
Knowledge Maximizer: Concept-based
Adaptive Problem Sequencing for Exam Preparation

Roya Hosseini1, Peter Brusilovsky1, and Julio Guerra2

1 University of Pittsburgh, Pittsburgh, USA
{roh38,peterb}@pitt.edu

2 Universidad Austral de Chile, Valdivia, Chile
jguerra@inf.uach.cl

Abstract. To support introductory Java programming students in preparing for
their exams, we developed Knowledge Maximizer as a concept-based problem
sequencing tool that considers a fine-grained concept-level model of student
knowledge accumulated over the semester and attempts to bridge the possible
knowledge gaps in the most efficient way. This paper presents the sequencing
approach behind the Knowledge Maximizer and its classroom evaluation.

Keywords: problem sequencing, concept-based student model

1 Introduction

Exam preparation is a challenging task for college students. For many courses, stu-
dents need to review the content that was studied over the whole semester within a
short time frame, identify possible knowledge gaps and misconceptions, and remedi-
ate these gaps. An adaptive problem-sequencing tool, based on a fine-grained con-
cept-level student model, could be very helpful in this context. By reflecting students’
progress over the whole semester, the student model can distinguish between: 1) con-
cepts that were learned well and need not be practiced again; 2) concepts that were
not mastered and need to be reviewed; 3) and concepts that were missed and may
need a thorough review. Based on this model, an adaptive problem-sequencing tool
can individually guide each student through the exam preparation process.

While concept-level adaptive sequencing is a relatively mature and well-known
approach [1; 2], there are still no instances of its use in the context of exam prepara-
tion. This context, however, is different from the traditional sequencing that carries a
student through the course. Exam-time sequencing implies that a student has a rela-
tively complete knowledge of course materials and little time to improve it. Instead of
gradual coverage of concepts, exam-time sequencing should focus on bridging
knowledge gaps while trying to maximize the number of concepts that are assessed
and mastered by completing each suggested problem. To explore sequencing in this
interesting context, we developed Knowledge Maximizer, a concept-based problem

sequencing tool for Java programming exam preparation. This paper presents the
sequencing approach of Knowledge Maximizer and the results of its classroom study.

2 The Knowledge Maximizer

The goal of the Knowledge Maximizer (KM) is to provide the learner with a sequence
of questions to help address gaps in Java knowledge as quickly as possible. To this
end, KM uses an overlay student model in conjunction with a concept-level model of
Java knowledge represented in the form of Java ontology. The learning content in KM
comprises 103 parameterized self-assessment questions (activity) indexed by ontology
concepts. The indexing distinguishes prerequisite and outcome concepts for each activ-
ity. To select and rank the 10 most important activities, KM uses the following factors:

How prepared is the student to do the activity? The activities for which the student
has less knowledge of prerequisite concepts are not appropriate suggestions. We calcu-
late the learner knowledge for each of the prerequisite concepts in an activity to see
how well the student is prepared to do it. Eq.1 shows the formula:

∑

∑

ʹ′

ʹ′
=

r

r

M

i
i

M

i
ii

w

wk
K

)log(ii ww =ʹ′ Eq. (1)

where K is the learner’s knowledge level about the prerequisites of the activity; iwʹ′ is
the log-smoothed weight for the concept; ki is the level of the learner’s knowledge
about the ith concept and Mr is the set of prerequisite concepts for the activity. More
knowledge of prerequisite concepts for an activity (higher K) makes it a better candi-
date for selection by the optimizer. Due to the short duration of the course and the
complexity of the Java concepts, we do not take knowledge decay into account in Eq.1.

What is the impact of the activity? The formula for this impact is shown as Eq.2
where Mo is the set of outcome concepts for the activity (i.e., concepts that are mas-
tered by the student while working with the activity). Impact I of a certain activity
measures how well it addresses the current lack of knowledge. An activity with a high-
er impact factor is a better candidate for selection by the optimizer.

Has the user already completed the activity? We define it as Eq.3 where S is the
inverse success rate of the student in the activity; s is the number of the times the
student has succeeded in the activity; and is the total number of times the student has
attempted to complete the activity.

Eq. (2)

Eq. (3) SIKR ++= Eq. (4)

Having calculated these factors, we simply rank the activities using Eq. 4 where R is
the rank of the activity which is obtained by summing over the values of K , I , and S .

Fig. 1 shows the KM interface. The question with the highest rank is shown first.
Users can navigate the ranked list of questions utilizing navigation buttons at the top.

t

∑

∑

ʹ′

−ʹ′
=

o

o

M

i
i

i

M

i
i

w

kw
I

)1(

1
1

+
−=
t
sS

The right side of the panel shows the list of concepts covered by the question. The
color next to each concept visualizes the student’s current knowledge level (from red
representing less knowledge to green representing more knowledge).

Fig. 1. The Knowledge Maximizer interface

3 The Evaluation

To assess the value of Knowledge Maximizer, we conducted a classroom study in the
context of a Java-based undergraduate programming course at the School of Infor-
mation Sciences, University of Pittsburgh. All students enrolled in this course were
invited to use the KM during preparation for the final exam. The study began about a
week prior to the final exam. Throughout the course, students used two other adaptive
tools, QuizGuide, and Progressor+ to work with Java problems. Both tools reported
student knowledge updates to the central student model server which was also used by
KM. As a result, many students mastered a significant number of Java concepts by the
time they started with KM and were ready to benefit from its “gap filling” nature.

In our analysis, we counted separately questions accessed from KM and questions
accessed from QuizGuide or Progressor+. Attempts made from KM were made by 14
students while attempts made from QuizGuide/Progressor+ were made by 17 stu-
dents. To assess whether KM was successful in “maximizing” students’ progress
towards the goal, we grouped questions into three different complexity levels based
on the number of involved concepts: 1) Easy, 2) Moderate, and 3) Complex. Table 1
lists the number of attempts made to do easy, moderate, and complex questions from
KM and from QuizGuide/Progressor+. The data reveals that the number of attempts to
access complex questions was about 2.5 times greater in KM. Despite a remarkable
increase in complex questions in KM, the success rates across all systems were com-
parable.

To compare the effect of KM and the other systems on the improvement of stu-
dents’ performance, we compared quiz grades obtained by the students in the second
part of the course and their post-test results. Since in-class quizzes and post-tests have
different numbers of questions, we used a percentage of the total as a relative score.

Quiz

Concepts Knowledge Level

We discovered that the average increase in performance percentage among the stu-
dents who used QuizGuide/Progressor+ was 12% (0.68% to 0.8%) while KM users
experienced an average increase of 19% (0.53% to 0.72%). Moreover, students who
used KM “for real” (i.e., made at least 10 attempts using KM) achieved a 28% in-
crease (0.48% to 0.76%). This provides some evidence (as much as could be collected
in a non-controlled classroom situation where learning can happen outside of the sys-
tems) that KM acted as a strong exam preparation tool, surpassing the more tradition-
al adaptive systems QuizGuide/Progressor+ not designed for exam preparation.

Table 1. Number of Attempts, success rates by System and complexity level

Complexity KM (n=14) QG,P+ (n=17)
Number of Attempts Success rate Number of Attempts Success rate

Easy 27 (6.2%) 93% 1123 (34.6%) 73%
Moderate 189 (43.5%) 68% 1471 (45.3%) 61%
Complex 218 (50.2%) 46% 651(20.1%) 55%

Total 434 58% 3245 64%

4 Conclusion and Future Work

We have explored adaptive problem sequencing in KM to support exam preparation
in a Java programming class. Results of our study revealed the ability of KM to gen-
erate challenging questions that shortened the path to students’ learning goals. KM
can be applied to any other domains with ontology and questions indexed by ontology
concepts. Our future work will focus on improving KM by considering more parame-
ters that affect the selections of questions, such as the timing factor.

Acknowledgement

This research was supported in part by the National Science Foundation under Grant
No. 0447083. Julio Guerra is supported by a Chilean Scholarship (Becas Chile) from
the National Commission for Science Research and Technology (CONICYT, Chile)
and the Universidad Austral de Chile.

References

1. Brusilovsky, P. A framework for intelligent knowledge sequencing and task
sequencing. In: Frasson, C., Gauthier, G. and McCalla, G. (eds.) Proc. of Second
International Conference on Intelligent Tutoring Systems, ITS'92, (Montreal,
Canada, June 10-12, 1992), Springer-Verlag, 499-506.

2. Kumar, A.N. A Scalable Solution for Adaptive Problem Sequencing and its
Evaluation. In: Wade, V., Ashman, H. and Smyth, B. (eds.) Proc. of 4th International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH'2006),
(Dublin, Ireland, June 21-23, 2006), Springer Verlag, 161-171.

