = S ′
(
G1A

+V(t)−G1A
–V(t) +G2V(t)

)
= S ′ (G1VA+(t)−G1VA–(t) +G2V(t))

. (6.9)

Here, G1 and G2 are the signal gain amplitudes resulted by peripheral circuitry, correspond-

ing to α and β in Eq. 2.9. We use Vbn to represent the input voltage boundary, that is,

−Vbn ≤ Vi(t) ≤ Vbn for any vi(t) ∈ V(t). The new saturation boundary function S ′() need

to be modified accordingly. In implementation, Vbn can be adjusted based on requirements

of convergence speed and accuracy. Meanwhile, Vbn must be smaller than Vth, the program-

ming voltage threshold of memristor, so that the memristance values will not change during

the recall process. Practically speaking, Vbn can be adjusted based on the requirement of

convergence speed and accuracy.
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Figure 50: The conceptual diagram of the BSB recall circuit.
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Figure. 50 illustrates the diagram of the BSB recall circuit built based on Eq. 6.9. The

design is an analog system consisting of three major components. Memristor cross-point

arrays : As the key component of the overall design, the memristor cross-point arrays

are used to realize the matrix-vector multiplication function in the BSB recall operation.

To obtain both positive and negative weights in the original BSB algorithm in Eq. (2.9),

two memristor cross-point arrays M1 and M2 are required in the design to represent the

connection matrices Â
+

and Â
–
, respectively. The memristor cross-point array has the same

dimension as the BSB weight matrix A.

Summing amplifier(SUM-AMP): In our design, the input signal Vi(t) along with

VÂ+,i(t) and vÂ−,i(t), the corresponding voltage outputs of two memristor crossbar arrays,

are fed into a summing amplifier. The conceptual structure of the summing amplifier can

be found in the inner set of Figure 50.

Resulted by the decayed mapping method proposed in Section 6.1.1.2, the required

VA+,i(t) is gs/gmax times of the generated VÂ+,i(t). VA−,i(t) has the same requirement too. In

our design, we set R1 = R4 = R6 = 1/gs and R2 = R3 = R5 = R7 = 1/gmax. The resulting

output of the summing amplifier

Vi(t+ 1) =
gs
gmax

· VÂ+,i(t)−
gs
gmax

· VÂ−,i(t) + Vi(t)

= VA+,i(t)− VA−,i(t) + Vi(t)

, (6.10)

which indicates that the decayed effect has been canceled out.

The summing amplifier naturally conducts S ′() function by setting its output voltage

boundary to ±Vbn. Moreover, the resistance values R1 ∼ R7 can be adjusted to match the

required α and β in Eq. 2.9, if they are not the default value 1. For an N dimensional BSB

model, N summing amplifiers are required.

Comparator : Once a new set of voltage signals V(t + 1) is generated from the summing

amplifiers, we send them back as the input of the next iteration. Meanwhile, every Vi ∈ V

is compared to Vbn and −Vbn to determine if path i has “converged”. The recall operation

stops when all the N paths reach convergence. Totally N comparators are needed to cover

all the paths.
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6.2.2 BSB training circuit

Figure. 51(a) summarizes the operational flow of the BSB training circuit. And the corre-

sponding circuit diagram is illustrated in Figure. 51(b). Our goal is to develop a method to

train the memristor cross-point arrays as auto-associative memories for prototype patterns.

The training scheme leverages the recall circuit to verify the training result and generate the

control signals.

Step 1 : Initializing the crossbar arrays. At the beginning of a training procedure,

all memristance values in M1 and M2 are initialized to an intermediate value. The initial-

ization does not have to be precisely accurate. Indeed, even when all of the memristors are

all at either LRS or HRS, the crossbar arrays can still be successfully trained but it requires

more time to reach convergence. For instance, training from HRS takes about 2,500 iter-

ations under the setup of Experiment 1 in Section XXX, while initializing the memristors

to intermediate states within their memristance range can reduce the iteration number to

about 1,000.

Step 2 : Selecting a prototype pattern γ(k) ∈ Bn(k = 1, . . . ,m). Here, Bn is the

n-dimension binary space (−1, 1). Assume a training set includes m prototype patterns and

each pattern γ(k) has the same probability to be chosen every time. The counter ST is used

to record in sequence the number of patterns that have been successfully trained. When

ST¿0, those patterns that have been trained are excluded from the selection.

Step 3 : Sending γ(k) to the BSB recall circuit. We convert γ(k) in binary space

(−1, 1) to a set of input voltages within the boundary (−0.1V , 0.1V ). These input signals

are supplied to the two memristor cross-point arrays simultaneously. The resulting signals

VO can be obtained at the output of the BSB recall circuit.

Step 4 : Error detection. An error is defined as the difference between the prototype

pattern and the recall result; that is, the difference between the input and output signals

of the recall circuit. A piece of error detection circuitry for bit i is shown in Figure. 51(c),

which generates only the direction of the weight change based on the simplified algorithm

in Section 6.1.2. In total, N pieces of error detection blocks are needed for an N -by-N

cross-point array.
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Figure 51: Embedded BSB training circuit: (a) training flow; (b) conceptual circuit diagram;

(c) error detection circuit.
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Considering that the range of Vout(i) could be different from that of Vin(i), we apply

a scalar λ to the input vector and take λ · Vin(i) as the target output signal. Rather than

generating λ·Vin(i) in every training, we use the preset threshold voltages for error detection.

Since Vin(i) is either 0.1V or −0.1V , four thresholds are needed, including

V +
th h = 0.1λ+ θ, V +

th l = 0.1λ− θ

V −th h = 0.1λ− θ, V −th l = 0.1λ+ θ
. (6.11)

Here, θ represents the tolerable difference.

The error detection output Diff(i) could be −1, 0, or 1. When |Vout(i)λ · Vin(i)| < θ,

Diff(i) = 0, meaning the difference between the normalized Vin(i) and Vout(i) are so small

that we consider them logically identical. Otherwise, Diff(i) = +1 or −1, indicating the

normalized |Vout(i)| is greater or less than the normalized |Vin(i)|, respectively.

Step 5 : Training memristor crossbar arrays. If Diff is not a zero vector, which

means some error has been detected, the crossbar arrays need to be further tuned. The

training signal generation is based on the training rule in Eq. 6.8. In order to control the

training step with a finer granularity, we modify only one memristor crossbar each time. For

example, one could train M1 or M2 when the iteration number is odd or even, respectively.

The weight updating of a memristor crossbar array is conducted by columns, during which

constant voltage pulse signals are applied to M1 or M2. Note that the real resistance change

of a memristor is also determined by its array location and device characteristics. In the de-

sign, such difference can be compensated by properly controlling the amplitude/width/shape

of training pulses and paying more training iterations.

The polarity of the training pulse for the jth column are determined by Diff(j). The

design supplies the training pulses on all the rows of a memristor crossbar. The jth column is

connected to ground and all the others are supplied with half of the training voltage. For M1,

the training pattern is either the current selected prototype pattern γ(k) (if Diff(j) = 1)

or its element-wise negated version (if Diff(j) = −1). The training signals to M1 and M2

have opposite polarities. That is, the training pattern of M2 uses the current prototype

pattern when Diff(j) = −1 or its element-wise negated version when Diff(j) = 1.
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Note that the mapping method uses M1 and M2 to represent the positive and negative

terms of the BSB connection matrix, respectively. However, the proposed training scheme

operated in real design circumstance cannot and does not have to guarantee an identical

mapping to software generated matrix. In fact, what matters most is the overall effect of

M1 and M2, not exact memristance values in each individual crossbar array.

Step 6 : If training is completed? The counter ST increases by 1 if a prototype

pattern goes through Steps 2 ∼ 5 and reports no error without further tuning M1 and M2.

Otherwise, ST is reset to 0 whenever an error is detected and all of the patterns in Bn are

available in Step 2. ST= m means the entire training set has been successfully “learned”

and hence the training stops.

6.3 ROBUSTNESS OF BSB RECALL CIRCUIT

Running the BSB recall circuit constructed in Section 3.2.2 under ideal conditions should

lead to the exact same results as the BSB mathematical algorithm. Unfortunately, the noise

induced by process variations and signal fluctuations in implementation can significantly

affect circuit performance. In this section, we will address the modeling of this noise at the

component level. The impact of physical design constrains will also be discussed.

6.3.1 Process variations

6.3.1.1 Memristor cross-point arrays Due to process variations, the real memristance

matrix M′ of a memristor cross-point array could be quite different from the theoretical M.

Their difference can be represented by a noise matrix NM, which includes two contributors

– the systematic noise NM,sys and the random noise NM,rdm. Consequently, M′ can be

expressed by

M′ = M ◦NM = M ◦ (1 + NM,sys + NM,rdm). (6.12)

The impact of NM on the connection matrix C is too complex to be expressed by a mathe-

matical closed-form solution. But numerical analysis shows that it can be approximated by
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C′M = C ◦NCM = C ◦ 1

NM

◦ 1

NM

. (6.13)

Here, C′M is the connection matrix after including memristance process variations. NCM is

the corresponding noise matrix.

In the following analysis, we assume NM,sys follows a normal distribution. To fully demon-

strate the impact of the random process variations, the lognormal distribution is used to

generate NM,rdm. Coefficient CorrM is used to represent the correlation degree between the

two memristor crossbar arrays in the same BSB circuit. When CorrM = 1, the two arrays

have the same systematic noise.

6.3.1.2 Sensing Resistance Similar to the analysis of memristance variation, we classi-

fy the noise induced by RS variations into the systematic noise NR,sys and the random noise

NR,rdm. The actual sensing resistance vector becomes

R′S = RS ◦NRs = NS ◦ (1 + NR,sys + NR,rdm). (6.14)

C′R, the connection matrix after including NRs, is

C′R = C ◦NCR = C ◦ [NRs NRs . . . NRs] . (6.15)

Here, NCR is the noise matrix of C after including the process variation of the sensing

resistors. The mean value of rs distribution, which reflects the impact of systematic noise,

can be obtained during the post-fabrication testing. When training the memristances in

BSB circuit, NR,sys should have been included. Hence, in the following analysis, we only

consider the random noise NR,rdm, which follows a normal distribution.

6.3.2 Signal fluctuations

The electrical noise from the power supplies and the neighboring wires can significantly

degrade the quality of analog signals. Different from the process variations that remain un-

changed after the circuit is fabricated, these signal fluctuations vary during circuit operation.

Without loss of generality, we assume the run-time noise of the summing amplifier’s output

signals follows a normal distribution, same as that of the output of the comparators.
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6.3.3 Physical challenges

There are three major physical constrains in the circuit implementation: (1) For any Vi(0) ∈

V(0), The voltage amplitude of initial input signal Vi(0) is limited by the input circuit, ; (2)

boundary voltage Vbn must be smaller than Vth of memristors; and (3) the summing amplifier

has finite resolution.

In the BSB recall function, the ratio between boundaries of S(y) and the initial amplitude

of xi(0),xi(0) ∈ x(0), determines the learning space of the recall function. If the ratio is

greater than the normalized value, the recall operation takes more iterations to converge with

a higher accuracy. Otherwise, the procedure converges faster by lowering stability. Thus,

minimizing the ratio of |Vi(0)| and Vbn can help obtain the best performance. However,

the real amplifier has a finite resolution and Vbn is limited within Vth of the memristor.

Continuously reducing |Vi(0)| eventually will lose enough information in the recall circuit.

So the resolution of the summing amplifier is a key parameter to determine the optimal

ratio of |Vi(0)| and Vbn in circuit implementation. Certainly it also affects the design cost of

amplifier and the overall design.

6.3.4 Impact of sneak paths

When utilizing crossbars as memories, only one WL is raised up and one or a few BLs are

accessible at a time (See Figure. 49). The other WLs and BLs remain floating. Such a

single-input-single-output (SISO) access inevitably results in currents through unintended

paths, called the sneak paths . The existence of sneak paths in the passive resistive network

is a well-known issue, which greatly limits the size of crossbar arrays and their utilization in

memory design. During a recall process, our proposed design accesses the crossbar in multi-

input-multi-output (MIMO) mode therefore the sneak path is not as critical as in SISO

mode.

Training process is a little bit tricky. We set the training voltage slightly higher than Vth

but much smaller than the switching voltage, because only a small change of memristance

is needed in each training step. Hence, the voltage drop on the other memristors is smaller

than Vth, therefore will not result in the unexpected memristance changes.
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Add 30 random point defects Add 3 random line defects

Figure 52: (a) Random line defects; (b) Random point defects.

More importantly, the sneak paths have to be well controlled in memory design because

the current through the target device is a critical parameter. In contrast, the major concern

in neuromorphic design is that the association between input and output signals can be

properly captured (in training) and reflected (in recall) by the memristor crossbar array.

The current distribution within the crossbar is not in the area of interest.

6.4 SIMULATION RESULTS I - RECALL

The robustness of the BSB recall circuit was analyzed based on Monte-Carlo simulations at

the component level. The experimental setup is summarized in Figure. 53. Memristor device

parameters are taken from Strukov et al. (2008a).

We tested 26 BSB circuits corresponding to the 26 lower case letters from “a” to “z”.

Each character image consists of 16× 16 points and can be converted to a 256-entry vector.

Accordingly, the BSB recall matrix has a dimension of 256 × 256. In each test, we created

500 design samples for each BSB circuit and ran 13,000 Monte-Carlo simulations. Two types

of input pattern defects, random point defects and random line defects (see Figure 52), have

been evaluated.

6.4.1 BSB circuit under ideal condition

For an input pattern, the different BSB circuits have different convergence speeds. Figure 54

shows an example when processing a perfect “a” image through the BSB circuits trained

for all 26 lower case letters. The BSB circuits for “a”, “l”, and “s” reach convergence with
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TABLE I 

SIMULATION SETUP 

 Memristor Parameters 
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Figure 53: Simulation setup of BSB recall circuit.

Figure 54: Iterations of 26 BSB circuits for a perfect “a” image.
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Figure 55: The ideal performance of 26 BSB circuits

the least iteration numbers. The multi-answer character recognition method consider these

three letters as winners and send them to word-level language model Wu et al. (2011).

Figure 55 summarizes the performance of the BSB circuit design under ideal condition

without input defects, process variations, or signal fluctuations. The x-axis and y-axis repre-

sent input images and the BSB circuits, respectively. All the winners are highlighted by the

black blocks. Figure 55 shows that a BSB circuit corresponding to its trained input pattern

always wins under the ideal condition. However, after injecting noise to input pattern or

circuit design, some BSB circuits might fail to recognize its trained input pattern. In this

work, we use the probability of failed recognitions PF to measure the performance of BSB

circuits.

6.4.2 Process variations and signal fluctuations

Impact of random noise: The random noise in the BSB circuit could come from process

variations as well as electrical signal fluctuations. We summarize the impact of every single

random noise component in Table 9, based on Monte-Carlo simulation results. Here, we

assume two memristor crossbar arrays are fully correlated, i.e., CorrM = 1. The simulation

results show that BSB circuit design has a high tolerance on the random noise: compared

to the ideal condition without any fluctuation (“IDEAL”), these random noise of circuits
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Table 9: PF (%) of 26 BSB circuits for 26 input patterns.

random point numbers 0 10 20 30 40 50

IDEAL 0 2.1 4.2 5.3 10.0 20.8
M(σsys = 0.1&σrdm = 0.1) 0 1.9 4.6 6.5 14.2 24.7
RS(σ = 0.1) 0 1.8 4.3 6.2 13.7 24.1
SUM-AMP(σ = 0.1) 0 1.9 4.4 7.7 13.5 23.1
COMPARATOR(σ = 0.1) 0 2.3 5.5 5.4 11.1 22.0
CorrM = 0.6 5.6 10.2 17.2 22.7 30.8 38.6
OVERALL (CorrM = 0.6) 4.6 8.2 15.2 20.7 32.8 36.6

random line numbers 0 1 2 3 4 5

IDEAL 0 7.3 13.8 21.5 35.8 50.2
M(σsys = 0.1&σrdm = 0.1) 0 7.4 14.8 25.5 38.8 53.6
RS(σ = 0.1) 0 7.4 14.8 23.3 35.1 51.8
SUM-AMP(σ = 0.1) 0 7.7 15.3 23.4 34.7 52.6
COMPARATOR(σ = 0.1) 0 6.9 14.5 23.3 33.7 53.2
CorrM = 0.6 5.1 14.4 24.7 34.6 44.2 55.1
OVERALL (CorrM = 0.6) 6.3 15.4 24.2 34.1 44.0 58.2

Figure 56: Static noise vs. dynamic noise.
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cause slight performance degradation. This is because resilience to random noise is one of

the most important inherent features for the BSB model as well as other neural networks.

Static Noise vs. Dynamic Noise: The noise matrices NM and NRs mainly affect the

mapping between connection matrix and memristor crossbar array. Physically noise com-

ponents come from process variations and remain unchanged during the recall operation.

Thus, they can be regarded as static noise NS. On the contrary, the noise from the sum-

ming amplifiers and comparators are induced by electric fluctuations, which demonstrates a

dynamic behaviour during the iteration process. We classify them as dynamic noise ND.

We can adjust NS and ND and observe the combined impact on BSB circuit performance.

For simplicity, we set σrdm(M) = σ(RS) = σS and σ(AMP ) = σ(COMP ) = σD. And

CorrM = 1 to exclude the impact of correlations between the two memristor arrays. The

result in Figure 56 shows that the dynamic noise dominates PF . For example, when σD = 0.5

and σS = 0.1, PF is high even with a clean input image. Decreasing σD but increasing σS

results in PF reduction in all regions.

Impact of CorrM: The BSB circuit implementation uses two memristor crossbar arrays

to split the positive and negative elements of A. Reducing CorrM and hence increasing

the difference in the systematic noise of two memristor arrays can be regarded as A+ and

A– having different overall shifts. This is directional noise in the recall function. As a

consequence, CorrM demonstrates a higher impact. As shown in Figure 57, when decreasing

CorrM from 1 to 0, the average PF dramatically increases.

6.4.3 Impact of summing amplifier resolution

To achieve the same learning space as the normalized BSB model, we set vbn = 1.6V and

all elements of V(0) to be ±0.1V . Then we vary the summing amplifiers’ resolution under

different static and dynamic noise configurations. CorrM was fixed at 0.6. The simulation

results are shown in Figure 58.

Again the simulation results demonstrate the BSB circuit’s high tolerance for random

noise: when σS = σD ≤ 0.4, PF is close to the ideal condition of σS = σD = 0. A 200mV

resolution for the summing amplifier is too coarse to be acceptable: the BSB circuit cannot
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Figure 57: The impact of CorrM.
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Figure 59: PF for each character pattern

have zero PF even under the ideal condition when neither input defects nor random noise

are included. The resolution of 100mV is acceptable when the noise is not significant (e.g.,

σS = σD ≤ 0.2) and the input pattern defect number is small (e.g., less than 20 random point

defects). For the given physical constraint configuration, the 50mV and 25mV resolutions

show similar results when σS = σD ≤ 0.2.

6.4.4 Overall performance

In the previous analysis, we use the averaged PF of all 26 BSB circuits for performance

evaluation. One thing of particular interest is whether all BSB circuits degrade in the same

way as we inject defects and noise into the system, or perhaps certain BSB circuits perform

much better or worse than the others. In this test, we set CorrM = 0.8 and inject 0 or 30

random points defects for each input image. Figure 59 shows the comparison of PF of each

input character pattern under ideal condition (noise free) and under the scenario including

all process variations and signal fluctuations (σS = σD = 0.1).

The simulation shows that the performance degradation induced by process variations

and signal fluctuations have a constant impact on all BSB circuits. When processing a

perfect image under the ideal condition, no BSB circuits fails and hence PF = 0. After

including static and dynamic noise, PF ranges from 1% to 7% for different input characters.
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When increasing the random point defects to 30 for input images, the range of PF increases

from 0∼10% under ideal condition to 4∼16% after including all the noise sources.

In conclusion, the BSB recall circuit has high resilience to process variations and signal

fluctuations since the BSB model has high tolerance to random noise. However, the cor-

relation between two memristor cross-point arrays in the circuit will introduce directional

noise into the system. As the correlation rate between two memristor cross-point arrays

decreases, the performance of the BSB recall circuit becomes significantly worse. This all

implies that using traditional writing operations to program memristor cross-point arrays is

not a practical solution, and a training method that enables the circuit to adjust itself to

adapt to the noisy environment is necessary.

6.5 SIMULATION RESULT II - TRAINING

The training method iteratively programs the memristor circuit until the required input-

output function is achieved, therefore it can overcome most of the impact of process variations

and signal fluctuations. In this section, simulation results are presented to demonstrate the

training results for the proposed hardware training method and to compare with existing

software synthesis methods. First, we compare the convergence speeds between prototype

patterns and untrained patterns, essential for the realization of the “racing” BSB recall

function Schultz (1993); Wu et al. (2011). Second, the performance of a memristor crossbar

as an auto-associative memory is analyzed. In convergence speed analysis, we start with

the simple linear memristor model and then employ the nonlinear TiO2 memristor model

based on the real device measurement Strukov et al. (2008a) to demonstrate the training

effect. Finally, fabrication defects are considered by assuming that defected cells exist and

are randomly distributed in the crossbar arrays. All input patterns are (−1, +1) binary

patterns with a length of n. The experimental setup is summarized in Figure. 53.
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Figure 60: Experiment 1: Iteration number vs. magnitude summation of output voltage

signals.

6.5.1 Convergence speed analysis

In BSB recall process, the learned prototype patterns should converge much faster than the

unlearned patterns. If this phenomenon appears, then the circuit has “remembered” the

prototype patterns and has the ability to classify whether an input pattern is in the set of

prototype patterns or not. We conduct the following two experiments to analyze BSB circuit

performance based on the convergence speeds.

Experiment 1: There are 8 different randomly generated prototype patterns, N = 16.

The BSB recall circuit is trained to “remember” these patterns and all 8 learned prototype

patterns and 100 unlearned random patterns are then recalled. The results in Figure. 60

clearly show that there is a convergence speed gap between the prototype patterns and

the unlearned patterns. Specifically, the 8 prototype patterns all converge to the magnitude

boundary before the 9th iteration, while the fastest convergence speed for unlearned patterns

is the 12th iteration. The larger the hamming distance between the input pattern and

the prototype patterns, the more iteration are required to converge, if convergence is even

possible.
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Figure 61: Experiment 2: Iteration number vs. magnitude summation of output voltage

signals.

Experiment 2: The 26 lower-case characters from “a” to “z” described in Section 6.4

are used as input patterns. We use 20 patterns of lower-case character “a” representing

different size-font-style combinations as the prototype patterns for training. To compare

their convergence speeds, 500 patterns representing the other 25 lower-case characters with

different sizes/fonts/styles are also recalled. Figure. 61 shows the result. It can be clearly

observed that the 20 prototype patterns of the lower-case character “a” converge much faster

than the other character patterns. Compare with result of experiment 1 in Figure. 60, as

the size of BSB memory N increases (from 16 to 256), the convergence speed gap between

prototype patterns and the unlearned patterns becomes more obvious.

In conclusion, a simple but effective training method is realized by circuits and it can

be used to construct the hardware architecture for the “racing” BSB algorithm proposed in

Wu et al. (2011).
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6.5.2 BSB circuit as auto-associative memory

In this subsection we analyze the training effect from the view of an auto-associative memory.

The performance criteria of auto-associative memory include the error correction rate, the

uniform size of the domain of attraction and the quality of the domain of attraction Park

(2010). These criteria are defined as:

Error correction rate: Error correction rate reflects the robustness margin of a perturbed

BSB neural network. Given a prototype pattern γ(k) ∈ Bn(k = 1, . . . ,m) and an integer

l ∈ 0, 1, . . . , p(≤ n), the probability that a (−1, 1) binary input pattern at the Hamming

distance of l away from γ(k) is attracted to γ(k) is denoted by Pr(γ(k), l). The error correction

rate, denoted by ErrCorr(l), is the percentage for the average of the Pr(γ(k), l) over all

prototype patterns γ(1), . . . , γ(m) and is defined as Park (2010):

Err − Corr(l) = {
∑m

k=1 Pr(γ
(k), l)

m
} × 100. (6.16)

Uniform size of domain of attraction: An associative memory prefers a large overall

domain of attraction, indicating that every input pattern eventually converges to a prototype

pattern. When optimizing the training algorithm, it requires to uniformly increasing the

domain of attraction for every prototype pattern rather than focusing only on a few of

them. Thus, “uniform size of domain of attraction” is a useful measurement standard for

the performance of associative memory.

The number of (−1,+1) binary input patterns that are at the Hamming distance of l

away from γ(k) and whose final states are γ(k) is defined as its domain of attraction, denoted

by Doa(γ(k), l). The uniform size of domain of attraction, denoted by Uni−Doa(k), means

the percentage for the
∑p

l=0Doa(γ(k), l) over the maximum of the
∑p

l=0Doa(γ(k), l) for all

prototype patterns γ(1), . . . , γ(m), which is defined as Park (2010):

Uni−Doa(l) = {
∑p

l=0Doa(γ(k), l)

max1≤k≤m
∑p

l=0Doa(γ(k), l)
} × 100. (6.17)

Quality of domain of attraction: From testing all the possible input patterns, we can use

the corresponding output patterns to evaluate the quality of domain of attraction, which

reflects the overall performance of the BSB associative memory (not only for different pro-
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totype patterns). As we generate random binary patterns to test, we can calculate their

Hamming distance with all prototype patterns. The prototype pattern with the least ham-

ming distance to the input pattern is regarded as the “most-likely” prototype pattern in the

sense of Hamming distance. Then we can divide the (−1, +1) binary input patterns into

four classes based on their final state:

• Best: among the nearest prototype patterns in the sense of Hamming distance;

• Good: a prototype pattern that is not one of the nearest prototype patterns in the sense

of Hamming distance, meaning it is not the “most-likely” prototype pattern.

• Negative: a spurious state (final state is none of the prototype patterns); and

• Bad: a state that is not convergent but trapped in a limit cycle.

The quality of the domain of attraction is represented by the number of (−1, +1) binary

input patterns in each class.

Experiment 3: We compare the training effect of our em-bedded hardware circuit with

the classic BSB training algorithms - Lillo et al. (1994) and Perfetti (1995), and a more

recent BSB training algorithm, Park (2010). The test case is taken from Park (2010). In

this experiment, we consider the following five prototype patterns with n = 10:

γ(1) = [−1,+1,−1,+1,+1,+1,−1,+1,+1,+1]T

γ(2) = [+1,+1,−1,−1,+1,−1,+1,−1,+1,+1]T

γ(3) = [−1,+1,+1,+1,−1,−1,+1,−1,+1,−1]T

γ(4) = [+1,+1,−1,+1,−1,+1,−1,+1,+1,+1]T

γ(5) = [+1,−1,−1,−1,+1,+1,+1,−1,−1,−1]T

. (6.18)

Figure. 62,63 and 64 summarize the simulation results of the error correction rate, the

uniform size of domain of attraction, and the quality of domain of attraction, respectively.

The results obtained from our proposed hardware design are labeled as “Hardware”.

The simulation results show that our hardware circuit per-forms better than Lillo (1994)

in error correction rate and the uniform size of domain of attraction. It also achieves a much

higher score in the class of “Best” in the quality of domains of attraction test. Compared to
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Figure 62: Experiment 3: Error correction rate.

Figure 63: Experiment 3: Uniform size of domain of attraction.

TABLE III 

EXPERIMENT 3: QUALITY OF DOMAIN OF ATTRACTION 

 Best Good Negative Bad 

Hardware (linear) 419 6 465 134 
Hardware (nonlinear) 465 0 473 86 

Lillo (1994) 164 1 859 0 

Perfetti (1995) 478 34 512 0 
Park (2010) 502 10 512 0 

 

Figure 64: Experiment 3: Quality of Domain of attraction.
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Perfetti (1995), our scheme is competitive for the similar performance in uniform size and the

quality of domains of attractions. However, it has a large drop in error correction rate when

Hamming distance l ≥ 2. Since our hardware circuit was built based on the fundamental

training algorithm, it cannot be as good as Park (2010), the “state of the art” training

algorithm developed based on constrained optimization. However, our scheme advances for

its simple structure and low computation requirement. Moreover, it provides much faster

training speed than the traditional software solutions since we utilize memristor crossbars

embedded on-chip.

A drawback of our training circuit is the existence of “bad” states representing some input

patterns that cannot be classified by the circuit. To solve this issue and further improve the

training quality, we should further improve the embedded training circuit, or draw support

from the external training machine with the sophisticated software training algorithm.

6.5.3 Nonlinear memristance change

To evaluate the impact of the nonlinear device characteristics, we tested the memristor-based

circuit by assuming the memristance changes linearly and then applying the non-linear model

in Figure. 53. The corresponding simulation results are labeled as Hardware (linear) and

Hardware (nonlinear), respectively in Figure. 62, 63 and 64.

In the setup of Hardware(linear), we assume that every memristor in the crossbar has

the same magnitude for the memristance changing in every training step. In other words,

every memristor has the same constant learning rate. Hardware(nonlinear) is much closer to

reality by including the nonlinear TiO2 thin-film memristor model. The learning rate then

depends on the current state of the memristor. Therefore, different memristors have different

learning rates since they are in different states, and the learning rates of a memristor at the

different training steps are different.

The simulation result is very interesting: experiments using the nonlinear memristor

model demonstrate negligible performance degradation in the error correction rate, while

surpassing the experiments using the linear device model in the other two criteria. This is

due to the nonlinearity of memristor results in an unbalanced weight change in the training

118



process. Memristance movement ∆M relies on the current memristance state. The larger

the memristance is, the smaller the rate of memristance change in a training step will be.

Therefore, the average memristance in Hardware (nonlinear) becomes smaller compared to

that of Hardware (linear). The smaller average memristance actually helps the convergence

of some input patterns that cannot converge (“Bad”) when using the linear device model.

Therefore the scores of the last two criteria increase under the nonlinear model. In conclusion,

by carefully setting the memristor training period, the nonlinear memristor model will not

degrade the training quality of the proposed hardware circuit.

6.5.4 Defected cells

In nanotechnology, the existence of fabrication defects is a common and important issue. As

a result, we cannot guarantee every memristor cell works properly. A small portion of the

cells may not be programmable but stuck at either HRS or LRS.

We continue the case study from Sections VI.B and VI.C in this test. In this experiment,

the nonlinear memristor model is used. The impact of defected cells is investigated by

varying the percentage of such cells from 1% to 5%. For simplicity, the corner conditions

are considered in which all the defected cells in a memristor crossbar are all at HRS or LRS.

In total, there are four possible combinations of the dead cell states in M1/M2: LRS/LRS,

LRS/HRS, HRS/LRS, and HRS/HRS. Since M1 and M2 have equivalent weights in the

BSB circuit, the impact of LRS/HRS is the same as that of HRS/LRS. Hence, only three

combinations need to be discussed.

In a neural network, the weights along the diagonal represent the self-connections of

neurons and affect system performance more significantly M. H. Hassoun (1993). Thus,

we distinguish the defected cells along the diagonal and those at the other locations in

the connection matrix and analyze the impacts separately. The simulation results of the

error correction rate, the uniform size of domain of attraction and the quality of domain of

attraction are compared in Figure. 65, 66, and 67, respectively. Here, to better qualify and

compare the quality of domain of attraction, we assign a weight to each class: “Best” = 5,

“Good” = 3, “Negative” = 1, and “Bad” = 0. Figure. 67 shows the weighted summation of
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Figure 65: Error correction rate. (a) LRS/LRS, G1=30; (b) LRS/HRS, G1=30; (c)

HRS/HRS, G1=30; (d) HRS/HRS, G1=50; (e) HRS/HRS, G1=50, defected cells are on-

ly in diagonal direction.

the numbers of input patterns in the four classes as the defected cell number varies from 1%

to 5% of totally 10000 memrisotrs in the crossbar array.

In common, the training speed degrades after introducing defected cells. Other memris-

tors need to be programmed further to compensate for the errors induced by the defected

cells. Hence, more training iterations have been observed.

First, we look at the defected cells not along the diagonal of the crossbars. Three

corner cases LRS/LRS, LRS/HRS, and HRS/HRS are considered. The gain of the summing

amplifier G1 = 30. It can be observed that LRS defected cells have a more severe impact

on the performance and robustness of the BSB circuit. Comparably, the combination of

Figure 66: Uniform size of domain of attraction. (a) LRS/LRS, G1=30; (b) LRS/HRS,

G1=30; (c) HRS/HRS, G1=30; (d) HRS/HRS, G1=50; (e) HRS/HRS, G1=50, defected cells

are only in diagonal direction.
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Figure 67: Quality of domain of attraction.

LRS/LRS has worse performance as compared to HRS/HRS, because the over-weight due to

LRS in the connection matrix can cause more damage than the zero-weight induced by HRS.

The LRS/HRS corner has the worst performance for the unbalanced combination results in

the largest error in the connection matrix.

Increasing G1 from 30 to 50 can greatly improve the performance and robustness of the

memristor-based hardware design. Combined with neural network theory, this observation

can be explained as follows: when defected cells exist so that the connection matrix is

damaged to a certain extent, increasing the learning rate helps reduce the chaos in the

training steps and decreases the possibility that the system sticks in a loop. The famous

gambler tells us the less chance we have to win the game, the more stakes should be put

in each play in order to increase the opportunity of winning the desired money Epstein

(2012). Here is a similar situation: when some information in the con-nection matrix is lost

or damaged, a larger training step should be taken to reach convergence faster.

Finally, the impact of defected cells along the diagonal of the matrix is investigated. As

expected, the weights on the diagonals are very sensitive to damage and dramatically degrade

system performance. For example, when a memristor on the diagonal is stuck at HRS or LRS,

its generated output signal will be fed back as input of crossbar and hit the same defected
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cell. Hence, only the devices on the same column provide limited compensation on the error.

In contrast, the error induced by a non-diagonal defect can be compensated by memristors

on other columns and hence has better chance to recover. Fortunately, post-fabrication

testing can help diagnose those cells and some design techniques, such as redundancy, can

be utilized to remove them from the diagonal.

6.6 SUMMARY

In this work, we first introduce a framework of hardware realization of neural network al-

gorithms with memristor crossbar arrays. More specifically, we transform the mathematical

expression of Brain-State-in-a-Box (BSB) training and recall model to pure physical de-

vice relation and design the corresponding circuit architecture. The multi-answer character

recognition algorithm is used to in the experiments for robustness analysis of the proposed

design. We thoroughly study the impacts of various noises induced by process variations

and electrical fluctuations and discuss the physical constrains in circuit implementation. In-

terestingly, the correlation between the two memristor crossbar arrays within a BSB recall

circuit and the resolution of summing amplifier have the most impact on the performance

of the circuit, while the random noises do not have obvious correlation with the character

pattern which is “trained” and stored in the BSB circuit.

Constrained by memristor array size, we implemented a small-scale BSB circuit to verify

and evaluate the proposed design concept. However, the memristor-based vector matrix

computing unit is not limited to simple BSB algorithm. It can also be used in realizing

advanced applications supporting large dimensional and high accurate data by partitioning a

complex design into small computing components. Another major concern is the unbalanced

design complexity of the crossbar arrays and periphery circuitry. A possible solution is to

share the periphery circuitry by several columns within a memristor crossbar array or among

a few crossbars. Besides the functionality validation and design robustness in this work, we

plan to evaluate the design in terms of performance, power consumption, and design cost in

future work.
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7.0 MEMRISTOR-BASED SPIKING NEUROMORPHIC CIRCUITS FOR

TEMPORAL LEARNING

7.1 MST SYNAPSE FOR TEMPORAL LEARNING

7.1.1 STDP Learning Rule

As an improved version of Hebbian learning rule at temporal space, STDP learning rule can

be taken as a causality detector. Correlation time window of a spike is used to evaluate

its causality with other spikes: If a pre-spike fires before (after) a post-spike within the

correlation time window, the synaptic strength of the synapse in between shall be potentiated

(depressed), corresponding to a LTP (LTD) behavior.

Fig. 68 shows the realization of STDP learning by employing MST synapse under these

two conditions. Here, a spike pulse is followed by a small DC signal of 0.4V lasting for TPcorr,

representing the positive correlation time window of the spike. The negative correlation time

window TNcorr can be formed by setting a normal RESET pulse TPcorr−TNcorr ahead of the

target spike. In this way, synapses for uncorrelated input spikes are pre-deactivated and

will not be affected. Since a natural TNcorr has been naturally defined by the time between

previous target spike and the current input spike in the design, a separate setting of TNcorr

can be saved.

Fig. 68(a) illustrates the scenario when the input pulse injects first and the corresponding

output pulse falls within TPcorr of the input pulse. Though the strong SET pulse remain

unchanged, the small DC signal associated with the input pulse degrades the strong RESET

pulse to a normal RESET. Such a condition makes the M2 conductance increase, resulting in

a LTP process that synapse conductance increases. The simulation results match well with
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Figure 68: Employ MST synapse to realize STDP learning. (a) LTP; (b) LTD.
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our previous analysis in Section 5.3.2. The realization of LTD process is shown in Fig. 68(b),

where RESET pulses remain strong and has larger impact than the SET pulses. And we

can obviously observe the decrement of synapse conductance.

Causality decision is not the only important criteria of a synapse’s STDP learning a-

bility, which is also determined by the amplitude, time and shape of spike signals as well

as the initial synaptic weight. We characterize the learning efficiency of a MST synapse

and show the results in Fig. 69. The characterization is conducted by applying two recall

cycles respectively before and after a STDP learning cycle (either LTP or LTD) at different

SET/RESET pulse configurations. The learning efficiency is measured by the change of peak

currents in the two recalls, which corresponds to the excitatory post-synaptic current (EPSC)

used for synaptic behavior characterization in biological synapse. The results shows that in

LTD the change rate of peak current slowly increases as the initial peak current amplitude

grows, implying TaOx device moves towards ON state. The convex shape of LTP curves

corresponds to the slow change rate of TaOx device near OFF state.

7.1.2 ReSuMe Learning Rule

ReSuMe learning rule is the temporal version of Delta learning rule. It has better learning

quality than STDP since it considers output signal as feedback signal and minimizes the

error between target signal and output signal.

We use the example in Fig. 70 to illustrate the ReSuMe learning ability of MST synapse.

Note that we need to bound M1’s ON state here for the given memristor model, otherwise

M1 may enter a “more ON” state and becomes “too excited” that the weighting effect of

M2 can not be differentiated. Similar as STDP learning, a small DC signal with a period of

Tcorr followed a spike is used to represent its correlation time window. However, based on

ReSuMe, the DC signal shall terminate when its correlated counterpart fires a spike. Thus,

the convolution term adi(t) ∗ Si(t) of the original ReSuMe algorithm in Fig. 7 is represented

the synaptic current excited by input pulses and the following DC signals.

The given example presents four typical situations. (1) There is no input pulse. Since

target pulse is lower than SET threshold, MST synapse remains at OFF state. Neither the
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target pulse nor the output pulse can change the synaptic conductance. (2) The target pulse

happens before the output pulse, and both of them fall into the correlation window of the

input pulse. As such, the output pulse performs as a normal RESET and cause LTP process.

(3) Similar to (2) however the output pulse happens before the target pulse. The output

pulse makes M2 shift toward OFF state, implying a LTD process. Under this situation, the

target pattern does not contribute to the learning process because it cannot SET the device

alone while the DC signal has already been terminated. (4) The target and output pulses

are approximately synchronized. There is no update on M2, even the synapse keeps at ON

and the DC signal applies. Note that the design even do not require a perfect matching of

the target and output pulses, because memristor state change requires SET/RESET pulse

last for sufficient time. Fig. 70 misses two situations when the target pulse or the output

pulse is uncorrelated to the input pulse. Therefore, one of them does not meet the time

correlation window. In this way, target pulse has no contribution or output pulse becomes

a strong RESET, leads to no change or a LTD process, respectively.

Fig. 71 summarizes the ReSuMe learning characteristics of MST synapse with settings.

The result is obtained by applying the similar characterization flow in Section 7.1.1 but be-

tween target pulses and output pulses. Different from STDP’s characterization in Fig. 69(b),

here we examine the synaptic conductance in ON state to benefit circuit design. With larger

output pulses as RESET, the LTP and LTD curves shift down linearly. As a result, ReSuMe

exhibits better learning characteristics than STDP – better linearity of peak current change

rate and more flexible state modification.

Interestingly, both STDP’s and ReSuMe’s learning characteristics obtain the similar

trend to the observation in biological synapses: LTP has linear decreasing trend with synaptic

strength’s increment, while LTD is not strongly relevant with initial synaptic strength Bi and

Poo (1998). For TaOx MST synapse, ReSuMe’s LTP behavior is more linear then STDP’s,

while the LTD behavior is more nonlinear. This is again back to its intrinsic switching

mechanisms Strachan et al. (2013).
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7.1.3 “The 1st Spike Dominates” property

“The 1st spike dominates” is an important feature that have been observed in biological

vision systems , where the first or the first few spikes carry(ies) the most information in a

spike-timing train.

Let’s consider a spike train from the pre-neuron to the post-neuron through a MST

synapse, starting at t = 0. It contains N spikes that happen at ti, i = 1, 2, · · · , N . Assume a

positive low DC voltage is always applied and the initial state of the synapse is set as OFF.

The post-neuron has zero charge at t = 0 and starts accumulation afterwards such as:

Q(t) =

{ ∫ t
0 (Iin(t)− Ileak) · dt before neuron fires

0 when neuron fires
. (7.1)

where,

Iin(t) =

 Vdc ·GOFF(t) if t < t1
Vspike ·GON(t) if t = ti, i = 1, 2, ..., N
Vdc ·GON(t) if t > t1 & t 6= ti

. (7.2)

Here, Iin(t) denotes the input current at time t, Vdc and Vspike are the voltage amplitudes of

the DC and the spike signals, respctively. And the ON and OFF conductances of the MST

synapse are represented by GON(t) and GOFF(t), respectively.

Eq. (7.2) shows that the first spike triggers the synapse to switch from OFF to ON.

Afterwards, the charge accumulation at post-neuron becomes much faster because GON �

GOFF. In other words, the first spike makes a significant change on the synaptic strength,

dominating the synapse feature. In addition, in the cases that Vdc is much lower than Vspike

or the spikes fire frequently, the charge accumulation process is determined by the spike

number N of the spike train. This also agrees with the experimental results in biological

vision systems [14].

For ease of explanation, we omit the width and shape of spikes as well as the dependence

of synapse conductance on the applied voltage in the formulation of Eq. (7.1) and Eq. (7.2).

Though these detailed design factors do not affect the above conclusion, we have included

them in the following implementation of NN applications to promise the design accuracy.
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Figure 72: A spiking neural network with 400 synaptic inputs and 1 LIF output neuron and

the spike configurations for (a) STDP rule or (b) ReSuMe rule.

7.2 MST SYNAPSE-BASED SPIKING NEUROMORPHIC CIRCUITS FOR

TEMPORAL PATTERN RECOGNITION

7.2.1 Application Setup

Here, we demonstrate the use of MST synapses in spiking neural network by adopting a case

study from Ponulak and Kasinski (2010). The selected neural network is trained on a random

target firing pattern of the length of 400ns. As shown in Fig. 72, in this neural network,

400 synaptic inputs go through MST synapses and are collected by a leaky integrate-and-fire

(LIF) neuron. As aforementioned in Section II-B, applying the temporal encoding method

can convert any spatial pattern into spatio-temporal patterns as the input spiking trains

Si,1∼400(t) in the given study case. If MST synapses have been properly trained, the fire

pattern of the output neuron So(t) shall converge to the target firing pattern St(t).

To accommodate the easy timing control of MST synapses, the function of the LIF neuron

can be simplified as follows: (1) The charge at the LIF neuron is leaking at a constant speed of

Qleak. (2) The LIF neuron fires whenever its accumulated charge exceeds the firing threshold,

i.e., Q > Qth.

For ease of comparison, we adopt the same assumption in Ponulak and Kasinski (2010)

that each synaptic input fires only once during the single presentation of the target signal.

And the particular input pulses are distributed uniformly throughout the 400ns time interval.

The conductances of 400 MST synapses are initialized randomly by applying a Gaussian
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distribution to M2 conductance. All the synaptic inputs are limited to excitatory because

the MST synapses based on real physical devices does not provide negative weights. Table 10

summarize the signal setup in recall and learning processes.

7.2.2 Learning Temporal Patterns using STDP

First, the STDP learning rule is applied to the given application. As illustrated in Fig. 72(a),

during the learning process, the LIF neuron is forced to fire at the target pattern St(t).

Fig. 73(a) shows the progress of 60 learning cycles, each of which last 400ns. Within

each learning cycle, the target pattern St(t) fires at the designed time illustrated by ◦ in the

figure. After each learning cycle, we conduct a recall and record the output pattern So(t)

as ×. Our simulation results show that overall So(t) tends to approach St(t) but it is not

always successful. This is due to the intrinsic drawback of STDP learning rule: the natural

output of neuron does not participate in the learning process. So sometimes the difference

between St(t) and So(t) cannot be minimized.

Fig. 73(b) compares the conductance of the 400 MST synapses at the initialization (blue

curve) and after 60 cycles of learning (red bars). At the end of each learning process,

most synapse are saturated at the tuning range of synapse conductance, implying that the

constrains of physical memristor devices can severely affect the earning performance. In other

words, a larger memristance range could greatly improve the STDP learning performance.

7.2.3 Learning Temporal Patterns using ReSuMe

Similarly, we examine the effectiveness of temporal pattern learning using ReSuMe learn-

ing rule Ponulak and Kasinski (2010). Different from STDP, ReSuMe includes the error

minimization between the target pattern St(t) and the output pattern So(t). As shown in

Fig. 72(b), St(t) is combined with every synaptic input signal Si(t). The output pattern So(t)

is then fed back to every synapse to participate in the learning process. Since the memristor

state change relies on both the amplitude and period of the excitation, an error margin can

be naturally formed between St(t) and So(t): whenever the target and the output pulses

overlap, the rest of their pulse duration has little impact on the memristor state.
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The learning progress of ReSuMe rule of the given example is shown in Fig. 74(a). In most

test cases, the output pattern generated by the LIF neuron converges to the target pattern

within 25 learning cycles, demonstrating a much successful learning ability. Moreover, the

pattern learning tasks can be completed without observing synapse conductance saturation

as shown in Fig. 74(b). It delivers an important information: even the MST synapse design

based on TaOx devices has limited synaptic conductance tuning range, it can still provide

sufficient learning ability in neural network applications with assist of appropriate learning

rules. Further increase of memristance range will alleviate the situation and makes more

learning rules practical.

7.2.4 Energy Estimation

To evaluate the energy efficiency of MST synapses, we calculate the energy consumption per

spike in recall and learning processes by following

Etotal = ESET + EDC + ERESET, (7.3)

where, E = V2T/RMST−synapse. An additional energy consumption related to the target pulse

ETARGET shall be added into Eq. (7.3) in ReSuMe learning. Based on the signal setup

in Table 10, the recall consumes only 14.6pJ per spike and the energy consumption in

learning process is 36.7pJ and 64.0pJ per learning spike for STDP and ReSuMe, respectively.

Note that the micro model of TaOx devices used in this work has a low resistance range of

70Ω ∼ 670Ω Strachan et al. (2013). Applying nano-scale devices can significantly increase

the memristance value to 100KΩ ∼ 1MΩ Jo et al. (2010) and further reduce energy per spike

to the sub-pJ region.
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Figure 73: The effectiveness of temporal pattern learning by using STDP.

Table 10: Signal Setup for Spiking Neural Network

VSET VRESET VTARGET VDC Tpulse TPcorr

Recall 1.1V 1.3V – 0.2V 0.5ns 9.5ns

STDP 1.7V 1.8V – 0.4V 0.5ns 9.5ns

ReSuMe 1.1V 2.2V 0.8V 0.7V 0.5ns 9.5ns
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Figure 74: The effectiveness of temporal pattern learning by using ReSuMe.
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8.0 CONCLUSION AND FUTURE WORKS

In this thesis, we have proposed a complete and detailed analysis for memristor-based neu-

romorphic circuit design from the device level to the application level. In each level, both

theoretical analysis and experimental data versification are applied to ensure the complete-

ness and accuracy of the work.

At device level, we studied different memristor models and process variations, then we

carried out three independent variation models to describe the variation and stochastic be-

havior of TiO2 memristors. These models can also extend to other memristor models. Mean-

while, these models are also compact enough for large-scale circuit simulation.

At circuit level, inspired by the large-scale and unique requirement of memristor-based

neuromorphic circuits, we designed a circuit simulator for efficient memristor cross-point

array simulations. Out simulator is 4 ∼ 5 orders of magnitude faster than tradition SPICE

simulators. Both linear and nonlinear memristor cross-point arrays are studied for level-

based and spike-based neuromorphic circuits, respectively.

At application level, we first designed a few compact memristor-based neuromorphic com-

ponents, including “Macro cell” for efficient and high definition weight storage, memristor-

based stochastic neuron and memristor-based spatio temporal synapse. We then studied

three typical neural network models and their hardware realization on memristor-based neu-

romorphic circuits: Brain-State-in-a-Box (BSB) model stands for level-based neural network,

and STDP/ReSuMe models stand for spiking neural network for temporal learning. Our re-

sult demonstrates the high resilience to variation of memritor-based circuits and ultra low

power consumption.

In the future, we are going to extends our work in the following areas: first, carry out a

end-to-end design flow based on our analysis for the memristor-based neuromorphic circuit
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design; second, modularize the function of neuromorphic circuit for general applications;

third, as memristor technology is still fast developing, we are going to improve our work as

well as guide the improvement of the memristor devices.
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