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Many industrial processes in engineering occur in complex fluid-solid regions. In

this thesis, we discuss Finite Element algorithms for modelling the fluid flow and

heat transfer in such domains. Often times, for these types of problems, the

meshing (and remeshing for time-dependant problems) process is the most com-

putationally demanding portion of the solution process. We develop and analyze

various algorithms that can be applied on a uniform mesh, by incorporating infor-

mation about the geometry of the flow domain into the model.

Keywords: Navier-Stokes, Brinkman, fictitious domain, Lagrange multiplier, vol-

ume penalization.
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1.0 INTRODUCTION

Despite being the research topic for centuries, the mathematical analysis of flow

problems still contains many challanges. The Navier-Stokes equations is the correct

mathematical description of incompressible fluid flows, yet, the analytic, closed

form solutions are known only for a few simple flows, limiting the practicality of

the analytic approach. On top of that, the well-posedness of the solutions is still

an open problem [1]. Given that fluid flows occur ubiquitously in engineering,

biology and other disciplines, there is a strong need for the development of robust,

accurate and practical numerical models for them.

In this thesis, we are interested in developing Finite Element based numerical

algorithms for the flows occuring in geometrically complex fluid-solid domains.

Some of the motivating applications where such flows occur include:

• Pebble Bed Reactors (PBR) [36, 37]: PBRs are one design for power gener-

ating, which was used in Germany, South Africa and under the study in US

and China. It has a much higher safety factor than current reactor designs

have. The flow through the core of PBRs is not well understood yet (e.g. the

temperature inside the pebble bed reactors are often off the predicted values by

200 ◦C and due to high reactor temperatures it is impossible to place standard

measurement equipment in the core [36]);

• Packed Bed Reactors [6]: Packed bed reactors can be used in chemical reaction.

These reactors are tubular and are filled with solid catalyst particles, most often
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used to catalyze gas reactions [46];

• Trickle Bed Reactors [40]: Trickle beds with countercurrent flow of gas and

liquid are used on a large scale for vinegar production, as biofilters for gas

clean-up and deodorisation, for water purification and for ore leaching. Trickle

beds can be operated with or without recycling, but recycling allows higher

loading and gives better flow distribution, which is even more critical than in

submerged packed bed operation;

• Other processes in chemical refining and manufacturing industry, such as in

catalytic reactors, chromatographic reactors, ion exchange columns and ab-

sorption towers [14, 48, 26].

For these applications, the essential flow features such as flow start up, heat

transfer and recirculation regions (in which heat concentrates) must be accurately

predicted by any reasonable numerical model. The fundamental difficulty in these

types of flows is the complex flow geometry. Constructing body-conforming mesh

might be computationally expensive, if not impossible. Further, in many applica-

tions, the geometry of the fluid domain changes through time, making the meshing

process even more challenging. An additional hurdle is the turbulent nature of

these flows: they typically occur at high Re number.

For the simplicity of the mathematical presentation, we assume that the solids

are mono-sized, stationary spheres. When the solid particles are not spherical,

they can be represented as an equivalent sphere of the same volume, which can be

charecterized by the sphericity (the measure of how round an object is) [49].

Generally, the viscous flow inside fluid-solid system is described by Navier-

Stokes equations in the fluid domain with no-slip boundary conditions at the solid
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Figure 1.1: Packed Bed Reactor

used for Drinking Water Denitri-

fication [33]

Figure 1.2: Pebble Bed Reactor

interfaces:

ut + u · ∇u− ν∆u+∇p = f in fluid domain,

∇ · u = 0 in fluid domain,

u = 0 on solid interface.

The finite element methods based on these equations use body-fitted meshes.

As mentioned above, when the number of solid bodies is large, meshing such region

becomes computationally very demanding (e.g. pebble-bed reactors contain nearly

400,000 graphite covered uranium spheres [41, 42]).

One alternative approach is the Darcy based models. But they are inadequate

since

a) the Darcy models are appropriate for the flows with [7], [16]

Reporous :=
qd

ν
≤ 1,
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where d is the diameter of pore, ν is the kinematic viscosity and q is the specific

discharge. Since the diameters of the pores are too big and velocity can be too

large in many industrial processes, the Darcy model can be inaccurate model.

b) Darcy models fail to predict recirculation regions (where the heat concen-

trates). Since

u = −K∇p⇒ ∇× u = 0.

Another approach with some promise is the Brinkman model [12] used as

volume penalization of the flow in the solid bodies [4, 5]. In this method the original

domain is embedded inside a geometrically simple fictitious auxiliary domain, in

which flow obeys the Navier-Stokes-Brinkman equations. The particular medium

is then taken into account by its characteristic permeability and viscosity, i.e.

infinite permeability in the fluid region, zero permeability in the solid region and

very large viscosity in the solid region. That is, for a fixed small penalty parameter

ε > 0, the Brinkman parameters are

ν̃ =

ν if x in Fluid region,

1
ε

+ ν if x in Solid region,

and

K =

∞ if x in Fluid region,

ε if x in Solid region.

The Navier-Stokes-Brinkman volume penalization of flow in solid domain is given

by the following system

ut + u · ∇u−∇ · (ν̃∇u) +
1

K
u +∇p = f in Solid ∪ Fluid region,

∇ · u = 0 in Solid ∪ Fluid region,

where f is the body force.

4



Figure 1.3: Solid ball and Brinkman penalization region

.

The Finite Element approximation of Brinkman volume penalization method

is straightforward to analyze and implement. However, the Brinkman model based

Finite Element methods on meshes non-conforming to the fluid-solid interface, in-

vestigated in [31], concluded that, if the finite element mesh does not resolve fluid

solid interface, Brinkman simulations can fail to predict reliably flow start up, heat

transfer and recirculation regions. The fundamental reason for the Brinkman Vol-

ume Penalization model’s failure is that on non-conforming mesh the penalization

regions extend beyond the actual solid ball to all the elements having non-empty

intersection with the solid, Figure 1.3, see Chapter 5 for further elaboration.

For very small values of ε, this results in flow being obstructed in the elements

shared by the solids. This often dramatically changes the entire flow structures

and yields very underresolved solutions. On the other hand, picking larger values

of ε is not satisfactory either, as the fluid is allowed to flow too fast through the

solid region. In the next chapters, we discuss three methods for improving the

Brinkman volume penalization model.

In Chapter 4, we develop an algorithm for small Re flows. In order to capture
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more geometry of the solid region, in addition to Brinkman penalization, we enforce

the weak no-flow in the solids through minimally chosen Lagrange multipliers

space. To ensure the inf-sup stability on the coarse meshes, we also augment

the discrete velocity space with special spherical bubble functions. The goal then

consists of picking a ε such that, the combination of all the ingredients yields

improved results compared to the Brinkman model.

In Chapter 5, we develop an algorithm for moderate Re flows. The natural

extension of the model of Chapter 4 did not yield numerical results as good as

in the case creeping flow. Thus, we improve the model by restricting the volume

penalization region to the finite elements that are entirely contained in the solid

region. The Lagrange multiplier will enforce the weak no-flow in the remainings

parts of the solids.

In Chapter 6, we develop an algorithm for the convective heat transfer, where

the convecting velocity is computed via the approach of Chapter 5. In order

to stabilize the discrete solution for convection dominated flows, we apply the

Streamline Diffusion FEM.

6



2.0 MATHEMATICAL PRELIMINARIES

This chapter introduces some fundamental concepts and common notations used

extensively in this thesis. The specifics will be introduced as needed.

Let Ω ⊂ Rd, d = 2, 3, denote an open, simply connected, bounded domain,

with Lipschitz continuous boundary. We often break down Ω (Fig. 2.1) into a

purely fluid domain Ωf and purely solid domain Ωs =
S⋃
i=1

Bi, where Bi := {x ∈

Rd : |x−xi| < r}, Bi ∩Bj = ∅, i 6= j is a d-ball centered at xi and with a radius r.

The usual notation χω will be used for the characteristic function of the set ω

and ei will be used for the standard i-th basis vector of Rd. For a given region ω,

the outer unit normal to the boundary ∂ω will be denoted by n∂ω. For Ω and its

subsets, we make further simplifications: if ω = {Ω,Ωf ,Ωs}, then correspondingly

n∂ω = {n,nf ,ns}.

Figure 2.1: Typical flow domain in 2d

Throughout this thesis, the letter C (with or without subscipts), will be used
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to denote a generic constant, independent of h, which assumes different values at

different places.

2.1 ELEMENTS OF FUNCTIONAL ANALYSIS

Definition 2.1.1. Let 1 ≤ p ≤ ∞, and suppose f : ω → R is a measurable

function. The Lp(ω)-norm of f is defined as

‖f‖Lp(ω) :=


(∫
ω

|f |pdx
)1/p

if 1 ≤ p <∞,

ess sup
ω
|f | if p =∞,

and space of all measurable functions for which

‖f‖Lp(ω) <∞

is denoted by Lp(ω).

Definition 2.1.2. Let α = (α1, ..., αN) ∈ NN and |α| =
N∑
n=1

αn. For given integer

m ≥ 0 and real p ∈ [1,∞], we say that f ∈ Lp(ω) belongs to the Sobolev space

Wm,p(ω) if and only if

∂αf ∈ Lp(ω) ∀|α| ≤ m,

where, ∂αv = ∂|α|v
∂x
α1
1 ...∂x

αN
N

is the distributional α-th partial derivative of f . Wm,p(ω)

is a Banach space for the norm

‖f‖Wm,p(ω) :=


( ∑
|α|≤m

∫
ω

|∂αf |pdx

)1/p

if 1 ≤ p <∞,

max
|α|≤m

(
ess sup

ω
|f |
)

if p =∞.
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Further, Wm,p(ω) is equipped with the following seminorm

|f |Wm,p(ω) :=

∑
|α|=m

∫
ω

|∂αf |pdx

1/p

if 1 ≤ p <∞.

When p = 2, we identify Hm(ω) := Wm,2(ω), ‖f‖m,ω := ‖f‖Wm,2(ω) and

|f |m,ω := |f |Wm,2(ω). In particular, if m = 0, then |f |m,ω = ‖f‖Wm,2(ω). Hm(ω) is a

Hilber space with the following inner product

(f, g)m,ω :=
∑
|α|≤m

∫
ω

∂αf∂αgdx.

If m = 0, this reduces to standard L2(ω) inner product, and we will omit the m

subscript.

Lemma 2.1.3. (Trace theorem)[2] Let 1 ≤ p < ∞. Assume ω is bounded, open

with Lipschitz boundary ∂ω. Then there exists a bounded linear operator γ0 :

W 1,p(ω)→ W
1

p
′ ,p(∂ω), 1

p′
+ 1

p
= 1, such that

(i) γ0f = f |∂ω if f ∈ W 1,p(ω) ∩ C(ω),

(2) ‖γ0f‖
W

1

p
′ ,p

(∂ω)
≤ C‖f‖W 1,p(ω),

(3) γ0 is surjective,

(4) Kerγ0 = W 1,p
0 (ω),

for each f ∈ W 1,p(ω), with the constant C depending only on p and ω. γ0f is

called the trace of f on ∂ω.

The range of the trace operator γ0 forms a proper subset of Lp(∂ω) and for

p = 2 it is denoted by H1/2(∂ω). The norm on H1/2(∂ω) is defined as follows

‖g‖1/2,∂ω := inf
f∈H1(ω),γ0f=g

‖g‖1,ω.

W 1,2
0 (ω) is denoted by H1

0 (ω). One important property of H1
0 (ω) is the Poincarè’s

inequality.

9



Lemma 2.1.4. (Poincaré’s inequality)[39] There exists a constant Cω = 2diam(ω)
d

such that

‖f‖ω ≤ Cω|f |1,ω. (2.1.1)

One of the consequence of the Poincaré’s inequaltiy is that the seminorm | · |1,ω
is a norm on H1

0 (ω).

We shall also be interested in the dual spaces of H1
0 (ω) and H1/2(∂ω). The

dual space of H1
0 (ω) is H−1(ω) with a dual norm

‖φ‖−1,ω := sup
f∈H1

0 (ω),f 6=0

〈φ, f〉
|f |1,ω

.

where 〈·, ·〉 is duality pairing between H1
0 (ω) and H−1(ω). H−1/2(∂ω), the dual of

H1/2(∂ω), is equipped with similar dual norm:

‖ψ‖−1/2,∂ω := sup
g∈H1/2(∂ω),g 6=0

〈ψ, g〉
‖g‖1/2,∂ω

,

where 〈·, ·〉 is duality pairing between H1/2(∂ω) and H−1/2(∂ω). In general, the

dual space of Y will be denoted by Y ′. We apply the same notations for the norms

and inner products of scalars, vectors and tensors and let the context determine

the appropriate spaces.

Mostly we will be dealing with integral and inner products over Ω and its

subsets. In order to further simplify the notation, when ω = Ω, we simply omit Ω

in the subscripts. Moreover, for subsets of Ω, we only use the respective letters in

the subscripts, e.g., if ω = Ωs, then (·, ·)ω = (·, ·)s and so on.

Next we define the standard spaces used in the finite element analysis of our

models.
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Definition 2.1.5. Let Ω∗ = Ωf ,Ωs,Ω if ∗ = f, s or ∗ is omitted, respectively.

L2
0(Ω∗) :=

q ∈ L2(Ω∗) :

∫
Ω∗

q = 0

 ,

V (Ω∗) :=
{
v ∈ H1

0 (Ω∗) : (∇ · v, q) = 0 ∀q ∈ L2
0(Ω∗)

}
,

X∗ := H1
0 (Ω∗), Q∗ := L2

0(Ω∗), L := L2(Ωs).

For space-time functions f(x, t), x ∈ ω, t ∈ (0, tf ), tf > 0, it is natural to

introduce the following Banach space

Lq ((0, tf );H
m(Ω)) =

v : (0, tf )→ Hm(Ω) such that

tf∫
0

‖v(t)‖qmdt <∞


endowed with the norm

‖v‖q,m =

 tf∫
0

‖v(t)‖qmdt

1/q

and a seminorm

|v|q,m =

 tf∫
0

|v(t)|qm,Ωdt

1/q

.

We also introduce the following discrete-in-time analog of |v|q,m seminorm on

the time interval (0, tf )

|v|m,k :=

(
∆t

N∑
n=0

|vn|mk

)1/m

,

where ∆t is the timestep and N∆t = tf .
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2.2 FINITE ELEMENT METHODS

In this section we collect some necessary facts from the theory of the Finite Element

Methods (FEM).

2.2.1 Ingredients of the Finite Element methods

Finite Element (FE) based approaches are one of the very common and efficient

ways of solving partial differential equations numerically [11, 17]. In FEM, the

problem domain ω is decomposed into elementary pieces, which are called elements.

Formally, this is expressed as ω = Th =
⋃

K∈Th
K. Th is called the mesh of the domain

ω. Most commonly used meshes are triangular (tetrahedral), quadrilateral and

hexahedral meshes [20]. The parameter h > 0 is called the meshwidth of Th and is

defined as follows

hK := diamK, h = max
K∈Th

hK .

Our theory will be developed for the triangular ( or tetrahedral) meshes, but they

can be extended to quadrilateral ones with appropriate modifications. Through-

out the analysis, we assume that the family of grids {Th} satisfies the following

conditions

1. Regularity: For each K ∈ Th, let ρK be the diameter of the ball inscribed in

K. Then there exists δ > 0 such that

hK
ρK
≤ δ ∀K ∈ Th.

2. Quasi-uniformity: Th is shape regular and there exist constants c1, c2 > 0 such

that

∀K1, K2 ∈ Th ⇒ c1hK1 ≤ hK2 ≤ c2hK1 .

12



The second aspect of FE methods is the discrete solution space. Given triangula-

tion ( tetrahedralization) Th of ω, the solution of the partial differential equation

is approximated within each element with a low-degree polynomial. We denote

by Pk the space of globally continuous polynomials, which have global degree less

than or equal to k when restricted to elements of the mesh

Pk =

{
p(x) ∈ C(ω) :

∑
i,j,k≥0,i+j+m≤k

aijmx
iyjzm with aijm ∈ R

}
.

Similar to norm notations, Pk will be used for scalar, vector and tensor polynomials

of global degree less than or equal to k.

2.2.2 Saddle-point problems

We next briefly discuss the theory of the saddle-point problems, which are im-

portant in the analysis of many flow problems. Saddle-point problems have the

following general form. Assume X and M are Hilbert spaces with the norms ‖ ·‖X
and ‖·‖Q. Let a : X×X → R, b : X×Q→ R be bilinear forms, find (u, p) ∈ (X,Q)

such that

a(u, v) + b(v, p) = 〈f, v〉 ∀v ∈ X, (2.2.1)

b(u, q) = 〈g, q〉 ∀q ∈ Q, (2.2.2)

where f ∈ X ′, g ∈ Q′ and 〈·, ·〉 is the appropriate duality pairing. Equivalently, the

above problem can be expressed in the operator form. To this end, we define linear

operators A ∈ L(X,X ′), B ∈ L(X,Q′) associated with bilinear forms a(·, ·), b(·, ·)

in the following way

〈Aw, v〉 = a(w, v) ∀v, w ∈ X,

〈Bv, µ〉 = b(v, µ) ∀v ∈ X,µ ∈ Q.

13



The well-posedness of saddle-point problems depends on the fulfillment of the

following inf-sup condition

∃β > 0 such that inf
q∈Q

sup
v∈X

b(v, p)

‖v‖X‖q‖Q
≥ β. (2.2.3)

Let

X0 = {v ∈ X : b(v, q) = 0 ∀q ∈ Q} .

Then (2.2.3) can be restated in terms of linear operators A,B [22].

Lemma 2.2.1. The three following statements are equivalent:

• (2.2.3) holds;

• the operator BT is an isomorphism from Q onto X0
polar := {g ∈ X ′ : 〈g, v〉 =

0 ∀v ∈ X0}; moreover,

‖BTµ‖X′ = sup
v∈X,v 6=0

〈BTµ, v〉
‖v‖X

≥ β∗‖µ‖Q ∀µ ∈ Q;

• the operator B is an isomorphism from
(
X0
polar

)⊥ onto Q′; moreover,

‖Bv‖Q′ = sup
µ∈Q,µ6=0

〈Bv, µ〉
‖µ‖Q

≥ β∗‖v‖X ∀v ∈
(
X0
)⊥
.

Assume the bilinear forms a(·, ·), b(·, ·) are continuous, i.e., ∃c1, c2 > 0 such

that

|a(u, v)| ≤ c1‖u‖X‖v‖X , |b(v, q)| ≤ c2‖v‖X‖q‖Q, ∀u, v ∈ X, q ∈ Q. (2.2.4)

Theorem 2.2.2. Assume (2.2.3) holds and let the bilinear forms a(·, ·), b(·, ·) sat-

isfy the continuity condition (2.2.4). Moreover, let a(·, ·) be coercive on the space

X0, that is

∃α > 0 : a(v, v) ≥ α‖v‖2
X ∀v ∈ X0. (2.2.5)

Then for every f ∈ X ′ and g ∈ Q′, there exists a unique solution (u, p) to the

saddle-point problem (2.2.2) with

‖u‖X + ‖p‖Q ≤ C (‖f‖X′ + ‖g‖Q′) . (2.2.6)
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Often times the saddle-point problem needs to be solved along with addition

constraint on the variable u. The additional constraint can be enforced via new

Lagrange space Q2, giving rise to twofold or nested saddle-point problem of the

following form: Find (u, p1, p2) ∈ (X,Q1, Q2) such that
a(u, v) + b1(v, p1) + b2(v, p2) = 〈f, v〉 ∀v ∈ X,

b1(u, q1) = 〈g, q1〉 ∀q1 ∈ Q1,

b2(u, q2) = 〈l, q2〉 ∀q2 ∈ Q2,

with g ∈ Q′1, l ∈ Q′2, where the third equation is the weak form of the additional

constraint that u must satifsy. Defining

b : X × (Q1 ×Q2)⇒ R as b(v, (q1, q2)) = b1(v, q1) + b2(v, q2)

and

G : Q
′

1 ×Q
′

2 ⇒ R as G(q1, q2) := 〈g, q1〉+ 〈l, q2〉,

the twofold saddle-point problem can be rewritten asa(u, v) + b(v, (p1, p2)) = 〈f, v〉 ∀v ∈ X,

b(u, (q1, q2)) = 〈G, (q1, q2)〉 ∀(q1, q2) ∈ Q1 ×Q2.

Thus the corresponding twofold inf-sup condition becomes

∃γ > 0 such that inf
(q1,q2)∈(Q1,Q2)

sup
v∈X

b1(v, q1) + b2(v, q2)

‖v‖X (‖q1‖Q1 + ‖q2‖Q2)
≥ γ. (2.2.7)

The next theorem holds about the two-fold inf-sup conditions [53].

Theorem 2.2.3. Let X,Q1 and Q2 be reflexive Banach spaces, and let bi : X ×

Qi → R be linear and continuous. Let Zi = {v ∈ X : bi(v, qi) = 0 ∀qi ∈ Qi}, then

the following are equivalent:
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(1) There exists c > 0 such that

inf
(q1,q2)∈(Q1,Q2)

sup
v∈X

b1(v, q1) + b2(v, q2)

‖v‖X (‖q1‖Q1 + ‖q2‖Q2)
≥ c; (2.2.8)

(2) There exists c > 0 such that

inf
q1∈Q1

sup
v∈X

b1(v, q1)

‖v‖X‖q1‖Q1

≥ c and inf
q2∈Q2

sup
v∈Z1

b2(v, q2)

‖v‖X‖q2‖Q2

≥ c; (2.2.9)

(3) There exists c > 0 such that

inf
q2∈Q2

sup
v∈X

b2(v, q2)

‖v‖X‖q2‖Q2

≥ c and inf
q1∈Q1

sup
v∈Z2

b1(v, q1)

‖v‖X‖q1‖Q1

≥ c; (2.2.10)

(3) There exists c > 0 such that

inf
q1∈Q1

sup
v∈Z2

b1(v, q1)

‖v‖X‖q1‖Q1

≥ c and inf
q2∈Q2

sup
v∈Z1

b2(v, q2)

‖v‖X‖q2‖Q2

≥ c. (2.2.11)

2.2.3 Approximation properties of FE polynomial spaces

Theorem 2.2.4. [11] Assume {Th} is a family of regular grids, u ∈ Hm(ω),m ≥ 1

and 0 ≤ r ≤ m. There exists a constant C > 0 and a FE interpolant Ihu ∈ Pm−1

such that

|u− Ihu|r,K ≤ Chm−rK |u|m,K ,

|u− Ihu|r,ω ≤ Chm−r|u|m,ω.

Often times we will be working with functions that have low regularity. In

such cases, special interpolants are required. We list the approximation properties

of two such interpolants.
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Theorem 2.2.5. [47, 15] Let ΠSZ be the Scott-Zhang interpolation operator.

Then, for small enough h, for given 1
2
< β < 1 and 0 ≤ m ≤ β, the follow-

ing local approximability result holds

∀K ∈ Th,∀q ∈ Hβ(SK), ‖q − ΠSZq‖Hm(K) ≤ Chβ−mK |q|Hβ(SK),

where SK ⊃ K is suitable macroelement containing K.

Theorem 2.2.6. [24] Let Xh = Pk, Qh = Pk−1 be the Taylor-Hood spaces with

k ≤ 2, d = 2 or k ≤ 3, d = 3. Then the Scott-Girault interpolation operator ΠSG

satisfies the following

a) ∀w ∈ H1
0 (Ω) |ΠSGw|1 ≤ C|w|1,

b) ∀w ∈ H1
0 (Ω), ∀qh ∈ Qh (qh,∇ · (ΠSGw − w)) = 0,

c) ∀w ∈ Hs(Ω) ‖ΠSGw − w‖Hm(K) ≤ Chs−mK |w|Hs(SK)

for all real s, 1 ≤ s ≤ k + 1 and integer m = 0 or 1 such that Hs(Ω) ⊂ Hm(Ω),

where SK ⊃ K is suitable macroelement containing K.
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3.0 THEORY AND APPOXIMATION OF FLUID FLOW

In the chapter, we discuss various aspects of the equations describing the fluid flow

and the heat transfer.

3.1 NAVIER-STOKES EQUATIONS

The motion of a incompressible fluid with constant density ρ and constant viscosity

µ in a domain ω ⊂ Rd is described by Navier-Stokes equations (NSE):

ut + u · ∇u− ν∆u+∇p = f, x ∈ ω, t > 0, (3.1.1)

∇ · u = 0, x ∈ ω, t > 0, (3.1.2)

u = u(x, t) being the fluid velocity, p = p(x, t) the pressure divided by the density

(which will simply be called "pressure"), ν = µ
ρ
the kinematic viscosity, µ the dy-

namic viscosity, and f = f(x, t) a forcing term per unit mass. The equation (3.1.1)

is a mathematical realization of conservation of linear momentum principle and

linear stress-strain relation, while the equation (3.1.2) follows from the principle of

conservation of mass [9]. Additional boundary and initial conditions are imposed

for the well-posedness of (3.1.1)-(3.1.2). We will be using two types of boundary

conditions

1. Dirichlet: u(x, t) = φ(x, t),
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2. Do-nothing:
(
ν ∂u
∂n∂ω
− pn∂ω

)
(x, t) = ψ(x, t),

and standard initial conditons of the form u(x, 0) = u0(x), ∀x ∈ ω with ∇·u0 = 0.

For d = 2, the Navier-Stokes equations with the boundary conditions previ-

ously indicated yield well-posed problems, provided all of the data (initial con-

dition, forcing term, boundary data) are regular enough [18, 19]. As for d = 3,

the existence and uniqueness of classical solutions have been proven only for a

sufficiently small time interval [18, 19]. The existence of weak solutions has been

proven [52, 44], but the uniqueness is an open question in R3 [1].

Our analysis will be based on the weak formulation of Navier-Stokes equations:

Suppose that ω is locally Lipschitz, f(x, t) ∈ L2((0, tf );H
−1(ω)), u0(x) ∈ V (ω).

Then weak NS-solutions satify

(ut, v)ω + (u · ∇u, v)ω + ν(∇u,∇v)ω − (p,∇ · v)ω = (f, v)ω, ∀v ∈ X

∇ · u = 0, a.e. (x, t) ∈ ω × [0, T ],

u(x, 0) = u0(x), a.e. x ∈ ω.

Moreover, the solution satisfy u ∈ L2((0, tf );H
1
0 (ω)) ∩ V , u ∈ L∞((0, tf );L

2(ω)),

ut ∈ Ld/4((0, tf );H
−1(ω)) and p ∈ H−1((0, tf );L

2
0(ω)).

The dimensionless parameter Re := |U |L
ν

, called the Reynolds number, gives a

rough indication of the relative magnitudes of two key terms in the equations of

motion (3.1.1) - (3.1.2). Here U is the typical flow speed and L is characteristic

length scale of the flow. Flows with different Re numbers have different general

characteristics. If Re� 1, then the convective term u · ∇u and ut can be omitted

( as these type of flows tend to be steady), and NSE reduces to Stokes equation

−ν∆u+∇p = f, x ∈ ω, (3.1.3)

∇ · u = 0, x ∈ ω. (3.1.4)

On the other hand, if Re � 1, the flow will becomes very sensitive to small

perturbations in the data and turbulent flows occur [9, 43].
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3.2 BRINKMAN FLOW MODELS

Darcy model is often used to model flows in porous media with small permeabilities

and small Re number [7]

u = −K
µ
∇p,

where u is the average velocity, K is the permeability, µ is the dynamic viscosity

and p is the pressure. However, the Darcy’s model neglects the viscous shearing

stresses acting on a volume element of fluid [12]. Brinkman suggested ( in the

absence of convective term)

∇p = − µ
K
u+ µ∆u.

The coefficient µ is an effective viscosity. The ratio µ
µ
depends on the geometry

of the medium [8] and usually exceeds unity [34]. Some theoretical justifications

exist for the Brinkman model as an asymptotic approximation to the NSE, e.g.

see [3, 27].

3.2.1 Brinkman Volume Penalization

Starting in 1980s, number of algorithms for fluid flow have been developed for

implementing the no-slip boundary conditions on the obstacle interface, e.g. [38,

21, 25]. For the high Re flows around solid obstacles, if implemented by penal-

ization, some numerical experiments suggest that in order to obtain physically

correct solutions, the penalization must be extended to the volume of the obstacle

[45]. Our algorithms will be built on the penalized Brinkman problem formulated

and described in [32] and analyzed in [5]. Recall from the introduction that, for a

20



fixed small penalty parameter ε > 0, the Brinkman viscosity and permeability are

defined as

ν̃ =

ν if x ∈ Ωf ,

1
ε

+ ν if x ∈ Ωs

and

K =

∞ if x ∈ Ωf ,

ε if x ∈ Ωs.

That is, the viscosity is large and the permeability is small in the solid region.

Then the Navier-Stokes-Brinkman volume penalization model considered in this

thesis is given by

ut + u · ∇u−∇ · (ν̃∇u) +
1

K
u+∇p = f in Ω, (3.2.1)

∇ · u = 0 in Ω, (3.2.2)

where f is a forcing term. Other types of penalizations are also possible, see

Definition 3.2.3, Definition 3.2.6.

(3.2.1)-(3.2.2) allows the use of the structured meshes that are not conforming

to the boundary of the solids. As in the case of Navier-Stokes equations, for

Re � 1, the time derivative and the convective term can be dropped, yielding

Stokes-Brinkman volume penalization equation.

Next we list some variants of the continuous Navier-Stokes-Brinkman volume

penalization model (3.2.1)-(3.2.2) and relevant results that have been established

in the literature.

Theorem 3.2.1. [4] Let Ω be bounded open set, of class C1. Let (uε, pε) be the

solution Stokes-Brinkman volume penalization system

ν(∇uε,∇v)− (pε,∇ · v) = (f, v), ∀v ∈ X

(qε,∇ · uε) = 0, ∀qε ∈ Q,
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and let (u, p) be the solution of the Stokes equation in the fluid region, extended by

zero to solid region. Then

‖u− uε‖1 = O(ε1/4), ‖uε‖s = O(ε3/4).

Theorem 3.2.2. [4] Let Ωf be of class C2. Let (uε, pε) and (u, p) be as in the

previous theorem. Denote the resulting global force F exerted by the fluid on the

obstacle by

F = −
∫
∂Ωs

(−pnf + ν∇unf ) .

Further, define the Darcy ’drag’ as

Fε =

∫
Ωs

ν

ε
uεdx−

∫
Ωs

fdx.

Then

|F − Fε|Rd = O(ε1/4).

Definition 3.2.3. (L2 penalization)[5] (uε, pε) is the solution of Navier-Stokes-

Brinkman L2 volume penalization of the flow if

uε,t + uε · ∇uε − ν∆uε +
1

K
uε +∇pε = f in R+ × Ω,

∇ · uε = 0 in R+ × Ω,

uε(x, 0) = u0(x) in Ω, (3.2.3)

uε = 0 on R+ × ∂Ω.

22



Expanding formally uε = u+ εũ, pε = p+ εp̃, it can be shown that [5]

∆p = 0 in Ωs,

p|Ωs = p|Ωf on ∂Ωs,

ũ+∇p = 0 in Ωs.

and

ũt + u · ∇ũ+ ũ · ∇u− ν∆ũ+∇p̃ = 0 in Ωf ,

∇ · ũ = 0 in Ωf ,

ũ|Ωs = ũ|Ωf on∂Ωs,

ũ(x, 0) = 0.

and (u, p) solve NSE in Ωf .

Further, the following theorems hold.

Theorem 3.2.4. [5] When ε→ 0, the sequence {uε}ε converges to a limit u which

satisfies ‘

u = 0 in Ωs,

and u|Ωf is the unique weak solution of Navier-Stokes equation in Ωf .

Define H := {u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on ∂Ω}.

Theorem 3.2.5. [5] Let

u ∈ L∞((0, tf );Xf ) ∩ L2((0, tf );H
2(Ωf ))

be the solution of NSE in Ωf , prolongated by zero to solid region. Then there exists

vε bounded in L∞((0, tf );H) ∩ L2((0, tf );V ) such that

uε = u+ ε
1
4vε.

Moreover there exists a generic function g ∈ C0(R+) such that

|vε|L2((0,tf );L2(Ωs)) ≤ g(t)ε
1
2 .
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Let σ(u, p) =
ν(∇u+∇ut)

2
− pI be the stress tensor.

Definition 3.2.6. (H1 penalization)[5] (uε, pε) is the solution of Navier-Stokes-

Brinkman H1 volume penalization of the flow if

(
1 +

χs
ε

)
uε,t + uε · ∇uε −∇ ·

((
1 +

χs
ε

)
σ(uε, pε)

)
+
χs
ε
uε = f in R+ × Ω,

∇ · uε = 0 in R+ × Ω,

uε(x, 0) = u0(x) in Ω,(3.2.4)

uε = 0 on R+ × ∂Ω.

As in the case of L2 penalization, from the expansion form of uε and pε, uε =

u+ εũ, pε = p+ εp̃, it can be shown that [5]

ũt −∇ · σ(ũ, p̃) + ũ = 0 in R+ × Ωs,

∇ · ũ = 0 in R+ × Ωs,

σ(ũ, p̃) · ns = σ(u, p) · nf on R+ × ∂Ωs,

ũ(x, 0) = 0 in Ωs,

and

ũt + u · ∇ũ+ ũ · ∇u−∇ · σ(ũ, p̃) = 0 in R+ × Ωf ,

∇ · ũ = 0 in R+ × Ωf ,

ũ|Ωs = ũ|Ωf on R+ × ∂Ωs,

ũ(x, 0) = 0 in Ωf ,

where u solves the NSE in Ωf and u = 0 in Ωs.
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Theorem 3.2.7. [5] Let u and ũ be defined as above. Then there exists {vε}ε
bounded in L∞((0, tf );Xf ) ∩ L2((0, tf );V ) such that

uε = u+ εũ+ ε3/2vε.

Moreover there exists a generic function g ∈ C0(R+) such that

‖vε‖L∞(0,tf ;L2(Ωs)) ≤ g(t)ε
1
2 ,

‖∇vε‖L∞(0,tf ;L2(Ωs)) ≤ g(t)ε
1
2 .

3.3 HEAT TRANSFER EQUATION

Heat transfer is the movement of heat from one object to another by means of

radiation, convection or conduction. Thermal radiation is the only way of heat

transfer from one place to another that does not require a medium. Thermal

conduction is the transfer of internal energy by microscopic diffusion and collisions

of particles within a body due to a temperature gradient. Thermal convection or

convective heat transport is the transfer of heat with a fluid movement. We will

be considering only the latter kind of heat transfer.

Thermal convection can further be divided into two categories: natural convec-

tion and forced convection. Natural convection occurs as a consequence of natural

means, such as temperature gradients and buoyancy. On the other hand, forced

convection occurs when the fluid motion is generated by an external force. We will

consider FE approximation to heat transfer equation in fluid-solid domain. As-

suming incompressible flow with constant density, the nondimensionalized, coupled

system for convective heat transport in Ω is given by the following equations:

25



1) Momentum equation in the fluid domain

ut + u · ∇u− Pr∆u+∇p = f̃ + PrRagT in Ωf × (0, tf ],

∇ · u = 0 in Ωf × [0, tf ],

u = u0(x) on Ωf × {t = 0}, (3.3.1)

u = 0 on ∂Ωf × [0, tf ];

2) Fluid temperature equation

Tf,t + u · ∇Tf −∇ · (κf∇Tf ) = Υf in Ωf × (0, tf ],

Tf = T 0
f (x) on Ωf × {t = 0}, (3.3.2)

Tf = 0 on ∂Ωf × [0, tf ];

3) Solid temperature equation

Ts,t −∇ · (κs∇Ts) = Υs in Ωs × (0, tf ],

Ts = T 0
s (x) on Ωs × {t = 0}, (3.3.3)

Tf = 0 on ∂Ωs × [0, tf ],

where

• Pr is the Prandtl number, which describes the relationship between momentum

diffusivity and thermal diffusivity;

• Ra is the Rayleigh number, which is the product of Grashof which describes

the relationship between buoyancy and viscosity within a fluid and Prandtl

number;

• κf , κs are thermal conductivities of the fluid and solid, respectively;

• Υf ,Υs are heat sources of the fluid and solid, respectively.

When Ra� 1, then (3.3.1)-(3.3.3) describes natural convection, while for Ra� 1

it describes the forced convection and (3.3.1) can be replaced with NSE.
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4.0 BRINKMAN VOLUME PENALIZATION BASED MODEL

FOR SMALL RE FLOWS

This chapter is devoted to the analysis of the numerical algorithm for low Re flows

in PBG and it is based on the author’s article [50].

Recall the continuous Stokes-Brinkman equations are given by the following

system:

−∇ · (ν̃∇u) +
1

K
u+∇p = f in Ω, (4.0.1)

∇ · u = 0 in Ω, (4.0.2)

where f is the body force, K is the permeability of the medium and ν̃ is the

Brinkman viscosity.

We show herein that for the Stokes-Brinkman problem by imposing the no-flow

condition in the solid bodies weakly through Lagrange multipliers and enhancing

the velocity space by spherical bubble functions more accurate numerical results

can be obtained. Moreover, when our proposed algorithm is used, i) the method

is more accurate compared to the Stokes-Brinkman Volume Penalization, ii) the

convergence rate of the velocity is decoupled from the Lagrange mupltiplier and

iii) less fluid flows through the solid region, a critical test of model fidelity.
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4.1 PRELIMINARIES

We assume that f ∈ H−1(Ωf ), g ∈ H1/2(∂Ω) and g satisfies the compatibility

conditon ∫
∂Ω

g · n = 0.

We extend the forcing term f by zero to Ωs. We denote the extension of the

boundary data g by Eg ∈ H1(Ω), which is assumed to satisfy Eg = 0 in Ωs,

∇ · Eg = 0 and ‖Eg‖1 ≤ C‖g‖1/2. Such extension can be obtained by using

smooth cut-off functions and the property of the divergence operator, as shown

below.

Lemma 4.1.1. [23, p. 288] Let ω be a bounded domain of Rd, d ≤ 4 with a

Lipschitz-continuous boundary Γ. For ∀ε > 0 there exists a function θε ∈ C2(ω)

such that


θε = 1, in a neighborhood of Γ,

θε = 0, if d(x; Γ) ≥ 2 exp(−1
ε
),

|∇θε| ≤ C ε
d(x;Γ)

, if d(x; Γ) ≤ 2 exp(−1
ε
),

where d(x; Γ) = inf
y∈Γ
|x− y| is the distance function.

Lemma 4.1.2. There exists an extension Ẽg ∈ H1(Ω) of the boundary data g ∈

H1/2(∂Ω) such that Ẽg = 0 in Ωs and ‖Ẽg‖1 ≤ C‖g‖1/2.

Proof. Let E ′ be the right inverse of the standard trace operator γ0 : H1(Ω) →

H1/2(∂Ω), for which ∃ C > 0 such that ‖E ′g‖1 ≤ C‖g‖1/2. Set

d := min{d(∂Ωs; ∂Ω), 1}.
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Let ε > 0 be such that d = 2∗ exp(−1
ε
). By Lemma 4.1.1, there exists θε ∈ C2(Ω),

with θε = 0 in Ωs, θε|∂Ω = 1. Set Ẽg = θεE
′g. It easy to see that Ẽg has the

desired properties.

Lemma 4.1.3. [23, p. 24] Suppose d ≤ 3 and ω ⊂ Rd is open and connected.

Then, the divergence operator is an isomorphism between V ⊥(ω), where V (ω) =

{v ∈ H1
0 (ω) : ∇ · v = 0}, and L2

0(ω). Further, ∃β > 0 such that

∀ q ∈ L2
0(ω) ∃!v ∈ V ⊥(ω), |v|1,ω ≤

1

β
‖q‖ω. (4.1.1)

Lemma 4.1.4. There exists an extension Eg ∈ H1(Ω) of the boundary data g ∈

H1/2(∂Ω) such that Eg = 0 in Ωs, ∇ · Eg = 0 and ‖Eg‖1 ≤ C‖g‖1/2.

Proof. Note that for Ẽg obtained in Lemma 4.1.2, we have ∇ · Ẽg ∈ Qf , because

∫
Ωf

∇ · Ẽg =

∫
Ω

∇ · Ẽg =

∫
∂Ω

g · n = 0. (4.1.2)

By Lemma 4.1.3, ∃!vg ∈ Xf such that∇·vg = ∇·Ẽg and |vg|1,f ≤ 1
β
‖∇·Ẽg‖f ≤

√
d
β
|Ẽg|1,f . Extend vg by zero to Ωs. Then vg belongs to X. Let Eg = Ẽg − vg.

Then Eg = g on ∂Ω, Eg = 0 in Ωs, ∇ · Eg = 0 and ‖Eg‖1 ≤ C‖g‖1/2.
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4.2 WEAK FORMULATIONS

Definition 4.2.1. Let gh be an interpolant of g. Define

a(·, ·) : X ×X → R, a(u, v) : = (ν̃∇u,∇v) + (K−1u, v)s,

b(·, ·) : Q×X → R, b(q, v) : = −(q,∇ · v),

c(·, ·) : L×X → R, c(µ, v) : = (µ, v)s,

l(·) : X → R, l(v) : = 〈f, v〉 − ν(∇Eg,∇v)f ,

lh(·) : X → R, lh(v) : = 〈f, v〉 − ν(∇Egh,∇v)f ,

for some fixed parameter 0 < ε� 1, ‖ · ‖2
ε : = ν| · |21 +

1

ε
‖ · ‖2

1,s,

Wh : =

vh ∈ Vh :

∫
Ωs

vhdx = 0

 .

We denote by (u, p) the solution of the Stokes problem in Ωf :

− ν∆u+∇p = f in Ωf ,

∇ · u = 0 in Ωf ,

u = g on ∂Ω, (4.2.1)

u = 0 on ∂Ωs,

prolongated by (u, p) = (0, 0) inside Ωs.

Now we define the weak formulation of Stokes equation. Since the discrete

model is going to be defined on the entire Ω, we use the test functions (v, q) ∈

(X,Q) in all of the weak formulations.
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Problem 1. Find (ũ, p) ∈ (Xf , Qf ) such that ũ = u− Eg, (ũ, p)Ωs = (0, 0) and

ν(∇ũ,∇v)f − (p,∇ · v)f + 〈τ(ũ, p) · n, v〉

= 〈f, v〉 − ν(∇Eg,∇v)f + 〈ν∇Eg · nf , v〉 ∀v ∈ X, (4.2.2)

(q,∇ · ũ)f = 0 ∀q ∈ Q. (4.2.3)

where τ(ũ, p) · nf := pnf − ν∇ũ · nf is a pseudo-traction on ∂Ωs. In this chapter

we assume that τ(ũ, p) · nf ∈ H−1/2(∂Ωs).

Since ũ ∈ Xf and ũ = 0 in Ωs, we have that ũ ∈ X. Further, as p|Ωs = 0, we

also have p ∈ Q. These observations allow us to rewrite (4.2.2)-(4.2.3) in terms of

linear operators and bilinear forms defined in Definition 4.2.1.

Problem 2. Find (ũ, p) ∈ (X,Q) such that ũ = u− Eg, (ũ, p)Ωs = (0, 0) and

a(ũ, v) + b(p, v) + 〈τ(ũ, p) · n, v〉 = l(v) + 〈ν∇Eg · n, v〉 ∀v ∈ X, (4.2.4)

b(q, ũ) = 0 ∀q ∈ Q. (4.2.5)

The continuous Lagrange multiplier formulation of Problem 2. Con-

sider the following Neumman problem:

−∆λ+ λ = 0 in Ωs,

∂λ

∂ns
= τ · nf on ∂Ωs.

Multiplying through by µ ∈ H1(Ωs) and integrating by parts, we find

(λ, µ)1,s = 〈τ · nf , µ〉 ∀µ ∈ H1(Ωs). (4.2.6)

In particular, since X ⊂ H1(Ωs), we have (λ, v)1,s = 〈τ · nf , v〉 ∀v ∈ X. Inserting

this into (4.2.4), and noting that (µ, u)1,s = 0 ∀µ ∈ H1(Ωs), we can restate the

Problem 2 as:
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Problem 3. Find (u, p, λ) ∈ (X,Q,H1(Ωs)) such that (u, p)Ωs = (0, 0) and

a(u, v) + b(p, v) + (λ, v)1,s = (f, v) ∀v ∈ X (4.2.7)

b(q, u) = 0 ∀q ∈ Q, (4.2.8)

(µ, u)1,s = 0 ∀µ ∈ H1(Ωs). (4.2.9)

The discrete model. We enhance the Stokes-Brinkman Volume Penalization

model (4.0.1)-(4.0.2) with two new ingredients:

1. We impose u ' 0 in the each ball weakly through a Lagrange Multiplier space

Lh := span
{
eiχBj : for i = 1, d, j = 1, S

}
:

∫
Ωs

uµ = 0 ∀µ ∈ Lh ⇒
∫
Bi

u = 0 ∀Bi.

2. In order to capture the geometry of the solid region and ensure the inf-sup

stability on a coarse mesh, we augment the discrete velocity space with bubble

functions described in the next subsection.

Problem 4. Find (ũh, ph, λh) ∈ (Xh, Qh, Lh) ⊂ (X,Q,L) such that uh = ũh+Egh

and

a(ũh, vh) + b(ph, vh) + c(λh, vh) = lh(vh) ∀vh ∈ Xh, (4.2.10)

b(qh, ũh) = 0 ∀qh ∈ Qh, (4.2.11)

c(µh, ũh) = 0 ∀µh ∈ Lh. (4.2.12)
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4.2.1 Discrete subspaces

We denote conforming velocity, pressure finite element polynomial spaces based

on an edge to edge triangulations of Ω (with maximum element diameter h) by

Yh ⊂ X,Qh ⊂ Q.

We assume that Yh, Qh satisfy the usual inf-sup stability condition (2.2.3). This

means the velocity-pressure spaces Yh, Qh, before augmentation by spherical bub-

bles, would be div-stable for Stokes flow in Ω. In order to capture the geometry

of the solid region, we additionally augment the velocity space with the spherical

bubbles described below.

When choosing the spherical bubbles two things must be taken into account.

First, each such basis function must be in X. Next, it should be able to capture the

geometry of the balls. So ideally each such basis function ξi must vanish outside

Bi.

For a ball Bi, define

φi := max

{
1− |x− xi|2

r2
, 0

}
.

For each Bi of radius r, centered at xi, we let ξji = φiej, j = 1, d, i = 1, S.

Let

Zh = span{ξ1
1 , ξ

1
2 , ..., ξ

1
S, ..., ξ

d
1 , ξ

d
2 , ..., ξ

d
S}

and Xh := Yh ⊕ Zh.
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4.2.2 Linear system

With the above choice of subspaces, the formulation of Problem 4 in matrix nota-

tion corresponds to
AYhYh AZhYh BQhYh CLhYh

ATZhYh AZhZh BQhZh CLhZh

BT
QhYh

BT
QhZh

CT
LhZh

0

CT
LhYh

CT
LhZh

0 0




Up

Ub

P

Λ

 =


Fp

Fb

0

0

 .

Here Up,Ub,P and Λ are the degrees of freedom of the polynomial part of ũh,

bubble part of ũh, ph and λh, respectively. Assuming that Yh = {φi}, Zh = {ξi},

Qh = {qi} and Lh = {µi}, the entries of matrix blocks are given by

(AYhYh)ij = a(φi, φj), (AZhYh)ij = a(ξi, φj), (BQhYh)ij = b(qj, φi),

(CLhYh)ij = c(µj, φi), (CLhZh)ij = c(µj, ξi), AZhZh = cId×d,

where c is a O(1) constant.

4.3 WELL-POSEDNESS, STABILITY AND CONVERGENCE

In this section, we prove well-posedness of the system (4.2.10)-(4.2.12), along with

stability and convergence results.

Lemma 4.3.1. The linear functionals l(·), lh(·) are continuous. In particular, for

any v ∈ X, q ∈ Q

l(v) ≤ C(‖f‖−1 + ν‖g‖1/2)|v|1,

lh(v) ≤ C(‖f‖−1 + ν‖gh‖1/2)|v|1.
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Proof. The results follow directly by applying Cauchy-Schwarz and Poincaré in-

equalities.

Lemma 4.3.2. The bilinear functionals a(·, ·), b(·, ·) and c(·, ·) are continuous.

Further, a(·, ·) is coercive. In particular, for any u,v ∈ X, q ∈ Q and µ ∈ L,

a(v, v) = ‖v‖2
ε,

a(u, v) ≤ ‖u‖ε‖v‖ε,

b(q, v) ≤
√
d‖q‖|v|1,

c(µ, v) ≤ C(Ω)‖µ‖s|v|1.

Proof. As in the last lemma, all the inequalities are directly obtained by applying

Cauchy-Schwarz and Poincaré inequalities.

The Problem 4 is a twofold saddle point problem and its stability and conver-

gence depends on the fulfillment of the twofold inf-sup condition (2.2.7). Usually,

proving them is notoriously difficult [53]. This is even harder for the methods on

the nonboundary conforming meshes. E.g., when mesh is non-conforming to the

boundary, for the Poisson problem the stability considerations require the mesh-

width of the multiplier space to be three times larger than that of the primal

variable [21] and this is just a saddle-point problem. Ensuring these type of re-

quirements is not always easy in practice. We establish in Lemma 4.3.4 the twofold

inf-sup condition for particular choice of subspaces and geometric configuration of

the solids. For the general case, we assume that it holds.

Lemma 4.3.3. (Inf-sup condition between Xh and Lh) (Yh, Lh) satisfy the inf-sup

conditions, i.e.,

∃c1 > 0 sup
vh∈Yh

(µh, vh)s
|vh|1,s

≥ c1r‖µh‖s, ∀µh ∈ Lh, (4.3.1)

∃c2 > 0 sup
vh∈Yh

(µh, vh)s
‖vh‖1,s

≥ c2
r

r + 1
‖µh‖s, ∀µh ∈ Lh. (4.3.2)
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Proof. Pick arbitrary µh ∈ Lh. Then

µ =
d∑
i=1

S∑
j=1

mi
jχBjei

for some mi
j ∈ R. Set

vh =
d∑
i=1

S∑
j=1

mi
jξ
i
jei ∈ Yh.

Simple calculations show that

(µh, vh)s
|vh|1,s‖µh‖s

≥ c1r,

and
(µh, vh)s
‖vh‖1,s‖µh‖s

≥ c2
r

r + 1
.

Theorem 4.3.4. (Twofold inf-sup condition) Let Xh = P2⊕Yh, Qh = P0. Assume

B ∩ K 6= ∅ ⇐⇒ B ⊂ K, where K ∈ Th. Then ∃c1 > 0, c2 > 0 such that

∀(qh, µh) ∈ (Qh, Lh)

sup
vh∈Xh

(µh, vh)s
|vh|1

≥ c1‖µh‖s and (4.3.3)

sup
vh∈Wh

(qh,∇ · vh)
|vh|1

≥ c2‖qh‖. (4.3.4)

Proof. Note that (4.3.3) is the result of the Lemma 4.3.3. Further, by div-stability

assumption on (Yh, Qh), ∃γ > 0 ∀qh ∈ Qh, ∃wh ∈ Yh such that

(qh,∇ · wh)
|wh|1

≥ γ‖qh‖.

Now let vh := wh +
d∑
i=1

S∑
j=1

αijξ
i
jei such that vh ∈ Wh. This is accomplished by

choosing

αij = −

∫
Bj

whei∫
Bj

ξij
=
cd
rd

∫
Bj

whei.
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Hölder’s inequality gives |vh|1 ≤ C|wh|1. The last ingredient that makes things

work is the fact that ∫
Bj

∂ξij
∂xm

= 0, m = 1, d, i = 1, d⇒

∫
K

∂ξij
∂xm

= 0 ∀K ∈ Th, m = 1, d, i = 1, d, j = 1, S.

Combining the above facts we obtain that

γ ≤ (qh,∇ · wh)
|wh|1

=
(qh,∇ · vh)
|wh|1

≤ C(qh,∇ · vh)
|vh|1

.

For the analysis we assume that (Xh, Qh, Lh) satisfy the twofold inf-sup con-

dition (2.2.8), i.e., ∃βh > 0 such that

inf
qh∈Qh,µh∈Lh

sup
vh∈Xh

b(qh, vh) + c(µh, vh)

|vh|1 (‖µh‖s + ‖qh‖)
≥ βh. (4.3.5)

Theorem 4.3.5. Assume (4.3.5) holds. Then ∃! (ũh, ph, λh) ∈ (Xh, Qh, Lh) solu-

tion of the Problem 4. Moreover, (ũh, ph, λh) satisfy

|ũh|1 ≤ C

(
1

ν
‖f‖−1 + ‖gh‖1/2

)
, (4.3.6)

‖ũh‖ε ≤ C

(
1√
ν
‖f‖−1 +

√
ν‖gh‖1/2

)
, (4.3.7)

‖ũh‖1,s ≤ C
√
ε

(√
1

ν
‖f‖−1 +

√
ν‖gh‖1/2

)
, (4.3.8)

‖λh‖s ≤ C

((
ν +

1

ε

)
|ũh|1 + ν‖gh‖1/2 + ‖f‖−1

)
, (4.3.9)

‖ph‖ ≤ C

((
ν +

1

ε

)
|ũh|1 + ν‖gh‖1/2 + ‖f‖−1

)
. (4.3.10)
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Proof. We first obtain the bounds (4.3.6)-(4.3.8). Restricting the test functions to

Wh reduces the Problem 4 to finding ũh ∈ Wh such that

a(ũh, vh) = lh(vh) ∀vh ∈ Wh. (4.3.11)

Setting vh = ũh yields

‖ũh‖2
ε = lh(ũh). (4.3.12)

Applying the results of Lemmas 4.3.1, 4.3.2 and the definiton of ‖ · ‖ε, we obtain

(4.3.6)-(4.3.8). By assumption (4.3.5)

‖ph‖+ ‖λh‖s ≤
C

βh
sup
vh∈Xh

|b(ph, vh) + c(λh, vh)|
|vh|1

≤ C

βh
sup
vh∈Xh

|a(ũh, vh)|+ |lh(vh)|
|vh|1

≤ C

((
ν +

1

ε

)
|ũh|1 + ν‖gh‖1/2 + ‖f‖−1

)
.

In order to show existence and uniqueness of the solution, we set f = gh = 0.

Then (4.3.6)-(4.3.10) imply that (ũh, ph, λh) = (0, 0, 0).

Next we obtain a bound for an error e := u−uh under the following assumptions

u ∈ H1+α(Ω) ∩Hk+1(Ωf ), p ∈ Hβ(Ω) ∩Hk(Ωf ),

with 0 < α < 1, 1
2
< β < 1, k ≥ 1.

Depending on whether ∇u|∂Ωs
= 0 and p|∂Ωs

= 0, we might have u ∈

H2(Ω), p ∈ H1(Ω). But in general these are not true. Thus, the true solution

may fail to have more global regularity than assumed above.
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Theorem 4.3.6. Let (ũ, p) be the solution of Stokes Problem 2, Xh = Pk+1, Qh =

Pk, k ≥ 1. Then we have

‖ũ− ũh‖ε ≤ C

(
inf

wh∈Wh

‖ũ− wh‖ε + hβ +
√
ε+ ‖g − gh‖1/2

)
(4.3.13)

inf
wh∈Wh

|ũ− wh|1 ≤ C inf
vh∈Xh

(|ũ− vh|1 + ‖ũ− vh‖s) (4.3.14)

inf
wh∈Wh

‖ũ− wh‖1,s ≤ C inf
vh∈Xh

‖ũ− vh‖s (4.3.15)

inf
wh∈Wh

‖ũ− wh‖ε ≤ C inf
vh∈Xh

‖ũ− vh‖ε (4.3.16)

‖ũ− ũh‖ε ≤ C

(
inf

vh∈Xh
‖ũ− vh‖ε + hβ +

√
ε+ ‖g − gh‖1/2

)
(4.3.17)

Proof. Consider vh, wh ∈ Wh, qh = ΠSZp ∈ Qh. By subtracting (4.2.10) from

(4.2.4), then adding and subtracting a(wh, vh) we find

a(ũh − wh, vh) = a(ũ− wh, vh) + b(p− qh, vh) + 〈τ · nf , vh〉

− ν〈∇Eg · nf , vh〉+ (∇E(g − gh),∇vh)f . (4.3.18)

Let us now choose vh = ũh − wh ∈ Wh. The regularity assumption on pseudo-

traction τ(ũ, p), Lemma 4.3.2, (4.2.12) and standard inequalities imply

‖ũh − wh‖ε ≤ C

(
‖ũ− wh‖ε +

1√
ν
‖p− qh‖

)
+

C√
ν
‖g − gh‖1/2

+ C
√
ε
(
‖τ · nf‖−1/2,s + ν‖∇Eg · nf‖−1/2,s

)
, (4.3.19)

and therefore

‖ũh − ũ‖ε ≤ C

(
‖ũ− wh‖ε +

1√
ν
‖p− qh‖

)
+

C√
ν
‖g − gh‖1/2

+ C
√
ε
(
‖τ · nf‖−1/2,s + ν‖∇Eg · nf‖−1/2,s

)
, (4.3.20)

≤ C
(
‖ũ− wh‖ε + hβ +

√
ε+ ‖g − gh‖1/2

)
. (4.3.21)
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Next we establish (4.3.14)-(4.3.16). To this end, pick ∀vh ∈ Xh,∀wh ∈ Wh.

By applying the second statement of the Lemma 2.2.1 to the twofold saddle-point

problems, we have that

|vh − wh|1 ≤
1

βh
sup

(qh,µh)∈(Qh,Lh)

b(qh, vh − wh) + c(µh, vh − wh)
| qh‖+ ‖µh‖

=
1

βh
sup

(qh,µh)∈(Qh,Lh)

b(qh, vh − ũ) + c(µh, vh − ũ)

‖qh‖+ ‖µh‖

≤ C (|ũ− vh|1 + ‖u− vh‖s) , (4.3.22)

as b(qh, ũ) = c(µh, ũ) = 0 ∀(qh, µh) ∈ (Qh, Lh). Another application of the triangle

inequality gives (4.3.14).

Similar to the previous argument

‖vh − wh‖1,s ≤ C sup
µh∈Lh

c(µh, vh − wh)
‖µh‖

= C sup
µh∈Lh

c(µh, vh − ũ)

‖µh‖

≤ C‖ũ− vh‖s, (4.3.23)

for any vh ∈ Xh, wh ∈ Wh. Triangle inequality yields (4.3.15). (4.3.16) is obtained

in the similar manner, and (4.3.17) is a combination of (4.3.13) and (4.3.16).

Remark 4.3.7. If Th is conforming to the fluid-solid interface, then we can pick

vh = 0, qh = 0 in Ωs and obtain the standard error bound

‖ũ− ũh‖ε ≤ C
(
hk|ũ|k+1,f + hk|p|k,f +

√
ε+ ‖g − gh‖1/2

)
.

In general, (4.3.8) guarantees that RHS of (4.3.17) is uniformly bounded. Further,

using the fact that ũ = 0 in Ωs, from

‖ũ− vh‖2
ε = ν|ũ− vh|21,f + ν|vh|21,s +

1

ε
‖vh‖2

1,s

we observe that the last two terms measure how well the mesh captures the fluid-

solid interface.
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4.4 NUMERICAL EXPERIMENTS

For our computations, we used

Xh = Yh ⊕ Zh, Qh and Lh := span


χBi

0

 ,

 0

χBj

 ,

where (Yh, Qh) are P3-P2 Taylor-Hood elements which are known to satisfy the

inf-sup condition [11, 13]. We used FreeFEM++ [28] in our computations. Our

tests here are preliminary proof of concept, tested in 2d with spheres simple enough

to allow a mesh-conforming "true" solution to be obtained.

Two key comparisons of Brinkman (M1) vs. our model (M2) are the 1) amount

of fluid flowing through the spheres and 2) the size of the dead zones behind the

spheres caused by the spheres acting like a solid obstacles.

Flow through a thin channel. Our experiment is for two-dimensional flow

around seven balls placed in the channel, with small distance apart from each other.

The domain is ([0, 1] × [0.39, 0.61]) − Ωs, where Ωs is the union of seven balls

with radii 0.03 and centered at (0.16, 0.49), (0.23, 0.52), (0.28, 0.43), (0.1, 0.44),

(0.13, 0.56), (0.35, 0.48) and (0.39, 0.54). We assume no-slip boundary conditions

on the top and bottom boundaries, a parabolic inflow given by ((y − 0.39)(0.61−

y)/25, 0)T and do-nothing outflow. We take ν = 100, f = (y, 0)Tχf . In Figure

4.1 we present the speed contour of the true solution. We ran tests on few mesh

refinements (Fig. 4.4) for two different values of the penalty parameter ε. The

speed contours of M1 and M2 are presented in Figures 4.5, 4.6 and 4.7. We also

list the tables of errors in Tables 4.1, 4.2.

From the numerical experiments, we can observe the following:

• On the coarsest mesh, for both values of ε the proposed method gives improved

results than M1. In the case of ε = h2, M2 gives reasonable speed contours
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Figure 4.1: The body-fitted, resolved Stokes speed contours

(Fig 4.5), while M1 yields very poor approximation even on the finest mesh

(Fig. 4.6). Further, M1 also produces more accurate approximation (Tables

4.1-4.2). This is due to the new ingredients added to Stokes-Brinkman model.

• For very small value of the penalty parameter ε, both methods give very similar,

poor results. In particular note the polygonal no-flow regions in Figures 4.6

- 4.7. Further, the flow has been chocked off in some of the pores. One

advantage of the method herein is that less flow goes through the solid domain.

This improvement is due to the addition of the bubbles because, by Hölder’s

inequality
∫
B

u ≤
∣∣∣∣∫
B

u

∣∣∣∣ ≤ C‖u‖s ≤ C
√
ε by (4.3.8), so that weak no-flow is

almost satisfied for both methods.

• For larger value of ε, M2 gives very good approximations, while M1 gives

very underresolved solution even on the finest mesh. As it was pointed out

above, these improvements are due to the combinations of Lagrange multiplier,
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Figure 4.2: Mesh 1 (h = 0.55) and Ωs

Figure 4.3: Mesh 2 (h = 0.27) and Ωs

Figure 4.4: Mesh 3 (h = 0.14) and Ωs
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Figure 4.5: From top to bottom: speed contours of M2 on meshes with h ' 0.11,

h ' 0.055, h ' 0.027, ε = h2
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penalization terms and the spherical bubbles. This is because the penalization

terms by themselves gave poor results, as it can be observed from the plots of

M1 method.
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Figure 4.6: From top to bottom: speed contour of M2, with h = 0.014, ε = h2 and

h = 0.027, ε = 10−15, and of M1, with h = 0.007, ε = h2
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Figure 4.7: From top to bottom: speed contour of M1, with h = 0.027, ε = 10−15

and h = 0.014, ε = 10−15, and of M2, with h = 0.014, ε = 10−15
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ε = 1e− 15 ε = h2

M1 rate M2 rate M1 rate M2 rate

h

0.11 3.79e-2 4.0316 2.43e-3 -0.1226 1.59e-3 0.0288 9.33e-4 0.3656

0.055 2.32e-3 0.7407 2.65e-3 0.9002 1.55e-3 0.0258 7.24e-4 0.1983

0.027 1.39e-3 0.4225 1.42e-3 0.4496 1.52e-3 0.0131 6.31e-4 1.2753

0.014 1.04e-3 - 1.04e-3 - 1.51e-3 0.001 2.6e-4 0.5746

0.007 Out of memory 1.5e-3 - 1.75e-4 -

Table 4.1: L2 errors and rates

ε = 1e− 15 ε = h2

M1 rate M2 rate M1 rate M2 rate

h

0.11 2.03e-3 3.99 9.15e-6 -0.782 6.971e-4 0.022 4.548e-4 0.322

0.055 3.761e-5 1.465 1.57e-5 2.205 6.82e-4 0.021 3.6373e-4 0.586

0.027 8.694e-6 2.187 2.77e-6 2.897 6.682e-4 0.011 2.4238e-4 1.371

0.014 9.762e-7 - 3.72e-7 - 6.608e-4 - 9.37e-5 1.815

0.007 Out of memory 1.5e-3 - 2.6632e-5 -

Table 4.2: L2(Ωs) errors and rates
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5.0 BRINKMAN VOLUME PENALIZATION BASED MODEL

FOR MODERATE RE FLOWS

In this chapter, we develop an algorithm from the model of the previous chapter.

The new aspect of the model is that we implement the volume penalization (i.e.,

the strong enforcement of u ' 0) only in the elements contained in the solid region.

Unlike [31], this prevents the flow obstruction in the regions between the solids. As

for the rest of the solid, the no-flow is enforced weakly via characteristic functions

of the balls, applied as the Lagrange multipliers.

To introduce the ideas, for given penalty parameter 0 < ε� 1, again consider

the Navier-Stokes-Brinkman volume penalization equation (3.2.1)-(3.2.2):

ut + u · ∇u−∇ · (ν̃∇u) +
1

K
u+∇p = f in Ωf ,

∇ · u = 0 in Ωs,

where f is the forcing term, and the Brinkman viscosity ν̃ and permeability K are

defined as before

ν̃ =

ν if x in fluid region,

1
ε

+ ν if x in solid region,
and K =

∞ if x in fluid region,

ε if x in solid region.

On a non-conforming mesh, the finite element discretization of (3.2.1) - (3.2.2)

extends the penalization beyond the intended solid ball to the elements having

non-empty intersection with that ball, Figure 5.1. That is because a polynomial is

49



Figure 5.1: Ball and an old

penalization region

Figure 5.2: Ball and a new

penalization region

identically zero if it vanishes at finitely many points, and Brinkman penalization

makes polynomial representation of the velocity almost zero ( for a very small ε)

in a region with a positive measure, i.e., at infinitely many points. As a result,

the flow is obstructed in some of the pores between the solids, changing the flow

properties [31].

We propose the following approach: instead of applying the penalization in the

entire ball, we restrict the penalization region to those elements which are entirely

contained in the closure of the ball, Figure 5.2. Such elements exist if meshwidth ≤

radius. As for the flow elsewhere in the ball, as in Chapter 4, we use the Lagrange

Multipliers to enforce the no-flow weakly.

We combine these ideas with Navier-Stokes-Brinkman equations (3.2.1)-(3.2.2).

For a given ball B, let Bh ⊂ B be the union of elements that entirely lie in B. Set

ν̃h :=

ν if x in fluid region,

1
ε

+ ν if x in Bh, ∀B,
and Kh :=

∞ if x in fluid region,

ε if x in Bh, ∀B.
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Then the continuous algorithm is given by

ut + u · ∇u−∇ · (ν̃h∇u) +
1

Kh
u+∇p = f in solid ∪ fluid region, (5.0.1)

∇ · u = 0 in solid ∪ fluid region, (5.0.2)

u ' 0 in solid. (5.0.3)

We will give the precise definition of our algorithm in the next section, once the

notations are introduced.

5.1 WEAK FORMULATIONS

Definition 5.1.1. For a given ball Bj, we define the discrete ball Bh
j as Bh

j :=

{
⋃
i

Kj
i : Kj

i ⊂ Bj, K
j
i ∈ T h}. Further, we set

χhs :=
∑
j

χhBj , ν̃
h := χhsε

−1 + ν,Kh := εχhs ,Ω
h
s :=

⋃
j

Bh
j .

Let

a(·, ·) : X ×X → R, a(u, v) : = (ν̃∇u,∇v) + (K−1u, v)s,

ah(·, ·) : X ×X → R, ah(u, v) : = (ν̃h∇u,∇v) +

(
1

Kh
u, v

)
sh

,

b(·, ·) : Q×X → R, b(q, v) : = −(q,∇ · v),

c(·, ·) : L×X → R, c(µ, v) : = (µ, v)s,

d(·, ·, ·) : X ×X ×X :→ R, d(u, v, w) : = (u · ∇v, w),

d∗(·, ·, ·) : X ×X ×X :→ R, d∗(u, v, w) : =
1

2
(d(u, v, w)− d(u,w, v)),

for some fixed parameter 0 < ε� 1, ‖ · ‖2
εh

: = ν| · |21 +
1

ε
‖ · ‖2

1,sh
.
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For given u0(x) ∈ V (Ωf ), let (u(x, t), p(x, t)) be the solution of the Navier-

Stokes equation in Ωf × [0, tf ]:

ut + u · ∇u− ν∆u+∇p = f in Ωf × (0, tf ],

∇ · u = 0 in Ωf × [0, tf ],

u = u0(x) on Ωf × {t = 0}, (5.1.1)

u = 0 on ∂Ωf × [0, tf ],

prolongated by (u, p) = (0, 0) inside Ωs × [0, tf ]. The weak formulation of the

above Navier-Stokes equation is defined as follows:

Problem 5. Find (u, p) ∈ (Xf , Qf ) such that u(x, 0) = u0(x), (u(x, t), p(x, t))Ωs =

(0, 0) and

(ut, v)f + (u · ∇u, v)f + ν(∇u,∇v)f − (p,∇ · v)f + 〈τ(u, p) · nf , v〉

= (f, v)f , ∀v ∈ X, (5.1.2)

(q,∇ · u)f = 0 ∀q ∈ Q. (5.1.3)

where τ · nf = τ(u, p) · nf := pnf − ν∇u · nf is a pseudo-traction on ∂Ωs, 〈·, ·〉 is

the duality pairing between H−1/2(∂Ωs)×H1/2(∂Ωs).

Since u ∈ Xf and u = 0 in Ωs, we have that u ∈ X. Further, as p|Ωs = 0, we

also have p ∈ Q. These observations allow us to rewrite (5.1.2)-(5.1.3) in terms of

linear operators and bilinear forms defined in the Definition 5.1.1.

Problem 6. Find (u, p) ∈ (X,Q) such that (u(x, t), p(x, t))Ωs = (0, 0), u(x, 0) =

u0 and

(ut, v) + d(u, u, v) + a(u, v) + b(p, v) + 〈τ(u, p) · nf , v〉 = (f, v) ∀v ∈ X, (5.1.4)

b(q, u) = 0 ∀q ∈ Q. (5.1.5)
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The continuous Lagrange multiplier formulation of Problem 6. Con-

sider the following Neumman problem, ∀t > 0

−∆λ+ λ = 0 in Ωs,

∂λ

∂ns
= τ · nf on ∂Ωs.

Multiplying through by µ ∈ H1(Ωs) and integrating by parts, we find

(λ, µ)1,s = 〈τ · nf , µ〉 ∀µ ∈ H1(Ωs). (5.1.6)

In particular, since X ⊂ H1(Ωs), we have (λ, v)1,s = 〈τ · nf , v〉 ∀v ∈ X. Inserting

this into (5.1.4), and noting that (µ, u)1,s = 0 ∀µ ∈ H1(Ωs), we can restate the

Problem 6 as

Problem 7. Find (u, p, λ) ∈ (X,Q,H1(Ωs)) such that (u(x, t), p(x, t))Ωs = (0, 0),

u(x, 0) = u0 and

(ut, v) + d(u, u, v) + a(u, v) + b(p, v) + (λ, v)1,s = (f, v) ∀v ∈ X (5.1.7)

b(q, u) = 0 ∀q ∈ Q, (5.1.8)

(µ, u)1,s = 0 ∀µ ∈ H1(Ωs). (5.1.9)

As in the case Stokes flow, at each time step, the well-posedness and stability

of discrete-in-time FE approximation of the Problem 7 depends on the fullfilment

of the twofold inf-sup condition (2.2.7). In the current algorithm, it is assumed

that Xh does not contain the spherical bubble of Chapter 4.0, as the mesh is finer.

Therefore, inf-sup condition between Xh and Lh is not as straightforward as in

Lemma 4.3.3, see Lemma 5.2.1. In the general case, we again assume that the

twofold inf-sup condition (5.2.3) is satisfied.

The discrete model. Assume that (Xh, Qh) is a div-stable pair.
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Problem 8. Find (un+1
h , pn+1

h , λn+1
h ) ∈ (Xh, Qh, Lh) ⊂ (X,Q,L), n = 0, 1, ..., N−1

satisfying

(
un+1
h − unh

∆t
, vh

)
+ ah(un+1

h , vh) + b(pn+1
h , vh) + c(λn+1

h , vh)

+d∗(unh, u
n+1
h , vh) = (fn+1, vh) ∀vh ∈ Xh, (5.1.10)

b(qh, u
n+1
h ) = 0 ∀qh ∈ Qh, (5.1.11)

c(µh, u
n+1
h ) = 0 ∀µh ∈ Lh, (5.1.12)

where u0
h is an approximation of u0.

Remark 5.1.2. One could choose the test functions such that vh = 0, qh = 0 in

Ωh
s , drop the penalty term in (5.1.10) and set uh = 0 in Ωh

s . We advocate the

current version of (5.1.10) for two reasons. Firstly, it is much easier to implement

in FreeFEM++ package [28]. Secondly, in the case of moving solids (which will be

studied in the future projects), the model enforces rigid body motion in each B,

i.e., uh = U + ω× r, where U, ω are the translational and angular velocities of the

ball, respectively. Additionally, there will be a new set of equations for these new

variables and they are solved for simultenously with u, p.

5.1.1 Linear system

With the above choice of subspaces, at each timestep, the formulation of Problem

8 in matrix notation corresponds to


AXhXh + Ãn+1

XhXh
BQhXh CLhXh

BT
QhXh

0 0

CT
LhXh

0 0




Un+1

Pn+1

Λn+1

 =


Fn+1

0

0

 .
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Here Un+1,Pn+1 and Λn+1 are the degrees of freedom of un+1
h , pn+1

h and λn+1
h ,

respectively. Assuming that Xh = {φi}, Qh = {qi} and Lh = {µi}, the entries of

matrix blocks are given by

(AXhXh)ij = a(φi, φj),
(
Ãn+1
XhXh

)
ij

= d∗(unh, φi, φj),

(BQhXh)ij = b(qj, φi), (CLhXh)ij = c(µj, φi).

Note that only Ãn+1
XhXh

must be assembled at each timestep, other blocks in the

matrix can be pre-assembled. Further, only the integrals corresponding to CLhXh
block require integration over the intersection of spheres with the triangles ( tetra-

hedrons).

5.2 WELL-POSEDNESS, STABILITY AND CONVERGENCE

In this section we establish well-posedness of (5.1.10)-(5.1.12) and obtain stability

and convergence results. We first prove the inf-sup condition between Xh and Lh.

Lemma 5.2.1. Let Xh = Pk, k ≥ 2 and Lh as above. If h < Cr for some

C = O(1), then ∃αh = αh(h) > 0, lim
h→0

αh = Cr, such that

inf
µh∈Lh

sup
vh∈Xh

(µh, vh)

‖µh‖s|vh|1
≥ αh. (5.2.1)

Proof. Pick arbitrary µh ∈ Lh. Then µh =
d∑
j=1

S∑
i=1

aijχBiej. Set

φi := max

{
1− |x− xi|

r2
, 0

}
∈ X, and w :=

d∑
j=1

S∑
i=1

aijφiej.

Simple calculation shows that

(µh, w)

‖µh‖s|w|1
≥ Cr. (5.2.2)
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Now let ΠSG be the Scott-Girault interpolating operator (Lemma 2.2.6) and

wh := ΠSGw ∈ Xh. Then

sup
vh∈Xh

(µh, vh)

|vh|1
≥ |(µh, wh)|

|wh|1
≥ |(µh, wh)|

C1|w|1

=
|(µh, w) + (µh, wh − w)|

C1|w|1
≥ (µh, w)

C1|w|1
− |(µh, wh − w)|

C1|w|1

≥ Cr‖µh‖s −
‖µh‖s‖wh − w‖

C1|w|1
≥ Cr‖µh‖s − C2h‖µh‖s =: αh > 0,

provided h is small enough.

We assume that (Xh, Qh, Lh) satisfy the twofold inf-sup condition (2.2.8), i.e.,

∃ βh > 0 such that

inf
qh∈Qh,µh∈Lh

sup
vh∈Xh

b(qh, vh) + c(µh, vh)

|vh|1 (‖µh‖s + ‖qh‖)
≥ βh. (5.2.3)

Lemma 5.2.2. The bilinear functionals ah(·, ·), b(·, ·) and c(·, ·) are continuous.

Further, ah(·, ·) is coercive. In particular, for any u, v ∈ X, q ∈ Q and µ ∈ L,

ah(v, v) = ‖v‖2
εh
,

ah(u, v) ≤ ‖u‖εh‖v‖εh ,

b(q, v) ≤
√
d‖q‖|v|1,

c(µ, v) ≤ C(Ω)‖µ‖s|v|1.

Proof. All the statements are directly obtained by using definition of ‖ · ‖εh , or by

applying Cauchy-Schwarz and Poincaré inequalities.
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Theorem 5.2.3. There exists a unique (unh, p
n
h, λ

n
h) ∈ (Xh, Qh, Lh) solution of the

Problem 8. Moreover, (unh, p
n
h, λ

n
h) satisfy

‖uNh ‖ ≤
‖f‖2,−1√

ν
+ ‖u0

h‖, (5.2.4)

∆t
N−1∑
n=0

‖un+1
h ‖2

εh
≤ ‖f‖2,−1

ν
+ ‖u0

h‖2, (5.2.5)

|uh|2,1 ≤
‖f‖2,−1

ν
+

1√
ν
‖u0

h‖, (5.2.6)

|uh|2,0,sh ≤
√
ε

(
‖f‖2,−1√

ν
+ ‖u0

h‖
)
, (5.2.7)

‖λn+1
h ‖s ≤ C

(
ν|un+1

h |1 +
‖un+1

h ‖+ ‖unh‖
∆t

+ ‖fn+1‖−1 + |un+1
h |1|unh|1

)
, (5.2.8)

‖pn+1
h ‖ ≤ C

(
ν|un+1

h |1 +
‖un+1

h ‖+ ‖unh‖
∆t

+ ‖fn+1‖−1 + |un+1
h |1|unh|1

)
. (5.2.9)
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Proof. Setting vh = un+1
h , qh = pn+1

h , µh = λn+1
h in (5.1.10)-(5.1.12) and adding the

equations gives

(un+1
h − unh, un+1

h )

∆t
+ ‖un+1

h ‖2
εh

= (fn+1, un+1
h ). (5.2.10)

Applying polarization identity to the first term on the LHS and Cauchy-Schwarz

to the RHS in (5.2.10), we obtain

‖un+1
h ‖2 − ‖unh‖2 + ‖un+1

h − unh‖2 + ∆t‖un+1
h ‖2

εh
≤

∆t‖fn+1‖2
−1

ν
. (5.2.11)

Summing over n from 0 to N − 1 yields

‖uNh ‖2 +
N−1∑
n=0

‖un+1
h −unh‖2 +∆t

N−1∑
n=0

‖un+1
h ‖2

εh
≤

∆t
N−1∑
n=0

‖fn+1‖2
−1

ν
+‖u0

h‖2, (5.2.12)

which imply (5.2.4)-(5.2.7). Now we derive the bounds on the pressure and the

Lagrange multiplier. By inf-sup condition (5.2.3), ∃ βh > 0 such that

‖pn+1
h ‖+ ‖λn+1

h ‖s

≤ C

βh
sup
vh∈Xh

∣∣∣ (un+1
h −unh ,vh)

∆t
+ ah(un+1

h , vh) + d∗(unh, u
n+1
h , vh)− (fn+1, vh)

∣∣∣
|vh|1

. (5.2.13)

Since the mesh is conforming to the discrete solid region, in (5.2.13) we can pick

vh = 0 in Ωsh , implying that ah(un+1
h , vh) = ν(∇un+1

h ,∇vh) and

‖pn+1
h ‖+ ‖λn+1

h ‖s ≤ C

(
ν|un+1

h |1 +
‖un+1

h ‖+ ‖unh‖
∆t

+ ‖fn+1‖−1 + |un+1
h |1|unh|1

)
.

(5.2.14)

In order to show existence and uniqueness of the solution, we set f = u0
h = 0.

Then (5.2.4)-(5.2.9) imply that (un+1
h , pn+1

h , λn+1
h ) = (0, 0, 0). Thus, there exists a

unique solution of the system at each timestep.
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Next we obtain an asymptotic result for the error en = un − unh under the

following regularity assumptions

u, ut ∈ L2(0, T ;H1+α(Ω)), u ∈ L4(0, T ;H1+α(Ω)), p ∈ L2(0, T ;Hβ(Ω)),

u ∈ L2(0, T ;H2(Ωf )), p ∈ L2(0, T ;H1(Ωf )),

u, ut ∈ L∞(0, T ;H1(Ω)), utt ∈ L2(0, T ;L2(Ω)),

with 0 < α < 1, 1
2
< β < 1.

Lemma 5.2.4. Let h < r. Then for a d-dimensional ball B, d-Lebesgue measure

of B\Bh satisfies µd(B\Bh) ≤ Ch where C = C(d, r).

Proof. Let ωBh := {∪K : K ∈ Th, K ∩ ∂B 6= ∅}, ωh =
⋃
B

ωBh Then

µd(B\Bh) ≤ µd
(
ωBh
)
≤ πd/2

Γ
(
d
2

+ 1
) ((r + h)d − (r − h)d

)
≤ C(d, r)h.

Theorem 5.2.5. Let (u, p) be the solution of the Problem 6. Then

lim
h→0

(
‖eN‖2 + ∆t

N−1∑
n=0

‖en+1‖2
εh

)
= O(ε+ ∆t2). (5.2.15)

Proof. At time tn+1, the solution of Navier-Stokes equation (5.1.4)-(5.1.5) satisfies(
un+1 − un

∆t
, vh

)
+ d∗(un+1, un+1, vh)− (pn+1,∇ · vh) + ah(un+1, vh)

+
〈
τn+1 · nf , vh

〉
= (fn+1, vh) + Intp(un+1; vh) (5.2.16)

for all vh ∈ Xh, where Intp(un+1; vh) denotes

Intp(un+1; vh) =

(
un+1 − un

∆t
− ∂u

∂t
(tn+1), vh

)
. (5.2.17)
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Subtracting (5.1.10) from (5.2.16) and restricting vh ∈ Vh gives(
en+1 − en

∆t
, vh

)
+ d∗(un+1, un+1, vh)− d∗(unh, un+1

h , vh)

−b(pn+1 − qn+1
h , vh) + ah(en+1, vh) +

〈
τn+1 · nf , vh

〉
= Intp(un+1; vh),∀qn+1

h ∈ Qh. (5.2.18)

Now decompose the error as en = (un − Un) + (Un − unh) := ηn + φnh, where Un

is the Scott-Girault interpolant of un. In particular this means Un = 0 in Ωsh .

Inserting en = ηn +φnh into (5.2.18), picking vh = φn+1
h ,∀qn+1

h ∈ Qh and combining

the results gives

‖φn+1
h ‖2 − ‖φnh‖2 + ‖φn+1

h − φnh‖2

2∆t
+ ‖φn+1

h ‖2
εh

= −
(
ηn+1 − ηn

∆t
, φn+1

h

)
− ah(ηn+1, φn+1

h ) + b(pn+1 − qn+1
h , φn+1

h )−
〈
τn+1 · nf , φn+1

h

〉
− d∗(un+1, un+1, φn+1

h ) + d∗(unh, u
n+1
h , φn+1

h ) + Intp(un+1;φn+1
h ). (5.2.19)

We bound the terms on RHS individually.(
ηn+1 − ηn

∆t
, φn+1

h

)
≤ ‖ηn+1 − ηn‖

∆t
‖φn+1

h ‖

≤ νθ|φn+1
h |21 +

C

ν∆t

tn+1∫
tn

‖ηt‖2 (5.2.20)

≤ νθ|φn+1
h |21 +

Ch2(1+α)

ν∆t

tn+1∫
tn

|ut|21+α.

By Lemma 5.2.2

ah(ηn+1, φn+1
h ) ≤ ‖ηn+1‖εh‖φn+1

h ‖εh

=
√
ν|ηn+1|1‖φn+1

h ‖εh ≤
ν|ηn+1|21

2
+
‖φn+1

h ‖2
εh

2
(5.2.21)

≤ Cνh2α|un+1|21+α +
‖φn+1

h ‖2
εh

2
.
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Using ‖∇ · vh‖ ≤
√
d|∇vh|1 and picking qn+1

h = ΠSZp
n+1, we obtain

b(pn+1 − qn+1
h , φn+1

h ) ≤ ‖pn+1 − qn+1
h ‖‖∇ · φn+1

h ‖

≤ θν|φn+1
h |21 +

C

ν
‖pn+1 − qn+1

h ‖2 (5.2.22)

≤ θν|φn+1
h |21 +

Ch2β

ν
|pn+1|2β.

We now bound the traction term. Using φnh = −unh in Ωsh and (5.1.6), the traction

term can be expressed as

〈
τn+1 · nf , φn+1

h

〉
= (λn+1, φn+1

h )1,s = (λn+1, un+1
h )1,sh + (λn+1, φn+1

h )1,s\sh

≤ ‖λn+1‖1,sh‖un+1
h ‖1,sh + C‖λn+1‖1,s\sh|φ

n+1
h |1 (5.2.23)

≤ ‖λn+1‖1,sh‖un+1
h ‖1,sh +

C

ν
‖λn+1‖2

1,s\sh + θν|φn+1
h |21.

By Taylor series expansion

Intp(un+1;φn+1
h ) ≤ θν|φn+1

h |21 +
C4t
ν

tn+1∫
tn

‖utt‖2dt. (5.2.24)

Now consider the nonlinear terms. By adding and subtracting terms, they can be

rewritten as

d∗(un+1, un+1, φn+1
h )− d∗(unh, un+1

h , φn+1
h )

= d∗(un+1, un+1 − un+1
h , φn+1

h ) + d∗(un+1, un+1
h , φn+1

h )− d∗(unh, un+1
h , φn+1

h )

= d∗(un+1, ηn+1, φn+1
h ) + d∗(un+1 − un, un+1, φn+1

h )− d∗(un+1 − un, ηn+1, φn+1
h )

+ d∗(en, un+1, φn+1
h )− d∗(en, ηn+1, φn+1

h )

= d∗(un+1, ηn+1, φn+1
h ) + d∗(un+1 − un, un+1, φn+1

h )− d∗(un+1 − un, ηn+1, φn+1
h )

+ d∗(ηn, un+1, φn+1
h ) + d∗(φnh, u

n+1, φn+1
h )

− d∗(ηn, ηn+1, φn+1
h )− d∗(φnh, ηn+1, φn+1

h ). (5.2.25)
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The terms in (5.2.25) can be dealt with as follows:

d∗(un+1, ηn+1, φn+1
h ) ≤ C|un+1|1|ηn+1|1|φn+1

h |1

≤ θν|φn+1
h |21 +

C

ν
|un+1|21|ηn+1|21

≤ θν|φn+1
h |21 +

Ch2α

ν
|un+1|21|un+1|21+α (5.2.26)

≤ θν|φn+1
h |21 +

Ch2α

ν
|u|2∞,1|un+1|21+α

≤ θν|φn+1
h |21 +

Ch2α

ν
|un+1|21+α,

d∗(un+1 − un, un+1, φn+1
h ) ≤ C|un+1 − un|1|un+1|1|φn+1

h |1

≤ θν|φn+1
h |21 +

C∆t2

ν
|ut|2∞,1|un+1|21 (5.2.27)

≤ θν|φn+1
h |21 +

C∆t2

ν
|un+1|21,

d∗(un+1 − un, ηn+1, φn+1
h ) ≤ C|un+1 − un|1|ηn+1|1|φn+1

h |1

≤ θν|φn+1
h |21 +

C∆t2

ν
|ut|2∞,1|ηn+1|21 (5.2.28)

≤ θν|φn+1
h |21 +

C∆t2h2α

ν
|un+1|21+α,

d∗(ηn, un+1, φn+1
h ) ≤ C|ηn|1|un+1|1|φn+1

h |1

≤ θν|φn+1
h |21 +

C

ν
|ηn|21|un+1|21 (5.2.29)

≤ θν|φn+1
h |21 +

Ch2α

ν
|un|21+α|un+1|21

≤ θν|φn+1
h |21 +

Ch2α

ν
|un|21+α,

(5.2.30)
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d∗(ηn, ηn+1, φn+1
h ) ≤ C|ηn|1|ηn+1|1|φn+1

h |1

≤ θν|φn+1
h |21 +

C

ν
|ηn|21|ηn+1|21 (5.2.31)

≤ θν|φn+1
h |21 +

Ch4α

ν
|un|21+α|un+1|21+α (5.2.32)

≤ θν|φn+1
h |21 +

Ch4α

ν
|un+1|21+α,

and

d∗(φnh, u
n+1, φn+1

h ) ≤ C
√
|φnh|1‖φnh‖|u

n+1|1|φn+1
h |1

≤ θν|φn+1
h |21 +

C

ν
‖φnh‖|φnh|1|un+1|21 (5.2.33)

≤ θν|φn+1
h |21 + θ̃ν|φnh|21 +

C

ν2
‖φnh‖2|un+1|41,

d∗(φnh, η
n+1, φn+1

h ) ≤ C
√
|φnh|1‖φnh‖|η

n+1|1|φn+1
h |1

≤ θν|φn+1
h |21 + θ̃ν|φnh|21 +

C

ν2
‖φnh‖2|ηn+1|41 (5.2.34)

≤ θν|φn+1
h |21 + θ̃ν|φnh|21 +

Ch4α

ν2
‖φnh‖2|un+1|41+α.

Applying the obtained estimates to (5.2.19), summing from n = 0 to N − 1 and

picking θ = 1
32
, θ̃ = 1

8
we obtain

‖φNh ‖2 + ∆t
N−1∑
n=0

‖φn+1
h ‖2

εh
+

N−1∑
n=0

‖φn+1
h − φnh‖2

≤ C

(
h2(1+α)

ν
‖ut‖2

2,1+α + h2αν‖u‖2
2,1+α +

h2β

ν
‖p‖2

2,β (5.2.35)

+‖λ‖2,1,sh|uh|2,0,sh +
‖λ‖2

2,1,s\sh
ν

+
∆t2

ν
‖utt‖2

2,0 +
∆t2

ν
|u|22,1 +

h2α

ν
‖u‖2

2,1+α

+
∆t

ν2

N−1∑
n=0

‖φnh‖2
(
|un+1|41 + h4α|un+1|41+α

))
.
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Applying the Gronwall’s inequality, (5.2.7) and simplifying further, we get

‖φNh ‖2 + ∆t
N−1∑
n=0

‖φn+1
h ‖2

ε +
N−1∑
n=0

‖φn+1
h − φnh‖2 (5.2.36)

≤ C

(
‖λ‖2

2,1,s\sh
ν

+
√
ε+

h2α

ν
+

∆t2

ν

)
exp

(‖u‖4
4,1

ν2
+
h4α‖u‖4

4,1+α

ν2

)
.

Note that lim
h→0

µd(Ωs\Ωsh) = 0 by Lemma 5.2.4, and thus ‖λ‖2
2,1,s\sh → 0 as h→ 0.

The triangle inequality completes the proof.

5.3 NUMERICAL EXPERIMENT

We test the proposed algorithm with two-dimensional flow around nine balls placed

in the channel. We compare the results with the solution of NSE found on a fine,

conforming mesh (Fig. 5.3), which we refer to as a "true" solution. The problem

setup is as follows: Ωf = ((0, 1)× (0.39, 0.61)) \Ωs, where Ωs is the union of

nine balls with radii 0.03 and centered at (0.16, 0.49), (0.73, 0.54), (0.27, 0.45),

(0.1, 0.44), (0.13, 0.56), (0.35, 0.48), (0.34, 0.56), (0.45, 0.5) and (0.52, 0.45). The

boundary conditions are no-slip on the top and bottom boundaries, a parabolic

inflow given by (10(y− 0.39)(0.61− y), 0)T and do-nothing outflow. The flow and

model parameters are ν = 0.005, f = (exp(xy+ t), 0)Tχf , tf = 1 and ε = 1e−15.

The discrete spaces are the standard (Xh, Qh) = (P2, P1) Taylor-Hood pair [11, 13],

and the Lagrange multiplier space is Lh := span


χBi

0

 ,

 0

χBj

, as in [50].

The experiments were performed on FreeFEM++ package [28]. We compare the

speed contours and the pressure drops of Navier-Stokes-Brinkman model (M1),

the proposed algorithm (M2) and the "true" solution. We also compare the errors

between M1, M2 and the "true" solution. The tests are performed on four succesive
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Figure 5.3: Body-fitted mesh for the "true" solution

Figure 5.4: The body-fitted, resolved Navier-Stokes velocity speed contours with

streamlines at t = 1

uniform mesh and timestep refinements with initial mesh size h ' 0.037 > r and

timestep ∆t = 0.02.

Speed contours. We first compare the speed contours at the final time. The

speed contours of M1 and M2 are presented in Figures 5.6, and 5.7, respectively.

As it can be seen, the Brinkman model chokes off the flow in some of the pores, and
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alters the entire flow structure. Specifically, it fails to capture the flow structure

between the two balls, located in the bottom of the channel near the inlet, on

all three meshes. One the other hand, the proposed algorithm predicts the flow

structures more accurately, including the pores between the balls. In the plots we

also observe the polygonal no-flow regions, similar to those described in 5.1 and

5.2. We also observe that our model allows flow through the solid region, which

in turn causes smaller maximum speed values in some of the pores. This is due to

the minimal choice of Largange multiplier space ( some ideas for possible ways of

improving this is mentioned below).

Pressure drops. The M2 algorithm also predicts more accurate pressure drop

across the channel compared to M1, see the Table 5.1.

Errors. We next list the errors in both models in the Tables 5.2, 5.3. The

Brinkman model gives excellent accuracy in the solid region at the cost of the

global error, while M2 approach yields more accurate global approximation. From

the Table 5.3, we also observe the slower convergence of M2 in Ωs. This is so

because, the no-flow in Ωs\Ωsh is enforced by the same Lagrange multiplier space

without refinements as h → 0,∆t → 0. Therefore, a possible improvement to

the model would be to refine or enrich the multiplier space as h → 0,∆t → 0,

while being computationally feasibile (this might also require a stabilization for

the multiplier space as locking might occur otherwise). We briefly mention two

ideas herein

1. Incorporating the ideas from Glowinski et. al. [25], i.e., meshing the solid

region with a different triangulation and then enforcing the weak no-flow on

each triangle in Ωs.

2. With the current model, u is made orthogonal to χB, which is 0-th degree

spherical harmonic function. So another possibility is to carefully enrich the

LM space with more spherical harmonics of lower order.
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Figure 5.5: Two coarsest meshes, Ωs and Ωsh (the shaded triangles)
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Figure 5.6: From top to bottom: speed contours of M2 on first three meshes,

h ' 0.037, h ' 0.02, h ' 0.0147
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Figure 5.7: From top to bottom: speed contours of M1 on first three meshes,

h ' 0.037, h ' 0.02, h ' 0.0147
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M1 M2

h

0.037 −28.5 −2.2

0.02 −5.19 −1.5

0.0147 −2.44 −1.36

0.0072 −0.9 −0.9

Table 5.1: Average pressure drops across the channel, the "true" average pressure

drop is around −0.57

M1 M2

h & ∆t

h = 0.037
5.8381e− 2 1.75244e− 2

∆t = 0.02

h = 0.02
2.50133e− 2 8.59639e− 3

∆t = 0.01

h = 0.0147
1.96568e− 2 6.96201e− 3

∆t = 0.005

h = 0.0072
1.063e− 2 3.02426e− 3

∆t = 0.0025

Table 5.2: The L2(Ω) errors at t = 1
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M1 M2

h & ∆t

h = 0.037
1.05867e− 3 8.05326e− 3

∆t = 0.02

h = 0.02
1.44405e− 5 3.52782e− 3

∆t = 0.01

h = 0.0147
1.74799e− 6 2.71275e− 3

∆t = 0.005

h = 0.0072
7.51459e− 9 9.47e− 4

∆t = 0.0025

Table 5.3: The l2((0, T );L2(Ωs)) errors
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6.0 BRINKMAN VOLUME PENALIZATION BASED MODEL

FOR MODERATE RE FLOWS AND FORCED HEAT

CONVECTION

In this chapter, we develop an algorithm for forced convective heat transfer. For

the flow part, we adapt the approach of Chapter 5, and for the convective heat

transfer, we employ the Streamline Diffusion finite element method (SDFEM) (also

known as SUPG) [10, 29].

6.1 WEAK FORMULATIONS

Definition 6.1.1. Let

Y∗ : = H1
0 (Ω∗), Yh ⊂ Y,

w(·, ·, ·) : X × Y × Y → R, w(u, θ, φ) : = (u · ∇θ, φ),

w∗(·, ·, ·) : X × Y × Y → R, w∗(u, θ, φ) : =
1

2
(w(u, θ, φ)− w(u, φ, θ)),

κ : = κfχf + κsχs,

Υ(x, t) : = Υf (x, t)χf + Υs(x, t)χs,

T 0(x) : = T 0
f (x)χf + T 0

s (x)χs.
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Note that Y∗ is the space of scalar H1
0 (Ω∗) functions, while X∗ is that of vector

functions.

The weak formulation of the heat transfer equation is obtained by multiplying

the sum of the equations (3.3.2) and (3.3.3) by θ ∈ Y , and integrating by parts.

Letting

T (x, t) := Tf (x, t)χf + Ts(x, t)χs,

we obtain that (u, p, T ) satisfy the following system.

Problem 9. Find (u, p, T ) ∈ (X,Q, Y ) such that (u(x, t), p(x, t))Ωs = (0, 0),

u(x, 0) = u0, T (x, 0) = T 0, T - continuous across ∂Ωs, and

(ut, v) + d∗(u, u, v) + a(u, v) + b(p, v) + 〈τ(u, p) · nf , v〉 = (f, v) ∀v ∈ X, (6.1.1)

b(q, u) = 0 ∀q ∈ Q, (6.1.2)

(Tt, θ) + w∗(u, T, θ) + (κ∇T,∇θ) = (Υ, θ) ∀θ ∈ Y. (6.1.3)

Since (6.1.3) is a convection-diffusion equation, for convection dominated flows,

the direct Galerkin approximation will develop spurious oscillations. To stabilize

the solution, we use SDFEM formulation for the discrete version of (6.1.3). SD-

FEM assumes that κ∇u ∈ H1(K) for all K ∈ Th. Since κ is discontinuous on

∂Ωs, this does not hold in our case. For the brevity of the presentation, we simply

replace κ with κeff ∈ R, where κeff is the coefficient for the homogenized media

[51]:
1

κeff
:=

1
κf

+ 1
κs

2
.

In general, if the discontinuity of κ is not resolved by the mesh, then the term

(−∇ · (κ · ∇Th) , uh · ∇θh)K should be replaced with

(κ · ∇Th,∇ (uh · ∇θh))K −
∫
∂K

κ
∂Th
∂n∂K

uh · ∇θh.

Thus, we consider the following algorithm:

The discrete model. Assume that (Xh, Qh) is a div-stable pair.
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Problem 10. Find (un+1
h , pn+1

h , λn+1
h , T n+1

h ) ∈ (Xh, Qh, Lh, Yh), n = 0, 1, ..., N − 1

satisfying

(
un+1
h − unh

∆t
, vh

)
+ ah(un+1

h , vh) + b(pn+1
h , vh) (6.1.4)

+c(λn+1
h , vh) + d∗(unh, u

n+1
h , vh) = (fn+1, vh) ∀vh ∈ Xh,

b(qh, u
n+1
h ) = 0 ∀qh ∈ Qh, (6.1.5)

c(µh, u
n+1
h ) = 0 ∀µh ∈ Lh, (6.1.6)(

T n+1
h − T nh

∆t
, θh

)
+ w∗(un+1

h , T n+1
h , θh) + κeff (T

n+1
h , θh)1 (6.1.7)

+
∑
K∈Th

δK
(
−κeff∆T n+1

h + un+1
h · ∇T n+1

h +
T n+1
h − T nh

∆t
, un+1

h · ∇θh
)
K

= (Υn+1, θh) +
∑
K∈Th

δK
(
Υn+1
h , un+1

h · ∇θh
)
K
∀θh ∈ Rh,

where u0
h, T

0
h are the approximations of u0, T 0.

6.2 WELL-POSEDNESS, STABILITY AND CONVERGENCE

We derive the stability and convergence results for the temperature variable for

two values of the thermal diffusion coefficient κeff :

A) κeff � 1;

B) Moderate or large κeff .

Theorem 6.2.1. Assume δK ≤ min
{

∆t
8
,

h2K
4C2

invκeff

}
, where Cinv is the inverse

inequality constant. Then there exists a unique (unh, p
n
h, λ

n
h, T

n
h ) ∈ (Xh, Qh, Lh, Yh)

solution of the Problem 10. Moreover, ∀n = 1, ..., N , T nh satisfies
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A)

‖TNh ‖2 + ∆tκeff

N−1∑
n=0

|T n+1
h |21 + ∆t

N−1∑
n=0

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K

≤ Cetf

(
‖T 0

h‖2 + ‖Υ‖2
2,0 +

∑
K

δK‖Υ‖2
2,0,K

)
, (6.2.1)

B)

‖TNh ‖2 + ∆tκeff

N−1∑
n=0

|T n+1
h |21 + ∆t

N−1∑
n=0

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K

≤ C

(
‖T 0

h‖2 + ‖Υ‖2
2,−1 +

∑
K

δK‖Υ‖2
2,0,K

)
. (6.2.2)

Proof. Pick θh = T n+1
h in (6.1.7) to get

‖T n+1
h ‖2 − ‖T nh ‖2 + ‖T n+1

h − T nh ‖2

2∆t
+ κeff |T n+1

h |21 +
∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K

+
∑
K

δK

(
−κeff∆T n+1

h +
T n+1
h − T nh

∆t
, un+1

h · ∇T n+1
h

)
K

(6.2.3)

≤
∑
K

δK
(
Υn+1, un+1

h · ∇T n+1
h

)
K

+ (Υn+1, T n+1
h ),

where the trilinear term vanished due to skew-symmetrization.

The local inverse inequality

‖∆vh‖K ≤ Cinvh
−1
K |vh|1,K

and standard inequalities yield∑
K

δK

(
−κeff∆T n+1

h +
T n+1
h − T nh

∆t
, un+1

h · ∇T n+1
h

)
K

≤
∑
K

δK

(
κeffCinvh

−1
K |T

n+1
h |1,K +

‖T n+1
h − T nh ‖K

∆t

)
‖un+1

h · ∇T n+1
h ‖K

≤
∑
K

2δK

(
κ2
effC

2
invh

−2
K |T

n+1
h |21,K +

‖T n+1
h − T nh ‖2

K

∆t2

)
(6.2.4)

+
1

4

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K .
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We further obtain

∑
K

δK
(
Υn+1, un+1

h · ∇T n+1
h

)
K

≤
∑
K

δK‖Υn+1‖2
K +

1

4

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K , (6.2.5)

and

A)

(
Υn+1, T n+1

h

)
=
(
Υn+1, T n+1

h − T nh
)

+
(
Υn+1, T nh

)
≤

(
1

2
+ ∆t

)
‖Υn+1‖2 +

‖T n+1
h − T nh ‖2

4∆t
+
‖T nh ‖2

2
, (6.2.6)

B)

(
Υn+1, T n+1

h

)
≤
‖Υn+1‖2

−1

2κeff
+ κeff

‖T n+1
h ‖2

2
. (6.2.7)

Combining all the bounds above gives

A)

‖T n+1
h ‖2 − ‖T nh ‖2

2∆t
+
κeff

2
|T n+1
h |21 +

1

2

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K

+
∑
K

(
1

4
− 2δK

∆t

)
‖T n+1

h − T nh ‖2
K

∆t

+
∑
K

(κeff
2
− 2δKκ

2
effC

2
invh

−2
K

)
|T n+1
h |21,K

≤ ‖T nh ‖2

2
+

(
1

2
+ ∆t

)
‖Υn+1‖2 +

∑
K

δK‖Υn+1‖2
K .
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B)

‖T n+1
h ‖2 − ‖T nh ‖2

2∆t
+
κeff

2
|T n+1
h |21 +

1

2

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K

+
∑
K

(
1

4
− 2δK

∆t

)
‖T n+1

h − T nh ‖2
K

∆t

+
∑
K

(κeff
2
− 2δKκ

2
effC

2
invh

−2
K

)
|T n+1
h |21,K

≤
‖Υn+1‖2

−1

2κeff
+
∑
K

δK‖Υn+1‖2
K .

Picking δK ≤ min
{

∆t
8
,

h2K
4C2

invκeff

}
and summing over the timesteps yields

A)

‖TNh ‖2 + ∆tκeff

N−1∑
n=0

|T n+1
h |21 + ∆t

N−1∑
n=0

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K (6.2.8)

≤ ‖T 0
h‖2 + ∆t

N−1∑
n=0

‖T nh ‖2 + C∆t
N−1∑
n=0

‖Υn+1‖2 + ∆t
N−1∑
n=0

∑
K

δK‖Υn+1‖2
K .

B)

‖TNh ‖2 + ∆tκeff

N−1∑
n=0

|T n+1
h |21 + ∆t

N−1∑
n=0

∑
K

δK‖un+1
h · ∇T n+1

h ‖2
K

≤ ‖T 0
h‖2 + C

∆t

κeff

N−1∑
n=0

‖Υn+1‖2
−1 + ∆t

N−1∑
n=0

∑
K

δK‖Υn+1‖2
K . (6.2.9)

The Gronwall’s inequality completes the proof.

Theorem 6.2.2. Assume δK ≤ min
{

∆t
16
,

h2K
8C2

invκeff

}
, where Cinv is the inverse

inequality constant. Then the temprature error enT := T n − T nh satisfies
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A)

‖eNT ‖2 + κeff∆t
N−1∑
n=0

|en+1
T |21 ≤ Cetf

(
‖e0

T‖2 +
∆t

κeff

N−1∑
n=0

|en+1|21|T n+1|21

+ inf
θh∈Yh

(
∆t

κeff

N−1∑
n=0

|un+1
h |21|T n+1 − θh|21 + |Tt − θh|22,0 + κeff |T − θh|22,1

+
∑
K∈Th

δK
(
∆t2‖Ttt‖2

2,0,K + |Tt − θh|22,0,K + κ2
eff |∆ (T − θh) |22,0,K

)
(6.2.10)

+ ∆t
N−1∑
n=0

∑
K∈Th

δKh
−2
K

(
|en+1|21,K |T n+1|21,K + |un+1

h |21,K |T n+1 − θh|21,K
)))

.

B)

‖eNT ‖2 + κeff∆t
N−1∑
n=0

|en+1
T |21 ≤ C

(
‖e0

T‖2 +
∆t

κeff

N−1∑
n=0

|en+1|21|T n+1|21

+ inf
θh∈Yh

(
∆t

κeff

N−1∑
n=0

|un+1
h |21|T n+1 − θh|21 +

|Tt − θh|22,0
κeff

+ κeff |T − θh|22,1

+
∑
K∈Th

δK
(
∆t2‖Ttt‖2

2,0,K + |Tt − θh|22,0,K + κ2
eff |∆ (T − θh) |22,0,K

)
(6.2.11)

+ ∆t
N−1∑
n=0

∑
K∈Th

δKh
−2
K

(
|en+1|21,K |T n+1|21,K + |un+1

h |21,K |T n+1 − θh|21,K
)))

.

Proof. At time tn+1, the true solution T (x, t) satisfies

(
T n+1 − T n

∆t
, θh

)
+ w∗(un+1, T n+1, θh) + κeff (T

n+1, θh)1 (6.2.12)

+
∑
K∈Th

δK

(
−κeff∆T n+1 + un+1 · ∇T n+1 +

T n+1 − T n

∆t
, un+1

h · ∇θh
)
K

= (Υn+1, θh) +
∑
K∈Th

δK

(
Υn+1
h +

T n+1 − T n

∆t
− Tt(tn+1), un+1

h · ∇θh
)
K
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for all θh ∈ Yh. Subtracting (6.1.7) from (6.2.12) gives

(
en+1
T − enT

∆t
, θh

)
+ w∗(en+1, T n+1, θh) + w∗(un+1

h , en+1
T , θh) + κeff (e

n+1, θh)1

+
∑
K∈Th

δK
(
−κeff∆en+1

T + en+1 · ∇T n+1 + un+1
h · ∇en+1

T , un+1
h · ∇θh

)
K

+
∑
K∈Th

δK

(
en+1
T − enT

∆t
, un+1

h · ∇θh
)
K

(6.2.13)

=
∑
K∈Th

δK

(
T n+1 − T n

∆t
− Tt(tn+1), un+1

h · ∇θh
)
K

.

Let us decompose the error at t = tn as

enT = (T n − T̃ nh ) + (T̃ nh − T
n
h ) := φnh + ψn,

where T̃ nh is an interpolant of T n. Choosing θh = φn+1
h gives

‖φn+1
h ‖2 − ‖φnh‖2 + ‖φn+1

h − φnh‖2

2∆t
+ κeff |φn+1

h |21

+
∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K = −

(
ψn+1 − ψn

∆t
, φn+1

h

)
− κeff (ψ

n+1, φn+1
h )1 − w∗(en+1, T n+1, φn+1

h )− w∗(un+1
h , ψn+1, φn+1

h )

−
∑
K∈Th

δK
(
−κeff∆ψn+1 + en+1 · ∇T n+1 + un+1

h · ∇ψn+1, un+1
h · ∇φn+1

h

)
K

+
∑
K∈Th

δK

(
−κeff∆ψn+1 +

ψn+1 − ψn

∆t
, un+1

h · ∇φn+1
h

)
K

(6.2.14)

−
∑
K∈Th

δK

(
−κeff∆φn+1

h +
φn+1
h − φnh

∆t
, un+1

h · ∇φn+1
h

)
K

+
∑
K∈Th

δK

(
T n+1 − T n

∆t
− Tt(tn+1), un+1

h · ∇φn+1
h

)
K

.

We bound the terms on RHS of (6.2.14) individually.
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A) (
ψn+1 − ψn

∆t
, φn+1

h

)
≤ ‖ψ

n+1 − ψn‖
∆t

‖φn+1
h − φnh‖+

‖ψn+1 − ψn‖
∆t

‖φnh‖

≤ C
‖ψn+1 − ψn‖2

∆t
+
‖φn+1

h − φnh‖2

4∆t
+ C
‖ψn+1 − ψn‖2

∆t2
+
‖φnh‖2

2

≤ C

∆t

tn+1∫
tn

‖ψt‖2dt+
‖φn+1

h − φnh‖2

4∆t
+
‖φnh‖2

2
. (6.2.15)

B)

(
ψn+1 − ψn

∆t
, φn+1

h

)
≤ C

κeff∆t

tn+1∫
tn

‖ψt‖2dt+ τκeff |φn+1
h |21 (6.2.16)

κeff (ψ
n+1, φn+1

h )1 ≤ Cκeff |ψn+1|21 + τκeff |φn+1
h |21. (6.2.17)

w∗(en+1, T n+1, φn+1
h ) ≤ C|en+1|1|T n+1|1|φn+1

h |1

≤ C

κeff
|en+1|21|T n+1|21 + τκeff |φn+1

h |21. (6.2.18)

w∗(un+1
h , ψn+1, φn+1

h ) ≤ C

κeff
|un+1
h |21|ψn+1|21 + τκeff |φn+1

h |21. (6.2.19)

Similar to (6.2.4)

∑
K

δK

(
−κeff∆φn+1

h +
φn+1
h − φnh

∆t
, un+1

h · ∇φn+1
h

)
K

≤
∑
K

δK

(
κeffCinvh

−1
K |φ

n+1
h |1,K +

‖φn+1
h − φnh‖K

∆t

)
‖un+1

h · ∇φn+1
h ‖K

≤
∑
K

2δK

(
κ2
effC

2
invh

−2
K |φ

n+1
h |21,K +

‖φn+1
h − φnh‖2

K

∆t2

)
(6.2.20)

+
1

4

∑
K

δK‖un+1
h · ∇φn+1

h ‖2
K ,
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and

∑
K∈Th

δK
(
−κeff∆ψn+1 + en+1 · ∇T n+1 + un+1

h · ∇ψn+1
h , un+1

h · ∇φn+1
h

)
K

+
∑
K∈Th

δK

(
ψn+1 − ψn

∆t
, un+1

h · ∇φn+1
h

)
K

(6.2.21)

≤ C
∑
K∈Th

δK
(
κ2
eff‖∆ψn+1‖2

K + h−2
K |e

n+1|21,K |T n+1|21,K + h−2
K |u

n+1
h |21,K |ψn+1|21,K

)

+
∑
K∈Th

C

∆t
δK

tn+1∫
tn

‖ψt‖2
Kdt+

1

8

∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K .

∑
K∈Th

δK

(
T n+1 − T n

∆t
− Tt(tn+1), un+1

h · ∇φn+1
h

)
K

≤ C
∑
K∈Th

δK∆t

tn+1∫
tn

‖Ttt‖2
Kdt+

1

8

∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K . (6.2.22)

Letting δK ≤ min
{

∆t
16
,

h2K
8C2

invκeff

}
, τ = 1

6
and τ = 1

8
in case A) and B), respectively,

gives

A)
‖φn+1

h ‖2 − ‖φnh‖2 + ‖φn+1
h − φnh‖2

2∆t
+
κeff

2
|φn+1
h |21

+
1

2

∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K ≤

‖φnh‖2

2

+ C

 1

∆t

tn+1∫
tn

‖ψt‖2dt+ κeff |ψn+1|21 +
|en+1|21|T n+1|21

κeff
+
|un+1
h |21|ψn+1|21
κeff

+
∑
K∈Th

δK

 1

∆t

tn+1∫
tn

‖ψt‖2
Kdt+ h−2

K |e
n+1|21,K |T n+1|21,K (6.2.23)

+ h−2
K |u

n+1
h |21,K |ψn+1|21,K + κ2

eff‖∆ψn+1‖2
K + ∆t

tn+1∫
tn

‖Ttt‖2
Kdt

 .
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B)
‖φn+1

h ‖2 − ‖φnh‖2 + ‖φn+1
h − φnh‖2

2∆t
+
κeff

2
|φn+1
h |21

+
1

2

∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K (6.2.24)

≤ C

 1

κeff∆t

tn+1∫
tn

‖ψt‖2dt+ κeff |ψn+1|21 +
|en+1|21|T n+1|21

κeff
+
|un+1
h |21|ψn+1|21
κeff

+
∑
K∈Th

δK

 1

∆t

tn+1∫
tn

‖ψt‖2
Kdt+ h−2

K |e
n+1|21,K |T n+1|21,K

+ h−2
K |u

n+1
h |21,K |ψn+1|21,K + κ2

eff‖∆ψn+1‖2
K + ∆t

tn+1∫
tn

‖Ttt‖2
Kdt

 .

Summing over timesteps gives

A)

‖φNh ‖2 + κeff∆t
N−1∑
n=0

|φn+1
h |21 +

N−1∑
n=0

‖φn+1
h − φnh‖2 +

∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K

≤ ‖φ0
h‖2 + ∆t

N−1∑
n=0

‖φnh‖2 + C

(
∆t

κeff

N−1∑
n=0

(
|en+1|21|T n+1|21 + |un+1

h |21|ψn+1|21
)

+|ψt|22,0 +
∑
K∈Th

δK
(
∆t2‖Ttt‖2

2,0,K + |ψt|22,0,K + κ2
eff |∆ψ|22,0,K

)
+ κeff |ψ|22,1

+ ∆t
N−1∑
n=0

∑
K∈Th

δKh
−2
K

(
|en+1|21,K |T n+1|21,K + |un+1

h |21,K |ψn+1|21,K
))

. (6.2.25)
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B)

‖φNh ‖2 + κeff∆t
N−1∑
n=0

|φn+1
h |21 +

N−1∑
n=0

‖φn+1
h − φnh‖2 +

∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K

≤ ‖φ0
h‖2 + C

(
∆t

κeff

N−1∑
n=0

(
|en+1|21|T n+1|21 + |un+1

h |21|ψn+1|21
)

(6.2.26)

+
|ψt|22,0
κeff

+
∑
K∈Th

δK
(
∆t2‖Ttt‖2

2,0,K + |ψt|22,0,K + κ2
eff |∆ψ|22,0,K

)
+ κeff |ψ|22,1

+ ∆t
N−1∑
n=0

∑
K∈Th

δKh
−2
K

(
|en+1|21,K |T n+1|21,K + |un+1

h |21,K |ψn+1|21,K
))

.

Applying the Gronwall’s inequality for Case 1, we get

‖φNh ‖2 + κeff∆t
N−1∑
n=0

|φn+1
h |21 +

N−1∑
n=0

‖φn+1
h − φnh‖2 +

∑
K∈Th

δK‖un+1
h · ∇φn+1

h ‖2
K

≤ Cetf

(
‖φ0

h‖2 +
∆t

κeff

N−1∑
n=0

(
|en+1|21|T n+1|21 + |un+1

h |21|ψn+1|21
)

(6.2.27)

+|ψt|22,0 +
∑
K∈Th

δK
(
∆t2‖Ttt‖2

2,0,K + |ψt|22,0,K + κ2
eff |∆ψ|22,0,K

)
+ κeff |ψ|22,1

+ ∆t
N−1∑
n=0

∑
K∈Th

δKh
−2
K

(
|en+1|21,K |T n+1|21,K + |un+1

h |21,K |ψn+1|21,K
))

.

The triangle inequality completes the proof.

Corollary 1. Assume

T ∈ L∞(0, tf ;H
2(Ω)) ∩ L∞(0, tf ;H

1(Ω)), Ttt ∈ L2(0, tf ;L
2(Ω))

(which may or may not hold depending on the regularity of u and Ωf) and let

Yh = P2. If δK is chosen to satisfy the conditions of the Theorem 6.2.2, then
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A)

‖eNT ‖2 + κeff∆t
N−1∑
n=0

|en+1
T |21 ≤ Cetf

(
‖e0

T‖2 +
∆t

κeff

N−1∑
n=0

|en+1|21 + ∆t2 +
h2

κeff

)
.

B)

‖eNT ‖2 + κeff∆t
N−1∑
n=0

|en+1
T |21 ≤ C

(
‖e0

T‖2 +
∆t

κeff

N−1∑
n=0

|en+1|21 + ∆t2 +
h2

κeff

)
.

6.3 NUMERICAL EXPERIMENTS

We test the accuracy of the proposed algorithm for heat transfer on a two-dimensional

flow problem. The solid region Ωs consists of balls with centers at

(0.14, 0.496), (0.19, 0.54), (0.17, 0.433), (0.1, 0.44), (0.13, 0.56),

(0.35, 0.48), (0.34, 0.56), (0.45, 0.5), (0.52, 0.45), (0.57, 0.52)

with r = 0.03. The boundary conditions are no-slip on the top and bottom

boundaries, a parabolic inflow given by

Uin = ((500 + 5t) (y − 0.39)(0.61− y), 0)T

and do-nothing outflow. The flow and model parameters are ν = 0.005, f =

(exp(xy + t), 0)Tχf , tf = 0.1,∆t = 0.01 and ε = 1e− 15.

For the heat part of the problem, we take Υ = 1000χs and T = 0 at the inlet,
∂T
∂n

= 0 elsewhere on the boundary. The SDFEM parameter δK is chosen to be

10−3hK . As the theoritical results indicate, the convergence of the algorithm is

highly sensitive to the value of the thermal diffusivity coefficient κeff and we run

the experiments for various values of κeff .
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Figure 6.1: The body-fitted, resolved temprature field contours at t = tf

The simulations are performed on three uniform mesh refinements with diame-

teres, 0.37, 0.2 and 0.147, respectively. The results are compared with the resolved

solution, obtained by solving the system on a very fine mesh. We compare the

temperature contours at t = tf and temperatures at the channel outlet.

1) Moderate κeff . We first test with κeff = 1
6
. With this value of κeff , on

all meshes, the mesh Péclet number satisfies

0.252 ≤ Pe :=
‖u‖∞h
2κeff

≤ 0.666,

and therefore the heat transfer is not convection dominated. Further, as the value

of κeff is moderate, we also expect good convergence of our scheme.

The poor approximation of the velocity field, in turn, produces very inaccurate

temperature approximations. E.g., on the coarsest mesh, the Brinkman model

predicts nearly zero temperature in the region between two clusters of balls, while
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Figure 6.2: The body-fitted, resolved temprature field contours at t = tf , κeff = 1
6

in the true case we observe T ≥ 14 in that region. The proposed algorithm

yields more accurate temperature contours, with values Th ≥ 12 in the above-

mentioned region. Further, the undershoot in the peak speed values is also reflected

in undershoot of the temperature values.

In some applications, one of the quantities of interest is the temperatures at

the outlet of the channel. The Figure 6.7 reveal that our model is again more

accurate than the Brinkman model.

We also list the errors in L2 norm for the temperature variable in the Table

6.1, which demonstrates the higher accuracy of our algorithm.

2) Small κeff . The next test was performed with κeff = 2e − 4. As the

convergence estimate (6.2.11) predicts, both algorithms yielded large errors. Simi-

lar results were reported in [30]. The effective stabilization of convection-diffusion

equations to these types of problems still remains an open problem.
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Brinkman Model

h

0.037 3.04802 0.894945

0.02 0.604953 0.184266

0.0147 0.393514 0.136332

Table 6.1: Errors in L2(Ω) norm, at t = tf
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Figure 6.3: From top to bottom: speed contours of our model on meshes with

h ' 0.037, h ' 0.02, h ' 0.0147
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Figure 6.4: From top to bottom: speed contours of Brinkman model on meshes

with h ' 0.037, h ' 0.02, h ' 0.0147
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Figure 6.5: From top to bottom: temperature contours of our model for κeff = 1
6

on meshes with h ' 0.037, h ' 0.02, h ' 0.0147
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Figure 6.6: From top to bottom: temperature contours of the Brinkman model for

κeff = 1
6
on meshes with h ' 0.037, h ' 0.02, h ' 0.0147
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Figure 6.7: From top to bottom: outlet temperatures for κeff = 1
6
on meshes with

h ' 0.037, h ' 0.02, h ' 0.0147
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7.0 CONCLUSIONS AND FUTURE PROSPECTS

7.1 CONCLUSIONS

In Chapter 4, we proposed a modification of Brinkman model for small Re fluid

flow. It avoids using computationally expensive body-fitted meshes and approx-

imates the flow much more accurately than the original model. The analysis is

valid for both 2d and 3d flows. We showed that the model is well-posed on any

shape regular mesh. It converges at a rate O(
√
ε) in H1(Ωs). Also, we proved a

convergence result, where the convergence of the velocity is decoupled from that

of the Lagrange multiplier.

In Chapter 5, we formulated new algorithm that applies strong penalization of

no-flow without polluting the flow in the pores, while the weak no-flow is imple-

mented using minimally chosen LM space. The new, mesh-conforming penalization

region gave positive effects on the results of the computations, including the im-

proved pressure fields and smaller global velocity errors. Another advantage of the

algorithm over [50] is that it does not require the careful selection of the penalty

parameter ε, it can be chosen small (of course, it effects the condition number of

the matrix).

In Chapter 6, we investigated SDFEM for heat transfer, where the convecting

velocity is found by the algoritm of Chapter 5. Overall, compared to the Brinkman

volume penalization model, the improvements in velocity approximations carry
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over to the improved temperature approximations, as well as the drawbacks. We

obtained more accurate temperature profiles, outlet temperataures and smaller L2

errors through our model for moderate or large values of κeff .

7.2 FUTURE PROSPECTS

The developed algorithms give rise many interesting, new research problems, which

will be studied as next steps of these works. The following list discusses some of

them:

1. I would like improve the model for fluid flow by adapting ideas from XFEM

[35]. For the triangles that intersect the fluid-solid interface, I am considering

adding modified, continuous XFEM type functions to capture the geometry of

the subregions more accurately.

2. Once the step one is successfully done, I would like adapt the algorithms to

higher Re flows.

3. The performed numerical experiments for the developed algorithms have been

two dimensional. In the future, I want to implement the three dimensional

tests for my approaches.

4. The assembly of the system associated with the developed algorithms re-

quire efficient computations of integrals over global mesh cells intersected with

spheres. This is a computational geometry question. I want to develop a

quadrature rules over such domains for quadrilateral and triangular meshes.

5. In many applictions, the solids are in constant motion, which sometimes take

place over different time scales compared to fluid flow. Upon satisfactory com-

pletion of the above steps, I am planning to extend the algorithms to the case
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of moving solids, which will add additional set of equations corresponding to

the motion of obstacles.

6. An important aspect of the study of the flow problems is the quantification

of various uncertainties. I want to extend my models to include the various

uncertainties in the problem parameters.

7. To the authors knowledge, SDFEM for convection-diffusion problems is not

addressed for the discontinuous κ case. I would like carry out the analysis of

SDFEM for this case.
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