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Many environmental problems today involve the prediction of the migration of contaminants

in groundwater-surface water flow. Sources of contaminated groundwater-surface water flow

include: landfill leachate, radioactive waste from underground storage containers, and chem-

ical run-off from pesticide usage in agriculture, to name a few. Before we can track the

transport of pollutants in environmental flow, we must first model the flow itself, which

takes place in a variety of physical settings. This necessitates the development of accurate

numerical models describing coupled fluid (surface water) and porous media (groundwater)

flow, which we assume to be described by the fully evolutionary Stokes-Darcy equations.

Difficulties include finding methods that converge within a reasonable amount of time, are

stable when the physical parameters of the flow are small, and maintain stability and accu-

racy along the interface. Ideally, because there exist a wide variety of physical scenarios for

this coupled flow, we desire numerical methods that are versatile in terms of stability and

practical in terms of computational cost and time.

The approach to model this flow studied herein seeks to take advantage of existing

efficient solvers for the separate sub-flows by uncoupling the flow so that at each time level

we may solve a separate surface and groundwater problem. This approach requires only one

(SPD) Stokes and one (SPD) Darcy sub-physics and sub-domain solve per time level for the

time-dependent Stokes-Darcy problem. In this dissertation, we investigate several different

methods that uncouple groundwater-surface water flow, and provide thorough analysis of

the stability and convergence of each method along with numerical experiments.
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1.0 INTRODUCTION

Throughout history, the survival of humankind has depended largely on the accessibility of

sufficient quantities of clean freshwater for agricultural, industrial, and domestic purposes.

Of all the water on planet Earth, only 2.5% of it is freshwater, with the majority of it being

frozen and inaccessible (see, for example, [11] for more details on the scarcity of freshwa-

ter). Groundwater contained in aquifers makes up 90% of the world’s available freshwater.

Unfortunately, this valuable resource frequently becomes contaminated by both human and

natural processes. For example, in hydro-fracturing, a mixture of water with sand and chem-

icals is injected at high pressure into a well to create fractures to allow for the collection

of shale gas. The majority of the chemicals in this mixture are not recovered and eventu-

ally leave the well to contaminate local groundwater supply. In another example, pesticide

application in agriculture can have devastating effects on surrounding freshwater resources

due to chemical run-off into nearby rivers, lakes, and streams, and seepage deep into the

soil. Also, many storage facilities for radioactive materials exist underground. Over time as

storage containers become compromised, nuclear waste can migrate into nearby freshwater

aquifers. Even natural processes may result in contaminated freshwater, such as salt-water

intrusion in coastal aquifers.

Before we can track the movement of contaminants, we must first develop numerical

models which accurately describe and predict this coupled flow. Separate groundwater and

surface water flows have been studied by many scientists. See, for example, Pinder and Celia

[58], Watson and Burnett [70], or Bear [8] for an extensive study on subsurface flows. An

in-depth description of surface flow can be found, for example, in Kundu and Cohan [43].

There exist many accurate and efficient solvers for the independent flows. Difficulty arises,

however, when we consider the interaction of groundwater with surface water, resulting in a
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challenging coupled problem. To model such a flow, we need to preserve the physics of the

sub-flows in each region, yet still accurately describe the interaction of fluids between the two

media. One way to approach this problem is to start from scratch and develop new codes

and solvers. Instead, this research seeks to make use of the existing solvers for separate fluid

and porous media flow by investigating methods that uncouple the flow equations in time

so that the individual flow problems may be solved separately. Called partitioned methods,

these methods allow us to utilize, in a black-box manner, solvers already optimized for the

separate flow problems.

It is important that the partitioned methods maintain stability and accuracy along the

interface where the two flows meet. Also, potentially small physical parameters create an

additional challenge for stability. Because groundwater moves slowly, we are concerned with

methods that are stable over long-time intervals, since numerical simulations may span long-

time periods. Along these same lines, we want methods that converge within a reasonable

amount of time to be of practical use, making higher-order convergence a desirable prop-

erty. In this work, we will present and analyze several partitioned methods applied to the

groundwater-surface water flow problem.

The modeling of this coupled fluid-porous media flow begins with the coupling of the

Stokes or Navier-Stokes equations describing the flow in the fluid region, along with the

Darcy or Brinkman equations for the flow in the aquifer, or porous media region containing

the groundwater. This research focuses on the Stokes-Darcy coupling which is suitable for

slow moving flows over large domains.

1.1 THE STOKES-DARCY EQUATIONS

Consider the equations describing the motion of an incompressible viscous fluid in a coupled

fluid-porous media domain of two or three dimensions (d = 2, 3). Denote the fluid region

by Ωf and the porous media region by Ωp. Assume both domains are bounded and regular.

Let I represent the interface between the two domains. An example of a coupled domain

for d = 2 can be seen in Figure 1.1. A brief description of the derivation of the equations of

2



Figure 1.1: Coupled Flow Domain

fluid motion in each domain ensues. For more details on the derivation of the surface and

groundwater flow equations, see, for example [7, 8, 70, 58].

1.1.1 The Stokes Equations

Begin with the equations of fluid motion in the fluid region. These equations arise from

conservation laws, namely conservation of mass and conservation of momentum. Let x0 ∈ Ωf ,

ε > 0. Consider a small ε-ball about x0, denoted by Bε := {x ∈ Ωf : |x − x0| ≤ ε}.

Conservation of mass in Bε states that the rate of change with respect to time of the net

amount of fluid mass in Bε is balanced by the net flux through the boundary of the ball

plus the sources multiplied by the volume. As an integral expression, assuming no sources

of mass, this becomes

d
dt

∫
Bε

ρ dx

 = −
∫
∂Bε

ρ(u · n̂) ds,

where ρ = ρ(x, t) represents the fluid density and u = u(x, t) the fluid velocity in Ωf ,

with n̂ being the outward-oriented unit normal. After applying the Divergence Theorem,

3



this becomes

d
dt

∫
Bε

ρ dx

 = −
∫
Bε

∇ · (ρu) dx.

Assuming continuity in all variables, if we shrink this ball to a point, then, since x0 was

arbitrary, we obtain the partial differential equation for conservation of mass in a fluid:

ρt +∇ · (ρu) = 0 in Ωf × [0, T ]. (1.1)

Because this research specifically focuses on groundwater-surface water flow, we may assume

homogeneous incompressibility, meaning that the fluid density, ρ, does not vary in space and

is not sensitive to changes in fluid pressure, p. This means that ρ ≡ constant, and so (1.1)

becomes

∇ · u = 0 in Ωf × [0, T ], (1.2)

meaning the fluid velocity, u, is “divergence free”.

Next we discuss the second governing equation in fluid flow, conservation of momentum.

Because a fluid convects its own momentum, the rate of change of linear momentum is

balanced by the net forces acting on a collection of fluid particles. In relation to the collection

of fluid particles in Bε, the net forces acting on these particles are a combination of internal

(surface) forces and external forces. In integral form, this implies

∫
Bε

ρ
(
Du
dt

)
dx =

∫
∂Bε

−→
t ds+

∫
Bε

ff dx,

where Du
dt

= ut+u ·∇u is the material derivative of u, describing the evolution of velocity,
−→
t

represents the Cauchy stress vector, or internal forces, and ff represents the external forces.

The Cauchy stress vector,
−→
t , obeys a linear relationship with the shear stress tensor, Π.

Namely,
−→
t = n̂ ·Π. After implementing the Divergence Theorem, the surface integral of the

Cauchy stress vector becomes

4



∫
∂Bε

−→
t ds =

∫
Bε

∇ · Π dx.

Therefore, after letting ε → 0, assuming continuity in all variables, we obtain the partial

differential equation describing conservation of momentum in a fluid

ρ(ut + u · ∇u) = ∇ · Π + ff in Ωf × [0, T ]. (1.3)

For this research, we focus on slow moving, creeping flow, or flow at low Reynolds’ numbers.

This means that the convective term, u ·∇u, may be omitted from the equation because this

quadratic nonlinear term is negligible compared to other terms in the equation. Thus, the

equation for conservation of momentum becomes

ρut −∇ · Π = ff in Ωf × [0, T ]. (1.4)

The shear stress tensor, Π, represents the tangential (viscous) and normal (pressure)

forces in the fluid, with Π = 2µD − pI. µ represents the dynamic viscosity of the fluid,

D := 1
2
(∇u+∇uT ) the deformation tensor, and I the identity tensor. Since ∇ · (∇uT ) = 0̂,

(1.4) is equivalent to

ρut − ν∆u+∇p = ff in Ωf × [0, T ]. (1.5)

Going forward, assume that the fluid pressure, p and forcing term, ff have been rescaled

by the fluid density, ρ, which is constant (p ≡ 1
ρ
p, ff ≡ 1

ρ
ff ). Also, in lieu of the dynamic

viscosity, µ, we will refer to the kinematic viscosity, ν = µ
ρ
. For the boundary condition,

assume u = 0̂ on the external boundary, ∂Ωf \ I. We also assume an initial condition. Thus,

the evolutionary Stokes equations governing the flow in the fluid region become

ut − ν∆u+∇p = ff in Ωf × [0, T ],

∇ · u = 0 in Ωf × [0, T ],

u = 0 on ∂Ωf\I × [0, T ],

u(x, 0) = u0(x) in Ωf .

(Stokes)
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Table 1.1: Sample values (percentages) of volumetric porosity for various materials (Bear [8] p.
46.)

Material Porosity Value (percent) Material Porosity Value (percent)

Peat soil 60− 80 Gravel and sand 30− 35

Soil 50− 60 Gravel 30− 40

Clay 45− 55 Sandstone 10− 20

Silt 40− 50 Shale 1− 10

Uniform sand 30− 40 Limestone 1− 10

1.1.2 The Darcy Equation

Next we discuss the equations of fluid motion in the aquifer, or porous media region. Let

n represent the volumetric porosity of the porous media. A dimensionless percentage, n

represents the ratio of the volume of void space to the bulk volume. See Table 1.1 for sample

values of porosity percentages from Bear [8] p. 46. Let q represent the specific discharge and

fp the sources in Ωp. Then the conservation of mass equation in the porous media region

reads

∂(ρn)

∂t
+∇ · (ρq) = fp in Ωp × [0, T ]. (1.6)

Other variables of interest in the aquifer flow problem include the hydraulic (piezometric)

head, or Darcy pressure, φ, which satisfies

φ = z + 1
ρg
pp

= elevation head + pressure head

where pp represents the fluid pressure in Ωp. By the chain rule, the first term in (1.6), ∂(ρn)
∂t

6



can be written as

∂(ρn)
∂t

= ∂ρ
∂t
n+ ρ∂n

∂t
.

Consider the term, ∂ρ
∂t
. Water is slightly compressible, meaning ρ depends weakly on the

pressure head, pp, and in turn on φ. By chain rule, ∂ρ
∂t

= ∂ρ
∂φ

∂φ
∂t

. Let β represent the

compressibility of water, or the measure of volume changes when water is subjected to

changes in normal pressures. By definition

β = 1
ρ
∂ρ
∂pp

= constant,

By chain rule, ∂ρ
∂pp

= ∂ρ
∂φ

∂φ
∂pp

. Thus

∂ρ
∂t

= ∂ρ
∂φ

∂φ
∂t

=

(
∂ρ
∂pp

(
∂φ
∂pp

)−1
)

∂φ
∂t

= (ρ2gβ)∂φ
∂t
.

Aquifers are poroelastic media, meaning that the spaces between the pores expand and

contract in response to changes in pressure. In Bear [7] pp.204-206 it is shown that

∂n
∂t

= ∂n
∂pp

∂pp
∂t

= ∂n
∂pp
ρg ∂φ

∂t

= α′(1− n)ρg ∂φ
∂t
,

where α′ represents the coefficient of compressibility for a fixed mass of moving solids. There-

fore, our conservation of mass equation now reads

ρ2g(α′(1− n) + βn)φt −∇ · (ρq) = fp in Ωp × [0, T ]. (1.7)

The specific (volumetric) storativity of an aquifer, S0, is defined as S0 := ρg(α′(1− n) +

βn) (see [7], p. 207). It refers to the volume of water an aquifer releases per unit volume due

to a unit decrease in the hydraulic head, φ, while remaining fully saturated. In simple cases

when an aquifer is homogeneous and non-deformable, S0 is a constant. More realistically, it

7



is bounded function dependent on space. The research presented herein will assume that S0

is constant, but may be extended naturally to S0 = S0(x) being a bounded function. See

Table 1.2 for sample values of S0 for various types of porous media gathered from Domenico

and Mifflin [28] and Johnson [42]. Using this specific storage parameter, S0, (1.7) becomes

ρS0φt +∇ · (ρq) = fp in Ωp × [0, T ]. (1.8)

Next, we implement Darcy’s Law. Darcy’s law relates the specific discharge, q, to the

hydraulic head by

q = −K∇φ in Ωp × [0, T ],

where K represents the hydraulic conductivity tensor. This tensor represents the ease with

which water moves through pore spaces or fractures. The tensor, K, is symmetric positive

definite (SPD) and unless the aquifer is homogeneous, depends on space. Let kmin represent

the smallest eigenvector of K. Depending on the composition of the aquifer, this eigenvalue

could be very small. See Table 1.3 for sample values of kmin taken from Bear in [8].

Consider the term ∇ · (ρq) = q∇ρ + ρ∇ · q. Since ∇ρ is negligible in comparison to the

other terms, we omit it from the equation. Thus (1.8), representing the conservation of mass

in the aquifer, becomes

S0φt −∇ · (K∇φ) = fp in Ωp × [0, T ], (1.9)

where we have rescaled the source function, fp, by the density, ρ.

In addition to the conservation of mass in the aquifer, we assume φ = 0 on the external

boundary as well as an initial condition. This completes the Darcy equation governing flow

in the porous media.

S0φt −∇ · (K∇φ) = fp in Ωp × [0, T ],

φ = 0 on ∂Ωp \ I × [0, T ],

φ(x, 0) = φ0(x) in Ωp.

(Darcy)
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Table 1.2: Values of specific (volumetric) storativity, S0, for different materials in a confined
aquifer (see Domenico and Mifflin [28] and Johnson [42]).

Material Specific Storage S0 (m−1)

Plastic clay 2.6× 10−3 − 2.0× 10−2

Stiff clay 1.3× 10−3 − 2.6× 10−3

Medium hard clay 9.2× 10−4 − 1.3× 10−3

Loose sand 4.9× 10−4 − 1.0× 10−3

Dense sand 1.3× 10−4 − 2.0× 10−4

Dense sandy gravel 4.9× 10−5 − 1.0× 10−4

Rock, sound less than 3.3× 10−6

1.1.3 Coupling Conditions Along the Interface

The (Stokes) and (Darcy) equations describe the fluid motion in the separate domains. To

study the coupled flow necessitates the addition of coupling conditions describing the flow

along the interface, I.

The first coupling condition represents conservation of mass along the interface. In Ωp,

the (averaged) fluid velocity, up, satisfies, up = q
n
. Conservation of mass along the interface

implies

u · n̂f + up · n̂p = 0 on I, or using Darcy’s Law,

nu · n̂f −K∇φ · n̂p = 0 on I,
(Coupling 1)

where n̂f/p represent the outward oriented unit normal vectors on the interface in each sub-

domain. The second coupling condition describes the balance of normal forces along the

interface. Recall that in a fluid body the Cauchy stress vector,
−→
t , represents the inter-

nal forces exerted on a fluid volume by the fluid outside this volume. It satisfies a linear

relationship with the stress tensor, Π,
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Table 1.3: Values of kmin, the smallest eigenvector of the hydraulic conductivity tensor, K, for
various materials (see Bear [8]).

Material Hydraulic Conductivity kmin (m/s)

Well sorted gravel 10−1 − 100

Highly fractured rocks 10−3 − 100

Well sorted sand or sand & gravel 10−4 − 10−2

Oil reservoir rocks 10−6 − 10−4

Very fine sand, silt, loess, loam 10−8 − 10−5

Layered Clay 10−8 − 10−6

Sandstone, limestone, dolomite, granite 10−12 − 10−7

Fat/Unweathered Clay 10−12 − 10−9

−→
t = n̂f · Π.

Thus the normal forces on I emanating from Ωf are given by −−→t · n̂f . The normal forces

on I exerted by Ωp are ρgφ. This yields the second coupling condition:

−−→t · n̂f = ρgφ. (Coupling 2)

The third and final condition accounts for viscosity on the interface by enforcing a con-

dition on the tangential fluid velocity. The exact mathematical formulation of this condition

is not completely understood. In part this may be due to trying to match the point-wise

velocity, u, in the fluid region, Ωf to the average velocity, up, in the porous media region, Ωp.

Let {τ̂i}d−1
i=1 be an orthonormal set of tangent vectors on I. The most natural assumption

would be “no-slip” on the boundary, i.e.

u · τ̂j = up · τ̂j = 0 for j = 1, ..., d− 1.

However, this did not reflect experimental data discovered by Beavers and Joseph in 1967
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[9]. Through several experiments, they noted that the mass flux through Ωf is larger than

that predicted by the no-slip boundary conditions. Their experiments led them to derive

the following slip-flow condition, expressing that slip velocity along I is proportional to the

shear stresses along I.

(u− up) · τ̂j =

(√
τ̂j · K · τ̂j
αBJ

)
(−−→t · τ̂j) for j = 1, ..., d− 1

Here αBJ represents the experimentally determined slip coefficient. It depends solely on

the porous media properties and ranges from .01 to 5 (see [9]). In 1971, Saffman [63] proposed

a modification to the Beavers-Joseph coupling condition. This proposal dropped the porous

media averaged velocity based on observations showing that the term up · τ̂j is negligible

compared to the fluid velocity u · τ̂j. Referred to as the Beavers-Joseph-Saffman (-Jones)

coupling condition, this is the third and final coupling condition used in this research:

u · τ̂j = −
√
τ̂j · K · τ̂j
αBJ

−→
t · τ̂j. (Coupling 3)

1.1.4 The Evolutionary Stokes-Darcy Equations

We review the fully evolutionary, Stokes-Darcy system. Let Ωf represent the fluid region and

Ωp the porous media region, or aquifer. Let 0 < T ≤ ∞. The time-dependent Stokes-Darcy

problem reads: Find u, p, φ satisfying

ut − ν∆u+∇p = ff in Ωf × [0, T ],

∇ · u = 0 in Ωf × [0, T ],

 (Stokes)

S0φt −∇ · (K∇φ) = fp in Ωp × [0, T ],
}

(Darcy)

nu · n̂f −K∇φ · n̂p = 0 on I × [0, T ],

νn̂f · ∇u · n̂f − p = −gφ on I × [0, T ],

u · τ̂j = −ρ
√
τ̂j ·K·τ̂j
αBJ

νn̂f · ∇u · τ̂j for any tangent, τ̂j on I × [0, T ],

 (Coupling)
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u = 0 on ∂Ωf \ I × [0, T ],

φ = 0 on ∂Ωp \ I × [0, T ],

 (Boundary Conditions)

u(x, 0) = u0(x) in Ωf , φ(x, 0) = φ0(x) in Ωf ,
}

(Initial Conditions)

where the variables and parameters are as follows:

u = fluid velocity in Ωf (Stokes velocity),

p = kinematic fluid pressure in Ωf (Stokes pressure),

φ = hydraulic head in Ωp(Darcy pressure) = elevation head + pressure head,

ff = body forces in Ωf ,

fp = sources in Ωp,

ν = kinematic viscosity of fluid,

K = hydraulic conductivity tensor,

S0 = specific (volumetric) storage,

g = gravitational acceleration constant,

n = volumetric porosity percentage,

αBJ = measured slip coefficient.

1.2 VARIATIONAL FORMULATION AND PRELIMINARIES

Having derived the fully evolutionary Stokes-Darcy problem, the next step towards numerical

approximation of solutions to this coupled problem is to derive the variational formulation.

Let (., .)f/p represent the L2-inner product over the regions Ωf and Ωp respectively. Let

< ., . >I represent the L2-inner product over I. Denote the L2 and H1 norms induced by

these inner products by ‖.‖f/p/I and ‖.‖1,f/p/I .

Consider the conservation of momentum equation in the Stokes equations (Stokes).

Choose the test function space Xf = {v ∈ (H1(Ωf ))
d : v = 0 on ∂Ωf\I}. Multiply by
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v ∈ Xf and integrate over Ωf to obtain

(ut, v)f − (ν∆u, v)f + (∇p, v)f = (ff , v)f .

Consider the term (ν∆u, v)f . After integrating by parts and applying the Divergence

Theorem, since v = 0 on Ωf \ I, this becomes

(ν∆u, v)f =< νn̂f · ∇u, v >I −(ν∇u,∇v)f .

Similarly, the Stokes pressure term is equivalent to

(∇p, v)f =< p, v · n̂f >I −(p,∇ · v)f .

Thus, the conservation of momentum equation becomes

(ut, v)f + (ν∇u,∇v)f − (p,∇ · v)f− < νn̂f · ∇u, v >I − < p, v · n̂f >I= (ff , v)f (1.10)

Rewrite the first interface term, − < νn̂f · ∇u, v >I , in terms of normal and tangential

components: n̂f ·∇u = (n̂f ·∇u · n̂f )n̂f + (n̂f ·∇ · τ̂j)τ̂j, v = (v · n̂f )n̂f +
d−1∑
j=1

(v · τ̂j)τ̂j. Utilizing

that n̂f · τ̂j = 0, this first interface term may be written as

− < νn̂f · ∇u · n̂f , v · n̂f >I −
d−1∑
j=1

〈νn̂f · ∇u · τ̂j, v · τ̂j〉I

Together the interface terms in (1.10) equal

− < νn̂f · ∇u · n̂f − p, v · n̂f >I −
d−1∑
j=1

〈νn̂f · ∇u · τ̂j, v · τ̂j〉I .

Therefore, by the second and third coupling conditions (Coupling), (1.10) becomes

(ut, v)f + (ν∇u,∇v)f +
d−1∑
j=1

∫
I

αBJ

ρ
√
τ̂j · K · τ̂j

〈u · τ̂j, v · τ̂j〉I

−(p,∇ · v)f + g < φ, v · n̂f >I= (ff , v)f

(1.11)
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We next derive the variational formulation of the Darcy equation in the coupled system.

Begin with the conservation of mass equation in (Darcy) in the porous media region:

S0φt −∇ · (K∇φ) = fp in Ωp × [0, T ].

Let ψ ∈ Xp = {ψ ∈ H1(Ωp) : φ = 0 on ∂Ωp\I}. Multiply both sides by ψ and integrate

over the porous media domain. Integrate by parts once and apply the Divergence Theorem

to obtain

(fp, ψ)p = (S0φt, ψ)p − (∇ · (K∇φ, ψ)p

= (S0φt, ψ)p− < K∇φ · n̂p, ψ >I +(K∇φ,∇ψ)p

Multiply through by g and apply the first coupling condition in (Coupling).

(gfp, ψ)p = (gS0φt, ψ)p − gn < u · n̂f , ψ >I +g(K∇φ,∇ψ)p

To simplify notation, define the following bilinear forms. Let af (., .) : Xf × Xf → R,

b(., .) : Qf ×Qf → R, ap(., .) : Xp → R, and cI(., .) : Xp ×Xf → R. Define

af (u, v) = nν

∫
Ωf

∇u : ∇v dx+
d−1∑
j=1

∫
I

αBJn

ρ
√
τ̂j · κ · τ̂j

(u · τ̂j)(v · τ̂j) ds, (1.12)

b(v, q) = n

∫
Ωf

q∇ · v dx, (1.13)

ap(φ, ψ) = g

∫
Ωp

∇ψ · K · ∇φ dx, (1.14)

cI(v, ψ) = gn

∫
I

ψv · n̂f . ds. (1.15)

Thus, the variational formulation for the coupled Stokes-Darcy problem is given by
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For every t > 0 find u(., t) ∈ Xf , p(., t) ∈ Qf , φ(., t) ∈ Xp

satisfying for all v ∈ Xf , q ∈ Qp, ψ ∈ Xp :

n(ut(t), v)f + af (u(t), v)− b(v, p(t)) + cI(v, φ(t)) = n(ff (t), v)f ,

b(u(t), q) = 0,

g(S0φt(t), ψ)p + ap(φ(t), ψ)− cI(u(t), ψ) = g(fp(t), ψ)p.

(1.16)

Notice that this is an exactly skew-symmetric coupling. Studies on the existence and

uniqueness of solution to this continuous problem in stationary form can be found in [24, 45].

Using the Trace and Poincaré inequalities given below, one can show that the bilinear forms

af (., .) in (1.12) and ap(., .) in (1.14) are both continuous and coercive on their respective

domains, as given in Lemma 3.

Lemma 1. (A Trace Inequality) Let Ω be a bounded regular domain, u ∈ H1(Ω). Then there

exists a constant CΩ > 0 depending on the domain Ω such that the following inequality holds.

‖u‖L2(∂Ω) ≤ CΩ‖u‖
1
2

L2(Ω)‖∇u‖
1
2

L2(Ω).

Proof. See, for example Brenner and Scott in [10], Ch. 1.6 p.36-38.

Lemma 2. (Poincaré Inequality) Let v ∈ Xf , ψ ∈ Xp. Then there exists a constant CP > 0

such that the following holds for w = v or ψ.

‖w‖ ≤ CP‖∇w‖.

Lemma 3. (Continuity and Coercivity of the Bilinear Forms) The following inequalities

hold:

af (u, v) ≤Mf‖∇u‖f‖∇v‖f ,

ap(φ, ψ) ≤ gkmax‖∇φ‖p‖∇ψ‖p,

af (u, u) ≥ nν‖∇u‖2
f ,

ap(φ, φ) ≥ gkmin‖∇φ‖2
p,
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where Mf = n

(
ν +

αBJCP,fCΩf

ρ
√
kmin

)
> 0.

Proof. We show the proof for the continuity of af (., .). Let u, v ∈ Xf . Recall that because

K is (SPD), kmin > 0. By the Cauchy-Schwarz, Trace, and Poincaré inequalities,

af (u, v) ≤ nν‖∇u‖f‖∇v‖f +
d−1∑
i=1

nαBJ

ρ
√
τ̂i·K·τ̂i

‖u · τ̂i‖I‖v · τ̂i‖I

≤ nν‖∇u‖f‖∇v‖f + nαBJ

ρ
√
kmin

d−1∑
i=1

‖u · τ̂i‖I‖v · τ̂i‖I

≤ nν‖∇u‖f‖∇v‖f +
nαBJCP,fCΩf

ρ
√
kmin

‖∇u‖f‖∇v‖f .

Coercivity of af (., .) and ap(., .) follows immediately from calculating af (u, u) and ap(φ, φ)

and the fact that K is SPD. Likewise, continuity of ap(., .) follows by the Cauchy-Schwarz

inequality and boundedness of K.

Next we derive an energy estimate for the solutions to (1.16). Define the following norms

on the dual spaces, (Xf )
∗ and (Xp)

∗.

‖f‖−1,f/p = sup
06=w∈Xf/p

(f, w)f/p
‖∇w‖f/p

Lemma 4. (Energy Estimate for Stokes-Darcy) Let (u(t), p(t), φ(t)) ∈ (Xf , Qf , Xp)× [0, T ]

be solutions to (1.16). Then, for any 0 < t ≤ T ,

n‖u(t)‖2
f+gS0‖φ(t)‖2

p + nν

∫ t

0

‖∇u(s)‖2
f ds+ gkmin

∫ 2

0

‖∇φ(s)‖2
p ds

≤ m

ν

∫ t

0

‖ff (s)‖2
−1,f ds+

g

kmin

∫ t

0

‖fp(s)‖2
−1,p ds+ n‖u0‖2

f + gS0‖φ0‖2
p.

Proof. Set v = u and ψ = φ in (1.16) and add the first and third equations. By skew-

symmetry, the coupling terms cancel, leaving

n(ut, u)f + (gS0φt, φ)p + af (u, u) + ap(φ, φ) = n(ff , u)f + (gfp, φ)p
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Note that (ut, u)f = 1
2
d
dt
‖u‖2 and similar for (φt, φ)p. Apply coercivity of the two bilinear

forms, utilize the dual norm, and implement Young’s inequality on the right-hand side to

obtain

1
2
d
dt

(
n‖u‖2 + gS0‖φ‖2

)
+ nν

2
‖∇u‖2

f + gkmin
2
‖∇φ‖2

p ≤ n
2ν
‖ff‖2

−1,f + g
kmin
‖fp‖2

−1,p.

Integrating in time produces the energy estimate for the coupled system.

1.3 SEMI-DISCRETE APPROXIMATION USING THE FINITE ELEMENT

METHOD

Having established the variational formulation of the fully evolutionary Stokes-Darcy prob-

lem (1.16), we next discretize the problem in space using the Finite Element Method (FEM).

Select quasi-uniform meshes for Ωf and Ωp, T fh1
and T ph2

respectively. Let Th = T fh1

⋃
T ph2

,

with the maximum triangle diameter over the combined meshes denoted by h. Select finite

element spaces,

Stokes velocity: Xh
f ⊂ Xf ,

Darcy pressure: Xh
p ⊂ Xp,

Stokes pressure: Qh
f ⊂ Qf ,

based on a conforming FEM triangulation. We assume that the Stokes velocity-pressure

FEM spaces, Xh
f and Qh

f , satisfy the usual discrete inf-sup condition for stability of the

discrete pressure, denoted by (LBBh) (see, for example, [34]), and stated below.

∃ βh > 0 such that inf
qh∈Qhf , qh 6=0

sup
vh∈Xh

f , vh 6=0

(qh,∇ · vh)f
‖∇vh‖f‖qh‖f

> βh (LBBh)

No assumption is made on the mesh compatibility or inter-domain continuity on the interface,

I, between the two FEM meshes in the two sub-domains. Assume that Xh
f , X

h
p , and Qh

f

satisfy approximation properties of piecewise polynomials on quasi-uniform meshes of local
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degrees r − 1, r, and r + 1. That is,

inf
xh∈Xh

f

‖u− xh‖f ≤ Chr+1‖u‖Hr+1(Ωf ),

inf
xh∈Xh

f

‖u− xh‖H1(Ωf ) ≤ Chr‖u‖Hr+1(Ωf ),

inf
yh∈Xh

p

‖φ− yh‖p ≤ Chr+1‖φ‖Hr+1(Ωp),

inf
yh∈Xh

p

‖φ− yh‖H1(Ωp) ≤ Chr‖φ‖Hr+1(Ωp),

inf
zh∈Qhf

‖p− zh‖f ≤ Chr+1‖p‖Hr+1(Ωf ).

(1.17)

Analysis of some of the methods considered in this research requires an inverse inequality

given below in Lemma 5. Note that this assumption implies a minimum angle condition. See

Brenner and Scott, [10], chapter 4 for more on inverse inequalities. The inverse inequality

constant, C(inv), depends on the angles in the mesh, but not the domain size or shape.

Lemma 5. (An Inverse Inequality) Let wh ∈ Xh
f or Xh

p , then

h‖∇wh‖f/p ≤ C(inv)‖wh‖f/p.

The semi-discretization for the coupled Stokes-Darcy problem is as follows.

Find (uh(·, t), ph(·, t), φh(·, t)) : [0,∞)→ (Xh
f , Q

h
f , X

h
p )

satisfying for all (vh, qh, ψh) ∈ (Xh
f , Q

h
f , X

h
p ),

n(uh,t, vh)f + af (uh, vh)− b(vh, ph) + cI(vh, φh) = n(ff , vh)f ,

b(uh, qh) = 0,

gS0(φh,t, ψh)p + ap(φh, ψh)− cI(uh, ψh) = g(fp, ψh)p.

(FEM-SD)

Note in particular the preservation of the skew-symmetric coupling between the Stokes and

the Darcy sub-problems.

After applying the Finite Element Method to the Stokes-Darcy problem, the system can
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be further reduced to a coupled evolution equation of the form

ut + Afu+ Cφ = Ff ,

φt + Apφ− Cu = Fp,
(1.18)

where Af and Ap are SPD and C = CT . Like the Stokes-Darcy semi-discretization

in (FEM-SD), the above coupling is exactly skew-symmetric. The equations may then be

written as a 2-block ODE system:

d

dt

u
φ

+

Af 0

0 Ap

u
φ

+

 0 C

−C 0

u
φ

 =

Ff
Fp

 . (1.19)

This, in turn may be further simplified to an evolution equation of the form

wt + Aw + Λw = F, (1.20)

where A is SPD, and Λ is exactly skew symmetric (ΛT = −Λ). While most of the methods

presented in this research will be applied directly to (FEM-SD) so that we may study effects

of small parameters in the Stokes-Darcy problem, there will be times when it is helpful to

refer to one of the aforementioned simpler systems.

1.3.1 Partitioned Methods

As mentioned previously, the challenges of the Stokes-Darcy problem include (i) capturing

with accuracy the different physical process happening in each sub-domain, (ii) computing

solutions over large domains and long-time intervals, and finally, (iii) maintaining stability

when faced with small parameters such as specific storage, S0, and hydraulic conductivity,

kmin, as discussed in Section 1.1.2. Stability regardless of small parameters is a key role in

developing methods for groundwater-surface water flow, since the singular limits S0 → 0 and

kmin → 0 have physical relevance given confined aquifers and impermeable porous media.

There has been considerable growth in the development and study of numerical meth-

ods for Stokes-Darcy coupled problems. A recent summary of methods and analyses of the

Stokes-Darcy coupling can be found in [25]. Studies on the continuum model have been

performed in [37, 9, 15, 57, 63]. The analysis of the equilibrium problem is advanced, see for
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example, [45, 24, 12, 26, 59, 61]. A more recent survey of the Stokes-Darcy domain decom-

position for the equilibrium problem has been studied in [23, 27]. Analysis and development

of methods for the time-dependent problem using the Beavers-Joseph interface conditions

can be found in [16, 15, 14, 13]. Studies on extensions to the Navier-Stokes-Darcy coupling

were performed in [6, 1, 25, 35].

The methods developed and analyzed in this research uncouple the Stokes-Darcy equa-

tions so that at each time step one can solve a separate Stokes and Darcy problem. Called

partitioned methods, these algorithms allow us to utilize existing legacy codes already opti-

mized for the sub-flows, thus minimizing computational cost and time. Partitioned methods

for the Stokes-Darcy problem were first proposed by Mu and Zhu in [56]. The methods they

proposed were first-order convergent. These partitioned methods uncouple the equations by

utilizing implicit-explicit (IMEX) time-discretization, in particular by treating the coupling

terms explicitly. Some general theory on (IMEX) discretizations can be found in [4, 33, 3, 69].

There are three main types of partitioned methods: parallel, splitting, and asynchronous.

Parallel partitioned methods uncouple the equations so that the separate sub-problems may

be solved in parallel, whereas splitting methods require you to solve them sequentially at

each time step. Asynchronous methods allow one to take different time step sizes in each

domain. More studies on partitioned methods for two domain problems have been performed

in [17, 18, 19, 67]. In particular, in [49], Layton and Trenchea studied the stability of two

(IMEX) partitioned methods applied to the related coupled evolution equations in (3.1).

Partitioned methods specifically for the Stokes-Darcy method have been studied in

[56, 47, 48]. Asynchronous partitioned methods for Stokes-Darcy have been proposed and

studied in [46, 73]. In this research, we will focus on error analysis for some the splitting

partitioned methods presented in [47], presented in Chapter 2. The primary focus of this

research, however, is to study higher-order methods, thus making computations over long-

time intervals more efficient. The methods studied in Chapters 3-5 are both summaries and

expansions on ideas presented by the author in [65, 66, 41].
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2.0 SPLITTING METHODS FOR THE STOKES-DARCY PROBLEM

In this chapter we study the convergence properties of splitting methods applied to the

Stokes-Darcy problem. As mentioned previously, the goal of a partitioned method is to

decompose this complicated dual-physics problem into two, simpler, sub-physics problems.

A splitting method accomplishes this goal by uncoupling the Stokes-Darcy equations in such

a way that at each time level, we may solve the Stokes (Darcy) problem first and then use

that solution to solve the Darcy (Stokes) problem. This idea of “splitting-up” a complicated

problem in mathematical physics so that it may be solved sequentially has been well-studied,

see for example [50, 51, 53, 52, 74].

The splitting methods studied in this chapter were proposed by Layton, Tran, and Xiong

in [48]. In their work, they analyzed the stability properties of four splitting methods and

performed several numerical tests on stability and convergence. In this chapter, the au-

thor expands on [48] by performing convergence analysis on three of the splitting meth-

ods, (BEsplit1-SD), (BEsplit2-SD), and (CNsplit-SD). The first two splitting methods,

(BEsplit1-SD) and (BEsplit2-SD) are first-order convergent, but exhibit good stability

properties when faced with either small kmin or small S0 (but not both). The third splitting

method studied, herein, (CNsplit-SD), has better convergence properties, but exhibits very

restrictive stability properties.

The convergence analyses of the aforementioned methods presented in this chapter will

utilize the equilibrium projection operator for the Stokes-Darcy problem, defined as follows.
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Let T ∈ (0,∞). Define the equilibrium projection operator, Ph by

Ph : (Xf , Qf , Xp)→
(
Xh
f , Q

h
f , X

h
p

)
,

Ph : (u(t), p(t), φ(t))→ (Phu(t), Php(t), Phφ(t)),∀t ∈ [0, T ]

where (Phu(t), Php(t), Phφ(t)) satisfies

af (u(t), vh)− b(vh, p(t)) + cI(vh, φ(t))

= af (Phu(t), vh)− b(vh, Php(t)) + cI(vh, Phφ(t)),

b(Phu(t), qh) = 0,

ap(φ(t), ψh)− cI(u(t), φh) = ap(Phφ(t), ψh)− cI(Phu(t), ψh).

(SD-proj)

The operator, Ph, exists and is well defined, see for example [23, 24]. Under certain regularity

assumptions, there holds

‖Phw(t)− w(t)‖f/p ≤ Ch2‖w(t)‖f/p,

‖∇(Phw(t)− w(t))‖f/p ≤ Ch‖∇w(t)‖f/p,

‖Php(t)− p(t)‖f ≤ Ch‖p(t)‖f ,

(2.1)

for w = u, φ. The first inequality above is derived in [55], and the second two inequalities

are derived in [23].

Denote the true solutions at time tk to the Stokes-Darcy equation (1.16) by (uk, pk, φk),

whereas solutions to a numerical approximation to (1.16) at time tk are given by (ukh, p
k
h, φ

k
h).

The true solution satisfies the equation below.

n(uk+1
t , vh)f + gS0(φk+1

t , ψh)p + af (u
k+1, vh) + ap(φ

k+1, ψh)

+cI(vh, φ
k+1)− cI(uk+1, ψh)− b(vh, pk+1)

= n(fk+1
f , vh)f + g(fk+1

p , ψh)p

If we apply the projection property (SD-proj) for tk+1 to the above equation, we obtain

n(uk+1
t , vh)f + gS0(φk+1

t , ψh)p + af (Phu
k+1, vh) + ap(Phφ

k+1, ψh)

+cI(vh, Phφ
k+1)− cI(Phuk, ψh)− b(vh, Phpk+1) = n(fk+1

f , vh)f + g(fk+1
p , ψh)p

(2.2)
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In the following analyses, we utilize a special treatment of the coupling terms, cI(., .)

that requires an additional inequality, proven by Moraiti in [54]. The inequality holds under

conditions on the domains Ωf ,Ωp. The constant Cf,p depends on Ωf/p and in the special

case of a flat interface I, with Ωf and Ωp being arbitrary domains, Cf,p equals 1 (we will

assume that our domain fits this case). See Moraiti in [54] Section 3 Lemmas 3.1 and 3.2 for

further details on the derivation of this inequality.

|cI(u, φ)| ≤ ng‖u‖DIV,f‖φ‖1,p. (HDIV-trace)

Furthermore, we will need the following bounds for consistency errors produced by the

(BEsplit1-SD),(BEsplit2-SD),(CNsplitA-SD),and (CNsplitB-SD) methods.

Lemma 6.

∆t
N−1∑
k=0

‖uk+1 − uk −∆tuk+1
t ‖2

f ≤ ∆t4

3
‖utt‖2

L2(0,T ;L2(Ωf )), (2.3)

∆t
N−1∑
k=0

‖φk+1 − φk −∆tφk+1
t ‖2

p ≤ ∆t4

3
‖φtt‖2

L2(0,T ;L2(Ωp)), (2.4)

∆t
N−1∑
k=0

‖uk+1 − uk‖2
f ≤ ∆t‖ut‖2

L2(0,T ;L2(Ωf )), (2.5)

∆t
N−1∑
k=0

‖φk+1 − φk‖2
p ≤ ∆t‖φt‖2

L2(0,T ;L2(Ωp)), (2.6)

∆t
N−1∑
k=0

‖(2uk+1 − 2uk)−∆t(uk+1
t + ukt )‖2

f ≤ 2∆t4

3
‖utt‖2

L2(0,T ;L2(Ωf )), (2.7)

∆t
N−1∑
k=0

‖(2φk+1 − 2φk)−∆t(φk+1
t + φkt )‖2

p ≤ 2∆t4

3
‖φtt‖2

L2(0,T ;L2(Ωp)), (2.8)

∆t
N−1∑
k=0

‖fk+1
f + fkf − 2f

k+1/2
f ‖2

f ≤ ∆t4

12
‖(ff )tt‖2

L2(0,T ;L2(Ωf )), (2.9)

∆t
N−1∑
k=0

‖fk+1
p + fkp − 2fk+1/2

p ‖2
p ≤ ∆t4

12
‖(fp)tt‖2

L2(0,T ;L2(Ωp)), . (2.10)

Proof. All inequalities can be shown using integration by parts along with the Cauchy-
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Schwarz inequality. For the first inequality,

∆t
N−1∑
k=0

∥∥(uk+1 − uk
)
−∆tuk+1

t

∥∥2

f
= ∆t

N−1∑
k=0

∫
Ωf

∥∥(uk+1 − uk
)
−∆tuk+1

t

∥∥2

2
dx

= ∆t
N−1∑
k=0

∫
Ωf

∥∥∥∥∥∥
tk+1∫
tk

(tk − t)utt dt

∥∥∥∥∥∥
2

2

dx

≤ ∆t
N−1∑
k=0

∫
Ωf

 tk+1∫
tk

(tk − t)2 dt

tk+1∫
tk

‖utt‖2
2 dt

 dx

= ∆t4

3
‖utt||2L2(0,T ;L2(Ωf )),

and similar for φ in (2.4).

Inequalities (2.6)-(2.7) are similar, so we only show the proof for φ:

∆t
N−1∑
k=0

‖φk+1 − φk‖2
p = ∆t

∫
Ωp

N−1∑
k=0

 tk+1∫
tk

φt dt

2

dx

≤ ∆t
N−1∑
k=0

∫
Ωp

 tk+1∫
tk

12 dt

tk+1∫
tk

|φt|22 dt

 dx

= ∆t2‖φt‖2
L2(0,T ;L2(Ωp)).

Inequality (2.7) follows below.

∆t
N−1∑
k=0

‖(2uk+1 − 2uk)−∆t(uk+1
t + ukt )‖2

f = ∆t
N−1∑
k=0

∫
Ωf

∥∥2
(
uk+1 − uk

)
−∆t(uk+1

t + ukt )
∥∥2

2
dx

= ∆t
N−1∑
k=0

∫
Ωf

∥∥∥∥∥∥
tk+1∫
tk

(tk+1 + tk − 2t)utt dt

∥∥∥∥∥∥
2

2

dx

≤ ∆t
N−1∑
k=0

∫
Ωf

 tk+1∫
tk

(tk+1 + tk − 2t)2 dt

tk+1∫
tk

‖utt‖2
2 dt

 dx

= 2∆t4

3
‖utt||2L2(0,T ;L2(Ωf ))

Proof of inequality (2.8) is omitted due to its similarity to the proof of inequality (2.7).
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Finally, we prove the last two inequalities.

∆t
N−1∑
k=0

‖fk+1
f/p + fkf/p − 2f

k+1/2
f/p ‖2

f/p =

∫
Ωf/p

 tn+1∫
tk+1/2

(ff/p)t dt+

tk∫
tk+1/2

(ff/p)t dt

2

dx

= ∆t
N−1∑
k=0

∫
Ωf/p

 ∫
tk+1/2

(t− tn+1)(ff/p)tt dt+

tk∫
tk+1/2

(t− tk)()ff,p,tt dt

2

dx

≤ 2∆t
N−1∑
k=0

∫
Ωf/p


 tk+1∫
tk+1/2

(t− tk+1(ff/p)tt dt)

2

+

 tk∫
tk+1/2

(t− tn)(ff/p)tt dt

2 dx

≤ 2∆t
N−1∑
k=0

∫
Ωf/p

 tk+1∫
tk+1/2

(t− tk+1)2dt

tk+1∫
tk+1/2

|(ff/p)tt|22dt+

tk∫
tk+1/2

(t− tk)2dt

tk∫
tk+1/2

|ff/p)tt|22dt

 dx
= ∆t4

12
‖(ff/p)tt‖2

L2(0,T ;L2(Ωf/p)).

Additionally, we will need the following bounds involving the projection operator.

Lemma 7.

N−1∑
k=0

‖(Ph − I)(uk+1 − uk)‖2
f ≤ C∆th4‖ut‖2

L2(0,T ;L2(Ωf )), (2.11)

N−1∑
k=0

‖(Ph − I)(φk+1 − φk)‖2
p ≤ C∆th4‖φt‖2

L2(0,T ;L2(Ωp)), , (2.12)

N−1∑
k=0

‖∇(Phu
k+1 − Phuk)‖2

f ≤ C∆t(h2 + 1)‖∇ut‖2
L2(0,T ;L2(Ωf )), , (2.13)

N−1∑
k=0

‖∇(Phφ
k+1 − Phφk)‖2

p ≤ C∆t(h2 + 1)‖∇φt‖2
L2(0,T ;L2(Ωp)), , (2.14)

Proof. We prove the first two using integration by parts and the Cauchy-Schwarz inequality,

followed by the projection error bounds given in (2.1). We show the proof for (2.12). The
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proof for (2.11) is similar.

N−1∑
k=0

‖(Ph − I)(φk+1 − φk)‖2
p =

N−1∑
k=0

∫
Ωp

(Ph − I)

tk+1∫
tk

φt dt

2

dx

≤
N−1∑
k=0

∫
Ωp

∆t

tk+1∫
tk

|(Ph − I)φt|2 dt

 dx

≤ C∆th4‖φt‖2
L2(0,T ;L2(Ωp)).

To prove inequalities (2.13)-(2.14), first note that by triangle inequality

‖∇(Phw
k+1 − Phwk)‖f/p ≤ ‖∇((Ph − I)(wk+1 − wk))‖f/p + ‖∇(wk+1 − wk)‖f/p,

for w = u, φ.

Therefore, similar to (2.11) and (2.12),

N−1∑
k=0

‖∇(Ph(w
k+1 − wk))‖2

f/p ≤ 2
N−1∑
k=0

(
‖∇((Ph − I)(wk+1 − wk))‖2

f/p + ‖∇(wk+1 − wk)‖2
f/p

)
≤ C∆t(h2 + 1)‖∇wt‖2

L2(0,T ;L2(Ωf/p)),

for w = u, φ.

2.1 CONVERGENCE OF THE BACKWARD-EULER SPLITTING

METHODS FOR STOKES-DARCY

The Backward-Euler Splitting Methods discretize the Stokes-Darcy problem, (1.16), in time

using the fully implicit Backward-Euler (BE) method, but lag the coupling term in either

the Stokes equation (BEsplit1-SD) or the Darcy equation (BEsplit2-SD) at the previous

time step. In doing so, these methods uncouple the equations so that at each time step one

solves a separate Stokes and Darcy problem sequentially, making this a splitting partitioned

method. The algorithms for (BEsplit1-SD) and (BEsplit2-SD) follow below.
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Definition 8. (Backward-Euler Splitting Method 1 for Stokes-Darcy (BEsplit1-SD))

Given (ukh, p
k
h, φ

k
h) in (Xh

f , Q
h
f , X

h
p ), find (uk+1

h , pk+1, φk+1
h ) satisfying for all (vh, qh, ψh) in

(Xh
f , Q

h
f , X

h
p ):

1. n
(
uk+1
h −ukh

∆t
, vh

)
f

+ af
(
uk+1
h , vh

)
− b(vh, pk+1

h )

+ cI
(
vh, φ

k
h

)
= n(fk+1

f , vh)f ,

b(uk+1
h , qh) = 0.

2. gS0

(
φk+1
h −φkh

∆t
, ψh

)
p

+ ap
(
φk+1
h , ψh

)
− cI

(
uk+1
h , ψh

)
= g

(
fk+1
p , ψh

)
p
.

(BEsplit1-SD)

Definition 9. (Backward-Euler Splitting Method 2 for Stokes-Darcy (BEsplit2-SD))

Given (ukh, p
k
h, φ

k
h) in (Xh

f , Q
h
f , X

h
p ), find (uk+1

h , pk+1, φk+1
h ) satisfying for all (vh, qh, ψh) in

(Xh
f , Q

h
f , X

h
p ):

1. gS0

(
φk+1
h −φkh

∆t
, ψh

)
p

+ ap
(
φk+1
h , ψh

)
− cI

(
ukh, ψh

)
= g

(
fk+1
p , ψh

)
p
.

2. n
(
uk+1
h −ukh

∆t
, vh

)
f

+ af
(
uk+1
h , vh

)
− b(vh, pk+1

h )

+ cI
(
vh, φ

k+1
h

)
= n(fk+1

f , vh)f ,

b(uk+1
h , qh) = 0.

(BEsplit2-SD)

In [48], they analyzed stability properties of the BEsplit-SD methods. The restrictions

derived for stability are key in the convergence analysis. Define the following:

∆T1 := 2 min
{
νkminS0

16
(CΩf

CΩp )4g2 , 1
}
,

∆T2 := 2 min{1,gS0}
gCΩf

CΩpC(inv)
h,

∆T3 := 2gS0νh
[
gCΩfCΩp

]−2
(C(inv)CP,f )

−1,

∆T4 := 2 min{1,ρ}
ρg(1+C2

P,p)
kmin,

∆T5 := hkmin
ng(CΩf

CΩp )2C(inv)
,
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∆T6 := kmin
ng(1+C2

P,p)
,

Parameters := (1 + C2
P,p)(C

2
P,f + d) gn

kminν
.

Implications of the time-step and parameter restrictions for stability of the two methods

will be further discussed in the conclusion of this chapter.

2.1.1 Convergence of (BEsplit1-SD)

We begin by proving first-order convergence of the method (BEsplit1-SD). In [48], they

showed the method is uniformly stable in time. For reference, the result is summarized

below.

Theorem 10 (Stability of (BEsplit1-SD)). Suppose that either the problem parameters

satisfy

Parameters < 1,

or, ∆t satisfies the time-step restriction

∆t < max{∆T1,∆T2,∆T3,∆T4}.

Then (BEsplit1-SD) is stable uniformly in time. In particular, if one of the time-step

restrictions ∆T1,2,4 or Parameters holds, then there is α ∈ (0, 1) such that for N > 0,

α
(
n‖uNh ‖2

f + gS0‖φNh ‖2
p

)
+ ∆t

2

N−1∑
k=0

{
af (u

k+1
h + ukh, u

k+1
h , ukh) + ap(φ

k+1
h + φkh, φ

k+1
h + φkh)

}
≤ α

(
n‖u0

h‖2
f + gS0‖φ0

h‖2
p

)
+ ∆t

N−1∑
k=0

n
{

(fk+1
f , uk+1

h + ukh)f + g(fk+1
p , φk+1

h + φkh)p
}
.

Proof. See [48].

The convergence analysis of (BEsplit1-SD) assumes the condition Parameters < 1

holds. Analysis for the other cases is similar in nature but omitted from this research due

to length.

Theorem 11 (Convergence of (BEsplit1-SD)). Suppose that u, φ, p satisfy the regularity

conditions required for the projection error inequalities in (2.1) for w = u, φ, ut, φt. Assume
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that the following time-step condition holds:

Parameters := (1 + C2
P,p)(C

2
P,f + d) g

kminν
< 1.

Then the errors between the true solutions to the Stokes-Darcy problem (1.16) and the

(BEsplit1-SD) method satisfy O(∆t(h+ 1) + h2).

Proof. Add the projections of the discrete time derivatives for u and φ to both sides of (2.2).

n
(
Phu

k+1−Phuk
∆t

, vh

)
f

+ gS0

(
Phφ

k+1−Phφk
∆t

, ψh

)
p

+ af (Phu
k+1, vh)

+ap(Phφ
k+1, ψh) + cI(vh, Phφ

k+1)− cI(Phuk+1, ψh)− b(vh, Phpk+1)

= n
(
Phu

k+1−Phuk
∆t

, vh

)
f

+ gS0

(
Phφ

k+1−Phφk
∆t

, ψh

)
p

−n(uk+1
t , vh)f − gS0(φk+1

t , ψh)p + n(fk+1
f , vh)f + g(fk+1

p , ψh)p

(2.15)

Consider (BEsplit1-SD). Define the errors between the projections of the true solutions

and the solutions to the method (BEsplit1-SD) as

eku = Phu
k − ukh, ekp = Php

k − pkh, ekφ = Phφ
k − φkh.

Note that these errors are in our finite element spaces, Xh
f , Q

h
f , and Xh

p . Subtract

(BEsplit1-SD) from (2.15). Using the prescribed error notation yields

n
(
ek+1
u −eku

∆t
, vh

)
f

+ gS0

(
ek+1
φ −ekφ

∆t

)
p

+ af (e
k+1
u , vh) + ap(e

k+1
φ , ψh)

+cI(vh, e
k
φ)− cI(ek+1

u , ψh)− b(vh, ek+1
p )

= n
(
Phu

k+1−Phuk
∆t

, vh

)
f

+ gS0

(
Phφ

k+1−Phφk
∆t

, ψh

)
p

−cI(vh, Phφk+1 − Phφk)− n(uk+1
t , vh)f − gS0(φk+1

t , ψh)p.

(2.16)

In the above equation we added cI(vh, Phφ
k) to both sides to make the term cI(vh, e

k
φ) appear

on the left. Choose vh = ∆t(ek+1
u + eku), ψh = ∆t(ek+1

φ + ekφ). Then the equation becomes
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(
n‖ek+1

u ‖2
f + gS0‖ek+1

φ ‖
2
p

)
−
(
n‖eku‖2

f + gS0‖ekφ‖2
p

)
+∆taf (e

k+1
u , ek+1

u + eku) + ∆tap(e
k+1
φ , ek+1

φ + ekφ)

+∆tcI(e
k+1
u + eku, e

k
φ)−∆tcI(e

k+1
u , ek+1

φ + ekφ)

= n
(
Phu

k+1 − Phuk −∆tuk+1
t , ek+1

u + eku
)
f

+gS0

(
Phφ

k+1 − Phφk −∆tφk+1
t , ek+1

φ + ekφ
)
p

−∆tcI(e
k+1
u + eku, Phφ

k+1 − Phφk)

(2.17)

Define the energy, diffusive, and coupled terms as follows. Note that by coercivity of

af (., .) and ap(., .), Dk+1/2 ≤ af (e
k+1
u + eku, e

k+1
u + eku) + ap(e

k+1
φ + ekφ, e

k+1
φ + ekφ).

Ek = n‖eku‖2
f + gS0‖ekφ‖2

p + ∆t
2

(
af (e

k
u, e

k
u) + ap(e

k
φ, e

k
φ)
)
,

Dk+1/2 = nν‖∇(ek+1
u + eku)‖2

f + gkmin‖∇(ek+1
φ + ekφ)‖2

p,

Ck = cI(e
k
u, e

k
φ).

After incorporating the above notation, (2.17) becomes the following inequality:

(Ek+1 + ∆tCk+1)− (Ek + ∆tCk) + ∆t
2
Dk+1/2

≤ n
(
Phu

k+1 − Phuk −∆tuk+1
t , ek+1

u + eku
)
f

+gS0

(
Phφ

k+1 − Phφk −∆tφk+1
t , ek+1

φ + ekφ
)
p

−∆tcI(e
k+1
u + eku, Phφ

k+1 − Phφk).

(2.18)

Consider the coupling term on the right-hand side. Using the Cauchy-Schwarz, Trace

(Lemma 1), Poincaré (Lemma 2), and Young inequalities we find

∆tcI(e
k+1
u + eku, Phφ

k+1 − Phφk) = ∆tng

∫
I

[
(ek+1
u + eku) · n̂f (Phφk+1 − Phφk)

]
ds

≤ ∆tng‖ek+1
u + eku‖I‖Phφk+1 − Phφk‖I

≤ ∆tngCΩfCΩp‖ek+1
u + eku‖

1/2
f ‖∇(ek+1

u + eku)‖
1/2
f ‖Phφ

k+1 − Phφk‖1/2
p ‖∇(Phφ

k+1 − Phφk)‖1/2
p

≤ ∆tngCΩfCΩpC
1/2
P,fC

1/2
P,p ‖∇(ek+1

u + eku)‖f‖∇(Phφ
k+1 − Phφk)‖p

≤ ∆tnν
8
‖∇(ek+1

u + eku)‖2
f +

2∆tng2C2
Ωf
C2

Ωp
CP,fCP,p

ν
‖∇(Phφ

k+1 − Phφk)‖2
p.
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Next we bound the consistency errors on the right-hand side.

n
(
Phu

k+1 − Phuk −∆tuk+1
t , ek+1

u + eku
)
f
≤ n‖Phuk+1 − Phuk −∆tuk+1

t ‖f‖ek+1
u + eku‖f

≤ ∆tnν
8
‖∇(ek+1

u + eku)‖2
f +

8C2
P,fn

∆tν
‖Phuk+1 − Phuk −∆tuk+1

t ‖2
f ,

gS0

(
Phφ

k+1 − Phφk −∆tφk+1
t , ek+1

φ + ekφ
)
p
≤ gS0‖Phφk+1 − Phφk −∆tφk+1

t ‖p‖ek+1
φ + ekφ‖p

≤ ∆tgkmin
4
‖∇(ek+1

φ + ekφ)‖2
p +

C2
P,pgS

2
0

∆tkmin
‖Phφk+1 − Phφk −∆tφk+1

t ‖2
p.

After subsuming terms into the diffusive terms on the left-hand side, (2.18) becomes

(Ek+1 + ∆tCk+1)− (Ek + ∆tCk) + ∆t
4
Dk+1/2

≤ 8C2
P,fn

∆tν
‖Phuk+1 − Phuk −∆tuk+1

t ‖2
f +

C2
P,pg

2gS2
0

∆tkmin
‖Phφk+1 − Phφk −∆tφk+1

t ‖2
p

+
2∆tng2C2

Ωf
C2

Ωp
CP,fCP,p

ν
‖∇(Phφ

k+1 − Phφk)‖2
p.

(2.19)

Split the consistency errors on the right-hand side as follows using triangle inequality:

‖Phuk+1 − Phuk −∆tuk+1
t ‖f ≤ ‖ (Ph − I)

(
uk+1 − uk

)
‖f + ‖

(
uk+1 − uk

)
−∆tuk+1

t ‖f ,

‖Phφk+1 − Phφk −∆tφk+1
t ‖p ≤ ‖ (Ph − I)

(
φk+1 − φk

)
‖p + ‖

(
φk+1 − φk

)
−∆tφk+1

t ‖p.

Sum inequality (2.19) from k = 0 to N − 1. Absorb all constants on the right-hand

side into one constant, C0 > 0, independent of mesh width, h, and time-step size, ∆t. This

produces

(Ek+1 + ∆tCk+1) + (Ek + ∆tCk) + ∆t
4
Dk+1/2

≤ C0

N−1∑
k=0

{ 1
∆t

[
‖(Ph − I)(uk+1 − uk)‖2

f + ‖(uk+1 − uk)−∆tuk+1
t ‖2

f

]
+ 1

∆t

[
‖(Ph − I)(φk+1 − φk)‖2

p + ‖(φk+1 − φk)−∆tφk+1
t ‖2

p

]
+ ∆t

∥∥∇ (Ph(φk+1 − φk)
)∥∥2

p
}.

(2.20)

Apply Lemmas 6 and 7 to the terms on the right-hand side of (2.20) to obtain
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EN + ∆tCN + ∆t
4

N−1∑
k=0

Dk+1/2 ≤ E0 + ∆tC0 + C1{h4
(
‖ut‖2

L2(0,T ;L2(Ωf )) + ‖φt‖2
L2(0,T ;L2(Ωp))

)
+ ∆t2

(
‖utt‖2

L2(0,T ;L2(Ωf )) + ‖φtt‖2
L2(0,T ;L2(Ωp))

)
+ ∆t2

(
h2 + 1

)
‖∇φt‖2

L2(0,T ;L2(Ωp))},

for some C1 > 0. This implies that the errors between the projections of the true solutions

of Stokes-Darcy and the solutions of the method (BEsplit1-SD) satisfy

‖eNw ‖f/p ≈ O(∆t(h+ 1) + h2),

for w = u, φ provided EN −∆tCN > 0. We will show EN + ∆tCN > 0 holds momentarily.

Bound ∆tCN using inequality (HDIV-trace), along with Poincaré (Lemma 2), and

‖∇ · u‖f ≤
√
d‖∇u‖f to find

∆tCN ≤ ∆tgn‖eNφ ‖2
p‖eNu ‖2

DIV,f

∆tgn
√

(1 + C(P, p)2)(C2
P,f + d)‖∇eNφ ‖p‖∇eNu ‖f

≤ ∆tgkmin‖∇eNφ ‖2
p +

∆t(1+C2
P,p)(C2

P,f+d)gn2

kmin
‖∇eNu ‖2

f .

Since EN ≥ n‖eNu ‖2
f + gS0‖eNφ ‖2p + ∆t

(
nν‖∇eNu ‖2

f + gkmin‖∇eNφ ‖2
p

)
, by the assumptions

that Parameters < 1, we have EN − ∆CN > 0. To complete the proof, notice that by

triangle inequality, the errors between the true solutions of the Stokes-Darcy equations and

the solutions of (BEsplit1-SD) satisfy

‖wN − wNh ‖f/p ≤ ‖(Ph − I)wN‖f/p + ‖eNw ‖f/p,

for w = u, φ. By the bounds for the projection errors given in (2.1), we have

‖(Ph − I)wN‖f/p ≤ Ch2‖wN‖f/p. Therefore, the errors in the (BEsplit1-SD) method are

O(∆t(h+ 1) + h2), implying this method first-order convergent in time.

2.1.2 Convergence of (BEsplit2-SD)

We recall the stability result for the (BEsplit2-SD) method proven in [48].
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Theorem 12 (Stability of (BEsplit2-SD)). Suppose that the problem parameters satisfy

either

Parameters < 1,

or ∆t satisfies

∆t < max{∆T1,∆T2,∆T5,∆T6}.

Then (BEsplit2-SD) is uniformly stable in time and in S0. In particular, there exists α > 0

such that for N > 0,

1
2

(
n‖uNh ‖2

f + gS0‖φNh ‖2
p

)
+∆t

N−1∑
k=0

{
∆t
2
gS0

∥∥∥φk+1
h −φnh

∆t

∥∥∥2

p
+ af (u

k+1
h uk+1

h ) + αap(φ
k+1
h , φk+1

h )

}

≤ 1
2

(
n‖u0

h‖2
f + gS0‖φ0

h‖2
p

)
+ ∆t

N−1∑
k=0

{
(fk+1
f , uk+1

h )f + g(fk+1
p , φk+1

h )p
}
.

Proof. See [48].

Next, we prove first-order in time convergence of the method when the time-step size,

∆t, satisfies ∆t < ∆T5. Proof of convergence for the other possible scenarios are similar in

procedure and omitted due to length.

Theorem 13 (Convergence of (BEsplit2-SD)). Suppose the following time-step condition

holds

∆t ≤ hkmin
(CΩf

CΩp )2gnC(inv)
(2.21)

Then the errors between the true solutions to the Stokes-Darcy problem (1.16) and the solu-

tions to the (BEsplit2-SD) method satisfy O(∆t(h+ 1) + h2).

Proof. Subtract (BEsplit2-SD) from (2.2). This yields

n
(
ek+1
u −eku

∆t
, vh

)
f

+ gS0

(
ek+1
φ −ekφ

∆t

)
p

+ af (e
k+1
u , vh) + ap(e

k+1
φ , ψh)

+cI(vh, e
k+1
φ )− cI(eku, ψh)− b(vh, ek+1

p )

= n
(
Phu

k+1−Phuk
∆t

, vh

)
f

+ gS0

(
Phφ

k+1−Phφk
∆t

, ψh

)
p

−cI(vh, Phφk+1 − Phφk)− n(uk+1
t , vh)f − gS0(φk+1

t , ψh)p,

(2.22)
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where, as before, ekw = Phw
k−wkh for w = u, φ. In the above equation we added cI(Phu

k, ψh)

to both sides to make the term cI(e
k
u, ψh) appear on the left. Choose vh = 2∆tek+1

u , ψh =

2∆tek+1
φ . Then (2.22) becomes

(
n‖ek+1

u ‖2
f + gS0‖ek+1

φ ‖
2
p

)
−
(
n‖eku‖2

f + gS0‖ekφ‖2
p

)
n‖ek+1

u − eku‖2
f + gS0‖ek+1

φ − ekφ‖2
p + 2∆taf (e

k+1
u , ek+1

u ) + 2∆tap(e
k+1
φ , ek+1

φ )

+2∆tcI(e
k+1
u − eku, ek+1

φ ) = 2n
(
Phu

k+1 − Phuk −∆tuk+1
t , ek+1

u

)
f

+2gS0

(
Phφ

k+1 − Phφk −∆tφk+1
t , ek+1

φ

)
p

+ 2∆tcI(Phu
k+1 − Phuk, ek+1

φ ).

(2.23)

Define the new energy and diffusive terms as follows:

Ek = ‖eku‖2
f + gS0‖ekφ‖2

p,

Dk = nν‖∇ek+1
u ‖2

f + gkmin‖∇ek+1
φ ‖

2
p.

By coercivity, af (e
k
u, e

k
u)+ap(e

k
φ, e

k
φ) ≥ Dk. Therefore, after incorporating the above notation,

(2.23) becomes the following inequality:

Ek+1 − Ek + 2∆tDk+1 + n‖ek+1
u − eku‖2

f + gS0‖ek+1
φ − ekφ‖2

p + 2∆tcI(e
k+1
u − eku, ek+1

φ )

≤ 2n
(
Phu

k+1 − Phuk −∆tuk+1
t , ek+1

u

)
f

+ 2gS0

(
Phφ

k+1 − Phφk −∆tφk+1
t , ek+1

φ

)
p

+2∆tcI(Phu
k+1 − Phuk, ek+1

φ ).

(2.24)

Consider the coupling term on the right-hand side. Using the Cauchy-Schwarz, Trace

(Lemma 1), and Young inequalities we find

2∆tcI(Phu
k+1 − Phuk, ek+1

φ )

≤ 2∆tngCΩfCΩp‖Phuk+1 − Phuk‖1/2
f ‖∇(Phu

k+1 − Phuk)‖1/2
f ‖e

k+1
φ ‖

1/2
p ‖∇ek+1

φ ‖
1/2
p

≤
∆t(CΩf

CΩp )2n2gCP,fCP,p

kmin
‖∇(Phu

k+1 − Phuk)‖2
f + ∆tgkmin

2
‖∇ek+1

φ ‖
2
p.

Bound the coupling term on the left-hand side using Cauchy-Schwarz, Trace (Lemma 1),

Inverse (Lemma 5), and Young inequalities to obtain

2∆tcI(e
k+1
u − eku, ek+1

φ ) ≤
∆t(CΩf

CΩp )2n2gC(inv)

hkmin
‖ek+1

u − eku‖2
f + ∆tgkmin‖∇ek+1

φ ‖
2
p.
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Next, bound the consistency terms on the right-hand side.

2n
(
Phu

k+1 − Phuk −∆tuk+1
t , ek+1

u

)
f
≤ ‖Phuk+1 − Phuk −∆tuk+1

t ‖f‖ek+1
u ‖f

≤ ∆tnν‖∇ek+1
u ‖2

f +
nC2

P,f

∆tν
‖Phuk+1 − Phuk −∆tuk+1

t ‖2
f

2gS0

(
Phφ

k+1 − Phφk −∆tφk+1
t , ek+1

φ

)
p
≤ gS0‖Phφk+1 − Phφk −∆tφk+1

t ‖p‖ek+1
φ ‖p

≤ ∆tgkmin
2
‖∇ek+1

φ ‖
2
p +

C2
P,pgS

2
0

∆tkmin
‖Phφk+1 − Phφk −∆tφk+1

t ‖2
p

Subsume terms on the left-hand side and sum (2.24) from k = 0 to N − 1. After using the

consistency error bounds from Lemmas 6 and 7, the equation becomes

EN − E0 +
N−1∑
k=0

{(
n−

∆t(CΩf
CΩp )2n2gC(inv)

hkmin

)
‖ek+1

u − eku‖2
f + gS0‖ek+1

φ − ekφ‖2
p

}
≤ C0{h4(‖ut‖2

L2(0,T ;L2(Ωf )) + ‖φt‖2
L2(0,T ;L2(Ωp)))

+∆t2
(
‖utt‖2

L2(0,T ;L2(Ωf )) + ‖φtt‖L2(0, T ;L2(Ωp)) + (h2 + 1)‖∇ut‖2
L2(0,T ;L2(Ωf ))

)
}

(2.25)

First-order convergence in time of (BEsplit2-SD) follows since (2.21) implies that(
1−

∆t(CΩf
CΩp )2ngC(inv)

hkmin

)
≥ 0.

2.2 CONVERGENCE OF CRANK-NICOLSON (CN) SPLITTING

METHOD FOR STOKES-DARCY

In this section we prove convergence rates for the Crank-Nicolson (CN) Splitting Method

applied to the Stokes-Darcy system. The definition of the method follows.

Definition 14. (Crank Nicolson Splitting Method for Stokes-Darcy (CNsplit-SD))

Given (ûkh, p̂
k
h, φ̂

k
h), (ũkh, p̃

k
h, φ̃

k
h) in (Xh

f , Q
h
f , X

h
p ), find (ûk+1

h , p̂k+1
h , φ̂k+1

h ), (ũk+1
h , p̃k+1

h , φ̃k+1
h ) in
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(Xh
f , Q

h
f , X

h
p ) satisfying for all (vh, qh, ψh) in (Xh

f , Q
h
f , X

h
p ):

1. n
(
ûk+1
h −ûkh

∆t
, vh

)
f

+ af

(
ûk+1+ûk

2
, vh

)
− b
(
vh,

p̂k+1
h +p̂kh

2

)
+ cI(vh, φ̂

k
h) = n(fk+1/2, vh)f ,

b(ûk+1
h , qh) = 0,

2. gS0

(
φ̂k+1
h −φ̂kh

∆t
, ψh

)
p

+ ap

(
φ̂k+1
h +φ̂kh

2
, ψh

)
− cI(ûk+1

h , ψh) = g(fk+1/2, ψh).

(CNsplitA-SD)

as well as

1. gS0

(
φ̃k+1
h −φ̃kh

∆t
, ψh

)
p

+ ap

(
φ̃k+1
h +φ̃kh

2
, ψh

)
− cI(ũkh, ψh) = g(fk+1/2, ψh),

2. n
(
ũk+1
h −ũkh

∆t
, vh

)
f

+ af

(
ũk+1+ũk

2
, vh

)
− b
(
vh,

p̃k+1
h +p̃kh

2

)
+ cI(vh, φ̃

k+1
h ) = n(fk+1/2, vh)f ,

b(ũk+1
h , qh) = 0.

(CNsplitB-SD)

Then (uk+1
h , pk+1

h , φk+1
h ) is defined by wk+1

h =
ŵk+1
h +w̃k+1

h

2
, for w = u, p, and φ

To implement this method, first compute (ûk+1
h , p̂k+1

h , φ̃k+1
h ) in parallel by completing the

first steps in the (CNsplitA-SD) and (CNsplitB-SD) methods. Then, in parallel, compute

(ũk+1
h , p̃k+1

h , φ̂k+1
h ) in the second steps of the method. Finally, compute (uk+1

h , pk+1
h , φk+1

h ) by

averaging the two solutions, wk+1
h =

ŵk+1
h +w̃k+1

h

2
, for w = u, p, and φ.

Results of the stability analysis performed in [48] are summarized below for reference.

Theorem 15 (Stability of CNsplit-SD). Suppose ∆t satisfies

∆t <
√

2S0h√
gnCΩf

CΩpC(inv)
.

Then both (CNsplitA-SD) and (CNsplitB-SD) are stable uniformly in time over long-time

intervals. That is, there exists α > 0 such that for every N ≥ 1

α
[
n‖ûNh ‖2

f + gS0‖φ̂Nh ‖2
p

]
+ ∆t

2

N−1∑
k=0

[
af (û

k+1
h + ûkh, û

k+1
h + ûkh) + ap(φ̂

k+1
h + φ̂kh, φ̂

k+1
h + φ̂kh)

]
≤ n‖û0

h‖2
f + gS0‖φ̂0

h‖2
p −∆tcI(û

0
h, φ̂

0
h)

+∆t
N−1∑
k=0

[
n(f

k+1/2
f , ûk+1

h + ûkh)f + g(fk+1/2
p , φ̂k+1

h + φ̂kh)p

]
,
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for (CNsplitA-SD) and

α
[
n‖ũNh ‖2

f + gS0‖φ̃Nh ‖2
p

]
+ ∆t

2

N−1∑
k=0

[
af (ũ

k+1
h + ũkh, ũ

k+1
h + ũkh) + ap(φ̃

k+1
h + φ̃kh, φ̃

k+1
h + φ̃kh)

]
≤ n‖ũ0

h‖2
f + gS0‖φ̃0

h‖2
p −∆tcI(ũ

0
h, φ̃

0
h)

+∆t
N−1∑
k=0

[
n(f

k+1/2
f , ũk+1

h + ũkh)f + g(fk+1/2
p , φ̃k+1

h + φ̃kh)p

]
,

for (CNsplitB-SD).

Proof. See [48].

To study the convergence of the CNsplit-SD method, first average the methods

(CNsplitA-SD) and (CNsplitB-SD). This produces

n
(
uk+1
h −ukh

∆t
, vh

)
f

+ af

(
uk+1
h +ukh

2
, vh

)
− b
(
vh,

pk+1
h +pkh

2

)
+1

2
cI(vh, φ̂

k
h + φ̃k+1

h ) = n(f
k+1/2
f , vh)f ,

b(uk+1
h , qh) = 0,

gS0

(
φk+1
h −φkh

∆t
, ψh

)
p

+ ap

(
φk+1
h +φkh

2
, ψh

)
− 1

2
cI(û

k+1
h + ũkh, ψh)

= g(fk+1/2
p , ψh).

(CNsplit-SD)

Begin by computing the consistency errors in the method. To determine the consistency

errors, plug the true solutions of the Stokes-Darcy problem into the (CNsplit-SD) method

above. The coupling terms exactly cancel, leaving the following consistency errors in the

fluid and porous media domains:

τ kf =
(
uk+1−uk

∆t
− uk+1

t +ukt
2

, vh

)
f

+ n

(
fk+1
f +fkf

2
− fk+1/2, vh

)
f

,

τ kp = gS0

(
φk+1−φk

∆t
− φk+1

t +φkt
2

, ψh

)
p

+
(
fk+1
p +fkp

2
− fk+1/2

p , ψh

)
p
).
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By Lemma 6,

∆t
N−1∑
k=0

‖τ kf ‖2
f ≤ C∆t4

(
‖utt‖2

L2(0,T ;L2(Ωf )) + ‖(ff )tt‖2
L2(0,T ;L2(Ωf ))

)
,

∆t
N−1∑
k=0

‖τ kp ‖2
p ≤ C∆t4

(
‖φtt‖2

L2(0,T ;L2(Ωp)) + ‖(fp)tt‖2
L2(0,T ;L2(Ωp))

)
,

(2.26)

implying that the consistency error is second-order in time.

Apply the projection property (SD-proj) to the variational form, (FEM-SD), with the

true solutions and average. This yields

n
(
uk+1
t +ukt

2
, vh

)
f

+ gS0

(
φk+1
t +φkt

2
, ψh

)
p

+ af

(
Ph(uk+1+uk)

2
, vh

)
+ ap

(
Ph(φk+1+φk)

2
, ψh

)
+cI(vh,

Ph(φk+1+φk)
2

)− cI(Ph(uk+1+uk)
2

, ψh)− b(vh, Ph(pk+1+pk)
2

)

= n(
fk+1
f +fkf

2
, vh)f + g(

fk+1
p +fkp

2
, ψh)p,

(2.27)

which is used in the following proof of convergence for the (CNsplitA-SD) and

(CNsplitB-SD) methods.

Theorem 16 (Convergence of (CNsplitA-SD) and (CNsplitB-SD)). Assume that the fol-

lowing time-step condition holds:

∆t <
√

2S0h√
gnCΩf

CΩpC(inv)
.

Then the errors in (CNsplitA-SD) and (CNsplitB-SD) are O(h2 + ∆t2 + ∆t(h2 + 1)).

Proof. We present the proof for (CNsplitA-SD) only, as the proof for (CNsplitB-SD) is

similar. Add the projections of the discrete time derivatives for u and φ to both sides of

(2.27) and subtract (CNsplitA-SD). Assume vh ∈ V h, so that we omit the term b(., .). This

produces

n
(
êk+1
u −êku

∆t
, vh

)
f

+ gS0

(
êk+1
φ −êkφ

∆t
, ψh

)
p

+ af (
êk+1
u +êku

2
, vh) + ap(

êk+1
φ +êkφ

2
, ψh)

+cI(vh, ê
k
φ)− cI(êk+1

u , ψh) = n
(

(Ph−I)(uk+1−uk)
∆t

− uk+1
t +ukt

2
, vh

)
f

+gS0

(
(Ph−I)(φk+1−φk)

∆t
− φk+1

t +φkt
2

, ψh

)
p

+ (τ kf , vh)f + (τ kp , ψh)p

−1
2
cI(vh, Ph(φ

k+1 − φk))− 1
2
cI(Ph(u

k+1 − uk), ψh),

(2.28)
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where êku = Phu
k − ûkh.

Choose vh = ∆t(êk+1
u + êku), and ψh = ∆t(êk+1

φ + êkφ). After simplifying, (2.28) becomes

(
n‖êk+1

u ‖2
f + gS0‖êk+1

φ ‖
2
p

)
−
(
n‖êku‖2

f + gS0‖êkφ‖2
p

)
+∆t

[
af (ê

k+1
u + êku, ê

k+1
u + êku) + ap(ê

k+1
φ + êkφ, ê

k+1
φ + êkφ)

]
+∆t

[
cI(ê

k
u, ê

k
φ)− cI(êk+1

u , êk+1
φ )

]
= n

(
(Ph − I)(uk+1 − uk), êk+1

u + êku
)
f

+gS0

(
(Ph − I)(φk+1 − φk), êk+1

φ + êkφ
)
p

+∆t(τ kf , ê
k+1
u + êku)f + ∆t(τ kp , ê

k+1
φ + êkφ)p

−∆t
2
cI(ê

k+1
u + êku, Ph(φ

k+1 − φk))− ∆t
2
cI(Ph(u

k+1 − uk), êk+1
φ + êkφ).

(2.29)

Define the energy, diffusive, and coupled terms as follows. The inequality in the diffusive

term follows by the coercivity of af and ap.

Êk = n‖êku‖2
f + gS0‖êkφ‖2

p

D̂k+1/2 = 1
2
∆tnν‖∇(êk+1

u + êku)‖2
f + gkmin‖∇(êk+1

φ + êkφ)‖2
p

≤ 1
2
∆t
[
af (ê

k+1
u + êku, ê

k+1
u + êku) + ap(ê

k+1
φ + êkφ, ê

k+1
φ + êkφ)

]
Ĉk = cI(ê

k
u, ê

k
φ)

After incorporating the above notation, (2.29) becomes the following inequality:

(Êk+1 −∆tĈk+1)− (Êk −∆tĈk) + ∆t
2
D̂k+1/2

= n
(

(Ph − I)(uk+1 − uk)−∆t
(
uk+1
t +ukt

2

)
, êk+1
u + êku

)
f

+gS0

(
(Ph − I)(φk+1 − φk)−∆t

(
φk+1
t +φkt

2

)
, êk+1
φ + êkφ

)
p

+∆t(τ kf , ê
k+1
u + êku)f + ∆t(τ kp , ê

k+1
φ + êkφ)p

−∆t
2
cI(ê

k+1
u + êku, Ph(φ

k+1 − φk))− ∆t
2
cI(Ph(u

k+1 − uk), êk+1
φ + êkφ)

(2.30)

Next bound the consistency error terms on the right-hand side by the Poincaré (Lemma 2),

39



and Young’s inequalities:

n
(
(Ph − I)(uk+1 − uk), ek+1

u + eku
)
f
≤ nCP,f‖(Ph − I)(uk+1 − uk)‖f‖∇(ek+1

u + eku)‖f

≤ ∆tnν
6
‖∇(ek+1

u + eku)‖2
f +

3nC2
P,f

2∆tν
‖(Ph − I)(uk+1 − uk)‖2

f ,

gS0

(
(Ph − I)(φk+1 − φk), ek+1

φ + ekφ
)
p
≤ gS0‖(Ph − I)(φk+1 − φk)‖p‖∇(ek+1

φ + ekφ)‖p

≤ ∆tgkmin
6
‖∇(ek+1

φ + ekφ)‖2
p +

3gS2
0C

2
P,p

2∆tkmin
‖‖(Ph − I)(φk+1 − φk)‖2

p,

∆t(τ kf , e
k+1
u + eku)f ≤ ∆tnν

6
‖∇(ek+1

u + eku)‖2
f + 3∆t

2nν
‖τ kf ‖2

f ,

∆t(τ kp , e
k+1
φ + ekφ)p ≤ ∆tgkmin

6
‖∇(ek+1

φ + ekφ)‖2
p + 3∆t

2gkmin
‖τ kp ‖2

p.

Thus, after subsuming terms into the right-hand side of (2.30), and absorbing the constants

into one constant, C0 > 0, (2.30) becomes

(Êk+1 −∆tĈk+1)− (Êk −∆tĈk) + ∆t
2
D̂k+1/2

≤ C0{ 1
∆t

(
‖(Ph − I)(uk+1 − uk)‖2

f + ‖(Ph − I)(φk+1 − φk)‖2
p

)
+ ∆t

(
‖τ kf ‖2

f + ‖τ kp ‖2
p

)
−∆tcI(ê

k+1
u + êku, Ph(φ

k+1 − φk))−∆tcI(Ph(u
k+1 − uk), êk+1

φ + êkφ)}.

(2.31)

Sum (2.31) from k = 0 to k = N − 1:

ÊN −∆tĈN + ∆t
2

N−1∑
k=0

D̂k+1/2 ≤ Ê0 −∆tĈ0

+C0

N−1∑
k=0

{ 1
∆t
‖(Ph − I)(uk+1 − uk)‖2

f + 1
∆t
‖(Ph − I)(φk+1 − φk)‖2

p

−∆tcI(ê
k+1
u + êku, Ph(φ

k+1 − φk))−∆tcI(Ph(u
k+1 − uk), êk+1

φ + êkφ) + ∆t
(
‖τ kf ‖2

f + ‖τ kp ‖2
p

)
}.

By the projection error bounds in Lemma 7 and consistency error bounds, (2.26), we have

ÊN −∆tĈN + ∆t
2

N−1∑
k=0

D̂k+1/2 ≤ Ê0 −∆tĈ0

+C1{h4
(
‖utt‖2

L2(0,T ;L2(Ωf )) + ‖φtt‖2
L2(0,T ;L2(Ωp))

)
+ ∆t4(‖utt‖2

L2(0,T ;L2(Ωf ))

+‖(ff )tt‖2
L2(0,T ;L2(Ωf )) + ‖φtt‖2

L2(0,T ;L2(Ωp)) + ‖(fp)tt‖2
L2(0,T ;L2(Ωp)))}

−
N−1∑
k=0

(
∆tcI(ê

k+1
u + êku, Ph(φ

k+1 − φk)) + ∆tcI(Ph(u
k+1 − uk), êk+1

φ + êkφ)
)
.

(2.32)
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Consider the remaining coupling term on the right-hand side. Using the Cauchy-Schwarz,

Trace (Lemma 1), Poincaré (Lemma 2), and Young inequalities, as well as implementing the

bound on ‖∇(Ph(w
k+1 − wk))‖ from Lemma 7 we find

N−1∑
k=0

∆t
2
cI(ê

k+1
u + êku, Ph(φ

k+1 − φk))

≤
N−1∑
k=0

(
∆tnν

6
‖∇(êk+1

u + êku)‖2
f +

3∆tng2C2
Ωf
C2

Ωp
CP,fCP,p

8ν
‖∇(Ph(φ

k+1 − φk))‖2
p

)

≤ ∆tnν
6

N−1∑
k=0

‖∇(êk+1
u + êku)‖2

f + C∆t2(h2 + 1).

Similarly,

N−1∑
k=0

∆tcI(Ph(u
k+1 − uk), ek+1

φ + ekφ)

≤
N−1∑
k=0

(
∆tgkmin

6
‖∇(ek+1

φ + ekφ)‖2
p +

3∆tn2C2
Ωf
C2

Ωp
CP,fCP,p

8kmin
‖∇(Ph(u

k+1 − uk))‖2
f

)

≤
N−1∑
k=0

∆tgkmin
6
‖∇(ek+1

φ + ekφ)‖2
p + C∆t2(h2 + 1)‖∇ut‖2

L2(0,T ;L2(Ωf ).

Using the above bounds implies that the errors between the projections of the true

solutions of Stokes-Darcy and the solutions to the method (CNsplitA-SD) obey

‖êNw ‖f/p ≈ O(h2 + ∆t2 + ∆t(h+ 1)),

for w = u, φ provided ÊN −∆tĈN > 0. To show ÊN −∆tĈN > 0 holds, apply the Cauchy-

Schwarz, Trace (Lemma 1), Inverse (Lemma 5) and Young’s inequality to ĈN to obtain the

following bound:

∆tĈN ≤ g∆t2

2S0h2 (nCΩfCΩpC(inv))
2‖uN‖2

f + gS0

2
‖φN‖2

p.

Hence, ÊN −∆tĈN > 0 since by assumption ∆t satisfies

∆t <
√

2S0h√
gnCΩf

CΩpC(inv)
.
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By triangle inequality, the errors between the true solutions of Stokes-Darcy and the

solutions of (CNsplitA-SD) obey

‖wN − wNh ‖f/p ≤ ‖(I − Ph)wN‖f/p + ‖eNw ‖f/p,

Therefore, by the bounds for the projection errors (2.1),‖(I − Ph)wN‖f/p ≤ Ch2‖wN‖f/p for

w = u, φ, this implies that the errors of the (CNsplitA-SD) method satisfy

O(h2 + ∆t2 + ∆t(h+ 1)).

Remark 17 ((On the Convergence Rate of (CNsplit-SD))). The convergence rate proven

in Theorem 16 is not second-order in time, as is normally expected with the Crank-Nicolson

discretization. This is related to the explicit treatment of the coupling term in the first step.

While the coupling terms in the consistency errors of (CNsplitA-SD) and (CNsplitB-SD)

cancel due to exact opposite signs, the coupling terms on the right-hand side in the proof of

convergence during step (2.32), given by

−cI(êk+1
u + êku, Ph(φ

k+1 − φk))− cI(Ph(uk+1 − uk), êk+1
φ + êkφ) for (CNsplitA-SD), and

+cI(ẽ
k+1
u + ẽku, Ph(φ

k+1 − φk)) + cI(Ph(u
k+1 − uk), ẽk+1

φ + ẽkφ) for (CNsplitB-SD)

do not cancel. In fact, when averaged, they simplify to

cI((ũ
k+1
h − ûk+1

h ) + (ũkh − ûkh), Ph(φk+1 + φk))

+cI(Ph(u
k+1 + uk), (φ̃k+1

h − φ̂k+1
h ) + (φ̃k+1

h − φ̂k+1
h )).

Averaging the convergence rates of (CNsplitA-SD) and (CNsplitB-SD) to obtain a rate for

(CNsplit-SD) implies at least second-order convergence in space and first-order in time.

Numerical experiments for (CNsplit-SD), however, showed second-order convergence in

time and space, suggesting that the proven convergence rate is not optimal. An optimal proof

of second-order in time convergence remains an open problem.
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2.3 NUMERICAL EXPERIMENTS

Numerical experiments verify the predicted rates of convergence of (BEsplit1-SD),

(BEsplit2-SD), and (CNsplit-SD). All tests use the same domain and exact solutions

chosen to satisfy the interface conditions and introduced by Mu and Zhu in [56]. Calculations

were made using FreeFem++ software [36]. The code for the experiments is included in the

appendix. We use Taylor-Hood elements (P2-P1) for the Stokes problem, thereby satisfying

the (LBBh) condition. For the Darcy problem, we use piecewise quadratics (P2). The initial

and forcing terms are chosen to correspond with the exact solutions given below.

Ωf = (0, 1)× (1, 2), Ωp = (0, 1)× (0, 1), I = {(x, 1) : x ∈ (0, 1)}

u(x, y, t) =

(
(x2(y − 1)2 + y) cos(t), (

2

3
x(1− y)3 + 2− π sin(πx)) cos(t)

)
,

p(x, y, t) = (2− π sin(πx)) sin(
π

2
y) cos(t),

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos(t).

(Test)

All parameters, n, ρ, g, αBJ, ρ, S0, and kmin are set to one unless otherwise indicated.

2.3.1 Convergence Rates

To test the predicted rates of convergence for the (BEsplit1-SD), (BEsplit2-SD), and

(CNsplit-SD) methods, we set h = ∆t and enforce inhomogeneous Dirichlet boundary

conditions: uh − u on ∂Ωf \ I and φh = φ on ∂Ωp \ I. With Tfinal = 1.0, we measure

errors (Ekw = wk − wkh for w = u, p, φ) in the norm L∞(0, Tfinal;L
2(Ωf/p)) for u, p, φ in each

method. As indicated in previous sections, analysis dictates that the (BEsplit-SD) methods

are first-order convergent in time. The experiments for (CNsplit-SD) imply second-order

convergence in both time and space. See tables 2.1-2.3 for experiment results.

2.3.2 Stability Experiments

We include a few tests on the stability of the studied methods when faced with small pa-

rameters. While the stability properties of these methods were studied in [48] and are not
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the focus of this research, understanding the behavior of these splitting methods in regards

to small values of kmin and S0 provides motivation for the methods developed and studied

in the subsequent chapters of this dissertation. To test the stability of the methods we set

the forcing terms equal to zero and enforce homogeneous Dirichlet boundary conditions on

the external boundaries. All parameters are set to one, with the exception of kmin and S0.

We calculate the final system energy, E(N) = n‖uNh ‖2
f + gS0‖φNh ‖2

p over the time interval

[0, 10]. In the absence of external forcing terms and under homogeneous Dirichlet boundary

conditions, the solution decays to zero as t → ∞ when the system is stable. We test the

stability of the method in four scenarios: (1) small S0 and kmin (S0 = kmin = 10−6), (2)

small kmin (S0 = 1 and kmin = 10−6), (3) small S0 (S0 = 10−6 and kmin = 1), and (4)

S0 = kmin = 1. In all graphs, please note the logarithmic scale.

The stability behavior of the two (BEsplit) methods are very similar, see Figures 2.1

and 2.2. As predicted by the CFL-type stability conditions outlined in Section 2.1, these

splitting methods perform well for either small values of hydraulic conductivity, kmin, or

small of specific storage, S0. However, the methods become highly unstable given both small

kmin and S0. As for (CNsplit-SD), the method is stable for small kmin (with moderate S0)

and unstable for small S0, as seen in Figure 2.3.

Table 2.1: Convergence Rates for (BEsplit1-SD)

h = ∆t ‖Eu‖ rate ‖Ep‖ rate ‖Eφ‖ rate

1/10 1.657e-3 2.995e-2 1.161e-3

1/20 8.405e-4 0.9798 1.521e-2 0.9774 5.409e-4 1.102

1/40 4.239e-4 0.9875 7.675e-3 0.9871 2.706e-4 0.9994

1/80 2.129e-4 0.9939 3.855e-3 0.9933 1.356e-4 0.9962
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2.4 CONCLUSIONS FOR SPLITTING METHODS FOR STOKES-DARCY

Splitting methods for the Stokes-Darcy problem have several advantages. First, they uncou-

ple the equations allowing one to utilize optimize solvers for each sub-problem. Consider the

(BEsplit1-SD) and (BEsplit2-SD) methods. If we simplify the CFL-type conditions for

stability of these methods in terms of ∆t, h, kmin and S0, the conditions are equivalent to

∆t . C max{kmin, S0kmin, S0h} or
√
kmin > 1, (for (BEsplit1-SD))

∆t . C max{kmin, S0kmin, kminh} or
√
kmin > 1. (for (BEsplit2-SD))

As suggested by the above conditions, and evidenced in numerical experiments, these

methods perform well given one small parameter: either kmin or S0. However, neither

method is stable when both of these parameters are small, a possibility in groundwater-

surface water flow, especially when involving confined aquifers. Also, the method is only

first-order convergent in time, and the focus of the research is higher-order, strongly stable

methods for this coupled flow problem.

The (CNsplit-SD) method, comprised of (CNsplitA-SD) and (CNsplitB-SD), is an

interesting splitting method that consists of two methods solved sequentially in parallel, and

Table 2.2: Convergence Rates for (BEsplit2-SD)

h = ∆t ‖Eu‖ rate ‖Ep‖ rate ‖Eφ‖ rate

1/10 9.213e-4 2.743e-2 4.834e-3

1/20 4.391e-4 1.069 1.336e-2 1.038 2.447e-3 0.9820

1/40 2.195e-4 0.9999 6.645e-3 1.007 1.233e-3 0.9891

1/80 1.100e-4 0.9971 3.319e-3 1.001 6.188e-4 0.9945
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Table 2.3: Convergence Rates for (CNsplit-SD)

h = ∆t ‖Eu‖ rate ‖Ep‖ rate ‖Eφ‖ rate

1/10 3.894e-4 4.211e-2 1.521e-3

1/20 5.035e-5 2.95 1.020e-2 2.046 3.654e-4 2.057

1/40 7.713e-6 2.707 2.530e-3 2.011 9.080e-5 2.009

1/80 1.564e-6 2.302 6.253e-4 2.017 2.266e-5 2.003

then averaged. However, simplified in terms of ∆t, h, kmin, and S0, the CFL-type time-step

condition for stability becomes

∆t . C
√
S0h,

which is very restrictive given small values of specific storage, S0. Therefore, while numerical

tests for method imply higher-order convergence, its stability properties make the method

impractical when faced with physical situations that involve small values of specific storage.

In conclusion, while splitting methods exhibit many desirable properties, none of these

methods satisfy the goals for this research: higher-order convergent numerical methods that

exhibit stability in a wide variety of physical situations. In the next several chapters, we

develop, analyze, and test a method that satisfies both of these criteria.
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Figure 2.1: Final System Energy (E(N)) versus time-step size (∆t) for (BEsplit1-SD). The

minimum is truncated at 1.0E-100 and the maximum at 1.0E+100.

Figure 2.2: Final System Energy (E(N)) versus time-step size (∆t) for (BEsplit2-SD). The

minimum is truncated at 1.0E-100 and the maximum at 1.0E+100.
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Figure 2.3: Final System Energy (E(N)) versus time-step size (∆t) for (CNsplit-SD). The

minimum is truncated at 1.0E-10 and the maximum at 1.0E+10.
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3.0 CRANK-NICOLSON LEAPFROG (CNLF) METHOD FOR

STOKES-DARCY (CNLF-SD)

It remains to develop a higher-order convergent method for the groundwater-surface water

flow problem that exhibits stable behavior given small problem parameters. In this chapter,

we consider the stability and convergence properties of the Crank-Nicolson Leapfrog (CNLF)

time discretization applied to the (FEM-SD) formulation.

Recall that, after applying the Finite Element Method to the Stokes-Darcy problem, the

system further reduces to a coupled evolution equation:

ut + Afu+ Cφ = ff ,

φt + Apφ− Cu = fp,
(3.1)

where Af , Ap are SPD and C = CT . The Crank-Nicolson Leapfrog (CNLF) time discretiza-

tion is an implicit-explicit (IMEX) method that successfully uncouples these equations by

treating the coupling term explicitly with Leapfrog. This allows one to solve the two equa-

tions separately, in parallel, at each time step, making it a parallel partitioned method. The

(CNLF) method applied to general evolution equations of the form (3.1) was first presented

by Layton and Trenchea in [49]. In [49], they proved stability for general coupled evolu-

tion equations under the necessary and sufficient time-step condition, ∆t
√
λmax(CTC) < 1,

which is related to the stability theory from the Leapfrog method.

uk+1−uk−1

2∆t
+ Af

(
uk+1+uk−1

2

)
+ Cφk = fkf ,

φk+1−φk−1

2∆t
+ Ap

(
φk+1+φk−1

2

)
− Cuk = fkp .

(CNLF)

We now consider this time discretization applied specifically to the evolutionary Stokes-

Darcy problem, with special attention to the affects of the potentially small parameters:
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S0 and kmin. When applied to the semi-discrete, evolutionary Stokes-Darcy system in

(FEM-SD), (CNLF-SD) uncouples the Stokes-Darcy equations by lagging the coupling terms,

cI(., .), at the previous time step, similar to (CNLF). Hence, each time step only requires

a separate fluid flow and porous media flow solve performed in parallel, thus minimizing

computational cost and time. The use of Crank-Nicolson on the diffusive terms, af (., .) and

ap(., .), adds additional numerical dissipation into the system. However, as expected by the

stability condition for (CNLF) applied to coupled evolution equations, (CNLF-SD) is only

conditionally long-time stable, and the CFL-type condition sufficient for stability, (∆tCNLF),

derived shortly herein, is sensitive to small values of specific storage, S0.

On the other hand, the method is second-order convergent in time and space, giving it an

added advantage over other first-order methods studied in [56, 47] and the splitting methods

presented in Chapter 2. This chapter presents an analysis of the stability and convergence

properties of the (CNLF-SD) method followed by numerical experiments.

Let tk := k∆t and wk := w(x, tk) for any function w(x, t). Let N ∈ N and denote by

T := N∆t. The (CNLF-SD) algorithm follows below.

Definition 18. (Crank-Nicolson Leapfrog Method for Stokes-Darcy (CNLF-SD))

Given
(
ukh, p

k
h, φ

k
h

)
and

(
uk−1
h , pk−1

h , φk−1
h

)
in
(
Xh
f , Q

h
f , X

h
p

)
, find(

uk+1
h , pk+1

h , φk+1
h

)
in
(
Xh
f , Q

h
f , X

h
p

)
satisfying for all (vh, qh, ψh) in

(
Xh
f , Q

h
f , X

h
p

)
:

n
(
uk+1
h −uk−1

h

2∆t
, vh

)
f

+ af

(
uk+1
h +uk−1

h

2
, vh

)
− b
(
vh,

pk+1
h +pk−1

h

2

)
+ cI(vh, φ

k
h) = n(fkf , vh)f ,

b
(
uk+1
h , qh

)
f

= 0,

gS0

(
φk+1
h −φk−1

h

2∆t
, ψh

)
p

+ ap

(
φk+1
h +φk−1

h

2
, ψh

)
− cI(ukh, ψh) = g(fkp , ψh)p.

(CNLF-SD)

Because (CNLF-SD) is a three-level method, it requires two terms to initiate. The terms

(u0
h, p

0
h, φ

0
h) arise from the initial conditions of the problem. To obtain (u1

h, p
1
h, φ

1
h) one must

use another numerical method. Errors in this first step will affect the overall convergence

rate of the method.

Energy stability analysis of the method requires special treatment of the coupling terms,

presented in Lemma 19 below.
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Lemma 19. (Coupling Inequalities for (CNLF-SD)) For all vh ∈ Xh
f and ψh ∈ Xh

p , with

C = CΩfCΩpC(inv)g we have

cI(vh, ψh) ≤
1

2
Ch−2n‖vh‖2

f +
1

2
Cn‖ψh‖2

p, (CNLF Coupling 1)

cI(vh, ψh) ≤
1

2
Ch−2n2‖vh‖2

f +
1

2
C‖ψh‖2

p, (CNLF Coupling 2)

cI(vh, ψh) ≤
1

2
Ch−2‖vh‖2

f +
1

2
Cn2‖ψh‖2

p, (CNLF Coupling 3)

cI (vh, ψh) ≤
1

2
Ch−1n‖vh‖2

f +
1

2
Ch−1n‖ψh‖2

p, (CNLF Coupling 4)

cI (vh, ψh) ≤
1

2
Ch−1n2‖vh‖2

f +
1

2
Ch−1‖ψh‖2

p, (CNLF Coupling 5)

cI (vh, ψh) ≤
1

2
Ch−1‖vh‖2

f +
1

2
Ch−1n2‖ψh‖2

p. (CNLF Coupling 6)

Proof. Use the Cauchy-Schwarz, Lemma 1 (Trace), Lemma 5 (Inverse), and Young inequali-

ties in that order, picking up the corresponding constants which depend on the geometry of

the spaces Ωf or Ωp:

cI(vh, ψh) = ng

∫
I

ψhvh · n̂fds ≤
∣∣∣∣ng ∫

I

ψhvh · n̂fds
∣∣∣∣

≤ ng‖ψh‖I‖vh‖I

≤ CΩfCΩpng‖ψh‖
1
2
p ‖∇ψh‖

1
2
p ‖vh‖

1
2
f ‖∇vh‖

1
2
f

≤ CΩfCΩpC(inv)h
−1ng‖ψh‖p‖vh‖f

≤ 1

2
CΩfCΩpC(inv)h

−2ng‖vh‖2
f +

1

2
CΩfCΩpC(inv)ng‖ψh‖2

p.

This proves (CNLF Coupling 1). (CNLF Coupling 2)-(CNLF Coupling 3) follow similarly

with different treatment of the porosity parameter, n. Replace the last line for the proof of

(CNLF Coupling 1) with

cI (vh, ψh) ≤
1

2
CΩfCΩpC(inv)h

−1ng‖vh‖2
f +

1

2
CΩfCΩpC(inv)h

−1ng‖ψh‖2
p,

to obtain (CNLF Coupling 4). (CNLF Coupling 5)-(CNLF Coupling 6) follow likewise, with

different treatment of the porosity parameter, n.
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3.1 STABILITY OF CNLF-SD

Energy stability analysis of (CNLF-SD) leads to a CFL-type time-step condition. Under

this condition, approximate solutions to the Stokes-Darcy coupled problem are uniform in

time stable and convergent.

Theorem 20. (Stability for (CNLF-SD) Method) Suppose ∆t satisfies

∆t < C−1 max { min
{
h2, gS0n

−1
}
,min

{
n−1h2, gS0

}
,min

{
nh2, gS0n

−2
}

min
{
h, gS0n

−1h
}
,min

{
n−1h, gS0h

}
,min

{
nh, gS0n

−2h
}
} ,

(∆tCNLF)

where C = CΩfCΩpC(inv)g. Then there exist α, β > 0 such that, for N = 1, 2, 3,...,

(CNLF-SD) is stable over long-time intervals:

α(‖uNh ‖2
f + ‖uN−1

h ‖2
f ) + β(‖φNh ‖2

p + ‖φN−1
h ‖2

p)

≤ n(‖u1
h‖2

f + ‖u0
h‖2

f ) + gS0(‖φ1
h‖2

p + ‖φ0
h‖2

p) + 2∆t
(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h)
)

+ 2∆t
N−1∑
k=1

{
n(ν)−1‖fkf ‖2

−1,f + g(kmin)−1‖fkp ‖2
−1,p

}
.

(3.2)

Proof. Choose vh = uk+1
h + uk−1

h and ψh = φk+1
h + φk−1

h . Then the second equation of

(CNLF-SD) drops out and the first and third equations of the method added together become

1
2∆t

(
n‖uk+1

h ‖
2
f + gS0‖φk+1

h ‖
2
g − n‖uk−1

h ‖
2
f − gS0‖φk−1

h ‖
2
g

)
+ af (

uk+1
h +uk−1

h

2
, uk+1

h + uk−1
h ) + ap(

φk+1
h +φk−1

h

2
, φk+1

h + φk−1
h )

+ cI(u
k+1
h + uk−1

h , φkh)− cI(ukh, φk+1
h + φk−1

h )

= n(fkf , u
k+1
h + uk−1

h )f + g(fkp , φ
k+1
h + φk−1

h )p.

Consider the right-hand-side of the above equation. Use the Cauchy-Schwarz and Young

inequalities to obtain the following bound

n(fkf , u
k+1
h + uk−1

h )f + g(fkp , φ
k+1
h + φk−1

h )p

≤ ‖fkf ‖−1,f‖∇(uk+1
h + uk−1

h )‖f + g‖fkp ‖−1,p‖∇(φk+1
h + φk−1

h )‖p

≤ ν
4
‖∇(uk+1

h + uk−1
h )‖2

f + (ν)−1‖fkf ‖2
−1,f + gkmin

4
‖∇(φk+1

h + φk−1
h )‖p + g(kmin)−1‖fkp ‖2

−1,p.
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This bound, along with coercivity of af (., .) and ap(., .), gives

1
2∆t

(
n‖uk+1

h ‖
2
f + gS0‖φk+1

h ‖
2
p − n‖uk−1

h ‖
2
f − gS0‖φk−1

h ‖
2
p

)
+ nν

4
‖∇(uk+1

h + uk−1
h )‖2

f

+gkmin
4
‖∇(φk+1

h + φk−1
h )‖p + cI(u

k+1
h + uk−1

h , φkh)− cI(ukh, φk+1
h + φk−1

h )

≤ n(ν)−1‖fkf ‖2
−1,f + g(kmin)−1‖fkp ‖2

−1,p.

Consider the coupling terms cI(u
k+1
h + uk−1

h , φkh)− cI(ukh, φk+1
h + φk−1

h ). Define

Ck+ 1
2 = cI(u

k+1
h , φkh)− cI(ukh, φk+1

h ).

The coupling terms equal Ck+ 1
2 − Ck− 1

2 . Define the energy terms:

Ek+1/2 = n‖uk+1
h ‖

2
f + n‖ukh‖2

f + gS0‖φk+1
h ‖

2
p + gS0‖φkh‖2

p.

Using this notation and multiplying by 2∆t produces

Ek+1/2 + 2∆tCk+1/2 − Ek−1/2 − 2∆tCk−1/2

+∆t
{
nν
2
‖∇(uk+1

h + uk−1
h )‖2

f + gkmin
2
‖∇(φk+1

h + φk−1
h )‖p

}
≤ 2∆t

{
n(ν)−1‖fkf ‖2

−1,f + g(kmin)−1‖fkp ‖2
−1,p

}
.

(3.3)

Sum the above inequality from k = 1 to N − 1.

EN−1/2 + 2∆tCN−1/2 + ∆t
N−1∑
k=1

{
nν
2
‖∇(uk+1

h + uk−1
h )‖2

f + gkmin
2
‖∇(φk+1

h + φk−1
h )‖2

p

}
≤ 2∆t

N−1∑
k=1

{
n(ν)−1‖fkf ‖2

−1,f + g(kmin)−1‖fkp ‖2
−1,p

}
+ E1/2 + 2∆tC1/2.

The above inequality implies the stability of the CNLF-method provided that

EN−1/2 + 2∆tCN−1/2 > 0. By Lemma 19,

CN−1/2 ≥ −1

2
Ch−2n

(
‖uNh ‖2

f + ‖uN−1
h ‖2

f

)
− 1

2
Cn
(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
,

CN−1/2 ≥ −1

2
Ch−1n

(
‖uNh ‖2

f + ‖uN−1
h ‖2

f

)
− 1

2
Ch−1n

(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
,

CN−1/2 ≥ −1

2
Ch−2n2

(
‖uNh ‖2

f + ‖uN−1
h ‖2

f

)
− 1

2
C
(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
,

CN−1/2 ≥ −1

2
Ch−1n2

(
‖uNh ‖2

f + ‖uN−1
h ‖2

f

)
− 1

2
Ch−1

(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
,
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CN−1/2 ≥ −1

2
Ch−2

(
‖uNh ‖2

f + ‖uN−1
h ‖2

f

)
− 1

2
Cn2

(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
,

CN−1/2 ≥ −1

2
Ch−1

(
‖uNh ‖2

f + ‖uN−1
h ‖2

f

)
− 1

2
Ch−1n2

(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
.

Apply these bounds separately to the energy term EN−1/2 + 2∆tCN−1/2 to find

EN−1/2 + 2∆tCN−1/2 ≥ (n−∆tCnh−2)(‖uNh ‖2
f + ‖uN−1

h ‖2
f )

+ (gS0 −∆tC)n(‖φNh ‖2
p + ‖φN−1

h ‖2
p),

EN−1/2 + 2∆tCN−1/2 ≥ (n−∆tCh−1n)(‖uNh ‖2
f + ‖uN−1

h ‖2
f )

+ (gS0 −∆tCh−1n)(‖φNh ‖2
p + ‖φN−1

h ‖2
p),

EN−1/2 + 2∆tCN−1/2 ≥ (n−∆tCh−2n2)(‖uNh ‖2
f + ‖uN−1

h ‖2
f )

+ (gS0 −∆tC)(‖φNh ‖2
p + ‖φN−1

h ‖2
p),

EN−1/2 + 2∆tCN−1/2 ≥ (n−∆tCh−1n2)(‖uNh ‖2
f + ‖uN−1

h ‖2
f )

+ (gS0 −∆tCh−1)(‖φNh ‖2
p + ‖φN−1

h ‖2
p),

EN−1/2 + 2∆tCN−1/2 ≥ (n−∆tCh−2)(‖uNh ‖2
f + ‖uN−1

h ‖2
f )

+ (gS0 −∆tCn2)(‖φNh ‖2
p + ‖φN−1

h ‖2
p),

EN−1/2 + 2∆tCN−1/2 ≥ (n−∆tCh−1)(‖uNh ‖2
f + ‖uN−1

h ‖2
f )

+ (gS0 −∆tCh−1n2)(‖φNh ‖2
p + ‖φN−1

h ‖2
p),

Therefore EN−1/2 + 2∆tCN−1/2 > 0 provided that at least one of the inequalities above has

positive coefficients on the right-hand side. Hence, we must have

∆t < C−1 max { min
{
h2, gS0n

−1
}
,min

{
n−1h2, gS0

}
,min

{
nh2, gS0n

−2
}

min
{
h, gS0n

−1h
}
,min

{
n−1h, gS0h

}
,min

{
nh, gS0n

−2h
}
} .

This time-step condition, (∆tCNLF), is independent of kmin but sensitive to small values

S0. In fact, if h = 1/10, n = 0.10, and S0 = 10−6, then the time-step restriction implies

(assuming C is O(1)) that one must take ∆t < 10−3 for stability.
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3.1.1 Control over the Stable and Unstable Modes of CNLF-SD

The use of the Leapfrog time discretization produces the numerical phenomenon of stable

and unstable modes. These modes have no physical meaning with respect to the actual fluid-

porous media flow. Nevertheless, understanding the behavior of these modes is crucial for

predicting the overall behavior of solutions to (CNLF-SD) since accumulation of numerical

noise in the unstable mode has been known to correspond to energy blow-up in finite time

[30, 31]. In geophysics, techniques such as time-filtering [40, 5, 71, 72] are often applied

to counteract growth in the unstable mode that leads to system instability. However, we

show that provided satisfaction of the CFL-type condition, (∆tCNLF), (3.2) controls both

the stable and unstable modes.

We examine stability of the stable and unstable modes, represented by wk+1
h +wk−1

h and

wk+1
h − wk−1

h for w = u, φ respectively, inherently present in the (CNLF-SD) algorithm. We

show that provided (∆tCNLF) is satisfied, (CNLF-SD) effectively damps both the stable and

unstable modes. This implies that spurious oscillations or growth in the unstable mode may

be attributed to accumulation of round-off error or to an incorrect implementation of the

method, such as a violation of (∆tCNLF). Further, control over modes of the Stokes velocity

and Darcy pressure approximations leads to a stability estimate for the averages of the Stokes

pressure.

To prove stability of the modes, we will utilize of the following corollary to Theorem 20

regarding the stable modes of the Stokes velocity and Darcy pressure.

Corollary 21. (Control of the Stable Mode of (CNLF-SD)) Suppose ∆t satisfies (∆tCNLF).

Then the following inequality for the stable modes holds.

∆t
N−1∑
k=1

{
nν
2
‖∇
(
uk+1
h + uk−1

h

)
‖2
f + gkmin

2
‖∇
(
φk+1
h + φk−1

h

)
‖2
p

}
≤ 2∆t

N−1∑
k=1

{
n(ν)−1‖fkf ‖2

−1,f + g(kmin)−1‖fkp ‖2
−1,p

}
+ E1/2 + 2∆tC1/2.

(3.4)

Proof. Drop the positive term EN−1/2 + 2∆tCN−1/2 from the left hand side of (3.3) in the

proof of Theorem 20.
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Theorem 22 (Control of the Stable and Unstable Modes of (CNLF-SD)). Suppose ∆t

satisfies (∆tCNLF), recalled below

∆t < C−1 max { min
{
h2, gS0n

−1
}
,min

{
n−1h2, gS0

}
,min

{
nh2, gS0n

−2
}

min
{
h, gS0n

−1h
}
,min

{
n−1h, gS0h

}
,min

{
nh, gS0n

−2h
}
} ,

(∆tCNLF)

where C = CΩfCΩpC(inv)g. Then (CNLF-SD) controls both the stable and unstable modes.

That is, there exists a positive constant, M, satisfying for any N ≥ 2,

M

{
∆t

N−1∑
k=1

{
‖∇(uk+1

h + uk−1
h )‖2

f + ‖∇(φk+1
h + φk+1

h )‖2
p

}
+

N−1∑
k=1

{
‖uk+1

h − uk−1
h ‖

2
f + ‖φk+1

h − φk−1
h ‖

2
p

}}

≤ ∆t
N−1∑
k=1

{
‖fkf ‖2

−1,f + ‖fkp ‖2
−1,p + ∆t

(
‖fkf ‖2

f + ‖fkp ‖2
p

)}
+‖u1

h‖2
f + ‖u0

h‖2
f + ‖φ1

h‖2
p + ‖φ0

h‖2
p

+∆t
{
‖∇u1

h‖2
f + ‖∇u0

h‖2
f + ‖∇φ1

h‖2
p + ‖∇φ0

h‖2
p

}
+∆t

{
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h) + cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
}
.

(3.5)

Proof. Choose vh = 2δ∆t(uk+1
h − uk−1

h ) and ψh = 2δ∆t(φk+1
h − φk−1

h ) in (CNLF-SD) where

δ > 0 and add the equations. This produces

δ
{
n‖uk+1

h − uk−1
h ‖

2
f + gS0‖φk+1

h − φk+1
h ‖

2
p

}
+ δ∆t

{
Ak+1/2 −Ak−1/2

}
+2δ∆t

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}

= 2δ∆t
{
n(fkf , u

k+1
h − uk−1

h )f + g(fkp , φ
k+1
h − φk−1

h )p
}
,

where Ak+1/2 = af (u
k+1
h , uk+1

h ) + ap(φ
k+1
h , φk+1

h ) + af (u
k
h, u

k
h) + ap(φ

k
h, φ

k
h). Apply Cauchy-

Schwarz and Young’s inequality to the right hand side to obtain

δ(1− ε)
{
n‖uk+1

h − uk−1
h ‖

2
f + gS0‖φk+1

h − φk+1
h ‖

2
p

}
+ δ∆t

{
Ak+1/2 −Ak−1/2

}
+2δ∆t

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}
≤ δ∆t2

ε

{
n‖fkf ‖2

f + g
S0
‖fkp ‖2

p

}
,

(3.6)
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where ε ∈ (0, 1). Define the new energy:

Ẽk+1/2 = Ek+1/2 + 2∆tCk+1/2 + δ∆tAk+1/2.

Note that under the time-step restriction given in (∆tCNLF), Ẽk+1/2 > 0. Next, add (3.6) to

(3.3) in Corollary 21. Using the new notation yields

Ẽk+1/2 − Ẽk−1/2 + ∆t
2

{
nν‖∇(uk+1

h + uk−1
h )‖2

f + gkmin‖∇(φk+1
h + φk−1

h )‖2
p

}
+δ(1− ε)

{
n‖uk+1

h − uk−1
h ‖

2
f + gS0‖φk+1

h − φk+1
h ‖

2
p

}
+2δ∆t

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}

≤ 2∆t
{
n
ν
‖fkf ‖2

−1,f + g
kmin
‖fkp ‖2

−1,p

}
+ δ∆t2

ε

{
n‖fkf ‖2

f + g
S0
‖fkp ‖2

p

}
Sum the above from k = 1 to N − 1. This produces

ẼN−1/2 + ∆t
2

N−1∑
k=1

{
nν‖∇(uk+1

h + uk−1
h )‖2

f + gkmin‖∇(φk+1
h + φk−1

h )‖2
p

}
+δ(1− ε)

N−1∑
k=1

{
n‖uk+1

h − uk−1
h ‖

2
f + gS0‖φk+1

h − φk+1
h ‖

2
p

}
+Q

≤
N−1∑
k=1

{
2∆t

(
n
ν
‖fkf ‖2

−1,f + g
kmin
‖fkp ‖2

−1,p

)
+ δ∆t2

ε

(
n‖fkf ‖2

f + g
S0
‖fkp ‖2

p

)}
+ Ẽ1/2,

(3.7)

where

Q = 2δ∆t
N−1∑
k=1

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}
.

Next, bound Q using techniques from Lemma 19. Begin by rewriting the interface integrals

in terms of the stable and unstable modes. Notice that for k ≥ 2,

cI(u
k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h ) = 1
2
cI(u

k+1
h − uk−1

h , φkh − φk−2
h )

+1
2
cI(u

k+1
h − uk−1

h , φkh + φk−2
h )− 1

2
cI(u

k
h − uk−2

h , φk+1
h − φk−1

h )− 1
2
cI(u

k
h + uk−2

h , φk+1
h − φk−1

h ).

Bound each term as follows using Cauchy-Schwarz, Trace (Lemma 1), Poincaré (Lemma 2),
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Inverse (Lemma 5) and Young’s inequalities as necessary.

cI(u
k+1
h − uk−1

h , φkh − φk−2
h ) ≤ Cn

2h

{
‖uk+1

h − uk−1
h ‖

2
f + ‖φkh − φk−2

h ‖
2
f

}
,

cI(u
k+1
h − uk−1

h , φkh + φk−2
h ) ≤

ngCΩf
CΩp

√
C(inv)CP,p√
h

‖uk+1
h − uk−1

h ‖f‖∇(φkh + φk−2
h )‖p

≤ nCε1
h
‖uk+1

h − uk−1
h ‖f +

ngCΩf
CΩpCP,p

2ε1
‖∇(φkh + φk−2

h )‖p,

cI(u
k
h − uk−2

h , φk+1
h − φk−1

h ) ≤ nC
2h

{
‖ukh − uk−2

h ‖
2
f + ‖φk+1

h − φk−1
h ‖

2
f

}
,

cI(u
k
h + uk−2

h , φk+1
h − φk−1

h ) ≤
ngCΩf

CΩp

√
C(inv)CP,f√
h

‖∇(ukh + uk−2
h )‖f‖φk+1

h − φk−1
h ‖p

≤
ngCΩf

CΩpCP,f

2ε2
‖∇(ukh + uk−2

h )‖2
f + nCε2

h
‖φk+1

h − φk−1
h ‖

2
p,

(3.8)

where, as before, C = gCΩfCΩpC(inv), and ε1,2 > 0 are from Young’s inequality. Notice that

the first and third terms above were bounded using (CNLF Coupling 4) from Lemma 19.

Combine terms and simplify to obtain the following bound for Q:

Q ≤ δ∆tC
h

N−1∑
k=1

{
n(1 + ε1

2
)‖uk+1

h − uk−1
h ‖

2
f + n(1 + ε2

2
)‖φk+1

h − φk−1
h ‖

2
p

}
+δ∆t

N−1∑
k=1

{
ngCΩf

CΩpCP,f

2ε2
‖∇(uk+1

h + uk−1
h )‖2

f +
ngCΩf

CΩpCP,p

2ε1
‖∇(φk+1

h + φk−1
h )‖2

p

}
+2δ∆t

[
cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
]
.

Since ẼN−1/2 > 0 by (∆tCNLF), our energy inequality in (3.7) becomes

∆t
2

N−1∑
k=1

{(
nν −

δngCΩf
CΩpCP,f

ε2

)
‖∇(uk+1

h + uk−1
h )‖2

f

}
+∆t

2

N−1∑
k=1

{(
gkmin −

δngCΩf
CΩpCP,p

ε1

)
‖∇(φk+1

h + φk−1
h )‖2

p

}
+δ

N−1∑
k=1

{
n
(
(1− ε)− (1 + ε1

2
)∆tC
h

)
‖uk+1

h − uk−1
h ‖

2
f

}
+δ

N−1∑
k=1

{(
gS0(1− ε)− n(1 + ε2

2
)∆tC
h

)
‖φk+1

h − φk+1
h ‖

2
p

}
≤

N−1∑
k=1

{
2∆t

(
n
ν
‖fkf ‖2

−1,f + g
kmin
‖fkp ‖2

−1,p

)
+ δ∆t2

ε

(
n‖fkf ‖2

f + g
S0
‖fkp ‖2

p

)}
+Ẽ1/2 + 2δ∆t

[
cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
]
,
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This implies control over the stable and unstable modes provided the coefficients of the sums

on the left hand side are positive, i.e.

ν −
δgCΩf

CΩpCP,f

ε2
> 0,

gkmin −
δgCΩf

CΩpCP,p

ε1
> 0,

(1− ε)− (1 + ε1
2

)∆tC
h
> 0,

gS0(1− ε)− n(1 + ε2
2

)∆tC
h
> 0.

The last two inequalities are equivalent to

1+
ε1
2

1−ε < h
∆tC ,

1+
ε2
2

1−ε < gS0h
n∆tC .

Since ε1,2 are arbitrary positive numbers and ε ∈ (0, 1), we have
1+

ε1,2
2

1−ε > 1. If the maximum

in (∆tCNLF) is min{h, gS0n
−1h}, then the inequalities hold since ∆t < C−1 min{h, gS0n

−1h}.

To complete the proof in this case, choose

δ = min
{

gkminε1
ngCΩf

CΩpCP,p
, νε2
gCΩf

CΩpCP,f

}
.

To complete the proof for the other cases in (∆tCNLF), go back to (3.8) and apply one of

(CNLF Coupling 1)-(CNLF Coupling 3), (CNLF Coupling 5), or (CNLF Coupling 6) from

Lemma 19 to obtain the coefficients for these cases.

3.1.2 Stability of the Stokes Pressure

Theorem 23 (Stability of the Stokes Pressure). Suppose ∆t satisfies the CFL-condition for

stability given in (∆tCNLF). Then there exists a constant, H = C(1 + ∆t)(1 + h) for C > 0,

such that

∆t2
N−1∑
k=1

∥∥∥pk+1
h +pk−1

h

2

∥∥∥2

f
≤ H{ ∆t

N−1∑
k=1

[
‖fkf ‖2

−1,f + ‖fkp ‖2
−1,p + ∆t

(
‖fkf ‖2

f + ‖fkp ‖2
p

)]
+‖u1

h‖2
f + ‖u0

h‖2
f + ‖φ1

h‖2
p + ‖φ0

h‖2
p

+∆t
[
‖∇u1

h‖2
f + ‖∇u0

h‖2
f + ‖∇φ1

h‖2
p + ‖∇φ0

h‖2
p

]
+∆t

(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h) + cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
)
} .

(3.9)
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Proof. By (LBBh),

β
∥∥∥pk+1

h +pk−1
h

2

∥∥∥
f
≤ sup

vh∈Xh
f

b
(
vh,

pk+1
h +pk−1

h

2

)
‖∇vh‖f

= sup
vh∈Xh

f

n
(
uk+1
h −uk−1

h

2∆t
, vh

)
f

+ af

(
uk+1
h +uk−1

h

2
, vh

)
+ cI(vh, φ

k
h)− n(fkf , vh)f

‖∇vh‖f
.

Bound the terms on the right hand side using the Cauchy-Schwarz inequality, Lemma 2

(Poincaré), and the continuity of af (., .) (Lemma 3).

β
∥∥∥pk+1

h +pk−1
h

2

∥∥∥
f
≤ sup

vh∈Xh
f

{ nCP,f
∥∥∥uk+1

h −uk−1
h

2∆t

∥∥∥
f

+Mf

∥∥∥∇(uk+1
h +uk−1

h

2

)
‖f

+
cI(vh, φ

k
h)

‖∇vh‖f
+ n‖fkf ‖−1,f } .

Next, bound the coupling term by the Cauchy-Schwarz, Trace (Lemma 1), Poincaré

(Lemma 2), and Inverse (Lemma 5) inequalities.

β
∥∥∥pk+1

h +pk−1
h

2

∥∥∥
f
≤ nCP,f

∥∥∥uk+1
h −uk−1

h

2∆t

∥∥∥
f

+Mf

∥∥∥∇(uk+1
h +uk−1

h

2

)∥∥∥
f

+
ngCΩf

CΩp

√
CP,fC(inv)√
h

‖φkh‖p + n‖fkf ‖−1,f .

Square both sides, sum from k = 1 to k = N − 1 and apply Cauchy-Schwarz again to obtain

β2

N−1∑
k=1

∥∥∥pk+1
h +pk−1

h

2

∥∥∥2

f
≤

N−1∑
k=1

{
nCP,f

∥∥∥uk+1
h −uk−1

h

2∆t

∥∥∥
f

+Mf

∥∥∥∇(uk+1
h +uk−1

h

2

)∥∥∥
f

+
ngCΩf

CΩp

√
CP,fC(inv)√
h

‖φkh‖p + n‖fkf ‖−1,f

}2

≤ H

N−1∑
k=1

{∥∥∥uk+1
h −uk−1

h

2∆t

∥∥∥2

f
+
∥∥∇ (uk+1

h + uk−1
h

)∥∥2

f
+ C

h
‖φkh‖2

p + ‖fkf ‖2
−1,f

}
,

where H = n2C2
P,f +

M2
f

4
+ n2gCΩfCΩpCP,f + n2. Next, we bound the summation containing

‖φkh‖2
p similar by rewriting it in terms of the stable and unstable modes via the parallelogram
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law.

N−1∑
k=1

‖φkh‖2
p =

N−2∑
k=1

‖φk+1
h ‖

2
p + ‖φ1

h‖2
p

= 1
2

N−2∑
k=1

{
‖(φk+1

h − φk−1
h )‖2

p + C2
P,p‖∇(φk+1

h + φk−1
h )‖2

p − 2‖φk−1
h ‖

2
p

}
+ ‖∇φ1

h‖2
p

≤ 1
2

N−1∑
k=1

{
‖φk+1

h − φk−1
h ‖

2
p + C2

P,p‖∇
(
φk+1
h + φk−1

h

)
‖2
p

}
+ ‖∇φ1

h‖2
p.

Thus we have

β2

N−1∑
k=1

∥∥∥pk+1
h +pk−1

h

2

∥∥∥2

f
≤ H {

N−1∑
k=1

[
∥∥∥uk+1

h −uk−1
h

2∆t

∥∥∥2

f
+
∥∥∇ (uk+1

h + uk−1
h

)∥∥2

f

+ C
2h

(
‖φk+1

h − φk−1
h ‖

2
p + C2

P,p‖∇
(
φk+1
h + φk−1

h

)
‖2
p

)
+ ‖fkf ‖2

−1,f ] + ‖∇φ1
h‖2

p } .

Bound each term on the right hand side above using the inequality in Theorem 22. That is,

N−1∑
k=1

‖u
k+1
h −uk−1

h

2∆t
‖2
f ≤ 1

4M∆t2
{ ∆t

N−1∑
k=1

[
‖fkf ‖2

−1,f + ‖fkp ‖2
−1,p + ∆t

(
‖fkf ‖2

f + ‖fkp ‖2
p

)]
+‖u1

h‖2
f + ‖u0

h‖2
f + ‖φ1

h‖2
p + ‖φ0

h‖2
p

+∆t
{
‖∇u1

h‖2
f + ‖∇u0

h‖2
f + ‖∇φ1

h‖2
p + ‖∇φ0

h‖2
p

}
+∆t

(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h) + cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
)
} ,

C
2h

N−1∑
k=1

‖φk+1
h − φk−1

h ‖
2
p ≤ C

2Mh
{ ∆t

N−1∑
k=1

[
‖fkf ‖2

−1,f + ‖fkp ‖2
−1,p + ∆t

(
‖fkf ‖2

f + ‖fkp ‖2
p

)]
+‖u1

h‖2
f + ‖u0

h‖2
f + ‖φ1

h‖2
p + ‖φ0

h‖2
p

+∆t
{
‖∇u1

h‖2
f + ‖∇u0

h‖2
f + ‖∇φ1

h‖2
p + ‖∇φ0

h‖2
p

}
+∆t

(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h) + cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
)
} ,

CC2
P,p

2h

N−1∑
k=1

‖∇(φk+1
h + φk−1

h )‖2
p ≤

CC2
P,p

2Mh
{
N−1∑
k=1

[
‖fkf ‖2

−1,f + ‖fkp ‖2
−1,p + ∆t

(
‖fkf ‖2

f + ‖fkp ‖2
p

)]
+ 1

∆t

(
‖u1

h‖2
f + ‖u0

h‖2
f + ‖φ1

h‖2
p + ‖φ0

h‖2
p

)
‖∇u1

h‖2
f + ‖∇u0

h‖2
f + ‖∇φ1

h‖2
p + ‖∇φ0

h‖2
p

+
(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h) + cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
)
} ,
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N−1∑
k=1

‖∇
(
uk+1
h + uk−1

h

)
‖2
f ≤ 1

M {
N−1∑
k=1

[
‖fkf ‖2

−1,f + ‖fkp ‖2
−1,p + ∆t

(
‖fkf ‖2

f + ‖fkp ‖2
p

)]
+ 1

∆t

(
‖u1

h‖2
1 + ‖u0

h‖2
1 + ‖φ1

h‖2
1 + ‖φ0

h‖2
1

)
‖∇u1

h‖2
f + ‖∇u0

h‖2
f + ‖∇φ1

h‖2
p + ‖∇φ0

h‖2
p

+
(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h) + cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
)
} .

Use the above bounds to obtain the final result. Multiply through by ∆t2, and utilize that

since the porosity, n, satisfies, 0 < n < 1, by (∆tCNLF), C∆t
h
< n−1(1 + h).

3.1.3 Special Case: Convergence to the Equilibrium Stokes-Darcy Problem

The special case of convergence to the equilibrium Stokes-Darcy problem, with forcing terms

f∞f and f∞p independent of time, follows. The equilibrium solution, denoted by (u∞, p∞, φ∞),

obeys

af (u∞, vh)− b(vh, p∞) + cI(vh, φ∞) = n(f∞f , vh)f ,

b(u∞, qh) = 0,

ap(φ∞, ψh)− cI(u∞, ψh) = (f∞p , ψh)p.

(SD-Equi)

Using the equilibrium projection operator, Ph, discussed in Chapter 2, we may project

the true solutions to the equilibrium problem onto the finite element spaces, Xh
f , Q

h
f , and

Xh
p . Let w̃kh = wkh − Phw∞ for w = u, φ, and f̃kf,p = fkf,p − f∞f,p. By the projection property

(SD-proj) we have

af (Phu∞, vh)− b(vh, Php∞) + cI(vh, Phφ∞) = (f∞f , vh)f ,

af (Phφ∞, ψh)− cI(Phu∞) = (f∞p , ψh)p.
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Thus, by linearity, the terms ũ, p̃, and φ̃ satisfy

n
(
ũk+1
h −ũk−1

h

2∆t
, vh

)
f

+ af

(
ũk+1
h +ũk−1

h

2
, vh

)
− b
(
vh,

p̃k+1
h +p̃k−1

h

2

)
f

+ cI(vh, φ̃
k
h) = n(f̃kf , vh)f ,

b
(
ũk+1
h , qh

)
= 0,

gS0

(
φ̃k+1
h −φ̃k−1

h

2∆t
, ψh

)
p

+ ap

(
φ̃k+1
h +φ̃k−1

h

2
, ψh

)
− cI(ũkh, ψh) = g(f̃kp , ψh)p.

(3.10)

Corollary 24 (Convergence of (CNLF-SD) to Equilibrium). Suppose (∆tCNLF) holds and

both fkf → f∞f and fkp → f∞p as k → ∞ in the sense that the series
∞∑
k=0

‖fkf − f∞f ‖2
−1,f ,

∞∑
k=0

‖fkp − f∞p ‖2
−1,p,

∞∑
k=0

‖fkf − f∞f ‖2
f , and

∞∑
k=0

‖fkp − f∞p ‖2
p all converge. Then, ukh → Phu∞,

pk+1
h +pk−1

h

2
→ Php∞, and φkh → Phφ∞ as k →∞.

Proof. Note that the terms ũ and φ̃ lie in our finite element solutions spaces and obey

(CNLF-SD) by linearity (3.10). Insert ũ and φ̃ into the inequality in Theorem 22. Let

N →∞. The resulting inequality implies that ‖∇(wk+1
h +wk−1

h )‖ → 0 and ‖wk+1
h −wk−1

h ‖ → 0

for w = ũ, φ̃ as k →∞. By the triangle and Poincaré’s inequality,

‖wk+1
h ‖ = 1

2
‖wk+1

h + wk−1
h − wk−1

h + wk+1
h ‖

≤ 1
2
‖wk+1

h + wk−1
h ‖+ 1

2
‖wk+1

h − wk−1
h ‖

≤ 1
2

(
CP‖∇(wk+1

h + wk−1
h )‖+ ‖wk+1

h − wk−1
h ‖

)
,

for w = ũ, φ̃. This implies both ‖ũk+1
h ‖f and ‖φ̃k+1

h ‖p converge to zero, meaning the Stokes

velocity and Darcy pressure converge to the finite element projections of the equilibrium

solutions. As for the Stokes pressure, since
p̃k+1
h +p̃k−1

h

2
∈ Qh

f , by (LBBh), we have

βh

∥∥∥ p̃k+1
h +p̃k−1

h

2

∥∥∥
f
≤ sup

vh∈Xh
f

b
(
vh,

p̃k+1
h +p̃k−1

h

2

)
‖∇vh‖f

= sup
vh∈Xh

f

n
(
ũk+1
h −ũk−1

h

2∆t
, vh

)
f

+ af

(
ũk+1
h +ũk−1

h

2
, vh

)
+ cI(vh, φ̃

k
h)− (f̃∞f , vh)f

‖∇vh‖f

≤ C{ 1
∆t
‖ũk+1

h − ũk−1
h ‖f + ‖∇(ũk+1

h + ũk−1
h )‖f + ‖∇φ̃kh‖p + ‖f̃kf ‖−1,f}.
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Let k →∞. Since lim
k→∞

w̃kh = 0 for w = u, φ, and the forcing term ‖f̃∞f ‖−1,f → 0, we have

lim
k→∞

∥∥∥ p̃k+1
h +p̃k−1

h

2

∥∥∥
f

= 0.

3.2 ANALYSIS OF THE CONVERGENCE OF CNLF-SD

Error analysis of the (CNLF-SD) method over long-time intervals ensues. Recall that the

FEM spaces, Xh
f , Xh

p and Qh
f were chosen to satisfy approximation properties of piecewise

polynomials of degree r − 1, r, and r + 1 as stated previously in (1.17). Since we assumed

that Xh
f and Qh

f satisfy (LBBh), there exists some constant C such that if u ∈ V , where

V := {v ∈ Xf : ∇ · v = 0}, then

inf
vh∈Vh

‖u− vh‖1,f ≤ C inf
xh∈Xh

f

‖u− xh‖1,f , (3.11)

(see, for example, Girault and Raviart [34]). Let N ∈ N be given. Denote tn = n∆t and

T = N∆t. If T =∞ then N =∞. In order to conduct error analysis for (CNLF-SD), define

the following discrete-in-time norms:

‖|v|‖L2(0,T ;Hs(Ωf,p)) :=

(
N∑
k=1

‖vk‖2
Hs(Ωf,p)∆t

)1/2

,

‖|v|‖L∞(0,T ;Hs(Ωf,p)) := max
0≤k≤N

‖vk‖Hs(Ωf,p).

To bound the consistency errors of (CNLF-SD) we will use the lemma below.
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Lemma 25. (Consistency Errors for (CNLF-SD)) The following inequalities hold:

∆t
N−1∑
k=1

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

≤ (∆t)4

20
‖uttt‖2

L2(0,T ;L2(Ωf )),

∆t
N−1∑
k=1

‖φkt −
φk+1 − φk−1

2∆t
‖2
p ≤

(∆t)4

20
‖φttt‖2

L2(0,T ;L2(Ωp)),

∆t
N−1∑
k=1

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

≤ 7(∆t)4

6
‖utt‖2

L2(0,T ;H1(Ωf )),

∆t
N−1∑
k=1

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

≤ 7(∆t)4

6
‖φtt‖2

L2(0,T ;H1(Ωp)).

Proof. Proofs for the second and fourth inequalities follow. The proofs for the other in-

equalities are similar. We prove the first inequality by integrating by parts twice and the

Cauchy-Schwarz inequality.

N−1∑
k=1

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥2

p

=
1

4(∆t)2

∫
Ωp

N−1∑
k=1

(∫ tk+1

tk
(t− tk+1)φtt dt+

∫ tk

tk−1

(t− tk−1)φtt dt

)2

dx

=
1

4(∆t)2

∫
Ωp

N−1∑
k=1

(∫ tk+1

tk

(t− tk+1)2

2
φttt dt+

∫ tk

tk−1

(t− tk−1)2

2
φttt dt

)2

dx

≤ 1

4(∆t)2

∫
Ωp

N−1∑
k=1

(∆t)5

20

(∫ tk+1

tk−1

|φttt|2 dt

)
dx

≤ (∆t)3

20

∫
Ωp

∫ T

0

|φttt|2 dt dx ≤
(∆t)3

20
‖φttt‖2

L2(0,T ;L2(Ωp)).

This next inequality is proved similarly.

N−1∑
k=1

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

=

∫
Ωp

N−1∑
k=1

∣∣∣∣∇(φk − φk+1

2
+
φk − φk−1

2

)∣∣∣∣2 dx
= 1

4

∫
Ωp

N−1∑
k=1

|∇(φk − φk+1) +∇(φk − φk−1)|2 dx

=
1

4

∫
Ωp

N−1∑
k=1

∣∣∣∣∣
∫ tk

tk+1

∇φt dt+

∫ tk

tk−1

∇φt dt

∣∣∣∣∣
2

dx

65



= 1
4

∫
Ωp

N−1∑
k=1

∣∣∣∣∣
∫ tk

tk+1

(t− tk)′∇φtdt+

∫ tk

tk−1

(t− tk)′∇φtdt

∣∣∣∣∣
2

dx

= 1
4

∫
Ωp

N−1∑
k=1

∣∣∣∣∣−∆t

∫ tk+1

tk−1

∇φtt dt+

∫ tk+1

tk
(t− tk)∇φtt dt+

∫ tk

tk−1

(tk − t)∇φtt dt

∣∣∣∣∣
2

dx

≤ 1
2

∫
Ωp

N−1∑
k=1

(
(∆t)3

∫ tk+1

tk−1

|∇φtt|2 dt+
(∆t)3

3

∫ tk+1

tk−1

|∇φtt|2 dt

)
dx

≤ 7(∆t)3

6
‖φtt‖2

L2(0,T ;H1(Ωp)).

3.2.1 Convergence of the Stokes Velocity and Darcy Pressure

Proof of convergence of the Stokes velocity, u, and Darcy pressure, φ, with optimal rates

over long-time intervals under condition (∆tCNLF) follows. Denote the errors in the Stokes

velocity and Darcy pressure variables by Eku = un − ukh and Ekφ = φk − φkh. Note that in the

analysis of the convergence of this method we are not employing the projection operator,

Ph, utilized in the convergence analysis of the splitting methods in Chapter 2.

Theorem 26. (Convergence of (CNLF-SD)) Consider (CNLF-SD). Suppose that the time-

step condition (∆tCNLF) holds and u, p, φ satisfy the following regularity conditions:

u ∈ L2(0, T ;Hr+2(Ωf )) ∩ L∞(0, T ;Hr+1(Ωf )) ∩H3(0, T ;H1(Ωf )),

p ∈ L2(0, T ;L2(Ωf )),

φ ∈ L2(0, T ;Hr+2(Ωp)) ∩ L∞(0, T ;Hr+1(Ωp)) ∩H3(0, T ;H1(Ωp)).

Then, for any 0 ≤ tN ≤ ∞, there is a positive constant, Ĉ, independent of the mesh width,

h, and time-step size, ∆t, such that for some α, β > 0 there holds
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α
2
(‖ENu ‖2

f + ‖EN−1
u ‖2

f + β
2
(‖ENφ ‖2

p + ‖EN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
ν
4
‖∇(Ek+1

u + Ek−1
u )‖2

f + gkmin
4
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)

≤ Ĉ{ h2r{ ‖|u‖|2L2(0,T ;Hr+1(Ωf )) + ‖|φ‖|2L2(0,T ;Hr+1(Ωp))}
+ h2r+2{ ‖ut‖2

L2(0,T ;Hr+1(Ωf )) + ‖φt‖L2(0,T ;Hr+1(Ωp)) + ‖|u|‖2
L∞(0,T ;Hr+1(Ωf ))

+ ‖|φ|‖2
L∞(0,T ;Hr+1(Ωp)) + ‖|p|‖2

L2(0,T ;Hr+1(Ωf ))}
+ (∆t)4{ ‖uttt‖2

L2(0,T ;L2(Ωf )) + ‖φttt‖2
L2(0,T ;L2(Ωp)) + ‖utt‖2

L2(0,T ;H1(Ωf ))

+ ‖φtt‖2
L2(0,T ;H1(Ωp))} + ∆t(‖∇E1

u‖2
f + ‖∇E0

u‖2
f + ‖∇E1

φ‖2
p + ‖∇E0

φ‖2
p)

+ ‖E1
u‖2

f + ‖E0
u‖2

f + ‖E1
φ‖2

p + ‖E0
φ‖2

p } .

Proof. Recall that solution uk = u(tk) where tk = k∆t, satisfies (FEM-SD). Consider

(CNLF-SD) over the discretely divergence free space V h := {vh ∈ Xh
f : b(vh, qh) = 0∀qh ∈

Qh
f} instead of Xh

f . Subtract (CNLF-SD) from (FEM-SD) evaluated at time tk. Note that

since vh ∈ V h, the term b
(
vh,

pk+1
h +pk−1

h

2

)
equals zero, and can therefore be omitted from the

equation. We have

n
(
ukt −

uk+1
h −uk−1

h

2∆t
, vh

)
f

+ af

(
uk − uk+1

h +uk−1
h

2
, vh

)
−b
(
vh, p

k
)

+ cI
(
vh, φ

k − φkh
)

= 0,

gS0

(
φkt −

φk+1
h −φk−1

h

2∆t
, ψh

)
p

+ ap

(
φk − φk+1

h +φk−1
h

2
, ψh

)
− cI

(
uk − ukh, ψh

)
= 0.

Since vh is discretely divergence free, b
(
vh, p

k
)

= b(vh, p
k − λkh), for any λh ∈ Qh

f . After

rearranging terms, the error equations become

n
(
Ek+1
u −Ek−1

u

2∆t
, vh

)
f

+ af

(
Ek+1
u +Ek−1

u

2
, vh

)
+ cI

(
vh, Ekφ

)
= n

(
uk+1−uk−1

2∆t
, vh

)
f
− n(ukt , vh)f − af

(
uk − uk+1+uk−1

2
, vh

)
+ b
(
vh, p

k − λkh
)
,
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gS0

(
Ek+1
φ −Ek−1

φ

2∆t
, ψh

)
p

+ ap

(
Ek+1
φ +Ek−1

φ

2
, ψh

)
− cI

(
Eku , ψh

)
= gS0

(
φk+1−φk−1

2∆t
, ψh

)
p
− gS0(φkt , ψh)p − ap

(
φk − φk+1+φk−1

2
, ψh

)
.

The consistency errors are:

τ kf (vh) = n
(
uk+1−uk−1

2∆t
, vh

)
f
− n(ukt , vh)f − af

(
uk − uk+1+uk−1

2
, vh

)
,

τ kp (ψh) = gS0

(
φk+1−φk−1

2∆t
, ψh

)
p
− gS0(φkt , ψh)p − ap

(
φk − φk+1+φk−1

2
, ψh

)
.

Split the error terms into:

Ek+1
u = uk+1 − uk+1

h = (uk+1 − ũk+1) + (ũk+1 − uk+1
h ) = ηk+1

u + ξk+1
u ,

Ek+1
φ = φk+1 − φk+1

h = (φk+1 − φ̃k+1) + (φ̃k+1 − φk+1
h ) = ηk+1

φ + ξk+1
φ .

Take ũk+1 ∈ V h and φ̃k+1 ∈ Xh
p so that ξk+1

u ∈ V h. Rearranging error equations produces

n
(
ξk+1
u −ξk−1

u

2∆t
, vh

)
f

+ af

(
ξk+1
u +ξk−1

u

2
, vh

)
+ cI(vh, ξ

k
φ)

= −n
(
ηk+1
u −ηk−1

u

2∆t
, vh

)
f
− af

(
ηk+1
u +ηk−1

u

2
, vh

)
− cI(vh, ηkφ) + τ kf (vh) + b

(
vh, p

k − λkh
)
,

gS0

(
ξk+1
φ −ξk−1

φ

2∆t
, ψh

)
p

+ ap

(
ξk+1
φ +ξk−1

φ

2
, ψh

)
− cI(ξku, ψh)

= −gS0

(
ηk+1
φ −ηk−1

φ

2∆t
, ψh

)
p

− ap
(
ηk+1
φ +ηk−1

φ

2
, ψh

)
+ cI(η

k
u, ψh) + τ kp (ψh).

Choose vh = ξk+1
u + ξk−1

u ∈ V h and ψh = ξk+1
φ + ξk−1

φ ∈ Xh
p and add both error equations to

find

1
2∆t

(
n‖ξk+1

u ‖2
f + gS0‖ξk+1

φ ‖2
p − n‖ξk−1

u ‖2
f − gS0‖ξk−1

φ ‖2
p

)
+
[
cI(ξ

k+1
u + ξk−1

u , ξkφ)− cI(ξku, ξk+1
φ + ξk−1

φ )
]

+1
2

[
af (ξ

k+1
u + ξk−1

u , ξk+1
u + ξk−1

u ) + ap(ξ
k+1
φ + ξk−1

φ , ξk+1
φ + ξk−1

φ )
]
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= − 1
2∆t

[
n
(
ηk+1
u − ηk−1

u , ξk+1
u + ξk−1

u

)
f

+ gS0

(
ηk+1
φ − ηk−1

φ , ξk+1
φ + ξk−1

φ

)
p

]
−1

2

[
af
(
ηk+1
u + ηk−1

u , ξk+1
u + ξk−1

u

)
+ ap

(
ηk+1
φ + ηk−1

φ , ξk+1
φ + ξk−1

φ

)]
−
[
cI(ξ

k+1
u + ξk−1

u , ηkφ)− cI(ηku, ξk+1
φ + ξk−1

φ )
]

+τ kf (ξk+1
u + ξk−1

u ) + b
(
ξk+1
u + ξk−1

u , pk − λkh
)

+ τ kp (ξk+1
φ + ξk−1

φ ).

Split the coupled terms on the left hand side in the following way:

cI(ξ
k+1
u + ξk−1

u , ξkφ)−cI(ξku, ξk+1
φ + ξk−1

φ )

=
(
cI(ξ

k+1
u , ξkφ)− cI(ξku, ξk+1

φ )
)
−
(
cI(ξ

k
u, ξ

k−1
φ )− cI(ξk−1

u , ξkφ)
)

= C
k+ 1

2
ξ − Ck− 1

2
ξ .

Denote the ξ energy terms by

E
k+1/2
ξ := n‖ξk+1

u ‖2
f + gS0‖ξk+1

φ ‖2
p + n‖ξku‖2

f + gS0‖ξkφ‖2
p.

Applying the coercivity of af (·, ·) and ap(·, ·) we have

E
k+1/2
ξ + 2∆tC

k+ 1
2

ξ − Ek−1/2
ξ − 2∆tC

k− 1
2

ξ

+ ∆t
(
nν‖∇(ξk+1

u + ξk−1
u )‖2

f + gkmin‖∇(ξk+1
φ + ξk−1

φ ‖2
p

)
≤ −

[
n
(
ηk+1
u − ηk−1

u , ξk+1
u + ξk−1

u

)
f

+ gS0

(
ηk+1
φ − ηk−1

φ , ξk+1
φ + ξk−1

φ

)
p

]
−∆t

[
af
(
ηk+1
u + ηk−1

u , ξk+1
u + ξk−1

u

)
+ ap

(
ηk+1
φ + ηk−1

φ , ξk+1
φ + ξk−1

φ

)]
− 2∆t

[
cI(ξ

k+1
u + ξk−1

u , ηkφ)− cI(ηku, ξk+1
φ + ξk−1

φ )
]

+ 2∆t
(
τ kf (ξk+1

u + ξk−1
u ) + b(ξk+1

u + ξk−1
u , pk − λkh) + τ kp (ξk+1

φ + ξk−1
φ )

)
.

Now bound the right hand side of the inequality from above. Begin by bounding the first

term on the right using the standard Cauchy-Schwarz, Poincaré (Lemma 2), and Young

inequalities.

n(ηk+1
u − ηk−1

u , ξk+1
u + ξk−1

u )f + gS0(ηk+1
φ − ηk−1

φ , ξk+1
φ + ξk−1

φ )p

≤ 3nC2
P,f

ν∆t
‖ηk+1

u − ηk−1
u ‖2

f +
5gS2

0C
2
P,p

2kmin∆t
‖ηk+1

φ − ηk−1
φ ‖2

p

+ ∆tnν
12
‖∇(ξk+1

u + ξk−1
u )‖2

f + ∆tgkmin
10
‖∇(ξk+1

φ + ξk−1
φ )‖2

p.
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Next, we apply the continuity of the bilinear forms af (., .) and ap(., .) to bound the second

term on the right.. Using the notation, Mf , from Lemma 3, we obtain

af (η
k+1
u + ηk−1

u ξk+1
u + ξk−1

u ) + ap(η
k+1
φ + ηk−1

φ , ξk+1
φ + ξk−1

φ )

≤Mf‖∇(ηk+1
u + ηk−1

u )‖f‖∇(ξk+1
u + ξk−1

u )‖f

+ gkmax‖∇(ηk+1
φ + ηk−1

φ )‖p‖∇(ξk+1
φ + ξk−1

φ )‖p

≤ 3M2
f

nν
‖∇(ηk+1

u + ηk−1
u )‖2

f + 5gk2
max

2kmin
‖∇(ηk+1

φ + ηk−1
φ )‖2

p

+ nν
12
‖∇(ξk+1

u + ξk−1
u )‖2

f + gkmin
10
‖∇(ξk+1

φ + ξk−1
φ )‖2

p.

We bound the coupled terms on the right hand side using Lemmas 1 (Trace), 2 (Poincaré),

and Young’s inequalities. Let C = C2
Ωf
C2

Ωp
CP,fCP,pg

2. Then

cI(ξ
k+1
u + ξk−1

u , ηkφ)− cI(ηku, ξk+1
φ + ξk−1

φ )

≤ ng
(
‖(ξk+1

u + ξk−1
u ) · n̂f‖I‖ηkφ‖I + ‖ηku · n̂f‖I‖ξk+1

φ + ξk−1
φ ‖I

)
≤ CΩfCΩpng

(
‖ξk+1

u + ξk−1
u ‖1/2

f ‖∇(ξk+1
u + ξk−1

u )‖1/2
f ‖η

k
φ‖1/2

p ‖∇ηkφ‖1/2
p

+ ‖ξk+1
φ + ξk−1

φ ‖1/2
p ‖∇(ξk+1

φ + ξk−1
φ )‖1/2

p ‖ηku‖
1/2
f ‖∇η

k
u‖

1/2
f

)
≤ n
√
C
(
‖∇(ξk+1

u + ξk−1
u )‖f‖∇ηkφ‖p + ‖∇ηku‖f‖∇(ξk+1

φ + ξk−1
φ )‖p

)
≤ 6nC

ν
‖∇ηku‖2

f + 5n2C
gkmin

‖∇ηkφ‖2
p

+ nν
24
‖∇(ξk+1

u + ξk−1
u )‖2

f + gkmin
20
‖∇(ξk+1

φ + ξk−1
φ )‖2

p.

Finally, we bound the consistency errors, τ kf and τ kp , and the pressure term as follows.

τ kf (ξk+1
u + ξk−1

u ) = n
(
uk+1−uk−1

2∆t
, ξk+1
u + ξk−1

u

)
− n(ukt , ξ

k+1
u + ξk−1

u )u

− af
(
uk − uk+1+uk−1

2
, ξk+1
u + ξk−1

u

)
≤ n

∥∥∥ukt − uk+1−uk−1

2∆t

∥∥∥
f
‖ξk+1

u + ξk−1
u ‖f

+Mf

∥∥∥∇(uk − uk+1+uk−1

2

)∥∥∥
f
‖∇(ξk+1

u + ξk−1
u )‖f

≤ 6C2
P,fn

ν

∥∥∥ukt − uk+1−uk−1

2∆t

∥∥∥2

f
+

6nM2
f

ν

∥∥∥∇(uk − uk+1+uk−1

2

)∥∥∥2

f

+ nν
12
‖∇(ξk+1

u + ξk−1
u )‖2

f ,
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τ kp (ξk+1
φ + ξk−1

φ ) = gS0

(
φk+1−φk−1

2∆t
, ξk+1
φ + ξk−1

φ

)
p
− gS0(φkt , ξ

k+1
φ + ξk−1

φ )p

− ap
(
φk − φk+1 + φk−1

2
, ξk+1
φ + ξk−1

φ

)
≤ gS0

∥∥∥φkt − φk+1−φk−1

2∆t

∥∥∥
p
‖ξk+1

φ + ξk−1
φ ‖p

+ gkmax

∥∥∥∇(φk − φk+1+φk−1

2

)∥∥∥
p
‖∇(ξk+1

φ + ξk−1
φ )‖p

≤ 5gS2
0C

2
P,p

kmin

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥2

p

+ 5gkmax
kmin

∥∥∥∇(φk − φk+1+φk−1

2

)∥∥∥2

p

+ gkmin
10
‖∇(ξk+1

φ + ξk−1
φ )‖2

p,

b
(
ξk+1
u + ξk−1

u , pk − λkh
)
≤ n‖pk − λkh‖f‖∇ · (ξk+1

u + ξk−1
u )‖f

≤ 6nd
ν
‖pk − λkh‖2

f + nν
24
‖∇(ξk+1

u + ξk−1
u )‖2

f .

Having bounded each term on the right hand side from above, we now subsume the ξ terms

on the right into the left hand side of the inequality to obtain, for some C0 > 0,

E
k+ 1

2
ξ + 2∆tC

k+ 1
2

ξ − Ek− 1
2

ξ − 2∆tC
k− 1

2
ξ

+ ∆t
(
nν
2
‖∇(ξk+1

u + ξk−1
u )‖2

f + gkmin
2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)
≤ C0{(∆t)−1

{
‖ηk+1

u − ηk−1
u ‖2

f + ‖ηk+1
φ − ηk−1

φ ‖2
p

}
+ ∆t{‖∇(ηk+1

u + ηk−1
u )‖2

f + ‖∇(ηk+1
φ + ηk−1

φ )‖2
p + ‖∇ηku‖2

f

+ ‖∇ηkφ‖2
p +

∥∥∥ukt − uk+1−uk−1

2∆t

∥∥∥2

f

+
∥∥∥∇(uk − uk+1+uk−1

2

)∥∥∥2

f
+ ‖pk − λkh‖2

f

+
∥∥∥φkt − φk+1−φk−1

2∆t

∥∥∥2

p
+
∥∥∥∇(φk − φk+1+φk−1

2

)∥∥∥2

p
}}.
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Sum the previous inequality from k = 1, ..., N − 1. Then

E
N− 1

2
ξ + 2∆tC

N− 1
2

ξ − E
1
2
ξ − 2∆tC

1
2
ξ

+ ∆t
N−1∑
k=1

(
nν
2
‖∇
(
ξk+1
u + ξk−1

u

)
‖2
f + gkmin

2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)
≤ C0{(∆t)−1

N−1∑
k=1

[
‖ηk+1

u − ηk−1
u ‖2

f + ‖ηk+1
φ − ηk−1

φ ‖2
p

]
+ ∆t

N−1∑
k=1

[‖∇(ηk+1
u + ηk−1

u )‖2
f + ‖∇(ηk+1

φ + ηk−1
φ )‖2

p

+ ‖∇ηku‖2
f + ‖∇ηkφ‖2

p +
12C2

P,f

ν

∥∥∥ukt − uk+1−uk−1

2∆t

∥∥∥2

f

+
∥∥∥∇(uk − uk+1+uk−1

2

)∥∥∥2

f
+ ‖pk − λh‖2

f

+
∥∥∥φkt − φk+1−φk−1

2∆t

∥∥∥2

p
+
∥∥∥∇(φk − φk+1+φk−1

2

)∥∥∥2

p
]}.

Next bound this in terms of norms instead of summations. Using Cauchy-Schwarz and other

basic inequalities, we bound the first term on the right hand side as follows.

N−1∑
k=1

‖ηk+1
u − ηk−1

u ‖2
f =

N−1∑
k=1

∥∥∥∥∥
∫ tk+1

tk−1

ηu,tdt

∥∥∥∥∥
2

f

≤
N−1∑
k=1

∫
Ωf

(2∆t)

∫ tk+1

tk−1

|ηu,t|2dt dx

≤ 4∆t‖ηu,t‖2
L2(0,T ;L2(Ωf )).

(3.12)

We treat the second term similarly.

N−1∑
k=1

‖ηk+1
φ − ηk−1

φ ‖2
f ≤ 4∆t‖ηφ,t‖2

L2(0,T ;L2(Ωp)). (3.13)

We bound the remaining η terms using Cauchy-Schwartz and the discrete norms.

N−1∑
k=1

‖∇(ηk+1
u +ηk−1

u )‖2
f ≤ 2

N−1∑
k=1

(
‖∇ηk+1

u ‖2
f + ‖∇ηk−1

u ‖2
f

)
≤ 4

N∑
k=0

‖∇ηku‖2
f ≤ 4(∆t)−1‖|∇ηu|‖2

L2(0,T ;L2(Ωf )),

(3.14)
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N−1∑
k=1

‖∇(ηk+1
φ + ηk−1

φ )‖2
f ≤ 4(∆t)−1‖|∇ηφ|‖2

L2(0,T ;L2(Ωp)), (3.15)

N−1∑
k=1

‖∇ηku‖2
f ≤ (∆t)−1‖|∇ηu|‖2

L2(0,T ;L2(Ωf )), (3.16)

N−1∑
k=1

‖∇ηkφ‖2
p ≤ (∆t)−1‖|∇ηφ|‖2

L2(0,T ;L2(Ωp)), (3.17)

N−1∑
k=1

‖pk − λkh‖2
f ≤ (∆t)−1‖|p− λh|‖2

L2(0,T ;L2(Ωf )). (3.18)

Recall from the proof of stability that since (∆tCNLF) holds, we have the following lower

bound for the energy terms:

E
N−1/2
ξ + 2∆tC

N− 1
2

ξ ≥ α(‖ξNu ‖2
f + ‖ξN−1

u ‖2
f ) + β(‖ξNφ ‖2

p + ‖ξN−1
φ ‖2

p) > 0,

for some α, β > 0. After applying bounds (3.12)-(3.18), along with Lemma 25, and absorbing

all the constants into one constant, Ĉ1, the inequality becomes

α(‖ξNu ‖2
f + ‖ξN−1

u ‖2
f ) + β(‖ξNφ ‖2

p + ‖ξN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
nν

2
‖∇(ξk+1

u + ξk−1
u )‖2

f +
gkmin

2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)
≤ Ĉ1{‖ηu,t‖2

L2(0,T ;L2(Ωf )) + ‖ηφ,t‖2
L2(0,T ;L2(Ωp)) + ‖|∇ηu|‖2

L2(0,T ;L2(Ωf ))

+ ‖|∇ηφ|‖2
L2(0,T ;L2(Ωp)) + ‖|p− λh|‖2

L2(0,T ;L2(Ωf ))

+ (∆t)4( ‖uttt‖2
L2(0,T ;L2(Ωf )) + ‖φttt‖2

L2(0,T ;L2(Ωp))

+ ‖utt‖2
L2(0,T ;H1(Ωf )) + ‖φtt‖2

L2(0,T ;H1(Ωp)) ) }+ E
1/2
ξ + 2∆tC

1
2
ξ

. (3.19)

Recall that ENu = uN − uNh and ENφ = φN − φNh . Use the triangle inequality on the error
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equation to split the error terms into terms of η and ξ.

α

2
(‖ENu‖2

f + ‖EN−1
u ‖2

f +
β

2
(‖ENφ ‖2

p + ‖EN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
ν

4
‖∇(Ek+1

u + Ek−1
u )‖2

f +
gkmin

4
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)
≤ α(‖ξNu ‖2

f + ‖ξN−1
u ‖2

f ) + β(‖ξNφ ‖2
p + ‖ξN−1

φ ‖2
p)

+ ∆t
N−1∑
k=1

(
ν

2
‖∇(ξk+1

u + ξk−1
u )‖2

f +
gkmin

2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)
+ α(‖ηNu ‖2

f + ‖ηN−1
u ‖2

f ) + β(‖ηNφ ‖2
p + ‖ηN−1

φ ‖2
p)

+ ∆t
N−1∑
k=1

(
ν

2
‖∇(ηk+1

u + ηk−1
u )‖2

f +
gkmin

2
‖∇(ηk+1

φ + ηk−1
φ )‖2

p

)

Note that ‖ηNu,φ‖2
f,p, ‖ηN−1

u,φ ‖2
f,p ≤ ‖|ηu,φ|‖2

L∞(0,T ;L2(Ωf,p)). Using this, the previous bounds for η

terms, applying inequality (3.19), and absorbing constants into a new constant, Ĉ2 produces

α

2
(‖ENu‖2

f + ‖EN−1
u ‖2

f +
β

2
(‖ENφ ‖2

p + ‖EN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
nν

4
‖∇(Ek+1

u + Ek−1
u )‖2

f +
gkmin

4
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)
≤ Ĉ2{ ‖ηu,t‖2

L2(0,T ;L2(Ωf )) + ‖ηφ,t‖2
L2(0,T ;L2(Ωp)) + ‖|∇ηu|‖2

L2(0,T ;L2(Ωf ))

+ ‖|∇ηφ|‖2
L2(0,T ;L2(Ωp)) + ‖|p− λh|‖2

L2(0,T ;L2(Ωf ))

+ (∆t)4(‖uttt‖2
L2(0,T ;L2(Ωf )) + ‖φttt‖2

L2(0,T ;L2(Ωp))

+ ‖utt‖2
L2(0,T ;H1(Ωf )) + ‖φtt‖2

L2(0,T ;H1(Ωp)))

+ ‖|ηu|‖2
L∞(0,T ;L2(Ωf )) + ‖|ηφ|‖2

L∞(0,T ;L2(Ωp))}
+ ‖ξ1

f‖2
f + ‖ξ1

p‖2
p + ‖ξ0

f‖2
f + ‖ξ0

p‖2
p + 2∆tC

1/2
ξ .

(3.20)

Bound the coupled terms on the right hand side by

C
1/2
ξ ≤ C

2

(
‖∇ξ0

φ‖2
p + ‖∇ξ1

φ‖2
p + ‖∇ξ0

u‖2
f + ‖∇ξ1

u‖2
f

)
.

Since (3.20) holds for any ũ ∈ V h, λh ∈ Qh
f , and φ̃ ∈ Xh

p , we may take the infimum over V h,
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Qh
f , and Xh

p . By (3.11), we may bound the infimum over V h by the infimum over Xh
f so the

following holds for some positive constant Ĉ3:

α

2
(‖ENu ‖2

f + ‖EN−1
u ‖2

f +
β

2
(‖ENφ ‖2

p + ‖EN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
nν

4
‖∇(Ek+1

u + Ek−1
u )‖2

f +
gkmin

4
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)

≤ Ĉ3{ inf
ũ∈Xh

f

{ ‖ηu,t‖2
L2(0,T ;L2(Ωf )) + ‖|ηu|‖2

L2(0,T ;H1(Ωf )) + ‖|ηu|‖2
L∞(0,T ;L2(Ωf ))

+ ‖ξ1
u‖2

f + ‖ξ0
u‖2

f + ∆t(‖∇ξ1
u‖2

f + ‖∇ξ0
u‖2

f )} + inf
λh∈Qhf

‖|p− λh|‖2
L2(0,T ;L2(Ωf ))

+ inf
φ̃∈Xh

p

{ ‖ηφ,t‖2
L2(0,T ;L2(Ωp)) + ‖|ηφ|‖2

L2(0,T ;H1(Ωp)) + ‖|ηφ|‖2
L∞(0,T ;L2(Ωp))

+ (‖ξ1
φ‖2

p + ‖ξ0
φ‖2

p) + ∆t(‖∇ξ1
φ‖2

p + ‖∇ξ0
φ‖2

p)} + (∆t)4{ ‖uttt‖2
L2(0,T ;L2(Ωf ))

+ ‖φttt‖2
L2(0,T ;L2(Ωp)) + ‖utt‖2

L2(0,T ;H1(Ωf )) + ‖φtt‖2
L2(0,T ;H1(Ωp))} } .

After applying the approximation assumptions (1.17) we get the final result.

Corollary 27. (Rates of Convergence) Let (Xh
f , Q

h
f ) be the finite element spaces associated

with Taylor-Hood elements and Xh
p be continuous piecewise quadratics. Suppose also that the

assumptions of Theorem 26 hold. Then,

α
2
(‖ENu ‖2

f + ‖EN−1
u ‖2

f + β
2
(‖ENφ ‖2

p + ‖EN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
nν
4
‖∇(Ek+1

u + Ek−1
u )‖2

f + gkmin
4
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)
≤ Ĉ{h4{‖|u‖|2L2(0,T ;Hr+1(Ωf )) + ‖|φ‖|2L2(0,T ;Hr+1(Ωp)) + ‖|p|‖2

L2(0,T ;Hr+1(Ωf ))

+ h2‖ut‖2
L2(0,T ;Hr+1(Ωf )) + h2‖φt‖L2(0,T ;Hr+1(Ωp)) + h2‖|u|‖2

L∞(0,T ;Hr+1(Ωf ))

+ h2‖|φ|‖2
L∞(0,T ;Hr+1(Ωp))} + (∆t)4{ ‖uttt‖2

L2(0,T ;L2(Ωf )) + ‖φttt‖2
L2(0,T ;L2(Ωp))

+ ‖utt‖2
L2(0,T ;H1(Ωf )) + ‖φtt‖2

L2(0,T ;H1(Ωp))}+ ∆t(‖∇E1
u‖2

f + ‖∇E0
u‖2

f

+ ‖∇E1
φ‖2

p + ‖∇E0
φ‖2

p) + ‖E1
u‖2

f + ‖E0
u‖2

f + ‖E1
φ‖2

p + ‖E0
φ‖2

p} .
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3.3 NUMERICAL EXPERIMENTS FOR CNLF-SD

Numerical experiments verify the stability properties and predicted rates of convergence of

(CNLF-SD). All tests use the same domain and exact solutions used in Chapter 2, chosen

to satisfy the interface conditions and introduced by Mu and Zhu in [56]. Calculations

were made using FreeFem++ software [36]. The code for the experiments is included in

the appendix. We use Taylor-Hood elements (P2-P1) for the Stokes problem and piecewise

quadratics (P2) for the Darcy problem. The choice of Taylor-Hood elements in the Stokes

problem satisfies the (LBBh) requirement for stability of the discrete pressure. The initial

and first terms are chosen to correspond with the exact solutions, recalled below.

Ωf = (0, 1)× (1, 2), Ωp = (0, 1)× (0, 1), I = {(x, 1) : x ∈ (0, 1)}

u(x, y, t) =

(
(x2(y − 1)2 + y) cos(t), (

2

3
x(1− y)3 + 2− π sin(πx)) cos(t)

)
,

p(x, y, t) = (2− π sin(πx)) sin(
π

2
y) cos(t),

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos(t).

(Test)

3.3.1 Stability Experiments

We examine the stability region of CNLF applied to Stokes-Darcy (CNLF-SD) to determine

if the CFL-type condition, (∆tCNLF), derived in Theorem 20, is sharp. To begin, we must

first determine the size of the constant, C = CΩfCΩpC(inv)g, in the stability condition, recalled

below.

∆t < C−1 max { min
{
h2, gS0n

−1
}
,min

{
n−1h2, gS0

}
,min

{
nh2, gS0n

−2
}

min
{
h, gS0n

−1h
}
,min

{
n−1h, gS0h

}
,min

{
nh, gS0n

−2h
}
} .

(∆tCNLF)

Recall that as a consequence to Theorem 22, when ∆t satisfies (∆tCNLF), both the stable and

unstable modes are damped by (CNLF-SD). This means that any instabilities are due to
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Figure 3.1: Final System Energy (E(N)) versus time-step size (∆t) for (CNLF-SD).

improper implementation, such as accumulation of round-off errors or violation of (∆tCNLF).

Therefore, to determine the size stability region (in particular, the size of C in (∆tCNLF)),

we set the forcing terms equal to zero, enforce homogeneous Dirichlet boundary conditions,

and eliminate the Crank-Nicolson terms which add numerical dissipation into the system.

When the stability condition is met, the solution should decay to zero over time. Set the

parameters n, g, αBJ, ρ, and S0 equal to 1. To eliminate the Crank-Nicolson terms, we set

and ν = kmin = 0, with the exception of kmin = 10−6 in af (., .). We set h = 0.1 and calculate

the system energy, EN+1/2 = ‖uN+1
h ‖2

f + ‖uNh ‖2
h + gS0‖φN+1

h ‖2
p + gS0‖φNh ‖2

p, at the final time

step, Tfinal = 10. Note that the initial energy of the system, E1/2 ≈ O(10). Results of

this series of experiments are summarized in Table 3.1. (CNLF-SD) becomes stable when

∆t < 1/110. Using these results we estimate that C ≈ 111/10 = O(10).

The CFL-type condition (∆tCNLF) implies sensitivity of CNLF to small values of S0 but

not kmin. We compute the final system energy over the time interval [0, 10] for fixed h = 0.1

and successively smaller time-step sizes in four different situations: (1) S0 = kmin = 10−6,
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Table 3.1: Stability Region CNLF

∆t Efinal ∆t Efinal ∆t Efinal

1/10 ∞ 1/60 ∞ 1/110 2.7666E093

1/20 ∞ 1/80 ∞ 1/111 1.60628

1/40 ∞ 1/100 ∞ 1/112 1.59992

1/120 1.59636

(2) S0 = 1 and kmin = 10−6, (3) S0 = 10−6 and kmin = 1, and (4) S0 = kmin = 1. Results

are summarized in Figure 3.1 in a plot of final system energy, E(N) against time-step size,

∆t. Note the logarithmic scale. All tests for situation (1) resulted in energy blow-up before

the conclusion of the time interval. Note that when S0 = 1, we are guaranteed stability once

∆t < 1/110. However, when S0 = 10−6, the stability condition requires ∆t < O(10−6) as

well, therefore the lack of stability in situation (2) is as predicted. For the case of small kmin

(situation (2)), (CNLF-SD) becomes stable before we reach the boundary of the stability

region, ∆tcrit ≈ 1/110. Recall that kmin affects the strength of the numerical diffusion in the

system.

To illustrate with further details, see the break-down of the system energy and modes in

Figures 3.2, 3.3, and 3.4. In Figure 3.2, kmin = 10−6 and S0 = 1.0. The small value of kmin

greatly weakens the numerical dissipation in the system, and violation of (∆tCNLF) leads to

spurious oscillations in the unstable mode and a drastic blow-up in system energy. In Figure

3.3, kmin = 1.0 and S0 = 10−6. (∆tCNLF) is violated and both modes and the energy exhibit

growth as time progresses. Finally, in Figure 3.4, when S0 = kmin = 1.0, the CFL-type

condition holds and both modes and the system energy converge to zero as predicted.

3.3.2 CNLF-SD and Time Filtering

One popular technique in geophysics used to counteract the accumulation of numerical noise

in the unstable mode induced by Leapfrog is to implement time-filters. We use the Robert-
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Figure 3.2: Break-down of the evolution of energy and modes of (CNLF-SD) over [0, 10] for
situation (2) (kmin = 10−6 and S0 = 1.0) when ∆t = 1/20. (∆tCNLF) is VIOLATED. Spurious
oscillations in the unstable mode correspond to a drastic blow-up in energy.

Asselin Filter, or RA-filter ([62], [5]). At every time step, after computing uk+1
h , pk+1

h , φk+1
h ,

we update the previous kth values and replace them with filtered values, given below.

wkh = wkh + α(wk−1
h − 2wkh + wk+1

h ), where w = u, p, or φ, 0 ≤ α ≤ 1.

The RA-filter damps the computational mode in Leapfrog (see e.g. Durran [30]). Analysis

of the RA-filter is still an interesting open problem. Some of the analytical theory of the

related Robert-Asselin-Williams (RAW) time filter applied to (CNLF) is discussed in [39].

For this test set α = 0.10. For more discussion on the choice of the parameter α see, for

example [40] p. 437. To see if the addition of an RA-filter step mitigates the (CNLF-SD)

Figure 3.3: Break-down of the evolution of energy and modes of (CNLF-SD) over [0, 10] for
situation (3) (kmin = 1.0 and S0 = 10−6) when ∆t = 1/80. (∆tCNLF) is VIOLATED and the
energy along with both modes increases as time progresses, leading to an unstable system.
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Figure 3.4: Break-down of the evolution of energy and modes of (CNLF-SD) over [0, 10] for
situation (4) (kmin = S0 = 1.0) when ∆t = 1/120. (∆tCNLF) HOLDS and the energy along with
both modes decay to zero.

method’s sensitivity to small values of specific storage, we perform the same stability tests

for the four situations as previously described. Results are shown in Figure. For further

illustration we match the situation illustrated in Figure 3.3 by setting h = 0.1, ∆t = 1/80,

S0 = 10−6, and kmin = 1.0. In contrast to (CNLF-SD), with the addition of the RA-filter,

the energy, stable, and unstable modes decay rapidly to zero (note that the time interval is

[0, 1] instead of [0, 10]), as seen in Figure 3.6. While the RA-filter appears to greatly enlarge

that stability region of (CNLF-SD), because the RA-filter step is only first-order, we lose

second-order accuracy in time. In the following chapters we will investigate an alternate

route to gain stability and still preserve higher-order accuracy.

3.3.3 Convergence Rate Experiments

For the convergence rate experiments all parameters, n, αBJ, ν, S0, κ, ρ and g = 1.0. We set

the boundary condition on the problem to be inhomogeneous Dirichlet: uh = u on ∂Ωf/I,

and similar for the Darcy pressure, φ. We set the mesh size, h, equal to the time step, ∆t.

While this violates the CFL-type condition for long-time stability, (CNLF-SD) is (short-

term) stable over [0, 1] for these choices of parameters due to the numerical dissipation. The

errors for various values of h are given in Table 3.2. We denote L∞(0, 1;L2(Ωf,p)) by L∞f,p.

The rates of convergence in the table exhibit second order convergence for u and φ. This

agrees with the error analysis for the Taylor-Hood elements as evidenced in Corollary 27.
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Figure 3.5: (CNLF-SD) + RA-Filter. Final System Energy (E(N)) versus time-step size (∆t)
for (CNLF-SD) with the RA-filter step.

Remark 28. (Convergence of the Stokes Pressure) The expected rate of convergence for the

(average) pressure is O(∆t2+h2). We omit the proof of this estimate due to length. However,

even though the problem is linear, the proof has a few unexpected points. One has to first

bound the error in the time differences. Then, the average pressure error is bounded in terms

of the errors in u, φ, and their time differences using the discrete inf-sup condition (LBBh).

In order to complete the first step one must use a discrete Gronwall inequality. As a result,

the predicted errors in the time differences and thus the pressure contain a multiplier of the

form exp(aT ).

3.4 CONCLUSION FOR CNLF-SD

(CNLF-SD) is a parallel partitioned method that allows one to implement existing black

box solvers optimized for surface and groundwater flow, thus preserving the physics of the

coupled problem and allowing us to utilize existing computational tools. Analysis of the
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Figure 3.6: CNLF-SD with the RA-filter. Compare to Figure 3.3, with ∆t = 1/80, kmin = 1.0,
and S0 = 10−6. While (∆tCNLF) is violated, the energy, unstable, and stable modes decay rapidly
to zero in the presence of the RA-filter.

Table 3.2: Rates of Convergence for the Stokes velocity, pressure, and Darcy pressure in

(CNLF-SD).

h = ∆t ‖|u− uh‖|L∞f rate ‖|p− ph‖|L∞f rate ‖|φ− φh‖|L∞p rate

1
10

8.62671e-4 1.56045e-1 6.54407e-3

1
20

1.77135e-4 2.28 3.77064e-2 2.05 1.46515e-3 2.16

1
40

3.54644e-5 2.32 8.9672e-3 2.07 3.4904e-4 2.07

1
80

6.72106e-6 2.40 2.15951e-3 2.05 8.70886e-5 2.00

Crank-Nicolson Leapfrog method applied to the Stokes-Darcy equations lead to a CFL-type

condition, (∆tCNLF), sufficient for stability and convergence. Under this time-step restriction,

both the stable and unstable modes arising from Leapfrog are controlled.

However, the sensitivity of this condition to small values of S0, is restrictive in cases of

confined aquifers since in such cases S0 is very small (as small as 10−6 as seen in Table 1.2).

Numerical experiments confirmed sensitivity of (CNLF-SD) to small values S0. Additional

dissipation from the use of Crank-Nicolson on the diffusive terms adds (temporary) stability

to the system, but over time if the CFL-type condition is violated, the system will eventually

destabilize. Implementing a time-filter such as the RA-filter enlarges the stability region,
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although it will decrease the order of convergence since the RA-filter step is only first-order.

The convergence analysis and numerical experiments confirms that this method is second-

order in time and space.

The method, (CNLF-SD), is higher-order convergent but does not exhibit the desired

strong stability properties. In the next chapters we develop and analyze an adaptation of this

method, (CNLFstab-SD), which maintains the second-order convergence of (CNLF-SD),

yet is unconditionally stable.
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4.0 STABILIZED CNLF FOR EVOLUTION EQUATIONS (CNLFSTAB)

In this chapter, we present a stabilized version of the Crank-Nicolson Leapfrog, (CNLF),

method for a general evolution equation of the form

wt + Aw + Λw = 0, (4.1)

where A is symmetric-positive-definite (SPD) and Λ is linear, skew-symmetric (ΛT = −Λ)

and bounded. This system is similar to the system obtained by applying the Finite Element

Method to the Stokes-Darcy variational equations (FEM-SD) as described in the end of

Chapter 1. Applying the Crank-Nicolson Leapfrog (CNLF) method to the general evolution

equation in (4.1) produces

wk+1 − wk−1

2∆t
+ A

(
wk+1 + wk−1

2

)
+ Λwk = 0. (CNLF)

In [49, 38], stability analysis for Crank-Nicolson Leapfrog (CNLF) for general and coupled

evolution equations produced a stability condition of the form ∆t‖Λ‖ < 1. This chapter

presents a stabilized version of (CNLF) for the general evolution equation that is uncondi-

tionally stable as well as second-order convergent. It is both a summary and expansion of

results obtained in [41, 66].

The stabilized version of (CNLF), denoted by (CNLFstab), is

wk+1 − wk−1

2∆t
+ ∆tΛ∗Λ(wk+1 −wk−1) + A

(
wk+1 − wk−1

2

)
+ Λwk = 0. (CNLFstab)

The stabilization term, ∆tΛ∗Λ(wk+1 −wk−1) , is both linear and SPD. It contributes an

added consistency error of 2∆t2Λ∗Λwt = O(∆t2), the same size as the consistency error in

(CNLF); therefore it preserves second-order convergence. The motivation of the stabiliza-
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tion term arises from the energy stability analysis of (CNLF), given in Theorem 29. This

stabilized version of (CNLF) is similar to methods studied in [3, 44, 29, 20].

Let < ., . > denote the Euclidean inner product and ||.|| the Euclidean norm. Since A is

SPD, the norm given by ‖w‖A =
√
< w,Aw > is well-defined.

Theorem 29 (Stability of (CNLF) for General Evolution Equation). Suppose ∆t satisfies

∆t‖Λ‖ < 1, then (CNLF) is stable. That is, for N ≥ 1

(1− ‖Λ‖∆t)
(
‖wN+1‖2 + ‖wN‖2

)
+

N−1∑
k=1

‖wk+1 + wk−1‖2
A = 0

Proof. The following proof was first presented in [49], and has been adapted to fit the notation

of this research. As in Theorem 20, take the inner product of (CNLF) with its stable mode,

wk+1 + wk−1 and multiply by 2∆t. This produces

‖wk+1‖2 − ‖wk−1‖2 + ∆t‖wk+1 + wk−1‖2
A + 2∆t < wk+1 + wk−1,Λwk >= 0.

Similar to the proof of stability for (CNLF-SD), we define the following:

Ek+1/2 = ‖wk+1‖2 + ‖wk‖2,

Ck+1/2 =< wk+1,Λwk > .

Simplify and use the skew-symmetry of Λ to obtain

Ek+1/2 + 2∆tCk+1/2 − Ek−1/2 − 2∆tCk−1/2 + ∆t‖wk+1 + wk−1‖2
A = 0.

Next, sum from k = 1 to N − 1:

EN−1/2 + 2∆tCN−1/2 +
N−1∑
k=1

‖wk+1 + wk−1‖2
A = E1/2 + 2∆tC1/2.

Stability thus holds if EN−1/2 +2∆tCN−1/2 > 0. By Cauchy-Schwarz and Young’s inequality,

CN+1/2 =< wN+1,ΛwN > ≤ ‖wN+1‖‖Λ‖‖wN‖ ≤ ‖Λ‖
2

(‖wN+1‖2 + ‖wN‖2),

and thus EN−1/2 + 2∆tCN−1/2 > 0 provided 1−∆t‖Λ‖ > 0, or ∆t‖Λ‖ < 1.

Notice that the stability condition arises out of the need to subsume the skew-symmetric
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term, (wk+1 + wk−1)TΛwk, into the discrete system energy. The added stability term,

∆tΛ∗Λ(wk+1 −wk−1), provides an alternative for the absorption of the skew-symmetric

term by providing anadditional SPD term in the stability equation specifically suited for

this purpose.

4.1 STABILITY OF (CNLFSTAB)

Theorem 30. The method (CNLFstab) is unconditionally stable. That is, for every N ≥ 1

1
2
||wN+1||2 + ||wN ||2 + 2∆t2||ΛwN+1||2

≤ ‖w1‖2 + ‖w0‖2 + 2∆t
〈
Λw0, w1

〉
+ 2∆t2(‖Λw1‖2 + ‖Λw2‖2).

(4.2)

Proof. Begin like the proof of Theorem 29. Take the inner product of (CNLFstab) with

its stable mode, (wk+1 + wk−1), and multiply through by 2∆t. This produces

(||wk+1||2 + ||wk||2)− (||wk||2 + ||wk−1||2)+

+2∆t2
〈
Λ∗Λ

(
wk+1 − wk−1

)
, wk+1 + wk−1

〉
+

+∆t
〈
A(wk+1 + wk−1), wk+1 + wk−1

〉
+ 2∆t

〈
Λwk, wk+1 + wk−1

〉
= 0.

Rewrite the added stability term as follows

2∆t2
〈
Λ∗Λ

(
wk+1 − wk−1

)
, wk+1 + wk−1

〉
= 2∆t2〈Λ

(
wk+1 − wk−1

)
,Λ(wk+1 + wk−1)〉

= 2∆t2
(
||Λwk+1||2 − ||Λwk−1||2

)
= 2∆t2

[(
||Λwk+1||2 + ||Λwk||2 −

(
||Λwk||2 + ||Λwk−1||2

)
.

Denote the stabilized system energy by

E
k+1/2
stab := ||wk+1||2 + ||wk||2 + 2∆t2

(
||Λwk+1||2 + ||Λwk||2

)
.
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Thus the stability equation becomes

E
k+1/2
stab − Ek−1/2

stab + ∆t
〈
A(wk+1 + wk−1), wk+1 + wk−1

〉
+ 2∆t

〈
Λwk, wk+1 + wk−1

〉
= 0.

As in 29, let Ck+1/2 :=
〈
Λwk, wk+1

〉
, so that, by skew-symmetry of Λ,

〈
Λwk, wk+1 + wk−1

〉
= Ck+1/2 − Ck−1/2.

Simplify the stability equation to obtain

E
k+1/2
stab − Ek−1/2

stab + ∆t
〈
A(wk+1 + wk−1), wk+1 + wk−1

〉
+ 2∆t

(
Ck+1/2 − Ck−1/2

)
= 0.

Sum the above from k = 1, . . . , N .

E
N+1/2
stab + 2∆tCN+1/2 + ∆t

N∑
k=1

〈
A(wk+1 + wk−1), wk+1 + wk−1

〉
= E

1/2
stab + 2∆tC1/2.

It remains to prove that E
N+1/2
stab + 2∆tCN+1/2 > 0. Apply the Cauchy-Schwarz and Young

inequality to show

2∆tCN+1/2 ≤ 2∆t2||ΛwN ||2 +
1

2
||wN+1||2,

thus implying

E
N+1/2
stab + 2∆tCN+1/2 ≥ 1

2
||wN+1||2 + ||wN ||2 + 2∆t2||ΛwN+1||2 > 0.

Hence,

0 ≤ 1
2
||wN+1||2 + ||wN ||2 + 2∆t2||ΛwN+1||2

+ ∆t
N∑
k=1

〈
A(wk+1 + wk−1), wk+1 + wk−1

〉
≤ E

1/2
stab + 2∆tC1/2,

(4.3)

This implies (4.2), since A is SPD.

It remains to prove that (CNLFstab) is unconditionally, asymptotically stable over

long-time intervals. To do this, we show that (CNLFstab) effectively controls both the
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stable and unstable modes, wk+1 + wk−1 and wk−1 − wk−1, for all time-step sizes, ∆t.

Theorem 31 (Unconditional, asymptotic stability of (CNLFstab)). Consider the method

(CNLFstab). Both the stable mode, (wk+1 + wk−1), and the unstable mode,(wk−1 − wk−1),

are unconditionally, asymptotically stable. That is,

wk+1 + wk−1 −→ 0 and wk+1 − wk−1 −→ 0 as k −→∞,

and hence wk → 0 as k →∞.

Proof. Take the inner product of (CNLFstab) with the unstable mode, (wk+1−wk−1), and

multiply through by 2δ∆t for some δ > 0 (to be specified subsequently). This yields

δ‖wk+1 − wk−1‖2 + 2δ∆t2
〈
Λ∗Λ(wk+1 − wk−1), wk+1 − wk−1

〉
+δ∆t

〈
A(wk+1 + wk−1), wk+1 − wk−1

〉
+ 2δ∆t

〈
Λwk, wk+1 − wk−1

〉
= 0.

(4.4)

The term, δ∆t〈A(wk+1 + wk−1), wk+1 − wk−1〉, can be written as

δ∆t
〈
A(wk+1 + wk−1, wk+1 − wk−1)

〉
= δ∆t

[
(‖wk+1‖2

A + ‖wk‖2
A)− (‖wk‖2

A + ‖wk−1‖2
A)
]
.

Define Ak+1/2 := ‖wk+1‖2
A + ‖wk‖2

A ≥ 0. Simplify and sum (4.4) from k = 1, . . . , N :

δ
N∑
k=1

[
‖wk+1 − wk−1‖2 + 2∆t2‖Λ(wk+1 − wk−1)‖2

]
+ 2δ∆t

N∑
k=1

〈
Λwk, wk+1 − wk−1

〉
+ δ∆tAN+1/2 = δ∆tA1/2.

(4.5)

Adding (4.3) to (4.5) gives

1
2
||wN+1||2 + ||wN ||2 + 2∆t2||ΛwN+1||2 + δ∆tAN+1/2 + FN

+
N∑
k=1

[
∆t‖wk+1 + wk−1‖2

A + δ‖wk+1 − wk−1‖2 + 2δ∆t2‖Λ(wk+1 − wk−1)‖2
]

≤ E
1/2
stab + 2∆tC1/2 + δ∆tA1/2,

(4.6)

where

FN =
N∑
k=1

2δ∆t
〈
Λwk, wk+1 − wk−1

〉
.
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It remains to subsume FN into the positive terms on the left-hand side of (4.6). This requires

an upper bound for FN . Begin by applying Young’s inequality which implies, for or any ε,

0 < ε < 1, there holds:

|FN | ≤ δε
N∑
k=1

‖wk+1 − wk−1‖2 +
δ

ε

N∑
k=1

∆t2‖Λwk‖2.

Rewrite the second term on the right above in terms of the stable and unstable modes:

‖Λwk‖2 = ‖Λ(
wk + wk−2

2
) + Λ(

wk − wk−2

2
)‖2

= 2‖Λ(
wk + wk−2

2
)‖2 + 2‖Λ(

wk − wk−2

2
)‖2 − ‖Λ(wk−2)‖2,

which holds for all k ≥ 2. The upper bound on FN now becomes

|FN | ≤ δε
N∑
k=1

‖wk+1 − wk−1‖2 +
δ

ε
∆t2‖Λw1‖2 − δ

ε

N∑
k=2

∆t2‖Λ(wk−2)‖2

+
δ

2ε

N∑
k=2

∆t2
(
‖Λ(wk + wk−2)‖2 + ‖Λ(wk − wk−2)‖2

)
.

Shift the index of the third sum above and drop the negative term − δ
ε

∑N
k=2 ∆t2‖Λ(wk−2)‖2.

The bound for FN is thus:

|FN | ≤ δε
N∑
k=1

‖wk+1 − wk−1‖2 +
δ

ε
∆t2‖Λw1‖2 − δ

ε

N∑
k=2

∆t2‖Λ(wk−2)‖2

+
δ

2ε

N−1∑
k=1

∆t2
(
‖Λ(wk+1 + wk−1)‖2 + ‖Λ(wk+1 − wk−1)‖2

)
.

(4.7)

Apply (4.7) to (4.6) to show

1
2
‖wN+1‖2 + ‖wN‖2 + 2∆t2‖ΛwN+1‖2 + δ∆tAN+1/2

+
N∑
k=1

[
∆t‖wk+1 + wk−1‖2

A − δ∆t2

2ε
‖Λ(wk+1 + wk−1)‖2

]
N∑
k=1

δ
[
(1− ε)‖wk+1 − wk−1‖2 + ∆t2

(
2− 1

2ε

)
‖Λ(wk+1 − wk−1)‖2

]
≤ E

1/2
stab + 2∆tC1/2 + δ∆tA1/2 + δ∆t2

ε
‖Λw1‖2.

(4.8)

Recall that A is SPD, so λmin(A), the smallest eigenvalue of A, is positive. This implies
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‖wk+1 +wk−1‖2
A ≥ λmin(A)‖wk+1 +wk−1‖2. Choose ε = 1

4
and δ = λmin(A)

4∆t‖Λ‖2 . Since 1
2
‖wN+1‖2 +

‖wN‖2 + 2∆t2‖ΛwN+1‖2 > 0 by Theorem 30, it can be omitted from the above equation.

Therefore (4.8) simplifies to

0 <
N∑
k=1

[
∆tλmin(A)

2
‖wk+1 + wk−1‖2 + 3λmin(A)

16∆t‖Λ‖2‖w
k+1 − wk−1‖2

]
≤ E

1/2
stab + 2∆tC1/2 + λmin(A)

4‖Λ‖2
(
A1/2 + 4∆t‖Λw1‖2

)
,

which further reduces to

N∑
k=1

[
‖wk+1 + wk−1‖2 + ‖wk+1 − wk−1‖2

]
≤ C(w1, w0).

The constant, C(w1, w0), above depends on w1 and w0 but is independent of N . This implies

both ‖wk+1 + wk−1‖2 → 0 and ‖wk+1 − wk−1‖2 → 0 as k →∞.

Remark 32. Theorem 31 implies asymptotic stability about zero. These results may be

extended to include nonzero forcing terms on the right hand side, F k = F (tk), by linearity.

Let F∞ represent the nonzero forcing term in the equilibrium problem:

Aw∞ + Λw∞ = F∞.

Then, if F k → F∞ as k → ∞ in the sense that the series,
∞∑
k=1

‖F k − F∞‖2
∗ converges,

by following the steps of Theorems 30 and 31 one concludes that wk+1 + wk−1 → 2w∞,

wk+1 − wk−1 → 0, and wk → w∞.

4.2 NUMERICAL EXPERIMENTS

To illustrate the enhanced stability properties of (CNLFstab) we perform a simple numer-

ical experiment using MATLAB. Let

A =

1 0

0 2

 , Λ =

0 −1

1 0

 .
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Set w0 = [1, 1]T and w1 = [1,−1]T . If the system is stable, then ‖wk‖ → 0 as k → ∞.

According to Theorem 29, (CNLF) is stable when ∆t < 1. In Figure 4.1, the size of the

approximate solution, ‖wk‖, is computed at each time step and plotted against time. In the

first experiment, ∆t = 0.99, which is within the stability region of (CNLF). Note how once

∆t ≥ 1, (CNLF) becomes unstable, as seen in the middle and bottom graphs of Figure 4.1,

while (CNLFstab) remains stable.

A detail of the behavior of the modes is given in Figure 4.2 for the case when ∆t = 1.0. In

this case, the norm of the unstable mode of (CNLF) is a positive constant whereas the norm

of the stable mode equals zero. In contrast, the norms of the energy, stable, and unstable

modes of (CNLFstab) decay to zero as expected.

Figure 4.1: ‖wk‖ vs. time, k = 1, . . . , 100, for ∆t = 0.99 (above), ∆t = 1.0 (middle), and

∆t = 1.01 (below). Note the loss of stability for (CNLF) once ∆t ≥ 1.
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Figure 4.2: Energy and modes versus time for (CNLF) (top) and (CNLFstab) (bottom)

for ∆t = 1.0 over [0, 1].
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5.0 STABILIZED CNLF FOR STOKES-DARCY (CNLFSTAB-SD)

In this chapter, we present an adaptation of the method, (CNLFstab), from Chapter 4 for

the Stokes-Darcy system. Recall from Chapter 3 that (CNLF-SD) is a conditionally stable,

second-order convergent, parallel partitioned method. While the higher-order convergence

of this method is desirable, the time-step condition derived for stability in Theorem 20,

∆t < C−1 max { min
{
h2, gS0n

−1
}
,min

{
n−1h2, gS0

}
,min

{
nh2, gS0n

−2
}

min
{
h, gS0n

−1h
}
,min

{
n−1h, gS0h

}
,min

{
nh, gS0n

−2h
}
} ,

(∆tCNLF)

is impractical in physical situations that correspond to small values of specific storage, S0. In

this chapter, we addrss this potential issue by adapting the unconditionally stable, second-

order convergent (CNLFstab)-method for the Stokes-Darcy problem.

To review, the (CNLF) method for the Stokes-Darcy system is as follows.

n
(
uk+1
h −uk−1

h

2∆t
, vh

)
f

+ af

(
uk+1
h +uk−1

h

2
, vh

)
− b
(
vh,

pk+1
h +pk−1

h

2

)
+ cI(vh, φ

k
h) = n(fkf , vh)f ,

b
(
uk+1
h , qh

)
f

= 0,

gS0

(
φk+1
h −φk−1

h

2∆t
, ψh

)
p

+ ap

(
φk+1
h +φk−1

h

2
, ψh

)
− cI(ukh, ψh) = g(fkp , ψh)p.

(CNLF-SD)

Recall the stabilization term in (CNLFstab):

2∆tΛ∗Λ(wk+1 − wk−1). (5.1)

To translate the above exactly for the Stokes-Darcy problem, first define a linear operator
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Λ = (Λf ,Λp) : Xh
f ×Xh

p → Xh
f ×Xh

p via the Riesz Representation Theorem by

(Λf (u, φ), v)f + (Λp(u, φ), ψ)p =

∫
I

ψu · n̂ds−
∫
I

φv · n̂ds.

Then, the natural implementation of (5.1) would be to add

∆tg2

∫
I

(φk+1
h − φk−1

h )ψh ds and ∆tn2

∫
I

(
uk+1
h − uk−1

h

)
· n̂fvh · n̂f ds,

into the (CNLF-SD)-method. However, numerical tests using this exact implementation of

the (CNLFstab)-method for Stokes-Darcy suggest it is insufficient (see discussion in Section

5.3).

We present an adaptation of the (CNLFstab)-method specifically for the Stokes-Darcy

problem. Recall the derivation of the CFL-type stability condition for (CNLF-SD). In

Theorem 20, the stability condition, (∆tCNLF), for (CNLF-SD) arose out of bounding the

coupling terms, cI(., .), by Lemma 19, which utilized an inverse inequality. Then the effects

of the coupling terms were absorbed into the discrete energy, Ek+1/2 = ‖uk+1
h ‖2

f + ‖ukh‖2
f +

gS0(‖φk+1
h ‖2

p + ‖φkh‖2
p), of (CNLF-SD).

In this chapter, we treat the coupling term differently. Recall the (HDIV-trace) in-

equality, proven by Moraiti in [54] and used in Chapter 2:

|cI(u, φ)| ≤ ngCf,p‖u‖DIV,f‖φ‖1,p. (HDIV-trace)

This inequality holds under conditions on the domains Ωf ,Ωp, with the constant, Cf,p, de-

pending on Ωf/p. The above inequality suggests the following adaptation of (CNLFstab)

for Stokes-Darcy, referred to as (CNLFstab-SD), in which the added stability terms are

n
(
∇ ·
(
uk+1
h −uk−1

h

2∆t

)
,∇ · vh

)
f
, in Stokes, and

∆tng2C2
f,p

(
∇(φk+1

h − φk−1
h ),∇ψh

)
p
,∆tng2C2

f,p

(
φk+1
h − φk−1

h , ψh
)
p
, in Darcy.

Similar to (CNLFstab), the added stability terms in (CNLFstab-SD), these terms are

both SPD and O(∆t2), thus preserving the second-order convergence of (CNLF-SD). How-

ever, in contrast to (CNLF-SD), (CNLFstab-SD), is unconditionally stable and therefore

not sensitive to small values of specific storage, S0. A full definition of the (CNLFstab-SD)
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method, followed by an analysis of its stability and convergence properties ensues.

Definition 33 (Stabilized Crank-Nicolson Leapfrog for Stokes-Darcy (CNLFstab-SD)).

Given
(
ukh, p

k
h, φ

k
h

)
and

(
uk−1
h , pk−1

h , φk−1
h

)
in
(
Xh
f , Q

h
f , X

h
p

)
, find

(
uk+1
h , pk+1

h , φk+1
h

)
in(

Xh
f , Q

h
f , X

h
p

)
satisfying for all (vh, qh, ψh) in

(
Xh
f , Q

h
f , X

h
p

)
:

n
(
uk+1
h −uk−1

h

2∆t
, vh

)
f

+ n
(
∇ ·
(
uk+1
h −uk−1

h

2∆t

)
,∇ · vh

)
f

+ af

(
uk+1
h +uk−1

h

2
, vh

)
−b
(
vh,

pk+1
h +pk−1

h

2

)
f

+ cI(vh, φ
k
h) = n(fkf , vh)f ,

b
(
uk+1
h , qh

)
f

= 0,

gS0

(
φn+1
h −φk−1

h

2∆t
, ψh

)
p

+ ap

(
φk+1
h −φk−1

h

2
, ψh

)
− cI(ukh, ψh)

+∆tng2C2
f,p

(
φk+1
h − φk−1

h , ψh
)
H1(Ωp)

= g(fkp , ψh)p,

(CNLFstab-SD)

where Cf,p is the constant from inequality (HDIV-trace), and
(
φk+1
h − φk−1

h , ψh
)
H1(Ωp)

=(
∇
(
φk+1
h − φk−1

h

)
,∇ψh

)
p

+
(
φk+1
h − φk−1

h , ψh
)
p
.

5.1 UNCONDITIONAL STABILITY OF CNLFSTAB-SD METHOD

Theorem 34 (Unconditional Stability of (CNLFstab-SD)). (CNLFstab-SD) is uncon-

ditionally stable over long-time intervals. That is, for N = 1, 2, 3, . . ., there holds

n

2

(
‖uNh ‖2

DIV,f + ‖uN−1
h ‖2

DIV,f

)
+ gS0

(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
+

∆t

2

N−1∑
k=1

{
nν‖∇

(
uk+1
h + uk−1

h

)
‖2
f + gkmin‖∇

(
φk+1
h + φk−1

h

)
‖2
p

}
≤ n(‖u1

h‖2
DIV,f + ‖u0

h‖2
DIV,f ) + gS0

(
‖φ1

h‖2
p + ‖φ0

h‖2
p

)
+ 2∆t2ng2C2

f,p

(
‖φ1

h‖2
1,p + ‖φ0

h‖2
1,p

)
+ 2∆t

{
cI(φ

0
h, u

1
h)− cI(φ1

h, u
0
h)
}

+
∆t

2

N−1∑
k=1

{
g

kmin
‖fkp ‖2

−1,p +
n

ν
‖fkf ‖2

−1,f

}
.

(5.2)

Proof. In (CNLFstab-SD), set vh = uk+1
h +uk−1

h , ψh = φk+1
h +φk−1

h , add the equations, and
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multiply by 2∆t to obtain

n(‖uk+1
h ‖

2
DIV,f − ‖uk−1

h ‖
2
DIV,f ) + gS0

(
‖φk+1

h ‖
2
p − ‖φk−1

h ‖
2
p

)
+ 2∆t2ng2C2

f,p

(
‖φk+1

h ‖
2
1,p − ‖φk−1

h ‖
2
1,p

)
+ ∆t

{
ap
(
φk+1
h + φk−1

h , φk+1
h + φk−1

h

)
+ af

(
uk+1
h + uk−1

h , uk+1
h + uk−1

h

)}
+ 2∆t

(
cI(u

k+1
h + uk−1

h , φkh)− cI(ukh, φk+1
h + φk−1

h )
)

= 2∆t
{
g
(
fkp , φ

k+1
h + φk−1

h

)
p

+ n
(
fkf , u

k+1
h + uk−1

h

)
f

}
.

As before, let Ck+1/2 = cI(φ
k
h, u

k+1
h )−cI(φk+1

h , ukh). Then the coupling terms may be rewritten

as cI(u
k+1
h +uk−1

h , φkh)−cI(ukh, φk+1
h +φk−1

h ) = Ck+ 1
2 −Ck− 1

2 . Using this notation, by coercivity

of the bilinear forms, af/p(., .), and Young’s inequality, the equation becomes,

n(‖uk+1
h ‖

2
DIV,f − ‖uk−1

h ‖
2
DIV,f ) + gS0

(
‖φk+1

h ‖
2
p − ‖φk−1

h ‖
2
p

)
+ 2∆t2ng2C2

f,p

(
‖φk+1

h ‖
2
1,p − ‖φk−1

h ‖
2
1,p

)
+ 2∆t

{
Ck+ 1

2 − Ck− 1
2

}
+ ∆t

{
gkmin

2
‖∇
(
φk+1
h + φk−1

h

)
‖2
p + nν

2
‖∇
(
uk+1
h + uk−1

h

)
‖2
f

}
≤ ∆t

n

2ν
‖fkf ‖2

−1,f + ∆t
g

2kmin
‖fkp ‖2

−1,p.

Denote the stabilized energy terms by

E
k+1/2
stab = n(‖uk+1

h ‖
2
DIV,f + ‖ukh‖2

DIV,f ) + gS0

(
‖φk+1

h ‖
2
p + ‖φkh‖2

p

)
+2∆t2ng2C2

f,p

(
‖φk+1

h ‖
2
1,p + ‖φkh‖2

1,p

)
.

Then the inequality becomes

E
k+1/2
stab − Ek−1/2

stab + ∆t
{
gkmin

2
‖∇
(
φk+1
h + φk−1

h

)
‖2
p + nν

2
‖∇
(
uk+1
h + uk−1

h

)
‖2
f

}
+2∆t

{
Ck+1/2 − Ck−1/2

}
≤ ∆t

n

2ν
‖fkf ‖2

−1,f + ∆t
g

2kmin
‖fkp ‖2

−1,p.

Sum the inequality from k = 1 to N − 1. This produces

E
N−1/2
stab + ∆t

N−1∑
k=1

{
gkmin

2
‖∇
(
φk+1
h + φk−1

h

)
‖2
p + nν

2
‖∇
(
uk+1
h + uk−1

h

)
‖2
f

}
+2∆tCN−1/2 ≤ E

1/2
stab + C1/2 + ∆t

g

2kmin
‖fkp ‖2

−1,p + ∆t
n

2ν
‖fkf ‖2

−1,f .

(5.3)
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Apply inequality (HDIV-trace) to the terms in CN−1/2 to show

|cI(uNh , φN−1
h )| ≤ ngCf,p‖uNh ‖DIV,f‖φN−1

h ‖1,p and

|cI(uN−1
h , φNh )| ≤ ngCf,p‖uN−1

h ‖DIV,f‖φNh ‖1,p.

Next, bound CN−1/2 by the Cauchy-Schwarz and Young inequalities:

|2∆tCN−1/2| ≤ n

2

(
‖uNh ‖2

DIV,f + ‖uN−1
h ‖2

DIV,f

)
+ 2∆t2ng2C2

f,p

(
‖φN−1

h ‖2
1,p + ‖φNh ‖2

1,p

)
.

Hence,

E
N−1/2
stab + 2∆tCN−1/2 ≥ n

2

(
‖uNh ‖2

DIV,f + ‖uN−1
h ‖2

DIV,f

)
+ gS0

(
‖φNh ‖2

p + ‖φN−1
h ‖2

p

)
> 0.

This inequality, along with (5.3) imply the unconditional stability bound given in (5.2).

5.1.1 Control over the Stable and Unstable Modes of CNLFstab-SD

In addition to being unconditionally stable, the (CNLFstab-SD)-method controls both the

stable and unstable modes linked to Leapfrog for all choices of time-step size, ∆t, and mesh

width, h.

Corollary 35 (Control of the Stable Mode of (CNLFstab-SD)). The following inequality

for the stable mode of (CNLFstab-SD) holds for all N = 2, 3, ...

∆t
N−1∑
k=1

{
nν
2
‖∇
(
uk+1
h + uk−1

h

)
‖2
f + gkmin

2
‖∇
(
φk+1
h + φk−1

h

)
‖2
p

}
≤ E

1/2
stab + C1/2 + ∆t

g

2kmin
‖fkp ‖2

−1,p + ∆t
n

2ν
‖fkf ‖2

−1,f .

Proof. Drop the positive term E
N−1/2
stab + 2∆tCN−1/2 from the left-hand side of (5.3) in the

proof of Theorem 34.

Therefore, (CNLFstab-SD) controls the stable mode for all time-step sizes. Next, we

show the same applies for the unstable mode. The proof will be similar to Theorem 22 for

(CNLF-SD) given in Chapter 3, with carefully modified treatment of the coupling terms.
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Theorem 36 (Control of the Modes of (CNLFstab-SD)). The method, (CNLFstab-SD),

controls both the stable and unstable modes for all choices of time-step size, ∆t > 0, and

mesh width, h. That is, there exists a positive constant M, satisfying for any N ≥ 2,

M

{
∆t

N−1∑
k=1

{
‖∇(uk+1

h + uk−1
h )‖2

f + ‖∇(φk+1
h + φk−1

h )‖2
p

}
+

N−1∑
k=1

{
‖uk+1

h − uk−1
h ‖

2
DIV,f + ‖φk+1

h − φk−1
h ‖

2
p + ∆t2‖φk+1

h − φk−1
h ‖

2
1,p

}}

≤ ∆t
N−1∑
k=1

{
‖fkf ‖2

−1,f + ‖fkp ‖2
−1,p + ∆t

(
‖fkf ‖2

f + ‖fkp ‖2
p

)}
+‖u1

h‖2
DIV,f + ‖u0

h‖2
DIV,f + ‖φ1

h‖2
p + ‖φ0

h‖2
p + ∆t2(‖φ1

h‖2
1,p + ‖φ0

h‖2
1,p)

+∆t
(
‖∇u1

h‖2
f + ‖∇u0

h‖2
f + ‖∇φ1

h‖2
p + ‖∇φ0

h‖2
p

)
+∆t

(
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h) + cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
)
.

(5.4)

Proof. As in the proof of Theorem 22, begin by choosing vh = 2δ∆t(uk+1
h − uk−1

h ) and

ψh = 2δ∆t(φk+1
h − φk−1

h ) in (CNLFstab-SD) where δ > 0. Add the equations to obtain

δ
{
n‖uk+1

h − uk−1
h ‖

2
DIV,f + gS0‖φk+1

h − φk+1
h ‖

2
p

}
+ 2δ∆t2ng2C2

f,p‖φk+1
h − φk+1

h ‖
2
1,p

+δ∆t
{
Ak+1/2 −Ak−1/2

}
+ 2δ∆t

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}

= 2δ∆t
{
n(fkf , u

k+1
h − uk−1

h )f + g(fkp , φ
k+1
h − φk−1

h )p
}
,

where, as before, Ak+1/2 = af (u
k+1
h , uk+1

h ) + ap(φ
k+1
h , φk+1

h ) + af (u
k
h, u

k
h) + ap(φ

k
h, φ

k
h) ≥ 0.

Applying Cauchy-Schwarz and Young’s inequality on the right-hand side and summing from

k = 1 to N − 1 produces

δ(1− ε)
N−1∑
k=1

{
n‖uk+1

h − uk−1
h ‖

2
DIV,f + gS0‖φk+1

h − φk+1
h ‖

2
p

}
+ δεn

N−1∑
k=1

‖∇ · (uk+1
h − uk−1

h )‖2
f

+2δ∆t2ng2C2
f,p

N−1∑
k=1

‖φk+1
h − φk+1

h ‖
2
1,p + 2δ∆t

N−1∑
k=1

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}

≤ δ∆tA1/2 + δ∆t2

ε

N−1∑
k=1

{
n‖fkf ‖2

f + g
S0
‖fkp ‖2

p

}
,
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where ε ∈ (0, 1). Add this inequality to the result from Corollary 35:

δ∆tAN−1/2 + δ(1− ε)
N−1∑
k=1

{
n‖uk+1

h − uk−1
h ‖

2
DIV,f + gS0‖φk+1

h − φk+1
h ‖

2
p

}
+δεn

N−1∑
k=1

‖∇ · (uk+1
h − uk−1

h )‖2
f + 2δ∆t2ng2C2

f,p

N−1∑
k=1

‖φk+1
h − φk+1

h ‖
2
1,p

+2δ∆t
N−1∑
k=1

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}

+∆t
2

N−1∑
k=1

{
nν‖∇(uk+1

h + uk−1
h )‖2

f + gkmin‖∇(φk+1
h + φk−1

h )‖2
p

}
≤ δ∆tA1/2 + E

1/2
stab + 2∆tC1/2

+2∆t
N−1∑
k=1

{
n
ν
‖fkf ‖2

−1,f + g
kmin
‖fkp ‖2

−1,p

}
+ δ∆t2

ε

N−1∑
k=1

{
n‖fkf ‖2

f + g
S0
‖fkp ‖2

p

}
.

(5.5)

Let Q = 2δ∆t
N−1∑
k=1

{
cI(u

k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h )
}

. Similar to before, rewrite

the interface integrals in terms of the stable and unstable modes. For k ≥ 2,

cI(u
k+1
h − uk−1

h , φkh)− cI(ukh, φk+1
h − φk−1

h ) = 1
2
cI(u

k+1
h − uk−1

h , φkh − φk−2
h )

+1
2
cI(u

k+1
h − uk−1

h , φkh + φk−2
h )− 1

2
cI(u

k
h − uk−2

h , φk+1
h − φk−1

h )− 1
2
cI(u

k
h + uk−2

h , φk+1
h − φk−1

h ).

By (HDIV-trace):

Q ≤ δ∆tngCf,p

N−1∑
k=2

{
‖uk+1

h − uk−1
h ‖DIV,f

(
‖φkh − φk−2

h ‖1,p + ‖φkh + φk−2
h ‖1,p

)
+
(
‖ukh − uk−2

h ‖DIV,f + ‖ukh + uk−2
h ‖DIV,f

)
‖φk+1

h − φk−1
h ‖p

}
+2δ∆t

[
cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
]
.

(5.6)

We bound the stable modes above using the Poincaré inequality (Lemma 2) as follows:

‖ukh + uk−2
h ‖DIV,f ≤

√
C2
P,f + d‖∇(ukh + uk−2

h )‖f ,

‖φkh + φk−2
h ‖1,p ≤

√
1 + C2

P,p‖∇(φkh + φk−2
h )‖p.

Next, we apply Young’s inequality to each term in (5.6). Let B = ∆tgCf,p. By Young’s
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inequality, for any ε1,2,3 > 0, there holds

nB‖uk+1
h − uk−1

h ‖DIV,f‖φ
k
h − φk−2

h ‖1,p ≤ nε1
2
‖uk+1

h − uk−1
h ‖

2
DIV,f + nB2

2ε1
‖φkh − φk−2

h ‖
2
1,p,

nB‖uk+1
h − uk−1

h ‖DIV,f‖φ
k
h + φk−2

h ‖1,p ≤ nε2
2
‖uk+1

h − uk−1
h ‖

2
DIV,f +

nB2(1+C2
P,p)

2ε2
‖∇(φkh + φk−2

h )‖p,

nB‖ukh − uk−2
h ‖DIV,f‖φ

k+1
h − φk−1

h ‖p ≤ ε1
2
‖ukh − uk−2

h ‖
2
DIV,f + nB2

2ε1
‖φk+1

h − φk−1
h ‖

2
1,p,

nB‖ukh + uk−2
h ‖DIV,f‖φ

k+1
h − φk−1

h ‖p ≤
nε3(C2

P,f+d)

2
‖∇(ukh + uk−2

h )‖2
f + nB2

2ε3
‖φk+1

h − φk−1
h ‖

2
1,p.

Simplify (5.6) by utilizing the above bounds and shifting the index of the sums:

Q ≤ δ
N−1∑
k=1

{
(ε1 + ε2

2
)n‖uk+1

h − uk−1
h ‖

2
DIV,f + ng2∆t2C2

f,p(
1
ε1

+ 1
2ε3

)‖φk+1
h − φk−1

h ‖
2
1,p

}
+ δ

2

N−1∑
k=1

{
n(C2

P,f + d)2ε3‖∇(uk+1
h − uk−1

h )‖2
f +

ng2∆t2C2
f,p(1+C2

P,p)

ε2
‖∇(φk+1

h + φk−1
h )‖2

p

}
+2δ∆t

[
cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
]
.

After using this bound for Q, our inequality (5.5) becomes

1
2

N−1∑
k=1

{(
nν∆t− δn(d+ C2

P,f )ε3

)
‖∇(uk+1

h + uk−1
h )‖2

f

}
+1

2

N−1∑
k=1

{(
gkmin∆t− δng2∆t2C2

f,p(1+C2
P,p)

ε2

)
‖∇(φk+1

h + φk−1
h )‖2

p

}
+δn

N−1∑
k=1

{(
(1− ε)− (ε1 + ε2

2
)
)
‖uk+1

h − uk−1
h ‖

2
DIV,f

}
+δ

N−1∑
k=1

{
(gS0(1− ε))) ‖φk+1

h − φk+1
h ‖

2
p

}
+δεn

N−1∑
k=1

{
‖∇ · (uk+1

h − uk−1
h )‖2

f

}
+δg2n∆t2C2

f,p

N−1∑
k=1

{(
2− ( 1

ε1
+ 1

2ε3
)
)
‖φk+1

h − φk+1
h ‖

2
1,p

}
≤

N−1∑
k=1

{
2∆t

(
n
ν
‖fkf ‖2

−1,f + g
kmin
‖fkp ‖2

−1,p

)
+ δ∆t2

ε

(
n‖fkf ‖2

f + g
S0
‖fkp ‖2

p

)}
+δ∆tA1/2 + E

1/2
stab + 2∆tC1/2 + 2δ∆t

[
cI(u

2
h − u0

h, φ
1
h)− cI(u1

h, φ
2
h − φ0

h)
]
.

(5.7)

This implies control over the stable, ‖∇(wk+1
h + wk−1

h )‖f,p for w = u, φ, and unstable,
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‖wk+1
h − wk−1

h ‖f,p for w = u, φ, modes as given in (5.4) provided the coefficients of the sums

on the left hand side are positive, i.e.

ν∆t− δ(C2
P,f + d)ε3 > 0,

gkmin∆t− δng2∆t2C2
f,p(1+C2

P,p)

ε2
> 0,

(1− ε)− (ε1 + ε2
2

) > 0,

2− ( 1
ε1

+ 1
2ε3

) > 0,

It remains to choose δ, ε1,2,3 > 0 and ε ∈ (0, 1) so that the above inequalities hold. The last

two inequalities may be rearranged as

ε1+
ε2
2

1−ε < 1, 1
ε1

+ 1
2ε3

< 2.

Many choices of ε and ε1,2,3 will satisfy the above. For example, choose ε = ε2 = 1
8
, ε1 = 3

4
,

and ε3 = 3
2
. Then

ε1+
ε2
2

1−ε =
3
4

+
1
16

7
8

= 13
14
< 1, 1

ε1
+ 1

2ε3
= 4

3
+ 1

3
= 5

3
< 2.

As for δ, choose

δ = min
{

ν∆t
(d+C2

P,f )ε3
, kminε2
ng∆tC2

f,p(1+C2
P,p)

}
> 0.

5.2 CONVERGENCE OF CNLFSTAB-SD

This section establishes the method’s unconditional, second-order convergence over long-time

intervals. An essential feature of the error analysis is that no form of Gronwall’s inequality

is used.

Recall that the FEM spaces, Xh
f , Xh

p and Qh
f , satisfy approximation properties of piece-

wise polynomials of degree r − 1, r, and r + 1, stated previously in (1.17). Also, recall that

since we assumed the spaces Xh
f and Qh

f satisfied the (LBBh) condition, there exists some
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constant C such that

inf
vh∈Vh

‖u− vh‖H1(Ωf ) ≤ C inf
xh∈Xh

f

‖u− xh‖H1(Ωf ), (5.8)

(see, for example, Girault and Raviart [34], Chapter II, Proof of Theorem 1.1, Equation

(1.12)).

As a reminder, we will use the following notation for discrete-in-time norms.

‖|v|‖2
L2(0,T ;Hs(Ωf,p)) :=

N∑
k=1

‖vk‖2
Hs(Ωf,p)∆t,

‖|v|‖L∞(0,T ;Hs(Ωf,p)) := max
0≤k≤N

‖vk‖Hs(Ωf,p).

Recall the consistency error bounds, derived in Lemma 25 and used in the convergence

analysis of (CNLF-SD):

∆t
N−1∑
k=1

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

≤ (∆t)4

20
‖uttt‖2

L2(0,T ;L2(Ωf )), (5.9)

∆t
N−1∑
k=1

‖φkt −
φk+1 − φk−1

2∆t
‖2
p ≤

(∆t)4

20
‖φttt‖2

L2(0,T ;L2(Ωp)), (5.10)

∆t
N−1∑
k=1

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

≤ 7(∆t)4

6
‖utt‖2

L2(0,T ;H1(Ωf )), (5.11)

∆t
N−1∑
k=1

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

≤ 7(∆t)4

6
‖φtt‖2

L2(0,T ;H1(Ωp)). (5.12)

Convergence analysis of (CNLFstab-SD), requires additional consistency error bounds,

given in the following lemma.

Lemma 37. (Additional Consistency Errors for (CNLFstab-SD)) The following inequal-

ities hold:

∆t
N−1∑
k=1

∥∥∥∥∇(ukt − uk+1 − uk−1

2∆t

)∥∥∥∥2

f

≤ (∆t)4

20
‖∇uttt‖2

L2(0,T ;L2(Ωf )), (5.13)

∆t
N−1∑
k=1

‖φk+1 − φk−1‖2
1,p ≤ 4∆t2‖φt‖2

L2(0,T,H1(Ωp)). (5.14)

Proof. For (5.13), follow the proof for (5.9) in Lemma 25, replacing u with ∇u. For the proof
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of (5.14), we have

∆t
N−1∑
k=1

‖φk+1 − φk−1‖2
p = ∆t

N−1∑
k=1

∫
Ωf

(∫ tk+1

tk−1

φt dt

)
dx

≤ ∆t

∫
Ωf

N−1∑
k=1

∫ tk+1

tk−1

dt

∫ tk+1

tk−1

φ2
t dt dx

= ∆t

∫
Ωf

N−1∑
k=1

2∆t

∫ tk+1

tk−1

φ2
t dt dx

≤ 2∆t2
∫

Ωf

2
N∑
k=1

∫ tk

tk−1

φ2
t dt dx

= 4∆t2‖φt‖2
L2(0,T,L2(Ωp)).

Similarly,

∆t
N−1∑
k=1

‖∇
(
φk+1 − φk−1

)
‖2
p ≤ 4∆t2‖∇φt‖2

L2(0,T,L2(Ωp)). (5.15)

Combining the above two inequalities produces (5.14).

5.2.1 Convergence of the Stokes Velocity and Darcy Pressure

Denote the errors by Eku = uk − ukh, Ekp = pk − pkh, and Ekp = φk − φkh. Convergence analysis

of the (CNLFstab-SD)-method follows.

Theorem 38. (Convergence of (CNLFstab-SD)) Consider the CNLF-stab method

(CNLFstab-SD). For any 0 < tN = T ≤ ∞, if u, p, φ satisfy the regularity conditions

u ∈ L2(0, T ;Hr+2(Ωf )) ∩ L∞(0, T ;Hr+1(Ωf )) ∩H3(0, T ;H1(Ωf )),

p ∈ L2(0, T ;Hr+1(Ωf )),

φ ∈ L2(0, T ;Hr+2(Ωp)) ∩ L∞(0, T ;Hr+1(Ωp)) ∩H3(0, T ;H1(Ωp)),
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then there exists a constant Ĉ > 0, independent of the mesh width, h, time step, ∆t, and

final time, tN = T , such that

n

2
(‖ENu ‖2

DIV,f + ‖EN−1
u ‖2

DIV,f ) + gS0(‖ENφ ‖2
p + ‖EN−1

φ ‖2
p)

+ ∆t
N−1∑
k=1

(
nν

2
‖∇(Ek+1

u + Ek−1
u )‖2

f +
gkmin

2
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)
≤ Ĉ{h2r{‖ut‖2

L2(0,T ;Hr+1(Ωf )) + ‖|u|‖2
L2(0,T ;Hr+1(Ωf )) + ‖|u|‖2

L∞(0,T ;Hr+1(Ωf ))

+ ∆t4‖φt‖2
L2(0,T ;Hr+1(Ωp)) + ‖|φ|‖2

L∞(0,T ;Hr+1(Ωp))}

+ h2r+2{‖|p|‖2
L2(0,T ;Hr+1(Ωp)) + ‖φt‖2

L2(0,T ;Hr+1(Ωp)) + ‖|φ|‖2
L∞(0,T ;Hr+1(Ωp))}

+ ∆t4{‖uttt‖2
L2(0,T ;H1(Ωf )) + ‖utt‖2

L2(0,T ;H1(Ωf )) + ‖φttt‖2
L2(0,T ;L2(Ωp))

+ ‖φt‖2
L2(0,T ;H1(Ωp)) + ‖φtt‖2

L2(0,T ;H1(Ωp))}+ ‖E1
u‖2

DIV,f + ‖E1
φ‖2

1,p}.

(5.16)

Proof. Consider (CNLFstab-SD) over the discretely divergence free space V h := {vh ∈

Xh
f : (qh,∇ · vh)f = 0 ∀qh ∈ Qh

f}, instead of Xh
f , so that the pressure term b

(
vh,

pk+1
h +pk−1

h

2

)
equals zero. Subtract (CNLFstab-SD) from the semi-discrete variational form, (FEM-SD),

evaluated at time tk to obtain

n
(
ukt −

uk+1
h −uk−1

h

2∆t
, vh

)
f
− n

(
∇ ·
(
uk+1
h −uk−1

h

2∆t

)
,∇ · vh

)
f

+ af

(
uk − uk+1

h +uk−1
h

2
, vh

)
−b
(
vn, p

k
)

+ cI
(
vh, φ

k − φkh
)

= 0,

gS0

(
φkt −

φk+1
h −φk−1

h

2∆t
, ψh

)
p

+ ap

(
φk − φk+1

h +φk−1
h

2
, ψh

)
−∆tng2C2

f,p(∇(φk+1
h − φk−1

h ),∇ψh)p

−∆tng2C2
f,p(φ

k+1
h − φk−1

h , ψh)p − cI
(
uk − ukh, ψh

)
= 0.

Because vh is discretely divergence free, b
(
vh, p

k
)

= b
(
vh, p

k − λkh
)
, for any λh ∈ Qh

f . Further,(
∇ · ukt , vh

)
f

= 0. Thus, after rearranging we find

n
(
Ek+1
u −Ek−1

u

2∆t
, vh

)
f

+ n
(
∇ ·
(
Ek+1
u −Ek−1

u

2∆t

)
, ∇ · vh

)
f

+ af

(
Ek+1
u +Ek+1

u

2
, vh

)
+ cI

(
vh, Ekφ

)
= −n

(
ukt − uk+1−uk−1

2∆t
, vh

)
f
− n

(
∇ ·
(
ukt − uk+1−uk−1

2∆t

)
, ∇ · vh

)
f

− af
(
uk − uk+1+uk−1

2
, vh

)
+ b
(
vh, p

k − λkh
)
,
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gS0

(
Ek+1
φ −Ek−1

φ

2∆t
, ψh

)
p

+ ap

(
Ek+1
φ +Ek−1

φ

2
, ψh

)
+ ∆tng2C2

f,p(∇(Ek+1
φ − Ek−1

φ ),∇ψh)p

+ ∆tng2C2
f,p(Ek+1

φ − Ek−1
φ , ψh)p − cI

(
Eku , ψh

)
= −gS0

(
φkt −

φk+1−φk−1

2∆t
, ψh

)
p
− ap

(
φk − φk+1+φk−1

2
, ψh

)
+ ∆tng2C2

f,p(∇(φk+1 − φk−1),∇ψh)p + ∆tng2C2
f,p(φ

k+1 − φk−1, ψh)p.

Denote the consistency errors by:

τ kf (vh) = −n
(
ukt − uk+1−uk−1

2∆t
, vh

)
f
− n

(
∇ ·
(
ukt − uk+1−uk−1

2∆t

)
,∇ · vh

)
f

− af
(
uk − uk+1+uk−1

2
, vh

)
,

τ kp (ψh) = −gS0

(
φkt −

φk+1−φk−1

2∆t
, ψh

)
p

+ ∆tng2C2
f,p(∇(φk+1 − φk−1),∇ψh)p

+ ∆tng2C2
f,p(φ

k+1 − φk−1, ψh)p − ap
(
φk − φk+1+φk−1

2
, ψh

)
.

Decompose the error terms into

Ek+1
u = uk+1 − uk+1

h = (uk+1 − ũk+1) + (ũk+1 − uk+1
h ) = ηk+1

u + ξk+1
u ,

Ek+1
φ = φk+1 − φk+1

h = (φk+1 − φ̃k+1) + (φ̃k+1 − φk+1
h ) = ηk−1

φ + ξk+1
φ .

Take ũk+1 ∈ V h, so that ξk+1
u ∈ V h and let φ̃k+1 ∈ Xh

p . Then the error equations become:

n
(
ξk+1
u −ξk−1

u

2∆t
, vh

)
f

+ n
(
∇ ·
(
ξk+1
u −ξk−1

u

2∆t

)
, vh

)
f

+ af

(
ξk+1
u +ξk−1

u

2
, vh

)
+ cI(vh, ξ

k
φ)

= −n
(
ηk+1
f −ηk−1

u

2∆t
, vh

)
f

− n
(
∇ ·
(
ηk+1
u −ηk−1

u

2∆t

)
,∇ · vh

)
f
− af

(
ηk+1
u +ηk−1

u

2
, vh

)
− cI(vh, ηkφ) + τ kf (vh) + b

(
vh, p

k − λkh
)
,

gS0

(
ξk+1
φ −ξk−1

φ

2∆t
, ψh

)
p

+ ap

(
ξk+1
φ +ξk−1

φ

2
, ψh

)
+ ∆tng2C2

f,p(∇(ξk+1
φ − ξk−1

φ ),∇ψh)p

+ ∆tng2C2
f,p(ξ

k+1
φ − ξk−1

φ , ψh)p − cI(ξku, ψh)

= −gS0

(
ηk−1
φ −ηk−1

φ

2∆t
, ψh

)
p

− ap
(
ηk+1
φ +ηk−1

φ

2
, ψh

)
+ cI(η

k
u, ψh)

−∆tng2C2
f,p(∇(ηk+1

φ − ηk−1
φ ),∇ψh)p −∆tng2C2

f,p(η
k+1
φ − ηk−1

φ , ψh)p + τ kp (ψh).
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Pick vh = ξk+1
u + ξk−1

u ∈ V h and ψh = ξk+1
φ + ξk−1

φ ∈ Xh
p in the equations above, multiply by

2∆t, and add. This produces(
n‖ξk+1

u ‖2
DIV,f + gS0‖ξk+1

φ ‖2
p + ∆t2ng2C2

f,p‖ξk+1
φ ‖2

H1(Ωp)

)
−
(
n‖ξk−1

u ‖2
DIV,f + gS0‖ξk−1

φ ‖2
p + ∆t2ng2C2

f,p‖ξk−1
φ ‖2

H1(Ωp)

)
+ 2∆t

[
cI(ξ

k+1
u + ξk−1

u , ξkφ)− cI(ξku, ξk+1
φ + ξk−1

φ )
]

+ ∆t
[
af (ξ

k+1
u + ξk−1

u , ξk+1
u + ξk−1

u ) + ap(ξ
k+1
φ + ξk−1

φ , ξk+1
φ + ξk−1

φ )
]

=n
[(
ηk+1
u − ηk−1

u , ξk+1
u + ξk−1

u

)
f

+ n
(
∇ · (ηk+1

u − ηk−1
u ),∇ · (ξk+1

u − ξk+1
u )

)
f

]
− [gS0

(
ηk+1
φ − ηk−1

φ , ξk+1
φ + ξk−1

φ

)
p

+2∆t2ng2C2
f,p(∇(ηk+1

φ − ηk−1
φ ),∇(ξk+1

φ + ξk−1
φ ))p

+ 2∆t2ng2C2
f,p(η

k+1
φ − ηk−1

φ , ξk+1
φ + ξk−1

φ )p]

−∆t
[
af
(
ηk+1
u + ηk−1

u , ξk+1
u + ξk−1

u

)
+ ap

(
ηk+1
φ + ηk−1

φ , ξk+1
φ + ξk−1

φ

)]
− 2∆t

[
cI(ξ

k+1
u + ξk−1

u , ηkφ)− cI(ηkf , ξk+1
φ + ξk−1

φ )
]

+ 2∆t
[
τ kf (ξk+1

u + ξk−1
u ) + b

(
ξk+1
u + ξk−1

u , pk − λkh
)

+ τ kp (ξk+1
φ + ξk−1

φ )
]
.

Similar to prior analyses, rewrite the coupling terms on the left hand side equivalently as

cI(ξ
k+1
u + ξk−1

u , ξkφ)− cI(ξku, ξk+1
φ + ξk−1

φ )

=
(
cI(ξ

k+1
u , ξkφ)− cI(ξku, ξk+1

φ )
)
−
(
cI(ξ

k
u, ξ

k−1
φ )− cI(ξk−1

u , ξkφ)
)

= C
k+ 1

2
ξ − Ck− 1

2
ξ .

If we denote the ξ energy terms by

E
k+1/2
ξ,stab := n‖ξk+1

u ‖2
DIV,f + gS0‖ξk+1

φ ‖2
p + ∆t2ng2C2

f,p‖ξk+1
φ ‖2

H1(Ωp)

+n‖ξku‖2
DIV,f + gS0‖ξkφ‖2

p + ∆t2ng2C2
f,p‖ξkφ‖2

H1(Ωp),

and apply the coercivity of the forms af (., .) and ap(., .), the inequality becomes
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E
k+1/2
ξ,stab + 2∆tC

k+ 1
2

ξ − Ek−1/2
ξ,stab − 2∆tC

k− 1
2

ξ

+ ∆t
(
nν‖∇(ξk+1

u + ξk−1
u )‖2

f + gkmin‖∇(ξk+1
φ + ξk−1

φ ‖2
p

)
≤ −

[
n
(
ηk+1
u − ηk−1

u , ξk+1
u + ξk−1

u

)
f

+ n
(
∇ ·
(
ηk+1
u − ηk−1

u

)
,∇ ·

(
ξk+1
u + ξk−1

u

))
f

]
− [gS0

(
ηk+1
φ − ηk−1

φ , ξk+1
φ + ξk−1

φ

)
p

+ 2∆t2ng2C2
f,p(∇(ηk+1

φ − ηk−1
φ ),∇(ξk+1

φ + ξk−1
φ ))p

+ 2∆t2ng2C2
f,p(η

k+1
φ − ηk−1

φ , ξk+1
φ + ξk−1

φ )p]

−∆t
[
af
(
ηk+1
u + ηk−1

u , ξk+1
u + ξk−1

u

)
+ ap

(
ηk+1
φ + ηk−1

φ , ξk+1
φ + ξk−1

φ

)]
− 2∆t

[
cI(ξ

k+1
u + ξk−1

u , ηkφ)− cI(ηkf , ξk+1
φ + ξk−1

φ )
]

+ 2∆t
[
τ kf (ξk+1

u + ξk−1
u ) + b(ξk+1

u + ξk−1
u , pk − λkh) + τ kp (ξk+1

φ + ξk−1
φ )

]
,

(5.17)

Next, we bound each term on the right hand side of the above inequality. We bound the first

two terms by the standard Cauchy-Schwarz and Young inequalities along with the Poincaré

inequality (Lemma 2).

n
(
ηk+1
u −ηk−1

u , ξk+1
u + ξk−1

u

)
f

+ n
(
∇ ·
(
ηk+1
u − ηk−1

u

)
,∇ ·

(
ξk+1
u + ξk−1

u

))
f

≤
6nC2

P,f

ν∆t
‖ηk+1

u − ηk−1
u ‖2

f +
6nd2

ν∆t
‖∇
(
ηk+1
u − ηk−1

u

)
‖2
f

+ ∆t
nν

12
‖∇(ξk+1

u + ξk−1
u )‖2

f ,

gS0(ηk+1
φ −ηk−1

φ , ξk+1
φ + ξk−1

φ )p + 2∆t2ng2C2
f,p

(
∇
(
ηk+1
φ − ηk−1

φ

)
,∇
(
ξ
k+1
φ +ξk−1

φ

))
p

+ 2∆t2ng2C2
f,p

(
ηk+1
φ − ηk−1

φ , ξ
k+1
φ +ξk−1

φ

)
p

≤
15gC2

P,p

2kmin∆t

(
S2

0 + 4∆t4g2C4
f,p

)
‖ηk+1

φ − ηk−1
φ ‖2

p

+
30∆t3g3C4

f,p

kmin
‖∇
(
ηk+1
φ − ηk−1

φ

)
‖2
p + ∆t

gkmin
10
‖∇(ξk+1

φ + ξk−1
φ )‖2

p.

To bound the second term, we apply the continuity of the bilinear forms, af (., .) and ap(., .),
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proven in Lemma 3. This yields

af (η
k+1
u +ηk−1

u , ξk+1
u + ξk−1

u ) + ap(η
k+1
φ + ηk−1

φ , ξk+1
φ + ξk−1

φ )

≤Mf‖∇(ηk+1
u + ηk−1

u )‖f‖∇(ξk+1
u + ξk−1

u )‖f

+ gkmax‖∇(ηk+1
φ + ηk−1

φ )‖p‖∇(ξk+1
φ + ξk−1

φ )‖p

≤
3M2

f

nν
‖∇(ηk+1

u + ηk−1
u )‖2

f +
5gk2

max

2kmin
‖∇(ηk+1

φ + ηk−1
φ )‖2

p

+
nν

12
‖∇(ξk+1

u + ξk−1
u )‖2

f +
gkmin

10
‖∇(ξk+1

φ + ξk−1
φ )‖2

p.

We bound the coupling terms on the right hand side using the (HDIV-trace), Poincaré

(Lemma 2) and Young inequalities. Letting C = C2
Ωf
C2

Ωp
CP,fCP,pg

2n, this produces

cI(ξ
k+1
u + ξk−1

u , ηkφ)− cI(ηkf , ξk+1
φ + ξk−1

φ )

≤ ng
(
‖(ξk+1

u + ξk−1
u ) · n̂f‖I‖ηkφ‖I + ‖ηkf · n̂u‖I‖ξk+1

φ + ξk−1
φ ‖I

)
≤ CΩfCΩpng

{
‖ξk+1

u + ξk−1
u ‖1/2

f ‖∇(ξk+1
u + ξk−1

u )‖1/2
f ‖η

k
φ‖1/2

p ‖∇ηkφ‖1/2
p

+
∥∥∥ξk+1

φ + ξk−1
φ ‖1/2

p ‖∇(ξk+1
φ + ξk−1

φ )‖1/2
p ‖ηku‖

1/2
f ‖∇η

k
u‖

1/2
f

}
≤
√
C
{
‖∇(ξk+1

u + ξk−1
u )‖f‖∇ηkφ‖p + ‖∇ηku‖f‖∇(ξk+1

φ + ξk−1
φ )‖p

{
≤ 6C

ν
‖∇ηkφ‖2

f +
5Cn

gkmin
‖∇ηku‖2

p +
nν

24
‖∇(ξk+1

u + ξk−1
u )‖2

f +
gkmin

20
‖∇(ξk+1

φ + ξk−1
φ )‖2

p.

Finally, we bound the pressure term, as well as the consistency errors, τ kf and τ kp , as follows.

By the Cauchy-Schwarz, Young and Poincaré (Lemma 2) inequalities, these boundes are:

b
(
ξk+1
u + ξk−1

u , pk − λkh
)
≤ n‖pk − λkh‖f‖∇ · (ξk+1

u + ξk−1
u )‖f

≤ 6dn

ν
‖pk − λkh‖2

f +
nν

24
‖∇(ξk+1

u + ξk−1
u )‖2

f ,

τ kf (ξk+1
u + ξk−1

u ) = −n
(
ukt −

uk+1 − uk−1

2∆t
, ξk+1
u + ξk−1

u

)
f

− af
(
uk − uk+1 + uk−1

2
, ξk+1
u + ξk−1

u

)
− n

(
∇ ·
(
ukt −

uk+1 − uk−1

2∆t

)
,∇ ·

(
ξk+1
u + ξk−1

u

))
f
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≤ CP,fn

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥
f

‖∇(ξk+1
u + ξk−1

u )‖f

+ dn

∥∥∥∥∇(ukt − uk+1 − uk−1

2∆t

)∥∥∥∥
f

‖∇(ξk+1
u + ξk−1

u )‖f

+Mf

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥
f

‖∇(ξk+1
u + ξk−1

u )‖f

≤
9C2

P,fn

ν

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

+
9M2

fn

ν

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

+
9d2n

ν

∥∥∥∥∇(ukt − uk+1 + uk−1

2∆t

)∥∥∥∥2

f

+
nν

12
‖∇(ξk+1

u + ξk−1
u )‖2

f ,

τ kp (ξk+1
φ + ξk−1

φ ) = −gS0

(
φkt −

φk+1 − φk−1

2∆t
, ξk+1
φ + ξk−1

φ

)
p

+ ∆tng2C2
f,p(∇(φk+1 − φk−1),∇(ξk+1

φ + ξk−1
φ ))p

+ ∆tng2C2
f,p(φ

k+1 − φk−1, ξk+1
φ + ξk−1

φ )p − ap
(
φk − φk+1 + φk−1

2
, ξk+1
φ + ξk−1

φ

)
≤ gS0CP,p

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥
p

‖∇(ξk+1
φ + ξk−1

φ )‖p

+ ∆tng2C2
f,p‖∇(φk+1 − φk−1)‖p‖∇(ξk+1

φ + ξk−1
φ )‖p

+ ∆tng2C2
f,pCP,p‖φk+1 − φk−1‖p‖∇(ξk+1

φ + ξk−1
φ )‖p

+ gkmax

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥
p

‖∇(ξk+1
φ + ξk−1

φ )‖p

≤
10gS2

0C
2
P,p

kmin

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥2

p

+
10∆t2n2g3C4

f,p

kmin
‖∇(φk+1 − φk−1)‖2

p

+
10∆t2n2g3C4

f,pC
2
P,p

kmin
‖φk+1 − φk−1‖2

p +
10gkmax
kmin

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

+
gkmin

10
‖∇(ξk+1

φ + ξk−1
φ )‖2

p.

After subsuming all the resulting ξ terms into the left hand side of inequality, absorb all

constants into some Ĉ0 > 0, independent of time-step size, ∆t, and mesh width, h. Group

together the remaining terms, so that inequality (5.17) becomes
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E
k+ 1

2
ξ,stab + 2∆tC

k+ 1
2

ξ − Ek− 1
2

ξ,stab − 2∆tC
k− 1

2
ξ

+ ∆t

(
nν

2
‖∇(ξk+1

u + ξk−1
u )‖2

f +
gkmin

2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)
≤ Ĉ0{(∆t)−1

{
‖ηk+1

u − ηk−1
u ‖2

f + ‖ηk+1
φ − ηk−1

φ ‖2
p +

∥∥∇ (ηk+1
u − ηk−1

u

)
‖2
f

}
+ ∆t

{
∆t2

∥∥ηk+1
φ − ηk−1

φ

∥∥2

1,p
+
∥∥∇(ηk+1

u + ηk−1
u )

∥∥2

f
+ ‖∇(ηk+1

φ + ηk−1
φ )‖2

p

+ ‖∇ηku‖2
f + ‖∇ηkφ‖2

p +
∥∥∥ukt − uk+1−uk−1

2∆t

∥∥∥2

f
+
∥∥∥∇(uk − uk+1+uk−1

2

)∥∥∥2

f

+

∥∥∥∥∇(ukt − uk+1 − uk−1

2∆t

)∥∥∥∥2

f

+ ‖pk − λkh‖2
f +

∥∥∥φkt − φk+1−φk−1

2∆t

∥∥∥2

p

+

∥∥∥∥∇(φk+1 − φk−1)‖2
p + ∆t2‖φk+1 − φk−1‖2

p +
∥∥∥∇(φk − φk+1+φk−1

2

)∥∥∥2

p

}}
.

Now, sum this inequality from k = 1, ..., N − 1. This yields

E
N− 1

2
ξ,stab + 2∆tC

N− 1
2

ξ − E
1
2
ξ,stab − 2∆tC

1
2
ξ

+ ∆t
N−1∑
k=1

(
nν

2
‖∇
(
ξk+1
u + ξk−1

u

)
‖2
f +

gkmin
2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)

≤ Ĉ0

{
(∆t)−1

N−1∑
k=1

{
‖ηk+1

u − ηk−1
u ‖2

f + ‖ηk+1
φ − ηk−1

φ ‖2
p + ‖∇

(
ηk+1
u − ηk−1

u

)
‖2
f

}
+ ∆t

N−1∑
k=1

{∆t2‖∇
(
ηk+1
φ − ηk−1

φ

)
‖2

1,p + ‖∇(ηk+1
u + ηk−1

u )‖2
f

+ ‖∇(ηk+1
φ + ηk−1

φ )‖2
p +

12C

ν
‖∇ηku‖2

f +
10C

gkmin
‖∇ηkφ‖2

p

+

∥∥∥∥ukt − uk+1 − uk−1

2∆t

∥∥∥∥2

f

+

∥∥∥∥∇(uk − uk+1 + uk−1

2

)∥∥∥∥2

f

+

∥∥∥∥∇(ukt − uk+1 − uk−1

2∆t

)∥∥∥∥2

f

+ ‖pk − λkh‖2
f +

∥∥∥∥φkt − φk+1 − φk−1

2∆t

∥∥∥∥2

p

+ ∆t2‖∇(φk+1 − φk−1)‖2
p

+∆t2‖φk+1 − φk−1‖2
p +

∥∥∥∥∇(φk − φk+1 + φk−1

2

)∥∥∥∥2

p

}
}
.

To obtain a bound involving norms instead of summations, we use the following bounds

derived in the proof of Theorem 26 in Chapter 3:
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N−1∑
k=1

‖ηk+1
u − ηk−1

u ‖2
f ≤ 4∆t‖ηu,t‖2

L2(0,T ;L2(Ωf )), (5.18)

N−1∑
k=1

‖ηk+1
φ − ηk−1

φ ‖2
f ≤ 4∆t‖ηφ,t‖2

L2(0,T ;L2(Ωp)), (5.19)

N−1∑
k=1

‖∇(ηk+1
u + ηk−1

u )‖2
f ≤ 4(∆t)−1‖|∇ηf |‖2

L2(0,T ;L2(Ωf )), (5.20)

N−1∑
k=1

‖∇(ηk+1
φ + ηk−1

φ )‖2
f ≤ 4(∆t)−1‖|∇ηp|‖2

L2(0,T ;L2(Ωp)), (5.21)

N−1∑
k=1

‖∇ηku‖2
f ≤ (∆t)−1‖|∇ηf |‖2

L2(0,T ;L2(Ωf )), (5.22)

N−1∑
k=1

‖∇ηkφ‖2
p ≤ (∆t)−1‖|∇ηp|‖2

L2(0,T ;L2(Ωp)), (5.23)

N−1∑
k=1

‖pk − λkh‖2
f ≤ (∆t)−1‖|p− λh|‖2

L2(0,T ;L2(Ωf )). (5.24)

Substitute ∇η for η in the proofs of (5.18)-(5.19) to obtain

N−1∑
k=1

‖∇
(
ηk+1
u − ηk−1

u

)
‖2
f ≤ 4∆t‖∇ηu,t‖2

L2(0,T ;L2(Ωf )), (5.25)

N−1∑
k=1

‖∇
(
ηk+1
φ − ηk−1

φ

)
‖2
p ≤ 4∆t‖∇ηφ,t‖2

L2(0,T ;L2(Ωp)). (5.26)

Inequalities (5.25)-(5.26) imply

N−1∑
k=1

{
‖ηk+1

u − ηk−1
u ‖2

f + ‖∇
(
ηk+1
u − ηk−1

u

)
‖2
f

}
≤ 4∆t‖ηu,t‖2

L2(0,T ;H1(Ωf )), (5.27)

N−1∑
k=1

{
‖ηk+1

φ − ηk−1
φ ‖2

p + ‖∇
(
ηk+1
φ − ηk−1

φ

)
‖2
p

}
≤ 4∆t‖ηφ,t‖2

L2(0,T ;H1(Ωp)). (5.28)

After applying bounds (5.18)-(5.28), along with the consistency error bounds from Lemmas

25 and 37, and the bound (3.3) from the stability proof, there holds, for some Ĉ1:
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1

2
(‖ξNu ‖2

DIV,f + ‖ξN−1
u ‖2

DIV,f ) + gS0(‖ξNφ ‖2
p + ‖ξN−1

φ ‖2
p)

+ ∆t
N−1∑
k=1

(
nν

2
‖∇(ξk+1

u + ξk−1
u )‖2

f +
gkmin

2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)
≤ Ĉ1{‖ηu,t‖2

L2(0,T ;H1(Ωf )) + ‖ηφ,t‖2
L2(0,T ;L2(Ωp)) + ∆t4‖ηφ,t‖2

L2(0,T ;H1(Ωp))

+ ‖|∇ηu|‖2
L2(0,T ;L2(Ωf )) + ‖|∇ηφ|‖2

L2(0,T ;L2(Ωp)) + ∆t4( ‖uttt‖2
L2(0,T ;H1(Ωf ))

+ ‖utt‖2
L2(0,T ;H1(Ωf )) + ‖φttt‖2

L2(0,T ;L2(Ωp)) + ‖φt‖2
L2(0,T,H1(Ωp))

+ ‖φtt‖2
L2(0,T ;H1(Ωp)) ) + ‖|p− λh|‖2

L2(0,T ;L2(Ωf ))}+ E
1/2
ξ,stab + 2∆tC

1/2
ξ .

(5.29)

Recall that the error terms equal ENu = uN − uNh = ηNu + ξNu and ENφ = φN − φNh = ηNφ + ξNφ .

Applying the triangle inequality produces

1
4
(‖ENu ‖2

DIV,f + ‖EN−1
u ‖2

DIV,f ) + gS0

2
(‖ENφ ‖2

p + ‖EN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
nν
4
‖∇(Ek+1

u + Ek−1
u )‖2

f + gkmin
4
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)
≤ 1

2
(‖ξNu ‖2

DIV,f + ‖ξN−1
u ‖2

DIV,f ) + gS0(‖ξNφ ‖2
p + ‖ξN−1

φ ‖2
p)

+ ∆t
N−1∑
k=1

(
nν
2
‖∇(ξk+1

u + ξk−1
u )‖2

f + gkmin
2
‖∇(ξk+1

φ + ξk−1
φ )‖2

p

)
+ 1

2
(‖ηNu ‖2

DIV,f + ‖ηN−1
u ‖2

DIV,f ) + gS0(‖ηNφ ‖2
p + ‖ηN−1

φ ‖2
p)

+ ∆t
N−1∑
k=1

(
nν
2
‖∇(ηk+1

u + ηk−1
u )‖2

f + gkmin
2
‖∇(ηk+1

φ + ηk−1
φ )‖2

p

)
.

Because ‖ηNf,p‖2
f,p, ‖ηN−1

f,p ‖2
f,p ≤ ‖|ηf,p|‖2

L∞(0,T ;L2(Ωf,p)), ‖ηNf ‖2
DIV,f ≤ d‖|ηf |‖2

L∞(0,T ;H1(Ωf )). This,

along with the previous bounds for η terms and inequality (5.29) implies
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1
4
(‖ENu ‖2

DIV,f + ‖EN−1
u ‖2

DIV,f ) + gS0

2
(‖ENφ ‖2

p + ‖EN−1
φ ‖2

p)

+ ∆t
N−1∑
k=1

(
nν
4
‖∇(Ek+1

u + Ek−1
u )‖2

f + gkmin
4
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)
≤ Ĉ2{‖ηu,t‖2

L2(0,T ;H1(Ωf )) + ‖ηφ,t‖2
L2(0,T ;L2(Ωp)) + ∆t4‖ηφ,t‖2

L2(0,T ;H1(Ωp))

+ ‖|∇ηu|‖2
L2(0,T ;L2(Ωf )) + ‖|∇ηp|‖2

L2(0,T ;L2(Ωp)) + ‖|p− λh|‖2
L2(0,T ;L2(Ωf ))

+ ∆t4( ‖uttt‖2
L2(0,T ;H1(Ωf )) + ‖utt‖2

L2(0,T ;H1(Ωf )) + ‖φttt‖2
L2(0,T ;L2(Ωp))

+ ‖φt‖2
L2(0,T ;H1(Ωp)) + ‖φtt‖2

L2(0,T ;H1(Ωp)) ) + ‖|ηf |‖2
L∞(0,T ;H1(Ωf )) + ‖|ηp|‖2

L∞(0,T ;L2(Ωp))

+ ‖ξ1
u‖2

DIV,f + ‖ξ0
u‖2

DIV,f + ‖ξ1
φ‖2

φ + ‖ξ0
φ‖2

p + ∆t2(‖ξ1
φ‖2

1,p + ‖ξ0
φ‖2

1,p) + 2∆tC
1/2
ξ },

(5.30)

where we absorbed all constants into a new constant, Ĉ2 > 0.

Now, we bound the coupling terms on the right hand side as follows:

C
1/2
ξ ≤ C

2

(
‖ξ0

φ‖2
1,p + ‖ξ1

φ‖2
1,p + ‖ξ0

u‖2
DIV,f + ‖ξ1

u‖2
DIV,f

)
. (5.31)

Inequality (5.30) holds for any ũ ∈ V h, λh ∈ Qh
f , and φ̃ ∈ Xh

p . Taking the infimum over the

spaces V h, Qh
f , and Xh

p , using (5.8) to bound the infimum over V h by the infimum over Xh
f ,

and finally, using bound (5.31), the following holds for some positive constant Ĉ3:

1

2
(‖ENu ‖2

DIV,f + ‖EN−1
u ‖2

DIV,f ) + gS0(‖ENφ ‖2
p + ‖EN−1

φ ‖2
p)

+ ∆t
N−1∑
k=1

(
ν

2
‖∇(Ek+1

u + Ek−1
u )‖2

f +
gkmin

2
‖∇(Ek+1

φ + Ek−1
φ )‖2

p

)
≤ Ĉ3{ inf

ũ∈Xh
f

{‖ηu,t‖2
L2(0,T ;H1(Ωf )) + ‖|∇ηu|‖2

L2(0,T ;L2(Ωf )) + ‖|ηu|‖2
L∞(0,T ;H1(Ωf ))

+ ‖ξ1
u‖2

DIV,f + ‖ξ0
u‖2

DIV,f}+ inf
λh∈Qhf

‖|p− λh|‖2
L2(0,T ;L2(Ωf ))

+ inf
φ̃∈Xh

p

{‖ηφ,t‖2
L2(0,T ;L2(Ωp)) + ∆t4‖ηφ,t‖2

L2(0,T ;H1(Ωp)) + ‖|∇ηp|‖2
L2(0,T ;L2(Ωp))

+ ‖|ηp|‖2
L∞(0,T ;L2(Ωp)) + ‖ξ1

φ‖2
1,p + ‖ξ0

φ‖2
1,p}+ ∆t4( ‖uttt‖2

L2(0,T ;H1(Ωf ))

+ ‖utt‖2
L2(0,T ;H1(Ωf )) + ‖φttt‖2

L2(0,T ;L2(Ωp)) + ‖φt‖2
L2(0,T ;H1(Ωp)) + ‖φtt‖2

L2(0,T ;H1(Ωp)) )}.
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The final result, (5.16), immediately follows by applying the approximation assumptions

given in (1.17).

5.3 NUMERICAL EXPERIMENTS FOR CNLFSTAB-SD

Using the same exact solutions given in (Test) from [56], we verify the unconditional sta-

bility and second-order convergence of the (CNLFstab-SD)-method. All experiments were

conducted using FreeFEM++ [36]. The code for the experiments is included in the appendix.

In the Stokes region, we utilize Taylor-Hood elements (P2-P1) and piecewise quadratics (P2)

in the Darcy region. Like the numerical tests performed in Chapter 3 for (CNLF-SD), we

set the initial and first terms equal to the exact solutions.

5.3.1 Stability Experiments

To confirm unconditional stability of (CNLFstab-SD), set the body force and source func-

tions, ff and fp equal to zero. Enforce homogeneous Dirichlet boundary conditions on the

external boundary. Set the parameters n, g, αBJ,ν, and ρ equal to one. We test the stability

of the method in four situations, (1) small kmin and S0, (2) small S0, (3) small kmin, and

(4) kmin = S0 = 1.0 over the time interval [0, 10]. With h = 0.1, we plot the final system

energy for each choice of time-step size, ∆t in Figure 5.1. We see that, in all situations,

(CNLFstab-SD) is stable for large time steps, regardless of the size of kmin and S0, as

expected. This is a vast improvement over (CNLF-SD), which for ∆t ≤ 1/80 was only stable

when kmin = S0 = 1.0, and unstable in all other cases (see Figure 5.2).

We run the same stability test for the more exact implementation of (CNLFstab) for

the Stokes-Darcy problem, with the added stability terms on the interface only, given below.

∆tgn
∫
I

(φk+1
h − φk−1

h )ψh ds and ∆tn2

∫
I

(
uk+1
h − uk−1

h

)
· n̂fvh · n̂f ds.

In Figure 5.3, it is clear that only adding stabilizing terms on the interface, I, is not sufficient

for gaining unconditional stability. The method is unstable for all tested time-step sizes when
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Figure 5.1: Final System Energy versus time-step size (∆t) for (CNLFstab-SD). The method is
stable for all choice of time-step sizes.

both kmin and S0 are small, does not become stable until ∆t < 1/70 for small kmin, and

becomes unstable for small S0 as ∆t decreases. Analysis of exactly why this method fails is

still an open problem.

5.3.2 Convergence Rate Experiments

We next test the convergence rate of the (CNLFstab-SD)-method. Set the parameters n,

ρ, αBJ, ν, S0, K, and g equal to 1 and apply inhomogeneous Dirichlet external boundary

conditions: uh = u on Ωf \ I, φh = φ on Ωp \ I. As before, set the initial conditions, as well

as the first terms in the method, to match the exact solutions. We set h = ∆t and calculate

the errors and convergence rates for the variables u, p, and φ in Table 5.1 over the time

interval [0, 1]. Define the norms for the errors, E(u), E(p), and E(φ), as follows.

E(u) = ‖|u− uh|‖L∞(0,T ;DIV (Ωf )),

E(p) = ‖|p− ph|‖L∞(0,T ;L2(Ωf )),

E(φ) = ‖|φ− φh|‖L∞(0,T ;L2(Ωp)).
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Figure 5.2: Final System Energy versus time-step size (∆t) for (CNLF-SD). The method is
unstable for all 0 < ∆t < 1/80 for cases of small parameters.

As predicted, we have second-order convergence for the Stokes velocity, u, Stokes pressure,

p, and Darcy pressure, φ. Convergence of the Stokes pressure, p, should follow a similar path

as convergence of p in (CNLF-SD), discussed briefly in Remark 28.

5.4 CONCLUSIONS FOR CNLFSTAB-SD

As discussed in Chapter 3, (CNLF-SD), while second-order convergent, has less than de-

sirable stability properties when faced with small problem parameters. This is due to the

sensitivity of the CFL-type time-step condition, (∆tCNLF), to small values of specific storage,

S0. The adaptation of the method, (CNLFstab), for the Stokes-Darcy problem presented in

this chapter addresses this sensitivity and is an unconditionally stable, second-order, parallel

partitioned method. In addition, the (CNLFstab-SD)-method effectively controls the un-

stable mode arising from the use of Leapfrog. It is interesting to see numerical experiments

imply that the natural implementation of the (CNLFstab)-method, which involves adding
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Figure 5.3: Final System Energy versus time-step size (∆t) for the natural adaptation of
(CNLFstab) for Stokes-Darcy in which we only add stability terms on the interface, I.

stabilizing terms only on the interface, I, is not sufficient to produce an unconditionally

stable method. The analysis of the insufficiency of this natural adaptation remains an open

problem.

Table 5.1: Rates of convergence for (CNLFstab-SD)

h = ∆t E(u) rate E(p) rate E(φ) rate

1/10 7.30706e-3 1.0229 1.46307e-1

1/20 1.43894e-3 2.34 2.56199e-1 1.99 3.65586e-2 2.00

1/40 3.02353e-4 2.25 6.09220e-2 2.07 9.01390e-3 2.02

1/80 6.02521e-5 2.33 1.45354e-2 2.07 2.223117e-3 2.01
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY OF RESULTS

With freshwater being a necessary component for survival of humankind, it is imperative

that we take measures to protect this vital resource. Hence, it is important to develop tools

for tracking pollutants that enter groundwater and surface water flow so that we may act

accordingly to prevent and react to contamination. Because these flows occur on such a

large scale, accurate numerical models are a great asset to this problem. The first step is to

develop numerical methods for describing groundwater-surface water flow. To be of practical

use, these methods must be adaptable to a wide variety of geographical situations, capture

both the separate fluid and porous media fluid movement as well as the interactions between

the flows, stay stable over long-time intervals, and converge within a reasonable amount of

time.

In this research, we focused on the development and study of higher-order convergent

methods for the fully evolutionary Stokes-Darcy problem with strong stability properties.

Because groundwater flow moves slowly, calculations must be made over longer time inter-

vals, making higher-order convergence a great practical advantage. In this problem, strong

stability properties refers to being long-time stable as well as stable in a variety of physical

situations, especially given the small parameters, S0 (specific storage), and kmin (smallest

eigenvalue of hydraulic conductivity). The singular limits of these parameters have physical

meaning, with S0 → 0 corresponding to the case of confined aquifers, and kmin → 0 corre-

sponding to impermeable porous media. Table 6.1 gives a summary of the methods studied

herein, along with their stability and convergence properties.

The splitting methods, (BEsplit1-SD) and (BEsplit2-SD) are both long-time stable
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Table 6.1: Summary of convergence rates and stability properties of partitioned methods applied
to Stokes-Darcy. C represents a positive constant (different for each condition) that is independent
of h and ∆t.

Method Convergence Rate Stability Condition

(BEsplit1-SD) O(∆t(h+ 1) + h2) ∆t < C max{kmin, S0kmin, S0h} or C
√
kmin ≥ 1

(BEsplit2-SD) O(∆t(h+ 1) + h2) ∆t < Ckmin max{1, S0, h} or C
√
kmin ≥ 1

(CNsplit-SD) O(∆t2 + h2 + ∆t(h + 1)) ∆t < C
√
S0h

(CNLF-SD) O(∆t2 + h2) ∆t < C max{min{h2, S0},min{h, S0h}}

(CNLFstab-SD) O(∆t2 + h2) none

and have desirable stability properties when faced with either small S0 or small kmin. How-

ever, these methods become highly unstable when both parameters are small. Both the

(CNsplit-SD) and (CNLF-SD) methods have stronger convergence properties, but demon-

strate sensitivity to small values of S0, making these methods impractical in those scenar-

ios. Finally, the adaptation of the (CNLFstab)-method for the Stokes-Darcy problem,

(CNLFstab-SD), exhibits the best stability and convergence properties of all the methods

studied in this research. Its unconditional stability and second-order convergence make it a

highly desirable method for modeling groundwater-surface flow over long-time periods in a

variety of physical situations.

6.2 FUTURE WORK

6.2.1 Asynchronous Stokes-Darcy Methods

This dissertation culminated in the development and analysis of a second-order, uncondition-

ally stable numerical method for modeling groundwater-surface water flow. Development and

analysis of methods for groundwater-surface water flow, while well-studied by many math-

ematicians (see, for example, [24, 27, 45, 15], to name a few), still remains an active area
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of research. The current frontier in the area lies with higher-order, multi-rate methods. A

multi-rate method can take advantage of the reality that groundwater flow moves at a much

slower rate than surface water. Thus, it is practical to take different time-step sizes in each

domain, relative to the rates of the flows.

Partitioned methods for uncoupling groundwater-surface water flow extend naturally to

multi-rate methods, in which for each large time-step in the Darcy region, we solve for the flow

in the Stokes region several times at a smaller time step. Multi-rate methods are especially

advantageous for studying flow in large aquifers with low conductivity, requiring accurate

calculations over long-time periods. Two multi-rate partitioned methods were studied in [73,

46]. However, these multi-rate methods are first-order convergent with stability restrictions

dependent on the potentially small parameters, S0 and kmin. Thus, future research in the

area should involve:

• Developing and analyzing higher-order, strongly stable multi-rate partitioned methods for

groundwater-surface water flow.

• Exploring the behavior of these methods in the physically relevant singular limits: S0 → 0

(quasistatic Stokes-Darcy) and kmin → 0 (impermeable porous media).

• Developing a systematic theory of the methods and separate the particular from the uni-

versal principles so that these methods may be applied to other physically important cou-

pled problems.

6.2.2 Stokes-Darcy + Transport

The primary motivation for this research on numerical methods for the fully evolutionary

Stokes-Darcy problem originated from several modern environmental problems that require

tracking contaminants in groundwater-surface water flow. While we have developed one

higher-order, unconditionally stable method, (CNLFstab-SD), it remains to couple this

method with the convection-diffusion equation (6.1) to model the path of pollutants in

coupled flow.

In time-dependent Stokes-Darcy flow, the inclusion of transport adds a hidden reaction

term since the fluid velocity in the evolutionary porous media flow equation is not divergence
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free. In coupled flow, the transport of contaminants is given by

βct +∇ · (uΩc−D∇c) = βs, (6.1)

where c represents some concentration, β the porosity, D the diffusion/dispersion tensor, and

s any sources or sinks. Recall that, when applied to groundwater-surface water flow, uΩ = u

in Ωf and up in Ωp. A system nonlinearity arises from the term ∇ · (uΩc). If ∇ · uΩ equals

zero or is bounded, as is true in the fluid region (∇ · u = 0), then standard tools suffice.

However, in the porous media region, after multiplying by c and integrating in space, the

energy estimate produces the extra term∫
Ωp

(∇ · up)c2 dx =

∫
Ωp

∇ · (−K∇φ)c2 dx.

Recall that in evolutionary porous media flow, φ satisfies

S0φt −∇ · (K∇φ) = 0 (or some source),

Slow moving flow over large domains necessitates predictions over long-time intervals, during

which this nonlinear reaction term dominates the physical behavior of the convective flux.

Prior work on coupled flow with transport has assumed quasi-static (S0 = 0) or steady fluid

flow (see, for example, [22, 21, 68, 60, 2]), in which the reaction term satisfies −∇·(K∇φ) ≡ 0

(or some source). Thus it remains to develop and analyze numerical methods for the fully

evolutionary coupled flow with transport problem.

There is also the case of reactive transport for biological, chemical, or nuclear contami-

nants, in which the source function, s, satisfies, s = s(c). This case is physically relevant for

many environmental problems, such as tracking radioactive contaminants or landfill leachate.

In [32] and [64], stationary porous media flow and coupled flow with evolutionary reactive

transport are presented and studied, but research on the fully evolutionary case remains an

open question.

In connection to the research on higher-order, strongly stable partitioned methods for

coupled flow presented in this dissertation, the next steps towards modeling pollution in

groundwater-surface water flow should involve:
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• Developing and analyzing methods for contaminant transport compatible with partitioned

and multi-rate methods for fully evolutionary Stokes-Darcy flow.

• Developing and analyzing space-time discontinuous Galerkin methods for the fully time-

dependent Stokes-Darcy-Transport problem.

• Adapting these methods to the case of reactive transport, in which s = s(c).

• Developing a systematic theory of the methods by separating the particular from the uni-

versal principles so that these methods may be applied to other physically important prob-

lems involving coupled flow with transport.
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APPENDIX

STOKES-DARCY CODE

All numerical experiments for the Stokes-Darcy problem in this research were performed

using FreeFEM++ [36]. The code for the experiments follows below.

/*

Michaela Kubacki

Code for Stokes-Darcy problem. Includes splitting methods

(BEsplit1,BEsplit2,CNsplitA,CNsplitB,CNsplit) CNLF, CNLFstab, CNLFstab on I.

Stability and Convergence tests.

*/

verbosity=0;

int plotson=0

;

int j;

//start time-loop for different choices of dt, h

for(j=1;j< 17; j++){

string fnse = "SD_DATE_METHOD_TEST_CONDITION";

int M=10 * j; // =10 * 2 ^ (j-1); for error tests, = 10 * j; for stability tests

real dt=1.0/M; //time step size

int numsteps = 10*M; //number of time steps = 10*M; for stability, = M; for

convergence

int i;

ofstream report(fnse + "_j_" + j + "_dt_" + dt + "_M_" + M + ".txt");

//***********************THE MESH***************************

mesh Omegaf; // mesh in fluid region

mesh Omegap; // mesh in porous media region

border C1(t=0.0,1.0){ x=1.0-t; y=2.0; label=1; } //Stokes top
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border C2(t=0.0,1.0){ x=0.0; y=2.0-t; label=2; } //Stokes left

border C3(t=0.0,1.0){ x=t; y=1.0; label=3; } //Stokes bottom --> Interface

border C4(t=0.0,1.0){ x=1.0; y=1.0+t; label=4; } //Stokes right

border B1(t=0.0,1.0){ x=1.0-t; y=1.0; label=5; } //Darcy top --> Interface

border B2(t=0.0,1.0){ x=0.0; y=1.0-t; label=6; } //Darcy left

border B3(t=0.0,1.0){ x=t; y=0.0; label=7; } //Darcy bottom

border B4(t=0.0,1.0){ x=1.0; y=t; label=8; } //Darcy right

//for fixed meshwidth (stability tests)

Omegaf=buildmesh(C1(10) + C2(10) + C3(10) + C4(10));

Omegap=buildmesh(B1(10) + B2(10) + B3(10) + B4(10));

//for varied meshwidth (h = \Delta t)

Omegaf=buildmesh(C1(M) + C2(M) + C3(M) + C4(M));

Omegap=buildmesh(B1(M) + B2(M) + B3(M) + B4(M));

//plot mesh

if (plotson){

plot(Omegaf,Omegap,wait=1);

}

//****************SPACES, FUNCTIONS, VARIABLES*********************

//finite element spaces ------>Taylor Hood in Stokes, P2 in Darcy

fespace Xf(Omegaf,P2); //Stokes velocity space

fespace Qf(Omegaf,P1); // Stokes pressure space

fespace Xp(Omegap,P2); // Darcy pressure space

//Stokes velocity, Stokes pressure, Darcy pressure functions

Xf u1, u2, u1old, u2old, u1old2, u2old2, u1soln, u2soln, divuold, uA1, uA2,

uA1old, uA2old, uB1, uB2, uB1old, uB2old, divu, v1, v2;

Qf p, pold, pold2, pA, pB, pAold, pBold, psoln, q;

Xp phi, phiold, phiold2, phisoln, up1soln, up2soln, phiA, phiAold, phiB,

phiBold, psi, w1, w2;

//constants for the flow problem

real nu = 1.0; //kinematic viscosity of fluid

real S0= 0.000001; //specific storage coefficient

real g = 1.0; //gravitational acceleration constant

real alpha = 1.0; //measured slip coefficient

real PRESSUREPENALTY=0.000001;

real Kappa1 = 0.000001; // first term of the hydraulic conductivity tensor

real Kappa2 = 0.0;

real Kappa3 = 0.0;
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real Kappa4 = 1.0;

real gamma = 0.0; // RAW filter constant

real chi = 0.1; // RA filter constant

macro contract(v1,v2,v3,v4) ( dx(v1)*dx(v3) + dy(v1)*dy(v3) + dx(v2)*dx(v4) +

dy(v2)*dy(v4) ) //tensor contraction for grad u : grad v

macro div(v1,v2) ( dx(v1) + dy(v2) ) // for div(u)

macro dot(v1,v2,v3,v4) (v1*v3 + v2*v4) // dot product of 2 vectors

//**********************DEFINE TRUE SOLUTIONS********************

//from Mu Zhu paper

//Stokes velocity, pressure and Darcy velocity, pressure

func real u1true(real t) {return ( (x^2.0*(y-1.0)^2.0 + y) * cos(t) ); }

func real u2true(real t) {return ( (-2.0/3.0 * x * (y-1.0)^3.0) * cos(t) +

(2.0-pi*sin(pi*x))* cos(t) ); }

func real phitrue(real t) {return ( ( 2.0-pi*sin(pi*x) )*( 1.0-y-cos(pi*y)

)*cos(t) ); }

func real ptrue(real t) {return ( 2.0 - pi*sin(pi*x) )*(sin(.5*pi*y) )*cos(t); }

func real divutrue(real t) {return (2.0*x*(y-1.0)^2.0*cos(t) -2.0 * x*

(y-1.0)^2.0*cos(t)); }

func real up1true(real t) {return (

Kappa1*cos(t)*pi^2.0*cos(pi*x)*(1.0-y-cos(pi*y)) ); }

func real up2true(real t) {return ( -Kappa1*cos(t)*(2.0-pi*sin(pi*x))*(-1.0 +

pi*sin(pi*y))); }

// forcing in fluid region f_f=(f1,f2)

func real f1(real t) {return ( -(x^2.0*(y-1.0)^2.0 + y)*sin(t)- nu*(

2.0*(y-1.0)^2.0*cos(t) + 2.0*x^2.0*cos(t) ) -

pi^2.0*cos(pi*x)*sin(pi/2.0*y)*cos(t) ); }

func real f2(real t) {return ( -(-2.0/3.0*x*(y-1.0)^3.0)*sin(t) -

(2.0-pi*sin(pi*x))*sin(t)- nu*( pi^3.0*sin(pi*x)*cos(t) -

4.0*x*(y-1.0)*cos(t) ) + (2.0-pi*sin(pi*x))*(pi/2.0)*cos(pi/2.0*y)*cos(t) ); }

// source in porous region (Darcy)

func real fp(real t) {return ( S0*( 2.0-pi*sin(pi*x) )*( 1.0-y-cos(pi*y)

)*(-1.0)*sin(t)

- Kappa1*( pi^3.0*sin(pi*x) )*( 1.0-y-cos(pi*y)

)*cos(t)

- Kappa1*( 2.0-pi*sin(pi*x) )*( pi^2.0*cos(pi*y)

)*cos(t) ); }

//assign values for the first two time steps (for CNLF, CNLFstab)

//For 3-level methods: CNLF and CNLFstab

real tnminus1=0.0;

real tn=dt;

real tnplus1=2*dt;
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phiold2=phitrue(0.0);

phiold=phitrue(dt);

u1old2=u1true(0.0);

u1old=u1true(dt);

u2old2=u2true(0.0);

u2old=u2true(dt);

pold2=ptrue(0.0);

pold=ptrue(dt);

divuold=divutrue(0.0);

divu=divutrue(dt);

//For 2-level methods: BE and CN split

real tn=0.0;

real tnplus1=dt;

real thalf = 0.5 * (tn + tnplus1);

phiold=phitrue(0.0);

u1old=u1true(0.0);

u2old=u2true(0.0);

pold=ptrue(0.0);

uA1old=u1true(0.0);

uA2old=u2true(0.0);

phiAold=phitrue(0.0);

pAold=ptrue(0.0);

uB1old=u1true(0.0);

uB2old=u2true(0.0);

phiBold=phitrue(0.0);

pBold=ptrue(0.0);

report << " *** BEGIN REPORT, Michaela Kubacki ***" << endl;

report << " # of boundary nodes per side is " << M << endl;

report << " Time Step = " << dt << endl;

report << " # of Time Steps= " << numsteps << endl;

report << " S0 = " << S0 << endl;

report << " kmin = " << Kappa1 << endl;

// define initial norms and errors

real errorUstabLdivL2 = 0.0;

real errorULinfL2 = 0.0;

real errorPhiLinfL2 = 0.0;

real errorPLinfL2 = 0.0;

real errorUoldLinfL2 = 0.0;

real errorPhioldLinfL2 = 0.0;

real errorPoldLinfL2 = 0.0;

real errorPavgLinfL2 = 0.0;

real errorUtLdivL2 = 0.0;

real L2normPSquared = 0.0;
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real L2normDivUSquared = 0.0;

real L2normDivUtSquared = 0.0;

real L2normUold = 0.0;

real L2normPhiold = 0.0;

real L2normUSquared = 0.0;

real L2normPhiSquared = 0.0;

real initialenergySD;

real L2normPtrueSquared = 0.0;

real L2normUtrueSquared = 0.0;

real L2normPhitrueSquared = 0.0;

real temperrorUstab = 0.0;

real temperrorU = 0.0;

real temperrorPhi = 0.0;

real temperrorPavg = 0.0;

real temperrorP = 0.0;

real temperrorUold = 0.0;

real temperrorPhiold = 0.0;

real temperrorPold = 0.0;

real L2normPCurrent;

real L2normDivUCurrent;

real L2normDivUtCurrent;

real L2normUCurrent;

real L2normPhiCurrent;

real L2normPtrueCurrent;

real L2normUtrueCurrent;

real L2normPhitrueCurrent;

//************BEGIN TIME LOOP for Partitioned Method**********

for(i=0;i<numsteps; i++){

// For convergence tests for all CNLF-type methods

func F1=f1(tn);

func F2=f2(tn);

func Fp=g*fp(tn);

func Uf1=u1true(tnplus1);

func Uf2=u2true(tnplus1);

func PHI=phitrue(tnplus1);

// For stability tests for all CNLF-type methods

func F1=0.0;

func F2=0.0;

func Fp=0.0;

func Uf1=0.0;

func Uf2=0.0;

func PHI=0.0;
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//********************CNLF Method ***********************

problem CNLFStokes([u1,u2,p],[v1,v2,q],solver=UMFPACK) =

int2d(Omegaf)(

(0.5 / dt) * (dot(u1,u2,v1,v2) ) //u_t

+ p * q * PRESSUREPENALTY) //pressure penalty term

+ int2d(Omegaf)(

- (0.5 / dt) * (dot(u1old2,u2old2,v1,v2) ) //u_t

-dot(F1,F2,v1,v2) //forcing

)

+ int2d(Omegaf)( 0.5 * nu * contract(u1,u2,v1,v2)) + int1d(Omegaf,3)(0.5

* alpha / sqrt(Kappa1) * u1 * v1) //.5*a_f(u_{k+1},v)

+ int2d(Omegaf)(0.5 * nu * contract(u1old2,u2old2,v1,v2)) +

int1d(Omegaf,3)(0.5 * alpha / sqrt(Kappa1) * u1old2 * v1)

//.5*a_f(u_{k-1},v)

- int2d(Omegaf)(0.5 * p * div(v1,v2) ) //-.5*b(v, p_{k+1})

- int2d(Omegaf)(0.5 * pold2 * div(v1,v2) ) //-.5*b(v,p_{k-1})

+ int2d(Omegaf)(q * div(u1,u2)) // incompressibility condition

+ int1d(Omegaf,3)(-g * phiold * v2) //c_I(v, phi_k) ---> v \cdot n_f = -v2

+ on ( 1,2,4, u1=Uf1, u2=Uf2) ;//external BCs

problem CNLFDarcy(phi,psi,solver=LU) =

int2d(Omegap)((0.5 * S0 * g / dt) * phi * psi) //g*S_0*phi_t

+ int2d(Omegap)(- (0.5 * g * S0 / dt) * phiold2 * psi //g*S_0*phi_t

-Fp*psi //source

)

+ int2d(Omegap)(0.5* g * Kappa1 * dot(dx(phi),dy(phi),dx(psi),dy(psi) ))

//.5*a_p(phi_{k+1},psi)

+ int2d(Omegap)(0.5* g * Kappa1 * dot(dx(phiold2),dy(phiold2),dx(psi),dy(psi)

)) //.5*a_p(phi_{k-1},psi)

- int1d(Omegap,5)(-g * psi * u2old) //c_I(u_k, psi) ---> u_k \cdot n_f = -u2_k

+ on( 6,7,8, phi = PHI) ; //external BCs

//Implement CNLF method

CNLFStokes;

CNLFDarcy;

//**********************CNLFStab Method **********************

problem CNLFStabStokes([u1,u2,p],[v1,v2,q],solver=LU) =

int2d(Omegaf)(

(0.5 / dt) * (dot(u1,u2,v1,v2) + gamma * div(u1,u2)*div(v1,v2) )

//u_t + grad-div(u_t) for k+1

+ p * q * PRESSUREPENALTY) //pressure penalty term

+ int2d(Omegaf)(

- (0.5 / dt) * (dot(u1old2,u2old2,v1,v2) - gamma *
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div(u1old2,u2old2)*div(v1,v2) ) //u_t + grad-div(u_t) for k-1

-dot(F1,F2,v1,v2) //forcing

)

+ int2d(Omegaf)( 0.5 * nu * contract(u1,u2,v1,v2)) + int1d(Omegaf,3)(0.5

* alpha / sqrt(Kappa1) * u1 * v1) //.5*a_f(u_{k+1},v)

+ int2d(Omegaf)(0.5 * nu * contract(u1old2,u2old2,v1,v2)) +

int1d(Omegaf,3)(0.5 * alpha / sqrt(Kappa1) * u1old2 * v1)

//.5*a_f(u_{k-1},v)

- int2d(Omegaf)(0.5 * p * div(v1,v2) ) //-.5*b(v, p_{k+1})

- int2d(Omegaf)(0.5 * pold2 * div(v1,v2) ) //-.5*b(v,p_{k-1})

+ int2d(Omegaf)(q * div(u1,u2)) //incompressibility condition

+ int1d(Omegaf,3)(-g * phiold * v2) //c_I(v, phi_k) ---> v \cdot n_f = -v2

+ on ( 1,2,4, u1=Uf1, u2=Uf2); //external BCs

problem CNLFStabDarcy(phi,psi,solver=LU) =

int2d(Omegap)((0.5 * S0 * g / dt) * phi * psi + g^2 * dt *(phi * psi +

dot(dx(phi),dy(phi),dx(psi),dy(psi))) )//g*S_0*phi_t + added stab for k+1

+ int2d(Omegap)(- (0.5 * g * S0 / dt) * phiold2 * psi - g^2 * dt *( phiold2 *

psi + dot(dx(phiold2),dy(phiold2),dx(psi),dy(psi)))//g*S_0*phi_t + added

stab for k-1

-Fp*psi //source

)

+ int2d(Omegap)(0.5* g * Kappa1 * dot(dx(phi),dy(phi),dx(psi),dy(psi) ))

//.5*a_p(phi_{k+1},psi)

+ int2d(Omegap)(0.5* g * Kappa1 * dot(dx(phiold2),dy(phiold2),dx(psi),dy(psi)

)) //.5*a_p(phi_{k-1},psi)

- int1d(Omegap,5)(-g * psi * u2old) //c_I(u_k, psi) ---> u_k \cdot n_f = -u2_k

+ on( 6,7,8, phi = PHI) ; //external BCs

//Implement CNLFstab method

CNLFStabStokes;

CNLFStabDarcy;

//******************CNLFstab on I Method ***********************

problem CNLFstabIStokes([u1,u2,p],[v1,v2,q],solver=UMFPACK) =

int2d(Omegaf)(

(0.5 / dt) * (dot(u1,u2,v1,v2) ) //u_t

+ p * q * PRESSUREPENALTY) //pressure penalty term

+ int2d(Omegaf)(

- (0.5 / dt) * (dot(u1old2,u2old2,v1,v2) ) //u_t

-dot(F1,F2,v1,v2) //forcing

)

+ int2d(Omegaf)( 0.5 * nu * contract(u1,u2,v1,v2)) + int1d(Omegaf,3)(0.5

* alpha / sqrt(Kappa1) * u1 * v1) //.5*a_f(u_{k+1},v)

+ int2d(Omegaf)(0.5 * nu * contract(u1old2,u2old2,v1,v2)) +

int1d(Omegaf,3)(0.5 * alpha / sqrt(Kappa1) * u1old2 * v1)

//.5*a_f(u_{k-1},v)
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- int2d(Omegaf)(0.5 * p * div(v1,v2) ) //-.5*b(v, p_{k+1})

- int2d(Omegaf)(0.5 * pold2 * div(v1,v2) ) //-.5*b(v,p_{k-1})

+ int2d(Omegaf)(q * div(u1,u2)) // incompressibility condition

+ int1d(Omegaf,3)(-g * phiold * v2) //c_I(v, phi_k) ---> v \cdot n_f = -v2

+int1d(Omegaf,3)(dt * u2 * v2) //stab on I term

-int1d(Omegaf,3)(dt * u2old2 * v2) // stab on I term

+ on ( 1,2,4, u1=Uf1, u2=Uf2) ;//external BCs

problem CNLFstabIDarcy(phi,psi,solver=LU) =

int2d(Omegap)((0.5 * S0 * g / dt) * phi * psi) //g*S_0*phi_t

+ int2d(Omegap)(- (0.5 * g * S0 / dt) * phiold2 * psi //g*S_0*phi_t

-Fp*psi //source

)

+ int2d(Omegap)(0.5* g * Kappa1 * dot(dx(phi),dy(phi),dx(psi),dy(psi) ))

//.5*a_p(phi_{k+1},psi)

+ int2d(Omegap)(0.5* g * Kappa1 * dot(dx(phiold2),dy(phiold2),dx(psi),dy(psi)

)) //.5*a_p(phi_{k-1},psi)

- int1d(Omegap,5)(-g * psi * u2old) //c_I(u_k, psi) ---> u_k \cdot n_f = -u2_k

+ int1d(Omegap,5)(dt * g^2 * phi * psi) //stab on I term

-int1d(Omegap,5)(dt * g^2 * phiold2 * psi) //stab on I term

+ on( 6,7,8, phi = PHI) ; //external BCs

//Implement CNLFstab on I method

CNLFstabIStokes;

CNLFstabIDarcy;

//**************BE-split Methods*******************

//For convergence tests

func F1plus1=f1(tnplus1);

func F2plus1=f2(tnplus1);

func Fpplus1=g*fp(tnplus1);

func Uf1=u1true(tnplus1);

func Uf2=u2true(tnplus1);

func PHI=phitrue(tnplus1);

//For stability tests

func F1plus1=0.0;

func F2plus1=0.0;

func Fpplus1=0.0;

func Uf1=0.0;

func Uf2=0.0;

func PHI=0.0;

//***************BE-Split 1 Method ***************
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problem BEsplit1Stokes([u1,u2,p],[v1,v2,q],solver=UMFPACK) =

int2d(Omegaf)(

(1.0 / dt) * (dot(u1,u2,v1,v2) ) //u_t

+ p * q * PRESSUREPENALTY) //pressure penalty term

+ int2d(Omegaf)(

- (1.0 / dt) * (dot(u1old,u2old,v1,v2) ) //u_t

-dot(F1plus1,F2plus1,v1,v2) //forcing

)

+ int2d(Omegaf)( nu * contract(u1,u2,v1,v2)) + int1d(Omegaf,3)(alpha /

sqrt(Kappa1) * u1 * v1) //*a_f(u_{k+1},v)

- int2d(Omegaf)(p * div(v1,v2) ) //*b(v, p_{k+1})

+ int2d(Omegaf)(q * div(u1,u2)) // incompressibility condition

+ int1d(Omegaf,3)(-g * phiold * v2) //c_I(v, phi_k) ---> v \cdot n_f = -v2

+ on ( 1,2,4, u1=Uf1, u2=Uf2) ;//external BCs

problem BEsplit1Darcy(phi,psi,solver=LU) =

int2d(Omegap)((S0 * g / dt) * phi * psi) //g*S_0*phi_t

+ int2d(Omegap)(- (g * S0 / dt) * phiold * psi //g*S_0*phi_t

-Fpplus1*psi //source

)

+ int2d(Omegap)(g * Kappa1 * dot(dx(phi),dy(phi),dx(psi),dy(psi) ))

//a_p(phi_{k+1},psi)

- int1d(Omegap,5)(-g * psi * u2) //c_I(u_k+1, psi)

+ on( 6,7,8, phi = PHI) ; //external BCs

//Implement BE-split1 Method

BEsplit1Stokes;

BEsplit1Darcy;

//***********************BE-Split 2 Method *********************

problem BEsplit2Stokes([u1,u2,p],[v1,v2,q],solver=UMFPACK) =

int2d(Omegaf)(

(1.0 / dt) * (dot(u1,u2,v1,v2) ) //u_t

+ p * q * PRESSUREPENALTY) //pressure penalty term

+ int2d(Omegaf)(

- (1.0 / dt) * (dot(u1old,u2old,v1,v2) ) //u_t

-dot(F1plus1,F2plus1,v1,v2) //forcing

)

+ int2d(Omegaf)( nu * contract(u1,u2,v1,v2)) + int1d(Omegaf,3)(alpha /

sqrt(Kappa1) * u1 * v1) //*a_f(u_{k+1},v)

- int2d(Omegaf)(p * div(v1,v2) ) //*b(v, p_{k+1})

+ int2d(Omegaf)(q * div(u1,u2)) // incompressibility condition

+ int1d(Omegaf,3)(-g * phi * v2) //c_I(v, phi_k) ---> v \cdot n_f = -v2

+ on ( 1,2,4, u1=Uf1, u2=Uf2) ;//external BCs
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problem BEsplit2Darcy(phi,psi,solver=LU) =

int2d(Omegap)((S0 * g / dt) * phi * psi) //g*S_0*phi_t

+ int2d(Omegap)(- (g * S0 / dt) * phiold * psi //g*S_0*phi_t

-Fpplus1*psi //source

)

+ int2d(Omegap)(g * Kappa1 * dot(dx(phi),dy(phi),dx(psi),dy(psi) ))

//a_p(phi_{k+1},psi)

- int1d(Omegap,5)(-g * psi * u2old) //c_I(u_k, psi)

+ on( 6,7,8, phi = PHI) ; //external BCs

//Implement BE-split 2 Method

BEsplit2Darcy;

BEsplit2Stokes;

//************CN-Split Method***********************

//For convergence tests

func F1half = f1(thalf);

func F2half = f2(thalf);

func Fphalf = g*fp( thalf);

func Uf1=u1true(tnplus1);

func Uf2=u2true(tnplus1);

func PHI=phitrue(tnplus1);

//For stability tests

func F1half = 0.0;

func F2half = 0.0;

func Fphalf = 0.0;

func Uf1=0.0;

func Uf2=0.0;

func PHI=0.0;

problem CNsplitAStokes([uA1,uA2,pA],[v1,v2,q],solver=UMFPACK) =

int2d(Omegaf)(

(1.0 / dt) * (dot(uA1,uA2,v1,v2) ) //u_t

+ 0.5 * pA * q * PRESSUREPENALTY) //pressure penalty term

+ int2d(Omegaf)(

- (1.0 / dt) * (dot(uA1old,uA2old,v1,v2) ) //u_t

+ 0.5* (pAold * q * PRESSUREPENALTY) )//pressure penalty term

+ int2d(Omegaf)(-dot(F1half,F2half,v1,v2)) //forcing

+ int2d(Omegaf)(0.5 * nu * contract(uA1,uA2,v1,v2))

+ int1d(Omegaf,3)(0.5 * alpha / sqrt(Kappa1) * uA1 * v1)

//*a_f(u_{k+1},v)

+ int2d(Omegaf)(0.5 * nu * contract(uA1old,uA2old,v1,v2)) +

int1d(Omegaf,3)(0.5 * alpha / sqrt(Kappa1) * uA1old * v1)

//*a_f(u_{k},v)
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+ int2d(Omegaf)(-0.5 * pA * div(v1,v2) ) //*b(v, p_{k+1})

+ int2d(Omegaf)(-0.5 * pAold * div(v1,v2) ) //*b(v, p_{k+1})

+ int2d(Omegaf)(q * div(uA1,uA2)) // incompressibility condition

+ int1d(Omegaf,3)(-g * phiAold * v2) //c_I(v, phi_k) ---> v \cdot n_f = -v2

+ on ( 1,2,4, uA1=Uf1, uA2=Uf2) ;//external BCs

problem CNsplitADarcy(phiA,psi,solver=LU) =

int2d(Omegap)((S0 * g / dt) * phiA * psi) //g*S_0*phi_t

+ int2d(Omegap)(- (g * S0 / dt) * phiAold * psi) //g*S_0*phi_t

-int2d(Omegap)(Fphalf*psi) //source

+ int2d(Omegap)(0.5 * g * Kappa1 * dot(dx(phiA),dy(phiA),dx(psi),dy(psi) ))

//a_p(phi_{k+1},psi)

+ int2d(Omegap)(0.5 * g * Kappa1 * dot(dx(phiAold),dy(phiAold),dx(psi),dy(psi)

)) //a_p(phi_{k},psi)

- int1d(Omegap,5)(-g * psi * uA2) //c_I(u_k+1, psi)

+ on( 6,7,8, phiA = PHI) ; //external BCs

problem CNsplitBStokes([uB1,uB2,pB],[v1,v2,q],solver=UMFPACK) =

int2d(Omegaf)(

(1.0 / dt) * (dot(uB1,uB2,v1,v2) ) //u_t

+ 0.5* pB * q * PRESSUREPENALTY) //pressure penalty term

+ int2d(Omegaf)(

- (1.0 / dt) * (dot(uB1old,uB2old,v1,v2) ) //u_t

+ 0.5*(pBold * q * PRESSUREPENALTY) //pressure penalty term

-dot(F1half,F2half,v1,v2) //forcing

)

+ int2d(Omegaf)(0.5 * nu * contract(uB1,uB2,v1,v2)) + int1d(Omegaf,3)(0.5

* alpha / sqrt(Kappa1) * uB1 * v1) //*a_f(u_{k+1},v)

+ int2d(Omegaf)(0.5 * nu * contract(uB1old,uB2old,v1,v2)) +

int1d(Omegaf,3)(0.5 * alpha / sqrt(Kappa1) * uB1old * v1)

//*a_f(u_{k},v)

- int2d(Omegaf)(0.5 * pB * div(v1,v2) ) //*b(v, p_{k+1})

- int2d(Omegaf)(0.5 * pBold * div(v1,v2) ) //*b(v, p_{k+1})

+ int2d(Omegaf)(q * div(uB1,uB2)) // incompressibility condition

+ int1d(Omegaf,3)(-g * phiB * v2) //c_I(v, phi_k+1) ---> v \cdot n_f = -v2

+ on ( 1,2,4, uB1=Uf1, uB2=Uf2) ;//external BCs

problem CNsplitBDarcy(phiB,psi,solver=LU) =

int2d(Omegap)((S0 * g / dt) * phiB * psi) //g*S_0*phi_t

+ int2d(Omegap)(- (g * S0 / dt) * phiBold * psi //g*S_0*phi_t

-Fphalf*psi //source

)

+ int2d(Omegap)( 0.5 * g * Kappa1 * dot(dx(phiB),dy(phiB),dx(psi),dy(psi) ))

//a_p(phi_{k+1},psi)

+ int2d(Omegap)(0.5 * g * Kappa1 * dot(dx(phiBold),dy(phiBold),dx(psi),dy(psi)
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)) //a_p(phi_{k},psi)

- int1d(Omegap,5)(-g * psi *uB2old) //c_I(u_k+1, psi)

+ on( 6,7,8, phiB = PHI) ; //external BCs

//Implement CN-split Method

CNsplitAStokes;

CNsplitBDarcy;

CNsplitADarcy;

CNsplitBStokes;

u1 = 0.5 * (uA1 + uB1);

u2 = 0.5 * (uA2 + uB2);

p = 0.5 * (pA + pB);

phi = 0.5 * (phiA + phiB);

//***************************Time Filters*****************************

//RA Filter

u1old = u1old + chi * (u1old2 - 2 * u1old + u1);

u2old = u2old + chi * (u2old2 - 2 * u2old + u2);

phiold = phiold + chi * (phiold2 - 2 * phiold + phi);

pold = pold + chi * (pold2 - 2 * pold + p);

//RAW Filter

u1 = u1 + gamma * (chi-1) / 2 * (u1 - 2 * u1old + u1old2);

u1old = u1old + chi *gamma / 2 * (u1old2 - 2 * u1old + u1);

u2 = u2 + gamma * (chi-1) / 2 * (u2 - 2 * u2old + u2old2);

u2old = u2old + chi *gamma / 2 * (u2old2 - 2 * u2old + u2);

phi = phi + gamma * (chi-1) / 2 * (phi - 2 * phiold + phiold2);

phiold = phiold + chi *gamma / 2 * (phiold2 - 2 * phiold + phi);

p = p + gamma * (chi-1) / 2 * (p - 2 * pold + pold2);

pold = pold + chi *gamma / 2 * (pold2 - 2 * pold + p);

//***********************Plots*****************************

//solve for u_p

//w1=-Kappa1*dx(phi);

//w2=-Kappa1*dy(phi);

//plot solution

u1soln=u1true(tnplus1);

u2soln=u2true(tnplus1);

up1soln=up1true(tnplus1);

up2soln=up2true(tnplus1);

if(plotson){

plot([u1soln,u2soln],[up1soln,up2soln], value=1, wait=1);

}
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//************Calculate Errors for Convergence Tests******************

temperrorU = sqrt( int2d(Omegaf)( (u1-u1true(tnplus1))^2 +

(u2-u2true(tnplus1))^2));

if ( temperrorU> errorULinfL2 ){

errorULinfL2 = temperrorU;

} //for CNLF,BE-split,CN-split

temperrorUstab = sqrt( int2d(Omegaf)( (u1-u1true(tnplus1))^2 +

(u2-u2true(tnplus1))^2 + (div(u1,u2)-divutrue(tnplus1))^2) );

if ( temperrorUstab > errorUstabLdivL2 ){

errorUstabLdivL2 = temperrorUstab;

} //for CNLFstab (div-norm of error in u)

temperrorPhi = sqrt( int2d(Omegap)( (phi-phitrue(tnplus1))^2 ));

if ( temperrorPhi > errorPhiLinfL2 ){

errorPhiLinfL2 = temperrorPhi;

}

temperrorPavg = sqrt( int2d(Omegaf)( (0.5*(p-ptrue(tnplus1)) +

0.5*(pold2-ptrue(tnminus1)))^2) ); //pressure average error

if ( temperrorPavg > errorPavgLinfL2 ){

errorPavgLinfL2 = temperrorPavg;

}

temperrorP = sqrt( int2d(Omegaf)( (p-ptrue(tnplus1))^2) ); //pressure error

if ( temperrorP > errorPLinfL2 ){

errorPLinfL2 = temperrorP;

}

//*******************For Stability Tests******************************

L2normUCurrent = int2d(Omegaf)( (u1)^2 + (u2)^2 );

L2normUSquared = L2normUSquared + L2normUCurrent * dt;

L2normUtrueCurrent = int2d(Omegaf)( (u1true(tnplus1))^2 + (u2true(tnplus1))^2 );

L2normUtrueSquared = L2normUtrueSquared + L2normUtrueCurrent * dt;

L2normPhiCurrent = int2d(Omegap)( (phi)^2 );

L2normPhiSquared = L2normPhiSquared + L2normPhiCurrent * dt;

L2normPhitrueCurrent = int2d(Omegap)( (phitrue(tnplus1))^2 );

L2normPhitrueSquared = L2normPhitrueSquared + L2normPhitrueCurrent * dt;

//Stability test (energy, stable, and unstable modes)

//For CNLF, CNLFstab, CNLFstabI
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real [int] Energy(numsteps);

real [int] E1U(numsteps); // Unstable U mode

real [int] E2U(numsteps); // Stable U mode

real [int] E1Phi(numsteps); //Unstable Phi mode

real [int] E2Phi(numsteps); //Stable Phi mode

real [int] Unstable(numsteps);

real [int] Stable(numsteps);

Energy[i] = L2normUCurrent+ g*S0*L2normPhiCurrent + L2normUold +

g*S0*L2normPhiold;

E1U[i]=int2d(Omegaf)( (u1-u1old2)^2 + (u2-u2old2)^2 );

E2U[i]=int2d(Omegaf)( (u1+u1old2)^2 + (u2+u2old2)^2 );

E1Phi[i]=int2d(Omegap)( (phi-phiold2)^2 );

E2Phi[i]=int2d(Omegap)( (phi+phiold2)^2 );

Unstable[i] = E1U[i] + E1Phi[i]; // Unstable Mode

Stable[i] = E2U[i] + E2Phi[i]; // Stable Mode

//For splitting methods

real [int] Energy(numsteps);

Energy[i] = L2normUCurrent + g * S0 * L2normPhiCurrent;

report<< "Energy " << Energy[i] << endl;

//report << "Unstable " << Unstable[i] << endl;

//report << "Stable " << Stable[i] << endl;

//****************Update and end time stepping loop*****************

//For CNLF, CNLFstab

u1old2=u1old;

u2old2=u2old;

phiold2=phiold;

pold2=pold;

L2normUCurrent=L2normUold;

L2normPhiCurrent=L2normPhiold;

//For CNLF, CNLFstab, BEsplit1-2

u1old=u1;

u2old=u2;

phiold=phi;

pold=p;

//For CNsplit method

uA1old=uA1;

uA2old=uA2;

phiAold=phiA;
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pAold=pA;

uB1old=uB1;

uB2old=uB2;

phiBold=phiB;

pBold=pB;

tnminus1 = tnminus1 + dt; //for CNLF, CNLFstab

tn = tn + dt;

tnplus1 = tnplus1 + dt;

} //end of time loop for partitioned method

// Print largest error over time interval

report << "Error Stokes Velocity & " << errorULinfL2<< endl ; //for CNLF,

BE-split, CN-split

report << "Error Stokes Velocity & " << errorULdivL2<< endl ; //for CNLFstab

report << "Error Stokes AvgPressure & " << errorPavgLinfL2<< endl;

report << "Error Stokes Pressure & " << errorPLinfL2<< endl;

report << "Error Darcy Pressure & "<< errorPhiLinfL2<< endl;

} //end outer loop (for j)
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