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Abstract

Here, we demonstrated the differentiation potential of murine muscle-derived stem/progenitor cells (MDSPCs) toward
myogenic, neuronal, and glial lineages. MDSPCs, following transplantation into a critical-sized sciatic nerve defect in mice,
showed full regeneration with complete functional recovery of the injured peripheral nerve at 6 weeks post-implantation.
However, several weeks after regeneration of the sciatic nerve, neoplastic growths were observed. The resulting tumors
were malignant peripheral nerve sheath tumors (MPNSTs) with rhabdomyoblastic differentiation, expressing myogenic,
neurogenic, and glial markers, common markers of human malignant triton tumors (MTTs). No signs of tumorigenesis were
observed 17 weeks post-implantation of MDSPCs into the gastrocnemius muscles of dystrophic/mdx mice, or 1 year
following subcutaneous or intravenous injection. While MDSPCs were not oncogenic in nature, the neoplasias were
composed almost entirely of donor cells. Furthermore, cells isolated from the tumors were serially transplantable,
generating tumors when reimplanted into mice. However, this transformation could be abrogated by differentiation of the
cells toward the neurogenic lineage prior to implantation. These results establish that MDSPCs participated in the
regeneration of the injured peripheral nerve but transformed in a microenvironment- and time-dependent manner, when
they likely received concomitant neurogenic and myogenic differentiation signals. This microenvironment-specific
transformation provides a useful mouse model for human MTTs and potentially some insight into the origins of this disease.
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Introduction

Stem cells are engaged in constant cross-talk and are influenced

by the signals that they receive from their environment [1]. Cell-

to-cell interaction, cell-to-tissue matrix contact, and the presence

of certain factors and signaling molecules within the stem cell

microenvironment regulate stem cell homeostasis and determine

stem cell fate [1–3]. Hence, it is believed that key fate-determining

events are generated by interactions between the stem cells and

their local environment and are regulated in vivo by environmen-

tal factors encountered in the stem cell niche [4]. It has been

suggested that the environment is a more significant factor in

neural stem cell fate than the intrinsic properties of the cell [5].

Skeletal muscle has shown to contain progenitor cells that can

undergo neuronal or glial lineage differentiation in vitro [6–9] and

in vivo [10], [11]. Muscle-derived stem/progenitor cells

(MDSPCs), isolated using a preplate technique in our lab, have

been shown to regenerate dystrophin-positive myofibers and

myocytes in a dystrophin-deficient mdx mouse model, participate

in bone and cartilage repair after injury, and replenish the bone

marrow of lethally-irradiated mice with no deleterious effects [12–

17]. Although the true origin of MDSPCs is still unclear, recent

studies suggest that they may take their origin from blood vessel

walls, similar to pericytes and endothelial cells [18], [19].

Here we examine the expression of neuronal and glial cell

markers by MDSPCs isolated from murine skeletal muscle under

controlled culture conditions and investigate their regenerative

potential after peripheral nerve injury. In addition to their ability

to undergo myogenesis, MDSPCs are able to generate neuro-

spheres and further differentiate into neuronal and glial lineages,

including Schwann cells. Mice transplanted with MDSPCs

immediately following a critical-sciatic nerve defect exhibited

complete functional recovery, however, several weeks after

regenerating the sciatic nerve, large neoplastic growths were
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observed. The resulting tumors were classified as malignant triton

tumors (MTTs) [20–22] expressing myogenic, neurogenic, and

glial markers.

Previously, we have reported that specific postnatal stem cells

isolated from the skeletal muscle of mice, were also able to undergo

malignant transformation when exposed to conflicting differenti-

ation signals [23]. Furthermore, we found that transformation

appears to be dependent on altering the balance of intrinsic and

extrinsic signaling pathways and can be abrogated when the ability

of a cell to undergo differentiation is removed [23]; hence, it

appears that the transformation of our stem cells was differenti-

ation-dependent. On the basis of our observations in this study, we

hypothesize that MDSPCs were transformed when their intrinsic

and extrinsic signaling pathways became conflicted due to multiple

differentiation signals received at the wound site and that

differentiating the cells prior to implantation stopped transforma-

tion. Herein, we provide a novel animal model of differentiation-

dependent transformation that mimics human MTTs. We believe

that this differentiation-induced transformation model is useful for

studying the initiating events leading to these tumors and will lead

to a better understanding of the mechanisms underlying the

environmental signals and their link to stem cell transformation.

Materials and Methods

Ethics Statement
All animal experiments were performed with the approval of the

University of Pittsburgh Institutional Animal Care and Use

Committee (Animal Welfare Assurance Number A3187-01) under

approved protocol #13-03.

Cell Isolation
A modified preplate technique was used to isolate MDSPCs

from skeletal muscle biopsies obtained from normal C57BL/10J

mice as previously described [13], [24], [25]. MDSPCs were

cultured in proliferation medium containing DMEM supplement-

ed with 10% fetal bovine serum (FBS), 10% horse serum (HS), 1%

penicillin/streptomycin (all from Invitrogen), and 0.5% chick

embryo extract (CEE; Accurate Chemical). The MDSPCs were

then transduced with a retroviral vector encoding a LacZ reporter

gene containing a nuclear localization sequence (nLacZ) to enable

donor cell tracking [26].

Flow Cytometry
Flow cytometry (FACSAria cytometer using FACSDiva soft-

ware; Becton Dickinson) was used to analyze the expression of

CD34, stem cell antigen-1 (Sca-1), and CD45. Cultured MDSPCs

were washed with phosphate buffer saline (PBS; Sigma-Aldrich)

containing 0.5% bovine serum albumin (BSA; Sigma-Aldrich) and

0.1% sodium azide (Sigma-Aldrich). The cells were pelleted,

resuspended in a 1:10 dilution of mouse serum (Sigma-Aldrich) in

PBS that was supplemented with 1 mL of Fc block (rat anti-mouse

CD16/CD32), and incubated for 10 min. Cells were labeled with

biotinylated rat anti-CD34, FITC-conjugated anti-CD45, and a

PE-conjugated rat anti-Sca-1 monoclonal antibody for 30 min. A

separate fraction of cells was treated with equivalent amounts of

isotype control antibodies. All fractions, including the controls,

were washed and labeled with streptavidin-APC for CD34 labeling

for 20 min. Just before analysis, 7-amino-actinomycin D (7-AAD)

was added to each tube to exclude nonviable cells from the

analysis. All antibodies, as well as streptavidin-APC and 7-AAD,

were purchased from BD Biosciences. Live cell events were

collected and analyzed using flow cytometry with a cell sorter

(FACStar Plus or FACSAria; Becton Dickinson).

Myogenic Differentiation
To induce myogenic differentiation, MDSPCs were plated on

collagen type I-coated (Sigma-Aldrich) 24-well plates in prolifer-

ation medium at a density of 1000 cells/cm2 and then shifted to

differentiation medium (DMEM supplemented with 2% FBS and

1% penicillin-streptomycin) 3 days after seeding. In vitro myogenic

differentiation was evaluated after 5 days by immunocytochemical

staining for fast myosin heavy chain (f-MyHC), a marker of late

myogenic differentiation, using the protocol described below.

Neurosphere formation and differentiation
To form neurospheres, MDSPCs were plated as a suspension on

non-treated 12-well plates at a concentration of 46104 cells/mL in

a medium consisting of NeurobasalTM A (Invitrogen), 100 U/mL

penicillin/streptomycin, L-glutamine (2 mM; Invitrogen), supple-

mented with 1X B27 (Invitrogen), basic fibroblast growth factor

(bFGF, 40 ng/mL; Invitrogen), and epidermal growth factor

(EGF, 20 ng/mL; Sigma-Aldrich) using a similar protocol to that

used by Romero-Ramos et al. [6]. Cells were maintained in this

medium for 7 to 14 days, and the growth factors replaced every 3

to 4 days. The MDSPC-derived neurospheres were passaged

before their diameters exceeded 100 mm, by enzymatic (using

TrypLE [GibcoTM]) and mechanical (with P200 plastic micro-

pipettor) dissociation, then were reseeded in NeurobasalTM A

supplemented with B27, bFGF (20 ng/mL), and EGF (10 ng/

mL). To induce differentiation, the MDSPC-derived neurospheres

were collected, centrifuged, and gently triturated in a "differen-

tiation medium" containing NeurobasalTM A supplemented with

10% FBS (Invitrogen) and 1X B27 (Invitrogen). Single cell

suspensions were plated on poly-D-lysine (Sigma-Aldrich, MW

70,000-150,000) coated 8-well CultureSlides (BD FalconTM) at an

initial density of 56104 cells/0.7 cm2. Plates were checked daily to

determine their state of differentiation, and 50% of the medium

was replaced with fresh differentiation medium when necessary

(when the medium became yellow from turning acidic). Cells were

incubated at 37uC in 5% CO2 in a fully humidified atmosphere for

7 to 14 days.

Immunocytochemistry
The MDSPCs, MDSPC-derived neurospheres, and tumor-

derived cells (TDCs) were screened for several lineage-specific

markers. Briefly, cells were fixed for 30 min in 4% paraformal-

dehyde (Fisher Scientific) in PBS (pH 7.4; Invitrogen), washed,

and incubated for 10 min at room temperature with PBS plus

0.3% Triton X-100 to permeabilize the cell membrane. They were

blocked with 10% normal donkey serum (DS; Jackson ImmunoR-

esearch Laboratories) or goat serum (GS; Vector) for 60 min. Cells

were incubated at 4uC overnight with the following primary

antibodies (in 2.5% DS or GS): nestin (1:1000, goat; Santa Cruz

Biotechnology Inc.), neuronal nuclei (Neu-N, 1:100, mouse;

Chemicon), b-tubulin III (TU-20, 1:500, mouse; Chemicon),

neurofilament (NF, 150 kD, 1:500, rabbit; Chemicon), S100

(1:500, rabbit; Sigma-Aldrich), 2’,3’-cyclic-nucleotide 3’-phospho-

diesterase (CNPase, 1:200, mouse; Sigma-Aldrich), glial fibrillary

acidic protein (GFAP, 1:500, rabbit; Chemicon), oligodendrocyte

specific protein (OSP, 1:200, rabbit; Abcam), myelin basic protein

(MBP, 1:500, mouse; Chemicon), Oligodendrocyte marker O4

(1:200, mouse; Chemicon), NG2 Chondroitin Sulfate Proteogly-

can (1:200, rabbit; Chemicon), NGFR p75 (c-20, 1:200, goat;

Santa Cruz Biotechnology Inc.), or TrKA (763, 1:500, rabbit;

Santa Cruz Biotechnology Inc.) The cells were then exposed to the

appropriate secondary antibodies, donkey anti-mouse or rabbit

IgG-AlexaFluorH 594- or 488- conjugated (1:500; Molecular

Probes) for 30 min, and rabbit anti-goat IgG, Cy3-conjugated
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(1:1000; Sigma-Aldrich) for 60 min. For desmin and f-MyHC

immunocytochemical staining, the cells were fixed and blocked

with 10% HS (Vector) and incubated with the primary antibody

(both at 1:200, mouse; Sigma-Aldrich) in 2.5% HS at 4uC
overnight. After gentle washing, the cultures were incubated at

room temperature for 45 min with the secondary antibody,

biotinylated anti-mouse IgG (1:250; Vector), and subsequently

incubated with streptavidin-conjugated Cy3 (1:500; Sigma-Al-

drich) at room temperature for 20 min. To visualize the nuclei, all

cultures were incubated with 49, 69 diamidino-2-phyenylindole

(DAPI, 100 ng/mL; Sigma-Aldrich) for 10 minutes. Culture slides

(BD FalconTM) were mounted with VectashieldH medium

(Vector). Brightfield, phase contrast, and fluorescent images were

taken using a Leica DMIRB microscope equipped with a Retiga

1300 digital camera (Q imaging) and Northern Eclipse software

system (v. 6.0; Empix Imaging, Inc.). Cells were systematically

quantified in at least 15 fields across the slides or culture dish wells

from four to six independent experiments. Controls included

omitting the primary antibodies during the procedure.

Cell Transplantation
To examine myogenic differentiation in vivo, a viable single cell

suspension of 26105 MDSPCs or MDSPC-derived neurospheres

(14 days in culture) were suspended in 20 mL of PBS and injected

into the gastrocnemius muscle of 6- to 8-week-old mdx mice

(C57BL/10ScSn DMDmdx/J; Jackson Laboratories) via an Ultra-

Fine II syringe (BD BioSciences). At 2 and 17 weeks post-

transplantation, mice were sacrificed and the gastrocnemius

muscles were harvested and flash frozen in liquid nitrogen-cooled

2-methybutane. Serial cryosections, 10 mm in thickness, were

prepared from frozen muscles for immunohistochemical analysis.

Muscle regeneration was quantified by manually counting the

number of dystrophin-positive myofibers in a section containing

the largest graft and calculating the regeneration index.

Neurogenic differentiation in vivo was examined by creating a

7 mm sciatic nerve defect in 6- to 8-week-old severe combined

immune deficiency (SCID) mice. Immediately thereafter, a viable

single cell suspension of 36105 MDSPCs, MDSPC-derived

neurospheres, or an equal volume of PBS (15 mL), was injected

onto the proximal and distal nerve stumps. Mice from each group

were sacrificed as early as 6 weeks after transplantation or

maintained for later time points (up to 15 weeks) to check for

possible tumor formation. The hind limbs, including the sciatic

nerve, were harvested, frozen, and cryosectioned for further

analysis.

Soft Agar Analysis
Cells were suspended in DMEM over a 0.6% agar (Sigma)

underlay at concentrations of 100, 500, and 1000 cells/well on a

12 well plate in triplicate. The cultures were allowed to grow for 2

weeks and then colonies were scored as a % (number of colonies/

100 cells).

Cell Cycle Analysis
Cells were trypsinized and washed in PBS prior to fixation in

ethanol (final concentration –70%) for 15 minutes on ice.

Following fixation, the cells were pelleted and resuspended in a

solution containing 50 mg/mL Propidium iodide (PI), 0.1 mg/mL

RNase A and 0.05% Triton X-100. The cells were incubated for

40 min at 37uC and then centrifuged and resuspended in 500mL

PBS and analyzed by flow cytometry.

Cytogenetic Analysis
Cytogenetic analysis was carried out by the University of

Pittsburgh Cancer Institute Cytogenetics Facility. The cells from

both the MDSPC (passage 36) and TDC (passage 12) populations

were harvested following mitotic arrest with a 2 h treatment with

ColcemidTM (0.1 mg/ml, Irvine Scientific). The cells were then

incubated in hypotonic KCl (0.075M) for 30 min at 37uC and

fixed in 3:1 methanol: glacial acetic acid for 20 minutes, followed

by two washes in fixative. Slides were prepared from the cell

suspensions and incubated overnight at 60uC. Chromosomes were

trypsin-Giemsa banded and 20 cells were counted and analyzed

from each cell culture.

Real-Time PCR
To quantify the NF1 gene, we used real-time PCR to determine

the threshold cycle (Ct) number and normalized to Glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) as an endogenous

DNA control. Nf1 mRNA was detected by RT-PCR using forward

primer 59-GTATTGAATTGAAGCACCTTTGTTTGG-39 and

reverse primer 59-CTGCCCAAGGCTCCCCCAG-39, 35 cycles

at the melting temperature of 60uC. While GAPDH levels were

determined using forward primer 59- GTCGTGGAGTC-

TACTGGTGTC -39 and reverse primer 59- GAGCCCTTCCA-

CAATGCCAAA -39, 35 cycles at the melting temperature of

60uC. All PCR reactions were performed on a LightCycler 480 II

(Roche Applied Science, Basel, Switzerland). Experiments were

performed with triplicates for each data point. Total RNA was

isolated from our cells using Qiagen’s RNeasy Mini Kit as per

manufacturer’s instructions. For real-time PCR, 1 mg of total RNA

was reverse transcribed to cDNA using Superscript III following

the manufacturer’s protocol (Invitrogen). Real-time qPCR was

performed on 2 ng of cDNA using SYBR Green (Roche) and a

Light Cycler 480II (Roche) in accordance with the manufacturer’s

instructions. All values were normalized to GAPDH expression.

DNA sequencing
Exons 4 to 9 of the Trp53 gene were amplified by PCR. The

PCR products were run out on 1.5% agarose gels. Amplifications

were directly cut from the gel and extracted using Qiagen Gel

Extraction kit as per manufacture’s protocol. Gel-purified PCR

products were sequenced using the BigDye Terminator Cycle

Sequencing Ready Reaction version 1.1 (Applied Biosystems,

Foster City, CA) and run on an ABI Prism 3730 sequencer (Perkin

Elmer, Wellesley, MA). Data were analyzed using Sequencher

software version 4.1.4 (Gene Codes, Ann Arbor, MI) by

comparison to a reference sequence (GenBank, NM_000546).

Primer sequences and PCR amplification conditions are available

on request.

Histochemistry
Sections were fixed in 1% glutaraldehyde (Sigma-Aldrich), and

stained for nLacZ expression (using X-Gal solution 3 hours at

37uC) for donor cell tracking and then counterstained with eosin

[27]. Masson’s trichrome staining was performed per the

manufacturer’s protocol (Masson’s trichrome stain kit, K7228;

IMEB Inc.) to determine the amount of collagen content in the

fibrotic tissue. Muscle fibers are stained red, collagen is stained

blue, and nuclei are black.

Immunohistochemistry
Cryosections were immunostained for FluoroMyelin (Molecular

Probes) according to the protocol provided by the manufacturer,

and then fixed in 4% PFA, blocked with 5% DS for 1 h, and

A Murine Model for Malignant Triton Tumors

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e82173



incubated with a primary antibody against NF (1:300, rabbit;

Chemicon), for 2 h at room temperature. We then labeled the

cryosections with anti-rabbit secondary antibody conjugated with

AlexaFluorH 594- or 488 for 20 min.

To colocalize donor cells with the glial cell marker CNPase,

tissues were fixed with 4% formalin and blocked with horse serum

for 1 h at room temperature. Sections were then incubated

overnight at 4uC with anti-b-galactosidase (1:200, mouse; Abcam)

primary antibody. The next day, the sections were incubated with

biotinylated horse anti-mouse IgG (1:250; Vector) for 1 h, followed

by a 20 min incubation with Streptavidin-conjugated Cy3 (1:500;

Molecular Probes) to detect the b-galactosidase. Tissues were

blocked again with horse serum for 30 min, incubated with anti-

CNPase (1:200, mouse; Sigma-Aldrich) primary antibody for 2 h

at room temperature, and then with biotinylated horse anti-mouse

IgG (1:250; Vector) for 1 h, followed by a 20 min incubation with

Streptavidin-conjugated FITC (1:500; Molecular Probes) for

CNPase detection. All sections were stained with DAPI (100 ng/

mL; Sigma-Aldrich) for 10 min at room temperature to identify

cell nuclei. For negative controls, the primary antibody was

omitted.

To colocalize donor cells with glial cell marker, GFAP, tissues

were fixed with 4% formalin and blocked with horse serum for 1 h

at room temperature. Sections were then incubated overnight at

4uC with anti-b-galactosidase (1:200, mouse; Abcam) and anti-

GFAP (1:500, rabbit; Chemicon) primary antibodies, followed by

biotinylated horse anti-mouse IgG (1:250; Vector) for 1 h, and a 20

min incubation with Streptavidin-conjugated Cy3 (1:500; Molec-

ular Probes) to detect the b-galactosidase. An incubation of 20 min

with AlexaFluorH 488-conjugated anti-rabbit (1:500; Molecular

Probes) secondary antibody was used to detect GFAP immuno-

reactivity.

To colocalize donor cells with Sca-1, sections were fixed with

4% PFA for 7 min and stained using M.O.M. kit. Briefly, tissues

were blocked with M.O.M.TM Mouse Ig Blocking Reagent for 1

hr at room temperature. To block non-specific binding, Avidin/

Biotin block kit (Vector) was used following the manufacturer’s

instructions. After 5 minutes incubation with M.O.M.TM diluent,

sections were incubated with b-galactosidase (1:200, mouse;

Abcam) and Sca-1 (1:200, rat; BD) for 90 min at room

temperature. The sections were then rinsed in PBS and incubated

with biotinylated horse anti-mouse IgG (1:200; Vector) in diluent

for 15 min. This was followed by a 20 min incubation with

streptavidin-conjugated 594 (1:500; Sigma-Aldrich) for b-galacto-

sidase. The sections were then rinsed and incubated with

biotinylated goat anti-rat IgG (1:250; Vector) in diluent for 20

min and followed by a 20 min incubation with streptavidin-

conjugated 488 (1:500; Sigma-Aldrich) for Sca-1. DAPI was used

to identify cell nuclei. For negative controls, the primary antibody

was omitted.

Tumor sections were stained with VectastainH Elite ABC kit

(Vector Laboratories) following the manufacturer’s protocol with

anti-mouse or -rabbit IgG appropriate to primary antibodies

against NF (1:500, rabbit; Chemicon), S100 (1:500, rabbit; Sigma-

Aldrich), and desmin (1:200, mouse; Sigma-Aldrich). Slides were

then developed using the peroxidase 3, 39-diaminobenzidine

(DAB) substrate kit (Vector Laboratories). For the purpose of

double labeling, a sequential staining of each primary antibody

was performed using anti-rabbit IgG Vectastain ABC kit (Vector

Laboratories). The slides were developed using DAB Substrate Kit

(brown) for NF and VIP Substrate Kit (purple) for S100 (both from

Vector Laboratories).

For dystrophin staining, the gastrocnemius muscles injected

with MDSPCs or TDCs were harvested 14 days after transplan-

tation, flash frozen in liquid-nitrogen-cooled 2-methylbutane, and

serially cryosectioned (10 mm). Sections were fixed with 5%

Formalin for 5 min, rinsed with PBS, blocked with 10% DS for

60 min, and then incubated with anti-dystrophin (1:300, rabbit;

Abcam) primary antibody in 2.5% DS for 60 min. Next, the

sections were washed, then incubated with secondary antibody,

AlexaFluorH 594-conjugated anti-rabbit (1:500; Molecular

Probes), for 20 min. To visualize the nuclei, sections were

incubated with DAPI for 10 minutes. A Nikon Eclipse E800

microscope, equipped with a Spot digital camera and software

system (v. 3.0.4; Diagnostic Instruments), was used for capturing

images to quantify the regenerative index (the number of

dystrophin-positive fibers in the host muscle per 105 transplanted

donor cells).

Functional Assessment
Functional recovery of the sciatic nerve in mice was evaluated

by measuring walking tracks, using a 6646 cm corridor (straight

maze) lined with white paper (Benchkote; Cardinal) and open at

one end to a darkened compartment. The hind paws of the

animals were pressed into the surface of a black waterproof

inkpad. The animals were then walked multiple times to obtain

measurable footprints over a 14 week time period. The animals’

feet were immediately washed in lukewarm water at the end of the

tests. We scanned the collected paw prints with a Microtek

9800XL scanner and evaluated the tracks for toe spread and print

length using the Northern Eclipse software system. We derived

factors for each parameter to calculate the sciatic functional index

using a protocol previously described and validated by Inserra et al.

for mice [28].

Statistical Analysis
The Student’s t-test or the Mann-Whitney Rank Sum test

(where appropriate) were used for direct comparisons between

treatment and control groups using SigmaStat (Jandel Scientific

v2.0). A P value of ,0.05 was regarded as significant.

Results

MDSPC isolation and myogenic differentiation
Muscle-derived stem/progenitor cells (MDSPCs) were isolated

from skeletal muscles of female newborn C57BL/10J mice using a

modified preplate technique [13], [24], [25]. Similar to previously

reported isolates [13], most of these cells were positive for the stem

cell surface markers CD34 (88.5%) and Sca-1 (87%), showing 78%

CD34/Sca-1 double-positive cells by flow cytometry. Very few

cells expressed the myogenic cell marker desmin (,1.5%)

following immunofluorescence staining. The cells were initially

plated at a density of 250 cells/cm2 at 20-30% confluency and

transduced with a retroviral vector containing an nLacZ reporter

gene [12], [13], [16] for donor cell tracking. The cells were

subcloned to obtain a population of MDSPCs that was over 90%

b-gal-positive (data not shown). We found no significant difference

in cell marker expression compared to the parental MDSPCs

suggesting the stability of these cells in vitro.

As expected, MDSPCs fused and formed multinucleated

myotubes expressing f-MyHC (Fig. 1A). In order to further

explore the myogenic potential of MDSPCs, their ability to

regenerate dystrophin-positive muscle fibers after intramuscular

implantation in dystrophin-deficient mdx mice was examined

(n = 10). Fourteen days post-implantation, many dystrophin-

positive myofibers could be found within the injected muscle

(Fig. 1B). Furthermore, donor nLacZ-positive nuclei could be
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observed within the regenerated myofibers 17 weeks (120 days)

post-implantation (Fig. 1C).

MDSPCs can undergo neuronal and glial differentiation
in vitro

The MDSPCs were screened by immunocytochemistry for a

series of neurogenic and glial cell markers prior to differentiation.

Undifferentiated MDSPCs showed phenotypic heterogeneity by

their expression of cell markers that label neuroepithelial

progenitors (nestin, 9164.9%), oligodendrocytes and Schwann

cells (CNPase, 8869.0%), and postmitotic neurons (NF,

53614.0%); however, they were negative for other cell markers

of neuronal maturity, such as neuronal nuclei, Neu-N. When

MDSPCs were cultured in defined serum-free medium supple-

mented with epidermal growth factor (EGF) and basic fibroblast

growth factor (bFGF) [6], they generated free-floating clusters of

cells (MDSPC-derived neurospheres) within 7 to 10 days (bright-

field; Fig. 1D). Many of the cells on the outer surface displayed

microspikes—a characteristic of neurospheres evident at higher

magnification [6] (data not shown). These MDSPC-derived

neurospheres expressed neuronal markers (b-tubulin III, NF,

and Neu-N), a marker for myelin producing oligodendrocytes and

Schwann cells (CNPase), and the astrocytic marker GFAP (inset;

Fig. 1D). Though these MDSPC-derived neurospheres expressed

neuronal and glial lineage commitment markers, they also retained

expression of the neuroendothelial progenitor marker nestin (inset;

Fig. 1D).

The MDSPCs, unlike some neural stem cells derived from the

developing brain [29], appear to require exogenous factors to

trigger commitment to a neurogenic cell lineage. A negatively

charged culture surface, high serum levels, and eliminating

mitogens, were all required to further induce neuronal and glial

differentiation of the MDSPC-derived neurospheres. After 3 days

in culture, the neurospheres differentiated into a variety of cell

types with diverse morphologies; including small and round, large

and flat, spindle-shaped, and round cell bodies with thin extended

processes (phase contrast; Fig. 1E). Over 70% of cells were positive

for the neuronal markers b-tubulin (n; Fig. 1E) and NF (data not

shown), 88% were positive for the astrocyte marker GFAP (a; Fig.

1E), 22% expressed the immature oligodendrocyte marker NG2

(o; Fig. 1E), and 65% displayed the mature oligodendrocyte

marker O4 (data not shown). The simultaneous expression of both

neuronal and astrocyte cell markers has been observed previously

in vitro in hippocampal stem cells treated with bFGF in serum-free

medium [30], in the rat embryonic striatum at early stages of

differentiation [31], and in immortalized embryonic mesencephal-

ic mouse cells [32]. Similarly, postnatal forebrain neural progen-

itors can display mixed glial and neuronal properties in vitro when

they co-express neuron-specific enolase (NSE), NF, and GFAP

[33]. Thus, co-expression of glial and neuronal cell markers seems

to reflect multipotentiality at early stages of neurogenic differen-

tiation in vitro. MDSPC-derived neurospheres expressed nestin

(Fig. 1F) and could be further differentiated into neuronal, glial,

and Schwann cell lineages positive for NF (Fig. 1G), S100 (Fig.

1H), O4 (Fig. 1I), OSP (Fig. 1J), MBP (Fig. 1K), CNPase (Fig. 1L),

GFAP (Fig. 1M), p75 (Fig. 1N) and TrkA (Fig. 1O). Taken

together these results indicate that MDSPC-derived neurospheres

can differentiate into neurogenic and glial lineages, including

Schwann cells, in vitro.

MDSPCs differentiate into Schwann cells in vivo and
participate in the regeneration of the injured peripheral
nerve

To test the ability of MDSPCs to participate in the regeneration

of the peripheral nerve following injury, the cells were implanted

into a critical-size sciatic nerve defect (a defect unable to undergo

autonomous healing) in mice. The removal of a 4 to 5 mm nerve

segment (Fig. 2A) resulted in a ,6.5 to 7 mm critical-size defect

due to the retraction of the nerve ends (Fig. 2B). The vehicle (PBS)

group exhibited no regeneration (n = 24); some nerve sprouting on

the proximal side of the defect and neuroma formation (a bulb-

shaped thickening created by ineffective and unregulated nerve

regeneration) were the main outcomes (data not shown). However,

complete sciatic nerve regeneration was observed by 5 to 9 weeks

in all of the MDSPC implanted mice (n = 28; Fig. 2C). Notably,

blood vessel networks were also present around all regenerated

nerves (arrowhead; Fig. 2C). The regenerated nerves contained

many donor nLacZ-positive cells (Fig. 2D) and exhibited both NF-

(green) and CNPase immunoreactivity (red; Fig. 2E). Furthermore,

the regenerated nerve contained short nerve segments with node-

like discontinuities in the myelin sheet (CNPase, red) that

resembled nodes of Ranvier-like structures (white circles; Fig.

2F). Cross sections of regenerated nerves exhibited many

regenerated NF-positive axons (green) encompassed by Fluoro-

Myelin (red), indicating the presence of myelin-producing

Schwann cells that form the myelin sheaths surrounding the

regenerated axons (Fig. 2G). To confirm the differentiation of

donor cells to glial lineage, we were able to detect b-gal positive

cells (red nucleated cells) expressing the glial and Schwann cell

markers GFAP (green; Fig. 2H, 2I) and CNPase (green; Fig. 2J)

along the regenerated sciatic nerve.

Quantitative measurement of morphometric parameters, such

as number of myelinated axons, myelin thickness, myelinated fiber

area, axonal area, and g-ratio (axonal area : myelinated fiber area)

[34] were compared between uninjured control (n = 2) and

MDSPC-transplanted nerves (n = 3) in images taken with a

transmission electron microscope (TEM; Fig. 2K-M). Ten weeks

after implantation, the mid-section of the regenerated sciatic nerve

(MDSPC-transplanted) contained an average of 576633 myelin-

ated axons compared to 387612 in the uninjured nerves

Figure 1. MDSPCs exhibit myogenic, neurogenic, and glial differentiation. (A) Ten days after culture in low serum differentiation medium,
MDSPCs differentiated into multinucleated myotubes expressing f-MyHC (red) (overlaid on nuclear counterstain [DAPI; blue]). (B) Many regenerated
dystrophin-positive myofibers (red) are observed in gastrocnemius muscle cryosections of mdx mice (n = 10) 14 days after injection. (C) The nLacZ-
positive donor-derived MDSPCs (blue) could be detected in regenerated myofibers 17 weeks after injections. (D) MDSPCs were able to generate
neurospheres (three-dimensional non-adherent clusters of cells) in enriched-culture medium within 7 to 10 days in culture (brightfield image).
MDSPC-derived neurospheres express the neuronal cell markers b-tubulin III, NF, Neu-N, the myelin producing oligodendrocytes marker CNPase, the
astrocytic marker GFAP, and retained their nestin (a neuroepithelial progenitor marker) expression (inset). Antibodies used are visualized in red with
the nuclear stain, DAPI seen in blue. (E) The MDSPC-derived neurospheres can be further differentiated into neurons (b-tubulin [red], n),
oligodendrocytes (NG2 [green], o), and astrocytes (GFAP [green], a) (inset). MDSPC-derived neurospheres expressed (F) nestin and were differentiated
further into cells that expressed markers found on neuronal and glial (including oligodendrocytes, astrocytes, and Schwann cells) cells, including (G)
NF, (H) S100, (I) O4, (J) OSP, (K) MBP, (L) CNPase, (M) GFAP, (N) the neurotrophin receptor p75, and (O) the tyrosine kinase receptor TrkA (all green,
except O4 [red]). The nuclear stain DAPI seen in blue and b-gal-positive nuclei in red (for H and J-O). Data represent four to six independent
experiments. Scale bars represent 100 mm (A-D) or 50 mm (E-O).
doi:10.1371/journal.pone.0082173.g001
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(P,0.001). Myelinated fiber area and myelin thickness were

assessed as a measure of regenerated fiber maturation. Myelinated

axons in the MDSPC-transplanted group showed a median cross-

sectional area of 8.53 mm2, versus 13.8 mm2 for the uninjured

group (P,0.001, graph not shown) and a median myelin thickness

area of 5.07 mm2 as compared to 7.1 mm2 for the uninjured

control group (P,0.001, graph not shown). The median and 25th

to 75th percentiles of g-ratio in mid-sections of the regenerated

nerves were 0.40% and 0.28% to 0.48%, respectively, versus the

uninjured control group which was 0.50% and 0.42% to 0.56%,

respectively, (P,0.001; Fig. 2N). The increase in the number of

myelinated axons following MDSPC transplantation may be the

result of axonal branching leading to an increased target organ

reinnervation and thus less axonal dieback [35]. Although the

regenerated peripheral nerves are significantly different from the

uninjured nerves for all morphometric parameters mentioned, we

Figure 2. Transplanted MDSPCs foster repair of critical-size sciatic nerve defects. (A) A 4- to 5 mm segment of the sciatic nerve was
removed from the hind limb of each mouse, (B) resulting in a 6.5 to 7 mm defect. (C) Following transplantation of MDSPCs into the defect, complete
regeneration from proximal to distal end was observed (n = 28). Blood vessel networks (arrowheads) were also present around all regenerated
nerves. (D) Many nLacZ-positive cells (blue) were observed between weeks 5 and 9 following injury. ‘‘p’’ corresponds to the proximal stump and ‘‘d’’
to the distal stump. (E) The regenerated nerve exhibited both NF (green) and CNPase (red) immunoreactivity. (F) CNPase (red) staining of the
regenerated sciatic nerve revealed nodes of Ranvier-like structures (white circles). (G) Cross-sections of regenerated nerve showed nLacZ-positive
cells (blue) and exhibited NF-positive axons (green, inset) encompassed by FluoroMyelin-positive cells (red, inset). (H, I, J) Colocalization of b-gal (red)
with (H, I) GFAP (green) or (J) CNPase (green), and DAPI (blue) suggests possible differentiation of the MDSPCs into Schwann cells (double-positive
cells denoted by arrows). (K-M) Electron microscopy of semi-thin cross-sections of (K) non-operated (uninjured) control, and (L, M) MDSPC-
regenerated peripheral nerve 10 weeks after implantation, show a high number of myelin-producing Schwann cells. Arrows indicate Schwann cells
surrounding the myelinated axon. ‘‘Sc’’ corresponds to Schwann cells, ‘‘M’’ to myelin sheath, and ‘‘Ax’’ to axons. (N) Graphical quantification of the g-
ratio (axonal area: myelinated fiber area) represents the median values of both uninjured and MDSPC-regenerated nerves (P,0.001, Mann-Whitney
Rank Sum Test). Sciatic nerve regeneration studies represent three independent experiments. The morphometric parameters represent results from 5
mice (2 controls and 3 treated) and analysis of 1000 fibers. Scale bars represent 100 mm (D, E, and G) or 10 mm (F, H-M).
doi:10.1371/journal.pone.0082173.g002

A Murine Model for Malignant Triton Tumors

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e82173



believe the high number of myelin-producing Schwann cells

(arrows; Fig. 2M) and the low g-ratio (Fig. 2N) indicate thick

myelination of the regenerated axons, highlighting the process of

myelination exhibited in the MDSPC-transplanted group.

Functional recovery of regenerated sciatic nerves was deter-

mined by monitoring mice on a walking track. According to paw

print analysis, MDSPC-treated mice improved their walking

pattern, evidenced by wider toe spread and shorter print length

(Fig. 3A). Further quantifications of paw prints revealed functional

recovery as determined by a decrease in toe spread factor (Fig. 3B),

a decrease in print length factor (Fig. 3C), and an increase in

sciatic functional index (SFI; Fig. 3D), when compared to PBS-

treated control mice. Cell transplantation significantly decreased

the toe spread factor (0.32660.058 versus 0.60462.51 for PBS-

treated mice, P,0.01) and print length factor (0.13260.05 versus

0.2460.036 for PBS-treated mice, P,0.01) at 6 weeks post-

transplantation. These differences became more evident at 10

weeks, (toe spread 0.25960.097 versus 0.55860.026 for PBS-

treated mice, P,0.01 and print length 0.11760.054 versus

0.20960.052 for PBS-treated mice, P,0.01). The first signs of

motor nerve recovery could be observed at 6 weeks post-

transplantation for the MDSPC-transplanted groups (SFI: –

52.465.30) versus PBS-treated mice (SFI: –9062.51, P,0.001).

After 10 weeks, the MDSPC-transplanted groups (–45.2614.2,

P,0.01) demonstrated further improvement in comparison to the

PBS-treated control groups (–86.164.28).

MDSPCs undergo environment-specific transformation
11 weeks post-transplantation into a sciatic nerve defect

Approximately 70% of donor cells (nLacZ-positive) present in

the regenerating sciatic nerve at 5 weeks post-implantation were

Sca1-positive, indicating that a large proportion of donor

MDSPCs remain as progenitor cells weeks after transplantation

(Figure S1). Although complete nerve regeneration was observed 6

weeks post-implantation, 70% of the mice (n = 28) formed large

neoplastic growths between weeks 11 and 13 (Fig. 4A, B). As these

neoplasias were composed almost entirely of nLacZ-positive cells

(data not shown), the neoplasias were highly invasive and positive

for the myogenic markers a-smooth muscle actin (Fig. 4C, D) and

desmin (Fig. 4E, F). The tumors were also positive for the

neurogenic marker NF (Fig. 4G, H), contained focal areas positive

for S100 (Fig. 4I, J), areas that are double-positive for both NF

(brown) and S100 (purple; Fig. 4K, L), and pockets of unorganized

myelin deposition, as seen by FluoroMyelin staining (Fig. 4M, N).

According to histological features, the resulting tumors were

classified as malignant peripheral nerve sheath tumors (MPNSTs)

with rhabdomyoblastic differentiation, otherwise known as "Triton

tumors" [20–22]. Notably, while tumorigenesis was observed,

nerve regeneration was still apparent (white arrow indicating

regenerated nerve; Fig. 4O), implying that tissue regeneration and

cellular transformation may not be mutually exclusive events.

Cells isolated from MDSPC-derived tumors grow as
neurosphere-like structures

Tumor-derived cells (TDCs) cultured in proliferation medium,

grew spontaneously as neurosphere-like structures in the absence

of neurogenic stimulation (Fig. 5A) and were nLac-Z positive (Fig.

5B). These neurosphere-like structures were positive for b-tubulin

III (Fig. 5C), CNPase (Fig. 5D), GFAP (Fig. 5E), nestin (Fig. 5F),

and NF (Fig. 5G), but were negative for Neu-N (Fig. 5H).

Furthermore, as determined by soft agar assays, TDCs had gained

the ability to grow independently of anchorage, while their

parental counterparts (MDSPCs) were incapable of forming

colonies (data not shown). Cell cycle analysis of the parental

MDSPCs and TDCs revealed a shift of DNA content of the TDCs

from the majority of cells being in the G0/G1 phase (parental

45.6% vs. TDCs 10.8%) to the G2/M phase (parental 34.6% vs.

TDCs 66.7%), with over 50% of the TDCs possessing more than a

diploid amount of DNA (Fig. 5I-L). We carried out cytogenetic

analysis on both MDSPC (Fig. 5M) and TDC populations (Fig.

5N). Analysis of the MDSPC culture revealed murine chromo-

somes with near-diploid and near-tetraploid chromosome consti-

tutions; no clonal structural abnormalities were observed. How-

ever, analysis of the TDCs revealed chromosome numbers ranging

from 46-118. None of the TDCs had a chromosome complement

that would be considered normal diploid or tetraploid. Two of the

structural abnormalities observed in the TDCs appear to be

clonal, since they were each observed in more than one cell. Both

of these were large, unidentifiable marker chromosomes, one of

which appeared to be dicentric. Nonclonal chromosome abnor-

malities were seen in each of the TDCs. The karyotypic variability

in these cells suggests the presence of chromosomal instability [36].

Genetic Analysis of MDSPC-derived Tumor Cells
To determine the level of Nf1 expression, real-time PCR

analysis was performed on the mouse Nf1 gene to look at relative

expression in cells pre- and post-implantation. The Nf1 gene was

expressed in both pre- and post-transplantation cells. There is a

slight decrease in the Nf1 gene expression post-implantation

(normalized Ct-values of 27.45 vs. 28.8 respectively), however, this

Figure 3. Transplanted MDSPCs assist in functional recovery of
critically-sized sciatic nerve defects. (A) A depiction of represen-
tative paw prints from control- and MDSPC-implanted mice at 6 and 10
weeks post-implantation. (B-D) Quantification of paw print analyses,
indicating that MDSPC transplantation increases the ability of the mice
to walk normally, displayed a (B) decrease in toe spread factor, (C)
decrease in print length factor, and (D) an increase in SFI (sciatic
functional index) compared to PBS-treated mice. Thirty-five paw prints
were analyzed per group for each time point. Error bars indicate s.e.m.
(*P,0.05 and **P,0.001, Mann-Whitney Rank Sum Test).
doi:10.1371/journal.pone.0082173.g003
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trend was not significant (p = 0.068, t-test). To investigate for

mutations in the Trp53 gene, sequencing of exons 4 to 9 was

performed on DNA from cells pre- and post-implantation. The

sequence of the Trp53 gene pre- and post-implantation contained

no discernible transformation mutations.

TDCs generate tumors when implanted in vivo
To determine whether the TDCs were able to regenerate

tumors, the cells were implanted into a critical-sized sciatic nerve

defect in mice (n = 16). Following implantation, neoplastic growths

were observed between 4 and 8 weeks in all implanted mice.

Furthermore, these tumors were highly aggressive and invaded all

of the surrounding tissue of the leg, destroying muscle as well as

bone (arrows), and were composed of poorly undifferentiated

rhabdomyoblasts (small blue and pink cells) (Fig. 6A, B).

TDCs maintained their ability to undergo myogenesis in
vitro but formed tumors when implanted into the
skeletal muscle

Though TDCs appear to be spontaneously neurogenic, they

express the myogenic marker desmin (red, 12%; Fig. 6C) and

retain their ability to form f-MyHC-positive myotubes in vitro (Fig.

6D). While the parental MDSPCs regenerated muscle fibers and

showed no sign of tumorigenesis up to 17 weeks post-implantation

(n = 10; Fig. 6E), the TDCs rapidly formed tumors when injected

into the skeletal muscle of mice (n = 10). These tumors formed 4

weeks post-implantation in 100% of the mice and were composed

Figure 4. Between weeks 11 and 13, approximately 70% of the mice (n = 28) implanted with MDSPCs formed large neoplastic
growths. (A, B) Representative image of hematoxylin and eosin staining of tumors that formed in mice implanted with MDSPCs. (C-L) The resulting
tumors were classified as malignant peripheral nerve sheath tumors with rhabdomyoblastic differentiation (Triton tumors) by showing positivity for
(C, D) smooth muscle actin (brown), (E, F) desmin (brown), (G, H) NF (brown), and pockets of (I, J) S100 (brown), (K, L) as well as cells positive for
both NF (brown) and S100 (purple). Positive cells (brown, C-J) or double-positive cells (K and L) are indicated by black arrows. Images B, D, F, H, J, and
L show a higher magnification image of the image they were preceded by. (M, N) The neoplasias were also positive for FluoroMyelin (green),
showing areas of unorganized myelin deposition. (O) Image depicting NF (green) and FluoroMyelin (red) double-stained sections from a regenerated
nerve (white arrow) in the area of tumorigenesis. Negative control sections were similarly processed without primary antibodies. Scale bars represent
100 mm.
doi:10.1371/journal.pone.0082173.g004
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of donor nLacZ-positive cells (Fig. 6F). A schematic representation

of these results is shown in Figure 6G. Of note, injection of

parental MDSPCs, subcutaneously or intravenously, exhibited no

signs of tumor formation up to 1 year post-implantation (data not

shown).

In vitro differentiation of MDSPCs eliminates niche-
specific transformation

To rule out the possibility that our perceived transformation was

due to the presence of pre-transformed cells within our MDSPC

population, and was, in fact, due to an imbalance of intrinsic and

extrinsic signaling, we altered the intrinsic predilection of the cells

by differentiating them prior to implantation. If environmental

cues were leading to the transformation of MDSPCs, then altering

the ability of cells to differentiate to a committed lineage should

abrogate transformation. Therefore, MDSPCs were cultured as

neurospheres for 14 days, dissociated to a single cell suspension,

and implanted into either the skeletal muscle of dystrophic mice or

a critical-sized sciatic nerve defect. When the dissociated neuro-

spheres were injected into the skeletal muscle of mdx mice, poor

muscle engraftment was observed (Fig. 7A, B), as evident by a

Figure 5. TDCs maintain their neurogenic and myogenic differentiation potential in vitro. (A) TDCs grew as neurosphere-like structures in
the absence of neurogenic medium, and (B) were nLacZ-positive (blue). (C-H) Immunofluorescent analysis of these spontaneously-occurring
neurosphere-like structures demonstrated that they were positive for (C) b-tubulin III, (D) CNPase, (E) GFAP, (F) nestin, and (G) NF, but were negative
for (H) Neu-N. For all immunofluorescence, the antibodies used are visualized in red, with the nuclear stain DAPI seen in blue. (I-L) Cell cycle analysis
of the parental MDSPCs and TDCs was performed by FACS. Shown is the (I, J) DNA content and (K, L) graphical representation of the results,
indicating the apoptotic, G0/G1, S, and G2/M fractions. (M, N) Karyotypic analysis of MDSPCs and TDCs. (M) Depicted is a representative karyotype
from the MDSPC population (40, XX). (N) Karyotype of one of the TDCs that has 68 chromosomes, is hypertriploid, and expresses several
unidentifiable marker chromosomes, the largest of which appears to be dicentric. Scale bars represent 100 mm.
doi:10.1371/journal.pone.0082173.g005
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decrease in regeneration index (number of dystrophin positive

myofibers per 100,000 injected cells) compared to parental

MDSPCs (36.769.45 versus parental MDSPCs 180.2649.1,

P,0.001; Fig. 7C). This suggests that in vitro differentiation of

cells towards a neurogenic lineage reduced the ability of the cells to

undergo myogenic differentiation. This was expected, since we

postulated that differentiation of MDSPCs prior to implantation

would diminish their ability to respond to local environmental

cues. More interestingly, when the dissociated MDSPC-derived

neurospheres were implanted into a critical-sized nerve defect of

mice, no tumor formation was observed (n = 5), however, 80% of

the mice formed fibrotic masses positive for collagen by Masson’s

trichrome staining 4 weeks post-implantation (as seen by intense

collagen deposits [blue]; Fig. 7D-E), while the remaining mouse

exhibited no signs of tumor formation, nerve regeneration, or

fibrosis. In comparison, the implanted parental MDSPCs gener-

ated large neoplastic growths that contained almost no Trichrome-

positive areas (5.63%61.6 versus neurosphere-implanted group

32.5%616.1, P,0.001; Fig. 7F). These findings are summarized

in the schematic representation shown in Figure 7G.

Discussion

In the process of investigating the potential of murine postnatal

MDSPCs to regenerate peripheral nerve, we have isolated a

population of stem/progenitor cells that are able to differentiate

into muscle, neuronal, and glial cells depending on the environ-

mental cues that they receive. Although these cells appear to have

tremendous regenerative potential, they form neoplastic growths,

classified as MTTs [22], between 11 and 13 weeks post-

implantation, but only when implanted into a sciatic nerve defect.

MTTs, referred to as MPNSTs with rhabdomyoblastic differen-

tiation [20], are an uncommon malignancy in humans, which are

believed to originate from the neurilemmal sheath of peripheral

nerve fibers [37] or from cells associated with the nerve sheath,

such as Schwann cells, perineural cells, or fibroblasts; they

comprise approximately 5–10% of all soft tissue sarcomas [22],

[38]. MTTs are aggressive cancers with crude two- and five-year

survival rates of 33% and 12%, respectively [39], [40]. For a

tumor to be classified as an MTT, it must meet the following

criteria: (i) originate along a peripheral nerve, or represent a

metastasis from such a tumor, (ii) have growth characteristics of a

Schwann cell tumor phenotype, and, (iii) demonstrate that

rhabdomyoblasts can arise from within the body of the tumor

[21]. Based on the analysis of the tumors generated here and

consultation with independent pathologists, the generated tumors

fit the criteria to be classified as MTTs. Furthermore, MTTs have

been shown to be positive for S100, desmin, muscle-specific actin,

and myogenin; [21], [38] all of which are exhibited by our

observed tumors. Furthermore, based on our cytogenetic analyses

Figure 6. TDCs can regenerate tumors in vivo. (A, B) Hematoxylin and eosin staining of a tumor generated from TDCs implanted into a sciatic
nerve defect in mice (n = 16) demonstrates the destruction of the bone, as seen by the smooth and pink stained portion (arrows). (C, D) In vitro
myogenic analysis demonstrates that the TDCs possess expression of (C) the myogenic marker desmin (red, 12%) and have the ability to form
myotubes in vitro, as seen by (D) f-MyHC staining (red). (E, F) In vivo myogenic analysis demonstrates that although (E) parental MDSPCs (blue)
showed myofiber regeneration (muscles stained with eosin) after injection into the gastrocnemius muscles of mdx mice and were detected up to 17
weeks without sign of tumor formation (n = 10), the (F) TDCs (blue) implanted into the muscle formed tumor 100% of the time (n = 10), and as early
as 4 weeks post-implantation. (G) A schematic of the experimental design and results displayed above. Negative control sections were similarly
processed without primary antibodies. Scale bars represent 250 mm (A) or 100 mm (B-F).
doi:10.1371/journal.pone.0082173.g006
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of primary MTTs, and as seen by others [41], it appears that the

tumor-derived cells are genetically unstable, displaying more than

normal modality. Similarly, the cell cycle analysis shows that the

majority of these cells had increased DNA content, with 67% of

the cells in the G2/M tetraploid state.

It was originally believed that these tumors were caused by

either Schwann cells inducing muscular differentiation of other

cells, or by malignant Schwann cells transforming directly into

striated muscle cells [20]. This latter theory is the more widely

accepted concept as it is possible that Schwann cells, being of

neural crest origin, may retain a capacity for mesenchymal

differentiation [40]. In 1921, Rotter postulated that adult cancers

arise from the inappropriate reactivation of embryonal cell-like

progenitor cells within adult tissues [42]. Herein, we posit an

alternative theory and provide an experimental mouse model

along with the possible explanation for the origins of Triton

tumors. Based on our results, we hypothesize that Triton tumors

may originate from the "inappropriate activation" of progenitor

cells present in skeletal muscle that become transformed when

activated and exposed to a neurogenic stimulus.

Previously, we have shown how a lack of regulation of these

signals is involved in the initiation of the oncogenic potential of

specific populations of MDSPCs [23]. In this model, for the

spontaneous transformation of somatic stem cells, progenitor cells

isolated from the skeletal muscle of mice show spontaneous

microenvironment-specific transformation when expressing the

Figure 7. Differentiation of MDSPCs to a neurogenic lineage prior to implantation decreases their ability to respond to
environmental cues and stops transformation. (A-C) Two weeks post-implantation MDSPC-derived neurospheres showed a reduction in
muscle regeneration when compared to the parental MDSPCs. (A) The nLacZ donor-derived MDSPC-derived neurospheres (blue) could be detected
in eosin stained regenerated myofibers and (B) showed fewer regenerated dystrophin-positive myofibers (red) compared to undifferentiated
MDSPCs. (C) Graphical representation of the regeneration index (number of dystrophin positive fibers/100,000 injected cells) of parental MDSPCs and
MDSPC-derived neurospheres (NS). NS-injected mice yield a lower regeneration index compared to the undifferentiated MDSPCs. Error bars indicate
6 s.d. (**P,0.001, Mann-Whitney Rank Sum Test). (D-F) When dissociated MDSPC-derived neurospheres were implanted into a sciatic nerve defect,
tumor formation was abrogated. Furthermore, 80% of mice (n = 5) formed large fibrotic masses, as seen by (D) eosin staining with nLacZ donor
MDSPC-derived neurospheres shown in blue, in addition to (E) intense collagen deposits identified with Masson’s Trichrome staining (blue). (F)
Graphical representation of the Trichrome-positive area of parental MDSPCs and NS. Parental MDSPCs show minimal signs of fibrosis evident by a
lower percentage of collagen-positive area. Error bars indicate 6 s.d. (**P,0.001, Mann-Whitney Rank Sum Test). (G) A schematic of the experimental
design and results. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0082173.g007
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osteogenic factor BMP4 [23]. The tumors generated were

osteorhabdomyosarcomas and formed only when a specific

population of MDSPCs was transduced with BMP4 and implanted

into a myogenic environment [23]. The finding that stem cells can

undergo spontaneous transformation is not unique to MDSPCs.

Embryonic stem cells (ES) and testicular stem cells (TS) have been

shown to form teratomas when implanted outside of their native

environments [43–49]. Co-culturing human ESCs with immor-

talized human astrocytes from fetal midbrain tissue cells (making

them more similar to adult progenitor cells prior to implantation)

resulted in substantial and long-lasting restitution of motor

function when transplanted into a Parkinsonian mouse model

[50]. Interestingly, the component of the regenerated tissue that

was comprised of slowly-dividing cells was potentially tumorigenic.

These cells resembled a population of neuroepithelial cells that

had failed to differentiate [50]. Mesenchymal stem cells (MSCs)

have been shown to become tumorigenic [51–53] and have been

implicated in childhood leukemia [54], epithelial cancers [55], and

osteosarcomas [56–58]. It has also been shown that leukemic stem

cells express antigens similar to those expressed by hematopoietic

stem cells (HSCs) [59]. Furthermore, the concept of peripheral

nerve regeneration inducing tumors is not new. Though periph-

eral nerves have the capacity to repair and restore their function,

complete recovery after peripheral nerve lesion rarely occurs in the

clinical setting [60], [61]. Often, as a result of improper and

irregularly regenerating nerve fibers, benign (non-malignant)

tumors (neuromas) develop [61].

In light of these findings, we posit that there are two distinct

populations within our pool of cells2 one that is actively cycling

and the other that is slower to cycle (quiescent), remaining as a

‘‘reserve’’ pool. When these cells are implanted in a mouse sciatic

nerve defect, the cycling cells undergo glial differentiation and

assist in the regeneration of the peripheral nerve, while the reserve

cells remain quiescent. As the cycling cells become depleted to

differentiation, the quiescent cells become ‘‘activated’’. However,

when the healing is complete, the neurogenic/glial signals

generated from the injury decrease and the newly activated

reserve cells begin to respond to both the decreased neurogenic/

glial signals from the injury, as well as the myogenic environmental

cues (which are no longer masked by the neurogenic/glial signals).

Since the reserve cells have the capacity to respond to both the

environmental myogenic signals as well as the signals generated

from the injury, these two signals disrupt cellular homeostasis and,

in time, lead to transformation. This may explains why our model

initially displays peripheral nerve regeneration, followed by

transformation weeks later. This is supported by our observation

that clusters of Sca1-positive progenitor donor cells are still present

in the regenerating nerve before the transformation was initiated.

The previously introduced idea of a close association between

wound healing and tumorigenesis by Rudolf Virchow in 1863, has

been further evaluated in the past decade [62] and highlights the

recent observation that adult myelinating Schwann cells in

neurofibromatosis type 1 (NF1)-deficient mice develop normal

nerve. However, only after a sciatic nerve injury did loss of Nf1

expression induce tumorigenesis, providing evidence that micro-

environment signals at the wound site can be tumor-promoting

[63]. The direct mechanism of transformation and the environ-

mental signals involved with our observed tumorigenesis have yet

to be elucidated, it is most likely that key molecules found in both

myogenesis and neurogenesis are potential candidates. Loss of Nf1

expression and mutations in the p53 tumor suppressor gene has

been reported in many of the human and animal models of

MPNSTs. However, we found no significant alteration in Nf1 gene

expression or any transformation mutations in the Trp53 gene in

our cells pre- and post-transplantation. Our results are in

agreement with molecular analysis performed in a study by

Strauss et al. [64], reporting the retention of Nf1 gene expression

in sporadically occurring human Triton tumors, suggesting that

loss of Nf1 expression is not required for the development of

MPNSTs. Also, key observations in a mouse model of NF1 show

that tumors only developed in a heterozygous (Nf1+/2) back-

ground, implicating other Nf1+/2 cell types in neurofibroma

formation and Nf1 loss of heterozygosity (LOH) in the Schwann

cell lineage is necessary, but not sufficient, to elicit neurofibromas

[65], [66]. Interestingly, our findings are also in accordance with

an extensive study by Verdijk’s group that included a compre-

hensive review of literature, plus 145 MPNST cases over 36 years,

assessing the Trp53 gene mutation frequency. The results of their

study indicate that in contrast to current animal models of

MPNSTs, Trp53 mutations are relatively rare in human MPNSTs.

They also found no correlation between p53 immunostaining or

TP53 mutation with sex, age, NF1 status, or tumor location,

suggesting a relatively minor role of this gene in MPNST

tumorigenesis [67]. We believe our results are in accordance with

the findings obtained from human patients, and consequently, our

mouse model may be more relevant to human MTT at the cellular

and molecular level. Therefore, studies are underway to gain a

better understanding of signaling molecules and pathways involved

in this rare and complex tumor.

Notably, the tumorigenesis observed here, though reproducible,

was not a mutually exclusive event. The mice that developed

Triton tumors simultaneously displayed complete sciatic nerve

regeneration and regeneration within the skeletal muscle.

Furthermore, this transformation could be abrogated when the

cells were differentiated beyond the ability to respond to local

signals or when their ability to receive the differentiation signal was

impaired. In this case, differentiating the cells toward the

neurogenic lineage prior to implantation abrogated tumorigenesis.

We believe that the ability to halt transformation by removing the

cells’ ability to respond to environmental cues (by differentiating

our cells prior to implantation) is important. Not only does this

finding substantiate the involvement of environmental signals in

the transformation of MDSPCs, it also provides us with ideas as to

how to avoid transformation. For example, by using a synthetic

‘‘nerve guide’’ [68], the MDSPCs may be protected from non-

neuronal environmental signals and ‘‘forced’’ to only undergo

neurogenic differentiation, while avoiding an oncogenic phenotype

later in the regeneration process.

In summary, our results demonstrate key findings that murine

muscle-derived stem/progenitor cells can functionally regenerate

peripheral nerve; however, these cells can undergo spontaneous

transformation at the site of nerve injury. Furthermore, this

transformation occurs in an environment and time-dependent

fashion and differentiating the cells prior to implantation

eliminates transformation. Our results also provide evidence that

experiments in tissue engineering and regenerative medicine

should be evaluated over a prolonged period of time, as the

transformation observed here occurs after 11 weeks post-implan-

tation, several weeks after complete histological regeneration. We

believe that in an effort to understand the origin of the perceived

niche-specific oncogenesis, using this unique mouse model, we

may reveal the biomarkers associated with human MTT and

potentially identify novel therapeutic strategies.
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