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HIGHER-ORDER, STRONGLY STABLE METHODS FOR UNCOUPLING
GROUNDWATER-SURFACE WATER FLOW

Michaela Kubacki, PhD

University of Pittsburgh, 2014

Many environmental problems today involve the prediction of the migration of contaminants
in groundwater-surface water flow. Sources of contaminated groundwater-surface water flow
include: landfill leachate, radioactive waste from underground storage containers, and chem-
ical run-off from pesticide usage in agriculture, to name a few. Before we can track the
transport of pollutants in environmental flow, we must first model the flow itself, which
takes place in a variety of physical settings. This necessitates the development of accurate
numerical models describing coupled fluid (surface water) and porous media (groundwater)
flow, which we assume to be described by the fully evolutionary Stokes-Darcy equations.
Difficulties include finding methods that converge within a reasonable amount of time, are
stable when the physical parameters of the flow are small, and maintain stability and accu-
racy along the interface. Ideally, because there exist a wide variety of physical scenarios for
this coupled flow, we desire numerical methods that are versatile in terms of stability and
practical in terms of computational cost and time.

The approach to model this flow studied herein seeks to take advantage of existing
efficient solvers for the separate sub-flows by uncoupling the flow so that at each time level
we may solve a separate surface and groundwater problem. This approach requires only one
(SPD) Stokes and one (SPD) Darcy sub-physics and sub-domain solve per time level for the
time-dependent Stokes-Darcy problem. In this dissertation, we investigate several different
methods that uncouple groundwater-surface water flow, and provide thorough analysis of

the stability and convergence of each method along with numerical experiments.
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1.0 INTRODUCTION

Throughout history, the survival of humankind has depended largely on the accessibility of
sufficient quantities of clean freshwater for agricultural, industrial, and domestic purposes.
Of all the water on planet Earth, only 2.5% of it is freshwater, with the majority of it being
frozen and inaccessible (see, for example, [11] for more details on the scarcity of freshwa-
ter). Groundwater contained in aquifers makes up 90% of the world’s available freshwater.
Unfortunately, this valuable resource frequently becomes contaminated by both human and
natural processes. For example, in hydro-fracturing, a mixture of water with sand and chem-
icals is injected at high pressure into a well to create fractures to allow for the collection
of shale gas. The majority of the chemicals in this mixture are not recovered and eventu-
ally leave the well to contaminate local groundwater supply. In another example, pesticide
application in agriculture can have devastating effects on surrounding freshwater resources
due to chemical run-off into nearby rivers, lakes, and streams, and seepage deep into the
soil. Also, many storage facilities for radioactive materials exist underground. Over time as
storage containers become compromised, nuclear waste can migrate into nearby freshwater
aquifers. Even natural processes may result in contaminated freshwater, such as salt-water
intrusion in coastal aquifers.

Before we can track the movement of contaminants, we must first develop numerical
models which accurately describe and predict this coupled flow. Separate groundwater and
surface water flows have been studied by many scientists. See, for example, Pinder and Celia
[58], Watson and Burnett [70], or Bear [8] for an extensive study on subsurface flows. An
in-depth description of surface flow can be found, for example, in Kundu and Cohan [43].
There exist many accurate and efficient solvers for the independent flows. Difficulty arises,

however, when we consider the interaction of groundwater with surface water, resulting in a



challenging coupled problem. To model such a flow, we need to preserve the physics of the
sub-flows in each region, yet still accurately describe the interaction of fluids between the two
media. One way to approach this problem is to start from scratch and develop new codes
and solvers. Instead, this research seeks to make use of the existing solvers for separate fluid
and porous media flow by investigating methods that uncouple the flow equations in time
so that the individual flow problems may be solved separately. Called partitioned methods,
these methods allow us to utilize, in a black-box manner, solvers already optimized for the
separate flow problems.

It is important that the partitioned methods maintain stability and accuracy along the
interface where the two flows meet. Also, potentially small physical parameters create an
additional challenge for stability. Because groundwater moves slowly, we are concerned with
methods that are stable over long-time intervals, since numerical simulations may span long-
time periods. Along these same lines, we want methods that converge within a reasonable
amount of time to be of practical use, making higher-order convergence a desirable prop-
erty. In this work, we will present and analyze several partitioned methods applied to the
groundwater-surface water flow problem.

The modeling of this coupled fluid-porous media flow begins with the coupling of the
Stokes or Navier-Stokes equations describing the flow in the fluid region, along with the
Darcy or Brinkman equations for the flow in the aquifer, or porous media region containing
the groundwater. This research focuses on the Stokes-Darcy coupling which is suitable for

slow moving flows over large domains.

1.1 THE STOKES-DARCY EQUATIONS

Consider the equations describing the motion of an incompressible viscous fluid in a coupled
fluid-porous media domain of two or three dimensions (d = 2,3). Denote the fluid region
by 2 and the porous media region by 2,. Assume both domains are bounded and regular.
Let I represent the interface between the two domains. An example of a coupled domain

for d = 2 can be seen in Figure 1.1. A brief description of the derivation of the equations of



Figure 1.1: Coupled Flow Domain

fluid motion in each domain ensues. For more details on the derivation of the surface and

groundwater flow equations, see, for example [7, 8, 70, 58|.

1.1.1 The Stokes Equations

Begin with the equations of fluid motion in the fluid region. These equations arise from
conservation laws, namely conservation of mass and conservation of momentum. Let zy € 2y,
e > 0. Consider a small e-ball about z, denoted by B. := {z € Qf : |z — x| < €}.
Conservation of mass in B, states that the rate of change with respect to time of the net
amount of fluid mass in B, is balanced by the net flux through the boundary of the ball
plus the sources multiplied by the volume. As an integral expression, assuming no sources

of mass, this becomes

4 /pda: :—/p(u-ﬁ)ds,

5 0B:

where p = p(z,t) represents the fluid density and u = u(z,t) the fluid velocity in €y,

with n being the outward-oriented unit normal. After applying the Divergence Theorem,



this becomes

4 /pdm :—/V-(pu)dx.
Be

Assuming continuity in all variables, if we shrink this ball to a point, then, since x, was

arbitrary, we obtain the partial differential equation for conservation of mass in a fluid:
pr + V- (pu) =01in Qf x [0, 7. (1.1)

Because this research specifically focuses on groundwater-surface water flow, we may assume
homogeneous incompressibility, meaning that the fluid density, p, does not vary in space and
is not sensitive to changes in fluid pressure, p. This means that p = constant, and so (1.1)
becomes

Vu=0in Qs x [0,7], (1.2)

meaning the fluid velocity, u, is “divergence free”.

Next we discuss the second governing equation in fluid flow, conservation of momentum.
Because a fluid convects its own momentum, the rate of change of linear momentum is
balanced by the net forces acting on a collection of fluid particles. In relation to the collection
of fluid particles in B., the net forces acting on these particles are a combination of internal

(surface) forces and external forces. In integral form, this implies

/M%ﬁmz/?@+/ﬁm

Be 0B: Be

where % = u; +u- Vu is the material derivative of u, describing the evolution of velocity, 7
represents the Cauchy stress vector, or internal forces, and f; represents the external forces.
The Cauchy stress vector, 7, obeys a linear relationship with the shear stress tensor, II.
Namely, 7 =n-TL After implementing the Divergence Theorem, the surface integral of the

Cauchy stress vector becomes



/?ds:/v-ndx.

OB- Be
Therefore, after letting ¢ — 0, assuming continuity in all variables, we obtain the partial

differential equation describing conservation of momentum in a fluid
p(uy+u-Vu) =V -1+ f;in Q x [0,77]. (1.3)

For this research, we focus on slow moving, creeping flow, or flow at low Reynolds’ numbers.
This means that the convective term, u- Vu, may be omitted from the equation because this
quadratic nonlinear term is negligible compared to other terms in the equation. Thus, the

equation for conservation of momentum becomes
put—V-H:ff in QfX [O,T] (14)

The shear stress tensor, II, represents the tangential (viscous) and normal (pressure)
forces in the fluid, with II = 2ulD — pl. pu represents the dynamic viscosity of the fluid,
D := 1(Vu + VuT) the deformation tensor, and I the identity tensor. Since V - (Vu®) =0,

(1.4) is equivalent to

puy — vAu+ Vp = frin Qp x [0,77. (1.5)

Going forward, assume that the fluid pressure, p and forcing term, f; have been rescaled
by the fluid density, p, which is constant (p = %p, fr = % fr). Also, in lieu of the dynamic
viscosity, u, we will refer to the kinematic viscosity, v = ’;‘. For the boundary condition,
assume u = 0 on the external boundary, £\ 1. We also assume an initial condition. Thus,

the evolutionary Stokes equations governing the flow in the fluid region become

u — vAu+ Vp = frin Qp x [0, 77,
Vu=0inQ x [0,7],

(Stokes)
u=0on 0Q\I x [0,T7,

u(z,0) = up(x) in Q.



Table 1.1: Sample values (percentages) of volumetric porosity for various materials (Bear [8] p.
46.)

Material Porosity Value (percent) Material Porosity Value (percent)
Peat soil 60 — 80 Gravel and sand 30 — 35
Soil 50 — 60 Gravel 30 — 40
Clay 45 — 55 Sandstone 10 — 20
Silt 40 — 50 Shale 1—-10
Uniform sand 30 — 40 Limestone 1—-10

1.1.2 The Darcy Equation

Next we discuss the equations of fluid motion in the aquifer, or porous media region. Let
n represent the volumetric porosity of the porous media. A dimensionless percentage, n
represents the ratio of the volume of void space to the bulk volume. See Table 1.1 for sample
values of porosity percentages from Bear [8] p. 46. Let ¢ represent the specific discharge and
fp the sources in €2,. Then the conservation of mass equation in the porous media region

reads

d(pn)
ot

+ V- (pg) = fp in €, x 0, T7]. (1.6)

Other variables of interest in the aquifer flow problem include the hydraulic (piezometric)

head, or Darcy pressure, ¢, which satisfies
- 1
¢ =z+ .1
= elevation head + pressure head

where p, represents the fluid pressure in €2,. By the chain rule, the first term in (1.6), 8((5:)




can be written as

d(pn) 0 0
o = ah T PG
Consider the term, %. Water is slightly compressible, meaning p depends weakly on the
pressure head, p,, and in turn on ¢. By chain rule, % = %%. Let [ represent the

compressibility of water, or the measure of volume changes when water is subjected to

changes in normal pressures. By definition

_10p _

g = 5 9pp constant,

i Op _ 9p 9%
By chain rule, Doy = 96 5p, Thus

9p _ 9p 99

ot~ 9¢ Ot
_ (20 (02 ) 2
“ \ 9pp \ 9pp ot

2 0

= (p°98)%

Aquifers are poroelastic media, meaning that the spaces between the pores expand and

contract in response to changes in pressure. In Bear [7] pp.204-206 it is shown that

on _ 9n 9pp

ot — Op, Ot
— On 09
= ap, P9t

= /(1 —n)pg2e,

where o represents the coefficient of compressibility for a fixed mass of moving solids. There-

fore, our conservation of mass equation now reads

p2g(a/ (1 —n) 4 Bn)g, — V - (pq) = £, in Q, x [0, 7). (1.7)

The specific (volumetric) storativity of an aquifer, S, is defined as Sy := pg(a/(1 —n) +
pn) (see [7], p. 207). It refers to the volume of water an aquifer releases per unit volume due
to a unit decrease in the hydraulic head, ¢, while remaining fully saturated. In simple cases

when an aquifer is homogeneous and non-deformable, Sy is a constant. More realistically, it



is bounded function dependent on space. The research presented herein will assume that Sy
is constant, but may be extended naturally to Sy = Sy(z) being a bounded function. See
Table 1.2 for sample values of Sy for various types of porous media gathered from Domenico

and Mifflin [28] and Johnson [42]. Using this specific storage parameter, Sy, (1.7) becomes

pSodr +V - (pg) = f, in Q, x [0, 7. (1.8)

Next, we implement Darcy’s Law. Darcy’s law relates the specific discharge, ¢, to the
hydraulic head by
qg=—-KV¢in Q, x [0,T],

where C represents the hydraulic conductivity tensor. This tensor represents the ease with
which water moves through pore spaces or fractures. The tensor, IC, is symmetric positive
definite (SPD) and unless the aquifer is homogeneous, depends on space. Let k,,;, represent
the smallest eigenvector of C. Depending on the composition of the aquifer, this eigenvalue

could be very small. See Table 1.3 for sample values of k,,;, taken from Bear in [8].

Consider the term V - (pq) = ¢Vp + pV - q. Since Vp is negligible in comparison to the
other terms, we omit it from the equation. Thus (1.8), representing the conservation of mass

in the aquifer, becomes

Sopr — V- (KV¢) = f, in , x [0,T], (1.9)
where we have rescaled the source function, f,, by the density, p.

In addition to the conservation of mass in the aquifer, we assume ¢ = 0 on the external
boundary as well as an initial condition. This completes the Darcy equation governing flow

in the porous media.
Sopr — V- (KV¢) = f, in 2, x [0,T],
¢ =0o0n 00, \ I xI0,T], (Darcy)

(x,0) = ¢o(z) in Q.



Table 1.2:  Values of specific (volumetric) storativity, Sp, for different materials in a confined
aquifer (see Domenico and Mifflin [28] and Johnson [42]).

Material Specific Storage Sy (m™!)
Plastic clay 2.6 x 1073 —2.0 x 1072
Stiff clay 1.3x 1073 —-2.6 x 1073
Medium hard clay 9.2x107*—-1.3x 1073
Loose sand 49%x107*-1.0x 1073
Dense sand 1.3x107*—=2.0x 1074
Dense sandy gravel | 4.9 x 1075 — 1.0 x 1074
Rock, sound less than 3.3 x 1076

1.1.3 Coupling Conditions Along the Interface

The (Stokes) and (Darcy) equations describe the fluid motion in the separate domains. To
study the coupled flow necessitates the addition of coupling conditions describing the flow

along the interface, I.

The first coupling condition represents conservation of mass along the interface. In €,
the (averaged) fluid velocity, u,, satisfies, u, = Z. Conservation of mass along the interface
implies

w-ng~+u,-n,=0on I, orusing Darcy’s Law,
(Coupling 1)

nu-ny—KVe¢-n,=0on I,
where 7y, represent the outward oriented unit normal vectors on the interface in each sub-
domain. The second coupling condition describes the balance of normal forces along the
interface. Recall that in a fluid body the Cauchy stress vector, ?, represents the inter-
nal forces exerted on a fluid volume by the fluid outside this volume. It satisfies a linear

relationship with the stress tensor, II,



Table 1.3:  Values of kpn, the smallest eigenvector of the hydraulic conductivity tensor, K, for
various materials (see Bear [§]).

Material Hydraulic Conductivity kpi, (m/s)
Well sorted gravel 107 — 100

Highly fractured rocks 1073 —10°

Well sorted sand or sand & gravel 107% — 1072

Oil reservoir rocks 1076 — 10

Very fine sand, silt, loess, loam 1078 —107°

Layered Clay 1078 — 1076

Sandstone, limestone, dolomite, granite 1072 - 107"
Fat/Unweathered Clay 10712 —-107°

T =ny 1L

. . - ~
Thus the normal forces on I emanating from 2; are given by — ¢ -ny. The normal forces

on [ exerted by €2, are pg¢. This yields the second coupling condition:

7. ng = pgo. (Coupling 2)

The third and final condition accounts for viscosity on the interface by enforcing a con-
dition on the tangential fluid velocity. The exact mathematical formulation of this condition
is not completely understood. In part this may be due to trying to match the point-wise
velocity, u, in the fluid region, 24 to the average velocity, u,, in the porous media region, €2,,.
Let {7;}%=! be an orthonormal set of tangent vectors on /. The most natural assumption

would be “no-slip” on the boundary, i.e.
u-T,=u, -7, =0forj=1,...,d— 1.

J

However, this did not reflect experimental data discovered by Beavers and Joseph in 1967

10



[9]. Through several experiments, they noted that the mass flux through € is larger than
that predicted by the no-slip boundary conditions. Their experiments led them to derive
the following slip-flow condition, expressing that slip velocity along I is proportional to the

shear stresses along I.

/7K
(u—uy) 7 = <u> (-7 - #)forj=1,.,d—1

apJ
Here apy represents the experimentally determined slip coefficient. It depends solely on
the porous media properties and ranges from .01 to 5 (see [9]). In 1971, Saffman [63] proposed
a modification to the Beavers-Joseph coupling condition. This proposal dropped the porous
media averaged velocity based on observations showing that the term w, - 7; is negligible
compared to the fluid velocity u - 7;. Referred to as the Beavers-Joseph-Saffman (-Jones)
coupling condition, this is the third and final coupling condition used in this research:

R \/Tj'}C'Tj?'A

u-T;=— p— 7. (Coupling 3)

1.1.4 The Evolutionary Stokes-Darcy Equations

We review the fully evolutionary, Stokes-Darcy system. Let {2; represent the fluid region and
2, the porous media region, or aquifer. Let 0 < T" < oo. The time-dependent Stokes-Darcy

problem reads: Find u, p, ¢ satisfying

u, — vAu+ Vp = frin Qp x [0,77,

(Stokes)
V-u=0inQ x [0,7],
Sodi — V- (KV6) = f, in 0, x [0.7], } (Darcy)
nu-ny—KVe¢-n,=0on I x[0,T],
vig-Vu-ng—p=—gponl x|[0,T], (Coupling)
u- T = —p—WVﬁf - Vu - 7; for any tangent, 7; on I x [0, T,
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u=0on 00\ I x1[0,7],
¢»=00n0Q,\Ix][0,T],

(Boundary Conditions)

u(z,0) = up(x) in Qf, ¢(z,0) = ¢o(z) in Qy, } (Initial Conditions)
where the variables and parameters are as follows:

u = fluid velocity in Q; (Stokes velocity),

p = kinematic fluid pressure in Qy (Stokes pressure),

¢ = hydraulic head in Q,(Darcy pressure) = elevation head + pressure head,
ff = body forces in 2y,

fp = sources in §2,,

v = kinematic viscosity of fluid,

K = hydraulic conductivity tensor,
So = specific (volumetric) storage,

g = gravitational acceleration constant,

n = volumetric porosity percentage,

apy = measured slip coefficient.

1.2 VARIATIONAL FORMULATION AND PRELIMINARIES

Having derived the fully evolutionary Stokes-Darcy problem, the next step towards numerical
approximation of solutions to this coupled problem is to derive the variational formulation.
Let (.,.)f, represent the L2-inner product over the regions Q; and €, respectively. Let
< .,. >7 represent the L?inner product over I. Denote the L? and H' norms induced by
these inner products by ||| s//r and ||.|1,¢/p/1-

Consider the conservation of momentum equation in the Stokes equations (Stokes).

Choose the test function space X; = {v € (H*(Q))? : v = 0 on 9Q,;\I}. Multiply by
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v € Xy and integrate over {2; to obtain

(ut’v)f - (VAU?U>f + (Vpav>f = (ffvv)f'

Consider the term (vAw,v);. After integrating by parts and applying the Divergence

Theorem, since v = 0 on € \ I, this becomes

(vAu,v); =< vng - Vu,v > —(vVu, Vo);.
Similarly, the Stokes pressure term is equivalent to
(Vp,v)f =<p,v- TAlf >r —(p,V . U)f.

Thus, the conservation of momentum equation becomes

(ug,v) s + (¥Vu, Vo) — (p,V-v)s— <vng-Vu,v >y — < p,v-ng>=(fr,v)r (1.10)

Rewrite the first interface term, — < vy - Vu,v >y, in terms of normal and tangential
d—1
components: ng-Vu = (- Vu-ng)ng+ (- V-75)7, v = (v-ng)ns+ Z(v 7;)7;. Utilizing
‘77
that 7y - 7; = 0, this first interface term may be written as

d—1
— < V’flf 'VU'ﬁf,U'ﬁf >I —Z<Vﬁf -Vu-%j,l)-%j>l
j=1
Together the interface terms in (1.10) equal
d—1
— < Vﬁf.Vuﬁf_p’Ufo >I —Z(V’ﬁ,fvu”f],v'fj>l
j=1

Therefore, by the second and third coupling conditions (Coupling), (1.10) becomes

(10, 0) + (09, wf+2/ (TR, .
J J .

_(pvvv)f+g<¢7vﬁf >r= (ffav)f
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We next derive the variational formulation of the Darcy equation in the coupled system.

Begin with the conservation of mass equation in (Darcy) in the porous media region:

St — V - (KV¢) = £, in Q, x [0, 7).

Let ¢ € X, = {¢ € H(Q,) : ¢ =0 on 9Q,\I}. Multiply both sides by 1 and integrate

over the porous media domain. Integrate by parts once and apply the Divergence Theorem

to obtain

(fmw)p = (So¢t>¢)p - (V ) (’Cv¢a w>p

= (5001, ¥)p— < KV¢ -1y, 10 >1 +(KV ¢, Vi),

Multiply through by ¢ and apply the first coupling condition in (Coupling).

(gfpa w)p = (950¢t7 7vZ)>p —gn<u- /ﬁf7¢ >r —i—g(lCqu, Vw)p

To simplify notation, define the following bilinear forms. Let ay(.,.) : Xf x X; — R,
b(.,.): Qr x Qf = R, ay(.,.): X, = R, and ¢(.,.) : X, x Xy = R. Define

af(u,v):m// Vu:Vvd:U—i—Z/A— u-T,
2

b(v, q) :n/ qV -vdzx,

ap<¢>,w>=g/ VK- Vo,

Q

cr(v, ) = gn/lwv -TNy.ds.

(1.12)

(1.13)
(1.14)

(1.15)

Thus, the variational formulation for the coupled Stokes-Darcy problem is given by
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For every ¢t > 0 find u(.,t) € Xf,p(.,t) € Qf, ¢(.,t) € X,
satisfying for all v € X;,q € Q.1 € X,, :

n(ug(t), )5 + ay(u(t),v) = b(v,p(t)) + cr(v, (1)) = n(f4(t), v)y, (1.16)
b(u(t),q) =0,
9(So01(t), ¥)p + ap(¢(t), ¥) — cr(ult), ¥) = g(fp(t), ¥)p-

Notice that this is an exactly skew-symmetric coupling. Studies on the existence and
uniqueness of solution to this continuous problem in stationary form can be found in [24, 45].
Using the Trace and Poincaré inequalities given below, one can show that the bilinear forms
ag(.,.) in (1.12) and a,(.,.) in (1.14) are both continuous and coercive on their respective

domains, as given in Lemma 3.

Lemma 1. (A Trace Inequality) Let Q be a bounded reqular domain, u € H'(Q). Then there

exists a constant Cq > 0 depending on the domain 2 such that the following inequality holds.
1 1
[ullz200) < Callull 7o) [Vull2q)-

Proof. See, for example Brenner and Scott in [10], Ch. 1.6 p.36-38. ]

Lemma 2. (Poincaré Inequality) Let v € Xy, ¢ € X,,. Then there exists a constant Cp > 0
such that the following holds for w = v or 1.

[w]| < Cp||Vw]|.

Lemma 3. (Continuity and Coercivity of the Bilinear Forms) The following inequalities

hold:
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apiCp +C,
wherer:n<l/+ BIVAS Qf) > 0.

PV km'm

Proof. We show the proof for the continuity of ay(.,.). Let u,v € Xy. Recall that because
K is (SPD), kyin > 0. By the Cauchy-Schwarz, Trace, and Poincaré inequalities,

d—1
ar(u,0) < || Vullf|Voll; + ) 228w Tl - 7ills
=1

d—1
< || Vull Vol + 88 3 Rl - 7l
1=1

napCp rCo,

< nv||Vu| ¢ Vol 5 + " oVEmin

[Vl sVl

Coercivity of as(.,.) and a,(.,.) follows immediately from calculating as(u,u) and a,(¢, ¢)
and the fact that I is SPD. Likewise, continuity of a,(.,.) follows by the Cauchy-Schwarz

inequality and boundedness of K. O]

Next we derive an energy estimate for the solutions to (1.16). Define the following norms

on the dual spaces, (X;)* and (X,,)*.

(faw)f/P
Ifll-ipp = sup 22
P orwex,, VW]

Lemma 4. (Energy Estimate for Stokes-Darcy) Let (u(t),p(t), ¢(t)) € (X;, Qf, Xp) x [0, T
be solutions to (1.16). Then, for any 0 <t < T,

t 2
allu(®) |2+ gSollé(t) |12 + v / IVa(s)]12 ds + ghin / IVo(s)|2 ds

m ! g t
S;/O 1fr ()12, ds + /0pr(s)HQLpdern|yu0\|§+gso||¢0\|§,

kmin
Proof. Set v = u and ¢ = ¢ in (1.16) and add the first and third equations. By skew-

symmetry, the coupling terms cancel, leaving

nur, w) g+ (9S0bi, )p + ay(u, u) + ap(6, 0) = n(fr, w)s + (9.5, @)
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Note that (us,u); = $2|lul|* and similar for (¢, ¢),. Apply coercivity of the two bilinear
forms, utilize the dual norm, and implement Young’s inequality on the right-hand side to

obtain

33 (nllull® + 9Soll61) + % Vulf} + g

VIl < soll fellZ s + 5%

min

[foll2 1

Integrating in time produces the energy estimate for the coupled system. O]

1.3 SEMI-DISCRETE APPROXIMATION USING THE FINITE ELEMENT
METHOD

Having established the variational formulation of the fully evolutionary Stokes-Darcy prob-
lem (1.16), we next discretize the problem in space using the Finite Element Method (FEM).
Select quasi-uniform meshes for Q; and €, ﬁlfl and 7,” respectively. Let T, = 7;0{ U7.,
with the maximum triangle diameter over the combined meshes denoted by h. Select finite

element spaces,

Stokes velocity: X ]}} C Xy,
Darcy pressure: XZ’} C X,,

Stokes pressure: Q’} C @y,

based on a conforming FEM triangulation. We assume that the Stokes velocity-pressure
FEM spaces, X }L and Q?, satisfy the usual discrete inf-sup condition for stability of the
discrete pressure, denoted by (LBB") (see, for example, [34]), and stated below.

3B, > 0 such that  inf sup (qn, V - vp)s

> ), (LBBh)
€@ 0170 v ext, w20 |V ORI pllgnll s

No assumption is made on the mesh compatibility or inter-domain continuity on the interface,
I, between the two FEM meshes in the two sub-domains. Assume that X7}, X, and Q}

satisfy approximation properties of piecewise polynomials on quasi-uniform meshes of local
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degrees r — 1,r, and r 4+ 1. That is,

lél)f(h ||U - Ith S C’hr+1||u| H"+1(Qf)7

Tp f

a;hlg)f(? [ = znll i,y < CH [Jull o)),

. o r+1 i
y:g)f(g 16 = ynlly < CA" @]l gri1(ay),
g 116 = wnllina,) < O lollia,,
inf ||p—znlf < Ch PllH1(Q))-
o, | I Pl 1))

(1.17)

Analysis of some of the methods considered in this research requires an inverse inequality

given below in Lemma 5. Note that this assumption implies a minimum angle condition. See

Brenner and Scott, [10], chapter 4 for more on inverse inequalities. The inverse inequality

constant, C{;n,), depends on the angles in the mesh, but not the domain size or shape.

Lemma 5. (An Inverse Inequality) Let wy, € X]’} or XI'}, then

hINVwil f/p < Clinwy llwnll 1/p-

The semi-discretization for the coupled Stokes-Darcy problem is as follows.

Find (up (-, ), pr (-, 1), da (-, 1)) : [0,00) = (X7, QF, X))
satisfying for all (vy, qn, 1) € (X}, Q}, X)),

n(unt, vn) f + ap(un, vp) — b(vp, pr) + cr(vn, on) = n(fr,vn);y,
b(un, qn) = 0,

950(Pnt, Yn)p + ap(On, ) — cr(un, n) = g(fp, ¥n)p-

(FEM-SD)

Note in particular the preservation of the skew-symmetric coupling between the Stokes and

the Darcy sub-problems.

After applying the Finite Element Method to the Stokes-Darcy problem, the system can
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be further reduced to a coupled evolution equation of the form

Ut+AfU+O¢: Ff,
(1.18)
O+ App — Cu = F,
where Ay and A, are SPD and C' = CT. Like the Stokes-Darcy semi-discretization
in (FEM-SD), the above coupling is exactly skew-symmetric. The equations may then be

written as a 2-block ODE system:

d |u A 0 U 0 Cf |u Fy
7 + + = . (1.19)
0] 0 A, |o —C 0f |¢ F,
This, in turn may be further simplified to an evolution equation of the form
wy + Aw + Aw = F, (1.20)

where A is SPD, and A is exactly skew symmetric (A7 = —A). While most of the methods
presented in this research will be applied directly to (FEM-SD) so that we may study effects
of small parameters in the Stokes-Darcy problem, there will be times when it is helpful to

refer to one of the aforementioned simpler systems.

1.3.1 Partitioned Methods

As mentioned previously, the challenges of the Stokes-Darcy problem include (i) capturing
with accuracy the different physical process happening in each sub-domain, (ii) computing
solutions over large domains and long-time intervals, and finally, (iii) maintaining stability
when faced with small parameters such as specific storage, Sy, and hydraulic conductivity,
Emin, as discussed in Section 1.1.2. Stability regardless of small parameters is a key role in
developing methods for groundwater-surface water flow, since the singular limits Sy — 0 and
kmin — 0 have physical relevance given confined aquifers and impermeable porous media.
There has been considerable growth in the development and study of numerical meth-
ods for Stokes-Darcy coupled problems. A recent summary of methods and analyses of the
Stokes-Darcy coupling can be found in [25]. Studies on the continuum model have been

performed in [37, 9, 15, 57, 63]. The analysis of the equilibrium problem is advanced, see for
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example, [45, 24, 12, 26, 59, 61]. A more recent survey of the Stokes-Darcy domain decom-
position for the equilibrium problem has been studied in [23, 27]. Analysis and development
of methods for the time-dependent problem using the Beavers-Joseph interface conditions
can be found in [16, 15, 14, 13]. Studies on extensions to the Navier-Stokes-Darcy coupling
were performed in [6, 1, 25, 35].

The methods developed and analyzed in this research uncouple the Stokes-Darcy equa-
tions so that at each time step one can solve a separate Stokes and Darcy problem. Called
partitioned methods, these algorithms allow us to utilize existing legacy codes already opti-
mized for the sub-flows, thus minimizing computational cost and time. Partitioned methods
for the Stokes-Darcy problem were first proposed by Mu and Zhu in [56]. The methods they
proposed were first-order convergent. These partitioned methods uncouple the equations by
utilizing implicit-explicit (IMEX) time-discretization, in particular by treating the coupling
terms explicitly. Some general theory on (IMEX) discretizations can be found in [4, 33, 3, 69].
There are three main types of partitioned methods: parallel, splitting, and asynchronous.
Parallel partitioned methods uncouple the equations so that the separate sub-problems may
be solved in parallel, whereas splitting methods require you to solve them sequentially at
each time step. Asynchronous methods allow one to take different time step sizes in each
domain. More studies on partitioned methods for two domain problems have been performed
in [17, 18, 19, 67]. In particular, in [49], Layton and Trenchea studied the stability of two
(IMEX) partitioned methods applied to the related coupled evolution equations in (3.1).

Partitioned methods specifically for the Stokes-Darcy method have been studied in
[56, 47, 48]. Asynchronous partitioned methods for Stokes-Darcy have been proposed and
studied in [46, 73]. In this research, we will focus on error analysis for some the splitting
partitioned methods presented in [47], presented in Chapter 2. The primary focus of this
research, however, is to study higher-order methods, thus making computations over long-
time intervals more efficient. The methods studied in Chapters 3-5 are both summaries and

expansions on ideas presented by the author in [65, 66, 41].
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2.0 SPLITTING METHODS FOR THE STOKES-DARCY PROBLEM

In this chapter we study the convergence properties of splitting methods applied to the
Stokes-Darcy problem. As mentioned previously, the goal of a partitioned method is to
decompose this complicated dual-physics problem into two, simpler, sub-physics problems.
A splitting method accomplishes this goal by uncoupling the Stokes-Darcy equations in such
a way that at each time level, we may solve the Stokes (Darcy) problem first and then use
that solution to solve the Darcy (Stokes) problem. This idea of “splitting-up” a complicated
problem in mathematical physics so that it may be solved sequentially has been well-studied,

see for example [50, 51, 53, 52, 74].

The splitting methods studied in this chapter were proposed by Layton, Tran, and Xiong
in [48]. In their work, they analyzed the stability properties of four splitting methods and
performed several numerical tests on stability and convergence. In this chapter, the au-
thor expands on [48] by performing convergence analysis on three of the splitting meth-
ods, (BEspLIT1-SD), (BESPLIT2-SD), and (CNspLIT-SD). The first two splitting methods,
(BEspLIT1-SD) and (BESPLIT2-SD) are first-order convergent, but exhibit good stability
properties when faced with either small &,,;, or small Sy (but not both). The third splitting
method studied, herein, (CNspPLIT-SD), has better convergence properties, but exhibits very

restrictive stability properties.

The convergence analyses of the aforementioned methods presented in this chapter will

utilize the equilibrium projection operator for the Stokes-Darcy problem, defined as follows.

21



Let T € (0,00). Define the equilibrium projection operator, P, by

Ph : (vaQf’Xp> — (X]}‘L7Q?7X£) 5
Py - (u(t),p(t), ¢<t)) - (Phu(t)a Php(t)7 Ph¢(t))7vt S [07 T]
where (Pyu(t), Pup(t), Pop(t)) satisfies

ay(u(t),vn) = b(va, p(t)) + cr(vn, 6(t))
= af(Puu(t), va) = b(vn, Pap(t)) + cr(va, Pro(t)),

b(Pyu(t), qn) = 0,

ap(9(t), ¥n) = cr(u(t), on) = ap(Pad(t), ¥n) — cr(Prult), ¥n).

(SD-PROJ)

The operator, Py, exists and is well defined, see for example [23, 24]. Under certain regularity
assumptions, there holds
[Paw(t) — w(®)llg7p < CRE|lw(®)l s/,
IV(Paw(t) — w(t)llsp < ChIINVw (@) 5/p, (2.1)

1Prp(t) = p(B)ll; < Chilp(®)]ly,

for w = u,¢. The first inequality above is derived in [55], and the second two inequalities

are derived in [23].

Denote the true solutions at time t* to the Stokes-Darcy equation (1.16) by (u*, p*, ¢*),
whereas solutions to a numerical approximation to (1.16) at time t* are given by (uf, pf, ¢F).

The true solution satisfies the equation below.
n(uiﬁ_l? Uh)f + 980<¢f+1, @Z)h)p + af(uk+17 Uh) + ap(¢k+1a @Zjh)

+CI<Uh7 gbk—H) - Cl(uk+l7 ¢h) - b(vha pk+1)

=n(fy" o)+ 9(f " vn)y

If we apply the projection property (SD-PROJ) for **1 to the above equation, we obtain

n(uy ™ on) r + 980 (@5t n)p + ap (P vg) + ap(Pud™™, )

(2.2)
+er(vn, Pad™) — cr(Pou®, ) — b(un, Bup™™) = n(f5 T on) 4+ g(f ™ dn)p
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In the following analyses, we utilize a special treatment of the coupling terms, ¢/(.,.)
that requires an additional inequality, proven by Moraiti in [54]. The inequality holds under
conditions on the domains €y, €),. The constant Cy, depends on ;,, and in the special
case of a flat interface I, with 2y and €2, being arbitrary domains, Cy, equals 1 (we will
assume that our domain fits this case). See Moraiti in [54] Section 3 Lemmas 3.1 and 3.2 for

further details on the derivation of this inequality.
lcr(u, 9)| < ngllullprvsll @l (HDIV-TRACE)

Furthermore, we will need the following bounds for consistency errors produced by the

(BEspLIT1-SD),(BESpPLIT2-SD),(CNSPLITA-SD),and (CNspLITB-SD) methods.

Lemma 6.
N-1
4
At Z HukH —uh — At“f“”? < ATtHuttH%Q(O,T;LQ(Qf))a (2.3)
k=0
N-1
4
At Z |* T — oF — Atqﬁf““; < ATt‘|¢tt’|i2(0,T;L2(Qp))7 (2.4)
k=0
N-1
At Z ”UkH - ukH?f < AtHut“%Q(O,T;LZ(QJ:))a (2.5)
k=0
N-1
ALY " [F = 6812 < Atllénll T2 01020, (2.6)
k=0
N-1
4
ALY e = 20%) — At(uf T+ uf)|1F < B Mlunl 32 000200,)): (2.7)
k=0
N-1
4
ALY T I265 = 20%) — At(GF T + )12 < BE N dull 720120, (2.8)
k=0
N-1
k+1/2 4
At Z IfF + ff —2f; / 17 < 25Nl a2,y (2.9)
k=0
N-1
4
At Z SO+ fF = 28212 < S5 elliz0.r.0200,) (2.10)
k=0

Proof. All inequalities can be shown using integration by parts along with the Cauchy-
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Schwarz inequality. For the first inequality,

N-1 N-1
At Z | (W =) - Atuf““j = At Z/Q | (u* =) - Atuf“Hi dx
k=0 k=0 /s
1 2
N-1
— AtZ/ /(tk — ug dt|| dz
k=0 7 || 7 ,
No1 tk+l tk+l
< AtZ/ /(tk — )2 dt / g |2 dt | da
k=0 72\ 5 A
At

= 73 ||utt||%2(O,T;L2(Qf))7

and similar for ¢ in (2.4).

Inequalities (2.6)-(2.7) are similar, so we only show the proof for ¢:

N-1 No1 [P ?
At2||¢k+1—¢’f||;:m/ > /@dt dx
k=0 D p=0 \ 7,
N_1 tk+1 tk+1
gAtZ/ /12dt/]¢t\§dt dx
k=0 7 < i o

= A752||<15t||%2(0,T;L2(Qp))-

Inequality (2.7) follows below.

N-1 N-1
AT+ =20 = A ) =AY [ () - A )
k=0 k=0 7S

N-1 tht ?
= At Z / / (" 45 — 2)uy, dt|| dx
k=0 7S || 5 ,
No1 tk+1 tk+1
k+1 k 2 2
gAtZ/ /(t + tF — 2¢) dt/ ug |2 dt | do
k=0 V2 \ 4 i

4
= 2A3t ||utt||%2(O,T;L2(Qf))

Proof of inequality (2.8) is omitted due to its similarity to the proof of inequality (2.7).
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Finally, we prove the last two inequalities.

N—-1
k+1 k E+1/22
AEY IR+ e — 217, ”f/p—/
k=0

Qy/p

N-1

tn+1 tk 2
/ (Fr ) di + / rdt| da
k+1/2 th+1/2

tk 2

= At (t — ") (Fr/p)ee dt + (t —t"O frpuedt| dx
kE:% /Qf/p / " / !

k+1/2 th+1/2
N1 h+1 2 ik 2
<oy [N [ttt | | [ -] | o
k=0 Qf/p kt1/2 k+1/2
N1 - gkl o1 ik ik
< 2At2/ / (t — t*1)2dt / |(fe/p)ul3dt + / (t — t*)%dt / | fr/p)ul3dt | dz
k=0 7 <4/p [gh+1/2 k172 k172 t1/2

4
= Al_tg||(ff/P)tt||%2(0,T;L2(Qf/p))'

m
Additionally, we will need the following bounds involving the projection operator.
Lemma 7.
N-1
1(Pn = D)(u™ = M)} < CA uil T2 7:1200,)): (2.11)
k=0
N-1
1(Py — D) (@ = oM)|2 < CAth | oull 720712000,y » (2.12)
k=0
N-1
IV (Prut = Pyut)|[F < CAHR? + 1)Vl 2010202, - (2.13)
k=0
N-1
IV(Pag**t = Pug®)[2 < CAHR? + 1)Vl 201120, (2.14)
k=0

Proof. We prove the first two using integration by parts and the Cauchy-Schwarz inequality,

followed by the projection error bounds given in (2.1). We show the proof for (2.12). The
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proof for (2.11) is similar.

i1 2

(P — D(@+ = ¢9)2 = Z/Q Ph—z/@dt &

i

e
Il
o

tk+1

N-
Z/ At / (P, — D)y dt 3 da
k=0 %
< OAth|pell 20 1:12(0,)-
To prove inequalities (2.13)-(2.14), first note that by triangle inequality
IV (P = Pyaw®) gy < V(P2 = D@ = w0))l| g7 + IV (@0 =),

for w = u, ¢.

Therefore, similar to (2.11) and (2.12),

=

IV (P (™ = w)[F), <2 Z IV((P, = D™t = wh))I[F, + V(@ = wb)][F,)
0

e
Il

< CAt(h? + 1)||th||L2(07T§L2(Qf/P))7

for w = u, ¢.

2.1 CONVERGENCE OF THE BACKWARD-EULER SPLITTING
METHODS FOR STOKES-DARCY

The Backward-Euler Splitting Methods discretize the Stokes-Darcy problem, (1.16), in time
using the fully implicit Backward-Euler (BE) method, but lag the coupling term in either
the Stokes equation (BEspPLIT1-SD) or the Darcy equation (BESPLIT2-SD) at the previous
time step. In doing so, these methods uncouple the equations so that at each time step one

solves a separate Stokes and Darcy problem sequentially, making this a splitting partitioned

method. The algorithms for (BEspLIT1-SD) and (BEspLIT2-SD) follow below.
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Definition 8. (Backward-Euler Splitting Method 1 for Stokes-Darcy (BESpLIT1-SD))
Given (uf,pk. ¢F) in (X?,Q?,X;j), find (up™ pFtl okt satisfying for all (v, qn,¥n) in
(X}, QF Xp):

k+1 k

L.n (%,w) +ag (" vn) = b(on, i)

E\ _ k+1
+cr (Ufu ¢h) =n(f;" o)y, (BESPLIT1-SD)

b( kJrlvqh) 0.
2. gS ( ¢h7wh> +ap( k+17wh) ( k+1awh) =g (fk—i_l)wh)

Definition 9. (Backward-Euler Splitting Method 2 for Stokes-Darcy (BESPLIT2-SD))
Given (uﬁvpﬁa¢§) in (X}LaQ’}an)7 ﬁnd ( k+17pk+1 k+1) Sat’LSfyan fOT’ all (Uqu}wwh) in
(X}, Q. Xp):

LgS (B o) +ay (67 0n) — e (ufvn) = g (57 ),,

E+1_ .k
2.n (uh N uh,vh> +ay (uiJrl vh) — b(vh,piﬂ)

(BEspLIT2-SD)
+¢; (Um k+1) — n(fk+1’ )

In [48], they analyzed stability properties of the BESPLIT-SD methods. The restrictions

derived for stability are key in the convergence analysis. Define the following:

AT :=2min {V/fmmSOW 1} ’

ATQ . 2min{l,9S0} h

9C0a;CapCliny) '
ATg = 2gSth [gCQfCQp] - (C(inv)CP,f>_17

. 2min{l,p}
AT’4 = pg(lekmma

ATs = n9(Ca;Cap)>Cliny) ’
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pp— kmin

Parameters := (1 + Cpp)(C’pf + d) 2

mznV

Implications of the time-step and parameter restrictions for stability of the two methods

will be further discussed in the conclusion of this chapter.

2.1.1 Convergence of (BEspLIT1-SD)

We begin by proving first-order convergence of the method (BEspLIT1-SD). In [48], they
showed the method is uniformly stable in time. For reference, the result is summarized

below.

Theorem 10 (Stability of (BEspLIT1-SD)). Suppose that either the problem parameters
satisfy

Parameters < 1,

or, At satisfies the time-step restriction
At < maX{ATl, ATQ, ATg, AT4}

Then (BEspPLIT1-SD) is stable uniformly in time. In particular, if one of the time-step

restrictions AT 24 or Parameters holds, then there is a € (0,1) such that for N > 0,

=

a (nllup |7+ gSollon 12) + 55 Y {ap(uy™ +wp, up ™ up) + ap (o™ + of, o1 + 01) )

i
o

N-1

a (nllupllF + gSollonll2) + At > n{(fFupt™ +up) s+ g(f5 o + dh)p )
k=0

Proof. See [48]. O

The convergence analysis of (BESPLIT1-SD) assumes the condition Parameters < 1
holds. Analysis for the other cases is similar in nature but omitted from this research due

to length.

Theorem 11 (Convergence of (BESPLIT1-SD)). Suppose that u, ¢, p satisfy the regqularity

conditions required for the projection error inequalities in (2.1) for w = u, ¢, uy, ¢y. Assume
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that the following time-step condition holds:

Parameters :== (1 + 012371))(01237]” +d)-t < 1.

kmin

Then the errors between the true solutions to the Stokes-Darcy problem (1.16) and the
(BESPLIT1-SD) method satisfy O(At(h + 1) + h?).

Proof. Add the projections of the discrete time derivatives for u and ¢ to both sides of (2.2).

k+1_ k P, Rt _p, bk
n(—Phu N 7Uh)f+950 <—h¢ e ,¢h>p+af(Phuk+1,Uh)

+a,(Pud® n) + cr(on, Pad®™) — er(Pou™ 4hy) — b(vp, Pup®™)
uk 1P,k k+1_ p 4k
=N <_Ph +Alt P 5 Uh)f + 950 <Ph¢ +At Pt ) wh>p

—n(u; ™ o) = gSo(@Ft n)p + n(FFH on) g + 9(fy T )y

(2.15)

Consider (BEspLIT1-SD). Define the errors between the projections of the true solutions

and the solutions to the method (BEspLIT1-SD) as
e = P —uf, e'; = Pup" — pf, 6]; = Pug® — ¢}

Note that these errors are in our finite element spaces, X}, Q%, and X'. Subtract

(BEspLIT1-SD) from (2.15). Using the prescribed error notation yields

k+1_ Kk

€k+17€k e e
n( SN, “,Uh)f + 950 ( N ¢> +ag(ent vn) + ap(eh™ i)
p

+CI<Uh7 6(’;) - cl(eﬁ—i_la ,Ivbh) - b(’(}h, 6];+1)
k+1__ k P, k+17P k
=n (Phu At P 7vh>f + gSO ( b At ho 7¢h>p

—cq(vn, Pad™ — Pud®) — n(ui ™, vn)y — 9So(0r T, Un)p

(2.16)

In the above equation we added ¢;(vs, Pr¢*) to both sides to make the term c;(vy, €);) appear

on the left. Choose v, = At(ef™ +ek), ¢y, = At(el™' + k). Then the equation becomes
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(nlle™ 11 + gSolles™MI5) — (nllexl + gSollet7)
—i—Ata ( k+1 k+1 +e )—i—Atap( k+1 k+1 +€¢>
+Ater(ef Tt 4 ek e¢) Ater(ef el + ef)

(2.17)
=n (P — — Atuftt et e )f
gSO( ¢k+1 P ¢k Atgb{fﬂ, k+1 +6¢)

—Ater(eft 4 eF Pttt — Puot)

Define the energy, diffusive, and coupled terms as follows. Note that by coercivity of

af(')') and Clp( ) Dk+1/2 < le( k+1+e €k+1+e )—I—(Ip( k+1 +6¢7 ektl —l—6$).

= nlleqllF + gSollegl; + 5 (ar(er, ef) + ap(eg, ef)) |
D2 = ||V (e ™ + eI + ghminl V(€5 + €)1,

CF = cy(el, e];).
After incorporating the above notation, (2.17) becomes the following inequality:

(E* + AtCHY) — (EF + AICh) + §EDMH/2
<n (Phul‘”rl — Py’ — Atul T P e )
N / (2.18)
+gSO (Ph¢k+1 . Ph¢k . At¢i€+l k+1 + €¢)

—Ater(eft 4+ eF Pttt — Puoh).

Consider the coupling term on the right-hand side. Using the Cauchy-Schwarz, Trace

(Lemma 1), Poincaré (Lemma 2), and Young inequalities we find

Ater(eF™ + ek P,¢F T — PLo") = Atng / (et k) - p (Pt — Puo®)] ds
I

< Atng||ef™t + e[| Pug™ — Pug®|s
< AtngCq,Co, ||k + ek || 2V (el + e[|} Pugt ™+t — Pug®|| 12|V (Pugh ™t — Pogh) |1/

< AtngCq,Co, CHICH2IV (b + ) |||V (P! — Pug®)|,

2Atn‘(]20522f02 Cpf Pp

< SRV +en)llf + IV(Pug™*" = Pug®) |5

v
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Next we bound the consistency errors on the right-hand side.

n (Palt = Py — At eb o eh) <l Pt — Pyt — Atul | ]lekt + ek

8C2
< Akt o) |2 4 SBL Ptt — Pt — At 2,

950 (Pug®™™! — Pug® — Atg ™!, eg™t ) < gSol|Pag™ ! — Pugt — Atoy [, llest + egll

S2
< Staknin |7 (eh 4 k) |2+ S22 Py gt — Bt — At

After subsuming terms into the diffusive terms on the left-hand side, (2.18) becomes

(B AICH!) — (E* + AtCh) + §EDMH/2
2 n
< SR Pttt — Pt — At + I pgh Pt — AtgE 2 (2.19)
2Atn9202 CépCpf P,p

v

_|_

IV (Pag™*" = Pug®) |5

Split the consistency errors on the right-hand side as follows using triangle inequality:

1P = Py = At p < || (Po = 1) (@ =) [l + 1] (= ®) = Aty

1Pag*™h = Pug® — Atgy |, < (1 (Po = 1) (6" = 6") [l + | (6" — &%) — Aty ],

Sum inequality (2.19) from & = 0 to N — 1. Absorb all constants on the right-hand

side into one constant, Cy > 0, independent of mesh width, A, and time-step size, At. This

produces

(E* 4+ AtCHY) + (EF + AtCF) + §LDM2

-1

=2

{27 (1P, = DMt = uP)I[F + (™ = u®) — Aty ™[] (220

|/\
1; EM

5 LB = D@ = M2+ (65— 6*) — At 2]
+ AL ||V (B = M)}

Apply Lemmas 6 and 7 to the terms on the right-hand side of (2.20) to obtain
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N—-1
EN + AtCN + &t Z D2 < B0 4 AtC® + ¢y {h? <||ut|\iz(0,T;L2(Qf)) + ||¢t|!iz(07T;L2(Qp)))
k=0

+ A8 (IuallZaqo 22200, + N0l iz ) + A8 (0 +1) IVuliaorzian

for some C > 0. This implies that the errors between the projections of the true solutions

of Stokes-Darcy and the solutions of the method (BEsPLIT1-SD) satisfy
lew Iz = O(At(h +1) + h?),

for w = u, ¢ provided EVY — AtCY > 0. We will show EY + AtCY > 0 holds momentarily.
Bound AtCY using inequality (HDIV-TRACE), along with Poincaré (Lemma 2), and
IV uly < VAIVal to find

AtCN < Atgnllel |12l 15y,

Atgny/(1+ CP,p))(Ch + )| VeS|, Vel

AU )(CB g

< Atghmin|[ Vel |12 + Ve II7-

Since EN > n|le)||7 + gSollel |12, + At (nv||Vel (|3 4+ ghkmin[| Vel [|2), by the assumptions
that Parameters < 1, we have EY — ACY > 0. To complete the proof, notice that by
triangle inequality, the errors between the true solutions of the Stokes-Darcy equations and

the solutions of (BEspPLIT1-SD) satisfy

™ —wi | s7p < 1(Po = D |l + leN 15/

for w = u, ¢. By the bounds for the projection errors given in (2.1), we have
(P, — Dw™ |/, < Ch2||w™]|t/p. Therefore, the errors in the (BESPLIT1-SD) method are

O(At(h + 1) + h?), implying this method first-order convergent in time.

2.1.2 Convergence of (BEspLIT2-SD)
We recall the stability result for the (BESpLIT2-SD) method proven in [48].
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Theorem 12 (Stability of (BESPLIT2-SD)). Suppose that the problem parameters satisfy

either

Parameters < 1,

or At satisfies
At < maX{ATl, ATQ, AT5, ATG}

Then (BESPLIT2-SD) is uniformly stable in time and in Sy. In particular, there exists a > 0

such that for N > 0,

% (nHuh Hf + gSollon | )

N-1
E+1_ n |2
—i—AtZ{%gSO‘ Ph’ —h p+a (Uffluiﬂ)—l—aap( Z—H? ];LH)}
k=0
N-1
S%(”H“h”f‘f‘950||<150|! —l—AtZ{ fhHL ’f+1) +g(fk+1 k+1)p}_
k=0
Proof. See [48]. -

Next, we prove first-order in time convergence of the method when the time-step size,
At, satisfies At < ATs. Proof of convergence for the other possible scenarios are similar in

procedure and omitted due to length.

Theorem 13 (Convergence of (BESPLIT2-SD)). Suppose the following time-step condition
holds

hkmin
At < (Cay Ca,)29nC (iny) (2.21)

Then the errors between the true solutions to the Stokes-Darcy problem (1.16) and the solu-
tions to the (BESPLIT2-SD) method satisfy O(At(h + 1) + h?).

Proof. Subtract (BESPLIT2-SD) from (2.2). This yields

ekl _gk k+1 _ek
n( “AT u’vh> +gSo( At ¢> +ap(ef™ vn) + ap(eh™ )
P

+CI(Uh7 el;;r ) - CI( Eus wh) - b<Uh7 l;+1)
P, k+17p k P, k:+1_P k
=n ( b At b ’/Uh)f + gSO ( hé At b2 7¢h>p

—cr(vp, Pad®™ — Pud®) — n(ui ™t on) p — gSo(d8 T 1bn) s

(2.22)
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where, as before, ¥ = P,wk —w? for w = u, ¢. In the above equation we added c;(P,u”, ¢y)
to both sides to make the term cz(e 1) appear on the left. Choose v, = 2Atef+t 4y, =
2Atel ™!, Then (2.22) becomes

(nlles ™17 + gSolles ™ 1I5) — (nlleillF + gSolleg?)
nHek—H u||f+gSO||ek+1 —e¢||2—|—2Ata ( k+1 k+1)+2Atap( k+1 el;—l—l)
+2Ater(ef ™ —ef bt = 2n (Pt — Pyuf — Atuft! ek“)f

r U

(2.23)

+29Sy (Ppg* — Po™ — At e ’;+1)p+2Ath(Phu — Py, eft).

Define the new energy and diffusive terms as follows:

E* = legllF + gSolleg]ly,
D" = || Vei3 + gkmmHV‘f’;HH;-

By coercivity, ag(el, ef)+a,(eh, ef) > D*. Therefore, after incorporating the above notation,

(2.23) becomes the following inequality:

EMY — B 2AtDM - onf|eptt — el |17 + gSollelt — ebll2 4+ 2Ate (eft — ef, bt

? ’LL

< 2n (Pt — Pyu — Atus ™ e ™) 4 2980 (Pugt™ — Pug® — Atgf e k+1)p (2.24)

+2Atcr (P — Puu® egﬂ).

Consider the coupling term on the right-hand side. Using the Cauchy-Schwarz, Trace

(Lemma 1), and Young inequalities we find

2Ater (P — Pt €Z+1)

< 2AtngCQfCQp||Phuk+1 I€||1/2||V(Phu’“rl Py )||1/2|| §+1|I§/2||Ve’;+l||§/2
At(CQfCQp)QﬂJQgCP’fCP’p

kmin

A kmin
HV(Ph’U, k+1 —Phuk)||?c+th

|Ve§“”§.

Bound the coupling term on the left-hand side using Cauchy-Schwarz, Trace (Lemma 1),

Inverse (Lemma 5), and Young inequalities to obtain

At(Cq , C Clino
DAty (ebH — ek ektty < 2RO ks o2 4 Aggh [ Vb2
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Next, bound the consistency terms on the right-hand side.

2n (PhukJrl P — Atuf ™ k“) < || PoulF Tt — Pk — At 4]l e5 T

? ’I.L

nCPf

< Atnv||VepH|F + 5

| Py — P — Atuf“”?

2980 (Pagt™! — Pug® — At ™) < gSo|| Pudt ! — Pug — Atgf ||k,

S2
< St |7kt 2 4 SE ) B g4 P gt — Atgl 2

Subsume terms on the left-hand side and sum (2.24) from k = 0 to N — 1. After using the

consistency error bounds from Lemmas 6 and 7, the equation becomes

t(Cq,C Clino
E0—|— Z{( ﬂf }Ziil: 9~( )) Heszrl k”f +gS0H€k+1 _ 61;”123}

(2.25)
< OO{h4(||ut||%2(0,T;L2(Qf)) + ||¢t||%2(o,T;L2(Q,,)))
A8 (lunlZ20 a2y + 166l 220, T5 L3R,)) + (02 + 1) [Vl 3o sz )}
First-order convergence in time of (BEspLIT2-SD) follows since (2.21) implies that
(1 . At(CinZp)AQngC(inv)> 2 0. u

2.2 CONVERGENCE OF CRANK-NICOLSON (CN) SPLITTING
METHOD FOR STOKES-DARCY

In this section we prove convergence rates for the Crank-Nicolson (CN) Splitting Method

applied to the Stokes-Darcy system. The definition of the method follows.

Definition 14. (Crank Nicolson Splitting Method for Stokes-Darcy (CNspPLIT-SD))

Given (@f, B}, of), (k. 7, &) in (X}, Q4 X0, find (@ 55 opth), (gt o, o) in
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(XJ’},Q’},X;}) satisfying for all (vn, qn, ) in (X}L,Q’},X;}):
~k+1  ~ ~k+1
l.m <Uh+At % ’Uh> + ay ( e h> —b <vh7 —+2+ph>

+ cr(vp, ¢IZ) = n(f**12 Uh)s, (CNSPLITA-SD)

b( k+1th) Oa
2.9 (B hun) +a, () - @) = g(7 2 )

as well as

LgSo (Hrhoin) +a, (B un) - erlaf ) = g% )

At

k+1 ~Fk

~k+1
2.1 (“’L o vh> +ay <uk+12+"k,vh> —b <?Jh7 p—’L+2+pﬁ>
f (CNspLITB-SD)

+ CI(Uha éi—i_l) = n(fk+1/27 Uh)fa

b( k+17 Qh) 0.

k1
Then (uf™, pith ¢F ) is defined by wi™ = +wh , for w =u,p, and ¢

To implement this method, first compute (@, pi+) ¢F+1) in parallel by completing the

first steps in the (CNSPLITA-SD) and (CNspPLITB-SD) methods. Then, in parallel, compute
EHL phtl ghtl)

(aptt, phtt gb’fl“) in the second steps of the method. Finally, compute (u; ", p}
Rkl
averaging the two solutions, w’g“ = % for w = u, p, and ¢.

Results of the stability analysis performed in [48] are summarized below for reference.
Theorem 15 (Stability of CNSpPLIT-SD). Suppose At satisfies

At < Va5Sh
VnCa; CapClinv)

Then both (CNSPLITA-SD) and (CNSPLITB-SD) are stable uniformly in time over long-time
intervals. That is, there exists a > 0 such that for every N > 1

N—
o [l 15 + gSoll N 2] + 81 D |ap @t + 7k, T + @) + ap (B + OF, 3 + )|

,_.

F)
k=0
< nl[ag)13 + gSoll b2 — Ates (@, 85)

N-1
+Atz [n k+1/2’/\k+1 +Uh) +g(fllf+1/2 Tht1 +¢h) }
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for (CNspLITA-SD) and

N—
o (@ 13 + gSoll B 2] + 85 D |ap @+ + @k, @ + k) + ap(85 + of, 3 + o)
k=0

,_.

< nl|ag|l7 + gSollnll; — Ater(iy, &)
N-1
+Atz [n k+1/2, T ) +9(f;]f+1/2 Tk+1 +¢h) } 7

for (CNspLITB-SD).

Proof. See [48]. O

To study the convergence of the CNSPLIT-SD method, first average the methods
(CNspLITA-SD) and (CNspLITB-SD). This produces

K1k B, k41
() o (550 552
k+1/2
+35 CI<Uh7¢h+¢k+1) (f - /7 ) f

b(up™t, qn) = 0, (CNspLIT-SD)
k+1 k+1
950 <¢ (bh ,¢ ) + ap <¢ +¢h7¢h) 1 ( ~k+1 + uhadjh)

= g(fF12 ).

Begin by computing the consistency errors in the method. To determine the consistency
errors, plug the true solutions of the Stokes-Darcy problem into the (CNspLIT-SD) method
above. The coupling terms exactly cancel, leaving the following consistency errors in the

fluid and porous media domains:

k+1 k
N Y S wk Tk I+ k+1/2
Tf_( At - t2 tvh +n 2 _f » Un )
f

k k+1_ 4k k+1+¢ k+1+fk k
Tp :gSO <¢ At(b - tvwh + . D) E _fp+1/27wh )
p

p
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By Lemma 6,
N—1

ACY T Nefl3 < Cat (llulEaoirizzgy + 10Dl )
k=0

N-1

At Z 2 < CAt? <||¢tt||L2(0TL2 )y T ||(fp)tt||L2(0TL2(Q ))) ;

(2.26)

implying that the consistency error is second-order in time.
Apply the projection property (SD-PROJ) to the variational form, (FEM-SD), with the

true solutions and average. This yields

k: k
n( +1+ut Uh)f + 950 <¢t+1+¢t - ) tay (ph(uk+1+u ) Uh) ta, (Ph(w;lw)’%)

k+1 ., 4k Wk, pht1
+c; (v, M) _ CI(Ph(—+ Uy) — b(uy, —+P)) (2.27)

fk+1+f k+1
= (S s+ (BT ),

which is used in the following proof of convergence for the (CNSPLITA-SD) and
(CNspLITB-SD) methods.

Theorem 16 (Convergence of (CNSPLITA-SD) and (CNspPLITB-SD)). Assume that the fol-

lowing time-step condition holds:

A \V2So0h )
t< VnCa ; CapCiny)

Then the errors in (CNSPLITA-SD) and (CNSPLITB-SD) are O(h? + At? + At(h? + 1)).

Proof. We present the proof for (CNSPLITA-SD) only, as the proof for (CNsSpLITB-SD) is
similar. Add the projections of the discrete time derivatives for v and ¢ to both sides of
(2.27) and subtract (CNSPLITA-SD). Assume v, € V", so that we omit the term b(.,.). This

produces

Skl k ekl _gk k41, ok ekt ok
e —e ¢ ¢ e +e @ b
n("At“,Uh>f+950< Ao Un |t ap(Ft on) + (<52, )
P

—I)(uktl—yk uF ok
+CI ,Uhn/ék —Cr /c?'lgule”l/}h =n ((Ph I ) — - t7vh>
(v, 89) el ) Al 2 f (2.28)

_ k+1_ 1k k+1 k

—5cr(vn, Pu(¢" = 0)) — 3er(Pa(u™h — u?), ),
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ko k _ ok
where €} = Pu” — uy.

Choose v, = At(eF! + %), and oy, = At(A’“Jrl +¢%). After simplifying, (2.28) becomes

(nlles 17 + gSolleg™ 1) — (nllenl} + gSollegIiy)

+A [ap(@ + e &t -8 +ap (et e, et +eg)]

+At [cl(eu, €¢>> — cI(A"“Jrl Ak“)}

=n (P — D™ —ub), e +ey), (2.29)
+9S0 (P, = D)(™" = ¢*), &M + Ak)p
FAL(TF et 8+ At(ry, @ ),

_%Cl(é\ﬁ+l +/€\ﬁaph(¢k+1 _ ¢k>) _ %C}(Ph(uk+l _ uk) ~k+1 + e¢)

Define the energy, diffusive, and coupled terms as follows. The inequality in the diffusive

term follows by the coercivity of ay and a,.

E* = nlfe| + gSollet) 2
DM = LAt ||V (@5 + )17 + ghmin |V (@5 +E5)I12

U’U

< AL [ap (@ + 28 @ 2 +a (e et + )]

Ch = ci(,€5)

After incorporating the above notation, (2.29) becomes the following inequality:
Ik Ak ok Ak At Dk
(B! — AtCHY) — (EF — AtC*) + §LDFH/2
:n((Ph—I)(u'ngl ub) — At (M)”\ZJrl_'_e >
f
g ((B— D0 =95 — ae (S5 ) @ va) - (230)

—I—At(lef, Aﬁ“ +e ) + At(Tk ekt 4 e¢)

_%Cl(gﬁ—i_l "’/G\Z,Ph((ﬁk—i-l _ ¢k>) _ %C](Ph(uk—i_l _ uk) —k+1 + €¢)

Next bound the consistency error terms on the right-hand side by the Poincaré (Lemma 2),
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and Young’s inequalities:

n (P = D(u™ =), ey™ +ey) , < nCryll(Py — 1)(1/“+1 — )1V (en™ +en)lls
|| (P — DT — )2,

950 (P = 1)(@" = %), 5™ + €f), < gSoll (P = D@ = 6 IV (e + €Dl
3953C3%
< S | V(ef™ + e)ll; + mm I (Pa = (8" = a5,

At(rf,en™ +en)p < SgEIVIer™ +en)llf + 3atlif 17,

2nv

|V( k+1 +€§,)HIQ,+ 293]32”

< SV +en)llf +

At(Tk k+1+€¢) Atgkmm | k||2

Thus, after subsuming terms into the right-hand side of (2.30), and absorbing the constants

into one constant, Cy > 0, (2.30) becomes

(Ekﬂ _ At@kﬂ) _ (Ek o At@k) + gl’jkﬂm
< Co{z; (1P = D™ =)+ 1(Pr = D¢ = ") 7) + At (75117 + I7517) (2:31)

—Ater (@ 488 Py (oM — ¢F)) — Ateg(Py(uFtt — uk) errt 4 e¢)}

Sum (2.31) from k =0to k=N — 1:

=2

N AICN AN DR < B A4CP
0

N-1
+C0 ) ARl (Br = D = )7 + 251 (P — D@ = M)
k=0

£
Il

—Ate (@ + 28, Pu(¢" — o)) — Aty (Py(uft — ), e +25) + At ([I7F1F + [I75112) }-

By the projection error bounds in Lemma 7 and consistency error bounds, (2.26), we have

2

N AtCVN 4 4t 13’“*1/2 < E° — AtC°

[e=]

+ At4(”uttH%Q(O,T;LQ(Qf))

i

+Cu{* (a3 0irszaiapy + IulEa0 a0
(7 ) ( f)) (7 ) ( P)) (232)

+||(ff)tt”i?(o,np(ﬂf)) + ||¢tt||%2(O,T;L2(Qp)) + H(fp)ttH%?(O,T;LQ(Qp)))}

?

(Ates (@ 42, Pu(¢! — 7)) 4 Atep(Py(u™ —uF), e +€)) .
0

i
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Consider the remaining coupling term on the right-hand side. Using the Cauchy-Schwarz,
Trace (Lemma 1), Poincaré (Lemma 2), and Young inequalities, as well as implementing the

bound on ||V (P, (w**! — w*))|| from Lemma 7 we find

N—-1
Z% Py(¢F — ¢")
k=0
- Atny N AR PN 3At”920f22fcf2?pcf°f Pp k41 E\y (12
< SEelViEe ™ el + 5 [V (Pr(@™ = ")I5
k=0
N—-1
< A NG 4 ED)[|F + CAL (R +1).
k=0

Similarly,

N-1
Z AtC[ k+1 _ uk) k+1 + €¢)
k=0

=z

— 3Atn20% C% Cp ;Cp,
< (Atgkmm |V( k41 +62)H12;+ Qékr,i: b.f PPHV<Ph(uk+1 _uk))H?‘>
k=0
N—l
< Pt V(e S el + CA (R + 1)||Vut||%2(0,T;L2(Qf)'
k=0

Using the above bounds implies that the errors between the projections of the true

solutions of Stokes-Darcy and the solutions to the method (CNSPLITA-SD) obey

12X 157 = O + AP + At(h + 1)),

for w = u, ¢ provided EN — AtCY > 0. To show EN — AtCY > 0 holds, apply the Cauchy-
Schwarz, Trace (Lemma 1), Inverse (Lemma 5) and Young’s inequality to CV to obtain the

following bound:

A
AtCY < 225 (nCo, Ca, Clan) 20 |13 + 216712,

Hence, EN — AtCN > 0 since by assumption At satisfies

v2Soh
At < \/gnCQfCQpC(inv) )
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By triangle inequality, the errors between the true solutions of Stokes-Darcy and the

solutions of (CNSPLITA-SD) obey
1™ = will 7o < I = Pa)w™ [l + llew]l s/

Therefore, by the bounds for the projection errors (2.1),||(I — Py)w™| s/, < Ch*||w™]|;/, for
w = u, ¢, this implies that the errors of the (CNSPLITA-SD) method satisfy
O(h* + At? + At(h +1)). O

Remark 17 ((On the Convergence Rate of (CNSPLIT-SD))). The convergence rate proven
in Theorem 16 is not second-order in time, as is normally expected with the Crank-Nicolson
discretization. This is related to the explicit treatment of the coupling term in the first step.
While the coupling terms in the consistency errors of (CNSPLITA-SD) and (CNSpLITB-SD)
cancel due to exact opposite signs, the coupling terms on the right-hand side in the proof of

convergence during step (2.32), given by

—cr(@t + ek, Pu(¢" — @) — er(Pu(u — uF), @5 + %) for (CNSPLITA-SD), and

u

+er(eytt e, Pu(oM = ¢)) + er(Pu(u* — ub), et + &) for (CNsPLITB-SD)
do not cancel. In fact, when averaged, they simplify to

cr((@th —ap™) + (af — ap), Pu(o"" + ¢%))

+01(Ph(uk+1 + uk), (~]Z+1 _ ’\lch+1) + (~1;L+1 _ AI;;“))-

Averaging the convergence rates of (CNSPLITA-SD) and (CNSPLITB-SD) to obtain a rate for
(CNspLIT-SD) implies at least second-order convergence in space and first-order in time.
Numerical experiments for (CNSPLIT-SD), however, showed second-order convergence in
time and space, suggesting that the proven convergence rate is not optimal. An optimal proof

of second-order in time convergence remains an open problem.
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2.3 NUMERICAL EXPERIMENTS

Numerical experiments verify the predicted rates of convergence of (BEspLIT1-SD),

(BEspLIT2-SD), and (CNspLIT-SD). All tests use the same domain and exact solutions
chosen to satisfy the interface conditions and introduced by Mu and Zhu in [56]. Calculations
were made using FreeFem++ software [36]. The code for the experiments is included in the
appendix. We use Taylor-Hood elements (P2-P1) for the Stokes problem, thereby satisfying
the (LBB") condition. For the Darcy problem, we use piecewise quadratics (P2). The initial

and forcing terms are chosen to correspond with the exact solutions given below.
Qr=(0,1) x (1,2), Q,=(0,1) x (0,1), I={(z,1):2€(0,1)}

u(z,y,t) = <(x2(y—1) + ) cos(t), (2 (1—19)*+2 —msin(nz)) cos(t) |,
3 (TEST)
p(z,y,t) = (2 — wsin(mwz)) s1n(2y) cos(t),

o(z,y,t) = (2 — wsin(rz)) (1 — y — cos(my)) cos(t).

All parameters, n, p, g, apy, p, So, and k,,;, are set to one unless otherwise indicated.

2.3.1 Convergence Rates

To test the predicted rates of convergence for the (BEspLIT1-SD), (BEspLIT2-SD), and
(CNspLIT-SD) methods, we set h = At and enforce inhomogeneous Dirichlet boundary
conditions: up —u on 9Qy \ I and ¢, = ¢ on 99Q, \ I. With Ty = 1.0, we measure
errors (EF = w* — w} for w = u, p,$) in the norm L>(0, Tima; L*(Qy/p)) for u,p, ¢ in each
method. As indicated in previous sections, analysis dictates that the (BESPLIT-SD) methods
are first-order convergent in time. The experiments for (CNsSPLIT-SD) imply second-order

convergence in both time and space. See tables 2.1-2.3 for experiment results.

2.3.2 Stability Experiments

We include a few tests on the stability of the studied methods when faced with small pa-

rameters. While the stability properties of these methods were studied in [48] and are not
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the focus of this research, understanding the behavior of these splitting methods in regards
to small values of k,,;, and Sy provides motivation for the methods developed and studied
in the subsequent chapters of this dissertation. To test the stability of the methods we set
the forcing terms equal to zero and enforce homogeneous Dirichlet boundary conditions on
the external boundaries. All parameters are set to one, with the exception of k,,;, and Sy.
We calculate the final system energy, E(N) = nlluy |3 + gSol|¢} |2 over the time interval
[0,10]. In the absence of external forcing terms and under homogeneous Dirichlet boundary
conditions, the solution decays to zero as t — oo when the system is stable. We test the
stability of the method in four scenarios: (1) small Sy and kpin (So = kmin = 1079), (2)
small ki (So = 1 and ki = 107°), (3) small Sy (Sp = 107% and ki, = 1), and (4)

So = kmin = 1. In all graphs, please note the logarithmic scale.

The stability behavior of the two (BESPLIT) methods are very similar, see Figures 2.1
and 2.2. As predicted by the CFL-type stability conditions outlined in Section 2.1, these
splitting methods perform well for either small values of hydraulic conductivity, k,,;,, or
small of specific storage, Sy. However, the methods become highly unstable given both small
kmin and Sp. As for (CNspPLIT-SD), the method is stable for small k,,;, (with moderate Sp)

and unstable for small Sy, as seen in Figure 2.3.

Table 2.1: Convergence Rates for (BESpLIT1-SD)

h=At| & rate 1€ ] rate 1€l rate
1/10 1.657e-3 2.995e-2 1.161e-3
1/20 8.405e-4 | 0.9798 | 1.521e-2 | 0.9774 | 5.409e-4 | 1.102
1/40 4.239e-4 | 0.9875 | 7.675e-3 | 0.9871 | 2.706e-4 | 0.9994
1/80 2.129e-4 | 0.9939 | 3.855e-3 | 0.9933 | 1.356e-4 | 0.9962
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2.4 CONCLUSIONS FOR SPLITTING METHODS FOR STOKES-DARCY

Splitting methods for the Stokes-Darcy problem have several advantages. First, they uncou-
ple the equations allowing one to utilize optimize solvers for each sub-problem. Consider the
(BEspLIT1-SD) and (BESpPLIT2-SD) methods. If we simplify the CFL-type conditions for

stability of these methods in terms of At, h, k,,;, and Sy, the conditions are equivalent to

At S Cmax{k:mm, Sokmin, Soh} or kmzn > 1, (fOI' (BESPLITl—SD))

At < Cmax{kmin, Sokmin, kminh} or /kmin > 1. (for (BEspLIT2-SD))

As suggested by the above conditions, and evidenced in numerical experiments, these
methods perform well given one small parameter: either k,,; or S;. However, neither
method is stable when both of these parameters are small, a possibility in groundwater-
surface water flow, especially when involving confined aquifers. Also, the method is only
first-order convergent in time, and the focus of the research is higher-order, strongly stable

methods for this coupled flow problem.

The (CNspPLIT-SD) method, comprised of (CNSPLITA-SD) and (CNspLITB-SD), is an

interesting splitting method that consists of two methods solved sequentially in parallel, and

Table 2.2: Convergence Rates for (BESpLIT2-SD)

h=At| |&. rate 1€ ] rate 1Es]| rate

1/10 9.213e-4 2.743e-2 4.834e-3
1/20 4.391e-4 | 1.069 | 1.336e-2 | 1.038 | 2.447e-3 | 0.9820
1/40 2.195e-4 | 0.9999 | 6.645e-3 | 1.007 | 1.233e-3 | 0.9891
1/80 1.100e-4 | 0.9971 | 3.319e-3 | 1.001 | 6.188e-4 | 0.9945
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Table 2.3: Convergence Rates for (CNspLIT-SD)

h=At| &l | rate | & | rate | [|Ey]l | rate
1/10 3.894e-4 4.211e-2 1.521e-3
1/20 5.035e-5 | 2.95 | 1.020e-2 | 2.046 | 3.654e-4 | 2.057
1/40 7.713e-6 | 2.707 | 2.530e-3 | 2.011 | 9.080e-5 | 2.009
1/80 1.564e-6 | 2.302 | 6.253e-4 | 2.017 | 2.266e-5 | 2.003

then averaged. However, simplified in terms of At h, ki, and Sy, the CFL-type time-step

condition for stability becomes

At < C+/Soh,

which is very restrictive given small values of specific storage, Sy. Therefore, while numerical
tests for method imply higher-order convergence, its stability properties make the method
impractical when faced with physical situations that involve small values of specific storage.

In conclusion, while splitting methods exhibit many desirable properties, none of these
methods satisfy the goals for this research: higher-order convergent numerical methods that
exhibit stability in a wide variety of physical situations. In the next several chapters, we

develop, analyze, and test a method that satisfies both of these criteria.
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Figure 2.1: Final System Energy (E(N)) versus time-step size (At) for (BEspLIT1-SD). The

minimum is truncated at 1.0E-100 and the maximum at 1.0E4100.
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Figure 2.2: Final System Energy (E(N)) versus time-step size (At) for (BEspLIT2-SD). The

minimum is truncated at 1.0E-100 and the maximum at 1.0E-+100.
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Figure 2.3: Final System Energy (F(N)) versus time-step size (At) for (CNspLIT-SD). The

minimum is truncated at 1.0E-10 and the maximum at 1.0E+10.
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3.0 CRANK-NICOLSON LEAPFROG (CNLF) METHOD FOR
STOKES-DARCY (CNLF-SD)

It remains to develop a higher-order convergent method for the groundwater-surface water
flow problem that exhibits stable behavior given small problem parameters. In this chapter,
we consider the stability and convergence properties of the Crank-Nicolson Leapfrog (CNLF)
time discretization applied to the (FEM-SD) formulation.

Recall that, after applying the Finite Element Method to the Stokes-Darcy problem, the

system further reduces to a coupled evolution equation:

u+ Apu+ Co = fy,
¢+ App — Cu = fp,

(3.1)

where Ay, A, are SPD and C = CT. The Crank-Nicolson Leapfrog (CNLF) time discretiza-
tion is an implicit-explicit (IMEX) method that successfully uncouples these equations by
treating the coupling term explicitly with Leapfrog. This allows one to solve the two equa-
tions separately, in parallel, at each time step, making it a parallel partitioned method. The
(CNLF) method applied to general evolution equations of the form (3.1) was first presented
by Layton and Trenchea in [49]. In [49], they proved stability for general coupled evolu-
tion equations under the necessary and sufficient time-step condition, At\/m <1,

which is related to the stability theory from the Leapfrog method.

k+1_,k—1 k14 g k=1 k _ rk
- QA;L +Af<u N >+C¢ _ffa

¢k+1_¢k71 ¢k+1+¢k71 k . k
2A¢ +AP< 2 )_CU _fp'

(CNLF)

We now consider this time discretization applied specifically to the evolutionary Stokes-

Darcy problem, with special attention to the affects of the potentially small parameters:
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So and k.. When applied to the semi-discrete, evolutionary Stokes-Darcy system in
(FEM-SD), (CNLF-SD) uncouples the Stokes-Darcy equations by lagging the coupling terms,
cr(.,.), at the previous time step, similar to (CNLF). Hence, each time step only requires
a separate fluid flow and porous media flow solve performed in parallel, thus minimizing
computational cost and time. The use of Crank-Nicolson on the diffusive terms, af(.,.) and
ay(.,.), adds additional numerical dissipation into the system. However, as expected by the
stability condition for (CNLF') applied to coupled evolution equations, (CNLF-SD) is only
conditionally long-time stable, and the CFL-type condition sufficient for stability, (Atcnpr),
derived shortly herein, is sensitive to small values of specific storage, Sy.

On the other hand, the method is second-order convergent in time and space, giving it an
added advantage over other first-order methods studied in [56, 47] and the splitting methods
presented in Chapter 2. This chapter presents an analysis of the stability and convergence
properties of the (CNLF-SD) method followed by numerical experiments.

Let t* := kAt and w* := w(x,t*) for any function w(x,t). Let N € N and denote by
T := NAt. The (CNLF-SD) algorithm follows below.

Definition 18. (Crank-Nicolson Leapfrog Method for Stokes-Darcy (CNLEF-SD))
Given (ui,p’,ﬁ,(bi) and( Lpi=t gh 1) mn (X?,Q?»X;}f); Jind
( k“,pffl, ’ffl) m (X}L,Qf,XZ?) satisfying for all (v, qn, ) in (X}L,Q?,XI?) :

k+1 k—1 k+1 k—1 k+1 k—1
u —u “+u +p
n<h2Ath 7vh>f+af( 5 h>_b<vh7 2 )

+ cr(vn, @) = n(f?’ EOR (CNLF-SD)

b ( k-i-l’ qh) O
k+1_¢k 1 ¢k+1+¢
950 ( T SAr @Zjh) + ap <—h @Z)h) - CI(“m@/Jh) = g(fpa¢h)
Because (CNLF-SD) is a three-level method, it requires two terms to initiate. The terms
(ud, p%, #Y) arise from the initial conditions of the problem. To obtain (uj,p}, ¢7) one must

use another numerical method. Errors in this first step will affect the overall convergence

rate of the method.

Energy stability analysis of the method requires special treatment of the coupling terms,

presented in Lemma 19 below.
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Lemma 19. (Coupling Inequalities for (CNLF-SD)) For all v, € X}‘ and 1y, € X;}, with
C= CQfOQPC(inU)g we have

1 (vm, ) < %ChanvhH?c + %cnymu;, (CNLF Coupling 1)
cr(vp, ) < %Ch_2n2||vh||?c + %CHIMLHZ, (CNLF Coupling 2)
crom, ) < 5CH 2o} + %CnQHwhH;, (CNLF Coupling 3)
cr (Vn, ¥n) < %Ch‘lnllvhllfe + %Ch‘lnllzbhlli, (CNLF Coupling 4)
cr (vp, p) < %Ch1n2||vh||?c + %Chlﬂz/}h”f,, (CNLF Coupling 5)
o1 (o tn) < %Ch_lethc + %Ch‘anHwth. (CNLF Coupling 6)

Proof. Use the Cauchy-Schwarz, Lemma 1 (Trace), Lemma 5 (Inverse), and Young inequali-
ties in that order, picking up the corresponding constants which depend on the geometry of

the spaces (2 or

cr(Vn, ¥n) = n9/¢hvh'ﬁfd8 < ng/lbhvh'ﬁfds
I I

< ngl[vnl sllvnlz
< Ca, Congll0 3 1991 lonll 19 enll
< OQfCQpC(mv)h_lng||¢h||p||Uh||f
< %Cﬂfcﬂﬁ(mv)h_zngllvhch + %Cﬂfcﬂpcanv)”gWhHi-
This proves (CNLF Coupling 1). (CNLF Coupling 2)-(CNLF Coupling 3) follow similarly

with different treatment of the porosity parameter, n. Replace the last line for the proof of

(CNLF Coupling 1) with
1 _ 1 _
cr (Un, ¥n) < §CQfC'QpC(mv)h 'nglloall7 + §C'QfCQpC(mu)h ngllenll2,

to obtain (CNLF Coupling 4). (CNLF Coupling 5)-(CNLF Coupling 6) follow likewise, with

different treatment of the porosity parameter, n. ]
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3.1 STABILITY OF CNLF-SD

Energy stability analysis of (CNLF-SD) leads to a CFL-type time-step condition. Under
this condition, approximate solutions to the Stokes-Darcy coupled problem are uniform in

time stable and convergent.

Theorem 20. (Stability for (CNLF-SD) Method) Suppose At satisfies

At < ™' max { min {h2, gSOn_l} , min {n_1h2, gSO} , min {nh2, gSOn_2}

(Atenir)
min {h, gSon’lh} , min {n’lh, gSoh} , min {nh, gSon’Qh} +,
where C = Cq,Cq,Cliny)g. Then there exist o, f > 0 such that, for N =1,2,3,...,
(CNLF-SD) is stable over long-time intervals:
allluy 17+ lluy ~HI7) + BAlex 15 + lley —117)
< n([[uplF + llunll7) + gSo(llenlly + Ionll7) + 2A¢ (cr(up, ¢p) — cr(up, é1)) (3.2)
N-1
+ 288 > () I + gl IR}
k=1
Proof. Choose v, = k“ + u’,ﬁ Uand ¢y, = k“ + <b . Then the second equation of

(CNLF-SD) drops out and the first and third equations of the method added together become

iz (nlle IR + 9S82 — ™2 — gSoll gl 2)

k+1
k+1+uh )+ap(+¢h k+1+¢ )

k+1
A

+ CLf(
+ CI(U];LH + ulfi—l, ¢IZ) (um AR ¢ )

= n(ff ot +up g+ (L 0+ é Ty

Consider the right-hand-side of the above equation. Use the Cauchy-Schwarz and Young

inequalities to obtain the following bound

n(ff ot +ul e+ () o + o,
< WA IV (™ + w4 gl 21V (@5 + 0D

< 5IV ™+ ay DI+ ) IR+ LIV (@ + 35D+ 9(Kmin) T 12,
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This bound, along with coercivity of a(.,.) and a,(.,.), gives
AT (n||U'Z+1||?« +9Sollon ™ = nlluh ™ 17 = 9Sollen ' I15) + IV (uy ™ + w13
V(e 4 o Dllp + er(uy ™ +up™ op) — er(uy, 63 + 6

< (@) SFIZ A+ 9min) 12,

mzn

Consider the coupling terms cy(uf™ +uf ™, ¢F) — cr(uf, o5 + @5 ~1). Define
O3 = er(u ™ 0f) — exluf, 037).
The coupling terms equal Ck+3 — C*=2. Define the energy terms:
EM2 = nla (7 + nllui |7 + gSollor™ Il + gSollonlls-

Using this notation and multiplying by 2At produces

EFT12 L o AtCOR 2 _ pR-1/2 _ g Apch1/2
V(o™ + ok DI} (3-3)

<2AE{n() N FEIE s+ 9Kmin) AP, )

FAL{Z |V (uptt 4 g ||F 4 L

Sum the above inequality from £k =1 to N — 1.

N—-1
EN-2 4 oAtCON- 1/2+At2{””||v (uf™ +uf )| 4 i
k=1

V(o™ + eI}

N-1
<288 3" {n@) AR 1y + 9lhin) S, ) + BV + 280012

The above inequality implies the stability of the CNLF-method provided that
EN-12 31 9AtCN=1/2 > (0. By Lemma 19,

B 1 B 1 _
OV = ——Ch 7 (a7 + ™ 113) = 5Cn (1611 + llen™117)
B 1 B 1 _
OV = —oCh ™ n (a7 + Nl = 13) = 5€h~ (I I + 6y 117) -
1 1 _
—5Ch=%n® (e 113 + = 17) = 5€ (16l + llen ™ 115) -

1, - .
SChT(llow ll5 + llen 17)

CN—1/2

v

1
OV > —oeh™n? (Jluy I + luy=17) —
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~ 1 3 1 _
CN2 > —Ch™2 (117 + Ny~ 13) = 56n* (I 15+ llon117)

B 1 _ 1, _
CNT2 > —5Ch (I 17+l HF) = R~ (llew 1 + Nl 115) -
Apply these bounds separately to the energy term EN~1/2 4 2AtCV~1/2 to find

ENTY2 L oAtCNY2 > (n — AtCnh_Q)(HuhNH? + Huévflﬂi)
+ (950 — AtC)n(l|oy |15 + llen " 1I5),
EN-YV2 L oAtON2 > (i — AtCh ) ([Jup 17 4 llupy —1F)
+ (950 — AtCh™ n)([loy 17 + llon " 112),
ENTV2 4 2AtCN T2 > (0 — AChT2 ) (|Jup |7+ llup —II7)
+ (950 = AC) (1o |12 + llon ~HII2),
EN-VZ L oAtCN2 > (n — AtCh_an)(HuflVch + ||uhN_1||fe)
+(9So — AtCh™H) ([l |12 + len 112,
ENT2 4 2OV > (0 — ACHTE) (flup (1 + w13
+(gSo — AtCn®)([loy [l + lln ' 12),
ENTY2 4 2AtCN T2 > (0 = ACKT ) (lup 17+ lun 13

+ (980 — ACh™ ) (103 15 + llon " I15).

Therefore EVN=1/2 4+ 2AtCN=1/2 > ( provided that at least one of the inequalities above has
positive coefficients on the right-hand side. Hence, we must have
At < €' max { min {hQ, gSOn_l} , min {n_th, gSO} , min {nhQ, gSOn_Q}

min {h, gSgn_lh} , min {n_lh, gSOh} , min {nh, gSOn_Qh} }.

This time-step condition, (Atcnrr), is independent of k,,;, but sensitive to small values
So. In fact, if h = 1/10, n = 0.10, and Sy = 107%, then the time-step restriction implies
(assuming C is O(1)) that one must take At < 1072 for stability.
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3.1.1 Control over the Stable and Unstable Modes of CNLF-SD

The use of the Leapfrog time discretization produces the numerical phenomenon of stable
and unstable modes. These modes have no physical meaning with respect to the actual fluid-
porous media flow. Nevertheless, understanding the behavior of these modes is crucial for
predicting the overall behavior of solutions to (CNLF-SD) since accumulation of numerical
noise in the unstable mode has been known to correspond to energy blow-up in finite time
(30, 31]. In geophysics, techniques such as time-filtering [40, 5, 71, 72] are often applied
to counteract growth in the unstable mode that leads to system instability. However, we
show that provided satisfaction of the CFL-type condition, (Atcnpr), (3.2) controls both
the stable and unstable modes.

k+1 k—1

We examine stability of the stable and unstable modes, represented by w, " +w; "~ and

wytt — wi! for w = u, ¢ respectively, inherently present in the (CNLF-SD) algorithm. We
show that provided (Atcnpr) is satisfied, (CNLF-SD) effectively damps both the stable and
unstable modes. This implies that spurious oscillations or growth in the unstable mode may
be attributed to accumulation of round-off error or to an incorrect implementation of the
method, such as a violation of (Atcnpr). Further, control over modes of the Stokes velocity
and Darcy pressure approximations leads to a stability estimate for the averages of the Stokes
pressure.

To prove stability of the modes, we will utilize of the following corollary to Theorem 20

regarding the stable modes of the Stokes velocity and Darcy pressure.

Corollary 21. (Control of the Stable Mode of (CNLF-SD)) Suppose At satisfies (Atenir).
Then the following inequality for the stable modes holds.

N-—1
ALY {2V (uf ™+ ub ™) (2 + L |V (g5 + ob ) |12}
k=1 (3 4)

N—-1
<208 37 {n () I g+ i) S} + B2 4 280012
k=1

Proof. Drop the positive term EV~1/2 + 2AtCN=/2 from the left hand side of (3.3) in the
proof of Theorem 20. O
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Theorem 22 (Control of the Stable and Unstable Modes of (CNLF-SD)). Suppose At

satisfies (Atcenvr), recalled below

At < €' max { min {h2, gSOn_l} ,min {n_th, gSO} , min {nh2, gSOn_Q}
(Atener)
min {h, gSOn’Ih} , min {n’lh, gSoh} , min {nh, gSon’Qh} +,

where C = Cq,Cq,Cliny)g. Then (CNLF-SD) controls both the stable and unstable modes.

That is, there exists a positive constant, M, satisfying for any N > 2,

{Atz (TG + b V(6 + b))
+ Z {llup™ = w77+ lof T — o ||§}}
k=1

N—1
<A IR+ 1EE2 0, + At (LFFI2 + 1212)) (3.5)
k=1

HlupllF + lupllF + lénl, + 1all;
+AL{ IVl + [IVupll + IVl + IVoRl}

+AL {er(uy, dp) — er(up, ¢p) + er(uy, — up, &) — cr(uy, & — )}

Proof. Choose v, = 25At(uf™ — uf™) and 1, = 20At(¢f T — ¢F~1) in (CNLF-SD) where
0 > 0 and add the equations. This produces

(5{nHuk+1 B uh Hf +950H¢k+1 k:+1H }+5At {Ak+1/2 Ak—l/Q}
+20At {cj(ulﬁl — bt oF) — e (uf, it — B )}
= 20At {n ff7 uptt — h )f + g(f k+1 Z_l)p} )
where A*Y2 = ap(uf ™ uf ) + a, (o SFY) + ap(uf, uf) + a,(oF, ¢F). Apply Cauchy-
Schwarz and Young’s inequality to the right hand side to obtain
(1 —¢) {nlluk+1 up G+ gSollen ™t — oI} A OAE { A2 — AMY2)

) (3.6)
200 {ex(ul ™ = ab ™ 08) — x0T — 9k} < 22 Ll B + £1AIE)
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where € € (0,1). Define the new energy:
Ek+1/2 — Ek+1/2 + 2AtC’k+1/2 + (SAtAk+1/2.

Note that under the time-step restriction given in (Atenpr), E¥T1/2 > 0. Next, add (3.6) to

(3.3) in Corollary 21. Using the new notation yields

Ek+1/2_Ek71/2 At {nuHV k+1+uh )Hf—i-gkmmHV( Ly 271)H2}
+0(1 —e) {nfluy™ —uy M7 + gSoller ™ — o5}
+25At{c](uﬁ+1 k 1 Qbh) Cl(uha E+1 Z—l)}

<282 FHI20 + 2 IAA ,p} 22 TllFFI7 + 14513}

Sum the above from £ =1 to N — 1. This produces

EN-1/2 4 At Z {nv||V (uf ™ +uy~ N7 + ghminl V(05 h ’Ijil)H;zzv}

N-1
+6(1 =) Y {nllu™ = a7 + 9Sollop T = +Q  (3.7)

k=1
N-—1
n 2 ~
Lont (B8P g+ g2 75, + 522 (all £+ &0 512) } + B2,
k=1
where
—%NZ{CI i = oh) — e(uf, o) — 07}

Next, bound Q using technlques from Lemma 19. Begin by rewriting the interface integrals

in terms of the stable and unstable modes. Notice that for k& > 2,

er(up ™ —up o) —er(up, op T — ¢p ) = ser(uptt —up T of — 617

tger(u ™ —up T o + 0 )——q(ui—u’z Lont =) = ger(un + T gt - ’Z,‘l>-

Bound each term as follows using Cauchy-Schwarz, Trace (Lemma 1), Poincaré (Lemma 2),
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Inverse (Lemma 5) and Young’s inequalities as necessary.

er(uy ™ = w8 = 67)

CI(UI;LH _Uh 7¢h+¢ )

| /\

S g™ = w G A+ ek — or NG )
Co,C \/W - N
n9Ca  Ca,r/Clinv) P’pHuk+1 _uk 1HfHV(¢i+¢]}CL Q)HP

IN

< e[l | R g gk gl .
er(uf —ul 2 oE = @k ) < € {fluf — a2+ ok — gk 2], |
el + uf 2, @t — g1y < MO e Cns g g 2| gkt — g,
< MO TR G (4 )| e g — g2,

where, as before, C = gCq Cq,Cliny), and €12 > 0 are from Young’s inequality. Notice that

the first and third terms above were bounded using (CNLF Coupling 4) from Lemma 19.

Combine terms and simplify to obtain the following bound for O:
Q < 25 Z {n(L+ Pllep™ = w15+ 0+ Dl — o715}

N-—1
Cq,Cq,C Cq,Cq,C
00t Y { RV +ul S + TV (6 + oI

k=1

+20At [c[(ui —up, ¢p) — cr(up, o — (ﬁg)} .

Since EN71/2 > 0 by (Atenir), our energy inequality in (3.7) becomes

=z

-1

vl
g

{(n - TR |V + 7

€2

k=1

= ongCq,Co. C

385 { (ghomin — IR |9 4 02

k=1
N-—1

+0) {n((1—e) = (1+9)SE) fup™ — w3}
k=1

N-1

+6 ) {(9%(1 =) = n(1 +F)5E) 165 — o7}

=1

e

N-1

{ont (1780 + 2 I, ) + 222 (741 + 20 212) }

k=1
+E1/2 + 20 /At [CI(U%L — Ug, Qsllz) — CI<U'1117 gbi - ¢2>] ’
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This implies control over the stable and unstable modes provided the coefficients of the sums

on the left hand side are positive, i.e.

69Cq,Ca,Cp,y
-
69Ca , Ca,Cr,

€1

(1—¢e)— (1+9)2%€ >0,

v > 0,

gkmin - > 07

9S0(1 —e) —n(1+2)8€ > 0.

The last two inequalities are equivalent to

& €2
1+ P < h 1+ 2 < gSOh
l1—e AtC? l1—e nAtC*

€1,2

. . .. 1+ .
Since € 5 are arbitrary positive numbers and € € (0,1), we have —2- > 1. If the maximum

in (Atenpr) is min{h, gSon~'h}, then the inequalities hold since At < C~' min{h, gSon"'h}.

To complete the proof in this case, choose

5 — mln{ gkmin€1 vez }

ngCQf Ca,Cpyp’ QCQf Ca,Cp

To complete the proof for the other cases in (Atcnir), go back to (3.8) and apply one of
(CNLF Coupling 1)-(CNLF Coupling 3), (CNLF Coupling 5), or (CNLF Coupling 6) from

Lemma 19 to obtain the coefficients for these cases. O

3.1.2 Stability of the Stokes Pressure

Theorem 23 (Stability of the Stokes Pressure). Suppose At satisfies the CFL-condition for
stability given in (Atonpr). Then there exists a constant, H = C(1+ At)(1+ h) for C > 0,

such that
2N_1 pEt g1 |2 - k(2 k(2 k(2 k|2
At Z o ; <H{ Atz FFIZ s+ NP, + A (LG + 11512
k=1 k=1

HlunllF + lunllz + llenll; + Iénll;  (3.9)
+AL [ Vu|lF + IVupll7 + 1Venlls + IV eRll7]

+AL (cr(uy, 8p) — cr(up, ¢n) + cr(uy — up, dp) — cr(uy, o — ¢p)) }-

29



Proof. By (LBB"),

k+1+
B T’L < sup
P mext IVl
k1 k-1 k1l k-1
n(Bgarton) +ag (U )+ erlon. 6f) = (7o)
= sup
vneXh Vol

Bound the terms on the right hand side using the Cauchy-Schwarz inequality, Lemma 2
(Poincaré), and the continuity of as(.,.) (Lemma 3).

k+1 k—1

+p k+1_uk 1 k+1+u
6 3 h f; sup { n(jpf ‘ h -%.Aff“‘7 <——————£——> Hf
f Uhex? f
CI(Uh7¢h) k
e Tl b
Vo d

Next, bound the coupling term by the Cauchy-Schwarz, Trace (Lemma 1), Poincaré

(Lemma 2), and Inverse (Lemma 5) inequalities.

k+1 k—1

k+1_ k-1
+ph +

Up U

WLt

i |+ |7 (=)

%_ngCQfCQp\/CPJCRMU)“¢k
Vh h

B

<:71C2pf

f

o + Il fFll-1.s-

Square both sides, sum from £ =1 to kK = N — 1 and apply Cauchy-Schwarz again to obtain

N-1
k+1, k—1 ]2 k+1_ k—1 k+1
PSR 2 5 oo [ o (55,
n9Ca . Ca,+/CP,fClinv)
4 10, ||¢Z||p+n||ff||_1,f}
N

k+1_ k—1
Up  —Up

At

<n g {1

where H = n*C3; +

IV G S+ 151

— +1n?9Cq,Cq,Cps + n’. Next, we bound the summation containing

||} ||2 similar by rewriting it in terms of the stable and unstable modes via the parallelogram

60



law.
N-1 N—
> lsnllz = Z lor 12 + ol
k=1
=32 {ll@ = ok D2+ CR IV + ok M2 = 2llop 2} + IVl

S% {||¢'“+1 O Ny + CEIV (61 + 65 7) I} + 1Vl

)_l

Thus we have

N—-1

gy || <H{Z A +||v )|
k=1

e ok = oy 2+ CRV (3 + o ) 112) + 17120, T+ IVenlla )

Bound each term on the right hand side above using the inequality in Theorem 22. That is,

=

-1 N-1
k+1

u 7uk71
1117 < qmme LAY (IR0 + 1120, + AL (NG + 1A115)]

1 k=1

B
Il

HlunllF + lunllz + lenlly + onl
+AL{ [V [+ IVupllF + VRl + 1Vl }

+At (Cl(u}ln ¢2) - CI(’LL?” ¢ilz> + Cf(ui - u?w ¢;’-L) - Cf(uilw ¢i - ¢2)) } )

N— N—-1
< Z 1o — G2 < oS LA (12, + 1510, + At (LFEE + 1£512)]
k=1 k=1

HlupllF + lupllF + lonll; + ol
FAL{ [V |17 + IVup |7 + 1IVoll2 + IVenlls}
+At (Cf(ullza ¢2) - Cf(uga ¢i11,> + C](U}% - U%, gb}lz) - Cl(u}lm ¢}27, - ¢?z)) } )

N-1
CcC?
W ok O < e U0 (IR IRy + 120 + At (LFFIF + 1A515)]
k=1

+az (luallF + luill7 + lloally + 16h115)
IVurllF + 1Vupll7 + VORIl + VSRl
+ (er(up, &) — erlup, é4) + cr(uy — up, d4) — cr(uy, 8 — d3)) }
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=2

-1 N-1

IV (uy™ +up ™) 11 < FIZ  + I + AL (LI + A1)
1 k=1

el
Il

a7 (lunllf + Nlapll? + llenll + lonll)
IV 17+ [[VupllF + IVRllE + IVl
+ (Cf(ullw ¢2) - Cf(u(f)w ¢i11) + Cl(ui% - u?w qb}lz) - Cf(u}lw ¢}21 - ¢2)) } .

Use the above bounds to obtain the final result. Multiply through by A2, and utilize that
since the porosity, n, satisfies, 0 < n < 1, by (Atcner), % <n Y1 +h). ]

3.1.3 Special Case: Convergence to the Equilibrium Stokes-Darcy Problem

The special case of convergence to the equilibrium Stokes-Darcy problem, with forcing terms
f7° and f° independent of time, follows. The equilibrium solution, denoted by (teo, Poos Poo),
obeys

af(uom Uh) - b(vh:poo) + CI(Uhy Qboo) = n(f;?ov Uh)f7
b(uoov Qh> - 07 (SD-Equ)

ap((ﬁmawh) - Cl(uoo,wh> = (fpoovwh)p'

Using the equilibrium projection operator, P, discussed in Chapter 2, we may project
the true solutions to the equilibrium problem onto the finite element spaces, X J}l, Q?, and
Xh Let wF = wf — Pywy, for w = u, ¢, and ffp = ffp /75 By the projection property

(SD-PROJ) we have

ay(Prtioo, vn) — b(Vn, Pupoo) + ¢1(vn, Pruooc) = (f77,vn) 7,

af(Prdoo, ¥r) — cr(Prtios) = (£, ¥n)p-
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Thus, by linearity, the terms @, p, and ¢ satisfy

(i) g (B ) = (o BET) ertan, ) = i)
b( k+1’ Qh) —0,
950 (as”;:ffﬁ l,wh) +a, (M qph) — er (@, 0n) = g(F5 tn)yp.

(3.10)

Corollary 24 (Convergence of (CNLF-SD) to Equilibrium). Suppose (Atcnir) holds and
both fj’? — f§° and fr— 2 as k — oo in the sense that the series ) ||fJ'f — [P
k=0

(o] o0 oo
Z 1y = £l kE Iff = N7, and kZ 1y — f2ll; all converge.  Then, uj; — Py,
=0 =0
k—1

k+1
+p
T’l — Pupoo, and ¢F — Proo as k — .

Proof. Note that the terms @ and é lie in our finite element solutions spaces and obey

(CNLF-SD) by linearity (3.10). Insert @ and ¢ into the inequality in Theorem 22. Let

k+1

N — oo. The resulting inequality implies that ||V (w; T +wi )| — 0 and |Jwi ™ —wf~| — 0

for w = @, ¢ as k — co. By the triangle and Poincaré’s inequality,

oyl = Sl +wy ™ — ™+

| /\

sl ™ + w7+ gl ™ — wy ™)

< 3 (CrIV@i™ +wp DI+ llwp™ = wp )

for w = @, . This implies both [|@£1(|; and ||¢**||, converge to zero, meaning the Stokes
velocity and Darcy pressure converge to the finite element projections of the equilibrium

~k+1

1
solutions. As for the Stokes pressure, since & cQn > by (LBB"), we have

~k+1 ~k—1
+py,
b (Uh, - >

~k ~k
g [ 22| < sup
A o
kt+1l  ~k—1 k41, ~k—1 ~ ~
n (o) g (B ) el ) — (77 )
= sup
Xy Vol

f

< O{mllagt —ay Ny + 1V @y +ay )y + IV ol + 177113
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Let k — oo. Since klim wf = 0 for w = u, ¢, and the forcing term ||fj?°||_1f — 0, we have
—00

k1, ~k—1
ph+ +Py

2

lim =0.
k—o0

f

3.2 ANALYSIS OF THE CONVERGENCE OF CNLF-SD

Error analysis of the (CNLF-SD) method over long-time intervals ensues. Recall that the
FEM spaces, X%, X]’; and Q;ﬁ were chosen to satisfy approximation properties of piecewise
polynomials of degree r — 1, r, and r + 1 as stated previously in (1.17). Since we assumed
that X }L and Q? satisfy (LBB"), there exists some constant C' such that if u € V, where
Vi={veX;:V.v=0}, then

in‘f/ [u = vnllry < C inf flu— ], (3.11)

VhEVR hEXS

(see, for example, Girault and Raviart [34]). Let N € N be given. Denote t" = nAt and
T = NAt. If T = 0o then N = oo. In order to conduct error analysis for (CNLF-SD), define

the following discrete-in-time norms:

N 1/2
Nvlll2 .m0 24, = (Z "] %smf,p)At) :

k=1

vl o,r3m0(2,,)) = max |[v"]

0ShEN H3(Qy,p)

To bound the consistency errors of (CNLF-SD) we will use the lemma below.
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Lemma 25. (Consistency Errors for (CNLF-SD)) The following inequalities hold:

N-1 k+1 k—1](2
o utth—u (At)?
At; Uy — T oAt ; < 20 HutttHL2 (0,T5L2(925))
N-1
PFHL 1 (At)
ALY N6k = E I < S Mol rsa:
k=1
N-1 k+1 E—1\ [|2 4
ut T 4 7(At)
Atz Vi - —m8— > ”utt“%Q(O,T;Hl(Q ))?
2 6 f
k=1 f
N-1 2
¢k+1 _'_(bk_l 7(At>4
At Z \4 (Cbk R a— < 5 16ell 22075010
k=1 P

Proof. Proofs for the second and fourth inequalities follow. The proofs for the other in-

equalities are similar. We prove the first inequality by integrating by parts twice and the

Cauchy-Schwarz inequality.

N-1 ¢k+1 ¢k—1 2
p 2AL
tk+1 ik 2
At / ( / — t" )y dt + / (t — t" Ny dt) da
O th—1
thtt k+1 tF k—1\2 2
t t t—1
At / (/ 5 ) ¢tttdt+/k 1%@&(%) dz
O th—
g

/p kzz (/f |¢m|2dt> dz

At)3
\¢ttt\2dt dr < ( 20) buillF20.7.22(0,)):

This next inequality is proved similarly.

1::11 o <¢k_ ¢k+1_g¢k—1) p / 1:2 ((bk ¢k+1 ¢k _2¢k_1) 2 .
-1/ T V(6 — 6 + V(e — D) da
1 p];vj1 ik 2

:Z/Qp; » V¢tdt+/t“ Vi dt| do
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i

th th

=i / / (t — ") Vydt + / (t — t*)YVeydt| da
Qp j—q |JtETT th—1
N-1 k41 1 I

dx

2
—At/ Vou dt + / (t — tk)V(/ﬁtt dt + / (tF — )V oy dt
tk*l tk th—1

th+1 3 th+1
At
tk*l t 1

I
==
S~

)
e
Il

—

=z

IN
N
(]

Qp k—

t

=1

w I

\]
>

~—

(

IN

bell 2207510 ))-

(@)

3.2.1 Convergence of the Stokes Velocity and Darcy Pressure

Proof of convergence of the Stokes velocity, u, and Darcy pressure, ¢, with optimal rates
over long-time intervals under condition (Atcnpr) follows. Denote the errors in the Stokes
velocity and Darcy pressure variables by £F = u™ — uf and 5(;; = ¢* — ¢F. Note that in the
analysis of the convergence of this method we are not employing the projection operator,

Py, utilized in the convergence analysis of the splitting methods in Chapter 2.

Theorem 26. (Convergence of (CNLF-SD)) Consider (CNLF-SD). Suppose that the time-
step condition (Atcnpr) holds and w, p, ¢ satisfy the following regularity conditions:

we LX0,T5 H™ () N L0, T; H™H(Qy)) 0 HP(0, T3 H' (Qy)),
p € L*0,T; L*(Qy)),
¢ € L*(0,T; H™2(€,)) N L>(0,T; H(Q,)) N H*(0,T; H'(Q,)).

Then, for any 0 <ty < oo, there is a positive constant, 6, independent of the mesh width,

h, and time-step size, At, such that for some «, 3 > 0 there holds
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%(||5N|Ifc HIETF + SUEN S + 1€ )

+Atz HIVEST + EDIF + Pyl V (&S + E57I)

<& R ooy + 161 sy }
+ hzr”{ HutH%Q(O,T;HT+1(Qf)) + |6l 20,7 m7+1(0,)) + |HUH|%°°(O,T;HT+1(Q]¢))
+ Mol o..m+1(00,)) + H|p|H%2(O,T;H”"+1(Qf))}
+ (At)4{ ||uttt||%2(0,T;L2(Qf)) + ||¢ttt||%2(o,T;L2(Q,,)) + ||Utt||%2(0,T;H1(Qf))

+leulZeozamy t + AUVELR + IIVELNZ + IVELE + I VEZ)

+ &7+ 1107 + €0, + €I }

Proof. Recall that solution u* = wu(t*) where t* = kAt, satisfies (FEM-SD). Consider
(CNLF-SD) over the discretely divergence free space V" := {v, € X} : b(vn, qn) = 0Vg, €
Q't} instead of X}. Subtract (CNLF-SD) from (FEM-SD) evaluated at time t*. Note that

k+1 k—1
. =+ .
since v, € V", the term b <vh, %) equals zero, and can therefore be omitted from the
equation. We have
kt1_ k1 k+1
k B uh h k - +u
n(ut sy v ,vh)f—l—af (u —2 ,vh>

—b (vn, P") + 1 (vn, ¢" — &})
k+1 ¢]}€L 1

k1, k—1
950 <¢t - AL djh) + ap <¢k ¢++¢ha 77Z}h> —Cr (uk uha 77Z)h> 0.

Since vy, is discretely divergence free, b (vh,pk) = b(vp, p* — AF), for any N\, € Q’}. After

rearranging terms, the error equations become
£k+1 519 1 8k+1 Sk 1 k
n (T Up, + ap (S—FS— vy ) +¢f (vh,5¢)

k41_, k—1 k k41, k—1
- (%,w)f —n(u;,vn) s — ag (“k - %,w) ACHAEPE
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ghtl_gh—1 ghtl gh—1
950 (%ﬂﬂh) +ay (%ﬂﬂh) —cr (EF, ¥n)
p
- gSO <¢k+1 71/)71) - gSO(gbfa @Z)h)p — Gp <¢k - wﬂ#h) .

The consistency errors are:

k o uk+1_uk71 k k uk+1+uk71
Tf(vh)—n(—mt , Uh f—n(ut,vh)f—af u” — T ),

(un) = g0 (£ ) = gSo(ef i)y — ap (6 — S5 )

Split the error terms into:

k+1 k+1 k+1 k+1 ~k+1 ~k+1 k+1 k+1 k+1
gu+ :U+ _U’h+ :(U+ —U+)+(U+ _uh+)_nu+ §u+a
k+1 k+1 k+1 k+1 Tk+1 Tk+1 k+1 k+1 k+1
Eg =" —gp = (0" = ")+ (0" =) =g T

~k h Tk h k h : :
Take @ € V" and ¢"*' € X so that {i*' € V", Rearranging error equations produces

kt1_eh—1 k1
k+1_ k-1 k+1 k—1
() (5

— cr(vn, ) + 7o) + b (vn, P — ML)
gh+1_gh-1 5’“+1+§k !
950 (Tfﬂﬁh> + ay, ( et ﬂbh) — cr (&5, ¢n)
p

nkJrl*nk 1 k+1+nk 1
= _gSO (%7@@1) — Qp ( -t 7wh)
p
k k
+ Cl(nvﬁ l/Jh) + Tp (d’h)

Choose v, = ¥ + g1 € VI and ¢y, = §k+1 ff,_l € X} and add both error equations to
find

ax (MNIELTHIF + gSollEgTH I — nlles™ 117 — 9Soll€l™117)
+ler(@t &) —a&n T €67
+% [CL (§k+1+£k 1 £k+1+§k 1)+ap(€k+1+£ €k+1+§§_1)]
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=gk [ O L ) g8 (T — o fg—l>p}

3 Lo (7 ol ) o (5 €5 ),
= [er(& + &) — ey, 67 + 6571
+Tf(§k+1 _I_gk 1) +b(£k+1 +€k 1’p o /\k) +7’ (§k+1 —1).

Split the coupled terms on the left hand side in the following way:

cr(Et et e —eren, e+ 67
= (er(&8,€5) —er(€h, 66™h) — (er(€h, 6571 —er(€571,€0))

SNoALI G
Denote the & energy terms by
k+1/2
B¢ = nll e N7 + 9Soll€ET 1 + nll€ll; + 9Soll€Elly-

Applying the coercivity of as(-,-) and a,(-,-) we have

1 _1
EFTY? 4 2Atcf+2 ~ BV - QAtCk 2

+ At (|| V(EF + NI +gk:mm||V(§’“+1 +&5712)
<= (o =l ) S (T - e e
— At [ag (i + 078 + 7 +ap (néﬁ“ +p T+ )]
— 2At [Cl(karl + fk 17 77(1)) - Cl(nua §k+1 +£ - )]

+ 208 (rp (& H T HET TP = A F T+ 67).

Now bound the right hand side of the inequality from above. Begin by bounding the first

term on the right using the standard Cauchy-Schwarz, Poincaré (Lemma 2), and Young

inequalities.

n(n ™ =& 6T aSong T =TT 6T,

3nC2 _ 59S52C? _
< SR = G s il =
+ AV + & IIF + At | V(5 + €572
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Next, we apply the continuity of the bilinear forms ay(.,.) and a,(.,.) to bound the second

term on the right.. Using the notation, My, from Lemma 3, we obtain

ap(pt oy T &) F e LT R T
< M IV + b DIV ET + 71
+ Ghmaa [V (5 + 05 DIV EET + 57D,
< n—JHV(m’i“ +0i D7+ 55,5,,’11? IV + s DI

+HIVET + &I+ S VET + 715

We bound the coupled terms on the right hand side using Lemmas 1 (Trace), 2 (Poincaré),
and Young’s inequalities. Let C' = C3 C3 Cp;Cpyg®. Then

(G + &) —er(nf, €5 + €71
< ng (I + €70 - agllrlinbllr + Ik - gl €S + €57 1)
< Cq,Co,ng(||€5+ + 55‘1H”2HV<5’““ + DIk 2 Vbl 2
+ (|51 4 Y2V (R + €T 2 kPl

< VO (Ve +&r 1)||fHV77¢||p+||V77u||f||v(§k+1 & lly)

i3 ’T'L2
<@LV lF + =S IVaslly
+BIVET +ETDIF + L VET + 75

Finally, we bound the consistency errors, TJ’f and T]f, and the pressure term as follows.

k+

THE  EhT) = (SR ) — (k€5 €7,

k whtlpuk—1 ckt1 k—1
— ay (u - 2 7£u +£u

k+1_
< n|uf —m | Nk e

2

+ M ||V (= —) | v+ el
2 n 6nM?

6C% .n k41, k—1
S V (yfF — @
= ¥ v (u 2 >

+ IV + &I

k Wkl k-1
t 2At

f
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e e = 080 (T g e —aSo(eh & T,
—a, <¢k ¢k+1+¢k ' £k+1 §Z1)

k41 k—1 _
< S0 [0t - % gt e
k—+1 k—1 —
+ G [V (o — £ )H IV (s + €)1,
< 595 CPp ¢ ¢k+1 - ¢k ! _|_ 5gkmaac (st ¢k+l+¢k_1> H2
- kmin t 2At kmin 2 p

mzn

s IVEs™ + €7D

bEE + €57t = M) < mllh = MLV - (€5 + €7

< Sd|lp® — MillF + 551V + &I

Having bounded each term on the right hand side from above, we now subsume the £ terms

on the right into the left hand side of the inequality to obtain, for some Cy > 0,

k

1 1 1 1
AR VN TSI I TN T

+ At (nyHV(karl +£k 1)Hf + gkmm’|v(£k+1 71)”;121)

< o (A0 (I = I )
+At{IIV(nﬁ“ PO IV + 2+ IVl
2
uk+1_uk71
+[IVagll; + T,

uk uk—
M| R R

k ¢k+1+¢k—1
v (- =)

2
k k4+1_ sk—1
o |33

p
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Sum the previous inequality from £k =1,..., N — 1. Then

1 1 1
BN+ one) T - B — 202

N— 1

P [V (€5 + €57

N—-1
SCO{(N)_IZ It — T 4 g — o
k=1

FArS IV 4 DR IV 2

2
k uk+1_uk71

t 2At

IVl + 11Vgll; +

f
n HV <uk k+1+uk 1>H N ||p B )\th

+‘ p+)’v<¢’f—w) ;]}

Next bound this in terms of norms instead of summations. Using Cauchy-Schwarz and other

120 ‘

k ¢k+l_¢k—1
¢ — 2At

basic inequalities, we bound the first term on the right hand side as follows.

2

-1 N-1

i1 2
It == S0 [t
k=1 k=1 ||t f
iy ek 3.12
SZ/ (2At)/ [u?dt dz (342
k=1 th=t
< 4At

< AAH 0wt 720.1:2200,))-

We treat the second term similarly.

2

-1

175
1

o =y < A0t (0,T5L2(Qp))" (3.13)

i

We bound the remaining 7 terms using Cauchy-Schwartz and the discrete norms.

=

-1

N-1
IV O s IF <2 (907 + 19 113)
k=1

i

! (3.14)

< 42 IVnilF < 4(At)_1|||Vnu|||2L2(0,T;L2(Qf))7

k=0
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=

-1

IV 5T+ 0S5 DT <40 IVelI72 07,020, (3.15)
k=1
N-1
IVnslF < (A VRllIZ207,0200,)): (3.16)
k=1
N-1
VSIS < (A Va1 2207200, (3.17)
k=1
N-1
Hpk—Ain (At)~ 1|HP )‘h’HL?(OTL?(Qf)) (3.18)
k=1

Recall from the proof of stability that since (Atcnpr) holds, we have the following lower

bound for the energy terms:
_ N-1 _ _
BN 2nt0y 2 > al€N 12+ 11ENH3) + BUIEN 2 + 1€XHI?) > 0

for some o, f > 0. After applying bounds (3.12)-(3.18), along with Lemma 25, and absorbing

all the constants into one constant, 61, the inequality becomes
a(llEX 17 + 17 + BUE NS + 1€ 115)
+ Al Z ( IV + €601 + L2 05+ + 512 )

< a1{H77u,tH%%o,T;m(Qf)) + H77¢>,tH%2(o,T;L2(Qp)) + H’an’H%?(O,T;L?(Qf)) . (3.19)
+ |HV77¢|HL2(OTL2( ) T llp — )‘thLQ (0,T;L2(25))
+ (At)4< el 720,220, + [Duwel T20,7 020,
+ ”UttHL2 O.T:H () T eI 72 (0,T;H(2y)) > } + E1/2 + QAtCQ

Recall that Y = uV — ul and &) = ¢V — @Y. Use the triangle inequality on the error
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equation to split the error terms into terms of n and &.

« B 15} B
§(||5Nu||?c+llgiv 1II?+§(II5§H§+II5§V HI2)
N-1

1% _
+AEY (Zuwgfﬂ +EDIF +

k=1

gkmin _
2 (el + g5 IR

< a(ll€NF + 617 + BUIE NS + 1€ 117)

N-1

v — g min _
+Atz(5||v<s:f+l+s’; DI+ L v+ )
k=1
oI I+ Y1) + AN 12 + 1= 12)
N—-1 gk
+At2( IV ) + ’“+1+n§,‘1)lli)
k=1

Note that [,

10 ||77u¢1||fp < 7,117 (01L2(2;,)): USNg this, the previous bounds for 7

terms, applying inequality (3.19), and absorbing constants into a new constant, Cg produces

o _ 15} B
§(||5Nu||fc +IENTHG + §(||5évllﬁ +1EE)
N—1

kmln —
rar S (IwiEb eI+ L 4 ek e

k=1

< a2{ ||77u,t||%2(o,T;L2(Qf)) + ||77¢,t||%2(0,T;L2(Qp)) + |||vnu|||%2(0,T;L2(Qf))
+ VRl 22012200,y + P = /\h’||%2(o,T;L2(Qf)) (3.20)
+ (At)4(HutttH%%o,T;L?(Qf)) + H(btttH%Q(O,T;LQ(Qp))
+ “uttH%Q(O,T;Hl(Qf)) + ||¢tt||2L2(o,T;H1(QP)))
1l o iz + Mol e ooy }

1/2
+IEHIF + €15 + €217 + 10117 + 2A0C".

Bound the coupled terms on the right hand side by
< S IV + IVELIZ + [IVERN3 + [ VEL )
& — 9 @llp ¢llp ullf ullf) -
Since (3.20) holds for any @ € V*, \;, € Q?, and ¢ € X}’}, we may take the infimum over V",
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Q’}, and X;}. By (3.11), we may bound the infimum over V" by the infimum over XJ’Z so the

following holds for some positive constant 63:

« B 15} B
SOENIE + 12115 + SUENZ + 1€ 1)
N-1

nv — gkmm —
+AEY (Z||V(<€jj+1 +EEH|3 + 0 V(e + &) 1)||§)
k=1

< CB{ ggh{ Hnu,tH%?(O,T;LQ(Qf)) + |H77UH|%2(O,T;H1(QJ-)) + HMUH‘%OO(O,T;L?(Q,-))
uety

+UELIE + €002 + At(IVEL2 + IVEL® b + Aiﬁéh e = Al 2207220,
h=%p

+ égfh { ||77¢7t||%2(0,T;L2(Qp)) + |||77¢|||%2(0,T;H1(Qp)) + |||77¢|||%°°(0,T;L2(Qp))
p
+ (1112 + 11€9112) + A(IVELZ + IVES } + (AL llweul3207:12(0,
+ H¢tttH%2(o,T;L2(Qp)) + HuttH%Q(O,T;Hl(Qf)) + H¢ttH%2(O,T;H1(Qp))} } :

After applying the approximation assumptions (1.17) we get the final result. O

Corollary 27. (Rates of Convergence) Let (X}, Q%) be the finite element spaces associated
with Taylor-Hood elements and X;} be continuous piecewise quadratics. Suppose also that the

assumptions of Theorem 26 hold. Then,

SUETIE + 177 + UETE + 1€ 1)
N-1

FALY (RIVEN + T+ e

k=1

VES +€571)

< a{h4{|HuH|%2(0,T;HT+1(Qf)) + |H¢H|%Q(O,T;HT+1(QP)) + H’p|||%2(O,T;HT+1(Qf))
+ h2HutH%2(O,T;HT+1(Qf)) + W2\ Gell 20,01 0y + B2 ] H%oo(o,T;HrH(Qf))
+ 2]l 9| H%oo(o,T;HrH(Qp))} + (At)4{ HutttH%Q(O,T;LQ(Qf)) + H¢tttH%2(o,T;L2(Qp))
+ HuttH%Q(O,T;Hl(Qf)) + |’¢ttH%Q(O,T;H1(Qp))} + At(HV‘%H? + HVSSH?

+IVEL +1IVENR) + €M7 + IEllF + 1IN + ||5§H§} :

75



3.3 NUMERICAL EXPERIMENTS FOR CNLF-SD

Numerical experiments verify the stability properties and predicted rates of convergence of
(CNLF-SD). All tests use the same domain and exact solutions used in Chapter 2, chosen
to satisfy the interface conditions and introduced by Mu and Zhu in [56]. Calculations
were made using FreeFem++ software [36]. The code for the experiments is included in
the appendix. We use Taylor-Hood elements (P2-P1) for the Stokes problem and piecewise
quadratics (P2) for the Darcy problem. The choice of Taylor-Hood elements in the Stokes
problem satisfies the (LBB") requirement for stability of the discrete pressure. The initial

and first terms are chosen to correspond with the exact solutions, recalled below.

Qp = (0,1) x (1,2), Q, = (0,1) x (0,1), I'={(z,1):2€(0,1)}

u(x,y,t) = ((:UQ(y —1)? + y) cos(t), (;:p(l —y)® +2 — wsin(nz)) cos(t) |,
(TEST)

p(z,y,t) = (2 — wsin(nrz)) sm(2y) cos(t),

o(z,y,t) = (2 — wsin(mz))(1 — y — cos(my)) cos(t).

3.3.1 Stability Experiments

We examine the stability region of CNLF applied to Stokes-Darcy (CNLF-SD) to determine
if the CFL-type condition, (Atcnrr), derived in Theorem 20, is sharp. To begin, we must
first determine the size of the constant, C = Cq ; Ca,Clinv)g, in the stability condition, recalled

below.

At < ™' max { min {h2, gSOn_l} , min {n_1h2, gSO} , min {nh2, gSon_2}
(Atener)
min {h, gSOn’lh} , min {n’lh, gSoh} , min {nh, gSon’Qh} }.

Recall that as a consequence to Theorem 22, when At satisfies (Atcnpr), both the stable and
unstable modes are damped by (CNLF-SD). This means that any instabilities are due to
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Figure 3.1: Final System Energy (E(N)) versus time-step size (At) for (CNLF-SD).

improper implementation, such as accumulation of round-off errors or violation of (Atcnpr)-
Therefore, to determine the size stability region (in particular, the size of C in (Atcnir)),
we set the forcing terms equal to zero, enforce homogeneous Dirichlet boundary conditions,
and eliminate the Crank-Nicolson terms which add numerical dissipation into the system.
When the stability condition is met, the solution should decay to zero over time. Set the
parameters n, g, agy, p, and Sy equal to 1. To eliminate the Crank-Nicolson terms, we set
and v = ki, = 0, with the exception of k,,;, = 1070 in af(.,.). Weset h = 0.1 and calculate
the system energy, ENV2 = [[uf ™13 + luf (|7 + gSollon |2 + gSollon |2, at the final time
step, Trma = 10. Note that the initial energy of the system, E/? ~ O(10). Results of
this series of experiments are summarized in Table 3.1. (CNLF-SD) becomes stable when

At < 1/110. Using these results we estimate that C ~ 111/10 = O(10).

The CFL-type condition (Atcnpr) implies sensitivity of CNLF to small values of Sy but
not ki, We compute the final system energy over the time interval [0, 10] for fixed h = 0.1

and successively smaller time-step sizes in four different situations: (1) Sy = ki = 1076,
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Table 3.1: Stability Region CNLF

At | Brina || At | Epina | At E fina
1/10| oo || 1/60 | oo | 1/110 | 2.7666E093
1/20| oo || 1/80 | oo | 1/111| 1.60628
1/40 | oo || 1/100 | oo | 1/112 | 1.59992
1/120 | 1.59636

(2) So = 1 and ki = 1075, (3) S = 1075 and ki = 1, and (4) Sy = kpmin = 1. Results
are summarized in Figure 3.1 in a plot of final system energy, F(N) against time-step size,
At. Note the logarithmic scale. All tests for situation (1) resulted in energy blow-up before
the conclusion of the time interval. Note that when Sy = 1, we are guaranteed stability once
At < 1/110. However, when Sy = 107°, the stability condition requires At < O(107%) as
well, therefore the lack of stability in situation (2) is as predicted. For the case of small &,
(situation (2)), (CNLF-SD) becomes stable before we reach the boundary of the stability
region, At..;; ~ 1/110. Recall that k,,;, affects the strength of the numerical diffusion in the
system.

To illustrate with further details, see the break-down of the system energy and modes in
Figures 3.2, 3.3, and 3.4. In Figure 3.2, ki, = 1075 and Sy = 1.0. The small value of k.,
greatly weakens the numerical dissipation in the system, and violation of (Atcnpr) leads to
spurious oscillations in the unstable mode and a drastic blow-up in system energy. In Figure
3.3, kmin = 1.0 and Sy = 1075, (Atcnrr) is violated and both modes and the energy exhibit
growth as time progresses. Finally, in Figure 3.4, when Sy = k,,;, = 1.0, the CFL-type

condition holds and both modes and the system energy converge to zero as predicted.

3.3.2 CNLF-SD and Time Filtering

One popular technique in geophysics used to counteract the accumulation of numerical noise

in the unstable mode induced by Leapfrog is to implement time-filters. We use the Robert-
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Figure 3.2: Break-down of the evolution of energy and modes of (CNLF-SD) over [0,10] for
situation (2) (kmin = 1076 and Sp = 1.0) when At = 1/20. (Atcnpr) is VIOLATED. Spurious
oscillations in the unstable mode correspond to a drastic blow-up in energy.

Asselin Filter, or RA-filter ([62], [5]). At every time step, after computing uf™, pitt, ¢Ftt

we update the previous k' values and replace them with filtered values, given below.

Wy = wi + (@t — 2wl +witt), where w = u,p, or ¢,0 < a < 1.

The RA-filter damps the computational mode in Leapfrog (see e.g. Durran [30]). Analysis
of the RA-filter is still an interesting open problem. Some of the analytical theory of the
related Robert-Asselin-Williams (RAW) time filter applied to (CNLF) is discussed in [39].
For this test set & = 0.10. For more discussion on the choice of the parameter « see, for

example [40] p. 437. To see if the addition of an RA-filter step mitigates the (CNLF-SD)

1.00E+07 Energy
e« Stable Mode
—Unstable Mode

1.00E+04

1.00E+01

LOOE-02 = iseeeee® .

1.00E-05
0

10

Figure 3.3: Break-down of the evolution of energy and modes of (CNLF-SD) over [0,10] for
situation (3) (kmin = 1.0 and Sy = 1076) when At = 1/80. (Atcnpr) is VIOLATED and the
energy along with both modes increases as time progresses, leading to an unstable system.
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Figure 3.4: Break-down of the evolution of energy and modes of (CNLF-SD) over [0,10] for
situation (4) (kmin = So = 1.0) when At = 1/120. (Atcnpr) HOLDS and the energy along with
both modes decay to zero.

method’s sensitivity to small values of specific storage, we perform the same stability tests
for the four situations as previously described. Results are shown in Figure. For further
illustration we match the situation illustrated in Figure 3.3 by setting h = 0.1, At = 1/80,
Sp = 1075, and k., = 1.0. In contrast to (CNLF-SD), with the addition of the RA-filter,
the energy, stable, and unstable modes decay rapidly to zero (note that the time interval is
0, 1] instead of [0, 10]), as seen in Figure 3.6. While the RA-filter appears to greatly enlarge
that stability region of (CNLF-SD), because the RA-filter step is only first-order, we lose
second-order accuracy in time. In the following chapters we will investigate an alternate

route to gain stability and still preserve higher-order accuracy.

3.3.3 Convergence Rate Experiments

For the convergence rate experiments all parameters, n, agy, v, Sp, Kk, p and g = 1.0. We set
the boundary condition on the problem to be inhomogeneous Dirichlet: u;, = u on 0€;/1,
and similar for the Darcy pressure, ¢. We set the mesh size, h, equal to the time step, At.
While this violates the CFL-type condition for long-time stability, (CNLF-SD) is (short-
term) stable over [0, 1] for these choices of parameters due to the numerical dissipation. The
errors for various values of h are given in Table 3.2. We denote L>(0, 1; L*(€y,)) by LF,.
The rates of convergence in the table exhibit second order convergence for u and ¢. This

agrees with the error analysis for the Taylor-Hood elements as evidenced in Corollary 27.
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Figure 3.5: (CNLF-SD) + RA-Filter. Final System Energy (E(INV)) versus time-step size (At)
for (CNLF-SD) with the RA-filter step.

Remark 28. (Convergence of the Stokes Pressure) The expected rate of convergence for the
(average) pressure is O(At*+h?). We omit the proof of this estimate due to length. However,
even though the problem 1is linear, the proof has a few unexpected points. One has to first
bound the error in the time differences. Then, the average pressure error is bounded in terms
of the errors in u, ¢, and their time differences using the discrete inf-sup condition (LBB").
In order to complete the first step one must use a discrete Gronwall inequality. As a result,
the predicted errors in the time differences and thus the pressure contain a multiplier of the

form exp(aT).

3.4 CONCLUSION FOR CNLF-SD

(CNLF-SD) is a parallel partitioned method that allows one to implement existing black
box solvers optimized for surface and groundwater flow, thus preserving the physics of the

coupled problem and allowing us to utilize existing computational tools. Analysis of the
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Figure 3.6: CNLF-SD with the RA-filter. Compare to Figure 3.3, with At = 1/80, kpin = 1.0,
and Sy = 107%. While (AtcnLr) is violated, the energy, unstable, and stable modes decay rapidly
to zero in the presence of the RA-filter.

Table 3.2: Rates of Convergence for the Stokes velocity, pressure, and Darcy pressure in

(CNLF-SD).

h= ¢ | e = sz | xate | llp = plsz | rate | g — 6"z | rate
1—10 8.62671e-4 1.56045e-1 6.54407e-3

2—10 1.77135e-4 | 2.28 | 3.77064e-2 | 2.05 | 1.46515e-3 | 2.16
4—10 3.54644e-5 | 2.32 8.9672¢e-3 2.07 3.4904e-4 2.07
8—10 6.72106e-6 | 2.40 | 2.15951e-3 | 2.05 | 8.70886e-5 | 2.00

Crank-Nicolson Leapfrog method applied to the Stokes-Darcy equations lead to a CFL-type
condition, (AtcnLr), sufficient for stability and convergence. Under this time-step restriction,

both the stable and unstable modes arising from Leapfrog are controlled.

However, the sensitivity of this condition to small values of Sy, is restrictive in cases of
confined aquifers since in such cases Sy is very small (as small as 107% as seen in Table 1.2).
Numerical experiments confirmed sensitivity of (CNLF-SD) to small values Sy. Additional
dissipation from the use of Crank-Nicolson on the diffusive terms adds (temporary) stability
to the system, but over time if the CFL-type condition is violated, the system will eventually
destabilize. Implementing a time-filter such as the RA-filter enlarges the stability region,
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although it will decrease the order of convergence since the RA-filter step is only first-order.
The convergence analysis and numerical experiments confirms that this method is second-
order in time and space.

The method, (CNLF-SD), is higher-order convergent but does not exhibit the desired
strong stability properties. In the next chapters we develop and analyze an adaptation of this
method, (CNLFSTAB-SD), which maintains the second-order convergence of (CNLF-SD),

yet is unconditionally stable.
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4.0 STABILIZED CNLF FOR EVOLUTION EQUATIONS (CNLFSTAB)

In this chapter, we present a stabilized version of the Crank-Nicolson Leapfrog, (CNLF),

method for a general evolution equation of the form
w + Aw + Aw = 0, (4.1)

where A is symmetric-positive-definite (SPD) and A is linear, skew-symmetric (AT = —A)
and bounded. This system is similar to the system obtained by applying the Finite Element
Method to the Stokes-Darcy variational equations (FEM-SD) as described in the end of
Chapter 1. Applying the Crank-Nicolson Leapfrog (CNLF) method to the general evolution
equation in (4.1) produces

whtl — k1 whtl 4 k1
_— + Al ——mM8M8

k _
N 5 ) + Aw* = 0. (CNLF)

In [49, 38], stability analysis for Crank-Nicolson Leapfrog (CNLF) for general and coupled
evolution equations produced a stability condition of the form At||A|| < 1. This chapter
presents a stabilized version of (CNLF) for the general evolution equation that is uncondi-
tionally stable as well as second-order convergent. It is both a summary and expansion of

results obtained in [41, 66].

The stabilized version of (CNLF), denoted by (CNLFSTAB), is

k1 _ g k-1

2At

Wkl

k—1
= —w> 4+ AwF =0. (CNLFSTAB)

+ AtAFA(WET —wET) 1 A ( 5

The stabilization term, AtA*A(w*t1 — wk=1) is both linear and SPD. It contributes an
added consistency error of 2At*A*Aw, = O(At?), the same size as the consistency error in

(CNLF); therefore it preserves second-order convergence. The motivation of the stabiliza-
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tion term arises from the energy stability analysis of (CNLF), given in Theorem 29. This
stabilized version of (CNLF) is similar to methods studied in [3, 44, 29, 20].
Let < .,. > denote the Euclidean inner product and ||| the Euclidean norm. Since A is

SPD, the norm given by ||w||4 = v/< w, Aw > is well-defined.

Theorem 29 (Stability of (CNLF) for General Evolution Equation). Suppose At satisfies
At||A|l < 1, then (CNLF) is stable. That is, for N > 1

N-1
(L= 1AL AD) (™7 + [l ]?) + D 0+ M5 =0
k=1

Proof. The following proof was first presented in [49], and has been adapted to fit the notation

of this research. As in Theorem 20, take the inner product of (CNLF) with its stable mode,
wk! + w*=1 and multiply by 2At. This produces

w12 — (| 4 At ™ TR+ 24 < wFT 4w Aw® >= 0.
Similar to the proof of stability for (CNLF-SD), we define the following:

Ek+1/2 _ ||wk+1||2 + ||wk||27

CF1/2 — b Ak >
Simplify and use the skew-symmetry of A to obtain
EFHZ L oNtCRH2 — B2 oAt CR Y2 4 At]jwt w1 = 0.

Next, sum from k =1to N — 1:

N-1
ENTV2 4 oA OV T2 N M b = BY? 4 24002,
k=1

Stability thus holds if EN~1/24+2AtCN-1/2 > 0. By Cauchy-Schwarz and Young’s inequality,
CNTV2 =< ™ A > < NP A ™) < BN (™)),
and thus EN=Y2 4 2AtCN=1/2 > 0 provided 1 — At||A]| > 0, or At||A| < 1. O

Notice that the stability condition arises out of the need to subsume the skew-symmetric
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term, (w*! + wF1)TAwk, into the discrete system energy. The added stability term,
AtA*A (WKt — wk=1)| provides an alternative for the absorption of the skew-symmetric
term by providing anadditional SPD term in the stability equation specifically suited for
this purpose.

4.1 STABILITY OF (CNLFSTAB)

Theorem 30. The method (CNLFSTAB) is unconditionally stable. That is, for every N > 1

Sl 4 (™[] + 2887 Aw™ 2 (42)
< ' + [w®* + 288 (Aw®, w') + 2882 (| Aw'|[* + [|Aw?|?).

Proof. Begin like the proof of Theorem 29. Take the inner product of (CNLFSTAB) with
its stable mode, (w*** + w*~!), and multiply through by 2At. This produces

(12 [ ]12) = (w17 + [ )+
1AL <A*A (wk+1 _ wkfl) Lkt wk71> 4

+AE (AW + w1 WM w4+ 248 (AwF, w4+ w ) = 0.
Rewrite the added stability term as follows

IAL2 <A*A (wk+1 _ ,wkfl) Wt wk71> = 2A£2(A (wkH _ wkfl) ’A(warl + wk71)>
_ 2At2 <‘|Awk+1H2 o HAwk_lHQ)

= 2A¢% [([JAw 2+ [[Aw® |2 — ([Aw®[* + [[Aw* ) .
Denote the stabilized system energy by
Bl = [P+ [wh]* + 248 (|| A | + || Aw¥][?)
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Thus the stability equation becomes
E;?Tt}g/z _ Eéijé/Q + At <A(wk+1 + wk—1)7wk+1 + wk—1>
+ 2At <Awk, w4 wk_1> =0.
As in 29, let C**1/2 .= (Aw*, w*1) | so that, by skew-symmetry of A,
<Awk wk+1 + wk—1> — Ok+1/2 o Ck_l/Q.
Simplify the stability equation to obtain
EéfT';t/? _ Eéijé/Q + At <A(wk+1 + wk—1)7wk+1 + wk—1>
1 2A¢ (Ck+1/2 _ Ck—1/2) —0.
Sum the above from k=1,..., N.

N
ENEVZ L oAtON Y2 4 A > (A + k), b ) = B2 + 2AtC2,
k=1

It remains to prove that EXyn’? + 2AtCN+1/2 > 0. Apply the Cauchy-Schwarz and Young

inequality to show

1
QAN < AR AW+ 50,

thus implying

B 4 281N Y2 > w2 4 [JwN])? 4 248 |AwN )2 > 0.

Hence,
0 < g™+ [luw™]* + 2482 ||Aw™ |
N (4.3)
+ At Z <A(wk+1 + w1, w4 wk_1> < BM2 + 2AtCY2,
k=1
This implies (4.2), since A is SPD. O

It remains to prove that (CNLFSTAB) is unconditionally, asymptotically stable over

long-time intervals. To do this, we show that (CNLFSTAB) effectively controls both the
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stable and unstable modes, w**! + w ! and w*! — w* !, for all time-step sizes, At.

Theorem 31 (Unconditional, asymptotic stability of (CNLFsTAB)). Consider the method
(CNLFSTAB). Both the stable mode, (w*™ + w*='), and the unstable mode,(w*=* — w*=1),

are unconditionally, asymptotically stable. That is,
Wt — 0 and W' —wFl— 0 as  k— oo,
and hence w* — 0 as k — oo.

Proof. Take the inner product of (CNLFSTAB) with the unstable mode, (w*™! —w*~!), and

multiply through by 26 At for some ¢ > 0 (to be specified subsequently). This yields

5||wk+1 . wk—1||2 + 25At2 <A*A(wk+1 . wk—1)7wk+1 o wk—1> ( )
4.4
FIAL (AWM + ) WP — wF ) + 26AE (Aw”, Wt — Y = 0.

The term, JAt{A(w* + w*=1), wkl — wh=1) can be written as
AL (AW + L wt T — W) = SAE ([0 + [[w®2) — (|5 + o™ R)] -

Define A**1/2 .= ||w**||% + [|w*||3 > 0. Simplify and sum (4.4) from k =1,..., N:

5% [Hwk+l _ ,wkleQ + 2At2\|A(wkH _ ,wkfl)”Q}
e (4.5)
+20AL Y (Awk, bt — ) 4 SALANTY? = AL AN,
k=1
Adding (4.3) to (4.5) gives
%HwN+l||2+ HUJN||2—0—2A7§2HA’LUN+1H2 +5AtAN+1/2 —|—FN
+ ﬁ: (Al G+ o™ — w2+ 20 A2 A (W — ™ P] (4.6)
k=1

< BY2 4 oAtCY? £ §ALAY?,

where

N
FYN = Z 26At (Aw”, Wt — w1

k=1
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It remains to subsume F into the positive terms on the left-hand side of (4.6). This requires
an upper bound for FV. Begin by applying Young’s inequality which implies, for or any e,
0 < e < 1, there holds:

N N
5
|FN] <€ [lwht — w2 4 - > AL Aw"|?.
k=1

k=1

Rewrite the second term on the right above in terms of the stable and unstable modes:

w4+ wh2 Wk — k-2
R P Vi
wh + wh? wk — k2 -
— A oA (R — A R

which holds for all £ > 2. The upper bound on Fy now becomes
N 5 5
N k41 k=112 2 112 2 k—2 (|2
P 06 D k™ b P+ SAAUE - 3 AP

;Z (IAGw* + w0 =2)[2 + [|A(w* —wh2)]?).

Shift the index of the third sum above and drop the negative term —% >, At2||A(w*~2)][.
The bound for FV is thus:

N N
) )
N k+1 k—112 2 112 2 k—2\112
F 'S‘Se,;”w — P SAAW - 23D AFA W)
= (4.7)
t? (HA(wk-H + wk—1)||2 + ”A(wk-i-l . wk—1)|l2) )

MZ

RS
2¢

£
Il

1

Apply (4.7) to (4.6) to show
2 + o™ 2 4 2882 A2 4 GALANH

N
+ Z [AtHwarl + wl»cflnxz4 §At2 HA( kL 4 gk )H }

k=1
v (4.8)
D 6 [(1— ol — kTP + A (2= ) AT — Wt ]

< B2+ 208012 4 SALAY? 4 952 A2,

Recall that A is SPD, so Ayin(A), the smallest eigenvalue of A, is positive. This implies
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[P+ wk 14 > A (A) [ w* T + w2, Choose € = § and § = %. Since L{jw™N T2+

|w™||* + 2A82||Aw™N |2 > 0 by Theorem 30, it can be omitted from the above equation.

Therefore (4.8) simplifies to

At}‘min A — 3)\mzn -
0<), [ 52| P 4 R | — 1”2}
k=1

< Blifas + 2A6CY% 4 + 2l (A2 AL Aw'(?)

which further reduces to

N
[”wk-&-l + wk—1H2 + ”wk—&-l _ wk—l”ﬂ < C(wl,wo).

k=1
The constant, C(w', w?), above depends on w' and w® but is independent of N. This implies

both |Jw* ™! + w* || - 0 and ||w**! — wk=1|2 — 0 as k — oo. O

Remark 32. Theorem 31 implies asymptotic stability about zero. These results may be
extended to include nonzero forcing terms on the right hand side, F* = F(t*), by linearity.

Let F, represent the nonzero forcing term in the equilibrium problem:
Aws + Mg = Fiye.

Then, if F¥ — F, as k — oo in the sense that the series, Z |F¥ — F||? converges,

by following the steps of Theorems 30 and 31 one concludes that wh + wh 2w,

E+1 _ , k-1

w w1 =0, and w* = ws.

4.2 NUMERICAL EXPERIMENTS

To illustrate the enhanced stability properties of (CNLFSTAB) we perform a simple numer-

ical experiment using MATLAB. Let

0
A= A=
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Set w® = [1,1)T and w' = [1, —1]7. If the system is stable, then [[w*|| — 0 as k — oo.

According to Theorem 29, (CNLF) is stable when At < 1. In Figure 4.1, the size of the

approximate solution, ||w*||, is computed at each time step and plotted against time. In the

first experiment, At = 0.99, which is within the stability region of (CNLF). Note how once

At > 1, (CNLF) becomes unstable, as seen in the middle and bottom graphs o