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NANOINDENTATION TESTING OF PORCINE BONE 

YuSheng Chang, M.S. 

University of Pittsburgh, 2014 

Nanoindentation testing is a technique that is used to measure mechanical properties of 

materials at the nano-scale. The method has been used to measure properties of metals, 

ceramics and also biological materials. In this study nanoindentation testing was used to 

measure the reduced modulus and hardness in the porcine tibia and femur. Testing was 

done to measure the properties in different directions and also in the anterior and posterior 

regions of the bone. Two bone samples were analyzed in this study. Bone samples were 

obtained and cleaned and polished in the area of interest. Samples were tested after air 

drying for 48 hours. Digital microscopy was used to locate osteon bone in the region of 

interest. The bone was testing in the axial (x) direction, sagittal plane (y) direction and the 

frontal plane (z) direction. A loading function with a 5 s rise time, 5 s holding time and 5 s 

unloading time with a peak value of 4000 μN was used. Statistical analysis of the data was 

done using a one-way Anova, Tukey test and a linear mixed model. 

 In the first sample, mechanical properties did not vary in different areas tested within a 

region while in the second sample properties did vary between areas in some regions. 

Differences in mechanical properties between anterior and posterior regions were found in 

both femur and tibia of the first sample and the femur of the second sample. Besides, 

differences in mechanical properties in the different directions were found in both the tibia 
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and femur with most of the axial direction being highest and those in the sagittal plane 

being the lowest.  In general the properties in the femur were greater than that of the tibia. 

 Greater loading in certain bone regions may induce higher hardness and elastic 

modulus. The different properties in the different directions may suggest a plywood-like 

composite structure with most fibers orthogonal to the laminate direction. The evaluation 

of bone mechanical properties can contribute to the knowledge of the effects of location, 

disease or other factors on the tissue.  

v 
 



 

TABLE OF CONTENTS 

TITLE PAGE ............................................................................................................................................... i 

COMMITTEE MEMBERSHIP ..................................................................................................................... ii 

ABSTRACT ............................................................................................................................................... iv 

TABLE OF CONTENTS .............................................................................................................................. vi 

LIST OF TABLES ..................................................................................................................................... viii 

LIST OF FIGURES ..................................................................................................................................... ix 

PREFACE ............................................................................................................................................... xiii 

1.0 INTRODUCTION ................................................................................................................................. 1 

1.1 NANOINDENTATION HISTORY .......................................................................................... 1 

1.2 TESTING MATERIALS......................................................................................................... 2 

1.3 OTHER STUDIES ................................................................................................................ 2 

2.0 BACKGROUND ................................................................................................................................... 8 

2.1 NANOINDENTATION ON THE BONE ................................................................................. 8 

2.2 PROBLEM STATEMENT ................................................................................................... 24 

3.0 MATERIALS AND METHOD .............................................................................................................. 25 

3.1 SAMPLE PREPARATION .................................................................................................. 25 

3.2 NANOINDENTATION ....................................................................................................... 29 

vi 
 



 

3.3 STATISTICAL ANALYSIS ................................................................................................... 32 

4.0 RESULTS........................................................................................................................................... 35 

4.1 COMPARISON OF PROPERTIES BETWEEN DIFFERENT AREAS ........................................ 35 

4.2 COMPARISON OF ANTERIOR AND POSTERIOR PROPERTIES .......................................... 38 

4.3 COMPARISON OF PROPERTIES IN DIFFERENT DIRECTIONS ........................................... 40 

4.4 COMPARISON OF FEMORAL AND TIBIAL PROPERTIES ................................................... 42 

5.0 DISCUSSION ..................................................................................................................................... 48 

5.1 COMPARISON OF PROPERTIES BETWEEN DIFFERENT AREAS ........................................ 49 

5.2 COMPARISON OF ANTERIOR AND POSTERIOR PROPERTIES .......................................... 49 

5.3 COMPARISON OF PROPERTIES IN DIFFERENT DIRECTIONS ........................................... 50 

5.4 COMPARISON OF FEMORAL AND TIBIAL PROPERTIES ................................................... 51 

5.5 LIMITATION AND PROSPECT .......................................................................................... 52 

APPENDIX A ........................................................................................................................................... 56 

APPENDIX B ........................................................................................................................................... 61 

APPENDIX C ........................................................................................................................................... 70 

APPENDIX D ........................................................................................................................................... 71 

APPENDIX E ........................................................................................................................................... 73 

BIBLIOGRAPHY ...................................................................................................................................... 76 

 

 

vii 
 



 

LIST OF TABLES 

Table 1: Total number of data points from each sample. ....................................................... 34 

Table 2: P values from a one-way ANOVA of the mechanical properties between anterior 
and posterior regions in the femur and tibia of pig1 and pig2 (value given as 0 if 
p<0.001). ......................................................................................................................... 40 

Table 3: P values for the property comparison in the different directions by the Tukey test.
......................................................................................................................................... 42 

Table 4: A summary of p values for comparisons for all regions, directions and bones. ........ 45 

Table 5: Locations having significant differences in measure values between areas (marked 
by X). ............................................................................................................................... 54 

Table 6: Mechanical properties at each area .......................................................................... 59 

Table 7: P values for the comparison between areas in the same region. ............................. 62 

Table 8: The raw data from linear mixed model for regional and bone effect. ...................... 70 

Table 9: Nanoindentation modulus measurement of bone. ................................................... 74 

Table 10: Nanoindentation hardness measurement of bone. ................................................ 75 

 

viii 
 



 

LIST OF FIGURES 

Figure 1: Plot on the left showing the finite element analysis result for reduced modulus 
with different tip sizes. Plot on the right showing the experimental data for reduced 
modulus with different tip sizes [18]. ............................................................................... 3 

Figure 2: Reduced modulus variation with indent depth for the 5 μm radius tip [18]. ............ 4 

Figure 3: A three-sided pyramidal Berkovich tip shown on the Hysitron website 
(http://www.hysitron.com/Default.aspx?tabid=120). ..................................................... 5 

Figure 4: Experimental data set with three models curve fits [23]. .......................................... 6 

Figure 5: Loading protocols (left) with the displacement-time curves (middle) and loading-
displacement curves (right). (a) The creep behavior method. (b) The load-rate 
sensitivity method. (c) The dissipated energy method. (d) The semi-dynamic test 
method [12]. ..................................................................................................................... 7 

Figure 6: Hierachical structure of the bones [20]. ..................................................................... 8 

Figure 7: The representative loading function for Gupta et al. study. .................................... 10 

Figure 8: No significant differences for reduced moduli in three osteons (a, b and c) [11]. .. 11 

Figure 9: (a) Plot showing stiffness and calcium content. The white arrow and dashed line 
used to group indent points in the osteonal and the interstitial bone. (b) Plot showing 
a positive correlation between the reduced modulus and the calcium content [11]. ... 12 

Figure 10: Twelve directions of interest in Fan et al. study [6]. .............................................. 14 

Figure 11: The moduli (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) measured from the osteonal lamellae all significant lower 
than those from the interstitial lamellae [6]. ................................................................. 15 

ix 
 



 

Figure 12: The corrected modulus from Eq.(3) and the predicted modulus [6]. .................... 16 

Figure 13: Plot showing the comparison of predicted modulus to the corrected experimental 
data (corrected data made by assuming 15% increase due to dehydration) [6]. .......... 17 

Figure 14: The mineral-to-matrix ratio increasing from the center to the periphery of the 
osteon [10]. ..................................................................................................................... 18 

Figure 15:  Modulus and hardness increasing from the center to the periphery of the osteon 
(A and B) [10]. ................................................................................................................. 19 

Figure 16: Data from Fourier transform infrared imaging analyzed by regression analysis. 
The mineral-to-matrix ratio correlated to the animal age [10]. ..................................... 19 

Figure 17: (a) Modulus and (b) hardness increasing with the animal age. (c) (d) Mechanical 
properties corresponding to tissue age [1]. ................................................................... 20 

Figure 18: Plots (a) (c) (e) showing relations between the bone composition and the animal 
age. Plots (b) (d) (f) showing the bone composition and the tissue age (b) (d) (f). Plots 
(a) (b) showing mineral-to-matrix ratio. (c)(d) Carbonate: phosphate (e) (f) Crystallinity 
[1]. ................................................................................................................................... 21 

Figure 19: Property comparison for different directions with differing ages [7]. ................... 23 

Figure 20: Comparisons for wet and dry samples with different microstructures [7]. ........... 23 

Figure 21: Femur (up) and tibia (down) cut from porcine leg with mark of direction. ........... 25 

Figure 22: Scheme showing red Indicated area representing two locations of interest in 
longitudinal direction (x direction). ................................................................................ 26 

Figure 23: A brick shape sample cut off from the second part of the bone sample. Red 
painted region indicating the plane of interest (y direction). ........................................ 27 

Figure 24: The indented region indicated in red in the z direction on the sample. ................ 27 

Figure 25: Photograph from the digital microscopy. Two osteonal structures in the middle 
and the ink mark at the right side of the picture to record the position of interest. .... 28 

x 
 



 

Figure 26: The scanning probe microscopy image with a 40 μm x 40 μm dimension of an 
osteon structure in the porcine femur. .......................................................................... 30 

Figure 27: A 5-5-5 trapezoidal load function with maximum 4000 μN. .................................. 31 

Figure 28: (a) Normal force-displacement curve using a 4000 μN, 5s loading, 5s holding and 
5s unloading time. (b) Nose shape generated from creep without holding time. ......... 31 

Figure 29: The surface image after seven indents. .................................................................. 32 

Figure 30: Hardness measured from area1 through area4 in 1FemurXA. Same letter used to 
indicate no significant differences found between each other. ..................................... 36 

Figure 31: Hardness measurements from area1 through area3 in 2FemurXP. Three letters 
used to indicate significant differences found between each area. .............................. 37 

Figure 32: P values of the area to area comparisons of the reduced modulus in 1Femur by 
the Tukey test. Line indicating p=0.05. Bars under the line indicating that a significant 
difference is found in this compared set of data. ........................................................... 37 

Figure 33: Reduced modulus and hardness in the anterior and posterior regions for the 
femurs and tibiae in x direction from pig1 and pig2 (* p<0.05). .................................... 39 

Figure 34: Properties for the different directions in the femurs and tibiae in both animals. 
Different letters indicating significant difference (p < 0.05) between data in each 
direction. ......................................................................................................................... 41 

Figure 35: Diagram indicating the adding different sets of data from pig 1 and pig 2. 
Comparison made between each number. .................................................................... 44 

Figure 36: The mean values of each region for pig1 and pig2 calculated by equation (4)...... 46 

Figure 37: Comparisons for the properties between the femur and the tibia. In general, the 
mechanical properties in the femur are higher than those corresponding to the same 
region in the tibia. ........................................................................................................... 47 

Figure 38: SEM images and sketches of four types structures from Weiner & Wagner [40]. 55 

Figure 39: Mechanical properties at each area in pig1. .......................................................... 57 

xi 
 



 

Figure 40: Mechanical properties at each area in pig2. .......................................................... 58 

Figure 41: P values for the comparisons between areas in the femur in pig1. Note that the p 
value for the reduced modulus comparison of 1FemurZ 4-1 and 4-2 are 0.0502 and 
0.0503 respectively, meaning there are no significant differences found in these two 
comparisons. ................................................................................................................... 65 

Figure 42:  P values for comparisons between the anterior and posterior regions in the tibia 
of pig1. ............................................................................................................................ 66 

Figure 43: P values for the comparisons between properties in y and z directions in the tibia 
of pig1. Note that the p value of the hardness comparison for 1TibiaY 3-1 is 0.0529, 
meaning no significant difference found in this comparison. ........................................ 67 

Figure 44: P values of comparison of material properties for the femur of pig2.................... 68 

Figure 45: P values of comparison for the tibia of pig2. Note that the p value for the 
hardness comparison of the 2TibiaXP 5-3 is 0.0504, meaning no significant difference 
found in this comparison. ............................................................................................... 69 

 

xii 
 



 

PREFACE 

It is a great opportunity to have such a research experience. Gratefully thank Professor 

Patrick Smolinski for his advising. I would also like to thank Hsin-Wen Chang for her help 

in statistical analysis.  Thanks Monica Linda-Rosen, JunJun Zhu and Brandon Marshall for 

their support through this period of time. 

 

xiii 
 



 

1.0 INTRODUCTION 

1.1 NANOINDENTATION HISTORY 

There is a long history of the use of indentation testing to measure material hardness. 

Techniques such as Rockwell and Vickers methods have been developed to measure and 

characterize this material property. The basic idea is to press an indenter into a material with 

known force and measure the distance that the indenter penetrates into the material.  

Based on derived formulas, a hardness number is calculated, e.g. 10000HV for diamond in 

Vickers test. This number represented the material property for a particular test and can be 

converted to other measurements. 

 With the advance of technology, the testing scale has been decreased to submicron-

scale, or even nano-scale. Nanoindentation, also known as instrumented indentation or 

depth-sensing indentation, has been developed over the past decade and has advantages 

because of its accuracy among different materials and its capability of testing the material in 

the depth range of few nanometers. In addition, it can be used to test a small, localized area 

which is important for thin coatings or inhomogeneous materials composed of different 

grains or crystals.  

 The principle is to measure the force and displacement, and calculate the projected 

contact area of the material induced by a tip. The hardness (H) and reduced modulus (Er) 

can be directly obtained and the elastic modulus (E) can be further computed [17, 52-55]. 

Equation (1) gives the relation between elastic modulus and reduced modulus, 
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where υ is the Poisson’s ratio of the indented material and υ𝑖𝑖  and 𝐸𝐸𝑖𝑖  are the Poisson’s ratio 

and elastic modulus of the indenter tip [52].  

1.2 TESTING MATERIALS 

Nanoindentation has been applied to many different types of materials including crystal 

materials [14], thin films [22] and ceramics [24]. It has also been proved a useful method for 

understanding structure and properties of the biological tissues and providing information 

for developing biomaterials [3, 8, 19]. Due to their complexity, variability and ability to 

change, that the mechanical properties of the biological tissues can be affected by other 

factors, there has been considerable interest in these materials.  

 Biological materials can be roughly divided into two groups: hard and soft materials. 

Common hard biological materials are bone [21] and tooth [25]. Soft biological materials are 

vascular tissue [4], tendon etc. Efforts have been made to deal with the particular testing 

problems of the soft tissue such as surface detection, adhesion and drifting, which can cause 

errors in measurement [2, 5, 13].  

1.3 OTHER STUDIES 

Some studies have been done for comparing the differences in equipment. For instance, 

Paietta, Campbell and Ferguson varied the indenter tip radius in measuring bovine femoral 

cortical bone to see the effect of tip size on the mechanical properties. The sample was em-

bedded in methylmethacrylate and polished to a 0.25 μm finish. Spherical indentation tips 

(1) 
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with radii from 5, 25, 65 to 200 μm were used and the loading was set to achieve the desired 

displacement, ranging from 100 to 2000nm, with the same loading and unloading rate of 0.5 

mN/s and dwell time of 120 seconds. They found that for contact depth smaller than 500 

nm, the reduced modulus decreased with the increasing of the tip size. With smaller radius 

tips (5 and25 μm) and for the contact depth of 0-500 nm, there was more scatter in the 

modulus data, while the larger tip radius (65 and 200 μm) showed more uniform results 

(Figure 1). For the 5 μm radius tip, the reduce modulus (Er) increased with the contact depth 

(0-2000 nm) while the variability decreased (Figure 2). The conclusion was that the modulus 

measured from shallow indent with smaller tip radius can be compared to the modulus from 

the larger tip radius [18].  

 

Figure 1: Plot on the left showing the finite element analysis result for reduced modulus 

with different tip sizes. Plot on the right showing the experimental data for reduced 

modulus with different tip sizes [18]. 
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Figure 2: Reduced modulus variation with indent depth for the 5 μm radius tip [18]. 

 Besides the hardness and elastic modulus, the viscoelastic behavior of the materials can 

also be measured by nanoindentation. Wu et al. tested bovine femoral cortical bone under 

different loading rates and holding times. They used the data to fit three models: the 

standard linear solid, the Burgers model and the two-dashpot Kelvin model. The bone was 

polished using successive grit papers and aluminum suspension to a 0.25 μm finish. A 

Berkovich pyramidal tip (Figure 3) was used to indent the bone with a maximum force 10 

mN and loading/ unloading rates 2 mN/s. They found that the best model for predicting the 

long-term viscosity of the bone tissue was the Burgers model (Figure 4) [23].  

 Isaksson et al. investigated the loading protocols that can best acquire the 

viscoelasticity properties of the bone [12]. Protocols included creep behavior, load-rate 

sensitivity, dissipated energy and semi-dynamic test methods (Figure 5). The creep behavior 

method alters the dwell time; the rate sensitivity test changes the loading rate; the 

dissipated energy method uses repeated cyclic loading whereas the semi-dynamic test 

incorporates the dynamic loading function into the quasi-static loading function. The 
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samples were cortical bone from the bovine distal femur and the trabecular bone from the 

proximal tibia. Silicon carbide papers (500, 800, 1000, 1200 and 4000 grid) were used to 

polish the sample under deionized water to achieve a 55 nm average surface roughness. The 

indenter was equipped with a cube corner diamond tip that had a 40 nm radius. The results 

showed that depending on the methods and the loading factors such like loading rate, 

holding time etc., the coefficient of variation for the reproducibility of each method varied 

from 9-40%. In addition, the semi-dynamic method under high frequency dynamic loading 

had the lowest 9-10% coefficient of variance, indicating that this protocol had the best 

consistency for measuring viscoelasticity properties [12].  

 In conclusion, researchers have been using nanoindentation to test different kinds of 

materials including crystal material, ceramics, thin film, biological materials, etc. This 

technique has been employed in not only measuring hardness and elastic modulus, but also 

characterizing the viscoelasticity. Scientists have also investigated the factors that may alter 

the experimental result such as loading protocol and differing tips. It can be seen that in the 

future, there will be more exploration and application for this technique. 

 

Figure 3: A three-sided pyramidal Berkovich tip shown on the Hysitron website 

(http://www.hysitron.com/Default.aspx?tabid=120). 
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Figure 4: Experimental data set with three models curve fits [23]. 
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Figure 5: Loading protocols (left) with the displacement-time curves (middle) and loading-

displacement curves (right). (a) The creep behavior method. (b) The load-rate sensitivity 

method. (c) The dissipated energy method. (d) The semi-dynamic test method [12]. 
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2.0 BACKGROUND 

2.1 NANOINDENTATION ON THE BONE 

Bone tissue is of interest to many scientists not only because of its crucial character for 

human daily life, but also its hierarchical structure and anisotropic property.  In addition, the 

material property of the bone can be altered by external factors such as drugs, loading or 

aging.  Rho et al. described the hierarchical structure of the bones and schematically 

illustrated the different scales of the bone tissue (Figure 6). 

 

Figure 6: Hierachical structure of the bones [20]. 
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 The study of the spatial variation in material properties in bone has been one of the 

most popular research areas. It has been proposed that bone may develop inhomogeneous 

mechanical properties due to stress variations between regions. Giambini et al. tested the 

trabecular bone longitudinally from human vertebral sections T7, T8 (Thoracic) and L4 

(Lumbar). The samples were prepared by polishing with grit papers followed by 0.05 μm 

aluminum powder. Samples were left dry. The loading rate was a constant 333 μN/s and the 

maximum force was 1 mN with a five seconds dwell time. The study showed that there was 

no significant spatial difference in elastic modulus or hardness in the posterior regions of the 

T7, T8 and L4 vertebrae. Besides, no differences were found within each section, e.g. 

properties in T7 were the same for the anterior and posterior regions. However, they found 

that modulus and hardness were statistically higher in the anterior regions of T7 (E: 19.8 ± 

1.3 GPa, H: 0.74 ± 0.07 GPa) and T8 (E: 19.6 ± 1.4 GPa, H: 0.74 ± 0.04 GPa) compared to L4 

(E: 17.6 ± 0.5 GPa, H: 0.64 ± 0.06 GPa) vertebrae. It is the first study that reported the 

variation of mechanical properties between thoracic and lumbar spine [9]. 

 With bone it may be the case that, even within a small region of sample, the properties 

and the tissue contents may differ and it has been proposed that the modulus and hardness 

measured at a local area should correlate to the mineral content in that area. Gupta et al. 

used a single female femoral cortical bone and compared the differences in mechanical 

properties and mineral content between osteonal and interstitial bone. The sample was 

polished with grit papers and diamond grain (down to 1 μm) to achieve an average surface 

roughness ranging from 25 to 30 nm followed by air drying. One of the loading protocols 

was that 1000 μN max load reached in five seconds with a dwell time of 60s, followed by 

unloading to 200 μN in 2.5s, holding for 20s, and then unloading to zero in one second. The 

representative load function is shown in the Figure 7. Another loading function was similar, 
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except that the max load was 500 μN and the holding force was 100 μN. These two loading 

histories were used to cover the indent depth ranging from about 137 nm to about 234 nm, 

which is similar to the standard fused quartz sample calibration depth. This study showed 

that modulus and hardness have significant differences between the secondary osteons 

(∼24 GPa to ∼27 GPa) and interstitial bone (higher than 30 GPa). However, there were no 

significant differences in mechanical properties found between three osteons of the cortical 

bone (Figure 8). Mineral content correlated with both moduli (Figure 9). The study proposed 

that the variant properties in osteons and interstitial bone may be a crack-arresting 

mechanism [11]. 

 

Figure 7: The representative loading function for Gupta et al. study. 
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Figure 8: No significant differences for reduced moduli in three osteons (a, b and c) [11]. 
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 Figure 9: (a) Plot showing stiffness and calcium content. The white arrow and dashed line 

used to group indent points in the osteonal and the interstitial bone. (b) Plot showing a 

positive correlation between the reduced modulus and the calcium content [11]. 
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 Furthermore, bone material properties may depend on orientation of the sample 

(anisotropy). Fan et al. examined male tibia cortical bone to investigate the influence of the 

testing directions. The bone sample was dehydrated through series of alcohol mixtures and 

fixed in epoxy resin followed by polishing to a 0.05 μm roughness. A maximum load of 8000 

μN was selected with a 20 seconds loading segment, resulting in about a 700 nm indent 

depth. Indentation using a Berkovich tip on twelve orientations was conducted. Besides the 

three directions based on a Cartesian coordinate system, planes- 30, 45 and 60 degrees 

away from each axis were chosen as the testing directions (Figure 10). They found significant 

differences between osteonic and interstitial lamellae in all directions (Figure 11). The 

results suggested orthogonal mechanical properties. In addition, comparing the corrected 

result using previously developed models (equation (2) and (3)) by Swadener et al. [27, 28] 

and Rho et al. [26], they proved the moduli can be quantitatively calculated using the 

equation [6],  

 

where M is the indentation modulus, and 𝑎𝑎1 𝑎𝑎2⁄  is the ratio of elliptical axes of the projected 

area of contact, and 𝐵𝐵𝑖𝑖𝑖𝑖 is the components of the first Barnett-Lothe tensor, and ϒ is the 

angle defining the displacement direction at the free surface, and 𝑎𝑎3𝑖𝑖 and  𝑎𝑎3𝑖𝑖 are the 

direction cosines of the angle between indent direction and principal direction. 

 

The constant CSAF, the corrected secondary osteonal area, is 0.388 for human tibia. 

(2) 

(3) 
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Figure 10: Twelve directions of interest in Fan et al. study [6]. 
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Figure 11: The moduli (𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒) measured from the osteonal lamellae all significant lower than 

those from the interstitial lamellae [6]. 
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Figure 12: The corrected modulus from Eq.(3) and the predicted modulus [6]. 
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Figure 13: Plot showing the comparison of predicted modulus to the corrected experimental 

data (corrected data made by assuming 15% increase due to dehydration) [6]. 

 Aging can also affect the characteristics of bone. Researchers have used both animal 

and human bones to study the effect of the aging on the mechanical properties of the bone. 

Milovanovic et al. collected eight female femoral trabecular bones (five young adults and 

three elderly) and embedded the specimens in the epoxy resin. The samples were then 

prepared by polished using up to 4000 grit papers followed by drying under room 

temperature. They found the variation of mean modulus and hardness between the elderly 

(E: 1.28 ± 0.16, H: 0.92 ± 0.12 GPa) and young bones (E: 1.97 ± 0.52, H: 0.59 ± 0.15 GPa). The 

study suggested that the higher moduli found in elderly bones indicated the lower loading 

energy that those bones could bear with [16].  
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  Gourion-Arsiquaud et al. used the femoral cortical bone from different age baboons to 

examine the animal age and tissue age effects on the mineral and matrix properties in the 

bone. The osteon is a tissue that keeps remodeling, thus the structure near the center of the 

osteon is considered “younger”, whereas with increasing distance from the center to the 

periphery of the osteon, the structure is considered “older”. The bone samples were 

dehydrated in a series of alcohol mixtures and embedded into polymethylmethacrylate. The 

samples were then polished anhydrously to achieve a root mean square roughness less than 

15 nm over a 5 μm x 5 μm area. The Berkovich tip was advanced to 700 μN with 50 μN/s, 

held for 10 seconds and unloaded to zero with 50 μN/s. They found that mineral-to-matrix 

ratio increased with increasing distance from the center of the osteon, i.e. higher mineral-to-

matrix ratio in older tissue (Figure 14). The modulus significantly increased with the 

increasing tissue age (Figure 15). Also, the mineral-to-matrix ratio was correlated to the 

animal age (Figure 16) [10].  

 

Figure 14: The mineral-to-matrix ratio increasing from the center to the periphery of the 

osteon [10]. 
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Figure 15:  Modulus and hardness increasing from the center to the periphery of the osteon 

(A and B) [10]. 

 

Figure 16: Data from Fourier transform infrared imaging analyzed by regression analysis. 

The mineral-to-matrix ratio correlated to the animal age [10]. 

 Burket et al. tested the mechanical properties and the composition of the osteon with 

aging. Femoral bones from female baboons were used. The samples were fixed in 

polymethlymethacrylate and polished to achieve a surface roughness less than 15 nm. The 

indenter was loaded to 700 μN, held for ten seconds and unloaded to zero with a 14 seconds 

loading and unloading time, generated about a 150 nm indent depth. The results showed 

19 
 



 

that both mechanical properties increased significantly in the period of maturity with 

greater than five years being considered mature. The modulus increased 6.6% per year in 

the young period and 0.2% per year after mature age. The hardness increased 6.8% per year 

in youth with no significance change after maturity. For the tissue age, the modulus showed 

no variation but the hardness decreased in mature animals by a total 9-18% across the 

osteon (Figure 17). The mineral-to-matrix ratio increased 12% per year for young baboons 

but not after maturity; the ratio was not influenced by tissue age (Figure 18). The modulus 

and harness varied as the matrix-to-mineral ratio changing (variation 78% in modulus and 

70% in hardness) [1].  

 

Figure 17: (a) Modulus and (b) hardness increasing with the animal age. (c) (d) Mechanical 

properties corresponding to tissue age [1]. 
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Figure 18: Plots (a) (c) (e) showing relations between the bone composition and the animal 

age. Plots (b) (d) (f) showing the bone composition and the tissue age (b) (d) (f). Plots (a) (b) 

showing mineral-to-matrix ratio. (c)(d) Carbonate: phosphate (e) (f) Crystallinity [1]. 

 Feng et al. tested the porcine bone to show the relations of elastic modulus and 

hardness to four factors: ages, sample positions (laminar, interstitial or osteon), hydration 
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and testing directions. The bone samples, from 6, 12, and 42 month porcine femurs, were 

polished using abrasive papers (up to 4000) and aluminum micro-cloth (3 μm, 1 μm, 0.25 μm 

and 0.05 μm). The loading protocol was a trapezoidal shape loading function consisted of a 

five seconds loading, five seconds holding and five seconds unloading time with a 2000 μN 

maximum load. It was found that all four factors have certain degree of influence on the 

modulus and hardness. With age increasing, both values increased differently depending on 

the tissue type, i.e. osteon, laminar bone or interstitial bone. Except for interstitial bone, 

laminar and osteon bone demonstrated higher modulus and hardness in the 42 month 

sample. The modulus of the laminar bone in the longitudinal direction was higher than that 

in the transverse direction in the 6 and the 42 month sample. The hardness of the laminar 

bone was only higher in the longitudinal direction for the 42 month sample (Figure 19). The 

modulus in osteon was 42% higher in the dehydrated sample than in the hydrated sample 

(modulus∼27 GPa, hardness∼0.9 GPa in the longitudinal direction in dry sample). On the 

other hand, a 26% increase of modulus in interstitial bone was found in dry sample 

compared to wet sample (Figure 20) [7]. This study provided a great deal of information of 

the mechanical properties under several factors.  
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Figure 19: Property comparison for different directions with differing ages [7]. 

 

Figure 20: Comparisons for wet and dry samples with different microstructures [7]. 
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2.2 PROBLEM STATEMENT 

Among these studies, it is clear that the mechanical properties are correlated to the 

composition of the bone structure, and are related to the testing condition (dry or wet), 

testing direction, age, and the location of the bone sample (e.g. thoracic or lumbar spine). To 

the best of the author’s knowledge, there has been no research focused on the variation of 

the modulus and hardness in the different regions of the cortical bones of the porcine femur 

and the tibia. Hence, one purpose of this study was to examine the modulus and the 

hardness variations in the anterior and posterior regions of the bone. Osteon bone was 

picked as the testing target because it also exists in human body, which may provide some 

reference for future study on human. Additionally, this study also compared the mechanical 

properties in the femur and the tibia. The goal was to have a view of how mechanical 

properties change through the tibia to femur in different directions and regions (anterior 

and posterior). This study used dry samples since testing wet sample required more 

complicated testing skills and equipment.  
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3.0 MATERIALS AND METHOD 

3.1 SAMPLE PREPARATION 

Two porcine legs were acquired from the local butcher. After stored in the freezer at -20℃, 

the soft tissue was removed from the bone followed by sawing transversely to obtain three 

1.5 cm sections from the mid-section of the tibia and femur. This length was selected for 

convenience for polishing process. The location and the direction were marked on the 

sample (Figure 21).  

 To test a specimen with a surface in the longitudinal direction (x direction, shown in 

Figure 22), the first sample of bone was used. The second cylinder was cut in sagittal plane 

(y plane) to obtain a brick shape sample (Figure 23). The last piece was polished directly to 

obtain a flat frontal plane (z plane) (Figure 24).  

 

Figure 21: Femur (up) and tibia (down) cut from porcine leg with mark of direction. 
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 After the marrow was removed, the bone surface was polished with constant water 

irrigation with 400, 600, 800 and 1200 silicon carbide grinding papers (Buehler UK Ltd., 

England) and a polishing machine (Buehler UK LTD., England).  Following that, the samples 

were further polished using 1 μm and 0.05 μm aluminum powders (Struers, Danmark). Each 

sample was polished carefully to achieve a flat, smooth surface for nanoindentation.  The 

samples were then examined by digital microscopy (VHX-600 Keyence, Japan) and 

photographed to show clear views of the marked bone structures, i.e. osteon (Figure 25). 

The ink mark was used for locating the osteon again when doing nanoindentation. The 

samples were dried for 24 hours at room temperature prior to testing [7] and finally 

mounted on the thin steel strips (Astra Superior Platinum, Russia) using super glue (Loctite, 

Germany) half hour before indented. 

 

Figure 22: Scheme showing red Indicated area representing two locations of interest in 

longitudinal direction (x direction). 

Posterior 

Anterior 
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Figure 23: A brick shape sample cut off from the second part of the bone sample. Red 

painted region indicating the plane of interest (y direction). 

 

Figure 24: The indented region indicated in red in the z direction on the sample. 
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Figure 25: Photograph from the digital microscopy. Two osteonal structures in the middle 

and the ink mark at the right side of the picture to record the position of interest. 

Two osteons 

Ink 
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3.2 NANOINDENTATION 

In this study, for convenience, the x, y and z directions were used to represent the indent 

direction. The femur and the tibia are two bones, and four regions of each bone were to be 

examined, i.e. the x direction of the anterior region, the x direction of the posterior region 

(Figure 22), the y direction of the anterior region(Figure 23) and the z direction of the ante-

rior region (Figure 24). At least three osteons (three areas) were picked in each region, and 

5 - 7 indents were carried out in each area to average the measured values. 

 The nanoindentation tester used in this study (TI900 Hysitron Triboindenter, 

Hysitron, USA) was equipped with a three side pyramidal Berkovich tip (Figure 3). The tip 

was made of single crystal diamond with an angle of 142.3° and radius of the curvature of 

150 nm. Prior to testing, the sample was imaged by scanning probe microscopy (SPM) to 

locate the position of interest, and quantify the roughness of the surface with a 40 μm scan 

size (Figure 26). After polished, the surface achieved an average roughness ranging from 30 - 

80 μm over a 40 μm x 40 μm area. After checking the surface condition for any damage, a 

smaller scan size, 20-40 μm, depending on the size of the structure, was then used to 

further position the area to be indented. 
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Figure 26: The scanning probe microscopy image with a 40 μm x 40 μm dimension of an 

osteon structure in the porcine femur. 

 The load function used for indentation was composed of a 5s loading phase followed 

by a 5s holding and 5s unloading time (Figure 27) [7]. The 5s holding time was used to avoid 

creep behavior and the “nose” shape (Figure 28), which can affect the analysis of the 

unloading segment and thus result in inaccuracy. Specifically, the calculated reduced 

modulus (Er) accounts for the stiffness (S), calculated by fitting the slope of the load-

displacement curve. The “nose” shape curve generated from creep behavior will lead to a 

higher or even negative S, causing the error of the reduce modulus. While other studies 

selected different holding times [29-31], Wu et al. suggested that the results are valid if the 

load function is consistent through the experiment [23]. However, if the dwell time is set 

too long, the drift factor resulting from the vibration of the system or external interference 

would also cause inaccuracy. 
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Figure 27: A 5-5-5 trapezoidal load function with maximum 4000 μN.  

 

Figure 28: (a) Normal force-displacement curve using a 4000 μN, 5s loading, 5s holding and 

5s unloading time. (b) Nose shape generated from creep without holding time. 

 In the previous study, Feng et al. used 2000 μN as the peak load [7]. However, the 

samples were all submerged in the fluid thus softer and required a smaller force to achieve 

the desired indent depth. The peak force in this study, since the samples were all 

dehydrated, was selected to be 4000 μN to give approximately a 400-600 nm indentation 

depth depending on the indent position. The max load can assure that the indent depth is at 

least three times higher than the surface roughness, thus the roughness effect could be 

eliminated [30] and massive damage in the osteon structure could be prevented [32].  

(a) (b) 
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 The spacing between each indent was selected to be five times of the diameter of 

the indent size based on the ISO standard for indentation (ISO/FDIS 14577-1). While some 

studies used 3-5 times of the indent width as a standard (Feng et al. 2012), this study 

followed the five times indent width recommendation. This spacing is for avoiding overlap 

of the residual plastic deformation which can affect the results. After the indentation, the 

in-situ imaging was again performed to check the position of the indent (Figure 29). 

 

Figure 29: The surface image after seven indents. 

3.3 STATISTICAL ANALYSIS 

This study aims to compare the mechanical property variations throughout the tibia and the 

femur. Two porcine sets of bones were used in this study: the femur and the tibia; each 

bone has three test directions. For the x direction, it was further divided into the anterior 

and posterior region. Each region, was tested at least three small areas; finally, five to seven 

indents were conducted in each area.  The purpose of choosing three small areas and five 

indents were to be able to average the obtained values and avoid the extreme values. Since 

indents were in three small areas, it is reasonable to see if there is any difference between 

areas. Table 1 shows the number of areas and the total number of indents for each region 
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and direction, e.g. there are four picked areas and a total 28 indents in the anterior region 

of the femur of pig1. 

 The one-way ANOVA was used to compare the difference between the anterior 

region and posterior region. The Tukey test was used to analyze the data from each area 

within the same region, and the data from different directions in the same bone. P<0.05 

represents significant difference.  

 Note that the one-way ANOVA can only tell that there is a difference among all sets 

of data but is not able to specify which set, thus it was only used in anterior-to-posterior 

case. For the comparisons more than two sets, the Tukey test was used and is able to do 

pair-to-pair comparisons.  

 Considering the individual effect, that variations may exist among the two samples, 

the linear mixed model was used. The linear model is to model, the mechanical property as 

a function of testing direction with a random error term, and the testing direction is a fixed 

effect. In this study, two samples were used, thus the measured data may be dependent. In 

this case, statisticians add random effects term to represent the individual difference. So 

the “fixed effect” and here “random effect” makes up the “mixed model”. The linear mixed 

model is able to tell if a factor of interest plays a role in affecting the mechanical property. 

For example, the bone (femur or tibia) is a factor of interest, and the model can indicate 

that whether or not the mechanical property is significantly different in the femur and tibia. 

Data from the two samples was combined and analyzed by linear mixed model for 

comparison between each region.  

 R (64bit, 3.0.3) is a free statistical analysis software and was used in this study. The 

one-way ANOVA, Tukey test and linear mixed model were all coded in the program to do 

the analysis. Details for the code can be found in the Appendix D. 
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Table 1: Total number of data points from each sample. 

  

Axial Anterior 

(X) 

Axial Posterior 

(X) 
Sagittal (Y) Frontal (Z) 

Area 
Total 

indents 
Area 

Total 

indents 
Area 

Total 

indents 
Area 

Total 

indents 

Pig 1 

Femur 4 28 4 28 4 28 4 28 

Tibia 7 35 5 25 7 35 4 20 

Pig 2 

Femur 3 18 3 17 4 20 3 20 

Tibia 3 15 5 25 3 16 3 18 
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4.0 RESULTS 

In this section results are broken down as follows. Section 4.1 compares the reduced 

modulus and hardness between different areas in the same region. Section 4.2 shows the 

differences in material properties between anterior and posterior regions. Section 4.3 will 

focus on the mechanical properties comparison between x, y and z directions. Last but not 

least, Section 4.4 gives the results of the femur and the tibia. 

 Results of the measured data and statistical analysis will be presented. For 

convenience, from now on all locations are named by the order of sample number-bone-

direction-region-area. For example, 1FemurXA1 represents the pig1, femoral bone, x 

direction, anterior region and area1.  

4.1 COMPARISON OF PROPERTIES BETWEEN DIFFERENT AREAS 

Figure 30 and Figure 31 are examples showing the measured hardness from different areas 

in the same region. In Figure 30, the hardness measured in the four areas have no 

significant difference between each other, hence the same letter “a”, was marked on the 

top of the bars. On the other hand different letters, “a”, “b” and “c”, were used in Figure 31 

to indicate that statistical differences exist between each set of data.  

 All of data are given in Appendix A. Note that letters are used only in the examples, 

since that p values are given in Appendix B.  
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 Figure 32 is an example for the p values between each areas calculated by the Tukey 

test. The horizontal axis labels gives the area number in the specified region, e.g. 1FemurXA 

1-2 represents area1 compared to area2 in 1FemurXA. The line in the chart indicates 

p=0.05, hence any bars underneath the line have a significance result found in the 

comparison. Appendix B also gives the bar charts of p values for area to area comparisons.  

 

Figure 30: Hardness measured from area1 through area4 in 1FemurXA. Same letter used to 

indicate no significant differences found between each other. 
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Figure 31: Hardness measurements from area1 through area3 in 2FemurXP. Three letters 

used to indicate significant differences found between each area. 

 

Figure 32: P values of the area to area comparisons of the reduced modulus in 1Femur by 

the Tukey test. Line indicating p=0.05. Bars under the line indicating that a significant 

difference is found in this compared set of data. 
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4.2 COMPARISON OF ANTERIOR AND POSTERIOR PROPERTIES 

After the area to area comparison, measured properties from all areas in the same region 

were averaged for further comparisons. Figure 33 shows the average and the standard 

deviation of the mechanical properties for anterior and posterior regions of both pig1 and 

pig2. Table 2 gives the p values of each anterior-to-posterior set by a one-way ANOVA 

analysis with p value less than 0.05 being considered significantly different. Note that p 

value less than 0.0001 will be listed as zero. 
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Figure 33: Reduced modulus and hardness in the anterior and posterior regions for the 

femurs and tibiae in x direction from pig1 and pig2 (* p<0.05). 
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Table 2: P values from a one-way ANOVA of the mechanical properties between anterior 

and posterior regions in the femur and tibia of pig1 and pig2 (value given as 0 if p<0.001). 

Pig Number Regions 

P value 

Reduced modulus Hardness 

1 Femur A to P 0 0.0011 

1 Tibia A to P 0 0.008 

2 Femur A to P 0.0008 0.194 

2 Tibia A to P 0.338 0.454 

4.3 COMPARISON OF PROPERTIES IN DIFFERENT DIRECTIONS 

 Figure 34 gives the mechanical properties of the porcine bone as measured in different 

directions. Significant differences between each direction were marked by different letters. 

Table 3 is the comparison using the Tukey test between properties in the x, y and z 

directions. Note that this is only for comparisons between same bone (femur or tibia) from 

the same animal.   
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Figure 34: Properties for the different directions in the femurs and tibiae in both animals. 

Different letters indicating significant difference (p < 0.05) between data in each direction. 
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Table 3: P values for the property comparison in the different directions by the Tukey test. 

Pig Part Direction P value-Er P value-H 

1 

Femur 

x to y 0 0.4201 

x to z 0 0.0097 

z to y 0.1741 0.0011 

Tibia 

x to y 0 0 

x to z 0.0001 0 

z to y 0 0 

2 

Femur 

x to y 0 0 

x to z 0.0001 0.0002 

z to y 0 0 

Tibia 

x to y 0 0 

x to z 0 0.0015 

z to y 0 0 

4.4 COMPARISON OF FEMORAL AND TIBIAL PROPERTIES 

In this section, the mechanical properties of both samples were combined and compared 

between different bones in the same region, or the same bone in different regions. In Figure 

35, for example, 1FemurXA, 2FemurXA were combined and compared with 1TibiaXA putting 

with 2TibiaXA. Note that the diagram only shows the data sets in x direction; data in y and z 

direction were also included in the analysis.  

 The linear mixed model is used to analyze the measured data and is able to tell if the 

factor of interest plays a role on the change of mechanical property. The model contains the 

random effect term to describe the individual difference. The raw data from the linear 
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mixed model analysis are shown in Appendix C. P values were calculated and are shown in 

Table 4.  

 The raw data was converted back to the mean values of hardness and reduce modulus 

for each region for both pigs by equation (4),  

 

where y is the estimated mean value of the mechanical property; A is the intercept; 𝐵𝐵𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇, 

𝐵𝐵𝐷𝐷𝐷𝐷 ,𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷,𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷 are calculated constants given in the table in Appendix C. 𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇, 𝑋𝑋𝐷𝐷𝐷𝐷, 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷 

and 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷 are variables that are either 0 or 1 to representing the region number, direction 

and bone.  

 For example, to compute the reduced modulus of FemurXA, according to Appendix C, 

A, 𝐵𝐵𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇, 𝐵𝐵𝐷𝐷𝐷𝐷,𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷,𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷 are 8.40891, -1.7843, 7.55051, 9.76954 and 4.55402 respectively. 

𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇 , 𝑋𝑋𝐷𝐷𝐷𝐷 , 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷  and 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷  are set 0, 0, 1, 0 respectively. Note that 0 means the 

corresponding term is knocked out and 1 means the corresponding term remains. Since 

femur is the bone of interest, 𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇 has to be 0. If tibia is to be considered, then 𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇 has 

to be 1.  

 Another example is that, to compute the hardness of TibiaZ, 𝑋𝑋𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇, 𝑋𝑋𝐷𝐷𝐷𝐷, 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷 and 

𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷 are 1, 0, 0, 0 respectively. A, 𝐵𝐵𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇, 𝐵𝐵𝐷𝐷𝐷𝐷,𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷,𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷 are 0.55574, -0.1129, 0.1844, 

0.30251 and 0.22418 respectively, according to Appendix C.  

 The estimated mean values of mechanical properties from the combined samples for 

each region are shown in the Figure 36. Different letters were used to indicate significant 

differences. Figure 37 shows the comparisons of the mechanical properties in the femur and 

the tibia.   

(4) 
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Figure 35: Diagram indicating the adding different sets of data from pig 1 and pig 2. 

Comparison made between each number. 
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Table 4: A summary of p values for comparisons for all regions, directions and bones. 

 P value 

Compared sets Er H 

Femur to Tibia 0.0073 0 

Y to Z 0 0 

Y to XA 0 0 

Y to XP 0 0 

Z to XA 0.021 0 

Z to XP 0.002 0.1235 

XA to XP 0 0.0016 
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Figure 36: The mean values of each region for pig1 and pig2 calculated by equation (4).  
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Figure 37: Comparisons for the properties between the femur and the tibia. In general, the 

mechanical properties in the femur are higher than those corresponding to the same region 

in the tibia.  
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5.0 DISCUSSION 

Bone is the structure with hierarchy and anisotropy [6, 20]. The mechanical properties vary 

with many factors including age, gender, direction, location, etc. [1, 7, 9, 16]. To understand 

the bone structure, the reduced modulus and hardness were measured by nanoindentation 

to investigate the variations in the porcine tibia and femur. 

 The modulus considered in this paper is reduced modulus. It should be noted that 

reduced modulus obtained from the test accounts for the sample elastic modulus, Poisson’s 

ratio and the indenter’s elastic modulus and Poisson’s ratio (1). The elastic modulus and 

Poisson’s ratio for a diamond tip are fixed, and the Poisson’s ratio for the bone is assumed 

to be 0.3 [7, 9, 21]. Under this assumption, the elastic modulus is about 1.1 times greater 

than the reduced modulus. 

 In the following sections, Section 5.1 gives a discussion about the mechanical properties 

comparison between different areas in the same region. Section 5.2 discusses the 

mechanical property variation in the anterior and posterior region and compares the result 

to other studies. Following that, Section 5.3 gives a discussion for the mechanical properties 

measured in different directions. Section 5.4 gives some discussions about the result from 

the linear mixed model and potential factors affecting the material properties. Last but not 

least, Section 5.5 points out the limitation and the prospect of this study. 

 For the directions mentioned in the following paragraphs, as a reminder, the x testing 

direction (y-z plane) is the axial direction; the y direction (x-z plane) corresponds to the 

sagittal plane and the z direction (x-y plane) is the frontal plane. 
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5.1 COMPARISON OF PROPERTIES BETWEEN DIFFERENT AREAS 

Mean values with the standard deviation at each area of all samples are given in Appendix A 

and the details of the p values are in Appendix B.  

 The results show, from Table 5, that some regions have large variation. Regions, in which 

half of areas showed significant differences, were considered having large variations and are 

marked by X in the Table 5. Taking Figure 31 as an example, the hardness in the 2FemurXP 

are statistically different, thus the row “2FemurXP” corresponding to the column “hardness” 

was marked by X.  

 No significant differences in reduced modulus were found in 12 out of 16 regions; 

hardness was the same in 14 out of 16 regions (Table 5). Regions with variation are all in the 

pig2 (Table 5). This indicates that pig1 has uniform properties in all regions, i.e. mechanical 

properties measured in different areas of a region have no significant differences. In 

contrast, variations in the mechanical properties in different areas of a region were found in 

many regions of pig2. This indicates that individual differences may have an effect on the 

mechanical property variation in the area.  

5.2 COMPARISON OF ANTERIOR AND POSTERIOR PROPERTIES 

In pig1, the reduced modulus and hardness in the anterior region vary from those in the 

posterior region in both femur and tibia; while in pig2, this trend only observed for the 

reduced modulus in the femur. This result shows that locations (anterior or posterior) may 

play a role in the mechanical properties. This result is somewhat consistent with previous 

studies done by Riggs et al. [48], Bonney et al. [43] and Rho et al. [37]. Riggs et al. found 

significant differences of mechanical properties between cranial and caudal cortices of 
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equine radii. For example, tensile elastic modulus was 22 GPa for cranial and 15 GPa for 

caudal cortex (p<0.001).  

 Bonney et al. found there is regional effect in the porcine femur. For instance, using 

bending test, they found the posterior quadrant was stronger than the lateral quadrant 

(241.4±10.43 MPa to 162.3 ± 17.96 MPa in bending strength). 

 In addition, using the same horse specimen, Rho et al. also showed that for testing in 

the x direction, the osteons in the anterior region were stiffer than those in the posterior 

region. However, the result is in contrast to the study done by Giambini et al. using human 

vertebrae [9], in which no difference was found within each section of the vertebrae, e.g. 

properties in T7 are the same in both anterior and posterior parts.  

 To further explain why the anterior portion shows greater mechanical properties, it is 

known that porcine femur has a certain degree of anterior curvature [51], thus it is possible 

that the anterior region bears a higher load and become stiffer and stronger.  

5.3 COMPARISON OF PROPERTIES IN DIFFERENT DIRECTIONS 

For directions shown in Section 4.3, except for the 1Femur, it shows a very similar trend of 

mechanical properties. For reduced modulus, the measured value in the x direction are the 

highest (except for the tibia in pig2), followed by those in the z direction, and the reduced 

modulus in the y direction are the lowest. For hardness, except for the tibia in pig2, it also 

shows x direction is the highest, followed by z direction, and then y direction. This result 

suggests the anisotropy of the bone structure and is consistent with the previous study [7, 

35-37], in which they all showed the anisotropy mechanical properties of the bones, 

including porcine, human and equine bones. 
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 The mean values of the reduced modulus in the femur in the x direction obtained here 

are 9.25 ± 1.53 GPa and 22.90 ± 2.74 GPa for pig1 and pig2, respectively. Multiplying the 

reduced modulus by 1.1 to obtain an approximate value of elastic modulus gives 10.18 and 

25.19 GPa. The value 25.19 GPa is similar to that found by Feng et al. [7] (∼27 GPa). The 

hardness in the x direction is 0.73 ± 0.1 GPa and 0.97 ± 0.14 GPa for pig1 and pig2, 

respectively. Again, the value measured in pig2 is quite consistent with that in the Feng et al. 

study (∼0.9 GPa). Appendix E gives a comprehensive comparison of the mechanical 

properties bone measured by nanoindentation in this study and in previous studies.  

 For the differing results found in the two animals, there may be a difference in gender 

or other factor that is not known or just due to individual variation. The other possibility for 

discrepancy of two pigs is the tissue degradation. The specimens were stored in the freezer 

at -20℃ for a unknown time and have been taken out for other use and then refrozen 

again, thus it may cause tissue deteriorate. However, previous studies do not have a 

uniform result on freezing effect [43-47], thus this is still an unknown factor. 

 Due to time limitation, the experiment was restrained down to only two porcine legs, 

hence it can only prove that variations do exist in these regions. It may be able to discover 

the certain pattern of variations in the bone if more samples were tested.  

5.4 COMPARISON OF FEMORAL AND TIBIAL PROPERTIES 

Comparing the differences between bones and directions,  shows the trend that for reduced 

modulus in the femur, z direction is the highest, and then anterior region in x direction, 

followed by y direction. For reduced modulus in the tibia, it shows anterior region in x 

direction is the highest, followed by z direction, and then y direction. Also for hardness both 

in the femur and tibia, it shows that anterior region in x direction has the greatest hardness, 
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and z direction is the second high, followed by y direction. This indicates that the orthogonal 

mechanical property may exist in the porcine bone, and the result agrees with the previous 

studies [6, 35-37]. The porcine bone structure may be a laminated composite with most 

fiber orientated toward x direction, some fiber oriented z direction, and laminated direction 

being y direction. This kind of structure can explain the variation of the mechanical 

properties in different directions.  

 This concept matches the plywood-like structure found in the bone by Weiner et al. 

[38-40]. Figure 38 shows the SEM images and schematic illustrations of several types of 

bone structures [40]. The third type of bone structure shown in Figure 38 has two fiber 

orientations and a layer direction, which can explain the mechanical properties are higher 

for x and z directions while lower in y direction.  

 It is also observed that except for anterior region in the x direction in the femur, 

mechanical properties of the femur are always greater than those of the tibia corresponding 

to the same region. This may be again related to the bone response to mechanical loading 

where the area subjected to higher stress can develop more bone formation [50], thus 

results in a higher mineral-to-matrix ratio or more collagen fiber in the osteon. Further 

study could be conducted to examine the composition of the single osteon in porcine femur 

and tibia to gain more understanding in this mechanism of higher mechanical properties in 

the femur. 

5.5 LIMITATION AND PROSPECT 

There are several limitations for this study. Firstly, the amount of samples is not enough and 

thus the result can be more representative if greater number of sample were tested. Also, 

testing was conducted under dehydrated condition, while natural biological tissue is 
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normally wet. It is known that the sample hardens when it dehydrates [41], and the degree 

of hardening depends on the tested bone structure and the testing direction [7]. For 

example, osteon had a 42% increase while the interstitial bone 26% from wet to dry sample. 

In addition, there is no comprehensive study drawing the drying effect between the tibia 

and femur in the porcine bone. To further understand the in vivo mechanical properties in 

different regions and bones, this part of research would be crucial in the future in order to 

bridge the gap for differences of the properties between dry and wet samples. 

 Nevertheless, this study provides an overall measurement of the porcine femoral and 

tibial bones, including the regional effect (anterior to posterior) and direction effect. This 

information can be a step further for the study for the biomechanics of the porcine 

extremity. Finally, since pig bone has a certain degree similarity to the human bone [42], it 

may become the groundwork for studying human biomechanics, contributing to the 

knowledge of human bone disease. 
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Table 5: Locations having significant differences in measure values between areas (marked 

by X). 

 Er H 

1FemurXA   

1FemurXP   

1FemurY   

1FemurZ   

1TibiaXA   

1TIbiaXP   

1TibiaY   

1TibiaZ   

2FemurXA   

2FemurXP  X 

2FemurY   

2FemurZ X  

2TibiaXA X  

2TibiaXP X  

2TibiaY X X 

2TibiaZ   
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Figure 38: SEM images and sketches of four types structures from Weiner & Wagner [40]. 
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APPENDIX A 

MECHANICAL PROPERTIES OF EACH AREA 

The bar charts and tables in the next pages are a summary of the data from the testing. 

Figure 39 is the mechanical properties in each area of the pig1 and Figure 40 is the 

mechanical properties in each area of the pig2. Different regions are divided into groups by 

the vertical black lines. Table 6 lists the numerical values of reduced modulus and hardness 

at each area of both animals. The numbers of areas in the bone are given in Table 1. 
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 Figure 39: Mechanical properties at each area in pig1. 
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Figure 40: Mechanical properties at each area in pig2. 
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Table 6: Mechanical properties at each area 

 Area 
Reduced 
modulus 

(GPa) 

Er-Standard 
deviation 

Hardness 
(GPa) 

H-Standard 
deviation 

1FemurXA 

1 8.621115 0.360116 0.7887281 0.045367 
2 8.194665 0.643193 0.7331334 0.082695 
3 8.285499 0.370904 0.8000397 0.044104 
4 7.594873 0.30297 0.7639219 0.048757 

1FemurXP 

1 11.81398 0.775532 0.6114419 0.048294 
2 10.9775 1.23164 0.7688363 0.180057 
3 9.654228 0.865754 0.7351296 0.076432 
4 8.848215 0.439543 0.6204034 0.044947 

1FemurY 

1 14.27434 0.988857 0.7684679 0.077422 
2 17.52562 0.862449 0.78554 0.100447 
3 16.61433 0.903751 0.7920844 0.039396 
4 13.03751 1.707413 0.6796963 0.107539 

1FemurZ 

1 13.92495 0.648372 0.6321654 0.04383 
2 13.92508 1.963974 0.6303937 0.051066 
3 13.30963 3.053773 0.613337 0.117242 
4 16.68336 0.64695 0.7626301 0.057128 

1TibiaXA 

1 25.65433 2.56066 0.8932978 0.139538 
2 25.55018 0.969125 0.8595382 0.084769 
3 26.63694 0.93231 0.9114636 0.063366 
4 27.50196 0.695949 0.9482578 0.052015 
5 25.2326 1.635832 0.7977336 0.07472 
6 27.30113 1.031468 0.8511912 0.060096 
7 24.15438 1.347959 0.8407162 0.082193 

1TibiaXP 

1 13.58422 1.11757 0.732867 0.10259 
2 14.0378 0.604911 0.7974058 0.040152 
3 14.21862 0.509739 0.7593782 0.074846 
4 14.61875 0.597952 0.8172262 0.082399 
5 12.47657 0.367019 0.9219338 0.055743 

1TibiaY 

1 11.06206 0.871433 0.538991 0.101716 
2 6.430766 0.424664 0.5234036 0.085672 
3 3.253294 0.209208 0.3946534 0.048193 
4 1.765637 0.061691 0.2959126 0.029027 
5 2.486085 0.135356 0.3550994 0.030591 
6 4.756894 0.376251 0.485883 0.090798 
7 6.430589 0.488355 0.5136496 0.082364 
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Table 6 (continued) 

1TibiaZ 

1 21.05226 1.23758 0.860273 0.080648 
2 12.93179 0.486651 0.6486736 0.047263 
3 12.73523 2.515482 0.6257426 0.154796 
4 13.44049 0.482807 0.7161172 0.026105 

2FemurXA 
1 23.3236 2.783753 0.943728 0.172462 
2 23.7289 1.752368 0.952375 0.09785 
3 25.92176 1.706185 1.099916 0.098336 

2FemurXP 
1 18.8472 1.529432 0.792457 0.09309 
2 22.40834 1.340493 0.960519 0.047764 
3 23.25365 1.197298 1.080612 0.046698 

2FemurY 
1 6.185081 1.809618 0.648556 0.307677 
2 3.508142 0.826228 0.308247 0.078601 
3 3.374453 0.973323 0.279363 0.092445 

2FemurZ 
1 17.79433 1.537087 0.771488 0.100764 
2 12.45721 4.418024 0.66026 0.073567 
3 24.22495 2.989146 0.852571 0.149741 

2TibiaXA 
1 7.362357 0.177483 0.640261 0.038992 
2 3.062179 0.20675 0.289396 0.042454 
3 9.106778 0.481122 0.599755 0.104057 

2TibiaXP 

1 7.412138 0.188373 0.56075 0.032884 
2 7.424591 0.229318 0.61231 0.055185 
3 5.664456 0.233827 0.562304 0.071872 
4 4.892688 0.076036 0.50962 0.017283 
5 3.937769 0.342049 0.459173 0.064403 

2TibiaY 

1 0.924124 0.082297 0.126546 0.021535 
2 2.718596 0.189259 0.285949 0.047099 
3 3.26665 0.230499 0.319116 0.051983 
4 6.22862 0.236135 0.53007 0.056685 

2TibiaZ 
1 12.90154 0.9303 0.602042 0.082952 
2 15.31328 1.50649 0.729692 0.119141 
3 13.53928 1.162609 0.708068 0.106881 
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APPENDIX B 

TUKEY TEST- COMPARISON OF DATA FROM DIFFERENT AREAS 

The Tukey test was used to compare sets of data, which were measured in different areas of 

a specific region. For example, for a region of bone where four areas were tested, the Tukey 

test compares area1 to area2, area1 to area3, area1 to area4, area2 to area3, area2 to area4 

and area3 to area4. Table 7 gives the comparisons of properties between areas in the same 

region. Figure 41, Figure 42 and Figure 43 give the p values for comparison between areas in 

the femur and tibia in pig1, respectively. Figure 44 and Figure 45 give the p values for 

comparisons between areas in the femur and tibia in pig2, respectively. The red horizontal 

line indicates the p=0.05, so the bar over this line means p>0.05 and there is no significant 

difference in this comparison. 
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Table 7: P values for the comparison between areas in the same region. 

 
P value 

Er H 

1 

FemurXA 

2-1 0.291 0.2937 
3-1 0.4946 0.9825 
4-1 0.0011 0.8504 
3-2 0.9799 0.1583 
4-2 0.0768 0.7497 
4-3 0.0338 0.6477 

FemurXP 

2-1 0.9907 0.9992 
3-1 0 0.3688 
4-1 0 0.9053 
3-2 0 0.4405 
4-2 0 0.9475 
4-3 0.1564 0.7627 

FemurY 

2-1 0.0001 0.9818 
3-1 0.0051 0.9542 
4-1 0.2227 0.2371 
3-2 0.4761 0.9989 
4-2 0 0.122 
4-3 0 0.0924 

FemurZ 

2-1 1 1 
3-1 0.9263 0.9628 
4-1 0.0502 0.014 
3-2 0.9263 0.9719 
4-2 0.0503 0.0126 
4-3 0.0126 0.0045 

1 TibiaXA 

2-1 1 0.9949 
3-1 0.928 0.9998 
4-1 0.4157 0.9411 
5-1 0.9991 0.5589 
6-1 0.5495 0.9838 
7-1 0.6508 0.952 
3-2 0.8891 0.9547 
4-2 0.3524 0.6397 
5-2 0.9998 0.9016 
6-2 0.4786 1 
7-2 0.7202 0.9998 
4-3 0.9598 0.992 
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Table 7 (continued) 

1 

TibiaXA 

5-3 0.7147 0.3572 
6-3 0.9893 0.9115 
7-3 0.1261 0.831 
5-4 0.1972 0.1033 
6-4 1 0.5412 
7-4 0.0148 0.4219 
6-5 0.2883 0.9482 
7-5 0.8927 0.982 
7-6 0.0252 1 

TibiaXP 

2-1 0.8328 0.6511 
3-1 0.5996 0.9788 
4-1 0.1625 0.404 
5-1 0.1199 0.0054 
3-2 0.9932 0.9249 
4-2 0.6735 0.9929 
5-2 0.0141 0.0988 
4-3 0.886 0.7344 
5-3 0.0056 0.0187 
5-4 0.0007 0.2104 

1 TibiaY 

2-1 0 0.9999 
3-1 0 0.0529 
4-1 0 0.0002 
5-1 0 0.0066 
6-1 0 0.9038 
7-1 0 0.9976 
3-2 0 0.1094 
4-2 0 0.0006 
5-2 0 0.0155 
6-2 0 0.981 
7-2 1 1 
4-3 0.0002 0.3515 
5-3 0.1286 0.9753 
6-3 0.0002 0.4432 
7-3 0 0.1659 
5-4 0.1769 0.8505 
6-4 0 0.0047 
7-4 0 0.001 
6-5 0 0.0999 
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Table 7 (continued) 

1 

TibiaY 
7-5 0 0.0259 
7-6 0 0.9961 

TibiaZ 

2-1 0 0.0102 
3-1 0 0.0045 
4-1 0 0.0989 
3-2 0.9963 0.9781 
4-2 0.9432 0.655 
4-3 0.8656 0.4252 

2 

FemurXA 
2-1 0.9426 0.9925 
3-1 0.1227 0.1198 
3-2 0.2113 0.1465 

FemurXP 
2-1 0.0014 0.0019 
3-1 0.0003 0 
3-2 0.5791 0.027 

FemurY 
2-1 0.0095 0.0239 
3-1 0.0092 0.0192 
3-2 0.983 0.964 

FemurZ 
2-1 0.0288 0.2332 
3-1 0.0089 0.4446 
3-2 0 0.0249 

2 

TibiaXA 
2-1 0 0 
3-1 0 0.631 
3-2 0 0 

TibiaXP 

2-1 1 0.5195 
3-1 0 1 
4-1 0 0.5273 
5-1 0 0.0384 
3-2 0 0.6012 
4-2 0 0.0357 
5-2 0 0.0012 
4-3 0.0007 0.5542 
5-3 0 0.0504 
5-4 0 0.5399 

TibiaY 

2-1 0 0.0004 
3-1 0 0.0002 
4-1 0 0 
3-2 0.0067 0.7529 
4-2 0 0 
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Table 7 (continued) 

 

 4-3 0 0.0001 

TibiaZ 
2-1 0.0294 0.1978 
3-1 0.6843 0.273 
3-2 0.1124 0.9473 

 

Figure 41: P values for the comparisons between areas in the femur in pig1. Note that the p 

value for the reduced modulus comparison of 1FemurZ 4-1 and 4-2 are 0.0502 and 0.0503 

respectively, meaning there are no significant differences found in these two comparisons. 
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Figure 42:  P values for comparisons between the anterior and posterior regions in the tibia 

of pig1. 
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Figure 43: P values for the comparisons between properties in y and z directions in the tibia 

of pig1. Note that the p value of the hardness comparison for 1TibiaY 3-1 is 0.0529, meaning 

no significant difference found in this comparison. 
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Figure 44: P values of comparison of material properties for the femur of pig2. 
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Figure 45: P values of comparison for the tibia of pig2. Note that the p value for the 

hardness comparison of the 2TibiaXP 5-3 is 0.0504, meaning no significant difference found 

in this comparison. 
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APPENDIX C 

LINEAR MIXED MODEL 

Table 8 shows the result from linear mixed model. The value column is used by Eq. (4) to 

convert back to the mean value of the mechanical properties. 

Table 8: The raw data from linear mixed model for regional and bone effect. 

Reduced modulus 

 Estimate Std.Error DF t-value p-value 

Intercept 8.40891 1.01339 361 8.29782 0 

Tibia (𝐵𝐵𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇) -1.7843 0.66104 361 -2.6992 0.0073 

Y (𝐵𝐵𝐷𝐷𝐷𝐷) 7.55051 0.95625 361 7.89593 0 

XA (𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷) 9.76954 0.90803 361 10.7591 0 

XP (𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷) 4.55402 0.91435 361 4.98062 0 

Hardness 

 Estimate Std.Error DF t-value p-value 

Intercept 0.55574 0.03951 361 14.066 0 

Tibia (𝐵𝐵𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇) -0.1129 0.01771 361 -6.3757 0 

Y (𝐵𝐵𝐷𝐷𝐷𝐷) 0.1844 0.02563 361 7.19517 0 

XA (𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷) 0.30251 0.02433 361 12.4319 0 

XP (𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷) 0.22418 0.02451 361 9.14664 0 
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APPENDIX D 

R CODE FOR LINEAR MIXED MODEL 

data=read.table("C:\\Users\\goldsam\\Desktop\\All.txt")  # Data loaded 

Y1=data[,1]           # Y1=the first column of data 

Y2=data[,2]           # Y2=the second column of data 

Pig=c(rep(1,times=227),rep(2,times=140))    # Label data groups 

Part=c(rep(1,times=112),rep(2,times=115),rep(1,times=69),rep(2,times=71)) 

Direction=c(rep(1,times=28),rep(2,times=28),rep(3,times=28),rep(4,times=28), 

rep(1,times=35),rep(2,times=20),rep(3,times=35),rep(4,times=25), 

rep(1,times=16),rep(2,times=18),rep(3,times=18),rep(4,times=17), 

rep(1,times=18),rep(2,times=14),rep(3,times=15),rep(4,times=24)) 

PIG=as.factor(Pig)          # Take groups as factors 

PART=as.factor(Part) 

DIRECTION=as.factor(Direction) 

summary(logisr<- lme(Y1~PART+DIRECTION, random=~1 | PIG)) #Do linear mixed 

model analysis 

summary(logisr<- lme(Y2~PART+DIRECTION, random=~1 | PIG)) 
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R CODE FOR TUKEY TEST 

data=read.table("C:\\Users\\goldsam\\Desktop\\1FD.txt")  # Data loaded 

ind=c(rep(1,times=28),rep(2,times=28),rep(3,times=56)) # Label data groups 

y1=data[,1]          # y1=the first column of data 

y2=data[,2] 

result=aov(y1~as.factor(ind))       #Do Tukey test 

result=aov(y2~as.factor(ind)) 

anova(result) 

TukeyHSD(result) 

plot(TukeyHSD(result)) 

R CODE FOR ONE-WAY ANOVA 

data=read.table("C:\\Users\\goldsam\\Desktop\\1FA to P.txt")# Data loaded 

y1=data[,1]          # y1=the first column of data 

ind1=c(rep(1,times=28),rep(0,times=28))    # Label data groups 

ind2=c(rep(0,times=28),rep(1,times=28)) 

summary(lm(y1~ind2))        #Do One-way ANOVA  

summary(aov(y1~ind2)) 

y2=data[,2] 

summary(aov(y2~ind2)) 
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APPENDIX E 

COMPARISON OF PROPERTIES OF BONE FOR PAST AND CURRENT STUDIES 

Table 9 gives either the elastic or reduced modulus of bone measured by nanoindentation 

from previous studies mentioned in the background section and current study. Table 10 

gives the hardness of bone measured by nanoindentation from previous studies in the 

background section and current study. 
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Table 9: Nanoindentation modulus measurement of bone.  

Study Specimen E or Er(GPa) 

Giambini et al. [9] 

Human 
vertebrae 
trabecular 

bone 

T7 T8 L4 
A P A P A P 

19.8 17.8 19.6 18.8 17.6 17.5 

Gupta et al. [11] 

Human 
femoral 
cortical 

bone(Er) 

Osteon Interstitial bone 

24~27 Er: >30 

Fan et al. [6] Human 
tibial bone 

Osteon Interstitial bone 
D11 D22 D33 D11 D22 D33 
16.6 17.0 25.1 19.7 18.5 27.1 

Milovanovic et al. 
[16] 

Human 
femoral 

trabecular 
bone 

Young Old 

1.28 1.97 

Gourison-
Arsiquaud et al. 

[10] 

Baboon 
femoral 
cortical 

bone 

Different tissue age 

30~35 

Burket et al. [1] 

Baboon 
femoral 
cortical 

bone 

Different animal and tissue age 

20~40 

Feng et al. [7] 

Porcine 
femoral 
cortical 

bone 

 Interstitial Osteon Transverse 
osteon 

Wet ~20 ~19 ~15 

Dry ~25 ~26 ~26 

Current study 

Porcine 
femoral 

and tibial 
cortical 

bone(Er) 

 XA XP Y Z 

Femur 7.5 13 8.2 18.2 

Tibia 16.1 11 6.5 14 
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Table 10: Nanoindentation hardness measurement of bone.  

Study Specimen H(GPa) 

Giambini 
et al. [9] 

Human 
vertebrae 
trabecular 

bone 

T7 T8 L4 
A P A P A P 

0.74 0.74 0.74 0.73 0.64 0.65 

Gupta et 
al. [11] 

Human 
femoral 
cortical 

bone 

No result 

Fan et al. 
[6] 

Human 
tibial bone No result 

Mi-
lovanovic 
et al. [16] 

Human 
femoral 

trabecular 
bone 

Young Old 

0.59 0.92 

Gourison- 
Arsi-

quaud et 
al. [10] 

Baboon 
femoral 
cortical 

bone 

Different tissue age 

1.4~1.2 

Burket et 
al. [1] 

Baboon 
femoral 
cortical 

bone 

Different animal and tissue age 

0.8~2.2 

Feng et 
al. [7] 

Porcine 
femoral 
cortical 

bone 

 Interstitial Osteon Transverse  
osteon 

Wet ~0.7 ~0.5 ~0.6 
Dry ~1.0 ~0.9 ~1.1 

Current 
study 

Porcine 
femoral 

and tibial 
cortical 

bone 

 XA XP Y Z 

Femur 0.85 0.78 0.55 0.74 

Tibia 0.75 0.68 0.44 0.61 
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