Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

The personalized advantage index: Translating research on prediction into individualized treatment recommendations. A demonstration

DeRubeis, RJ and Cohen, ZD and Forand, NR and Fournier, JC and Gelfand, LA and Lorenzo-Luaces, L (2014) The personalized advantage index: Translating research on prediction into individualized treatment recommendations. A demonstration. PLoS ONE, 9 (1).

[img]
Preview
PDF
Published Version
Available under License : See the attached license file.

Download (755kB) | Preview
[img] Plain Text (licence)
Available under License : See the attached license file.

Download (1kB)

Abstract

Background: Advances in personalized medicine require the identification of variables that predict differential response to treatments as well as the development and refinement of methods to transform predictive information into actionable recommendations. Objective: To illustrate and test a new method for integrating predictive information to aid in treatment selection, using data from a randomized treatment comparison. Method: Data from a trial of antidepressant medications (N = 104) versus cognitive behavioral therapy (N = 50) for Major Depressive Disorder were used to produce predictions of post-treatment scores on the Hamilton Rating Scale for Depression (HRSD) in each of the two treatments for each of the 154 patients. The patient's own data were not used in the models that yielded these predictions. Five pre-randomization variables that predicted differential response (marital status, employment status, life events, comorbid personality disorder, and prior medication trials) were included in regression models, permitting the calculation of each patient's Personalized Advantage Index (PAI), in HRSD units. Results: For 60% of the sample a clinically meaningful advantage (PAI≥3) was predicted for one of the treatments, relative to the other. When these patients were divided into those randomly assigned to their "Optimal" treatment versus those assigned to their "Non-optimal" treatment, outcomes in the former group were superior (d = 0.58, 95% CI .17-1.01). Conclusions: This approach to treatment selection, implemented in the context of two equally effective treatments, yielded effects that, if obtained prospectively, would rival those routinely observed in comparisons of active versus control treatments. © 2014 DeRubeis et al.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: Article
Status: Published
Creators/Authors:
CreatorsEmailPitt UsernameORCID
DeRubeis, RJ
Cohen, ZD
Forand, NR
Fournier, JCjcf48@pitt.eduNITOLAB
Gelfand, LA
Lorenzo-Luaces, L
Contributors:
ContributionContributors NameEmailPitt UsernameORCID
EditorCho, William C. S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date: 8 January 2014
Date Type: Publication
Journal or Publication Title: PLoS ONE
Volume: 9
Number: 1
DOI or Unique Handle: 10.1371/journal.pone.0083875
Schools and Programs: School of Medicine > Psychiatry
Refereed: Yes
Date Deposited: 16 Jun 2014 16:51
Last Modified: 13 Apr 2021 11:55
URI: http://d-scholarship.pitt.edu/id/eprint/21868

Metrics

Monthly Views for the past 3 years

Plum Analytics

Altmetric.com


Actions (login required)

View Item View Item