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Abstract

Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma
viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque
model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-
SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase
inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for
17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in
peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR.
The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract
of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting
that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not
correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal
tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be
cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral
replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which
may not be accurately reflected by frequencies of infected cells in blood.
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Introduction

Current treatment for HIV infection is not curative. Although
plasma viremia can be suppressed to very low or undetectable
levels in HIV-infected individuals by effective antiretroviral
therapy (ART), infected cells remain in the body and treatment
discontinuation is almost always associated with viral
recrudescence and the risk of disease progression [1-5]. Cells
and tissues that harbor proviral HIV-1 DNA during suppressive
ART capable of reinitiating productive systemic infection when
treatment is stopped, are considered viral reservoirs and have
been incompletely characterized, due in part to the difficulty in

obtaining sufficient amounts of the relevant tissues and cells for
comprehensive testing. It has been shown that early treatment
of HIV-1 infection can reduce the size of viral reservoirs [6-9],
suggesting that they begin to be established very early in
infection, although they may continue to develop thereafter.
Evidence has also been provided in support of the competing
but not mutually exclusive ideas that these reservoirs are
maintained by ongoing viral replication during ART [10-14] or
by expression of virus from long-lived cells infected prior to
initiation of ART [15-19].

Animal models enable more extensive tissue sampling,
including tissue collection at scheduled necropsy, than is
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typically feasible in a clinical setting and offer promise for
facilitating studies of viral reservoirs and evaluation of viral
eradication strategies. Macaques are widely used in nonhuman
primate models for AIDS after infection with simian
immunodeficiency viruses (SIV) or chimeric SIV containing
HIV-1 sequences (simian-human immunodeficiency viruses or
SHIV). SIV or SHIV infection of macaques recapitulates key
aspects of human HIV-1 infection including progressive
disease with clinically significant immunodeficiency and death
from opportunistic infections or neoplasms despite the
development of antiretroviral immune responses, such as
neutralizing antibodies and cytotoxic T lymphocytes against the
virus. While SIV shares a high degree of structural and
sequence identity to HIV-1, the differences are significant
enough to limit the use of some therapies in SIV-infected
macaque models. For example, non-nucleoside reverse
transcriptase inhibitors (NNRTIs) are only active against
reverse transcriptases (RT) from HIV-1 and not those from
HIV-2 or SIV [20]. To overcome this limitation, the RT coding
region of different SIV clones has been replaced with that of
HIV-1 to produce RT-SHIVs, which can be targeted by RT
inhibitors, including NNRTIs, for use in macaque studies
[21,22].

For meaningful studies of persistent viral reservoirs in
nonhuman primate models, it is necessary to achieve and
maintain clinically relevant levels of viral suppression. Recent
reports interpret lack of evidence for viral evolution to suggest
that ongoing viral replication does not occur during effectively
suppressive ART in humans [15,16,18,19]. Similar findings
were obtained in RT-SHIV-infected monkeys with sustained
suppression of plasma viremia [23]. However, continued virus
replication in the presence of incomplete suppression can lead
to infection of new target cells and re-seeding of reservoirs,
confounding efforts to identify reservoirs that were established
prior to initiation of ART.

In this study, we quantified the viral DNA (vDNA) in tissues
from RT-SHIV-infected pigtailed macaques in which viral
replication was suppressed with the clinically used triple
combination therapy of tenofovir (TFV), emtracitabine (FTC),
and efavirenz (EFV), with or without intensification with an
integrase inhibitor, to characterize reservoirs of infected cells
(vDNA+) persisting in the face of suppressive ART. In addition,
we measured viral RNA (vRNA) levels in these compartments.
Finally, we evaluated potential correlations between levels of
virally infected cells in tissues and peripheral blood
mononuclear cells (PBMC) with the level of plasma viremia.

Materials and Methods

Virus
RT-SHIVmne is a chimeric virus in which the RT coding region

of SIVmne027 was replaced with that of HIV-1HxB2 [21,24]. The
challenge stock was produced by transfection of a full-length
proviral plasmid into 293T cells, expanded in CEMx174 cells,
and titered in TZM-bl cells.

Animals
Twelve male pigtailed macaques (Macaca nemestrina)

between 3-9 years old and weighing between 5 - 14 kg were
infected intravenously with approximately 1×105 infectious units
of RT-SHIVmne. Males were studied due to limited availability of
female pigtailed macaques and because having a mixture of
genders would reduce the power of findings from genital tract
tissues. All animals were housed at the National Institutes of
Health (NIH) in accordance with the American Association of
Accreditation of Laboratory Animal Care standards and all
procedures were performed according to protocols approved
by the Institutional Animal Care and Use Committee of the
National Cancer Institute (Assurance #A4149-01). The animals
were negative at study initiation for serum antibodies to HIV
type 2, SIV, type D retrovirus, and simian T-lymphotropic virus
type 1. Animals were housed in an AAALAC accredited facility
and in compliance with the guidelines in the Guide for the Care
and Use of Laboratory Animals. Animals were maintained in
Animal Biosafety Level 2 housing according to the provisions of
the 5th edition of the Biosafety in Microbiological and
Biomedical Laboratories with a 12:12-hour light:dark cycle,
relative humidity 30 - 70%, and a temperature of 23 - 26°C.
Filtered drinking water was available ad libitum, and a standard
commercially formulated nonhuman primate diet (Purina
Labdiet 5045 “High Protein Monkey diet”, PMI Nutrition
International, St. Louis, MO) was provided thrice daily and
supplemented 3-5 times weekly with fresh fruit and/or forage
material as part of the environmental enrichment program.
Each cage (Allentown, Inc., Allentown, NJ) contained a perch,
a two portable enrichment toys, one hanging toy, and a rotation
of additional items (including stainless steel rattles, mirrors, and
challenger balls). Additionally the animals were able to listen to
radios during the light phase of their day and were provided
with the opportunity to watch full-length movies at least three
times weekly. Pain and distress were relieved by appropriate
measures. All procedures were conducted while the animals
were sedated with intramuscular injection of Telazol (tiletamine/
zolazepam, 3-6mg/kg). Animals that were diagnosed by the
veterinarian to be experiencing more than momentary pain and
distress were evaluated and treated with appropriate analgesic
drugs as indicated. The end point of the study was euthanasia
at the protocol-specified time point by intravenous pentobarbital
(80 mg/kg) in the saphenous vein after sedation with 3 mg/kg
Telazol.

Six animals were left untreated for 30-32 weeks post-
infection. The remaining 6 animals received ART: 2 were
treated daily with TFV, FTC, and EFV for 20 weeks, beginning
at week 10 post-infection; 4 animals were treated daily with
TFV, FTC, EFV, and the integrase inhibitor L-870812, for 17-18
weeks, beginning at week 13 or 14 post-infection. Treatments
were continued until necropsy and administered as previously
described: 20mg/kg of TFV and 40mg/kg of FTC administered
once per day subcutaneously, 400mg of EFV administered one
per day orally, and 100mg of L-870812 administered twice per
day orally [24-27]. Orally administered drugs were given in
treats and animals were observed to ensure that they
consumed them.
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Blood was drawn weekly or biweekly, from which plasma and
PBMC were separated, aliquotted, and stored at -80° C or in
liquid nitrogen, respectively. At week 30-32 post-infection,
animals were euthanized and necropsies were performed,
without prior perfusion, in which 3 equivalent parallel
specimens were randomly selected from each of multiple
tissues and processed as follows: 1) formalin fixed for
histology, 2) flash frozen dry in liquid nitrogen for DNA
isolation, and 3) flash frozen with RNAlater (Ambion, Austin,
TX) in liquid nitrogen for RNA isolation. Tissues sampled
included the gastrointestinal tract (duodenum, jejunum, ileum,
colon, cecum/rectum), liver, lymphoid tissues (thymus, bone
marrow, spleen, axillary, bronchial, inguinal, mandibular,
mediastinal, colonic and mesenteric LN), brain (cerebrum,
cerebellum, and midbrain), genital tract (testicle and seminal
vesicles), and lung. PBMC were also isolated and frozen as
cell pellets or viably cryopreserved in cell culture medium
containing 10% DMSO.

Plasma viral loads and T cell subset counts
Virus was pelleted from EDTA-anticoagulated plasma taken

at each time point for each animal and quantitative RT-PCR
(qRT-PCR) was performed to determine the number SIV RNA
(gag) copy equivalents per ml (copy Eq/ml) of plasma
essentially as previously described [28]. The assay limit for
quantitation was 30 vRNA (gag) copy Eq/ml of plasma.

T lymphocyte subsets (CD3, CD4, CD8, CCR5 expressing T
cells) were measured by a whole blood immunostaining
procedure and flow cytometry analysis. Briefly, tubes were
prepared with 10microliters each of the following antibody
panels (BD Biosciences, San Jose, CA): Panel 1 anti-CD3
(Alexa Fluor 488 conjugate, Clone SP342; BD Biosciences,
San Jose, CA)/anti-IgG2a control (PE conjugate, Clone X39)/
anti-CD8 (PerCPCy55 conjugate, Clone SK1)/anti-CD4 (APC
conjugate, Clone L200), and Panel 2 anti-CD3 (Alexa Fluor 488
conjugate, Clone SP342)/anti-CD195 (CCR5; PE conjugate,
Clone 3A9)/anti-CD8 (PerCPCy55 conjugate, Clone SK1)/anti-
CD4 (APC conjugate, Clone L200). 100 microliters of whole
blood was then added, mixed, and incubated for 30 min at
ambient temperature, followed by addition of 2 ml of FACS
Lysing Solution (BD Biosciences) to lyse red blood cells. After
incubation, cells were pelleted, washed with PBS containing
1% bovine serum albumin fraction IV (Sigma-Aldrich, St.
Louise, MO) and sodium azide, then resuspended in 2%
paraformaldehyde for fixation prior to analysis. To calculate
absolute numbers of different T lymphocyte subsets, the
percentages of each population were multiplied by the absolute
lymphocyte count determined by a total white blood cell count
with differential performed on the same specimen.

Isolation of replication-competent virus from resting
CD4+ T cells from LN biopsies

Superficial (axillary or inguinal) LN were obtained by biopsy
at weeks 12 or 13, 16 or 17 post-infection, or at necropsy
(weeks 30-32 post-infection) and single cell suspensions were
prepared using sterile mesh screens. Resting CD4+ T cells
were isolated to > 95% purity using an immunomagnetic
microbead procedure for depletion of non-CD4+ cells with

antibodies against macaque CD8, CD11b, CD16, CD20, CD56,
CD66abce, and HLA-DR (Miltenyi, Auburn, CA). The cells were
suspended in T cell conditioned medium [29] and a limiting
dilution co-culture assay with CEMx174 cells was performed as
previously described [27]. Infectious units per million cells
(IUPM) were determined by maximum likelihood analysis
based on measurement of supernatant p27 CA levels by ELISA
(Zeptometrix, Buffalo, NY). The assay had a limit of
quantitation of 0.5 IUPM based on maximum likelihood analysis
of a limiting dilution between 1×106 cells - 3.2×102/well in
duplicate [29].

Viral and host cell DNA isolation and measurement in
PBMC and tissues

Total DNA (viral and genomic) was extracted from tissues
with lysis buffer (Nuclei lysis solution, Promega, Madison, WI)
after extensive washing using a TissueLyser (Qiagen,
Valencia, CA). Tissue DNA was extracted using the Wizard
genomic purification kit (Promega) and PBMC DNA was
extracted using the Blood DNA kit (Qiagen) in a total of 100
microliters of supplied buffer. Recovery of macaque CCR5 and
viral gag DNA from PBMC, as described below, were similar for
both extraction methods (data not shown).

qPCR assays were performed in duplicate on 5 microliters of
each extracted DNA sample to quantify macaque CCR5 DNA,
viral gag DNA, and viral 2-LTR circles, without prior PCR pre-
amplification. These assays were performed using qPCR
mastermix (Bio-Rad, Hercules, CA) and primers and probes
specific for each gene (Table S1 in File S1) on a CFX96 real-
time PCR machine (Bio-Rad), using the following conditions:
95° C for 2 minutes followed by 44 cycles of 95° C for 15
seconds and 60° degrees for 1 minute. The limit of quantitation
for each assay was 10 copies/sample for CCR5 and 1 copy/
sample for gag and 2-LTR circles, as determined by a serial
endpoint dilution of standards in replicates of ten, of which
approximately 60% were positive at a nominal template input of
1 copy/reaction (Table S2 in File S1). A plasmid encoding the
macaque CCR5 gene or PCR products for gag and 2-LTR
circle junctions were used to make standard dilutions that were
run in duplicate for each qPCR. Only data generated by assay
runs with standard curves having R2 values of ≥ 0.995 were
used (Figures S1 and S2 in File S1).

Viral and host RNA isolation and measurement in
tissues

Viral and host cell RNA were extracted from tissues stored in
RNAlater. Tissues were rinsed with nuclease-free water and
homogenized using a TissueLyser in the presence of lysis
buffer (RTL, Qiagen) and 20U of RNase inhibitor (Ambion).
RNA was extracted from lymphoid tissues, lung, liver, and
genital tract tissues using the RNeasy kit (Qiagen) in a total of
50 microliters RNase-free water. As this method did not yield
good RNA recovery from gastrointestinal tract and brain
tissues, TRI Reagent (Sigma-Aldrich, St. Louis, MO) was used
to extract RNA from brain and gut tissues, as previously
described [30]. Purified RNA was treated with 10U RNase-free
DNase I (Roche, Indianapolis, IN) and then precipitated and
washed again using the RNeasy kit. RNA extraction of each
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half of a lymph node from an infected animal with both
extraction methods showed similar recoveries of host and viral
RNA (data not shown).

qRT-PCR assays were performed in duplicate on each
sample to quantify macaque CD4 and IPO-8 RNA and viral gag
RNA. cDNA was synthesized using 3 microliters of the RNA
samples as well as RNA transcript standards using the
SuperScript III First Strand Synthesis kit (Invitrogen, Carslbad,
CA) and reverse CD4, IPO-8, or gag primers (Table S1 in File
S1) in a total of 12 microliters. qPCR was performed with 5
microliters of cDNA, using qPCR mastermix (SABiosciences,
Frederick, MD) and primers and probes specific for each gene
(Table S1 in File S1) on a CFX96 real-time PCR machine,
using the following conditions: 95° C for 2 minutes followed by
44 cycles of 95° C for 15 seconds and 60° degrees for 1
minute. The limit of detection for the gag assay was
approximately 1 copy/sample (Table S2 in File S1). CD4 and
gag transcripts for standard dilutions were synthesized from
plasmids encoding the pigtailed macaque CD4 or RT-SHIVmne

gag gene using the RiboMAX large scale RNA production
system (Promega). The standards were run in duplicate and
only data generated with standard curves having R2 values of ≥
0.995 were used (Figure S3 in File S1).

Statistics
To test the hypothesis of independence between tissue types

and DNA or RNA levels between treated and untreated tissue
types, we conducted a chi-square test. Non-normalized DNA
and RNA measurements were analyzed. Non-numeric values
were treated as either zero (below detection) or missing (not
available or not determined). To compare the treated and
untreated group, we conducted multiple unequal variance t
tests to test whether there is a difference between two groups
in terms of vDNA and vRNA counts. We adjusted the multiple
tests by using the Hochberg and Benjamini method [31].

We used Pearson’s product moment correlation to study the
strength of a linear association between the lymphoid tissue
vDNA levels and plasma viremia at week 1, between the
lymphoid tissue vDNA levels at necropsy and the area under
the curve (AUC) for plasma vRNA over 32 weeks. The
correlations were studied for both treated and untreated
animals. Spearman’s rank correlation was also conducted as a
check for the robustness of the product moment correlation due
to violations of the assumption of normality.

Results

Infection and treatment of animals
Following intravenous infection, (week 0) plasma viremia

was measured weekly or biweekly throughout the study (Figure
1). As observed in our previous studies [23,24], plasma RT-
SHIV RNA levels were variable among animals. Higher levels
of RT-SHIV viremia can result in significant pathogenesis and
AIDS-like disease in pigtailed macaques, including
gastrointestinal pathology [24]. The range in peak and post-
acute levels of plasma viremia made it possible to evaluate
potential correlations between these levels of plasma viremia
and vRNA and vDNA levels in tissues taken at necropsy.

All animals became infected with variable peak and set point
plasma viremia levels. One untreated animal (6757) had
sustained undetectable plasma viremia by 5 weeks post-
infection, while all others had consistently detectable levels of
viremia during the study period. Treatment of 2 animals (8272
and 8030) with TFV, FTC, and EFV was initiated at week 10
and continued daily for 20-22 weeks until euthanasia and
necropsy at 30-32 weeks post-infection. After 5-7 weeks of
ART, plasma viremia was < 50 vRNA copies/ml. Because 3
drugs did not completely suppress high plasma viremia levels,
treatment of 4 animals with TFV, FTC, EFV, and the integrase
inhibitor L-870812 was initiated at week 13 (GV08 and GN19)
or week 14 (GG45 and GV40) until euthanasia and necropsy
after 17-18 weeks on ART (30-32 weeks post-infection). Both
ART regimens led to initial decreases in plasma viremia to < 30
copy Eq/mL and plasma viremia remained < 30 copy Eq/mL for
the majority of samples over the duration of follow up to
necropsy for all animals. Animals GV08 and GV40 had
undetectable plasma viremia when ART was initiated. Animal
GN19 showed a viremic time point at 8 weeks after ART
initiation (280 viral RNA copies/ml). All treated animals had <
30 copy Eq/mL of plasma vRNA on the day of necropsy.

Peripheral blood CD4+ T cells were monitored weekly or
biweekly during the study for the untreated and treated animals
(Figure 2A and B, respectively). The majority of the animals
had relatively stable CD4+ T cell counts. Three of the untreated
animals (6760, 8232, and 8433) and one of the treated animals
(8272, 3 drugs) had at least one time point with <350 CD4+ T
cells/mm3. Animal 6760 had less than 250 CD4+ T cells/mm3 at
two time points (weeks 24 and 26), but they rebounded before
necropsy. No counts less than 200 cells/mm3 were measured
for any of the animals over the period of follow up.

Viral DNA is detected in many tissues and PBMC of
untreated and ART-treated macaques

To determine the frequency and location of infected (vDNA+)
cells remaining during ART that could contribute to viral
reservoirs and provide a potential source of recrudescent virus
if ART was discontinued, we isolated DNA from necropsy
tissues (Table 1). RT-SHIV DNA was measured in each
sample, using a qPCR assay targeting gag. To normalize for
differences in the amount of tissue and/or amount of DNA
extracted from the samples, a target sequence from macaque
CCR5 gene, not known to be duplicated in the genome, was
also measured in each sample by qPCR. Most tissue samples
yielded greater than 106 CCR5 copies and data were only
included from tissues in which > 105 CCR5 copies could be
detected, without significant discordance between duplicates
(Figure S1 in File S1). Data were normalized based on CCR5
measurements, assuming two copies of CCR5 target sequence
per diploid cell.

All animals, regardless of treatment or plasma viral load, had
detectable vDNA in multiple tissues, most prominently in the
gastrointestinal (GI) tract, lung, and all lymphoid tissues of the
animals (Table 1). Much lower levels of vDNA (1 to 25
copies/106 diploid cell equivalents) were detected in bone
marrow samples of 9/12 animals, compared to the spleen of
9/12 animals (9 to 79,800 copies/106 cells) or various LN of all
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of the animals (2 to 12,300 copies/106 cells). In non-lymphoid
and non-mucosal tissues, such as the brain, testes and
seminal vesicles, fewer vDNA copies were detected (1 to 48
copies/106 cells or 1 to 4 copies/106 cells, respectively) and
often there was no detectable vDNA (23/36 brain samples and
19/23 testes and seminal vesicle samples). As we did not study
CD4+ cells isolated from the tissues, the observed differences
in the number of vDNA copies between tissues could be

influenced by the relative frequency of CD4+ target cells
present in different tissue specimens, such as different portions
of the GI tract.

The gag primers recognize both unintegrated vDNA,
including 2-LTR circles, and proviral DNA. To determine what
proportion of the measured viral DNA was due to 2-LTR circles,
we measured 2-LTR circles by qPCR in all samples that had >
100 gag DNA copies per 106 CCR5 copies using primers that

Figure 1.  Plasma viremia was measured in all twelve macaques by qRT-PCR of RT-SHIV gag RNA.  Animals were infected at
week 0 and were (A) untreated or (B) treated with 3 or 4 antiretroviral drugs. Animals treated with 3 drugs (TFV, FTC, EFV) are
denoted by closed symbols and treatment was initiated at week 10, denoted by the solid arrow. The animals treated with 4 drugs
(TFV, FTC, EFV, and L-870812) are denoted by open symbols and treatment was initiated at week 13 (GV08 and GN19) or week
14 (GG45 and GV40), denoted by the open arrow. Treatment was continued daily until necropsy (week 30 or 31). The limit of
detection of the assay was 30 vRNA copies/ml plasma.
doi: 10.1371/journal.pone.0084275.g001
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span the 2-LTR circle junction, a target template that is not
present in linear forms of the viral DNA genome [32]. The
results from multiple tissues of animal 6760 are shown (Figure
S2 in File S1). While 100-10,000 copies of gag are detected in
these samples, a range of less than 1 and up to 304 copies of
2-LTR circles were detected. These accounted for 0.08 - 3.8%
of the gag copies detected. Similar results were observed in
samples from the other animals (data not shown). Thus, less
than 4% of vDNA consists of 2-LTR circles and tissues
containing less than 100 copies of total vDNA are likely to have
negligible or undetectable levels of 2-LTR circles. The sample
size for the groups treated with or without ART containing an
integrase inhibitor did not provide sufficient power to compare
the levels of 2-LTR circles between the two treatment
regimens.

Levels of vDNA in lymphoid tissues correlated with
week 1 plasma viremia in untreated animals

Comparing week 1 plasma viremia with vDNA levels
measured at necropsy in lymphoid tissues of the untreated
animals, we noted an apparent correlation (Figure 3A).
Spearman rank-order correlation analysis demonstrated a
strong positive correlation between the lymphoid tissue vDNA
levels and plasma viremia at week 1 (0.996 with p value <
0.0001) (Figure 3B). Analysis comparing lymphoid tissue vDNA
levels at necropsy and area under the curve (AUC) of the

plasma viremia levels over the entire 32 week period, a
parameter reflecting cumulative plasma virus production,
resulted in a moderate positive correlation that did not reach
statistical significance (0.8286, p value 0.06; data not shown).

In the treated animals, there was not a statistically significant
correlation between the vDNA levels in lymphoid and mucosal
tissues at necropsy and week 1 viremia (Figure S4 in File S1,
0.6 with p value 0.2). One animal in the treated group, GN19,
had relatively high vDNA levels in lymphoid tissues compared
to week 1 plasma viremia, suggesting it was an outlier. When
this animal was removed from analysis, the other 5 animals
reached statistical significance (Figure S4 in File S1, 0.9801
with p value of 0.001). The absence of a correlation may be
due to the narrow range of the measured values and the
relatively small number of animals studied. However, there was
a trend towards statistical significance between lymphoid tissue
vDNA levels at necropsy and AUC of plasma viremia over the
entire 32 week period (0.9429 with p value 0.02).

PBMC vDNA decay kinetics in untreated and ART-
treated animals

vDNA levels in the PBMC of the untreated and ART-treated
infected animals were measured at multiple time points (Figure
4). For the treated animals, PBMC were analyzed from 3 to 4
time points taken between weeks 1 and 30 post-infection,
corresponding to early infection, to just prior to ART initiation,

Figure 2.  CD4 numbers in PBMC and tissues.  Absolute CD4 counts in the blood of (A) untreated and (B) treated animals were
plotted from multiple time points. (C) The percentage of CD4+ lymphocytes in PBMC, spleen and multiple lymph nodes taken at
necropsy in 6 animals are shown.
doi: 10.1371/journal.pone.0084275.g002
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and to 17-20 weeks post-ART initiation. Fluctuations in PBMC
vDNA levels were observed. Some animals from each group
had little change in the PBMC vDNA levels, while others had
up to a 1 log decline in infected cells over time. Only 4 of the
animals (2 untreated, 2 treated) had detectable 2-LTR circles in
the PBMC at 1 - 3 of the 4 tested time points, ranging from
70-700 copies per 106 CCR5 copies (data not shown).
Clearance of vDNA during the first 6 months of therapy of HIV+
individuals has been shown to be approximately 1 log and
related to clearance of unintegrated and integrated HIV-1
genomes [33,34].

Reduced vDNA in PBMC did not appear to be a result of
decreased CD4+ PBMC levels, as changes in PBMC vDNA
levels did not reflect the multiple log reduction in plasma
viremia observed in the treated animals and in some untreated
animals that spontaneously controlled infection. This suggests
that the number of infected PBMC in untreated animals is
relatively stable or slightly declining over 30 weeks post-
infection, similar to what is seen in HIV-1-infected individuals
[35], and is not dramatically influenced by ART or correlated
with changes in plasma vRNA levels during the treatment
period. Levels of vDNA in PBMC were often lower than
contemporaneous levels of vDNA in tissues (Table 1). This

difference does not appear to be due to lower overall CD4+
lymphocyte percentages in the blood as compared to lymphoid
tissues, as the PBMC CD4+ cell percentages of several animals
were not vastly different from those observed in the LNs (1-2-
fold lower; Figure 2C). Interestingly, the percentages of CD4+ T
cells in the spleen were generally 2-3-fold lower than those of
the lymph nodes.

Impact of ART on RT-SHIV replication, cellular
expression and reservoirs

Tissues from untreated and treated macaques that had
detectable vDNA were analyzed for gag RNA. To normalize for
cell number, we measured CD4 transcripts by qRT-PCR as an
index of the frequency of potential RT-SHIV target cells. In
general, at least 104 CD4 copies were detected in each tissue
sample and the CD4 RNA levels in tissues correlated with the
stable reference mRNA IPO-8 [36], suggesting that CD4 RNA
expression was not selectively downregulated in some cells
due to RT-SHIV infection (Table S3 in File S1). Normalized
levels of gag RNA were determined for most tissues that had
detectable vDNA for all treated and untreated animals (Table
2). In the untreated animals with detectable levels of plasma
viremia at necropsy, vRNA was detected in multiple tissues in

Table 1. gag DNA copies per 1x106 CCR5 DNA copies per tissue at necropsy (week 30/31).

 Untreated  Treated

   3 Drugs 4 Drugs

 6760 8433 8232 6757 GT29 GR65  8272 8030 GN19 GG45 GV08 GV40
Plasma RNA 180000 <30 8200 <30 2900 50  <30 <30 <30 <30 <30 <30
PBMC 271 454 531 73 572 226  288 52 315 485 39 611
Duodenum 64 - 72 2 - -  31 - nd nd 5 -
Jejunum 36 - 9 - - nd  14 19 589 - - -
Ileum 330 - 205 2 145 -  32 - 4559 nd 8 -
Colon 203 - 6 1 16 2  60 - 5615 - 3 1
Cecum/Rectum 103 31 24 5 52 10  9 17 64 - 1 2
Liver 8 12 2 - 1 1  5 2 8 2 - -
Lung 9 32 38 - 4 2  9 25 42 1 1 -
Thymus 7 nd nd nd - -  nd 200 nd - - -
Bone marrow 25 25 2 1 - 1  4 2 1 1 - -
Spleen 275 198 64 11 - -  52 48 79825 - - 9
Axillary LN 833 374 86 15 nd 5  171 32 3333 13 2 5
Bronchial LN 1002 893 97 13 - -  524 219 6149 - 12 5
Inguinal LN 611 818 21 14 40 9  183 46 nd 21 nd 6
Mandibular LN 884 605 115 9 17 41  nd 13 377 41 8 25
Mediastinal/Colon LN 48 760 nd - - 18  nd 50 9282 74 76 30
Mesenteric LN 538 437 251 9 4 -  629 29 12282 177 14 19
Cerebellum - - - - - -  - - - 48 - -
Midbrain - - 4 6 10 -  - 13 - 6 - 1
Cerebrum 1 - - 14 - -  21 2 - - 2 2
Testicle 1 - - - - -  - - - - - -
Seminal vesicle - 1 1 - - -  2 4 nd - - -
Kidney 42 2 7 - nd nd  3 2 nd nd nd nd

nd, not determined due to insufficient genomic DNA recovery or lack of tissue
-, less than 1
doi: 10.1371/journal.pone.0084275.t001
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the gut, lung, and lymphoid tissues. Animals that were
untreated but spontaneously suppressed virus replication to <
30 copies/mL plasma at necropsy had undetectable RNA in
any tissues (6757) or had low levels (10-80 copies per 106 CD4
copies) detectable only in spleen and a few lymph nodes
(8433).

The animals treated with 3 or 4 antiretroviral drugs had
undetectable plasma viremia at the time of necropsy. The
majority of tissues that were positive for vDNA from the ART-
treated animals did not have detectable vRNA. Nevertheless, 4
of the 6 treated animals (one treated with 3 drugs, 3 treated
with 4 drugs) had at least one lymphoid tissue that had
detectable vRNA, spleen, thymus, or lymph node. Animal

GN19, which among the treated animals had the highest peak
viremia and set point prior to ART, also had detectable vRNA in
the jejunum and colon. However, in general the levels of tissue
vRNA in the treated animals were lower than those observed in
the untreated animals. The ratio of vRNA to vDNA was
determined for tissues taken from the animals at necropsy
(Table S4 in File S1). Four of the 6 untreated animals had
ratios of 1 or above for multiple tissues, whereas the 5 of 6
treated animals had no ratios above 1 in any tissue and one
had a positive ratio in one lymph node. In comparing vRNA in
the treated animals and the untreated animals (17 degrees of
freedom) or in animals treated with 3 drugs vs. 4 drugs (10
degrees of freedom), the chi-square test results indicate that

Figure 3.  Lymphoid tissue viral DNA at necropsy is correlated with week 1 plasma viremia levels.  (A) The ratio of gag
copies per 106 CCR5 copies for each tissue of the untreated RT-SHIV-infected macaques. The average of each qPCR reaction was
used for the graph. In addition, the week 1 plasma viral load was included for each animal. Asterisks (*) denote samples that were
not collected or in which no significant CCR5 DNA were measured. (B) The amount of gag vDNA detected in each of the lymphoid
tissues for each animal was plotted against the week 1 plasma viremia level. Statistics determined a Spearman rank-order
correlation of 0.996 with p value of < 0.0001.
doi: 10.1371/journal.pone.0084275.g003
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the distribution of RNA levels is highly variable among tissue
type in both treated and untreated animals and is highly

dependent on tissue type (p < 0.0005; Tables 1 and 2). Due to
small counts in some tissues, Fisher’s exact test was also

Figure 4.  The ratio of RT-SHIV gag DNA copies per 106 macaque CCR5 DNA copies were measured in PBMC isolated at
different time points from each of the untreated and treated macaques.  
doi: 10.1371/journal.pone.0084275.g004

Table 2. gag RNA copies per 1x106 CD4 RNA copies per tissue at necropsy (week 30/31).

 Untreated  Treated

   3 Drugs 4 Drugs

 6760 8433 8232 6757 GT29 GR65  8272 8030 GN19 GG45 GV08 GV40
Plasma RNA 180000 <30 8200 <30 2900 50  <30 <30 <30 <30 <30 <30
PBMC 190 na 10 - - -  - 30 - - - -
Duodenum 2040 - - nd nd nd  - nd na na - nd
Jejunum na - 10 nd nd nd  - - 10 nd nd nd
Ileum na na 270 nd - nd  nd nd - nd - nd
Colon na na - nd 8200 -  - nd 130 nd - -
Cecum/Rectum na - - nd 13000 -  nd - nd nd - -
Liver - - nd nd - nd  - - - nd nd nd
Lung 2990 - 1420 - - -  - - - - - nd
Thymus 1370 na na na nd nd  na 10 na nd nd nd
Bone marrow 180 - 10 - nd nd  - - - nd nd nd
Spleen 5670 10 460 - nd -  - 10 190a - nd -
Axillary LN 15680 60 1200 - na 170  - - 30a - - -
Bronchial LN 19250 30 10 - nd nd  - - - nd - -
Inguinal LN 399730 - 20 - 30a 30  - - na - na 30
Mandibular LN 7400 80 110 - 120 -  - - 130a - 30 10
Mediastinal/Colon LN na - nd - nd -  - - - - - 10
Mesenteric LN 23490 - 130 - 2390 nd  - - - - - -
Cerebellum nd nd nd nd nd nd  nd nd nd - nd nd
Testicle nd nd nd nd nd nd  nd - nd nd nd nd
Seminal vesicle nd nd nd nd nd nd  - - nd nd nd nd

na, not available due to insufficient host RNA recovery or lack of tissuend, not determined due to low/no detectable vDNA
-, less than 1
a less than 104 CD4 RNA copies detected in the sample
doi: 10.1371/journal.pone.0084275.t002
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conducted, which was also significant (p < 0.0005). The
variability was also observed in individual animals, in which
most lymphoid tissues had higher number of infected cells and
vRNA expression and the GI tract contained variable levels of
infected cells and variable levels of vRNA expression.
Examination of the data also indicated that some of the
significance is likely due to differences in the among-tissue
variation between treated and untreated samples. It appears
that multiple tissues can serve as reservoirs capable of virus
expression in both treated and untreated animals.

Replication-competent virus was isolated from resting CD4+
cells from lymph nodes in 5/5 untreated animals, including the
two with low plasma viremia (8433 and 6757) and from 2/4
treated animals prior to ART initiation at week 12 or 13 (Table
3). In the two treated animals with detectable replication-
competent virus (GN19 and GG45), the number of IUPM
declined over time. None of the treated animals had detectable
replication-competent virus culturable from LNs taken at
necropsy, suggesting that very limited numbers of cells could
be induced to produce replication-competent virus after
multiple weeks of suppressive ART.

Viral RNA detection in PBMC did not correlate with
treatment or plasma viremia

While tissue vRNA levels generally reflected the level of
plasma viremia at necropsy in the macaques, vRNA detection
in PBMC varied greatly during early infection and at necropsy
and did not seem to reflect plasma viremia (Figure 5). At week
1 or 2, plasma viremia ranged between 6.9 × 103 to 1.5 × 106

vRNA copies per ml in the animals, whereas vRNA in the
PBMC ranged from 2 × 10° to 6.3 × 105 copies per 105 CD4
copies and did not correlate with the level of plasma viremia.
The wide variation of PBMC vRNA (> 5 logs) was reproducible
in multiple aliquots tested (data not shown) and was not due to
variation in CD4+ T levels in the blood, as the gag RNA levels

Table 3. Detection of replication-competent RT-SHIV from
resting CD4+ T cells from lymph node biopsies.

  Week 12-13 Week 16-17 Week 30-32

Treatment Animal
Plasma
vRNA IUPM

Plasma
vRNA IUPM

Plasma
vRNA IUPM

 GT29 660 420 810 421 2900 2500

 8232 90 2 370 nd 8200 8

None 8433 140 1.6 40 nd <30 8

 GR65 40 0.5 100 3.2 50 16

 6757 < 30 < 0.5 < 30 nd <30 8

 GN19 4500 206 < 30 2 < 30 < 0.5

4 drugs GG45 60 8 < 30 3 < 30 < 0.5

 GV08 < 30 < 0.5 < 30 < 0.5 < 30 < 0.5

 GV40 < 30 < 0.5 < 30 nd < 30 < 0.5

nd, assay not done
doi: 10.1371/journal.pone.0084275.t003

were normalized per cellular CD4 RNA level. Also, the absolute
CD4+ T cell count in the PBMC of the animals ranged from 816
to 3877, which is less than a 5-fold difference (Figures 2A and
2B). The lack of correlation between vRNA detected in the
plasma and in the PBMC was even greater at week 28-31 post-
infection (Figure 4B). Of the 5 untreated animals that had
measurable plasma viremia (> 30 copies/ml), only 2 animals
had detectable PBMC vRNA (> 1 copy/10^5 CD4 copies). And
of the 7 animals that had no detectable plasma vRNA (6
treated and 1 untreated), one had detectable vRNA in the
PBMC. The PBMC vRNA levels also did not reflect the amount
of vRNA or vDNA detected in the tissues (Tables 2 and 3).

Discussion

The nature and size of persisting cellular and tissue
compartments that despite apparently effective ART harbor
persistent infected cells and that can give rise to recrudescent
viremia when treatment is stopped (i.e. viral reservoirs) need to
be determined to successfully target them for eradication.
Measurement of vDNA+ cells provides a convenient, albeit
imperfect, index of the frequency of such cells. However,
detection of vDNA+ cells in the blood may not reflect replication
elsewhere in the body [37], particularly if tissue
compartmentalization of virus replication occurs [38-42] or drug
penetration into tissues is not optimal [43]. Because tissue
sampling from multiple organs in humans is difficult to perform,
animal models for HIV/AIDS, in which more extensive tissue
sampling is feasible, may usefully inform studies of viral
persistence on suppressive ART, and evaluation of strategies
to target this residual virus. Similarities in anatomy, immune
responses, and key features of pathogenesis makes
nonhuman primate models ideal for identifying reservoirs and
assessing the efficacy of novel strategies to reduce them.

To characterize infected cells in RT-SHIVmne-infected
macaques in the absence of any antiretroviral treatment or
during suppressive ART, we examined multiple tissues for the
presence of RT-SHIV DNA and RNA after no treatment or
17-20 weeks of suppressive therapy with 3 or 4 antiviral drugs.
As in available surveys of PBMC and tissues from HIV-infected
individuals [44,45], there was substantial inter-animal variation
in vDNA levels. PBMC, lymphoid tissues (mainly spleen and
lymph nodes) and the gastrointestinal tract contained the
highest levels of vDNA in untreated as well as in treated
macaques. Lung tissue, bone marrow, and brain tissue of
some of these animals showed detectable vDNA but at a much
lower level than the other tissues mentioned above. Little or no
RT-SHIVmne DNA was detected in brain, kidney, or male genital
tract tissues, which may be due to fewer target CD4+ cells in
these organs or in the specimens sampled from these organs.

These vDNA data are consistent with findings from other
macaque studies. In a study of rhesus macaques infected with
RT-SHIVmac239 and treated with FTC, TFV and EFV, lymphoid
and gastrointestinal tissues showed the highest level of vDNA
in virally suppressed animals [46]. Also, in a SIV model with
FTC and tenofovir therapy, it was shown that resting CD4+ T
lymphocytes from lymph nodes but not thymocytes contribute
to reservoirs [27]. We previously observed vDNA and vRNA in
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multiple lymphoid tissues and in the gastrointestinal tract, and
we have seen intestinal pathology with high RT-SHIV viremia
[24]. In a model of neuropathogenic AIDS, although neurotropic
virus in plasma and cerebral spinal fluid was significantly
reduced by therapy (TFV, saquinavir, atazanavir and an
integrase inhibitor), levels of viral DNA in the brains of these
animals were not significantly different than the untreated
controls, suggesting that virally infected cells in the central
nervous system represent a potential reservoir [47]. In the
current study, we did not see RT-SHIVmne+ cells in the brain,
likely due to a lack of neurotropism of this virus as evidenced
by lower levels of vRNA in the cerebral spinal fluid of animals
infected with our virus compared to other strains (Ambrose and
Lifson, unpublished results). While the RT-SHIVmne model
appears relevant for studying reservoirs, particularly in animals
with high viremia and complete ART suppression, as with
HIV-1, not all SIVs or SHIVs, including RT-SHIVmne,
consistently cause CNS disease [48,49]. Studies with different
viruses that provide consistent neurological disease should be
employed for focusing studies on CNS reservoirs [50].

The level of vDNA in lymphoid tissues was correlated with
the level of week 1 plasma viremia, suggesting that viral
reservoirs are established early and may be determined by the
level of early virus replication as reflected by the plasma
viremia. In a different nonhuman primate model, Bourry et al.
also showed that tissue reservoirs are established within 1
week post-infection [51]. They treated cynomolgus macaques
with ART (zidovudine, lamivudine and indinavir) beginning at
14 days after infection with SIVmac251 and observed no
significant differences in vDNA levels in the spleen, peripheral
and mesenteric LN, ileum, and PBMC of treated vs. untreated

animals, suggesting that establishment of reservoirs had
already occurred. When treatment was initiated at 1 week post-
infection, there were only modest or no differences between
the tissue levels of vDNA measured for the two groups. This
finding is consistent with our observed correlation between
early plasma viremia and level of vDNA in tissue reservoirs.

While we observed consistent and high levels of vDNA in
lymphoid tissues, there was a high degree of variability among
GI tract tissues, in which many specimens were negative for
infected cells. It is unlikely that significant loss of CD4+ cells
resulted in this observation, as CD4+ T cells were still relatively
abundant in the infected animals. This could be due to an
uneven distribution of CD4+ target cells and infected foci
throughout the GI tract, coupled with random sampling.
Alternatively, gut tissues may not contribute as significantly as
lymphoid organs to the reservoirs established by RT-SHIVmne.

Tissue RT-SHIVmne vRNA levels were lower in ART-treated
macaques than in untreated macaques. However, 6 treated
animals had detectable vRNA in some lymphoid tissues and 2
of these also had detectable vRNA in mucosal tissues, albeit at
lower levels than the untreated animals. This general effect of
treatment is consistent with a prior rhesus RT-SHIVmac239 study,
in which lower but detectable levels of vRNA were observed in
many of the tissues of ART-treated animals compared to
tissues of an untreated animal [46], and a suggestion that
penetration of antiretroviral drugs into different tissues may be
variable. In that study, the treated rhesus macaques had
significant levels of plasma viremia during the first 10 weeks of
ART, likely due to incompletely effective treatment of high
levels of viral replication, reflected in extremely high plasma
viral loads in contrast to this study. It is unclear if observed

Figure 5.  The ratio of RT-SHIV gag RNA copies per 106 macaque CD4 RNA copies were measured in PBMC isolated at
week 1 or 2 and 28 or 30 post-infection from each of the untreated and treated macaques (black bars).  The amount of RT-
SHIV gag RNA in the plasma is also plotted for each animal at each time point (white bars). Asterisks (*) denote plasma viremia
levels below the limit of detection (<30 copies/ml).
doi: 10.1371/journal.pone.0084275.g005
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residual vRNA in our study is due to spontaneous reactivation
of virally infected cells or if there is ongoing local replication in
tissues. Previously we demonstrated that little or no evolution
of plasma viral sequences occurs in RT-SHIV-infected
macaques receiving ART that are suppressed for up to 20
weeks [23]. Recently, two clinical studies showed little
evolution of viral sequences obtained from gut biopsies
collected longitudinally from HIV-infected individuals, a finding
interpreted as indicating that ongoing replication does not occur
in the gastrointestinal tract [52,53]. Further studies will need to
be performed on sequences or replication competent-virus
isolated from tissues of RT-SHIV-infected macaques to
determine if ongoing replication is occurring or not.

The number of animals studied did not provide statistical
power for a rigorous comparison between the 3 and 4 drug
regimens. However, effective suppression was achieved in
both groups of animals and it seems unlikely in this study with
relatively low viremia that intensification with a fourth drug
significantly affected residual plasma viremia, as many HIV-1
clinical studies have shown previously [14,54-57]. Interestingly,
one study suggested that ongoing replication could be
occurring during suppressive therapy in the gastrointestinal
tract during ART or reflected in increases in PBMC 2-LTR
circles, which could be decreased during intensification with an
integrase inhibitor [10,14,58]. Future studies to address tissue
replication or decrease of reservoirs with treatment
intensification in macaques, including correlation with tissue
drug levels, will be needed to address this issue further.

Surprisingly, the PBMC vDNA decay kinetics was similar in
the untreated group and the ART-treated group between weeks
1 and 30. While the levels fluctuated greatly over time, some
animals showed little decay and some animals showed
significant decay. However, the decrease in circulating virally
infected cells did not correlate with the concomitant multiple log
decrease in plasma viremia that occurred in many of the
animals. Levels of PBMC vDNA at necropsy did not correlate
with tissue vDNA levels, plasma vRNA levels, or recovery of
replication-competent virus from resting CD4+ cells in LN.
These results are consistent with studies that show that vDNA
and vRNA levels are significantly higher in gut tissues than
those in PBMC in HIV-infected individuals on suppressive ART
[59,60]. In addition, some untreated animals with relatively high
plasma viremia had little to no detectable vRNA in the PBMC
taken at the same time points. These results suggest that the
PBMC are not reflective of viral tissue reservoirs and that
productively infected PBMC contribute little to the overall
plasma virus pool. A previous study demonstrated that cellular
reservoirs in ART-treated HIV+ individuals are heterogeneous
and have differential decay kinetics [61]. Additional studies to
compare the RT-SHIV RNA and DNA sequences from different
anatomical compartments as well as the blood are needed to
address what reservoir(s) contribute to virus-infected PBMC. In
addition, other experiments are needed to determine if the
length of time of viral latency affects the ability of provirus to be
reactivated in vitro or in vivo.

One possible confounder of the vRNA and vDNA results in
this study and previous studies is that the animals were not
perfused during necropsy to remove residual blood from inside

vessels within tissues. Phylogenetic analysis of single-genome
sequences from both treated and untreated animals in this
study were performed (Kearney et al., in preparation). To
determine the effect of possible contaminating blood cells on
the sequences obtained from tissues, varying numbers of
sequences from blood and tissues were compared hundreds of
times. No differences were found between populations even at
very small numbers, which likely eliminated the possible
contaminants, indicating that any sequences resulting from
PBMC contamination in the tissues does not strongly influence
the power of these studies to detect a difference between the
populations. Very little viral RNA was detected in most tissues
of ART-treated animals and some tissues of untreated animals,
suggesting little contamination of tissues with blood.
Furthermore, viral RNA sequences recovered from the tissues
of treated animals show specific defects (e.g. deletions, G to A
hypermutations) that were not detected in blood, implying that
virus detected in tissue is not due to blood contamination.

Macaque models, such as RT-SHIVmne infection of pigtailed
macaques described here, are useful for addressing questions
concerning viral reservoirs, particularly in providing sampling
for numerous tissues that are not readily or adequately
sampled in a clinical setting. The limited number of animals and
variability in viremia levels impact the interpretation of the
study. As host genetic factors can influence levels of viral
infection in macaques [62], variability of RT-SHIV viremia may
be due to undefined host genetic factors in pigtailed macaques.
While many previous studies looking at tissue reservoirs with
other macaque models have not demonstrated complete
suppression during ART nor the use of an IN inhibitor with
commonly prescribed triple combination therapy, the level of
virus suppression achieved with clinically relevant ART in the
present study sets the stage for defining the different cellular
compartments that comprise viral reservoirs in ART-
suppressed individuals. We have determined that persisting
viral reservoirs consist of multiple lymphoid and mucosal
tissues containing vDNA but little or no detectable vRNA and
that few infected cells are likely contributing to viremia in the
presence or absence of an IN inhibitor. With variable plasma
viremia levels observed in our macaque model, as are
exhibited in HIV-infected individuals, our data also suggest that
greater replication of virus early after infection influences the
size of the viral reservoirs. Ongoing and future studies with
complete viral suppression in infected macaques will be critical
to defining the cellular reservoirs, determining whether these
infected cells are different in various tissues vs. the blood,
whether early initiation of ART can reduce reservoirs, what
therapies can be used to selectively eradicate these cells, and
whether infected cells that are not actively producing virus are
able to be stimulated and eliminated.

Supporting Information

File S1.  Figure S1 , (A) Host CCR5 and RT-SHIVmne gag
DNA were quantified in each tissue obtained from animal 6760.
Each bar represents the average of duplicates and error bars
represent the standard deviations. The limit of quantification for
(B) CCR5 was 10 copies and for (C) gag was 1 copy. Figure
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S2, (A) RT-SHIVmne gag and 2-LTR circle copies were
measured in tissues from animal 6760. Each bar represents
the average of duplicates and error bars represent the standard
deviations. (B) The limit of quantification of the 2-LTR circle
assay was 1 copy. Figure S3, (A) Host CD4 and RT-SHIVmne
gag RNA levels were quantified in each tissue obtained from
animal 6760. Each bar represents the average of duplicates
and error bars represent the standard deviations. The limit of
quantification for (B) CD4 was 10 copies and for (C) gag was 1
copy. Figure S4, (A) The ratio of gag copies per 106 CCR5
copies for each tissue of the ART treated RT-SHIV-infected
macaques. The average of each qPCR reaction was used for
the graph. In addition, the week 1 plasma viral load was
included for each animal. Asterisks (*) denote samples that
were not collected or in which no significant CCR5 DNA were
measured. (B) The amount of gag vDNA detected in each of
the lymphoid tissues for each animal was plotted against the
week 1 plasma viremia level for all animals (left panel) or
excluding GN19 (right panel), giving a Spearman rank-order
correlation of 0.6 with a p value of 0.2. (C) The amount of gag
vDNA detected in each of the lymphoid tissues for each animal
was plotted against the area under the curve (AUC) of plasma
viremia between weeks 1-32 postinfection, giving a Spearman
rank-order correlation 0.771 with a p value of 0.07.
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