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ABSTRACT

TUKEY ORDER ON SETS OF COMPACT SUBSETS OF TOPOLOGICAL

SPACES

Ana Mamatelashvili, PhD

University of Pittsburgh, 2014

A partially ordered set (poset), Q, is a Tukey quotient of a poset, P , written P ≥T Q, if

there exists a map, a Tukey quotient, φ : P → Q such that for any cofinal subset C of P the

image, φ(C), is cofinal in Q. Two posets are Tukey equivalent if they are Tukey quotients of

each other. Given a collection of posets, P , the relation ≤T is a partial order. The Tukey

structure of P has been intensively studied for various instances of P [13, 14, 48, 53, 58].

Here we investigate the Tukey structure of collections of posets naturally arising in Topology.

For a space X, let K(X) be the poset of all compact subsets of X, ordered by inclusion,

and let Sub(X) be the set of all homeomorphism classes of subsets of X. Let K(Sub(X)) be

the set of all Tukey classes of the form [K(Y )]T , where Y ∈ Sub(X). The main purpose of

this work is to study order properties of (K(Sub(R)),≤T ) and (K(Sub(ω1)),≤T ).

We attack this problem using two approaches. The first approach is to study internal

order properties of elements of K(Sub(R)) and K(Sub(ω1)) that respect the Tukey order —

calibres and spectra. The second approach is more direct and studies the Tukey relation

between the elements of (K(Sub(R)),≤T ) and (K(Sub(ω1)),≤T ).

As a result we show that (K(Sub(R)),≤T ) has size 2c, has no largest element, contains an

antichain of maximal size, 2c, its additivity is c+, its cofinality is 2c, K(Sub(R)) has calibre

(κ, λ, µ) if and only if µ ≤ c and c+ is the largest cardinal that embeds in K(Sub(R)). While

the size and the existence of large antichains of K(Sub(ω1)) have already been established in

[58], we determine special classes of K(Sub(ω1)) and the relation between these classes and
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the elements of K(Sub(R)).

Finally, we explore connections of the Tukey order with function spaces and the Lindelöf

Σ property, which require giving the Tukey order more flexibility and larger scope. Hence

we develop the relative Tukey order and present applications of relative versions of results

on (K(Sub(R)),≤T ) and (K(Sub(ω1)),≤T ) to function spaces.

Keywords: antichain, calibre, cofinal, compact, continuum, embedding, function space,

graph, Lindelöf Σ, metrizable, n-arc connected, n-strongly arc connected, partial order,

relative Tukey order, separable, stationary, Tukey order, unbounded.
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0.0 INTRODUCTION

0.1 OVERVIEW

The primary objective of this work is to study the order structure of the family of compact

subsets, K(X), of a topological space, X, ordered by set inclusion. For much of this thesis

we focus on the case where X is a subspace of one of the two most fundamental topological

spaces — the real line, R, and the first uncountable ordinal ω1. Analysis is founded on

the topological properties of the real line; while the ordinals form the back-bone of the set

theoretic universe and ω1 is the boundary point between the countable and uncountable, and

so is one of the richest sources of fundamental questions in set theory.

We compute invariants which measure the ‘width’, ‘height’ and cofinality of mostK(M)’s,

where M is a subspace of the real line, and all K(S)’s where S is a subspace of ω1. We also

investigate the relationships between two K(M)’s, or two K(S)’s, or between a K(M) and

a K(S). The primary order-theoretic tool used to understand both the internal properties

of individual K(X)’s and the relationship between K(X)’s is the Tukey order. Our results

on the Tukey order applied to K(X)’s have applications to the general theory of the Tukey

order, including the solution to a fundamental problem on the number of distinct continuum

sized directed sets up to Tukey equivalence.

Additional applications of the main results are given to function spaces with the point-

wise or compact-open topology. In particular it is shown that there is a 2c-sized family of

separable metrizable spaces with pairwise non-linearly homeomorphic function spaces. This

is the optimal sized such family, and improves on a previous best of a c-sized family due to

Marciszewski [32]. These applications required the generalization of the Tukey order to the

relative Tukey order, and all our results are obtained in this more general context.

1



The Tukey order [60] was originally introduced, early in the 20th century, as a tool to

understand convergence in general topological spaces. But it was quickly seen to have broad

applicability in comparing partial orders, for example by Isbell [35]. The seeds for the work

presented here were sown in the late 1980s by three researchers — Christensen, Todorčević

and Fremlin — each working in rather different fields (descriptive set theory, set theory and

real analysis, respectively).

Fremlin went on to use the Tukey order as the main organizing theme for his work in

category and measure theory (see his five volume series [22]). The last few years have seen

a surge in activity [44, 50, 55, 56] in this area. Todorčević, with his co-authors, Dobrinen

and Raghavan, has a major project underway classifying ultrafilters under the Tukey order

[13, 14, 53].

Christensen’s work, in turn, was embraced, developed, and applied, by a significant group

of analysts (see [40] for a recent (2011) overview of this work). This school does not use the

Tukey order. Perhaps because the original result of Christensen was not expressed in terms of

the Tukey order. But also perhaps because the basic Tukey order concept is not sufficient to

cover all necessary cases. (For example these researchers are interested in the order structure

of compact covers, and not just cofinal collections of compact sets.) Our introduction of the

relative Tukey order provides a uniform tool to deal with these cases (and much more). We

consider this another important, if hidden and under-developed, consequence of the work

presented here.

0.2 CONTEXT AND MOTIVATION — THREE SEEDS

0.2.1 Topological and Order Basics

Throughout this work all spaces are assumed to be Tychonoff. For a space X, let Sub(X)

be the set of all homeomorphism classes of subspaces of X, and let K(X) be the set of all

compact subsets of X. Then K(X) is a partially ordered set ordered by the set inclusion. We

will concentrate on Sub(R), Sub(ω1) and K(M), K(S) where M ∈ Sub(R) and S ∈ Sub(ω1),
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respectively. (The letters M and N will be reserved for separable metrizable spaces, while

the letters S and T will be reserved for subsets of ω1.) Otherwise our topological notation

and definitions are as in [16].

We adopt standard set-theoretic notation such as in [42]. Ordinals such as 1, ω, ω1

and all cardinals receive their usual order. By [A]<ω we mean all finite subsets of a set A

ordered by inclusion. Products of partially ordered sets receive the pointwise product order.

When standard topological notation and set-theory notation clash we give precedence to

set-theory. For example we use ω to denote the (topological space of) natural numbers, and

not N. Consequently ωω is both an ordered set (the countable power of the ordinal ω) but

also an important space (the Baire space — countable power of the countable discrete space,

with the Tychonoff product topology). Recall that the Baire space is homeomorphic to the

irrationals.

Calibres, which measure the width of a partially ordered set, will play a central role in

our study of K(X). Recall that a partially ordered set (poset), P , has calibre (κ, λ, µ) if for

any κ-sized P0 ⊆ P there is a λ-sized P1 ⊆ P0 such that each µ-sized P2 ⊆ P1 is bounded in

P . Calibre (κ, λ, λ) is abbreviated to calibre (κ, λ), and calibre (κ, κ) to calibre κ.

The Tukey ordering compares partially ordered sets. All posets, P , considered here,

including K(X), are directed : if p and q are in P then there is an r in P such that p ≤ r

and q ≤ r. One directed poset, Q, is a Tukey quotient of another, P , denoted P ≥T Q, if

there is a map φ : P → Q, called a Tukey quotient, that takes cofinal subsets of P to cofinal

subsets of Q. If two posets, P and Q, are Tukey quotients of each other, we call them Tukey

equivalent and write P =T Q. We note that K(ωω) and ωω are Tukey equivalent.

For a space X, let K(Sub(X)) be the set of all Tukey equivalence classes [K(Y )]T , where

Y ∈ Sub(X). The Tukey order is a partial order on K(Sub(X)). The main goal of this work

is to study the structure of the two posets (K(Sub(R)),≤T ) and (K(Sub(ω1)),≤T ). This was

motivated by the following ‘three seeds’.
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0.2.2 Seed 1: Todorčević’s Work on the Tukey Order

Isbell in [35] presented five directed sets — 1, ω, ω1, ω × ω1 and [ω1]<ω — of size ≤ ω1, and

two of size c, which are pairwise Tukey inequivalent. He asked how many Tukey inequivalent

directed sets there are of size ≤ ω1. Evidently an upper bound is 2ω1 .

In [58] Todorčević gave a wonderful two part answer. Consistently (under PFA) Isbell’s

list with the five directed sets is a complete list of all directed sets of size ≤ ω1, and so the

answer to Isbell’s question is, ‘5’. However, Todorčević also showed, in ZFC, that there is

a 2ω1-sized family, A, of subsets of ω1 such that for distinct elements S and S ′ from A the

directed sets K(S) and K(S ′) (which have size c) are Tukey incomparable, K(S) 6≥T K(S ′)

and K(S ′) 6≥T K(S), and so definitely Tukey inequivalent. Hence consistently (under the

continuum hypothesis, CH, c = ω1) the answer to Isbell’s question is, ‘2ω1 ’.

The gulf between these two answers — ‘5’ versus ‘2c’ — is amazing.

Actually Todorčević denoted his directed sets by D(S), for an arbitrary subset S of ω1,

and defined them to be the set of all countable subsets C of S such that sup(C ∩α) ∈ C for

all α, but this is precisely K(S).

0.2.3 Seed 2: Christensen’s Characterization of Polish Spaces

In his book, [12], Christensen proved (without the Tukey order notation) that:

If M is a separable metrizable space, then ωω ≥T K(M) if and only if M is Polish (in
other words, completely metrizable).

It seems surprising, even mysterious, that the existence, or otherwise, of a compatible com-

plete metric on a separable metrizable M should be connected to the cofinal structure of the

compact subsets of M . The definition, ‘Cauchy sequences converge’, and other characteri-

zations of completeness (in terms of sieves, for example) seem far away. Recalling that ωω is

Tukey equivalent to K(ωω), and ωω is the archetypal Polish space, we can loosely interpret

the theorem as saying, if the compact subsets of M are ‘organized’ like the compact subsets

of a Polish space then it is also Polish. This, at least, explains the significance of the order

ωω.
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Since completeness is a key concept in functional analysis — Banach spaces are complete

normed vector spaces — it is not surprising that analysts took Christensen’s alternative view

of completeness and developed it intensively. These results (see [40] for a recent survey) are

not used here, so we do not go into details. However we will briefly explain, through another

result of Christensen’s, how the standard Tukey order fails to capture all scenarios that we

might wish.

Christensen proved that: if M is a separable metrizable space, then there is a compact

cover K = {Kσ : σ ∈ ωω} of M such that Kσ ⊆ Kτ when σ ≤ τ if and only if M is analytic

(so, the continuous image of a Polish space). If the cover K were cofinal in K(M) we would

be back to Christensen’s first theorem, but without the Tukey notation. But since K is,

necessarily, not cofinal, but merely a cover, we cannot use the Tukey order.

Note that saying that ‘K is a cover of M ’ is precisely the same as saying, ‘for every

compact subset of M of the form {x} there is a K in K such that {x} ⊆ K’. Making

the natural identification of x in M with {x} in K(M), we see that a compact cover K is

essentially a subset of K(M) cofinal for M in K(M) — a relative cofinal set.

0.2.4 Seed 3: Fremlin’s Use of the Tukey Order in Analysis

Fremlin took Christensen’s result and in [21] used it to investigate the initial part ofK(Sub(R)).

But this was a side branch from his bigger project which was to use the Tukey order to inves-

tigate the many natural partially ordered sets arising in the study of measure and category.

We give here just one example.

Write N for the subsets of [0, 1] with measure zero (the null sets), andM for the meagre

subsets of [0, 1]. Both are directed sets under inclusion. Fremlin showed that N ≥T M, but

the converse is not constructively provable.

It follows that, in ZFC, cof(M) ≤ cof(N ) and add(N ) ≤ add(M). Here the cof(P )

denotes the minimal size of cofinal subset of the poset P (cofinality of P ), and add(P ) stands

for the minimal size of an unbounded subset of P (additivity of P ). These two inequalities

had been proven earler by Bartoszynski, but Fremlin’s proof via the Tukey relation is more

natural, and explains why the inequalities hold.
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Further, since M ≥T N is not constructively provable, there is revealed, contrary to

expectations, a fundamental asymmetry between measure and category.

0.2.5 Objectives and Problems

To summarize the key points from the three seeds:

• in answering a question of Isbell on the number of Tukey equivalence classes of directed

sets of size ω1, Todorčević constructed a 2ω1-sized antichain in K(Sub(ω1)), while

• Christensen and Fremlin investigated the initial structure of K(Sub(R)), which led them

and others, to

• applications in real analysis (measure and category) and functional analysis, although

• some of the work in functional analysis is difficult to express in terms of the basic Tukey

theory.

Our objectives, and motivation, should now be clear:

• investigate the order structure, especially additivity, cofinality and calibres, of individual

K(M) from K(Sub(R)) and K(S) from K(Sub(ω1)),

• investigate the order structure ofK(Sub(R)) andK(Sub(ω1)), extending Christensen/Fremlin

on the initial structure of the former, and Todorčević’s antichain in the latter, and in

particular,

• show that K(Sub(R)) contains an antichain of size 2c, thereby answering the natural

variant of Isbell’s problem, ‘what is the number of Tukey equivalence classes of directed

sets of size c?’,

• introduce and study relative cofinal sets, and relative Tukey maps, in preparation for,

• applications to function spaces.

6



0.3 THESIS STRUCTURE

This thesis is organized in four chapters containing the main results, concluded by a chapter

on related open problems. There are also two appendices. The first, Appendix A, summarizes

some results on strengthenings of arc connectedness in continua contained in the two papers:

n-Arc Connected Spaces, by Benjamin Espinoza, Paul Gartside and Ana Mamatelashvili, [17],

published in Colloquium Mathematicum and Strong Arcwise Connectedness, by Benjamin

Espinoza, Paul Gartside, Merve Kovan-Bakan and Ana Mamatelashvili, [18], accepted by

the Houston Journal of Mathematics. The second appendix contains a summary of work on

two projects, one on special subsets of function spaces, separators and generators, and the

other on the connections between elementary submodels of set theory and function spaces.

In Chapter 1 we establish a series of preliminary but essential lemmas in a more general

setting than that of the Tukey order defined above. These preliminaries establish a close

connection between the Tukey ordering and calibre properties. So we take a closer look

at posets K(M), K(S) and investigate their calibre-related properties (Chapter 2). At this

point enough ground has been laid to pursue the main goal of the research presented here,

and we discuss the structures of (K(Sub(R)),≤T ) and (K(Sub(ω1)),≤T ) (Chapter 3). This

enables us to compare posets K(M) and K(S) (Chapter 3), and lastly, we consider various

applications of the Tukey ordering to function spaces (Chapter 4).

0.4 SUMMARY OF RESULTS

Relative Tukey order and preliminaries. Our study of posets of the form K(X), especially

when considering applications, revealed the need for a more general version of the Tukey

order – a relative Tukey order on pairs of posets (P ′, P ) and (Q′, Q), where P and Q are

directed, P ′ is a subset of P and Q′ is a subset of Q (see Section 1.1). We establish a

relation between relative Tukey order and cofinality. We show that the relative Tukey order

preserves calibres: if (P ′, P ) has a given calibre property and (P ′, P ) ≥T (Q′, Q), then (Q′, Q)
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also has that calibre property (see Section 1.2). Also, (P ′, P ) fails to have calibre κ if and

only if (P ′, P ) ≥T κ. If P =
⋃
α<κ Pα and each (Pα, P ) is a Tukey quotient of Q, then

Q× [κ]<ω ≥T P (see Section 1.2).

The cardinal add(P ) order-embeds in P as an unbounded subset. Whenever κ < add(Q),

(Q,P ) =T (Qκ, P κ) (see Section 1.3). Next we define the spectrum of a poset P , denoted

spec(P ), to be the set of all regular cardinals κ such that P ≥T κ (or equivalently, P does

not have calibre κ). We establish the relationships between the spectrum, the additivity and

the cofinality of a poset (see Section 1.4).

The most interesting relative pair, for the purposes of this work, is (X,K(X)), where X

can be thought of as a subspace of K(X) by identifying each x ∈ X with {x} ∈ K(X). We

investigate the relationship between the relative Tukey order and the standard topological

operations (continuous images, perfect images, closed subsets, products and et cetera). We

also show that for every separable metrizable M , there is a subset, M0, of the Cantor set,

{0, 1}ω, such that K(M) =T K(M0). Hence studying Tukey classes arising from subsets of

R is the same as studying Tukey classes arising from arbitrary separable metrizable spaces

(see Section 1.5).

The last and the most important lemma of these preliminaries gives a condition equivalent

to existence of relative Tukey quotient maps. The most useful instances of this Key Lemma

are: suppose X is compact and metrizable and M,N ⊆ X, then K(M) ≥T K(N) if and only

if there is a closed subset, C, ofK(X)2 such that C[K(M)] = K(N); andK(M) ≥T (N,K(N))

if and only if there is a closed subset, C, of K(X)2 such that
⋃
C[K(M)] = N (see Section

1.6).

Spectra and calibres of K(M) and K(S). The underlying fact for the majority of ar-

guments on this topic is that in most cases ωω is a Tukey quotient of K(M) and K(S).

In particular, whenever M is non-locally compact, ωω ≤T K(M) and whenever S\S is not

closed (or, equivalently, when S is not locally compact) ωω ≤T K(S). These include all the

interesting cases for K(M) since for locally compact M , K(M) ≤T ω. Also, when S\S is

closed K(S) ∈ {1, ω, ω1, ω × ω1, [ω1]ω} and calibres and spectra of these posets are known.

Whenever ωω is a Tukey quotient of P , spec(ωω) is a subset of spec(P ). By calculating
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additional Tukey-bounds for K(M) and K(S), as well as their additivities, cofinalities and

sizes, we establish spectra for some K(M) and every K(S), in terms of the spectrum of ωω.

Namely, spec(K(Q)) = {ω1}∪spec(ωω), and when M is totally imperfect (contains no Cantor

set, or equivalently, all compact subsets are countable), spec(K(M)) = spec(NN) together

with all regular cardinals between ω1 and |M |. On the other hand, if S\S is not closed, we

have exactly two possibilities. When S is bounded, K(S) =T ω
ω and spec(K(S)) = spec(ωω).

When S is unbounded, spec(K(S)) = {ω1} ∪ spec(ωω).

It remains to determine spec(ωω). From the preliminary lemmas, we know ω, b, cof(d) ∈

spec(NN) ⊆ {ω}∪ [b, d]. We show that for any finite set, F , of regular uncountable cardinals,

it is consistent that spec(NN) = {ω} ∪ F . For an infinite set, I, of regular uncountable

cardinals, we know that it is consistent that I is a subset of spec(ωω).

Since K(M) and K(S) have size at most c, we focus on calibres ω1, (ω1, ω1, ω) and (ω1, ω).

Every K(M) has calibre (ω1, ω). For every M , K(M) has calibre ω1 if and only if it has

calibre (ω1, ω1, ω). The above spectra result, b ∈ spec(ωω) ⊆ {ω} ∪ [b, d], implies that

ωω =T K(ωω) has calibre ω1 if and only if ω1 < b. Whenever M is totally imperfect (or

when M = Q), K(M) does not have calibre ω1. However, if ω1 < p, there exists M such

that K(NN) <T K(M) and K(M) has calibre ω1.

Calibres of K(S) are completely resolved. If S is bounded then K(S) ∈ {1, ω, ωω} and

we know its calibres. If S is unbounded, then K(S) fails to have calibre ω1. It was proven

in [58], that K(S) has calibre (ω1, ω) if and only if S is stationary. We show that K(S) has

calibre (ω1, ω1, ω) if and only if S\S is bounded and either S\S is closed or ω1 < b.

Structure of (K(Sub(R)),≤T ) and (K(Sub(ω1)),≤T ). The initial structure of K(Sub(R))

was presented in [21]. The smallest elements of K(Sub(R)) form a chain 1 <T ω <T ω
ω. A

poset K(M) is in the Tukey class of 1 if and only if M is compact, K(M) is in the Tukey

class of ω if and only if M is locally compact, non-compact, while K(M) =T ωω if and

only if M is Polish, non-locally compact. Then we conclude that for every non-Polish M ,

ωω <T K(M). We determine the corresponding initial structure of the relative Tukey classes

of pairs, (M,K(M)).

Using the Key Lemma, we establish that a subset of K(Sub(R)) is bounded if and only if it
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has size ≤ c. Since |Sub(R)| = 2c, we deduce that add(K(Sub(R))) = c+, cof(K(Sub(R))) =

2c, K(Sub(R)) has calibre (κ, λ, µ) if and only if µ ≤ c, c+ is the largest cardinal that

embeds in K(Sub(R)) and K(Sub(R)) has no largest element. Working inside a c-sized

totally imperfect subset R and using the Key Lemma we construct a 2c-sized collection, A,

in Sub(R) with the property that for any two elements M,N of A, K(M) �T (N,K(N)) and

K(N) �T (M,K(M)). A similar construction allows us to embed certain c-sized subposets

into K(Sub(R)). For example, the poset [0, 1]ω embeds into K(Sub(R)). Therefore (R,≤)

and (Q,≤) embed in K(Sub(R)) as well. Also (P(ω),⊆) embeds into K(Sub(R)). It follows

that every countable poset embeds.

The poset K(Sub(ω1)) has a somewhat different structure than K(Sub(R)). It has the

largest element, [ω1]<ω × ωω, and most of its elements fall into one of the finite number of

classes. Each bounded subset S of ω1 is Polish and therefore the corresponding K(S) falls

into the equivalence class of one of 1, ω or ωω. For all closed unbounded S, K(S) =T ω1. For

all non-stationary S, K(S) falls into the class of either [ω1]<ω if S\S is closed or [ω1]<ω ×ωω

if S\S is not closed. For every S that contains a closed unbounded set, K(S) =T ω1 × ω if

S\S is non-empty, closed and bounded; K(S) =T ω1× ωω if S\S is bounded but not closed;

and K(S) =T Σ(ωω1) if S\S is unbounded.

Elements of K(Sub(ω1)) that do not fall into any of the classes mentioned above are

associated with subsets of ω1 that are stationary and co-stationary. We know that for all

such S, K(S) lies strictly between ω1×ωω and [ω1]<ω×ωω and that it is not possible to have

K(S) ≤ Σ(ωω1). By a theorem in [58], we know there are 2ω1-many pairwise incomparable

Tukey classes K(S) where S is stationary and co-stationary. As in the case of the antichain

in (K(Sub(R)),≤T ), this collection is an antichain in a stronger relative Tukey sense.

Comparing K(M) and K(S). We investigate under what conditions we get K(M) ≥T
K(S) and K(S) ≥T K(M). The answer in the case that M is Polish and K(S) ≤ ω1 × ωω

is trivial from work done already. We show that ω1 × ωω <T K(Q) <T [ω1]<ω × ωω, and

ω1 × ωω <T K(M) <T [ω1]<ω × ωω for any totally imperfect M of size ω1. It was proven

in [21] that for any non-Polish M , K(M) �T ω1 × ωω. For unbounded S, there is M with

K(M) ≥T (S,K(S)) if and only if S contains a closed unbounded set, and there is M with
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K(M) ≥T K(S) if and only if S\S is bounded.

Applications. Recall that Ck(X) and Cp(X) stand for the set of all continuous, real-valued

functions on X with the compact-open topology and topology of pointwise convergence,

respectively. There is a very strong connection between the function space Ck(X) and the

Tukey ordering. In particular, suppose X and Y are non-compact subsets of R or ω1. If

there is a continuous open surjection from Ck(X) to Ck(Y ) or if Ck(Y ) embeds in Ck(X)

then we have K(X) ≥T K(Y ). Therefore the collection A that gives a 2c-sized antichain in

K(Sub(R)) also satisfies the property that whenever M,N ∈ A, Ck(M) and Ck(N) are not

homeomorphic. Antichain of size 2ω1 in K(Sub(ω1)) returns a similar family of subsets of ω1.

On the there hand, the function space Cp(X), considered as a locally convex topological

vector space, is connected with the relative Tukey class (X,K(X)). Suppose X and Y are

non-compact subsets of R or ω1. If there is a continuous linear surjection from Cp(X) to

Cp(Y ) or if Cp(Y ) linearly embeds in Cp(X) then we have K(X) ≥T (Y,K(Y )). Therefore

the collection A that gives a 2c-sized antichain in K(Sub(R)) also satisfies the property that

whenever M,N ∈ A, Cp(M) and Cp(N) are not homeomorphic. The antichain in K(Sub(ω1))

yields a family of subsets of ω1 with analogous properties.

For the last two applications we consider the Tukey relation between K(M) and K(X),

where X is an arbitrary Tychonoff space. It was proven in [11] that this condition is closely

related to X being Lindelöf Σ. Recall that a space is Lindelöf Σ if there is a countable

collection W and a compact cover C such that for every C ∈ C and an open set U with

C ⊆ U , there is W ∈ W such that C ⊆ W ⊆ U . We construct a subset of ω2 + 1 to

show that in Baturov’s theorem the condition ‘X is Lindelöf Σ’ cannot be substituted by the

condition ‘there exists separable metrizable M such that K(M) ≥T (X,K(X))’. In [11] it was

proven that, under the Continuum Hypothesis, if X is compact and there exists separable

metrizable M such that K(M) ≥T K(Cp(X)), then X must be countable. We use the fact

that every K(M) has calibre (ω1, ω) to show that this is true in ZFC as well.

11



1.0 TUKEY ORDER

In this chapter we introduce the relative Tukey order and present preliminary results. In

Section 1.1 we present general results about the relative Tukey order. In sections 1.2, 1.3

and 1.4 we review connections of the relative Tukey order with cofinality, additivity, calibres,

powers, embeddings of well-orders and spectrum. In Section 1.5 we single out the poset K(X)

and focus on related relative Tukey pairs. In this section we prove that the Tukey classes

arising from subsets of R include Tukey classes arising from arbitrary separable metrizable

spaces. Lastly, in Section 1.6, we prove the Key Lemma that underlies most results in

Chapter 3.

1.1 RELATIVE TUKEY ORDER

Let P be a partially ordered set (poset) and let P ′ be a subset of P . A subset C of P is called

cofinal for P ′ in P if for every p ∈ P ′ there is c ∈ C such that p ≤ c. Suppose also that Q′ is a

subset of Q. Then (Q′, Q) is a relative Tukey quotient of (P ′, P ), denoted (P ′, P ) ≥T (Q′, Q),

if there is a map φ : P → Q, a relative Tukey quotient, such that whenever C is cofinal for P ′

in P , φ(C) is cofinal for Q′ in Q. If P ′ = P and Q′ = Q then (P ′, P ) ≥T (Q′, Q) just means

P ≥T Q. When P ′ = P , we write P ≥T (Q′, Q) instead of (P ′, P ) ≥T (Q′, Q) and when

Q′ = Q, we write (P ′, P ) ≥T Q instead of (P ′, P ) ≥T (Q′, Q). It is clear from the definition

that a composition of two relative Tukey quotients is a relative Tukey quotient, so, relative

Tukey order is transitive.

Assumption about directedness : all posets in this text will be directed with one set of

exceptions. In a relative Tukey pair, (P ′, P ), the first poset, P ′, does not have to be directed
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and in many cases it will not be.

Tukey quotients have dual counterparts, Tukey maps. A map ψ : Q → P is called a

Tukey map if for every unbounded subset U of Q, ψ(U) is unbounded in P . It is known that

there exists a Tukey quotient from P to Q if and only if there exists a Tukey map from Q to

P [54, 58, 60]. Similar correspondence holds for relative Tukey quotients. Call ψ : Q′ → P ′

a relative Tukey map from (Q′, Q) to (P ′, P ) if and only if for any U ⊆ Q′ unbounded in Q,

ψ(U) ⊆ P ′ is unbounded in P .

Taking the contra-positive, ψ : Q′ → P ′ is a relative Tukey map from (Q′, Q) to (P ′, P )

if and only if for any subset B of P ′ bounded in P , ψ−1(B) ⊆ Q′ is bounded in Q.

Lemma 1. There exists a relative Tukey quotient φ from (P ′, P ) to (Q′, Q) if and only if

there exists a relative Tukey map ψ from (Q′, Q) to (P ′, P ).

Proof. We modify the proof of the non-relative version. Suppose a relative Tukey quotient

φ : P → Q is given and let q ∈ Q′. Then there is pq ∈ P ′ such that whenever p ≥ pq,

we have φ(p) ≥ q. Otherwise, for each p ∈ P ′, there is cp ≥ p such that φ(cp) � q. Then

C = {cp : p ∈ P ′} is a subset of P cofinal for P ′ and no element of φ(C) is above q ∈ Q′.

Thus φ(C) ⊆ Q is not cofinal for Q′, which is a contradiction. Now define ψ : Q′ → P ′ by

setting ψ(q) = pq.

To show that ψ is a relative Tukey map, let B ⊆ Q′ and let ψ(B) be bounded by some

p ∈ P . For any q ∈ B, ψ(q) = pq ≤ p and by definition φ(p) ≥ q. So φ(p) bounds B.

Now suppose a relative Tukey map ψ : Q′ → P ′ is given. For each p ∈ P , let Qp = {q ∈

Q′ : ψ(q) ≤ p}. Then ψ(Qp) is bounded in P by p and therefore Qp must be bounded by

some qp ∈ Q. Let φ(p) = qp. Suppose C ⊆ P is cofinal for P ′ and q ∈ Q′. Then there is

p ∈ C with p ≥ ψ(q) and therefore q ∈ Qp but then, since qp = φ(p) bounds Qp, we have

q ≤ φ(p) ∈ φ(C). So φ(C) ⊆ Q is cofinal for Q′.

Recall that a poset P is Dedekind complete if and only if every subset of P with an upper

bound has the least upper bound.

Lemma 2. If (P ′, P ) ≥T (Q′, Q) and Q is Dedekind complete then there is a Tukey quotient

witnessing (P ′, P ) ≥T (Q′, Q) that is order-preserving.
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Conversely, if φ : P → Q is order-preserving and φ(P ′) is cofinal for Q′ in Q, then φ is

a relative Tukey quotient.

Proof. Assume Q is Dedekind complete. Then in the second part of the proof of Lemma 1

φ(p) = qp can be taken to be the least upper bound of the set Qp, which ensures that φ is

order-preserving. This gives the first part of the lemma.

The second part follows easily from the fact that P ′ is cofinal for itself in P . Let C ⊆ P

be cofinal for P ′ and let q ∈ Q′. Since φ(P ′) is cofinal for Q′, there exists p ∈ P ′ such

that φ(p) ≥ q. Now there is c ∈ C such that c ≥ p and since φ is order-preserving, we get

φ(c) ≥ φ(p) ≥ q. So φ(C) is cofinal for Q′ and φ is a relative Tukey quotient.

The following result when combined with Lemma 2 above is highly convenient.

Lemma 3. If C is a cofinal set of a poset P then C and P are Tukey equivalent.

Proof. Let φ : C → P be defined by φ(c) = c. Clearly, φ is order-preserving and φ(C) = C is

cofinal in P . So φ is a Tukey quotient. But φ is also a Tukey map. Suppose B is a bounded

subset of P . Then, since C is cofinal in P , B is bounded by an element of C. Now, since

φ−1(B) ⊆ B, φ−1(B) is also bounded in C which proves that φ is a Tukey map.

The following lemma is straightforward from definitions:

Lemma 4. (1) Suppose P ′1 ⊆ P ′2 ⊆ P2 ⊆ P1 and Q′2 ⊆ Q′1 ⊆ Q1 ⊆ Q2. Then (P ′1, P1) ≥T
(Q′1, Q1) implies (P ′2, P2) ≥T (Q′2, Q2).

(2) If P ′ is directed and Q and R are Dedekind complete then (P ′, P ) ≥T (Q′, Q) and

(P ′, P ) ≥T (R′, R) imply (P ′, P ) ≥T (Q′ ×R′, Q×R).

(3) Whenever (P ′, P ) ≥T (Q′ × R′, Q × R) we have (P ′, P ) ≥T (Q′, Q) and (P ′, P ) ≥T
(R′, R).

Proof. For the first part, suppose a relative Tukey quotient, φ, witnesses (P ′1, P1) ≥T (Q′1, Q1).

Any C ⊆ P2 cofinal for P ′2 in P2 is also cofinal for P ′1 in P1 and therefore φ(C) is cofinal

for Q′1 in Q1. So, φ �P2 : P2 → Q1 witnesses (P ′2, P2) ≥T (Q′1, Q1). Now let ψ : Q′1 → P ′2

be a relative Tukey map witnessing (P ′2, P2) ≥T (Q′1, Q1). Then any U ⊆ Q′2 unbounded
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in Q2 is also a subset of Q′1 unbounded in Q1, so ψ(U) ⊆ P ′2 will be unbounded in P2 and

ψ �Q′2 : Q
′
2 → P ′2 witnesses (P ′2, P2) ≥T (Q′2, Q2).

For the second part, suppose φ1 and φ2 are order-preserving Tukey quotients from (P ′, P )

to (Q′, Q) and to (R′, R) respectively. Then φ : P → Q×R defined by φ(p) = φ1(p)× φ2(p)

is also order-preserving. To show φ(P ′) is cofinal for Q′×R′, pick arbitrary (q, r) ∈ Q′×R′.

Then there is p1, p2 ∈ P ′ such that φ1(p1) ≥ q and φ2(p2) ≥ r. Pick p ∈ P ′ with p ≥ p1, p2.

Then φ(p) ≥ (q, r).

Lastly, given a relative Tukey quotient φ from (P ′, P ) to (Q′×R′, Q×R), the restriction

maps to each coordinate give the desired relative Tukey quotients.

1.2 COFINALITY, ADDITIVITY AND CALIBRES

Define the cofinality of P ′ in P to be cof(P ′, P ) = min{|C| : C is cofinal for P ′ in P}. Define

the additivity of P ′ in P to be add(P, P ′) = min{|S| : S ⊆ P ′ and S has no upper bound

in P}. Then cof(P ) = cof(P, P ) and add(P ) = add(P, P ) coincide with the usual notions of

cofinality and additivity of a poset.

Lemma 5. If (P ′, P ) ≥T (Q′, Q), then cof(P ′, P ) ≥ cof(Q′, Q) and add(P ′, P ) ≤ add(Q′, Q).

Proof. If φ : P → Q is a relative Tukey quotient, then for any C ⊆ P cofinal for P ′,

|φ(C)| ≤ |C| and φ(C) is cofinal for Q′. So we get cof(P ′, P ) ≥ cof(Q′, Q).

If ψ : Q′ → P ′ is a relative Tukey map, then for any B ⊆ Q′ unbounded in Q, |ψ(B)| ≤

|B| and ψ(B) ⊆ P ′ is unbounded in P . So we get add(P ′, P ) ≤ add(Q′, Q).

Lemma 6. The cofinality of P ′ in P is ≤ κ if and only if [κ]<ω ≥T (P ′, P ).

Proof. Suppose cofinality of P ′ in P is ≤ κ. Then we can pick C ⊆ P that is cofinal for P ′

with |C| ≤ κ. Let j : κ → C be a surjection. Define φ : [κ]<ω → P by φ(F ) = an upper

bound of {j(α) : α ∈ F}. Since F is finite and P is directed, φ is well-defined. Even though,

φ might not be order-preserving, it is still a relative Tukey quotient. Let A be a cofinal

subset of [κ]<ω and let c ∈ C. Then since j is surjective, there is α < κ with j(α) = c. Since
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A is cofinal in [κ]<ω, there is F ∈ A such that {x} ∈ F and by definition φ(F ) ≥ j(α) = c.

So, φ(A) is cofinal for C, which implies φ(A) is cofinal for P ′ as well.

On the other hand, since cof([κ]<ω) = κ, [κ]<ω ≥T (P ′, P ) and Lemma 5 imply

cof((P ′, P )) ≤ κ.

Lemma 7. For a Dedekind complete poset P , suppose P =
⋃
α∈κ Pα and for each α we have

Q ≥T (Pα, P ). Then Q× [κ]<ω ≥T P .

Proof. As P is Dedekind complete, for each α < κ, fix an order-preserving φα : Q→ P such

that φα(Q) is cofinal for Pα in P . Define φ : Q×[κ]<ω → P by φ(q, F ) = sup{φα(q) : α ∈ F},

which is well-defined since P is directed and Dedekind complete.

Then φ is order-preserving. If p is any element of P , then p is in Pα, for some α. Pick q

from Q such that φα(q) ≥ p. Then φ(q, {α}) = φα(q) ≥ p, and thus φ has cofinal image.

We notice that the posets of the form [κ]<ω have a special role. The next corollary

describes how they interact with each other. Since cof([κ]<ω) = κ, Lemma 6 immediately

gives the following result.

Corollary 8. Let κ and λ be cardinals. Then (1) [κ]<ω ≤T [λ]<ω if and only if κ ≤ λ and

(2) κ ≤T [λ]<ω if and only if cof(κ) ≤ λ.

The following lemma is useful in spectrum calculations in Chapter 2.

Proposition 9. If n ∈ ω, then ωω × [ωn]<ω =T ([ωn]<ω)ω.

Proof. One direction is clear: ([ωn]<ω)ω = ([ωn]<ω)ω × [ωn]<ω ≥T ωω × [ωn]<ω. For the other

direction we use induction on n.

When n = 0, since ω =T [ω]<ω, we have ωω×[ω]<ω =T ([ω]<ω)ω. So assume ([ωn−1]<ω)ω =T

ωω×[ωn−1]<ω, for some n ≥ 1. Then, ([ωn]<ω)ω =
⋃
ωn−1≤α<ωn ([[0, α]]<ω)ω =T ω

ω×[ωn−1]<ω×

[ωn]<ω =T ω
ω × [ωn]<ω, using the inductive hypothesis and Lemma 7.

Let κ ≥ λ ≥ µ be cardinals. We say that P ′ has calibre (κ, λ, µ) in P if for every κ-sized

subset P0 of P ′ there is a λ-sized P1 ⊆ P0 such that every µ-sized subset P2 of P1 has an

upper bound in P . Sometimes we say ‘(P ′, P ) has calibre (κ, λ, µ)’ instead of ‘P ′ has calibre
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(κ, λ, µ) in P ’. When P ′ = P this definition coincides with the standard definition of a

calibre of a poset.

Lemma 10. If (P ′, P ) ≥T (Q′, Q), P ′ has calibre (κ, λ, µ) in P and κ is regular, then Q′

has calibre (κ, λ, µ) in Q.

Proof. Suppose Q′ does not have calibre (κ, λ, µ) in Q. Then there is κ-sized Q0 ⊆ Q′ that

satisfies (*): each λ-sized subset of Q0 has a µ-sized subset that is unbounded in Q. Then

we have following facts:

(1) Every ≥ λ-sized subset of Q0 satisfies (*).

(2) Every ≥ λ-sized subset of Q0 is unbounded in Q.

Let ψ : Q′ → P ′ be a relative Tukey map. Then |ψ(Q0)| = κ. Otherwise, since κ is

regular, there is p ∈ P such that |ψ−1(p)
⋂
Q0| = κ. By (2), ψ−1(p)

⋂
Q0 is unbounded but

is mapped to {p}, which is a contradiction.

We may shrink Q0 without changing its size, so that ψ �Q0 is injective and by (1) it will

keep property (*). Then |ψ(Q0)| = κ implies that there is λ-sized Q1 ⊆ Q0 such that every

µ-sized subset of ψ(Q1) is bounded in P . But Q1 has an unbounded µ-sized subset, which

contradicts the assumption that ψ is a relative Tukey map.

Lemma 11. Suppose κ is regular. Then (1) P ′ fails to have calibre κ in P if and only if

(P ′, P ) ≥T κ, (2) If (P ′, P ) ≥T [κ]<λ then P ′ fails to have calibre (κ, λ) and the converse is

true if add(P ′) ≥ λ (equivalently, all subsets of P ′ of size < λ are bounded in P ′).

Proof. Clearly, κ does not have calibre κ. So, by Lemma 10, (P ′, P ) ≥T κ implies that P ′

does not have calibre κ in P .

Similarly, [κ]<λ does not have calibre (κ, λ) ({{α} : α < κ} is a κ-sized collection in [κ]<λ

but none of its λ-sized subcollections is bounded in [κ]<λ) and therefore (P ′, P ) ≥T [κ]<λ

implies that P ′ fails to have calibre (κ, λ) in P .

On the other hand, suppose P ′ fails to have calibre κ in P . Then there exists κ-sized

P0 ⊆ P ′ such that all κ-sized subsets of P0 are unbounded. Let ψ : κ → P0 ⊆ P be a

bijection. Since κ is regular, all unbounded subsets of κ are κ-sized and their images are

unbounded as well. Therefore φ is a relative Tukey map.
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Similarly, suppose P ′ fails to have calibre (κ, λ) in P . Then there exists κ-sized P1 ⊆ P ′

such that all λ-sized subsets of P1 are unbounded in P . Let j : κ→ P1 ⊆ P be a bijection.

Since add(P ′) ≥ λ we can define ψ : [κ]<λ → P ′ by ψ(F ) = an upper bound of {j(α) : α ∈ F}

in P ′. Suppose U is an unbounded subset of [κ]<λ. This means that
⋃
U has size ≥ λ and

therefore {j(α) : α ∈
⋃
U}, a subset of P1 of size ≥ λ, is also unbounded in P . Since

any bound of {ψ(F ) : F ∈ U} is also a bound of {j(α) : α ∈
⋃
U} in P , we get that

{ψ(F ) : F ∈ U} is unbounded and ψ is a relative Tukey map.

The next two lemmas give relative versions of known facts on productivity of calibres.

Lemma 12. If P ′ (or Q′) fails to have calibre (κ, λ, µ) in P (respectively, in Q) then P ′×Q′

also fails to have calibre (κ, λ, µ) in P ×Q.

Proof. Suppose P ′ does not have calibre (κ, λ, µ) in P and P0 ⊆ P ′ witnesses this. Pick

q ∈ Q′. Then {(p, q) : p ∈ P0} witnesses P ′ ×Q′ not having calibre (κ, λ, µ) in P ×Q. The

case for Q′ is similar.

Lemma 13. Both (P ′, P ) and (Q′, Q) have calibre (κ, κ, µ) if and only if (P ′ × Q′, P × Q)

has calibre (κ, κ, µ).

Proof. One direction follows from Lemma 12. For the other direction, suppose (P ′, P ) and

(Q′, Q) have calibre (κ, κ, µ) and let A ⊆ P ′ ×Q′ has size κ. By symmetry we may assume

that P0 = {p : (p, q) ∈ A for some q ∈ Q′} also has size κ. Then there exists κ-sized P1 ⊆ P0

such that all µ-sized subsets of P1 are bounded. For each p ∈ P1 pick qp ∈ Q′ such that

(p, qp) ∈ A. Define Q1 = {qp : p ∈ P1}. If |Q1| < κ then there exists κ-sized P2 ∈ P1 such

that {qp : p ∈ P2} = {q}. Then A2 = {(p, q) : p ∈ P2} is a κ-sized subset of A with all

µ-sized subsets bounded.

If Q1 is a κ-sized subset of Q′, then it contains a κ-sized subset Q2 ⊆ Q1 such that all

µ-sized subsets of Q2 are bounded in Q. Now let A3 = {(p, qp) : qp ∈ Q2}. Then A3 is a

κ-sized and every µ-sized subset of A3 is bounded in P ×Q.
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1.3 POWERS, EMBEDDING WELL-ORDERS

Lemma 14. Suppose κ < add(Q) and (Q,P ) ≥T (Qα, Pα) for each α ∈ κ. Also assume

each Pα is Dedekind complete. Then (Q,P ) ≥T (
∏

α∈κQα,
∏

α∈κ Pα).

Proof. For each α ∈ κ, let φα be an order-preserving relative Tukey quotient witnessing

(Q,P ) ≥T (Qα, Pα). Define φ(x) = x where x(α) = φα(x) for all α < κ. Evidently φ is an

order-preserving map from P to
∏

α∈κ Pα. Take any (xα)α<κ in
∏

α∈κQα. For α ∈ κ, φα(Q) is

cofinal in Qα and we can pick yα ∈ Q such that φα(yα) ≥ xα. Then {yα : α < κ} has an upper

bound in Q, say y. Now we see that φ(y) ≥ (xα)α<κ, and thus φ(Q) is cofinal for
∏

α∈κQα.

By Lemma 2, φ is a relative Tukey quotient and (Q,P ) ≥T (
∏

α∈κQα,
∏

α∈κ Pα).

The following special case of Lemma 14 is particularly useful.

Corollary 15. Suppose Q ⊆ P . If κ < add(Q), then (Q,P ) =T (Qκ, P κ).

Proof. We do not need to assume that P is Dedekind complete as we may choose each φα

from the proof of Lemma 14 to be the identity map on P . Then the argument from Lemma 14

works in this case as well. Note that, by Lemma 4, we always have (Qκ, P κ) ≥T (Q,P ).

Lemma 16. Suppose Q ⊆ P and Q is directed. Then the following are equivalent:

(1) (Q,P ) ≥T ω, (2) (Q,P ) ≥T (Q× ω, P × ω), and (3) the additivity of (Q,P ) is ℵ0.

Proof. If (1) holds, and (Q,P ) ≥T ω, then (Q,P ) ≥T (ω, ω), and since (Q,P ) ≥T (Q,P ),

(2) follows from the proof of Lemma 4, part (2) (ω is Dedekind complete, the identity map

i : P → P is order-preserving and thus we do not need P to be Dedekind complete). (2) →

(1) follows from Lemma 4, part (3). Hence (1) and (2) are equivalent.

Suppose (Q,P ) ≥T ω and let ψ : ω → Q be a relative Tukey map. Then ψ(ω) is a

countably infinite subset of Q with no upper bound in P . Conversely, suppose A = {xn :

n ∈ ω} is a countably infinite subset of Q with no upper bound in P . As Q is directed we

can assume xm < xn if m < n. Then ψ : ω → Q defined by ψ(n) = xn is a relative Tukey

map. Consequently statements (1) and (3) are equivalent.

If we set Q = P in Corollary 15 and Lemma 16, the next corollary follows immediately.
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Corollary 17. If κ < add(P ), then P =T P
κ.

Further, the following are equivalent:

(1) P ≥T ω, (2) P ≥T P × ω, and (3) the additivity of P is ℵ0.

Lemma 18. For a directed poset P without the largest element, the ordinal add(P ) order-

embeds in P as an unbounded subset.

Proof. Let κ = add(P ) and {uα : α < κ} be some unbounded subset of P . We will construct

{pα : α ∈ κ} such that β < α implies pβ < pα and pα ≥ uα for each α < κ.

Pick any p0 ∈ P with p0 ≥ u0. Let α < κ and suppose {pβ : β < α} have been constructed

such that β < β′ implies pβ < pβ′ and pβ ≥ uβ for each β < α. Since {pβ : β < α} has size

less than κ, it is bounded, say, by s ∈ P . Since P has no largest element, there is t ∈ P such

that s � t. Since P is directed, there is pα ∈ P with pα ≥ s, t, uα. Since pα ≥ t we get that

pα 6= s. So pα > pβ for each β < α.

1.4 SPECTRUM

From Lemma 3 we know that κ =T cof(κ) and from Section 1.2 we know that P ≥T κ is

related to calibres of P whenever κ is regular. Hence regular cardinals are special and we

will devote this section to studying when regular cardinals are Tukey-quotients of a poset P .

For a poset, P , define a spectrum of P , spec(P ), to be the collection of all regular cardinals

κ with the property that P ≥T κ. If κ1 and κ2 are (regular) cardinals let us write [κ1, κ2]r

for the set of all regular cardinals τ such that κ1 ≤ τ ≤ κ2. The following lemmas will be

particularly useful in Chapter 2.

Lemma 19. Let P1, P2 be posets and κ be a regular cardinal. Then P1×P2 ≥T κ if and only

if P1 ≥T κ or P2 ≥T κ.

Proof. Since P has calibre κ if and only if P �T κ, Lemma 13 gives the desired conclusion.

Corollary 20. spec(P1 × P2) = spec(P1) ∪ spec(P2).

Lemma 21. If Q ≤T P then spec(Q) ⊆ spec(P ).
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Proof. Immediately follows from κ ≤T Q ≤T P .

In the light of Lemma 18, additivity of a poset is always a regular cardinal. However,

cofinality might not be regular. Since every cofinal subset is also unbounded, add(P ) ≤

cof(P ). The following lemma establishes a close relationship between the spectrum of a

poset and its additivity and cofinality.

Lemma 22. Let P be a directed poset without the largest element. Then:

(1) P ≥T add(P );

(2) P ≥T cof(P );

(3) If P ≥T κ, then add(P ) ≤ cof(κ) ≤ cof(P ).

In short we have, add(P ), cof(cof(P )) ∈ spec(P ) ⊆ [add(P ), cof(P )]r.

Proof. To show (1), let ψ : add(P )→ P be the order-embedding constructed in the proof of

Lemma 18. Since the image of ψ is unbounded, this is a Tukey map and we have add(P ) ≤T
P .

For (2), let {pα : α < cof(P )} be a cofinal subset of P and define φ : P → cof(P ) by

setting φ(p) to equal some α such that pα ≥ p. Then whenever C is a cofinal subset of P , the

set {pα : α ∈ φ(C)} is also cofinal in P and therefore has size at least cof(P ). This implies

that φ(C) has size cof(P ) and therefore must be cofinal in cof(P ).

For (3), suppose P ≥T κ. Then Lemma 5 implies that add(P ) ≤ add(κ) and cof(κ) ≤

cof(P ). Then the fact that add(κ) = cof(κ) finishes the proof.

Even when we do not know what add(P ) and cof(P ) are, we still have the following

corollary.

Corollary 23. For a poset P , spec(P ) ⊆ [ω, |P |]r.

On the other hand, we may not restrict the spectrum further to [add(P ), cof(cof(P ))]r

in general. For example, consider P = Σ∗(Πn∈ωωn) = {s ∈ Πn∈ωωn : |{n : s(n) 6= 0}| < ω}.

Then cof(P ) = ℵω but spec(P ) = {ℵn : n ∈ ω}.
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1.5 THE POSET K(X) AND THE TUKEY RELATION OF X IN K(X)

Let X be any topological space, and K(X) the set of compact subsets of X (including the

empty set) ordered by inclusion. Since union of two compact subsets is compact, each K(X)

is directed. We will investigate pairs (D,K(X)), where X ⊆ D ⊆ K(X), and pay particular

attention to the cases when D = X, D = F(X) = all finite subsets of X, and D = K(X).

In addition to being a subposet of K(X), X also has a strong topological connection with

K(X). Recall that K(X) has a natural topology, the Vietoris topology, which is generated

by the sets of the form

B(U0, U1, · · · , Un) = {K ∈ K(X) : K ⊆
⋃
i≤n

Ui and K ∩ Ui 6= ∅, for all i ≤ n},

where U0, U1, · · · , Un are open subsets of X. Clearly, if X is second countable, so is K(X).

On the other hand, the topology of X coincides with the subspace topology of X in K(X),

and therefore, the converse is also true. The following lemma is known [16, 36].

Lemma 24. (1) If X is Tychonoff, then K(X) is also Tychonoff. (2) If X is Hausdorff,

then X embeds as a closed subspace of K(X).

Proof. For (1) let K ∈ B(U0, U1, · · · , Un). Then K ⊆
⋃
i≤n Ui = U and we can pick xi ∈

Ui ∩ K for each i ≤ n. For each i ≤ n, there exists continuous fi : X → [0, 1] such that

fi(xi) = 1 and fi(X\Ui) = {0}. It is easy to show, using the assumption that X is Tychonoff,

that there exists continuous f : X → [0, 1] such that f(K) = {1} and f(X\U) = {0}.

Define F : K(X)→ [0, 1] by F (L) = min{max{fi(L)} : i ≤ n}·min{f(L)}, which is well-

defined and continuous since L is compact. Since f(K) = {1} and max{fi(K)} = fi(xi) = 1

for each i ≤ n, F (K) = 1. If L /∈ B(U0, U1, · · · , Un) then either L * U , in which case

min{f(L)} = 0, or there is i ≤ n such that L ∩ Ui = ∅, in which case max{fi(L)} = 0. So,

in either case F (L) = 0 and we are done.

For (2) suppose K ∈ K(X)\X. Then there exist x, y ∈ K with x 6= y. Since X is

Hausdorff, there exist disjoint open subsets of X, U and V , with x ∈ U and y ∈ V . Then

K ∈ B(X,U, V ) ⊆ K(X)\X and therefore K(X)\X is open.
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Lemma 24 implies that X is separable metrizable if and only if K(X) is separable metriz-

able. It is also known that when X is metrizable the Vietoris topology on K(X) is compatible

with the Hausdorff metric; and if X is complete, then the Hausdorff metric is also complete

[36]. So, if M is Polish then K(M) is Polish and the converse is also true since X embeds as

a closed subspace in K(X).

Let X be the class of all homeomorphism classes of Tychonoff spaces. Then each K(X)

is an element of X , and we call a class map D : X → X a K-operator if for every X in X we

have X ⊆ D(X) ⊆ K(X). By the notation introduced in Chapter 0, Sub([0, 1]ω) is the set

of all homeomorphism classes of subsets of [0, 1]ω, or the set of all homeomorphism classes

of separable metrizable spaces. By the above discussion, every K-operator maps Sub([0, 1]ω)

into Sub([0, 1]ω).

We upgrade the definition of K(Sub(X)): for a space X and a given K-operator D, let

(D(Sub(X)),K(Sub(X))) be the poset of all relative Tukey equivalence classes of the form

[(D(Y ),K(Y ))]T for Y from Sub(X). We are particularly interested in cases when X = R

or X = ω1 and D is defined by X 7→ X, X 7→ F(X) or X 7→ K(X).

Note that K(X) is Dedekind complete: whenever K ⊆ K(X) and
⋃
K ⊆ K for some

K ∈ K(X), we have that
⋃
K is compact and

⋃
K ⊆ K; so

⋃
K is the least upper bound for

a bounded K ⊆ K(X). Therefore we may assume that relative Tukey quotients witnessing

(P ′, P ) ≥T (D,K(X)) are order-preserving.

We give two additional properties of K(X) that are also known [36]:

Lemma 25. Let X be a space.

(1) For any K in K(X), the set ↓K = {L ∈ K(X) : L ⊆ K} is a compact subset of

K(X).

(2) For any compact subset K of K(X), its union,
⋃
K, is a compact subset of X.

Proof. Note that the sets of the form V (U) = {K ∈ K(X) : K ⊆ U} and W (U) = {K ∈

K(X) : K ∩ U 6= ∅} form a subbase for the Vietoris topology.

(1) To show that ↓K is compact, it suffices to show that every cover by sets from the

subbase has a finite subcover. Suppose {V (Ui) : i ∈ I} ∪ {W (Uj) : j ∈ J} covers ↓K . The

set K\
⋃
j∈J Uj is a compact subset of K with the property that K\

⋃
j∈J Uj /∈

⋃
j∈JW (Uj).
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Then there is i ∈ I such that K\
⋃
j∈J Uj ∈ V (Ui). Therefore K\

⋃
j∈J Uj ⊆ Ui. Then

the compact set K\Ui ⊆
⋃
j∈J Uj. So there exists {j0, j1, · · · , jn} ⊆ J such that K\Ui ⊆⋃

k≤n Ujk . We claim that ↓K ⊆ V (Ui) ∪
⋃
k≤nW (Ujk). To show this, let L ⊆ K. If L ⊆ Ui

then L ∈ V (Ui). If L * Ui then there is k ≤ n such that L ∩ Ujk 6= ∅ and therefore

L ∈ W (Ujk).

(2) Suppose K ⊆ K(X) is compact. And let {Ui : i ∈ I} be a an open cover of⋃
K. Then {V (

⋃
i∈F (Ui)) : F is a finite subset of I} is a cover of K. Pick a finite subcover

{V (
⋃
i∈F0

(Ui)), V (
⋃
i∈F2

(Ui)), · · · , V (
⋃
i∈Fn(Ui)} of {V (

⋃
i∈F (Ui)) : F is a finite subset of I}.

Then the finite collection {Ui : i ∈
⋃
k<n Fk} covers

⋃
K.

We start by giving variants and dual versions of a relative Tukey quotient of (D(X),K(X))

to (D(Y ),K(Y )).

Lemma 26. Fix two spaces X and Y and the K-operator D. The following are equivalent:

(1) there is a relative Tukey quotient, φ, of (D(X),K(X)) to (D(Y ),K(Y )),

(2) there is a map φ′ : D(X) → K(Y ) such that φ′(X) is cofinal for D(Y ), and if K is

a compact subset of X then
⋃
φ′( ↓K ∩ D(X)) is compact,

(3) there is a relative Tukey map, ψ, of (D(Y ),K(Y )) into (D(X),K(X)), and

(4) there is a map ψ′ : D(Y ) → D(X) such that if K is a compact subset of X then⋃
ψ′−1( ↓K ) is compact.

Proof. Lemma 1 asserts that (1) and (3) are equivalent. Lemma 2 gives the equivalence of

(1) and (2). Noting that a subset B of X is bounded in K(X) if and only if it has compact

closure, we see that conditions (3) and (4) are the contra-positives of each other.

Note that a collection K of compact subsets of a space X is ‘cofinal for X in K(X)’ if

and only if K is a compact cover of X.

Corollary 27. Fix two spaces X and Y . The following are equivalent:

(1) there is a relative Tukey quotient, φ, of (X,K(X)) to (Y,K(Y )),

(2) there is a map φ′ : X → K(Y ) such that φ′(X) is a cover of Y , and if K is a compact

subset of X then
⋃
{φ′(x) : x ∈ K} is compact,

(3) there is a relative Tukey map, ψ, of (Y,K(Y )) into (X,K(X)), and
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(4) there is a map ψ′ : Y → X such that if K is a compact subset of X then ψ′−1(K) is

compact.

The following two corollaries are versions of Lemma 26 for K(X) ≥T (Y,K(Y )) and

(X,K(X)) ≥T K(Y ).

Corollary 28. Fix two spaces X and Y . The following are equivalent:

(i) there is a relative Tukey quotient, φ, of K(X) to (Y,K(Y )),

(ii) there is a map φ′ : K(X)→ K(Y ) such that φ′(K(X)) is a cover of Y , and if K is a

compact subset of X then
⋃
φ′(↓ K) is compact,

(iii) there is a relative Tukey map, ψ, of (Y,K(Y )) into K(X), and

(iv) there is a map ψ′ : Y → K(X) such that if K is a compact subset of X then ψ′−1(↓ K)

is compact.

Corollary 29. Fix two spaces X and Y . The following are equivalent:

(i) there is a relative Tukey quotient, φ, of (X,K(X)) to K(Y ),

(ii) there is a map φ′ : X → K(Y ) such that φ′(X) is cofinal in K(Y ), and if K is a

compact subset of X then
⋃
{φ′(x) : x ∈ K} is compact,

(iii) there is a relative Tukey map, ψ, of K(Y ) into (X,K(X)), and

(iv) there is a map ψ′ : K(Y ) → X such that if K is a compact subset of X then⋃
ψ′−1(K) is compact.

Note that both (X,K(X)) ≥T (Y,K(Y )) and K(X) ≥T K(Y ) are stronger than K(X) ≥T
(Y,K(Y )). But (X,K(X)) ≥T (Y,K(Y )) is independent from K(X) ≥T K(Y ). For example,

if X is σ-compact and (X,K(X)) ≥T (Y,K(Y )) then Y is σ-compact. Therefore, by Theo-

rem 76, if (Q,K(Q)) ≥T (Y,K(Y )) then Y is σ-compact but K(Q) ≥T K(K(Q)) and K(Q) is

(coanalytic but) not σ-compact (or even Borel). Therefore K(X) ≥T K(Y ) does not imply

(X,K(X)) ≥T (Y,K(Y )). On the other hand, by Theorem 76, (ω,K(ω)) =T (Q,K(Q)) but,

by Corollary 78, K(ω) �T K(Q). So, (X,K(X)) ≥T (Y,K(Y )) does not imply K(X) ≥T
K(Y ).

For any space Z, abbreviate K(K(Z)) to K2(Z). The next lemma shows that, while

moving from X to K(X) is likely to increase cofinal complexity, moving from K(X) to

Kn(X) does not change it.
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Lemma 30. Let Z be a space, and D a K-operator. Then K(Z) = (K(Z),K(Z))

=T (D(K(Z)),K2(Z)) =T (K2(Z),K2(Z)) = K2(Z).

Hence for spaces X and Y , K(X) ≥T K(Y ) if and only if (D(K(X)),K2(X)) ≥T
(D(K(Y )),K2(Y )).

Proof. The second Tukey equivalence follows from the first by taking D = K, so we need

to prove that for any K-operator D we have K(Z) =T (D(K(Z)),K2(Z)). First define

φ1 : K2(Z) → K(Z) by φ1(K) =
⋃
K. Then φ1 is order-preserving, and φ1(D(K(Z))) ⊇

φ1(K(Z)) = K(Z). Thus (D(K(Z)),K2(Z)) ≥T (K(Z),K(Z)).

For the reverse Tukey quotient define φ2 : K(Z) → K2(Z) by φ2(K) = ↓K . Then φ2 is

order-preserving. It suffices to show that φ2(K(Z)) is cofinal in K2(Z). But take any K a

compact subset of K(Z). Then K =
⋃
K is a compact subset of Z, and φ(K) = ↓

⋃
K ⊇

K.

The next few lemmas are existence and preservation results for Tukey quotients on K(X)

and (X,K(X)). Call a K-operator, D, productive if for any pair of spaces X and Y we have

(D(X × Y ),K(X × Y )) =T (D(X)×D(Y ),K(X)×K(Y )).

Lemma 31. The operators F , K and identity are productive.

Proof. The desired relative Tukey quotients in all three cases are obtained by defining

φ1(K,L) = K × L and φ2(C) = (πX(C), πY (C)), where πX and πY are projection maps

onto X and Y , respectively.

Lemma 32. Let D be a productive K-operator. Let X be any space and C a compact space.

Then (D(X),K(X)) =T (D(X × C),K(X × C)).

Proof. By hypothesis (D(X × C),K(X × C)) =T (D(X) × D(C),K(X) × K(C)). So it

suffices to show (D(X)×D(C),K(X)×K(C)) is Tukey equivalent to (D(X),K(X)). Tukey

quotients witnessing this are obtained by defining φ1(K,L) = K and φ2(K) = (K,C).

Lemma 33. Let A be a closed subspace of a space X. Let D be a subset of K(X). Then

(D,K(X)) ≥T (D ∩ K(A),K(A)).
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In particular, (X,K(X)) ≥T (A,K(A)), (F(X),K(X)) ≥T (F(A),K(A)), K(X) ≥T
K(A), and K(X) ≥T (A,K(A)).

Proof. Define φ : K(X) → K(A) by φ(K) = K ∩ A. Since A is closed, K ∩ A is in

K(A). Clearly, φ is order-preserving. So to show that φ is the required relative Tukey

quotient it suffices to show that φ(D) is cofinal for D ∩K(A). But this is clear since for any

K ∈ K(A) ⊆ K(X), K = φ(K).

Any continuous function f : X → Y induces a continuous function Kf : K(X)→ K(Y )

defined by Kf(K) = f(K). A map f : X → Y is said to be compact-covering if for every

compact subset L of Y there is a compact subset K of X such that f(K) ⊇ L. Note that f

is compact-covering if and only if Kf is a surjection. A continuous surjective map f is said

to be perfect if and only if f is closed and f−1(x) is compact for each y ∈ Y .

Lemma 34. Let f : X → Y be a continuous map. Let D be a subset of K(X). Then

(D,K(X)) ≥T (Kf(D),K(Y )).

If f is surjective, then (X,K(X)) ≥T (Y,K(Y )), (F(X),K(X)) ≥T (F(Y ),K(Y )), and

K(X) ≥T (Y,K(Y )). If f is compact-covering, then K(X) ≥T K(Y ). If f is perfect, then

(X,K(X)) =T (Y,K(Y )), (F(X),K(X)) =T (F(Y ),K(Y )) and K(X) =T K(Y ).

Proof. From the definition Kf : K(X)→ K(Y ) is a order-preserving relative Tukey quotient

witnessing (D,K(X)) ≥T (Kf(D),K(Y )).

Suppose f : X → Y is a continuous surjection. Then Kf(X) = Y and Kf(F(X)) =

F(Y ). So we get (X,K(X)) ≥T (Y,K(Y )), (F(X),K(X)) ≥T (F(Y ),K(Y )). The third

inequality, K(X) ≥T (Y,K(Y )), follows from either of the two.

Now suppose f is also compact-covering. So, for each L ∈ K(Y ), there is K ∈ K(X)

such that L ⊆ f(K) = φ(K), which implies K(X) ≥T K(Y ).

If f is perfect, then f−1(L) is compact for each L ∈ K(Y ). So, f is compact-covering

(and surjective), which gives (X,K(X)) ≥T (Y,K(Y )), (F(X),K(X)) ≥T (F(Y ),K(Y ))

and K(X) ≥T K(Y ). For the other inequalities, the map φ : K(Y ) → K(X) define by

φ(L) = f−1(L) is order-preserving. As K ⊆ f−1(f(K)), φ(K(Y )) is cofinal in K(X) and
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K(Y ) ≥T K(X). Clearly, φ(Y ) is cofinal for X and φ(F(Y )) is cofinal for F(X). Therefore,

(X,K(X)) ≤T (Y,K(Y )) and (F(X),K(X)) ≤T (F(Y ),K(Y )).

Lemma 35. Suppose X is a subspace of compact K, Y is a subspace of compact L, and

f : K → L is continuous such that X = f−1Y . For any subset D of K(X) we have

(D,K(X)) =T (Kf(D),K(Y )).

In particular, (X,K(X)) =T (Y,K(Y )), (F(X),K(X)) =T (F(Y ),K(Y )) and K(X) =T

K(Y ).

Proof. Let f be as above. From Lemma 34 we know that (D,K(X)) ≥T (Kf(D),K(Y )).

Since X = f−1(Y ), f−1(C) ⊆ X for each C ∈ K(Y ). Since K is compact f−1(K) is compact

and we can define a map φ : K(Y ) → K(X) by φ(C) = f−1(C) for C ∈ K(Y ). Since L ⊆

f−1(f(L)) = φ(f(L)) for each L ∈ D, we get that φ witnesses (D,K(X)) ≤T (Kf(D),K(Y )).

The last statement follow from the fact that Kf(X) = Y , Kf(F(X)) = F(Y ) and

Kf(K(X)) = K(Y ).

Lemma 36. Let {Xλ : λ ∈ Λ} be a family of spaces. Then K(
∏

λ∈ΛXλ) =T

∏
λ∈ΛK(Xλ).

Proof. The two maps K 7→ (πλ(K))λ∈Λ and (Kλ)λ∈Λ 7→
∏

λ∈ΛKλ are the required Tukey

quotients.

The next lemma gives us freedom to work with arbitrary separable metrizable spaces

while studying structure of K(Sub(R)).

Lemma 37. If M is a separable metrizable space then there is M0 a subset of the Cantor

set {0, 1}ω (and therefore zero-dimensional) such that K(M) =T K(M0), (M,K(M)) =T

(M0,K(M0)) and (F(M),K(M)) =T (F(M0),K(M0)).

In particular, K(Sub([0, 1]ω)) = K(Sub(R)), (Sub([0, 1]ω),K(Sub([0, 1]ω))) =

(Sub(R),K(Sub(R))) and (F(Sub([0, 1]ω)),K(Sub([0, 1]ω))) = (F(Sub(R)),K(Sub(R))).

Proof. The space M is homeomorphic to a subspace of the Hilbert cube, [0, 1]ω. So we

assume that M is in fact a subspace of [0, 1]ω. Fix a continuous surjection of the Cantor

set, {0, 1}ω to [0, 1]ω, and set M0 = f−1M . Then M0 is zero-dimensional, and the preceding

lemma immediately yields the desired conclusion.
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Theorem 38. Let D be a K-operator. Then there is an order-embedding, Φ = ΦD, of

K(Sub(R)) into (D(Sub(R)),K(Sub(R))) such that Φ(K(Sub(R))) is cofinal in

(D(Sub(R)),K(Sub(R))). Hence K(Sub(R)) =T (D(Sub(R)),K(Sub(R))).

In particular, K(Sub(R)), (Sub(R),K(Sub(R))) and (F(Sub(R)),K(Sub(R))) are all Tukey

equivalent.

Proof. Fix the K-operator D and define Φ : K(Sub(R)) → (D(Sub(R)),K(Sub(R))) by

Φ([K(M)]T ) = [(D(K(M)),K2(M))]T . By Lemma 30, K(M) and K(M ′) are in the same

Tukey class if and only if (D(K(M)),K2(M)) and (D(K(M ′)),K2(M ′)) are in the same

relative Tukey class. Combining this with Lemma 37 gives that Φ is well-defined.

By Lemma 30, K(M) ≥T K(M ′) if and only if (D(K(M)),K2(M)) ≥T (D(K(M ′)),K2(M ′)).

Hence Φ is an order-embedding.

Take any member, [(D(M),K(M))]T of (D(Sub(R)),K(Sub(R))). By Lemma 30,

(D(K(M)),K2(M)) ≥T (K(M),K(M)), and since (K(M),K(M)) ≥T (D(M),K(M)), we

have (D(K(M)),K2(M)) ≥T (D(M),K(M)). Thus [K(M)]T is in K(Sub(R)) and

Φ([K(M)]T ) ≥T [(D(M),K(M))]T , and Φ(K(Sub(R))) is cofinal in (D(Sub(R)),K(Sub(R))).

By Lemma 3, Φ(K(Sub(R))) =T (D(Sub(R)),K(Sub(R))) and since Φ is order-embedding

we have K(Sub(R)) =T (D(Sub(R)),K(Sub(R))).

To clear the way for applying results of section 1.3 we make some additivity calculations.

A space X is ω-bounded if and only if whenever {xn : n ∈ ω} is a sequence in X, then

{xn : n ∈ ω} is compact. A space X is strongly ω-bounded if and only if whenever {Kn : n ∈

ω} is a countable family of compact subsets of X, then
⋃
{Kn : n ∈ ω} is compact. Every

metrizable ω-bounded space is compact. Note that ω1 is strongly ω-bounded.

Lemma 39. Let X be a space. Then:

1. The additivity of K(X) is ℵ0 if and only if X is not strongly ω-bounded.

2. The additivity of (X,K(X)) is ℵ0 if and only if the additivity of (F(X),K(X)) is ℵ0 if

and only if X is not ω-bounded.

In particular, if X is metrizable then the additivity of K(X) is ℵ0 if and only if the additivity

of (X,K(X)) is ℵ0 if and only if the additivity of (F(X),K(X)) is ℵ0 if and only if X is not
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compact.

In the following chapters we will often encounter the space of irrational numbers, ωω, and

will often consider Tukey order in relation to cardinal numbers. We finish this subsection

with two lemmas that will help make arguments tidy later.

Lemma 40. Suppose D is a subset of K(ωω) such that ωω ⊆ D. Then (ωω,≤) =T

(D,K(ωω)). In particular, (ωω,≤) =T K(ωω).

Proof. For each f ∈ ωω, define K(f) = {g ∈ ωω : g ≤ f} ∈ K(ωω). For any compact

K ⊆ ωω and n ∈ ω, pn(K) ⊆ ω is finite, where pn is a projection on the n-th coordinate and

we can define fK = (max{pn(K)})n∈ω ∈ ωω.

Then, the maps f 7→ K(f) and K 7→ fK are order-preserving and cofinal in their

respective posets.

Lemma 41. Let κ be a cardinal and let D be such that κ ⊆ D ⊆ K(κ). Then κ =T (D,K(κ)).

In particular, κ =T K(κ) =T (κ,K(κ)).

Proof. Define φ : κ→ K(κ) by φ(α) = [0, α]. Then φ is order-preserving and φ(κ) is cofinal

for K(κ) (therefore for D), since each compact subset of κ is contained in some initial segment

[0, α]. So, κ ≥T (D,K(κ)). Define φ′ : K(κ) → κ by φ′(K) = sup(K). The map φ′ is also

order-preserving and since κ ⊆ D, φ′(D) is cofinal for κ. Thus, κ ≤T (D,K(κ)).

1.6 THE KEY LEMMA

The following lemma is the key in studying structure of K(Sub(R)). It provides means for

constructing antichains and for determining which sets are bounded. Recall that a space X

is called Fréchet-Urysohn if for each A ⊆ X and x ∈ A there is a sequence {xn}n∈ω in A

that converges to x.

Lemma 42. Let X be a space such that K(X)2 is Fréchet-Urysohn and let Y and Z be

subspaces of X. Note that K(Y ) and K(Z) are subspaces of K(X). Let D be a subset of

K(Y ) and E be a subset of K(Z).

30



If (D,K(Y )) ≥T (E,K(Z)) then there is a closed subset C of K(X)2 such that C[K(Y )] =⋃
{C([K]) : K ∈ K(Y )} is contained in K(Z) and C[D] ⊇ E.

In the case when X is compact, a (strengthened) converse also holds: if there is a closed

subset C of K(X)2 such that C[K(Y )] ⊆ K(Z) and C[D] is cofinal for E in K(Z) then

(D,K(Y )) ≥T (E,K(Z)).

Proof. To start fix an order-preserving map φ of K(Y ) to K(Z) witnessing the relative Tukey

quotient (D,K(Y )) ≥T (E,K(N)). Let C0 = {(K,L) : K ∈ K(Y ) and L ⊆ φ(K)}. Let

C = C0. Then C is closed in K(X)2.

To verify that C[K(Y )] ⊆ K(Z) we need to show that if (K,L′) is in C, where K is

in K(Y ), then L′ is in K(Z). As K(X)2 is Fréchet-Urysohn, there is a sequence, (Kn, Ln)n

in C0 converging to (K,L′). Note that for each n we have that Ln ⊆ φ(Kn). Let K∞ =

{K} ∪
⋃
{Kn : n ∈ ω}. Then K∞ is compact and contains every Kn. So, for each n, we see

that Ln ⊆ φ(K∞). Since ↓φ(K∞) is compact, the limit, L′, of the Ln’s is in ↓φ(K∞) ⊆ K(Z).

Take any L in E, and pick K from D such that L ⊆ φ(K). Then (K,L) is in C0, and

clearly L ∈ C[D]. Thus C[D] ⊇ E.

Now suppose X is compact and C is a closed subset of K(X)2 such that C[K(Y )] ⊆ K(Z)

and C[D] is cofinal for E in K(Z). Define φ : K(Y ) → K(Z) by φ(K) =
⋃
π2(C ∩ ( ↓

K × K(X))), where π2 is the projection on the second coordinate. Since π2 is continuous

and C, ↓K and K(X) are all compact, π2(C ∩ ( ↓K ×K(X))) is a compact subset of K(X),

and φ(K) is indeed an element of K(Z). We show that φ is the desired relative Tukey

quotient. Clearly φ is order-preserving. Hence it remains to show that φ(D) is cofinal for E

in K(Z).

Take any L in E. By hypothesis on C there is a K in D such that L ∈ C([K]). Then

(K,L) is in C∩( ↓K ×K(X)), and by definition of φ we have, as desired, that L ⊆ φ(K).

We record the most useful instances of the above lemma.

Corollary 43. Let M and N be subspaces of [0, 1]ω. Then the following equivalences hold:

(1) K(M) ≥T K(N) if and only if there is a closed subset C of K([0, 1]ω)2 such that C[K(M)] =

K(N),
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(2) (F(M),K(M)) ≥T (F(N),K(N)) if and only if there is a closed subset C of K([0, 1]ω)2

such that F(N) ⊆ C[F(M)],

(3) (M,K(M)) ≥T (N,K(N)) if and only if there is a closed subset C of K([0, 1]ω)2 such

that
⋃
C[K(M)] = N =

⋃
C[M ], and

(4) K(M) ≥T (N,K(N)) if and only if there is a closed subset C of K([0, 1]ω)2 such that⋃
C[K(M)] = N .

Proof. Since [0, 1]ω is metrizable, K([0, 1]ω)2 is also metrizable and therefore K([0, 1]ω)2 is

Fréchet-Urysohn.

Then (1) and (2) follow immediately by setting D = K(M), E = K(N) and D = F(M),

E = F(N), respectively. For (3), note that N ⊆ C[M ] implies
⋃
C[K(M)] = N =

⋃
C[M ]

and N =
⋃
C[M ] implies that C[M ] is cofinal for N . Similarly, for (4), note that N ⊆ K(M)

implies
⋃
C[K(M)] = N and

⋃
C[K(M)] = N implies that C[K(M)] is cofinal for N .
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2.0 ORDER PROPERTIES OF ELEMENTS OF K(Sub(R)) AND K(Sub(ω1))

The main purpose of this chapter is to investigate spectra and calibres of elements of Sub(R)

and Sub(ω1). The letters M and N will denote elements of Sub(R) (and separable metrizable

spaces in general). The letters S and T will denote elements of Sub(ω1). We will begin with

calculations of upper and lower bounds of variousK(M) andK(S), as well as their additivities

and cofinalities. Section 2.3 focuses on the spectrum of ωω, while other spectra results follow

as corollaries to bound calculations. Section 2.4 is devoted to calibres, with the main cases

being calibre ω1 for K(M)’s and calibre (ω1, ω1, ω) for K(S)’s.

2.1 SIZE AND BOUNDS OF K(M) AND K(S)

We start with a simple but useful observation about the elements of K(S).

Lemma 44. Every compact subset K of ω1 is contained in some initial segment, [0, α].

Hence K is countable, scattered and Polish.

Consequently, K(ω1) =
⋃
{K([0, α]) : α < ω1}, and for any S ⊆ ω1, K(S) =

⋃
{K([0, α]∩

S) : α < ω1}.

Proof. The family U = {[0, α] : α < ω1} is an increasing open cover of ω1. So any compact

subset K of ω1, will be contained in a finite subcollection, and hence in the largest member

of that subcollection, say [0, α]. Scatteredness of K is immediate from the Baire category

theorem. Since [0, α] \ K is countable, K is a Gδ subset of the compact, metrizable space

[0, α], and so is Polish. The decompositions of K(ω1) and K(S) are now clear.

We record this well known fact on the elements of K(M).
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Lemma 45. Every compact subset K of M is either countable, in which case K is scattered

and Polish, or K has cardinality c, and contains a Cantor set.

Hence if |M | < c then every element of K(M) is countable.

Lemma 46. For any space X, K(X) is finite if and only if X is finite.

Suppose S and M are infinite. If S and M contain a sequence together with its limit then

|K(M)| = |K(S)| = c. If M contains no convergent sequence then |K(M)| = ω. If S contains

no convergent sequence then |K(S)| = ω for bounded S and |K(S)| = ω1 for unbounded S.

Proof. A separable metrizable space M can only have c-many closed subsets, so |K(M)| ≤ c.

For any countable subset T of ω1, let αT = supT . Then K(T ) ⊆ K([0, αT ]), and so |K(T )| ≤

c. For any S ⊆ ω1 we know K(S) =
⋃
α∈ω1
K(S ∩ [0, α]), and hence |K(S)| ≤ c.ω1 = c.

It is clear that if a space X contains a sequence and its limit then |K(X)| ≥ c. So we

get |K(M)| = |K(S)| = c in this case. If a space does not contain a limit point then it is

discrete and if it is separable, it must be countable. So, in this case, K(M) = [ω]<ω. Now

suppose S is discrete. Then either S is bounded and K(S) = [ω]<ω, or S is uncountable and

K(S) = [ω1]<ω. The conclusions follow.

Upper bounds: any poset of size ≤ c is a Tukey quotient of [c]<ω, by Lemma 6. So,

[c]<ω bounds each K(M) and K(S) from above. We can refine the upper bound for K(S).

Since K(S) =
⋃
α∈ω1
K(S ∩ [0, α]) and each K(S ∩ [0, α]) ≤T ωω, we know by Lemma 7

that K(S) ≤T ωω × [ω1]<ω for any S ⊆ ω1. In particular, if d = ω1, for each S, K(S) ≤T
ωω × [ω1]<ω ≤T [ω1]<ω × [ω1]<ω = [ω1]<ω.

Lower bounds: For any non-locally compact M , ωω ≤T K(M) (Lemma 79). This also

helps when we consider K(S)’s. Notice that since ω1 is locally compact, a subset S of ω1 is

locally compact if and only if S is open in its closure, which happens if and only if S\S is

closed in ω1.

Lemma 47. Let S ⊆ ω1, not necessarily unbounded. Then the following are equivalent:

(1) S is locally compact;

(2) S\S is closed;

(3) S does not contain a metric fan as a closed subspace;

(4) ωω �T K(S).
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Proof. Clearly, S is locally compact if and only if S∩[0, α] is locally compact for each α ∈ ω1.

Also, since a metric fan is countable and each S ∩ [0, α] is closed, S contains a metric fan as

a closed subspace if and only if there is some α ∈ ω1 such that S ∩ [0, α] contains a metric

fan as a closed subspace. For any α ∈ ω1, S∩ [0, α] is separable and metrizable and therefore

it is locally compact if and only if it contains a metric fan as a closed subspace. Therefore

(1) and (3) are equivalent.

Lastly, if S contains a metric fan as a closed subspace then ωω ≤ K(S). If not, then S\S

is closed, which means K(S) is Tukey equivalent to either 1, ω or ω × ω1, none of which are

above ωω in the Tukey order (see Lemma 102).

It turns out that when we study various groups of subsets of ω1 (stationary, co-stationary,

closed and unbounded, etc.) it is convenient to work with S\S instead of with cases of

whether or not S is locally compact. As a demonstration it is worthwhile to give a direct

proof that conditions (2) and (3) from Lemma 47 are equivalent:

Proof. If S\S is not closed, then there exists a sequence {αn : n ∈ ω} in S\S that converges

to some α ∈ S. For each n > 0 there is an increasing sequence, Sn ⊆ S ∩ (αn−1, αn) that

converges to αn. Then {α} ∪
⋃
n>0 Sn is homeomorphic to a metric fan and is a closed

subspace of S.

On the other hand, suppose S contains a metric fan as a closed subspace, say F . Let

F = {α}∪
⋃
n∈ω Sn, with α as the only non-isolated point of F and with Sn = {αn,i : i ∈ ω}’s

as sequences converging to α. We may assume all Sn’s lie below α. Let βi = sup{αn,i : n ∈ ω}

for each i. Since F is a metric fan, for each i there is an open subset of F that contains α

but does not intersect {αn,i : n ∈ ω}. Then each βi is different from α and each of them is a

limit point of F . Therefore, for each i, βi ∈ S\S. But {βi : i ∈ ω} converges to α ∈ S and

therefore S\S is not closed.

One more important lower bound for K(S) is ω1.

Lemma 48. If S ⊆ ω1 is unbounded then ω1 ≤T K(S).

Proof. Enumerate S as {βα : α ∈ ω1}. Since all compact subsets of ω1 are countable, a map

ψ : ω1 → K(S) given by ψ(α) = βα is a Tukey map.
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2.1.1 Bounds of K(B) when B is Totally Imperfect

Recall the definition of a scattered space. For a space X, let X ′ be the set of all isolated

points of X. Let X(0) = X and define X(α) = X\
⋃
β<α(X(β))′ for each α > 0. Then a

space X is called scattered if X(α) = ∅ for some ordinal α. This α is called the scattered

height of X and is denoted by h(X). Every countable separable metrizable compact space

is scattered (with countable scattered height). We know that Q contains compact subsets

of arbitrarily large countable scattered height (every countable ordinal embeds in Q). And

every uncountable separable metrizable space contains a copy of Q. Recall that a separable

metrizable space is totally imperfect if and only if it contains no Cantor set. Now we present

a lower bound.

Lemma 49. Let B be homeomorphic to Q or a totally imperfect uncountable separable

metrizable space. Then ω1 ≤T K(B).

Proof. Fix α ∈ ω1. Since B contains Q, we can pick a compact subset Kα of B such that

h(Kα) > α. Define ψ : ω1 → K(B) by ψ(α) = Kα. Consider an unbounded subset S of

ω1. Suppose there is K ∈ K(B) that bounds ψ(S) from above. Since S is unbounded in

ω1, there exists α ∈ S with h(K) < α < h(Kα). Then Kα ⊆ K contradicts the fact that if

X ⊆ Y then h(X) ≤ h(Y ). Therefore, the map ψ is a Tukey map.

Let B be any totally imperfect separable metrizable space. Then there exists a countable

base, B = {Bn : n ∈ ω}, consisting of sets that are closed and open. We may also assume

that the base is closed under complements, finite intersections and finite unions. Note that

for a compact scattered space K there is α such that K(α) is finite. So, if K ∈ K(B),

then there is α ∈ ω1 such that K(α) is finite. For a fixed α and (finite) subset F of B,

let KFα = {K ∈ K(B) : K(α) ⊆ F, F ⊆ K}, and Kα =
⋃
{KF

α : F ⊆ B}. Suppose we

have described elements of Kβ for each β < α. Suppose K ∈ K{x}α for some x ∈ B. Pick a

decreasing local base at x, {B′x,n}n∈ω. Let Bx,0 = B\B′x,0 and Bx,n = B′x,n−1\B′x,n for each

n ∈ ω. Then each Bx,n is in B. If we let Kn = K ∩ Bx,n, we get K = {x} ∪
⋃
n∈ωKn. Note

that each Kn is compact (since elements of B are closed) and is an element Kβn for some

βn < α.
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Lemma 50. Let B be totally imperfect separable metrizable space and κ = max{ω1, |B|}.

Then for each α in ω1, (1) ([κ]<ω)ω ≥T Kα. Hence (2) ([κ]<ω)ω ≥T K(B).

Proof. Since K(B) =
⋃
α∈ω1
Kα, from the first part and Lemma 7 we get K(B) ≤T ([κ]<ω)ω×

[ω1]<ω ≤T ([κ]<ω)ω × [κ]<ω =T ([κ]<ω)ω.

We prove ([κ]<ω)ω ≥T Kα by induction on α. We know K0 = [B]<ω, so ([κ]<ω)ω ≥T K0.

Define βn’s for n ∈ ω, as follows: if α is a limit then pick an increasing sequence, {βn},

converging to α, otherwise let βn = α − 1 for each n. Let K<α =
⋃
β<αKβ =

⋃
n∈ω Kβn .

By the inductive hypothesis, for each n, ([κ]<ω)ω ≥T Kβn . Hence by Lemma 7, ([κ]<ω)ω ≥T
([κ]<ω)ω × [ω]<ω ≥T K<α.

Suppose that, for each x in B, we have ([κ]<ω)ω ≥T (K{x}α ,Kα). Then for any F ⊆ B,

we see that ([κ]<ω)ω =T (([κ]<ω)ω)|F | ≥T
∏

x∈F (K{x}α ,Kα) ≥T (KF
α ,Kα) (for the last relation

take the union). Since Kα =
⋃
{KF

α : F ⊆ B}, and ([κ]<ω)ω ≥T KFα , by Lemma 7, we have

([κ]<ω)ω =T ([κ]<ω)ω × [κ]<ω ≥T ([κ]<ω)ω × [[B]<ω]<ω ≥T Kα.

Fix, then, x in B. Recall that associated with x we have a sequence {Bx,n} of basic

clopen sets. For each n, fix φ′n : ([κ]<ω)ω → K<α(B) and define φn : ([κ]<ω)ω → K<α(Bn) by

φn(τ) = φ′n(τ)∩Bn. Since each Bn is closed, each φn is a Tukey quotient. For σ ∈ ([κ]<ω)ω×ω

and n ∈ ω, define σn ∈ ([κ]<ω)ω by σn(m) = σ(m,n). Now define φ : ([κ]<ω)ω×ω → Kα by

φ(σ) = {x}∪
⋃
n∈ω φn(σn). Then φ is order-preserving, and from our description of elements

of Kα, we see that its image is cofinal for K{x}α in Kα.

The following corollary follows immediately from Proposition 9.

Corollary 51. Suppose B is totally imperfect or homeomorphic to Q and |B| = ℵn for some

n ∈ ω. Then K(B) ≤T ωω × [κ]<ω. In particular, K(Q) ≤T ωω × [ω1]<ω.

2.2 ADDITIVITY AND COFINALITY OF K(M) AND K(S)

If X is compact then add(K(X)) is undefined. We compute add(K(M)) and add(K(S))

otherwise.
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Lemma 52. For any non-compact M , add(K(M)) = ω. If S is closed and unbounded then

add(K(S)) = ω1. If S is not closed then add(K(S)) = ω.

Proof. If M is not compact, then M contains a countably infinite closed discrete subset

{xi : i ∈ ω}. Then {{xi} : i ∈ ω} is unbounded in K(M).

If S is closed and unbounded, every countable subset of K(S) is bounded, but collection

of all singletons of S is not. So, add(K(S)) = ω1. On the other hand if S is not closed, pick a

sequence {xn : n ∈ ω} in S that does not converge in S. Then {{xn} : n ∈ ω} is unbounded

in K(S) and add(K(S)) = ω.

Corollary 53. Let M be separable metrizable.

(1) If M is compact, then cof(K(M)) = 1.

(2) If M is locally compact, then cof(K(M)) = ω.

(3) If M is not locally compact, then cof(K(M)) ≥ d.

Proof. These statements follow directly from Corollary 78 and Lemma 79 and the fact that

cof(K(ωω)) = cof(ωω) = d.

It is interesting what possible values cof(K(M)) can take in [d, c]. We know that

cof(K(Q)) = cof(K(ωω)) = d. The following lemma gives a partial answer.

Lemma 54. Let κ ∈ [ω1, c] and let Bκ be a κ-sized totally imperfect separable metrizable

space. Then cof(K(Bκ)) ≥ max{κ, d}. If κ = ℵn for some n ∈ ω, then cof(K(Bκ)) =

max{κ, d}.

Proof. Since each compact subset of Bκ is countable, we need at least κ-many of them

to cover Bκ. So Bκ is not locally compact and cof(K(Bκ)) ≥ κ, which together implies

cof(K(Bκ)) ≥ max{κ, d}.

On there other hand, if κ = ℵn for some n ∈ ω, we know that ωω × [κ]<ω ≥T K(Bκ) and

since cof(ωω × [κ]<ω) = max{κ, d} we have cof(K(Bκ)) ≤ max{κ, d}.

Lemma 55. There are four possibilities for cof(K(S)).

(1) If S is compact then cof(K(S)) = 1.

(2) If S\S is closed and S is bounded, then cof(K(S)) = ω.
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(3) If S\S is closed and S is unbounded, then cof(K(S)) = ω1.

(4) If S\S is not closed, then cof(K(S)) = d.

Proof. (1) is clear. (2) follows from Lemma 47. For (3), note that K(S) =
⋃
α∈ω1
K(S∩[0, α]).

But by Lemma 47, cof(K(S ∩ [0, α])) ≤ ω for each α and therefore cof(K(S)) ≤ ω1. Since S

is uncountable and all compact subsets are countable cof(K(S)) ≥ ω1 and we are done.

For (4), again by Lemma 47 we have K(S) ≥ d. But K(S) =
⋃
α∈ω1
K(S ∩ [0, α]) and

cof(K(S ∩ [0, α])) ≤ d for each α, as each S ∩ [0, α] is Polish. So cof(K(S)) = d.

2.3 SPECTRA OF K(M) AND K(S)

This section is dedicated to spectra calculations for K(M) and K(S). Notice that, by Corol-

lary 23, spec(K(S)), spec(K(M)) ⊆ [ω, c]r since these posets are at most c-sized. We will

start the calculations with the most important spectrum, spec(ωω). In light of Lemmas 79

and 47 we have the following corollary, and we see why ωω is so important. Note that

spec(ωω) = spec(K(ωω)).

Corollary 56. If M is a non-locally compact separable metrizable space, then spec(ωω) ⊆

spec(K(M)). If S ⊆ ω1 and S\S is not closed, then spec(ωω) ⊆ spec(K(S)).

2.3.1 The Spectrum of ωω

We know that add(ωω) = ω and cof(ωω) = d. Then Lemma 22 implies that ω, cof(ωω) ∈

spec(ωω) ⊆ [ω, d]r. Since the additivity of all non-compact M is ω, it will be included in all

of their spectra. Therefore we would like to know what is the first uncountable element of

the spectrum of ωω. Of course, if we look at (ωω,≤∗), ωω ordered by eventual domination

(f ≤∗ g if and only if there is n ∈ ω such that for all m > n, f(m) ≤ g(m)), the answer is b,

the additivity of (ωω,≤∗). Next we establish the relation between the spectrum of ωω and

the spectrum of (ωω,≤∗). Note that ω ∈ spec(ωω)\ spec((ωω,≤∗)).

Lemma 57. spec(ωω) = spec((ωω,≤∗)) ∪ {ω}.
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Proof. Notice that the function defined by f 7→ [f ] (equivalence class of f in (ωω,≤∗)) is

order-preserving and cofinal. So ωω ≥T (ωω,≤∗) and therefore spec((ωω,≤∗)) ⊆ spec(ωω).

On the other hand, suppose κ ≤T ωω and κ is uncountable. Let ψ : κ→ ωω be a Tukey

map. Define ψ∗ : κ → (ωω,≤∗) by ψ∗(κ) = [ψ(κ)]. Suppose there exists an unbounded

subset of κ, say U , such that ψ∗(U) is bounded in (ωω,≤∗) by some [f ]. Since κ is regular, U

has size κ. Also, for each α ∈ U , there is g ∈ [f ] such that ψ(α) ≤ g. Since [f ] is countable

and κ is regular, there exists g ∈ [f ] and κ-sized U ′ ⊆ U such that for each α ∈ U ′, ψ(α) ≤ g.

But then U ′ is an unbounded subset of κ with bounded image under ψ, which contradicts

the Tukeyness of ψ.

Hence b ∈ spec(ωω) and b is the least uncountable element of spec(ωω). We immediately

have the following:

Corollary 58. The cardinal ω1 is in the spectrum of ωω if and only if ω1 = b.

Now we look at what are the possibilities for the spectrum of (ωω,≤∗). Note that b is

regular, b ≤ cof(d) ≤ d, and d need not be regular. We look at what can happen in the

interval [b, d]r. First we need the following theorem by Hechler [30].

Theorem 59 (Hechler). Let A be a poset without the largest element and suppose ω <

add(A). Then it is consistent that there exists an order-embedding of A into (ωω,≤∗) with

cofinal image.

Theorem 60. For any set I of uncountable regular cardinals it is consistent that I ⊆

spec((ωω,≤∗)).

If I is a strictly increasing sequence {κn : n ∈ ω} then it is consistent that I =

spec((ωω,≤∗)) ∩ sup I.

If I is finite then it is consistent that spec((ωω,≤∗)) = I (and therefore b = min I and

d = cof(d) = max I).

Proof. We apply Hechler’s theorem to A =
∏
{κ : κ ∈ I}. As all elements of I are regular

and uncountable, all countable subsets of A are bounded and ω < add(A). We now work

in the model given by Hechler. As A is isomorphic to a cofinal subset of (ωω,≤∗), they are

Tukey equivalent and so have the same spectrum, spec((ωω,≤∗)) = spec(A).

40



For any κ in I, applying the relevant projection, it is clear that A ≥T κ. Hence κ ∈

spec(A). So spec((ωω,≤∗)) contains I.

Now suppose I is a strictly increasing sequence {κn : n ∈ ω}. Let A =
∏
{κn : n ∈ ω}

Take any regular κ < sup I such that κ /∈ I. There are two cases: (1) κ < κ0 and (2)

there is i ∈ ω with κi < κ < κi+1. We prove the second case, the first case uses the same

argument. We show that A has calibre κ. Take any κ-sized H ⊆ A. Since κi < κ and all

cardinals involved are regular, there is κ-sized H ′ ⊆ H such that all elements of H ′ take the

same value on the first i + 1-many coordinates. Again by regularity and κ < κi+1, the set

{h � ω\(i+ 1) : h ∈ H ′} is bounded in
∏
{κn : n > i}. Hence H ′ is bounded by some x ∈ A.

So A has calibre κ and κ /∈ spec(A).

If I is finite, enumerate T in increasing order: T = {κ0 < κ1 < · · · < κn}, so A =

κ0 × κ1 × · · · × κn. Then add(A) = κ1, cof(A) = κn and we have spec(A) ⊆ [κ1, κn].

Then whenever κ is not an element of T and κ1 < κ < κn, there exists i ≤ n such that

κi < κ < κi+1. By the same argument as in the countable case, we have κ /∈ spec(A).

2.3.1.1 Proof of Hechler’s Theorem Hechler’s proof of Theorem 59 uses an older

forcing notation. Here we include a proof of cofinally embedding A into (ωω,≤∗) in standard

notation. We will force over a model of ZFC+GCH with all conditions of Lemma IV.3.11 of

[42] satisfied so that we have c = κn. The proof is technical, so, for simplicity, we will only

do the case when A = ω1 × ω3. The general case is similar. We will follow the notation of

[42].

By ω<ω we mean all finite partial functions from ω to ω. Let P be a poset. For p, q ∈ P,

if p ≤ q we say that p extends q. If p and q have a common extension then they are said

to be compatible. For the purposes of the next proof only we define A to be an antichain if

and only if no two elements of A are compatible (in the rest of the text by an antichain we

mean a set of pairwise incomparable elements). Recall that for a poset P and a P-name τ ,

a nice P-name for a subset of τ is a P-name of the form {{σ} × Aσ : σ ∈ dom(τ)}, where

each Aσ is an antichain in P. We know that all sets can be named by nice names and we

may assume that antichains in the definition of a nice name are maximal.
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Theorem 61. Let A = ω1 × ω3. Then it is consistent that A embeds isomorphically and

cofinally into (ωω,≤∗).

Proof. For each x = (α, β) ≤ (ω1, ω3) let ↓x = {y ∈ A : y < x}. To each x ≤ (ω1, ω3) we

assign a forcing poset Px recursively as follows:

- P(0,0) = {∅};

- For (0, 0) < x ≤ (ω1, ω3):

• p ∈ Px if and only if p is a function with properties that

- dom(p) ⊆↓x and dom(p) is finite;

- for each y ∈ dom(p), p(y) = (σp,y, f
p,y) where σp,y ∈ ω<ω and fp,y is a nice Py-name

for a subset of (ω × ω) such that p � ↓y Py f
p,y ∈ ωω.

• p ≤ q if and only if

- dom(q) ⊆ dom(p);

- for each y ∈ dom(q), σq,y ⊆ σp,y and

p � ↓y Py f
p,y ≥ f q,y ∧ ∀n ∈ dom(σp,y)\ dom(σq,y) (σp,y(n) ≥ f q,y(n)).

To obtain the necessary embedding, we need to show the following:

(1) P(ω1,ω3) is ccc;

(2) From a P(ω1,ω3)-generic set G we derive a function Ψ : A → ωω with the following

properties:

(a) Ψ is 1-to-1;

(b) Ψ is incomparability-preserving;

(c) Ψ(A) is cofinal in ωω;

(d) Ψ is order-preserving.

Notice that if x ≤ y then Px ⊆ Py; and if p, q ∈ Px and x ≤ y, then p ≤Px q if and only if

p ≤Py q, so we will drop the subscript in ≤Px . Then following facts are immediate from the

definitions.

Fact (1) We have p ≤ q if and only if p � ↓x ≤ q � ↓x for all x.

Fact (2) If p � ↓x ≤ q � ↓x and p and q coincide outside ↓x then p ≤ q.
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Fact (3) If q ⊆ p then p ≤ q.

(1) P(ω1,ω3) is ccc. Suppose P is an uncountable subset of P(ω1,ω3). We may assume that

{dom(p) : p ∈ P} forms a ∆-system with root r. If r = ∅ we are done since for each p, q ∈ P ,

p ∪ q ≤ p, q by Fact (3). So assume r is non-empty. Since r is finite and ω<ω is countable,

we may refine P so that P is still uncountable and for each x ∈ r there is σx ∈ ω<ω with

σp,x = σx for each p ∈ P .

We want to show that in this new P all elements are compatible. Pick arbitrary q, q′ ∈

P . Define p step by step. Let dom(p0) = (dom(q) ∪ dom(q′))\r. For x ∈ dom(q)\r, let

p0(x) = q(x) and for x ∈ dom(q′)\r, let p0(x) = q′(x). Note that p0 does not have to be an

element of P(ω1,ω3), but if x is a minimal element of r, then p0 � ↓x is in Px.

Pick a minimal x ∈ r. Since q � ↓x Px f
q,x ∈ ωω and q′ � ↓x Px f

q′,x ∈ ωω and

p0 � ↓x ≤ q � ↓x , q′ � ↓x , we have p0 � ↓x Px f
q′,x + f q,x ∈ ωω ∧ f q

′,x + f q,x ≥ f q
′,x, f q,x.

Pick an arbitrary Px-generic filter Hx with p0 � ↓x ∈ Hx and let fx be a nice Px-name for

f q
′,x
Hx

+f q,xHx ; then there is p′0 ∈ Hx such that p′0 ≤ p0 � ↓x and p′0 Px f
x ∈ ωω ∧ fx ≥ f q

′,x, f q,x.

Now let p1 = p′0 ∪ {(x, (σq,x, fx))} (notice that since x was minimal in r, dom(p1) does not

contain any other element of r). Then p1 � ↓x Px f
p1,x ≥ f q,x ∧ fp1,x ≥ f q

′,x and we are

done with x.

Next, pick a minimal element y ∈ r\{x} and repeat the argument above to define p2

with σp2,y = σy and p2 � ↓y Py f
p2,y ≥ f q,y ∧ fp2,y ≥ f q

′,y. If we continue like this we will

get pn ≤ q, q′, where n = |r|.

(2) The map Ψ and its properties. To prove claims (a)-(d), fix a P(ω1,ω3)-generic filter

G. To define a map Ψ : A→ ωω, we first need to prove the next lemma.

Lemma 62. For each x ∈ A and n ∈ ω, sets Dx = {p ∈ P(ω1,ω3) : x ∈ dom(p)} and

Dx,n = {p ∈ P(ω1,ω3) : x ∈ dom(p), n ∈ dom(σp,x)} are dense in P(ω1,ω3).

Proof. Let q ∈ P(ω1,ω3) and x /∈ dom(q). Let p = q ∪ {(x, (∅, 0̌))}. Then p ≤ q. So Dx is

dense.

Now suppose q ∈ P(ω1,ω3) and x ∈ dom(q) but n /∈ dom(σq,x). Since q � ↓x Px f
q,x ∈ ωω
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there is r ∈ Px with r ≤ q � ↓x and m ∈ ω such that r  f q,x(n) = m. Define p as follows:

dom(p) = dom(r) ∪ dom(q), p(x) = (σq,x ∪ {(n,m)}, f q,x), if y ∈ dom(r) then p(y) = r(y),

and if y ∈ dom(q)\(dom(r) ∪ {x}) then p(y) = q(y). Then p ≤ q and p ∈ Dx,n.

Now define Ψ(x) =
⋃
{σp,x : p ∈ G, x ∈ dom(p)}.

(a) Ψ is 1-to-1: We only need to consider the case when x < x′, since (b) takes care of the

rest. For x, x′ ∈ A with x < x′ and k ∈ ω, let Ex,x′,k = {p ∈ P(ω1,ω3) : x, x′ ∈ dom(p), ∃n >

k, n ∈ dom(σp,x) ∩ dom(σp,x′), σp,x(n) < σp,x′(n)}. We show that Ex,x′,k is dense.

Let q ∈ P(ω1,ω3). Since Dx and Dx′ are dense, we may assume that x, x′ ∈ dom(q). Pick

any n > k, sup(dom(σq,x)), sup(dom(σq,x′)). Extend q by some p′ adding n to the dom(σq,x)

as in the proof of Lemma 62. Then p′(x′) = p(x′). In particular, n /∈ dom(σp′,x′). As before,

there is r ∈ Px′ with r ≤ p′ � ↓x ′ and m ∈ ω so that r Px′ f
p′,x′(n) = m. Let l = m+σp′,x(n),

then r Px′ f
p′,x′(n) < l. Define p as follows: dom(p) = dom(r) ∪ dom(p′), p(x′) = (σp′,x′ ∪

{(n, l)}, fp′,x′), if y ∈ dom(r) then p(y) = r(y), and if y ∈ dom(p′)\(dom(r) ∪ {x′}) then

p(y) = p′(y). Then p ≤ p′ ≤ q and p ∈ Ex,x′,k.

(b) Ψ is incomparability-preserving: Let x, x′ ∈ A be incomparable and k ∈ ω. Let Fx,x′,k =

{p ∈ P(ω1,ω3) : x, x′ ∈ dom(p), ∃n,m > k, n,m ∈ dom(σp,x) ∩ dom(σp,x′), σp,x(n) <

σp,x′(n), σp,x(m) > σp,x′(m)}.

To prove that Fx,x′,k is dense, we proceed as in (a). We will assume that x, x′ ∈ dom(q).

Extend q by some p′, adding n to dom(σq,x) as in the proof of Lemma 62, and then extend p′

by some p′′ adding m to dom(σp′,x′). Since x /∈↓x ′ and x′ /∈↓x , we still have n /∈ dom(σp′′,x′)

and m /∈ dom(σp′′,x). Now repeat the last extension step from (a) twice to get the necessary

inequalities.

(c) Ψ(A) is cofinal in ωω: Let f be a nice P(ω1,ω3)-name so that fG ∈ (ωω)M [G]. Then we may

assume that f = {{ň}×An : n ∈ ω} where each An is an antichain in P(ω1,ω3). Since P(ω1,ω3)

is ccc, each An is countable. So, there is x ∈ A such that f is actually a nice Px-name.

Pick p0 ∈ G with p0  f ∈ ωω. Then, p0 � ↓x Px f ∈ ωω, and since p0 � ↓x ≥ p0,

p0 � ↓x ∈ G.
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Let Kf = {p ∈ P(ω1,ω3) : p ≤ p0 � ↓x , x ∈ dom(p), p � ↓x Px f ≤ fp,x}. Kf is dense

below p0 � ↓x : suppose q ≤ p0 � ↓x and x ∈ dom(q). Then, q � ↓x ≤ p0 � ↓x and, therefore,

q � ↓x Px f, f
q,x ∈ ωω. Then, q � ↓x Px f + f q,x ∈ ωω, f ≤ f + f q,x. Pick an arbitrary

Px-generic Hx with q � ↓x ∈ Hx and let f ′ be a nice Px-name for fHx + f q,xHx . Then there

is r ∈ Hx such that r ≤ q � ↓x and r Px f ′ ∈ ωω, f q,x, f ≤ f ′. Define p as follows:

dom(p) = dom(q) ∪ dom(r), p(x) = (σq,x, f
′), if y ∈ dom(r) then p(y) = r(y) and otherwise

p(y) = q(y). So p ∈ Kf and p ≤ q.

Since p0 � ↓x ∈ G and Kf is dense below p0 � ↓x , there is p1 ∈ Kf ∩G. So x ∈ dom(p1),

p1 � ↓x Px f ≤ fp1,x. Then, p1 � ↓x P(ω1,ω3) f ≤ fp1,x, and therefore p1 P(ω1,ω3) f ≤ fp1,x

For n ∈ ω, let Ln = {p ∈ P(ω1,ω3) : p ≤ p1, n ∈ dom(σp,x)}. Ln is dense below p1 ∈ G.

So for each n > sup(dom(σp1,x)), we have p ∈ G ∩ Ln, which means p ≤ p1 and, since n >

sup(dom(σp1,x)), we have p � ↓x P(ω1,ω3) σp,x(n) ≥ fp1,x(n). So in M [G], Ψ(x) ≥∗ fp1,xG ≥ fG.

(d) Ψ is order-preserving:

Let G be a P(ω1,ω3)-generic filter. Then G � ↓x = {p � ↓x : p ∈ G} is a Px-generic filter.

To add n to the domain of σp,x, we only have to alter the part of p below x and at x. So

whenever y < x, Ψ(y) = {p ∈ G � ↓x : p ∈ G, y ∈ dom(p)}. So there is a nice Px-name for

Ψ(y). Now we can repeat the argument from (c) for f to show that Ψ(y) ≤∗ Ψ(x).

2.3.2 Spectrum for Totally Imperfect Spaces (and Q)

Next we compute spectra of some totally imperfect separable metrizable spaces.

Proposition 63. Suppose ω1 ≤ κ ≤ c and Bκ is κ-sized totally imperfect separable metriz-

able. Then [ω1, κ]r ∪ spec(ωω) ⊆ spec(K(Bκ)). If κ = ℵn for some n ∈ ω, then

[ω1, κ]r ∪ spec(ωω) = spec(K(Bκ)).

Proof. We already know that spec(ωω) ⊆ spec(K(Bκ)). Let Bκ = {xα : α < κ} and pick

λ ∈ [ω1, κ]r. Consider a map ψ : λ→ K(Bκ) given by α 7→ {xα}. Then, whenever U ⊆ λ is

uncountable, ψ(U) cannot be contained in a compact subset of Bκ, since all compact subsets
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of Bκ are countable. So, ψ(U) is unbounded and ψ is a Tukey map, which implies that

[ω1, κ]r ⊆ spec(K(Bκ)).

On the other hand, if κ = ℵn for some n ∈ ω, we know that K(Bκ) ≤ ωω × [κ]<ω and

therefore spec(Bκ) ⊆ spec(ωω × [κ]<ω) = spec(ωω) ∪ spec([κ]<ω) = [ω1, κ]r ∪ spec(ωω) by

corollaries 8 and 20.

Now we compute the spectrum of K(Q).

Lemma 64. spec(K(Q)) = {ω1} ∪ spec(ωω).

Proof. We already know that ωω × ω1 ≤T K(Q) ≤T ωω × [ω1]<ω, hence, spec(ωω × ω1) ⊆

spec(K(Q)) ⊆ spec(ωω × [ω1]<ω). But from the corollary to Lemma 19, it is clear that

spec(ωω × ω1) = {ω1} ∪ spec(ωω) = spec(ωω × [ω1]<ω).

Note that if ω2 < b, ω2 ∈ spec(K(Bc)) but ω2 /∈ K(Q), which implies K(Q) �T K(Bc).

Also if ω1 ≤ κ < λ ≤ c, spec(K(Bλ)) * spec(K(Bκ)) and therefore K(Bλ) �T K(Bκ).

2.3.3 Spectrum of K(S)

If S is a bounded subset of ω1 then K(S) is Tukey equivalent to either K(1) or K(ω) or

K(ωω). So the interesting case for the spectrum of K(S) is when S is unbounded.

Theorem 65. Suppose S ⊆ ω1 is unbounded. If S\S is closed then spec(K(S)) = {ω1} and

if S\S is not closed then spec(K(S)) = {ω1} ∪ spec(ωω).

Proof. For unbounded S, ω1 ≤T K(S). If S\S is closed then cof(K(S)) = ω1 and κ ≤T K(S)

implies cof(κ) ≤ ω1. So κ must be equal to ω1 and spec(K(S)) = {ω1}.

If S\S is not closed then ωω × ω1 ≤T K(S) ≤T ωω × [ω1]<ω. And spec(ωω × ω1) ⊆

spec(K(S)) ⊆ spec(ωω × [ω1]<ω). But from the corollary to Lemma 19, it is clear that

spec(ωω × ω1) = {ω1} ∪ spec(ωω) = spec(ωω × [ω1]<ω).
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2.4 CALIBRES OF K(M) AND K(S)

Elements of K(Sub(R)) and K(Sub(ω1)) have size ≤ c and therefore the most natural calibres

to consider for these posets are the calibres ω1, (ω1, ω1, ω) and (ω1, ω). Clearly, calibre ω1

implies calibre (ω1, ω1, ω), which, in turn, implies (ω1, ω).

2.4.1 Calibres of K(M)

Lemma 66. For any separable metrizable M , K(M) has calibre (ω1, ω).

Proof. Take any uncountable collection K of compact subsets of M . Since K(M) is a sep-

arable metrizable (and so has countable extent), K has an accumulation point K in K(X).

So, because K(M) is separable metrizable (and so is first countable), there is an infinite

sequence (Kn)n in K converging to K. Then, K∞ = {Kn : n ∈ ω}∪{K} is a compact subset

of K(M). Now, K∞ =
⋃
K∞ is an upper bound in K(M) of all the Kn’s.

Lemma 67. Let X be hereditarily separable, and let θ ≥ λ ≥ ω1. If K(X) has calibre

(θ, λ, ω) then K(X) has calibre (θ, λ).

Proof. Suppose K(X) has calibre (θ, λ, ω) and let K ⊆ K(X) be θ-sized. Then there is λ-

sized K′ ⊆ K such that every countable subcollection of K′ has an upper bound in K(X).

We show that K′ has an upper bound in K(X). Let A =
⋃
K′. Pick a countable set D

contained in A which is dense in A, so D = A. For each d in D, pick Kd from K′ such

that d ∈ Kd. Then the countable family {Kd : d ∈ D} has an upper bound, say K∞. Since⋃
K′ = A = D ⊆

⋃
{Kd : d ∈ D} ⊆ K∞, we see that K∞ contains every K ∈ K′.

Corollary 68. Let M be separable metrizable. Then K(M) has calibre (ω1, ω1, ω) if and

only if K(M) has calibre ω1.

Lemma 66 and corollary 68 make our objective clear and we devote the rest of this sub-

section to investigating when K(M) has calibre ω1. If M is locally compact, then K(M) =T ω

and K(M) trivially has calibre ω. On the other hand, recall that a poset has calibre κ if and

only if κ is not its Tukey quotient. So we immediately deduce from our spectrum results

what happens when M is Polish.
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Corollary 69. The poset ωω has calibre ω1 if and only if ω1 < b.

Next we consider what happens above ωω, or when M is not Polish. If ω1 = b, then

ωω fails to have calibre ω1 and therefore nothing above ωω can have this calibre. Moreover,

by lemma 49, in ZFC, K(Q) fails to have calibre ω1 and so does K(B) for any uncountable

totally imperfect separable metrizable B. The next natural question is if it is consistently

possible to have a non-Polish M such that K(M) has calibre ω1. It turns out that such an

M exists if we assume that ω1 < p. To show this we need a result by Fremlin [20].

Theorem 70 (Fremlin). Let M be a separable metrizable space. Let K be a family of

compact subsets of M and F a family of closed subsets of M . Suppose |K ∪ F| < p and⋃
K ∩

⋃
F = ∅. Then there is a sequence, {Cn}n∈ω, of compact subsets of M such that for

each F ∈ F , F ⊆ Cn for some n and
⋃
K ∩

⋃
{Cn}n∈ω = ∅.

Corollary 71. (ω1 < p) Let M = 2ω. Let K ⊆ K(2ω) have size ≤ ω1 and define X =

2ω\
⋃
K. Then K(X) has calibre ω1.

Proof. If K is countable then X is a Gδ subset of 2ω. Therefore X is Polish and since

ω1 < p ≤ b, K(X) has calibre ω1.

If K = {Kα : α ∈ ω1} and the Kα’s are distinct, let F be a ω1-sized subset of K(X).

We will show that F contains an uncountable bounded subset. Apply Theorem 70 to K

and F to get necessary {Cn}n∈ω. Each Cn is compact and misses
⋃
K, which implies that

each Cn ∈ K(X). Since each F ∈ F is contained in some Cn, there is n0 ∈ ω such that Cn0

contains uncountably many F ∈ F .

Corollary 72. (ω1 < p) Let M = 2ω. Let K be a collection of ω1-many distinct singletons

of 2ω. Define X = 2ω\
⋃
K. Then X is not Polish and K(X) has calibre ω1.

Proof. Suppose X is Polish. Then X must be Gδ in 2ω, and therefore Y =
⋃
K would be Fσ

subset of 2ω. Since closed subsets of 2ω are compact, Y is, in fact, the union of countably

many compact subsets. Since |Y | = ω1 < p ≤ c, all compact subsets of Y are countable,

which contradicts Y being uncountable.
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2.4.2 Calibres of K(S)

Let S be a subset of ω1. If S is bounded then K(S) is Tukey equivalent to one of 1, ω and

ωω. In the first two cases K(S) has calibres ω1, (ω1, ω1, ω) and (ω1, ω); in the second case

K(S) always has calibre (ω1, ω) but has the other two calibres if and only if ω1 < b.

Now let S be unbounded. We showed that ω1 ≤T K(S) and therefore K(S) fails to

have calibre ω1. The case of calibre (ω1, ω) has already been settled by Todorčević in [58].

Recall that a subset of an ordinal is called stationary if and only if it meets every closed and

unbounded subset of ω1. Using the fact that K(S) ≥ [ω1]<ω if and only if K(S) does not

have calibre (ω1, ω), Todorčević’s theorem becomes:

Lemma 73 (Todorčević). Let S ⊆ ω1 be unbounded. Then K(S) has calibre (ω1, ω) if and

only if S is stationary if and only if K(S) � [ω1]<ω.

In fact, Todorčević shows that if S is not stationary then S contains an uncountable

closed discrete subset, which gives an uncountable collection of singletons such that any

infinite subcollection is unbounded in K(S). We need this result in the next proof, so we

include the argument here.

Lemma 74 (Todorčević). Suppose S is unbounded, C is closed, unbounded and S ∩ C = ∅.

Then there exist strictly increasing sequences {sα : α < ω1} ⊆ S and {cα : α < ω1} ⊆ C such

that for each α < ω1, sα < cα < sα+1. Hence, S contains an uncountable closed discrete

subset.

Proof. Construct {sα : α < ω1} ⊆ S and {cα : α < ω1} ⊆ C inductively with a property

that for each α < ω1, sα < cα < sα+1. Pick any s0 ∈ S and pick any c0 ∈ C with s0 < c0.

Suppose we have constructed {sβ : β < α} and {cβ : β < α}. Since S is unbounded, we

can pick sα ≥ sup{sβ : β < α} in S. (Since sup{sβ : β < α} = sup{cβ : β < α} ∈ C, sα is

strictly larger than sup{sβ : β < α}.) Now pick any cα with cα > sα.

To show that {sα : α < ω1} is closed and discrete pick any limit point s of {sα : α < ω1}.

Then there is an increasing sequence {αn : n ∈ ω} such that {sαn : n ∈ ω} converges to s.

Then {cαn} ⊆ C also converges to s and since C is closed, s ∈ C. Therefore s /∈ S and we

are done.
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Next we show exactly when K(S) has calibre (ω1, ω1, ω). Recall that a subset of ω1 is

called co-stationary if it has the stationary complement. S is co-stationary if and only if it

contains a cub (closed and unbounded) set. Note that if S is unbounded and S\S is bounded

then S is co-stationary. In particular, S\(sup(S\S) + 1) is a cub subset of S.

Lemma 75. Let S ⊆ ω1 be unbounded. Then K(S) has calibre (ω1, ω1, ω) if and only if S\S

is bounded and either S\S is closed or ω1 < b.

Proof. Let S be an unbounded subset of ω1 and suppose S\S is bounded. Let α = (sup(S\S)+

1). Then S\α is closed and unbounded in ω1 and S = S ∩ α ⊕ S\α and K(S) = K(S ∩

α) × K(S\α) = K(S ∩ α) × ω1. Clearly, ω1 has calibre (ω1, ω1, ω), so by Lemma 13, K(S)

has calibre (ω1, ω1, ω) if and only if K(S ∩ α) does. Since S ∩ α is Polish, K(S ∩ α) has

this calibre if and only if either S ∩ α\(S ∩ α) is closed or ω1 < b. Then, by the fact that

S\S = S ∩ α\(S ∩ α), K(S) has calibre (ω1, ω1, ω) if and only if either S\S is closed or

ω1 < b.

What is left to show is that if K(S) has calibre (ω1, ω1, ω) then S\S is bounded. Suppose

S has calibre (ω1, ω1, ω). First we show that S contains a cub set. Let K = {{α} : α ∈ S}.

Then there is an uncountable K′ ⊆ K with every countable subset bounded in K(S). If we let

T =
⋃
K′, then every limit point of T lies in S: otherwise pick β ∈ ω1\S and {αn}n∈ω ⊆ T

with β = sup{αn}n∈ω. Then {{αn} : n ∈ ω} does not have an upper bound in K(S). So,

C = T is closed and unbounded subset of S.

Therefore ω1\S is non-stationary. If ω1\S is also unbounded, apply Lemma 74 to ω1\S

and C to get strictly increasing sequences {sα : α < ω1} ⊆ ω1\S and {cα : α < ω1} ⊆ C

such that for each α < ω1, sα < cα < sα+1.

Since S\S is non-stationary in S, which is homeomorphic to ω1, we may assume that

S = ω1. Then all successor ordinals are in S.

Let α ∈ ω1. By construction, sα > sup({sβ : β < α} ∪ {cβ : β < α}). Since α is a limit

ordinal, we can pick an increasing sequence, {sα,m}m∈ω, of successor ordinals in the interval

(sup({sβ : β < α} ∪ {cβ : β < α}), sα) that converges to sα.

For each infinite α ∈ ω1 let fα : α → ω be a bijection. Fix infinite α ∈ ω1 and define

Kα = {sσ,fα(σ) : σ ∈ α}. For each σ, σ′ ∈ α with σ < σ′, sσ,fα(σ) < cσ < sσ′,fα(σ′). So every
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limit point of {sσ,fα(σ) : σ ∈ α} is also a limit point of {cσ : σ ∈ α} and therefore lies in

C ⊆ S. Therefore, since {sσ,fα(σ) : σ ∈ α} ⊆ S, Kα is in K(S).

If T ⊆ ω1 is uncountable, we will show that {Kα : α ∈ T} contains a countable subset

that is unbounded in K(S). For this it will suffice to find σ ∈ ω1 such that Aσ = {fα(σ) : α ∈

T, α > σ} is infinite; because then for each n ∈ Aσ, we can pick αn ∈ T with fαn(σ) = n,

which will imply that
⋃
n∈Aσ Kαn contains an infinite subset of {sσ,m : m ∈ ω} and therefore

is unbounded in K(S).

Suppose, to get a contradiction, that for each σ ∈ ω1 there is nσ ∈ ω that bounds

{fα(σ) : α ∈ T, α > σ}. Then there is uncountable T1 ⊆ ω1 and n ∈ ω such that nσ = n

for all σ ∈ T1. Since T and T1 are uncountable, there is α ∈ T such that α ∩ T1 is infinite.

Then we have fα(σ) ≤ n for all σ ∈ α∩ T1, which contradicts the fact that fα is a bijection.
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3.0 STRUCTURES OF (K(Sub(R)),≤T ) AND (K(Sub(ω1)),≤T )

In this chapter we present the main results of this work. For convenience we often drop

‘≤T ’ in ‘(K(Sub(X)),≤T )’. We establish various order properties (size, cofinality, additivity,

calibres) of K(Sub(R)) and construct various subposets of K(Sub(R)), the most important of

which is an antichain of size 2c. On the other hand, the size of K(Sub(ω1)) has already been

established by Todorčević through construction of a 2ω1-sized antichain and, as we show that

K(Sub(ω1)) has the largest element, questions about additivity, cofinality and calibres are

no longer relevant. We determine Tukey classes associated with different groups of subsets

of ω1. The concluding section of the chapter investigates the relation between elements of

K(Sub(R)) and elements of K(Sub(ω1)).

3.1 THE STRUCTURE OF K(Sub(R))

Most arguments in this section depend heavily on Lemma 42, which gives an equivalent condi-

tion for the existence of Tukey quotients. Note that through Theorem 38 some of these results

transfer immediately to (Sub(R),K(Sub(R))) and (F(Sub(R)),K(Sub(R)). However, we of-

ten give direct proofs for K(Sub(R)), (Sub(R),K(Sub(R))) and (F(Sub(R)),K(Sub(R))).

Recall that by Lemma 37, we are allowed to work with arbitrary separable metrizable spaces

when we study K(Sub(R)).
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3.1.1 Initial Structure

We begin by upgrading Fremlin’s results [21] on the initial segment of K(Sub(R)) to initial

segments of (Sub(R),K(Sub(R))) and (F(Sub(R)),K(Sub(R))).

Theorem 76. Let M and N be separable metrizable spaces.

(1) The minimum Tukey equivalence class in (Sub(R),K(Sub(R))) is [(1,K(1))]T , and

(M,K(M)) is in this class if and only if M is compact.

(2) It has a unique successor, [(ω,K(ω))]T , which consists of all (M,K(M)) where M is

σ-compact but not compact.

(3) This has [(ωω,K(ωω))]T = {(M,K(M)) : M is analytic but not σ-compact} as a succes-

sor.

(4) However it is consistent that there is a co-analytic N which is not σ-compact such that

(N,K(N)) 6≥T (ωω,K(ωω)).

Proof. Claim (1) is trivial. For (2) note that if M is not compact then it contains a closed

copy of ω, and so there is a reduction (M,K(M)) ≥T (ω,K(ω)). And if M =
⋃
n∈ωKn,

where each Kn is compact, define φ : K(ω) → K(M) by φ(F ) =
⋃
n∈F Kn. The map φ

is well-defined since all compact subsets of ω are finite, φ is order-preserving and the φ(ω)

covers M . Conversely, if φ witnesses (ω,K(ω)) ≥T (M,K(M)) then φ(ω) is a countable cover

of M by compacta.

Claim (3) relies on a result of Hurewicz implying that every analytic set which is not

σ-compact contains a closed copy of the irrationals [31]. Suppose that M is not σ-compact

but (ωω,K(ωω)) ≥T (M,K(M)). By Lemma 42 there is a closed subset of C ∈ K([0, 1]ω)2

such that M ⊆ C[ωω]. Since C is Borel and K([0, 1]ω)2 is Polish, C[ωω] is also analytic and

since M is a closed subset of C[ωω], it is also analytic. Hence ωω embeds as a closed set in

M , so (ωω,K(ωω)) and (M,K(M)) are Tukey equivalent, and thus there is nothing in the

Tukey order strictly between (ω,K(ω)) and (ωω,K(ωω)).

Assume ω1 < d and ‘there is a co-analytic subset N of R of size ω1’. Then in this model

the claim in (4) holds. For if φ is a Tukey quotient of (M,K(M)) to (ωω,K(ωω)), then φ(M)

is a compact cover of ωω of size ≤ ω1. But d is the minimal size of a compact cover of ωω.
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An almost identical proof gives an almost identical result for the initial structure of

(F(Sub(R)),K(Sub(R))).

Theorem 77. For separable metrizable M and N :

(1) the minimum Tukey equivalence class in (F(Sub(R)),K(Sub(R))) is [(F(1),K(1))]T , and

(F(M),K(M)) is in this class if and only if M is compact;

(2) it has a unique successor, [(F(ω),K(ω))]T , which consists of all (F(M),K(M)) where M

is σ-compact but not compact;

(3) this has [(F(ωω),K(ωω))]T = {(F(M),K(M)) : M is analytic but not σ-compact} as a

successor;

(4) however it is consistent that there is a co-analytic N which is not σ-compact such that

(F(N),K(N)) 6≥T (F(ωω),K(ωω)).

Since the Tukey relation K(M) ≥T K(N) is a special case of the relative relation

(M ′,K(M ′)) ≥T (N ′,K(N ′)) we can also recover the initial structure of K(Sub(R)).

Corollary 78 (Christensen, Fremlin [21]). Below M ′ and N ′ are separable metrizable spaces.

(1) The minimum Tukey equivalence class in K(Sub(R)) is [1]T , and K(M ′) is in this class

if and only if M ′ is compact.

(2) It has a unique successor, [ω]T , which consists of all K(M ′) where M ′ is locally compact

but not compact.

(3) This has [ωω]T = {K(M ′) : M ′ is Polish} as a unique successor.

Proof. According to Lemma 30, K(M) ≥T K(N) if and only if (K(M),K(K(M))) ≥T
(K(N),K(K(N))). Now apply the preceding theorem to M = K(M ′) and recall that K(M ′)

is compact if and only if M ′ is compact, K(M ′) is σ-compact if and only if M ′ is locally

compact, and Christensen showed that K(M ′) is analytic if and only if M ′ is Polish.

The class [ωω]T is the unique successor of [ω]T in K(Sub(R)) by the next lemma.

Lemma 79 (Fremlin). Let M be a non-locally compact separable metrizable space. Then

K(ωω) ≤T K(M).
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Proof. Since M is (first countable and) not locally compact it contains a closed copy of F ,

the metrizable Fréchet fan. So K(M) ≥T K(F ). As F is Polish and not locally compact,

K(F ) and K(ωω) are Tukey equivalent.

3.1.2 Cofinal Structure

3.1.2.1 Down Sets and Cardinality

Lemma 80. Fix a separable metrizable space M . Let E and D be K-operators. Then

(1) DE,D = {N ∈ Sub(R) : (E(M),K(M)) ≥T (D(N),K(N))} has size c.

If D is productive, then

(2) TE,D = {N ∈ Sub(R) : (E(M),K(M)) =T (D(N),K(N))} has size either 0 or c, and

(3) TD(M) = TD = {N ∈ Sub(R) : (D(M),K(M)) =T (D(N),K(N))} has size c.

Proof. Note that DE,D ⊆ DI,D = {N ∈ Sub(R) : (M,K(M)) ≥T (K(N),K(N))}. So

first we show |DI,K| ≤ c. We can assume, without loss of generality (replacing M with

a homeomorphic copy, if necessary), that M is a subspace of [0, 1]ω. Take any separable

metrizable N such that K(M) ≥T (N,K(N)). Again we can assume N is a subspace of

[0, 1]ω, and so by Lemma 42, we have N =
⋃
C[K(M)] for some closed C ⊆ K([0, 1]ω)2 .

Since there are at most c-many closed subsets of the separable metrizable space K([0, 1]ω)2

we have the claimed upper bound.

Since for any E and D, we clearly have (E(M),K(M)) ≥T (D(1),K(1)), and (D(1),K(1))

=T (K(1),K(1)), the set DE,D contains TK(1). So the proof of (1) is complete once we prove

claim (3).

Now assume D is productive, and prove claim (2). Suppose TE,D is not empty, say it

contains N . We show it has size c. According to Lemma 37 there is a zero-dimensional

separable metrizable space N0 such that (D(N),K(N)) =T (D(N0),K(N0)). Without loss of

generality, then, we assume N is zero-dimensional.

It is well known that there is a continuum sized family, C, of pairwise non-homeomorphic

continua (compact, connected, metrizable spaces). Then for any C from C, Lemma 32 tells

us that (D(N),K(N)) =T (D(N×C),K(N×C)). Since N is zero-dimensional the connected

components of N × C are the sets {x} × C, for x in N , which are all homeomorphic to C.
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For distinct C and C ′ from C, any homeomorphism of N × C with N × C ′ must carry

connected components of N × C to connected components to N × C ′, which is impossible

since C and C ′ are not homeomorphic. Hence the N ×C’s, for C in C, are distinct (pairwise

non-homeomorphic) members of each of TE,D.

Since M is always in TD, this latter set is never empty and so must have size c. This

gives claim (3).

The first option of part (2) of the preceding result, that TE,D can have size 0, can not

be eliminated (at least consistently). Let E be the identity operator and D = K. Assume

ω1 < d. Let M be a subspace of R of size ω1. Note that all compact subsets of M are

countable, so it is not σ-compact. We show there is no separable metrizable space N such

that (M,K(M)) =T K(N), in other words, TE,D is empty. For if φ1 is a Tukey quotient of

(M,K(M)) to K(N), then φ1(M) is a cofinal collection in K(N) of size ≤ ω1. If N were

not locally compact then ωω =T K(ωω) ≥T K(N), and cof(K(N)) ≥ cof(ωω) = d. So under

ω1 < d, the space N must be locally compact, and K(N) =T ω. But now a Tukey quotient

of ω to (M,K(M)) forces M to be σ-compact, which it is not.

Since there are 2c homeomorphism classes of separable metrizable spaces, but each (rela-

tive) Tukey equivalence classes, TD of productive K-operators contains just c-many elements,

we immediately deduce:

Corollary 81. Let D be a productive K-operator. Then |(D(Sub(R)),K(Sub(R)))| = 2c.

In particular, K(Sub(R)), (F(Sub(R)),K(Sub(R))), and (Sub(R),K(Sub(R))) all contain

exactly 2c elements.

Recall that all K(M)’s have size c (unless M is discrete). So Corollary 81 implies that

there are — in ZFC — 2c-many Tukey classes of posets of size c. Using some axioms in

addition to ZFC various such families of posets have been constructed by Dobrinen and

Todorčević. In ZFC alone the best result prior to this work is from [58].

Theorem 82 (Todorčević). For each regular κ, there are at least 2κ-many Tukey classes of

posets of size κℵ0.

We observe that this theorem does not give a 2c-sized family in ZFC.
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Lemma 83. It is consistent that sup{2κ : κ ≤ c, κ is regular} < 2c.

Proof. We will use Easton’s theorem (V.2.7.) from [42]. Let limω1 be the set of all limit

ordinals in ω1.

To define Easton index function, let dom(E) = {κ : κ < ℵω1 , κ is regular} = {ℵα :

α ∈ ω1\ limω1} and for each α ∈ ω1\ limω1, let E(ℵα) = ℵω1+α. Then cof(E(ℵα)) =

cof(ℵω1+α) = ℵω1+α > ℵα for each successor α < ω1 and cof(E(ℵ0)) = cof(ℵω1) = ℵ1 > ℵ0.

Then it is consistent that for each α ∈ ω1\ limω1, 2ℵα = ℵω1+α. In particular, c = ℵω1 .

But then sup{2κ : κ ≤ c, κ is regular} = sup{2κ : κ < ℵω1 , κ is regular} = sup{ℵω1+α :

α ∈ ω1\ limω1} = ℵω1+ω1 . Since cof(2c) > ω1, we have 2c 6= ℵω1+ω1 . But by monotonicity of

exponentiation, 2c ≥ sup{2κ : κ < c, κ is regular}. So, 2c > sup{2κ : κ ≤ c, κ is regular}.

3.1.2.2 Bounded Sets; Cofinality, Additivity and Calibres Let M and N be sep-

arable metrizable spaces, and C a family of subspaces of M such that |C| ≤ |N |. We define

the weak join of C (along N) as follows. Index (with repeats, if necessary) C = {Cy : y ∈ N}.

Define, J(C) = JN(C) =
⋃
{Cy × {y} : y ∈ N}, considered as a subspace of M × N . The

weak join operation on C gives an upper bound for C (but it is unclear if it gives the least

upper bound).

Lemma 84. For each C = Cy from C, the subspace Cy × {y} is a closed subspace of

JN(C) homeomorphic to Cy. Hence, by Lemma 33, for every C in C: K(J(C)) ≥T K(C),

(F(J(C)),K(J(C))) ≥T (F(C),K(C)) and (J(C),K(J(C))) ≥T (C,K(C)).

Lemma 85. A subset of K(Sub(R)) (respectively, a subset of (Sub(R),K(Sub(R))), or

(F(Sub(R)),K(Sub(R)))) is bounded if and only if it has size ≤ c.

Proof. Suppose first that C is a ≤ c-sized subset of K(Sub(R)). Pick a representative Mc,

a subspace of [0, 1]ω, for each c ∈ C. Let M = [0, 1]ω and N = [0, 1]. Then the above

observation immediately says J(C) works as an upper bound of C in K(Sub(R)). Mu-

tatis mutandis the same argument works for ≤ c-sized subsets of (Sub(R),K(Sub(R))), or

(F(Sub(R)),K(Sub(R))).
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For the converse suppose the subset C of K(Sub(R)) has an upper bound K(M). Then

C is a subset of D = {[K(N)]T : K(M) ≥T K(N)}. Since the set DK,K of Lemma 80 has size

≤ c, so does D. The same argument applies to bounded subsets of (Sub(R),K(Sub(R))), or

(F(Sub(R)),K(Sub(R))).

Note that we can use the fact that there is no Tukey-largest element to deduce that every

bounded set has a strict upper bound. The following result is immediate from Lemma 85.

Corollary 86.

(1) add(K(Sub(R))) = c+. Also, add(F(Sub(R)),K(Sub(R))) = c+ and

add(Sub(R),K(Sub(R))) = c+.

(2) cof(K(Sub(R))) = 2c. Also, cof(F(Sub(R)),K(Sub(R))) = 2c and

cof(Sub(R),K(Sub(R))) = c+.

(3) K(Sub(R)) (respectively, (Sub(R),K(Sub(R))) and (F(Sub(R)),K(Sub(R)))) has cal-

ibre (κ, λ, µ) if and only if µ ≤ c.

3.1.2.3 Antichains

Theorem 87. Let B be a c-sized totally imperfect subset of [0, 1]. There is a 2c-sized family,

A, of subsets of B such that for distinct M and N from A we have K(M) 6≥T (N,K(N))

and K(N) 6≥T (M,K(M)).

Hence {[K(M)]T : M ∈ A} is an antichain in K(Sub(R)) of size 2c.

Further {[(M,K(M))]T : M ∈ A} and {[(F(M),K(M))]T : M ∈ A} are 2c-sized an-

tichains in (Sub(R),K(Sub(R))) and (F(Sub(R)),K(Sub(R))), respectively.

Proof. Fix a c-sized totally imperfect subset of [0, 1], B (for example, a Bernstein set would

work). We construct a c-sized Ms inside B for each s ∈ c. Then for each I ⊆ c we let

MI =
⋃
s∈IMs and show that I2 * I1 and I1 * I2 imply (MI1 ,K(MI1)) �T K(MI2). Pick

2c-sized set P ⊆ P(c) with the property that for every distinct I1, I2 ∈ P we have I2 * I1

and I1 * I2. Then A = {MI : I ∈ P} works.

LetH = {(s, C) : s ∈ c, C is a closed subset of K([0, 1])2}. EnumerateH = {pα : α ∈ c}

so that each element is repeated c-many times. Let pα = (sα, Cα).
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We will construct Mα,s for each α ∈ c and s ∈ c, and then let Ms =
⋃
α∈cMα,s. We will

also construct Outα for each α ∈ c and set Out<α =
⋃
β<αOutβ and Out≤α =

⋃
β≤αOutβ.

Define M<α,s and M≤α,s similarly.

For each stage β the following will be true:

1. Out≤β is disjoint from M≤β,s for each s ∈ c;

2. |M≤β,s| ≤ |β| for each s ∈ c and |Out≤β| ≤ |β|;

3. for each s ∈ c, s /∈ β implies M≤β,s = ∅ and s ∈ β implies Mβ,s\
⋃
t∈cM<β,t 6= ∅;

4. if sβ ∈ β there are two cases:

(a) either for each K ∈ K(B\Out<β) such that
⋃
Cβ[K]\

⋃
s∈cM<β,s 6= ∅, we have⋃

Cβ[K] ⊆ K;

(b) or there is Kβ ∈ K(B\Out<β) such that
⋃
Cβ[Kβ]\(

⋃
s∈cM<β,s ∪Kβ) 6= ∅, and

in this case Outβ ∩ (
⋃
Cβ[Kβ]\(

⋃
s∈cM<β,s ∪Kβ)) 6= ∅ and Kβ ⊆Mβ,sβ .

Now suppose the conditions are true for all β < α.

Step 1: If sα /∈ α, set Outα = ∅ and proceed to Step 2.

If sα ∈ α consider two cases. Case 1: if for each K ∈ K(B\Out<α) such that⋃
Cα[K]\

⋃
s∈cM<α,s 6= ∅, we have

⋃
Cα[K] ⊆ K, then let Outα = ∅. Case 2: there is Kα ∈

K(B\Out<α) such that
⋃
Cα[Kα]\(

⋃
s∈cM<α,s∪Kα) 6= ∅. Pick aα ∈

⋃
Cα[Kα]\(

⋃
s∈cM<α,s∪

Kα) and let Outα = {aα}.

Step 2: For each s /∈ α set Mα,s = ∅. Let M ′
α,sα = ∅ if no Kα was chosen and let

M ′
α,sα = Kα if it was. Since only at most α-many M<α,s’s are non-empty and those that are

non-empty have size at most |α|, B\(Out≤α ∪
⋃
s∈cM<α,s ∪M ′

α,sα) is c-sized. Pick |α|-many

distinct points of B\(Out≤α ∪
⋃
s∈cM<α,s ∪M ′

α,sα) and list them {xα,s : s ∈ α}. Now for

each s ∈ α, if s 6= sα let Mα,s = {xα,s} and for s = sα, let Mα,sα = {xα,sα} ∪M ′
α,sα .

Since Kα is countable all conditions are satisfied. Condition 3 implies that each Ms is

c-sized. Moreover, note that each Ms contains a c-sized subset that is disjoint from all other

Mt-s. So if I1 * I2, MI1\MI2 is c-sized.

We need to show that I2 * I1 and I1 * I2 imply MI1 �T K(MI2). Suppose I2 * I1,

I1 * I2 and pick s ∈ I2\I1. Take any closed subset C of K([0, 1])2. Then there is α ∈ c

such that (s, C) = pα and s ∈ α (this is why we need c-repetitions). First suppose that
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for each K ∈ K(B\Out<α) such that
⋃
Cα[K]\

⋃
t∈cM<β,t 6= ∅ we have

⋃
Cα[K] ⊆ K.

Then
⋃
Cα[K(MI2)] ⊆ MI2 ∪

⋃
t∈cM<α,t. This implies that if MI1 =

⋃
Cα[K(MI2)] then

MI1\MI2 ⊆
⋃
t∈cM<α,t, which is < c-sized. So, MI1 =

⋃
Cα[K(MI2)] contradicts I1 * I2.

Now suppose there isKα ∈ K(B\Out<α) such that
⋃
C[Kα]\(

⋃
t∈cM<α,t∪Kα) 6= ∅. Then

at stage α we made sure that Kα ∈ K(Ms) ⊆ K(MI2) so aα ∈
⋃
C[Kα] ⊆

⋃
C[K(MI2)]; but

aα ∈ Outα and therefore it misses all M -s, namely it misses MI1 . So
⋃
C[K(MI2)]\MI1 6=

∅.

3.1.2.4 Embeddings It is interesting to see what other posets embed in K(Sub(R)). We

were motivated by papers by Knight, McCluskey, McMaster and Watson [41, 46] that studied

what posets embed into P(R) ordered by homeomorphic embeddability. Note that any poset

that does embed in K(Sub(R)) must have the property that the set of predecessors of any

element has size no more than c. For example, P(R) does not embed in any of K(Sub(R)),

(Sub(R),K(Sub(R))), or (F(Sub(R)),K(Sub(R))) (while, interestingly, P(R) embeds into

P(R) ordered by homeomorphic embeddability). On the other hand, it is immediate from

Lemmas 18 and 80 that:

Corollary 88. c+ is the largest ordinal that embeds in K(Sub(R)) (respectively,

(Sub(R),K(Sub(R))) or (F(Sub(R)),K(Sub(R)))).

We develop some machinery demonstrating that two natural partial orders of size con-

tinuum, the real line and P(ω), do order-embed in K(Sub(R)), (Sub(R),K(Sub(R))) and

(F(Sub(R)),K(Sub(R))).

Theorem 89. Let B be a c-sized totally imperfect subset of [0, 1]. Let By = B × {y} for

each y ∈ [0, 1].

Suppose I ⊆ P([0, 1]) has size at most c. Then for each y in [0, 1] there is a subspace

My of By such that, whenever y /∈ I ∈ I, writing MI for
⋃
y∈IMy, we have K(MI) 6≥T

(My,K(My)).

Proof. Fix B as above. Let BI =
⋃
y∈I By for each I ⊆ [0, 1]. The construction will ensure

that every My has size c.
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Let H = {(I, C) : C is a closed subset of K([0, 1]2)2, I ∈ I}. Enumerate H = {pα : α ∈

c}. Let pα = (Iα, Cα).

We will construct Mα,y for each α ∈ c and y ∈ [0, 1], and then let My =
⋃
α∈cMα,y.

We will also construct Outα for each α ∈ c and set Out<α =
⋃
β<αOutβ, and Out≤α =⋃

β≤αOutβ. Define M<α,y and M≤α,y similarly.

For each stage β the following will be true:

1. Out≤β is disjoint from M≤β,y for each y ∈ [0, 1];

2. |M≤β,y| ≤ |β| for each y ∈ [0, 1] and |Out≤β| ≤ |β|;

3. each Mβ,y\M<β,y is non-empty;

4. there are two cases:

(a) either
⋃
Cβ[K(BIβ\Out<β)] ⊆

⋃
y∈[0,1] M<β,y;

(b) or there is Kβ ∈ K(BIβ\Out<β) such that
⋃
Cβ[Kβ]\

⋃
y∈[0,1] M<β,y 6= ∅, and in

this case Outβ ∩ (
⋃
Cβ[Kβ]\

⋃
y∈[0,1]M<β,y) 6= ∅ and Kβ ∩By ⊆Mβ,y for each y ∈ Iβ.

Suppose the conditions are true for all β < α. If
⋃
Cα[K(BIα\Out<α)] ⊆

⋃
y∈[0,1]M<α,y,

then letOutα = ∅. Otherwise, there isKα ∈ K(BIα\Out<α) such that
⋃
Cα[Kα]\

⋃
y∈[0,1]M<α,y

6= ∅. Pick aα ∈
⋃
Cα[Kα]\

⋃
y∈[0,1]M<α,y and let Outα = {aα}.

Now for each y ∈ [0, 1] pick xα,y ∈ By\(M<α,y

⋃
Out≤α). For y /∈ Iα let Mα,y = {xα,y};

for y ∈ Iα, if no Kα was chosen let Mα,y = {xα,y} and if Kα was chosen let Mα,y =

{xα,y}
⋃

(Kα ∩By).

Then Kα ∩ By is countable for each y ∈ [0, 1], since By is a closed subset of BIα and all

compact subsets of By are countable. So all conditions are satisfied. Condition 3 implies

that each My is c-sized.

We need to show that y /∈ I ∈ I implies (My,K(My)) �T K(MI). Take any closed subset

C of K([0, 1]2)2. Then there is α ∈ c such that (I, C) = pα. Suppose
⋃
C[K(BI\Out<α)] ⊆⋃

x∈[0,1]M<α,x is the case. Then since
⋃
C[K(MI)] ⊆

⋃
C[K(BI\Out<α)] ⊆

⋃
x∈[0,1]M<α,x

and Mα,y\M<α,y 6= ∅ (which implies that Mα,y\
⋃
x∈[0,1] M<α,x 6= ∅) we have My\

⋃
C[K(MI)]

6= ∅.

Now suppose there is Kα ∈ K(BI\Out<α) such that
⋃
Cα[Kα]\

⋃
x∈[0,1]M<α,x 6= ∅. Then

at stage α we made sure that Kα ∈ K(MI) and aα ∈
⋃
C[Kα] but aα ∈ Outα so it misses all
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M -s, namely it misses My. So
⋃
C[K(MI)]\My 6= ∅.

Corollary 90. There is a copy of ([0, 1]ω,≤) in K(Sub(R)), (Sub(R),K(Sub(R))) and

(F(Sub(R)),K(Sub(R))). So (Q,≤), (R,≤) and ([0, 1],≤) are also embedded.

Proof. Let I = {Ix =
⋃
n∈ω[ 1

22n+1 , x(n)] : x ∈ Πn∈ω[ 1
22n+1 ,

1
22n

]} in Theorem 89. Then, for

x, y ∈ Πn∈ω[ 1
22n+1 ,

1
22n

], x � y implies that there is n ∈ ω such that x(n) > y(n) and therefore

x(n) /∈ Iy. So, by Theorem 89, we get (Mxn ,K(Mxn)) �T K(MIy). But since Mx(n) is a

closed subset of MIx we get (MIx ,K(MIx)) �T K(MIy), which implies K(MIx) �T K(MIy),

(MIx ,K(MIx)) �T (MIy ,K(MIy)) and (F(MIx),K(MIx)) �T (F(MIy),K(MIy)). However,

if x ≤ y, Ix is a closed subset of Iy and therefore K(MIx) ≤T K(MIy), (MIx ,K(MIx)) ≤T
(MIy ,K(MIy)) and (F(MIx),K(MIx)) ≤T (F(MIy),K(MIy)).

Corollary 91. There is a copy of P(ω) in K(Sub(R)), (Sub(R),K(Sub(R))) and

(F(Sub(R)),K(Sub(R))). Hence every countable partial order-embeds.

Proof. Let N = { 1
n+1

: n ∈ ω} and I = P(N) in Theorem 89. As in Corollary 90 if I1 * I2

then (MI1 ,K(MI1)) �T K(MI2). Since N is discrete, I1 ⊆ I2 implies MI1 is a closed subset

of MI2 , so we get K(MI1) ≤T K(MI2), and the relative versions, as well.

3.1.3 K(Sub(M))

In this section we let M be separable and metrizable and we investigate K(Sub(M)). Firstly

we have a corollary to Lemma 37.

Corollary 92. Suppose M is a separable metrizable space that contains a Cantor set. Then

K(Sub(M)) = K(Sub(R)).

The case left to investigate is what happens to K(Sub(M)) when M does not contain a

Cantor set.

Lemma 93. Let M be separable metrizable and countable. Then there are four possibilities

for K(Sub(M)):

(1) M is finite, which occurs if and only if K(Sub(M)) = {K(1)},

(2) M is infinite and does not contain a metric fan if and only if K(Sub(M)) = {K(1),K(ω)},
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(3) M contains a metric fan and is scattered if and only if K(Sub(M)) = {K(1),K(ω),K(ωω)},

or

(4) M is not scattered if and only if K(Sub(M)) = {K(1),K(ω),K(ωω),K(Q)}.

Proof. If M is finite then clearly K(Sub(M)) = {K(1)}. If M is infinite, first suppose it

does not contain a metric fan. Then M it is scattered of height at most 2; moreover, M is

homeomorphic to one of the ordinals in [ω, ω×ω] and thus K(Sub(M)) = {K(1),K(ω)}. On

the other hand if M contains a metric fan then clearly {K(1),K(ω),K(ωω)} ⊆ K(Sub(M)).

But if M is also scattered then it must be Polish and so must all of its subspaces. So,

K(Y ) ≤T K(ωω) for each Y ⊆M and K(Sub(M)) = {K(1),K(ω),K(ωω)}.

Now if M is not scattered then Q embeds in M as a closed subspace and K(Q) ≤T
K(M). Also, as any countable metrizable space embeds in Q as a closed subspace, we have

K(Q) ≥T K(M). As any subspace of M should also fall into the four categories mentioned

so far we get K(Sub(M)) = {K(1),K(ω),K(ωω),K(Q)}.

If M is uncountable totally imperfect, we observe that {K(1),K(ω),K(ωω),K(Q)} ⊆

K(Sub(M)), since M contains a copy ofQ. Also whenever M is c-sized the proof of Lemma 87

works just as well inside M . So, we still have 2c-sized antichain inside K(Sub(M)) and the

following lemma holds.

Lemma 94. Let {Mβ : β < c} be a family of subspaces of separable metrizable c-sized M .

Then there is a subspace N of M such that for all β < c, we have K(Mβ) 6≥T N .

Therefore if M is c-sized totally imperfect separable metrizable space, |K(Sub(M))| = 2c

and K(Sub(M)) has no largest element. Next we would like to see if K(Sub(M)) can be

directed.

Let B ⊆ [0, 1] be a c-sized totally imperfect set and let M be the direct sum of finite

products of B such that Bn is repeated infinitely many times for each n ∈ ω (B0 is a

singleton). Then M ×M = M and M does not contain a Cantor set. Then K(Sub(M)) is

directed since for each N,N ′ ⊆M , N×N ′ ⊆M and therefore K(N)×K(N ′) =T K(N×N ′) ∈

K(Sub(M)). The fact that M ×M = M allows application of the weak join operator from

Subsection 3.1.2.2 and therefore we can construct upper bounds for sets of size c. Then
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Lemma 18 implies that c+ embeds in K(M). Here we present direct construction of the

embedding of c+.

Theorem 95. Let M be a c-sized totally imperfect separable metrizable space such that

M ×M = M . Then the ordinal c+ embeds in K(Sub(M)).

More precisely, there is a family {Mα : α < c} of subspaces of M such that if β < α then

(i) K(Mα) ≥T K(Mβ) but (ii) K(Mβ) 6≥T Mα.

Proof. For α ∈ c+ we will define a subspace Mα of M . We will arrange that for β < α the

space Mβ is homeomorphic to a closed subspace of Mα — and so K(Mα) ≥T K(Mβ) — but

K(Mβ) 6≥T Mα.

Let M0 be any subspace of M . And suppose {Mβ : β < α} have been constructed so

that β′ < β < α implies K(Mβ) ≥T K(M ′
β), but K(M ′

β) 6≥T Mβ.

We construct Mα as follows. Let Cα = {Mβ : β < α}. Then JM(Cα) ⊆ M is an upper

bound of {K(Mβ) : β < α}. Pick distinct x, y ∈ M and define Mα = (JM(Cα)× {x}) ∪

(M+
α × {y}) ⊆ M , where M+

α is a subspace of M obtained from Lemma 94 applied to M

and the family {Mβ : β < α}. Observe that, for each β < α, we see that K(Mβ) ≤T
K(JM(Cα)) ≤T K(Mα) since JM(Cα) is a closed subspace of Mα; also, by Lemma 94,

K(Mβ) 6≥T M+
α — and so K(Mβ) 6≥T Mα, as required.

3.2 THE STRUCTURE OF K(Sub(ω1))

The key to the results on K(Sub(R)) was Lemma 42. Since K(ω1) is first countable, and

therefore Fréchet-Urysohn, Lemma 42 still applies: for S, T ⊆ ω1, K(S) ≥T K(T ) if and

only if there is a closed subset C of K(ω1)2 such that C[K(S)] = K(T ). But there are 2ω1-

many closed subsets of K(ω1)2, which is more than there are points in ω1. Therefore the

diagonalization constructions from Section 3.1 are unlikely to work and we resort to different

approaches.
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3.2.1 The Largest Element, Antichains and Size of K(Sub(ω1))

We showed earlier that ωω × [ω1]<ω is an upper bound of K(Sub(ω1)). But it is, in fact, the

largest element of K(Sub(ω1)). This implies that the additivity is not defined, cofinality is 1

and all calibre properties are present.

Proposition 96. Let D be a subspace of ω1 that consists of all isolated points of ω1 and

the point ω · ω. Then K(D) = ωω × [ω1]<ω, and therefore [K(D)] is the largest element of

K(Sub(ω1)).

Proof. Note that D = F ⊕ I, where F is the metric fan and I has the discrete topology on a

set of size ω1. Hence K(D) is Tukey equivalent to K(F )×K(I), which is ωω × [ω1]<ω.

If ω1 = d then Lemma 55 implies that [ω1]<ω and ωω × [ω1]<ω are Tukey equivalent, so

K(D) and K(I) are Tukey equivalent, where I is the set of isolated points of ω1, and K(I)

is also in the maximal class.

As for antichains, evidently, K(Sub(ω1)) has size≤ 2ω1 . To construct a 2ω1-sized antichain

in K(Sub(ω1)), Todorčević proved in [58] the following theorem.

Theorem 97 (Todorčević). Let S and S ′ be unbounded subsets of ω1. Then K(S) ≥ K(S ′)

implies that S\S ′ is non-stationary.

In the proof the author shows that if S\S ′ is stationary then for any function g : K(S ′)→

K(S) there is a collection of singletons in K(S ′) such that their image under g is bounded.

So, in fact, the author proves that if S\S ′ is stationary, then there is no relative Tukey

map from S ′ to K(S). Now the fact that ω1 splits into ω1-many pairwise disjoint stationary

subsets gives the following theorem.

Theorem 98 (Todorčević). There is a 2ω1-sized family, A, of subsets of ω1 such that for

distinct S and T from A we have K(S) 6≥T (T,K(T )) and K(T ) 6≥T (S,K(S)).

Corollary 99. |K(Sub(ω1))| = 2ω1.
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3.2.2 Special Classes in K(Sub(ω1))

The subsets of ω1 fall into various classes: locally compact (or not), bounded (or not),

stationary (or not), co-stationary (or not). We would like to see if these correspond to

classes in K(Sub(ω1)). First we prove a proposition that singles out the most problematic

class.

Proposition 100. Let S be a subset of ω1 that contains a cub set and S\S is unbounded.

Then K(S) =T Σ(ωω1).

Proof. Fix S as above and let C ⊆ S be a cub set. We want to construct a cub set C ′ =

{βα : α ∈ ω1} ⊆ C such that for each α ∈ ω1, K([βα, βα+1] ∩ S) =T ωω. Suppose we

have constructed the desired βγ for each γ < α. First let α be a successor. Then since

(S\S) ∩ (α − 1, ω1) is not closed, there exists βα ∈ C such that [βα−1, βα] ∩ S contains a

metric fan as a closed subspace and therefore K([βα−1, βα] ∩ S) =T ω
ω. If α is a limit, let

βα = sup{βγ : γ < α}. This sequence clearly works.

For each K ∈ K(S), there exists the smallest αK ∈ ω1 such that K =
⋃
γ<αK

K ∩

[βγ, βγ+1]. Clearly, each K ∩ [βγ, βγ+1] ∈ K([βγ, βγ+1]∩S). And for any choice of α ∈ ω1 and

Kγ ∈ K([βγ, βγ+1] ∩ S) for γ < α,
⋃
γ<αKγ ∈ K(S).

We now show that K(S) =T Σ((ωω)ω1). Since Σ((ωω)ω1) is clearly order-isomorphic to

Σ(ωω1), that will complete the proof.

To show K(S) ≥T Σ((ωω)ω1), fix Tukey quotients φα : K([βα, βα+1] ∩ S) → ωω for each

α ∈ ω1. Define φ : K(S) → Σ((ωω)ω1) by φ(K) = Πγ<αKφγ(K ∩ [βγ, βγ+1]). Clearly, φ is

order-preserving. It is also cofinal since for any choice of functions fγ ∈ ωω for γ < α, there

is Kγ ∈ K([βγ, βγ+1] ∩ S) such that φγ(Kγ) ≥ fγ. Then φ(
⋃
γ<αKγ) ≥ Πγ<αfγ.

For the other direction, fix Tukey quotients φ′α : ωω → K([βα, βα+1]∩S) for each α ∈ ω1.

Define φ′ : Σ((ωω)ω1)→ K(S) by φ′(Πγ<αKfγ) =
⋃
γ<α φ

′(fγ). Clearly, φ′ is order-preserving

and cofinal.

The next proposition was proven in [26].

Proposition 101. For any separable metrizable M , K(M) �T Σ(ωω1).
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Lemma 102 (Tukey classes in K(Sub(ω1))). For each S ⊆ ω1, K(S) falls into one of the

following Tukey equivalence classes.

(1) [1]T = {K(S) : S is compact};

(2) [ω]T = {K(S) : S is bounded, S\S is closed and non-empty};

(3) [ω1]T = {K(S) : S is closed and unbounded};

(4) [ω1 × ω]T = {K(S) : S is unbounded, S\S is closed, bounded and non-empty};

(5) [ωω]T ⊇ {K(S) : S is bounded, S\S is not closed} and with equality if ω1 < b;

(6) [ω1 × ωω]T ⊇ {K(S) : S is unbounded, S\S is not closed but bounded} with equality if

ω1 < b;

(7) [[ω1]<ω]T ⊇ {K(S) : S is unbounded, not stationary, S\S is non-empty and closed} with

equality if ω1 < d;

(8) [[ω1]<ω×ωω]T ⊇ {K(S) : S is unbounded, not stationary, S\S is not closed} with equality

if ω1 < d;

(9) [Σ(ωω1)]T = {K(S) : S is stationary, not co-stationary, S\S is unbounded};

(10) 2ω1-many Tukey classes of the form K(S), where S is stationary and co-stationary.

The classes are ordered as follows:

(a) 1 <T ω <T ω
ω;

(b) 1 <T ω1 <T ω1 × ω <T ω1 × ωω, also ω and ω1 are incomparable;

(c) ω <T ω1 × ω, ω <T [ω1]<ω and ω1 <T [ω1]<ω;

(d) ω1 �T ω
ω and ω1 <T ω

ω if and only if ω1 = b;

(e) ω1 × ω �T ω
ω and ω1 × ω <T ω

ω if and only if ω1 = b;

(f) ωω �T [ω1]<ω and ωω <T [ω1]<ω if and only if ω1 = d;

(g) ωω ≤T ω1 × ωω with equality if and only if ω1 = b;

(h) ω1 × ωω �T [ω1]<ω and ω1 × ωω <T [ω1]<ω if and only if ω1 = d;

(i) [ω1]<ω ≤T [ω1]<ω × ωω with equality if and only if ω1 = d;

(j) ω1 × ωω <T Σ(ωω1) <T [ω1]<ω × ωω;

(k) If S is stationary and co-stationary, then ω1 × ωω <T K(S) <T [ω1]<ω × ωω;

(l) If S is stationary and co-stationary, then K(S) �T Σ(ωω1);

(m) [ω1]<ω �T Σ(ωω1) and for stationary, co-stationary S, [ω1]<ω �T K(S).
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Proof. (a) Clearly, 1 ≤T P for any poset P . The map ψ : ω → ωω given by ψ(n) =

(n, 0, 0, 0, . . .) is a Tukey map. But since cof(1) = 1 < cof(ω) = ℵ0 < cof(ωω) = d we get

that the inequalities are strict.

(b) We know ω1 ≤T ω1 × ω, but since ω1 has no countable unbounded subsets, there

cannot be a Tukey map from ω1 × ω to ω1. So, 1 <T ω1 <T ω1 × ω. The map ψ :

ω1 × ω → ω1 × ωω defined by ψ((α, n)) = (α, (n, 0, 0, 0, . . .)) witnesses ω1 × ω ≤T ω1 × ωω.

Since both ω and ω1 have calibre (ω1, ω1, ω) then ω1 × ω must also have this calibre. So if

ω1 × ω ≥T ω1 × ωω, ω1 × ωω must have calibre (ω1, ω1, ω) as well. But ω1 × ωω has calibre

(ω1, ω1, ω) if and only if ωω does, which happens if and only if ω1 < b. However, when

ω1 < b, cof(ω1 × ω) = ℵ1 < d = cof(ω1 × ωω) and we cannot have ω1 × ω ≥T ω1 × ωω.

Since ω1 does not have countable unbounded subsets, ω �T ω1. And since cof(ω) <

cof(ω1), ω1 �T ω.

(c) Clearly, ω <T ω1 × ω and ω <T [ω1]<ω. The map ψ : ω1 → [ω1]<ω defined by

ψ(α) = {α} is a Tukey map and the strict inequality, ω1 <T [ω1]<ω, follows from the fact

that ω1 does not have countable unbounded subsets.

(d) That ω1 �T ωω, again, follows from the fact that ω1 does not have countable un-

bounded subsets. While ω1 <T ωω if and only if ω1 = b is immediate from the spectrum

results for ωω.

(e) Since ω1 × ω ≥T ω1 and ω1, ωω are Dedekind complete, ω1 × ω ≥T ωω implies

ω1×ω ≥T ω1×ωω, which is not true. So ω1×ω �T ω
ω. Also, since ω <T ω

ω, ω1×ω <T ω
ω

if and only if ω1 <T ω
ω, which happens if and only if ω1 = b.

(f) ωω has calibre (ω1, ω) but [ω1]<ω does not, hence ωω �T [ω1]<ω. We know ωω <T

[ω1]<ω if and only if cof(ωω) ≤ ω1, which happens if and only if ω1 = d.

(g) Clearly, ωω ≤T ω1 × ωω. If ω1 < b then ω1 �T ωω but ω1 ≤T ω1 × ωω and ωω 6=T

ω1×ωω. If ω1 = b, then ωω contains an uncountable subset U = {fα : α < ω1} such that no

uncountable subset of U is bounded. Define ψ : ω1× ωω → ωω by ψ((α, f)) = fα + f , which

is clearly a Tukey map and ω1 × ωω ≤T ωω.

(h) Since every countable subset of ω1 is bounded and ωω has calibre (ω1, ω), ω1 × ωω

also has calibre (ω1, ω), while [ω1]<ω does not have it, hence ω1 × ωω �T [ω1]<ω. We know

ω1 × ωω <T [ω1]<ω if and only if cof(ω1 × ωω) ≤ ω1, which happens if and only if ω1 = d.
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(i) Clearly, [ω1]<ω ≤T [ω1]<ω×ωω. And the cofinalities of the two posets are equal if and

only if ω1 = d.

1

ω

ω1

ω1 × ω ω1 × ωω = ωω [ω1]<ω × ωω = [ω1]<ω

S stationary,

co-stationary

Σ(ωω1)

S compact

S bounded, S\S 6= ∅ closed

S closed, unbounded

S unbounded, S\S 6= ∅ closed and bounded

S unbounded, non-stationary

S\S not closed but bounded

S stationary, not co-stationary, S\S unbounded.

Figure 1: Classes of K(S) under ω1 = d

(j) We have already proved that Σ(ωω1) =T K(S), where S is stationary, not co-stationary

and S\S is unbounded. In this case S\S is not closed and therefore S contains a metric

fan as a closed subset. So ωω ≤T Σ(ωω1). On the other hand, for every unbounded S,

ω1 ≤T K(S). So, ω1 × ωω ≤T Σ(ωω1). If Σ(ωω1) ≤T ω1 × ωω then Σ(ωω1) ≤T K(Q), which

contradicts Proposition 101. For Σ(ωω1) <T [ω1]<ω×ωω, recall that [ω1]<ω×ωω is the largest

element of all K(S)’s and the inequality is strict because [ω1]<ω ≤T K(S) if and only if S

is not stationary. If ω1 < b, then ω1 × ωω has calibre (ω1, ω1, ω) but Σ(ωω1) does not. So,

ω1 × ωω < Σ(ωω1).

(k) For a stationary, co-stationary S, S\S, is not closed and by the same argument as in

(j), ω1 × ωω ≤T K(S) <T [ω1]<ω × ωω. To show that the first inequality is also strict, recall

that ω1 × ωω ≤T K(Q). Therefore K(S) ≤T ω1 × ωω implies S ≤T K(Q) and S should not

be co-stationary, but it is.

(l) Let S ′ be stationary and not co-stationary and suppose K(S) ≤T K(S ′). Then

by Todorčević’s theorem S ′\S must be non-stationary. But S ′\S = S ′ ∩ ω1\S and since

S ′ contains a cub set and ω1\S is stationary, their intersection should also be stationary.
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Therefore we get K(S) �T K(S ′) =T Σ(ωω1).

(m) This follows from Todorčević’s theorem that [ω1]<ω ≤T K(S) if and only if S is not

stationary.

1

ω

ω1

ω1 × ω ω1 × ωω = ωω

[ω1]<ω

[ω1]<ω × ωω

S stationary,

co-stationary

Σ(ωω1)

S compact

S bounded, S\S 6= ∅ closed

S closed, unbounded

S unbounded, S\S 6= ∅ closed and bounded

S unbounded, non-stationary, S\S 6= ∅ closed

S unbounded, non-stationary, S\S 6= ∅ closed

S\S not closed but bounded

S stationary, not co-stationary, S\S unbounded.

Figure 2: Classes of K(S) under ω1 = b < d

Claims (1), (2) and the ‘inclusion’ part of (5) are clear and these cases account for

all bounded S’s. So for the rest of the proof all S’s are unbounded and therefore ω1 ≤T
K(S). For (3), notice that any closed unbounded set S is homeomorphic to ω1 and therefore

K(S) =T ω1. To show that nothing else is in this class, notice that if S is not cub, then S\S

is non-empty and therefore K(S) contains a countable unbounded subset.

For (4), if S\S is closed bounded and non-empty, then S = N ⊕ C where N is bounded

and locally compact and C is cub. So K(S) =T K(N) × K(C) =T ω × ω1. To show that

nothing else is in this class, note that the case when S\S = ∅ was already accounted for

(then S is compact or a cub set). If S\S is not closed then ωω ≤T K(S) and if S\S is closed

and unbounded then S is not stationary and K(S) ≥T [ω1]<ω.
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For (6)-(8) we will show that the inclusions hold. The inclusion in (9) was already proven

in the previous lemma. The class of sets in (10) is simply everything left over and it contains

2ω1-many classes by Todorčević’s theorem. Parts (a)-(m) already specify positions of the

classes and imply the ‘equality’ parts.

For (6), if S\S is bounded but not closed, then S = N ⊕ C where N is bounded and

non-locally compact and C is cub. So K(S) =T K(N)×K(C) =T ω
ω × ω1.

For (7), if S\S is closed we get that K(S ∩ [0, α]) =T ω for each α < ω1. Since K(S) =⋃
α<ω1

K(S ∩ [0, α]), we get that K(S) ≤T [ω1]<ω. Since S is not stationary, [ω1]<ω ≤T K(S).

For (8), if S\S is not closed we get that ωω ≤T K(S) and since S is not stationary,

[ω1]<ω ≤T K(S). Since [ω1]<ω × ωω is the largest element in K(Sub(ω1)), [ω1]<ω × ωω =T

K(S).

1

ω

ω1

ω1 × ω

ωω

ω1 × ωω

[ω1]<ω

[ω1]<ω × ωω

S stationary,

co-stationary

Σ(ωω1)

S compact

S bounded, S\S 6= ∅ closed

S closed, unbounded

S unbounded, S\S 6= ∅ closed and bounded

S unbounded, non-stationary, S\S 6= ∅ closed

S unbounded, non-stationary, S\S not closed

S bounded, S\S not closed

S unbounded, S\S not closed but bounded

S stationary, not co-stationary, S\S unbounded

Figure 3: Classes of K(S) under ω1 < b

The Figures 3.2.2, 3.2.2 and 3.2.2 summarize Lemma 102 in the three cases when ω1 = d,

ω1 = b < d and ω1 < b, respectively. The lines indicate that node to the right is strictly
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above the one on the left. Solid lines indicate there is nothing strictly between the connected

classes. Text in the boxes describe the corresponding equivalence classes. Note that the

maximal antichain in Todorčević’s theorem falls in the ‘stationary, co-stationary’ category.

3.3 COMPARING K(M) AND K(S)

In this section we investigate under what circumstances we have K(S) ≥T K(M) and

K(M) ≥T K(S). First we consider for which M and S we have K(S) ≥T K(M). The

section above gives us some information about this situation but before we can make use of

the special classes in K(Sub(ω1)) we give a lemma that was proved in [21] for K(Q). The

argument, however, works just as well for an arbitrary M with K(ωω) < K(M).

Lemma 103. If M is separable metrizable and K(ωω) < K(M) then K(M) �T ω1 × ωω.

Proof. Let ψ : K(M)→ ω1×ωω be any function and let φ1 and φ2 be its components. Since

ωω =T K(ωω) < K(M), ψ2 cannot be a Tukey map, so there exists, U , an unbounded subset

of K(M) and f ∈ ωω such that ψ2(K) ≤ f for each K ∈ U . Let D be a countable dense

subset of
⋃
U and for each x ∈ D pick Kx ∈ U with x ∈ Kx. Then

⋃
U = {Kx : x ∈ D}

and therefore {Kx : x ∈ D} is unbounded in K(M). Since {Kx : x ∈ D} is countable,

ψ1({Kx : x ∈ D}) is bounded in ω1. Therefore ψ({Kx : x ∈ D}) is also bounded. This

implies ψ is not a Tukey map and we are done.

Now all relations between equivalence classes of K(Sub(ω1)) that lie below ω1×ωω and 1,

ω and ωω are depicted on the diagrams for classes of K(Sub(ω1)). We know that ω ≤ [ω1]<ω

and K(M) ≤T [ω1]<ω if and only if cof(K(M)) ≤ ω1. So for any non-locally compact

M we need ω1 to be at least d for K(M) ≤T [ω1]<ω to be possible. We also know that

K(Q) ≤T [ω1]<ω × ωω and for ω1-sized totally imperfect B, K(B) ≤T [ω1]<ω × ωω.

On the other hand, the K(M) ≥T K(S) situation does not happen very often. Since

K(M) always has calibre (ω1, ω), it is not possible to have K(M) ≥T [ω1]<ω×ωω or K(M) ≥T
[ω1]<ω. Proposition 101 says that K(M) ≥T Σ(ωω1) never happens. The next lemma further

narrows down the possibilities.

72



Lemma 104. Suppose S ⊆ ω1 is unbounded and there is separable metric M such that

K(M) ≥T (S,K(S)). Then S is not co-stationary.

Proof. Suppose φ : K(M)→ K(S) is order-preserving and the image of φ covers S. Then as

in Proposition 2.6 of [11] let B be a countable base of M that is closed under finite unions

and finite intersections and for each B ∈ B define G(B) =
⋃
{φ(K) : K ⊆ B, B ∈ K(M)}.

There is x ∈ M such that for each x ∈ B ∈ B, G(B) is unbounded in ω1. (Otherwise

B′ = {B ∈ B : G(B) is bounded} is also a base of X that is closed under finite intersections

and unions. Therefore the G(B)’s cover ω1, but this is a contradiction since there are only

countably many of them).

For a cardinal θ let H(θ) be the set of all sets with < θ-sized transitive closure [42].

We know that if θ is regular and uncountable, all axioms of ZFC, with the exception of the

Power Set Axiom, are true in H(θ).

Suppose S is co-stationary and θ is a regular cardinal large enough so that H(θ) contains

all sets we need in this argument. As in the proof of Lemma 1 in [58], let E be a countable

elementary submodel of H(θ) such that φ, S,M,B, G ∈ E and ω1 ∩ E ∈ ω1\S. (For the

last part: construct a sequence of countable elementary submodels of H(θ), {Eα : α ∈ ω1},

so that for each successor α = β + 1, φ, S,M,B, G ∈ Eα, Eβ ⊆ Eα and for each limit γ,

Eγ =
⋃
α<γ Eα. Then {ω1 ∩ Eα : α ∈ ω1} is a cub set and therefore meets ω1\S).

By elementarity there is x ∈M∩E with decreasing local base {Bn : n ∈ ω} ⊆ B at x such

that each G(Bn) is unbounded in ω1. Then, by elementarity, for each n and α ∈ ω1∩E, since

G(Bn) is unbounded there is Kn,α ∈ K(M)∩E such that Kn,α ⊆ Bn and sup(φ(Kn,α)) ≥ α.

Kn,α ∈ E and Kn,α is countable, so Kn,α ⊆ ω1 ∩ E. Pick {αn : n ∈ ω1} such that {αn}n
converges to ω1 ∩E and let K = {x} ∪

⋃
n∈ωKn,αn . Then K ∈ K(M) and φ(Kn,αn) ⊆ φ(K)

for each n. But this contradicts φ(K) ∈ K(S) and ω1 ∩N /∈ S.

Proposition 105. Let S be a subset of ω1 that contains a cub set. Then ω1×ω ≥T (S,K(S)).

Hence K(Q) ≥T (S,K(S)).

Proof. Fix S ⊆ ω1 and a cub set C ⊆ S. Let C = {βα : α ∈ ω1} be the increasing

enumeration of C. For each α ∈ ω1 enumerate [βα, βα+1] ∩ S as {xα,n : n ∈ ω}, with

repetitions if necessary, and let Fα,n = {xα,0, xα,1, . . . , xα,n}.
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Define φ : ω1 × ω → K(S) by φ((α, n)) =
⋃
γ≤α Fγ,n. Since C is a cub set, the only limit

points of
⋃
γ≤α Fγ,n outside

⋃
γ≤α Fγ,n are in C, so φ((α, n)) is indeed in K(S). Clearly, φ is

order-preserving and the image covers S.

Corollary 106. For S ⊆ ω1, there exists a separable metrizable M with K(M) ≥T S if and

only if S is in the cub filter.

Corollary 107. For S ⊆ ω1, there exists a separable metrizable M with K(M) ≥T K(S) if

and only if S\S is bounded.

Proof. If S\S is bounded then S = C ⊕N , where C is a closed unbounded set or an empty

set and N is countable (i.e. S\S is bounded). Then, since cub sets are homeomorphic

to ω1, K(Q) ≥T K(C). Since N is Polish, ωω ≥T K(N). Now set M = Q and we have

K(S) = K(C ⊕N) = K(C)×K(N) ≤T K(Q)×K(ωω) ≤T K(Q)×K(Q) =T K(Q).

On the other hand, if K(M) ≥T K(S) for some M , then S contains a closed unbounded

set. If in addition S\S is unbounded, K(S) =T Σ(ωω1), which contradicts Proposition 101.
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4.0 APPLICATIONS

The results of this section show why the relative Tukey order is the natural setting to study

posets of the form K(X). First we establish a connection between the relative Tukey order

and function spaces, and use the antichains in K(Sub(R)) and K(Sub(ω1)) to construct

large families of ‘incomparable’ function spaces. Next we explore the connection between

the relative Tukey order and the Lindelöf Σ property established in [11] and present two

applications.

4.1 FUNCTION SPACES Cp AND Ck

For any space X let C(X) be the set of all real-valued continuous functions on X. Let 0 be

the constant zero function on X. For any function f from C(X), subset E of X and ε > 0

let B(f, E, ε) = {g ∈ C(X) : |f(x) − g(x)| < ε ∀x ∈ E}. Write Cp(X) for C(X) with the

pointwise topology (so basic neighborhoods of an f in Cp(X) have the form B(f, F, ε) where

F is finite and ε > 0). Write Ck(X) for C(X) with the compact-open topology (so basic

neighborhoods of an f in Cp(X) have the form B(f,K, ε) where K is compact and ε > 0).

The spaces Cp(X) and Ck(X) are connected to K(X). For Ck(X) this is evident from

the definition of the basic open sets, and the connection is very tight and topological.

Let Z be a space, and z a point in Z. Write T Zz for the family of all neighborhoods of z

in Z ordered by reverse inclusion. The next lemma is a simple preservation result for T Zz .

Lemma 108. If f is a continuous open surjection of X to Y , then for any x from X, we

have T Xx ≥T T Yf(x).
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Similarly, if Y embeds in X then, for any y from Y , we have T Xy ≥T T Yy .

Proof. Given f define φ1 : T Xx → T Yf(x) by φ1(U) = f(U). Note that φ1 is well-defined

because f is open and onto, and then by continuity of f , φ1 is obviously a Tukey quotient,

T Xx ≥T T Yf(x).

If Y is a subspace of X and y is in Y , then define φ2 : T Xy → T Yy by φ2(U) = U ∩ Y .

Again it is immediate that φ2 witnesses T Xx ≥T T Yf(x).

Lemma 109. For any space X we have that K(X)×ω is Tukey equivalent to T Ck(X)
0 , where

0 is the constant zero function.

If X is not strongly ω-bounded, then K(X) is Tukey equivalent to T Ck(X)
0 .

Proof. Observe first that B = {B(0, K, 1/n) : K ∈ K(X), n ∈ ω\{0}} is cofinal in T Ck(X)
0 .

It is easy to check that B(0, K ′, 1/n′) ⊆ B(0, K, 1/n) if and only if K ⊆ K ′ and n ≤ n′,

and hence B is clearly Tukey equivalent to K(X)× ω. Now recall (Lemma 3) that if C is a

cofinal subset of a directed set P then P and C are Tukey equivalent.

When X is not strongly ω-bounded, K(X) has countable additivity (Lemma 39), and

K(X) =T K(X)× ω (Lemma 16(2)).

Recalling that Ck(Y ) is homogeneous, so T Ck(Y )
0 =T T Ck(Y )

f for every f from Ck(Y ), we

combine the previous two lemmas.

Proposition 110. Suppose X and Y are spaces such that either there is a continuous open

surjection of Ck(X) onto Ck(Y ) or Ck(Y ) embeds in Ck(X).

Then K(X) × ω ≥T K(Y ) × ω, and if neither X nor Y are strongly ω-bounded spaces

then K(X) ≥T K(Y ).

Proposition 110, along with the 2c-sized antichain of Theorem 87 directly implies the

following.

Theorem 111. There is a 2c-sized family A of separable metrizable spaces such that when-

ever M,N are distinct elements of A, then Ck(M) is not the continuous open image of

Ck(N) and does not embed in Ck(N).
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As in the case of K(Sub(R)), we may use antichains to derive families of pairwise non-

homeomorphic Ck(S)-s. As the spaces that give the antichain in Theorem 98 are not ω-

bounded we immediately get the following corollary.

Corollary 112. There is 2ω1-sized family S of subsets of ω1 such that if S and T are distinct

elements of S, Ck(S) is not a continuous open image of Ck(T ) and does not embed in Ck(T ).

The connection between K(X) and Cp(X) is more indirect, and associated with the linear

topological structure. The weak dual of Cp(X) is denoted Lp(X). The space X embeds in

Lp(X) as a closed subspace which is a Hamel basis. Let X̂ =
⊕

n∈ω(Xn × Rn). There is a

natural continuous map p : X̂ → Lp(X), namely p((x1, . . . , xn), (λ1, . . . , λn)) =
∑n

i=1 λixi.

As X is a Hamel basis, p is surjective. (See [4] for proofs of all these claims about Cp(X)

and Lp(X).)

Proposition 113. Let X and Y be spaces.

(1) If X is not strongly ω-bounded and there is a linear embedding of Cp(Y ) into Cp(X)

then (F(X),K(X)) ≥T (F(Y ),K(Y )).

(2) If X and Y are metrizable and there is a continuous linear surjection of Cp(X) onto

Cp(Y ) then (a) K(X) ≥T K(Y ) and (b) (F(X),K(X)) ≥T (F(Y ),K(Y )).

Proof. For claim (1), suppose ψ : Cp(Y ) → Cp(X) is a linear embedding. Then the dual

map ψ∗ : Lp(X) → Lp(Y ) is a continuous linear surjection. Since Y is a closed subspace of

Lp(Y ), combining the map p from X̂ onto Lp(X), ψ∗ and tracing down onto Y , it follows

that (F(X̂),K(X̂)) ≥T (F(Y ),K(Y )). We verify that (F(X̂),K(X̂) =T (F(X),K(X)).

Since X embeds as a closed set in X̂, evidently (F(X̂),K(X̂)) ≥T (F(X),K(X)). The

reverse Tukey quotient also holds. To see this first define φ1 : K(X) × ω → K(X̂) by

φ1(K,n) =
⊕

m≤n(Km × [−n,+n]m). Then it is straightforward to verify φ1 is a rela-

tive Tukey quotient of (F(X) × ω,K(X) × ω) to (F(X̂),K(X̂)). As X is not ω-bounded,

F(X) has countable additivity in K(X) (Lemma 39), so according to Lemma 16, we have

(F(X),K(X)) ≥T (F(X)×ω,K(X)×ω). Combining these two relative reductions gives the

claim.

For claim (2) we use [6]. Let ψ be a continuous linear surjection of Cp(X) onto Cp(Y ).
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For any y in Y , let ψy be the element of Lp(X) obtained by setting ψy(f) = ψ(f)(y). As

X is a Hamel basis for Lp(X) there is a finite set, supp y = {x1, . . . , xn}, of elements of

X such that ψy is a linear combination of the xi’s. Lemma 3.1 of [6] says that if K is a

compact subset of X then the set φ(K) = {y ∈ Y : supp y ⊆ K} is a compact subset of Y .

Clearly φ is an order-preserving map from K(X) to K(Y ). The map φ is cofinal, since by

Proposition 2.2 of [6], the set suppL =
⋃
{supp y : y ∈ L} has a compact closure in X, for

any L ∈ K(Y ) and, clearly, L ⊆ φ(suppL). This argument was given on the page 881 of [6].

We have proven part (a) of claim (2).

To establish part (b) of claim (2), we show φ(F(X)) is cofinal for F(Y ) in K(Y ). Take

any finite subset G of Y . Set F =
⋃
y∈G supp y. Then F is a finite subset of X, and clearly,

by definition of φ, we have G ⊆ φ(F ).

Proposition 113, along with the 2c-sized antichain of Theorem 87 directly imply the

following.

Theorem 114. There is a 2c-sized family A of separable metrizable spaces such that when-

ever M,N are distinct elements of A, then Cp(M) is not the continuous linear image of

Cp(N) and does not linearly embed in Cp(N).

Marciszewski in his article in [32] gave an example of a c-sized family of compact metriz-

able spaces such that if M,N are distinct elements of the family then Cp(M) and Cp(N) are

not linearly homeomorphic.

To get a similar result for Cp(S)-s, we need to prove a variant of Lemma 113 that works

for subspaces of ω1.

Lemma 115. Let S and T be subsets of ω1.

(1) If S is not closed and there is linear embedding of Cp(T ) into Cp(S) then (F(S),K(S)) ≥T
(F(T ),K(T )).

(2) If S and T are co-stationary and there is a continuous linear surjection of Cp(S)

onto Cp(T ) then (a) K(S) ≥T K(T ) and (b) (F(S),K(S)) ≥T (F(T ),K(T )).

Proof. Note that if S is not closed then it is not ω-bounded and Lemma 113 implies the first

claim.
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For the second claim, we may not use results from [6] since S and T do not have to

be metrizable. But there are similar results for arbitrary spaces in [3]. We use the same

definitions as in the proof of Lemma 113. Let X and Y be any spaces such that there is a

continuous linear surjection from Cp(S) onto Cp(T ). Then for any compact L ⊆ Y , suppL

is a compact subset of X and for any closed and functionally bounded K ⊆ X, L = {y ∈ Y :

supp y ⊆ K} is closed and functionally bounded. Here A ⊆ X is called functionally bounded

if and only if f(A) is bounded for any f ∈ Cp(X). For subsets of co-stationary S ⊆ ω1 being

closed and functionally bounded is equivalent to being compact. To see this, take a closed

subset of S, say C. If C is not closed in ω1, then C contains an increasing sequence that

converges to a point outside S and we can find f ∈ Cp(S) such that f(C) is unbounded.

Therefore, C must be closed in ω1 and since S is co-stationary it must be bounded. So C

is compact. Now the map φ : K(S) → K(T ) defined by K 7→ {y ∈ Y : supp y ⊆ K} is

well-defined, order-preserving and since for each L ∈ K(T ), L ⊆ φ(suppL), it is also cofinal.

Just as in the proof of Lemma 113, φ(F(S)) is cofinal for F(T ) in K(T ), which establishes

part (b) of claim (2).

Corollary 116. There is 2ω1-sized family S of subsets of ω1 such that if S and T are distinct

elements of S, then there is no linear surjection of Cp(S) onto Cp(T ) and no linear embedding

of Cp(S) in Cp(T ).

4.2 ORDER PROPERTIES OF K(X)

There is a strong connection between the Lindelöf Σ property and the relative Tukey order.

Recall that a space is Lindelöf Σ if it has a countable network modulo some compact cover

(W is a network modulo C if and only if for each C ∈ C and open U with C ⊆ U , there

exists W ∈ W such that C ⊆ W ⊆ U). Also recall another characterization of Lindelöf Σ

spaces: a space X is Lindelöf Σ if and only if there is a separable metrizable space M and

some space Z such that M is a perfect image of Z and X is a continuous image of Z. This

equivalent condition immediately implies that K(M) ≥T (X,K(X)) [10].
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Lemma 117. If X is Lindelöf Σ, then there is a separable metrizable M such that K(M) ≥T
(X,K(X)).

Proof. Pick a separable metrizable M and a space Z such that there is a continuous onto map

f : Z → X and a perfect map g : Z →M . Define φ : K(M)→ K(X) by φ(K) = f(g−1(K)).

Since g is perfect, g−1(K) is compact and therefore φ(K) is indeed an element of K(X).

Since f is onto, the image of φ covers X and, clearly, φ is order-preserving.

Observe that if K(ω) ≥T (X,K(X)) then X is σ-compact, and hence easily seen to be

Lindelöf Σ. However, in general the converse to the preceding lemma is not true. Indeed

when we move up to the next level of the Tukey hierarchy, K(ωω), we know that K(ωω) ≥T b,

and the ordinal space b is not Lindelöf, and so not Lindelöf Σ.

Nevertheless it was proven in [11] that a weak converse of this lemma does hold: if there

is a separable metrizable M with K(M) ≥T (X,K(X)), then X has a countable network

modulo some cover of X with countably compact sets (X is ‘almost’ Lindelöf Σ).

Further, it was shown in [11] that when X = Cp(Y ) we have the full converse: there

exists separable metrizable M with K(M) ≥T (Cp(Y ),K(Cp(Y ))) if and only in Cp(Y ) is

Lindelöf Σ.

Next we investigate the situation with the full Tukey relation, K(M) ≥T K(X), rather

than the relative case, K(M) ≥T (X,K(X)). To do so we introduce a natural strengthening

of the Lindelöf Σ property, ‘Lindelöf cofinally Σ’. We show K(M) ≥T K(Cp(X)) for some

separable metrizable M if and only if Cp(X) is Lindelöf cofinally Σ. Then we answer a

question of Cascales, Orihuela and Tkachuk, [11], by showing that if X is compact and

K(M) ≥T K(Cp(X)) then X is countable.

In the last section we move from examining how the order structure of the compact

subsets of Cp(X) affects X, to the inverse problem: how the order structure of X impacts

K(Cp(X)).
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4.2.1 Lindelöf Σ Property for Cp(Y )

Let a space X be called Lindelöf cofinally Σ if and only if it has a countable network modulo

some compact cover that is cofinal in K(X). First we show that, as in the case of the Lindelöf

Σ property, there is a condition equivalent to the Lindelöf cofinally Σ property that is closely

related to the Tukey ordering.

Lemma 118. A space X is Lindelöf cofinally Σ if and only there is a space Z and a separable

metrizable M such that M is a perfect image of Z and X is a compact-covering image of Z.

Proof. Suppose there is Z, separable metrizable M , a perfect f : Z → M and a compact-

covering g : Z → X. Suppose B is a countable base of M that is closed under finite unions

and intersections. Let C = {g(f−1(K)) : K ∈ K(M)} and W = {g(f−1(B)) : B ∈ B}. Then

C is a cofinal subcollection of K(X) and W is a network modulo C.

Now suppose X is Lindelöf cofinally Σ and W is a countable network modulo C, where

C is some cofinal subset of K(X). Let D(W) be W with the discrete topology. Define

M = {m ∈ D(W)ω : ∃ C ∈ C, C =
⋂
{m(n) : n ∈ ω}}. Then M is separable and

metrizable. For each m ∈ M pick Cm ∈ C with Cm =
⋂
{m(n) : n ∈ ω}. Let βX be the

Stone-Čech compactification of X and consider a subset of M × βX, Z =
⋃
m∈M{m} ×Cm.

The space Z is closed in M × βX. Since βX is compact, πM is a closed map and therefore

f = πM |Z is a perfect map. On the other hand, g = πX |Z is compact-covering since

g({m} × Cm) = Cm and the Cm’s are cofinal in K(X).

Lemma 119. If X is Lindelöf cofinally Σ, then there is a separable metrizable M with

K(M) ≥T K(X).

Proof. As in the proof of Lemma 117 pick separable metrizable M and a space Z such that

there is a compact-covering map f : Z → X and a perfect map g : Z → M . Define

φ : K(M) → K(X) by φ(K) = f(g−1(K)). As before, φ indeed maps into K(X) and φ is

order-preserving. To show cofinality, let K be a compact subset of X. Since f is compact-

covering there is L ∈ K(Z) such that f(L) = K. Then g(L) is a compact subset of M and

φ(g(L)) = f(g−1(g(L))) ⊇ f(L) = K.
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Corollary 120. Cp(X) is Lindelöf cofinally Σ if and only if there is a separable metrizable

M with K(M) ≥T K(Cp(X)).

Proof. We have already proven one direction. For the other direction, suppose K(M) ≥T
K(Cp(X)). Then by the proof of Theorem 2.15 of [11], νX is Lindelöf Σ (here νX is

the realcompactification of X). Therefore by Proposition IV.9.10 of [4], every countably

compact subset of Cp(X) is compact. By the proof of Proposition 2.6 of [11], Cp(X) has a

countable network modulo some C, where each element of C is countably compact and for

each K ∈ K(Cp(X)) there is C ∈ C with K ⊆ C. But then each element of C is compact as

well and we are done.

We conclude this section by answering a question posed in [11]. Using this result and

Corollary 120 we discover a Lindelöf cofinally Σ counterpart of a well-known result about

Gul’ko compacta. Recall that one of the many characterizations of Gul’ko compact spaces

is given in terms of Lindelöf Σ property: a compact space K is Gul’ko if and only if Cp(K)

is Lindelöf Σ. We will show that a compact space K is countable if and only if Cp(K) is

Lindelöf cofinally Σ.

It was proven in [11] that, under CH, if X is compact and K(M) ≥ K(Cp(X)), then X

is countable. The authors asked if this was true in ZFC. We give a positive answer to this

question. This question was answered independently and using a different approach in [29].

Theorem 121. In ZFC, if X is compact, M is separable metrizable and K(M) ≥T K(Cp(X)),

then X is countable.

Proof. We extract the part of the proof of Theorem 3.10 of [11] that does not use CH. Here is

the sketch of it: suppose K(M) ≥T K(Cp(X)), then Cp(X) is Lindelöf Σ and therefore X is

Gul’ko compact. First, we show that X has to be scattered. Suppose X is not scattered, and

pick a countable A ⊆ X with no isolated points. Then by Theorem 7.21 and Theorem 4.1

from [32], K = A is compact, second countable, metrizable and Cp(K) embeds as a closed

subspace in Cp(X). Therefore K(M) ≥T K(Cp(K)).

By Theorem 3.6 in [11] and Proposition 10.7 from [47] whenever iw(Cp(X)) ≤ ω and

K(M) ≥T K(Cp(X)), X has to be countable. Here iw(Z) is defined to be the smallest
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cardinality of a coarser Tychonoff topology on Z, and nw(Z) is defined to be the smallest

cardinality of a network modulo the set {{z} : z ∈ Z}. We know that nw(Cp(K)) = nw(K)

and since K is metrizable nw(K) = ω. Since iw(Cp(K)) ≤ nw(Cp(K)) = ω, K is countable.

But since K is a compact set with no isolated points, it has to be uncountable. This shows

that X must be scattered.

If D is the set of all isolated points in X, D is open and since X is scattered D = X. If

D is countable then iw(Cp(X)) = d(X) = ω and X is countable (here d(X) is the cardinality

of the smallest dense subset of X). So let D be uncountable and for what follows we may

assume |D| = ω1.

Consider F = X\D. Then F is closed in X. Let Y be a quotient space of X with F

shrunk to a point. Then Y is a closed continuous image of X and therefore Cp(Y ) embeds

as a closed subspace into Cp(X). Thus K(M) ≥T K(Cp(Y )).

Since X is compact, Y is also compact and F is the only isolated point of Y . Therefore

Y = A(ω1). But Cp(A(ω1)) is homeomorphic to Σ∗(Rω1) = {(xα)α : ∀ε > 0, {α : |xα| ≥ ε}

is finite}. So K(M) ≥T K(Σ∗(Rω1)).

So from [11], we get the following: in ZFC, if X is compact, uncountable and K(M) ≥T
K(Cp(X)) for some separable metrizable M , then K(M) ≥T K(Σ∗(Rω1)). To complete the

proof, recall that K(M) has calibre (ω1, ω) and that K(M) ≥T K(Σ∗(Rω1)) implies that

K(Σ∗(Rω1)) must have calibre (ω1, ω) as well. The next lemma gives the desired contradic-

tion.

Lemma 122. There exists an uncountable K ⊆ K(Σ∗(Rω1)) such that each countably infinite

subset of K is unbounded in K(Rω1). Hence K(Σ∗(Rω1)) fails to have calibre (ω1, ω).

Proof. Let Σ∗ = Σ∗(Rω1). We construct K as follows. For each infinite α ∈ ω1, let Cα =

{nχ{ωα} : n ∈ ω} ⊆ Σ∗ and let fα : Cα → α be a bijection. For any infinite subset of Cα, its

projection on the ωα-th coordinate is infinite, so it cannot be contained in a compact set.

For each β ∈ ω1, let Kβ = {0}
⋃
{f−1

α (β) : β ∈ α}. Clearly, all Kβ’s are distinct. For

each Kβ, elements of Kβ have disjoint supports. Therefore for each Kβ and each open set

U ⊆ Σ∗ that contains 0, all but finitely many elements of Kβ are in U . Therefore each Kβ

is a compact subset of Σ∗.
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Suppose (βn)n∈ω ⊆ ω1 is a strictly increasing sequence. There is α ∈ ω1 such that

(βn)n∈ω ⊆ α. Then for each n ∈ ω we have f−1
α (βn) ∈ Kβn . Also, for each n ∈ ω,

f−1
α (βn) ∈ Cα. So

⋃
n∈ωKβn contains an infinite subset of Cα and, therefore, cannot be

contained in a compact set.

Now by Corollary 120 we can re-phrase Theorem 121 as follows.

Theorem 123. For a compact space X, Cp(X) is Lindelöf cofinally Σ if and only if X is

countable.

4.2.2 Baturov’s Theorem

Lindelöf Σ spaces have been widely studied and there are many interesting theorems about

these spaces. It is natural to ask whether in any of the theorems the condition ‘X is Lindelöf

Σ’ can be weakened to ‘K(M) ≥T (X,K(X))’. Here we consider one particular well-known

theorem, Baturov’s theorem, and show that, at least consistently, such substitution is not

possible. Recall that the extent of a space is the supremum of cardinalities of closed discrete

subspaces. The lindelöf number of a space X is the least cardinal κ such that every open

cover of X has a subcover of size ≤ κ. The extent is less than or equal to the Lindelöf

number for any space.

Theorem 124 (Baturov). Suppose X is Lindelöf Σ and Y ⊆ Cp(X). Then the Lindelöf

number and the extent of Y are equal.

In [9] it was proven that for W = {α ≤ ω2 : cof(α) 6= ω1}, the extent of Cp(W ) is equal

to ω while the Lindelöf number of Cp(W ) is ω2. We show that consistently there exists a

separable metrizable M such that K(M) ≥T (W,K(W )).

Recall X is called strongly ω-bounded if and only if for any {Kn}n∈ω ⊆ K(X) there is

K ∈ K(X) such that
⋃
n∈ωKn ⊆ K. Note that if X is strongly ω-bounded then K(X) has

calibre (ω1, ω) and therefore K(X) is a good candidate to sit below some K(M) in the Tukey

order.

Lemma 125. Let W = {α ∈ ω2 + 1 : cof(α) 6= ω1}. Then W and W\{ω2} are strongly

ω-bounded.
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Proof. Suppose {Kn}n∈ω ⊆ K(W ). Let β ∈ (ω2 + 1)\W . Then for each n there is βn ∈ β

such that Kn ∩ [βn, β] = ∅. Since cof(β) = ω1, β′ = sup{βn : n ∈ ω} ∈ β. Let Uβ = [β′, β].

Then Uβ is open in ω2 +1 and Uβ∩
⋃
n∈ωKn = ∅. Let U =

⋃
β∈ω2+1\W Uβ. Then U is open in

ω2 +1, so K = ω2 +1\U is a closed, hence compact, subset of ω2 +1 and
⋃
n∈ωKn ⊆ K ⊆ W .

To show that W\{ω2} is strongly ω-bounded, again, take {Kn}n∈ω ⊆ K(W\{ω2}) and

construct U the same way. Let C = ω2\U . Again
⋃
n∈ωKn ⊆ C ⊆ W\{ω2} and C is closed

in ω2 but perhaps not compact. Since each Kn ∈ K(ω2), it is bounded and thus
⋃
n∈ωKn is

bounded by some α ∈ ω2. So we can let K = C ∩ [0, α] ∈ K(W\{ω2}). (Actually, C has to

be bounded because if it is not, then it is a cub set that does not intersect ω2\W , which is

stationary.)

Next we establish a connection between strongly ω-bounded spaces and c-sized totally

imperfect separable metrizable spaces.

Lemma 126. Suppose X is strongly ω-bounded, cof(K(X)) ≤ c and B is a c-sized totally

imperfect separable metrizable space. Then K(B) ≥ K(X).

Proof. Let {Kx : x ∈ B} be a cofinal subset of K(X). Define φ : K(B) → K(X) by

C 7→
⋃
x∈C Kx. This works because compact subsets of B are countable and X is strongly

ω-bounded. The map φ is clearly order-preserving and since {Kx : x ∈ B} is cofinal so is

φ.

The next lemma shows that under c = 2ω1 , we cannot weaken the hypothesis of the

Baturov’s theorem from ‘X in Lindelöf Σ’ to ‘there is a separable metrizable M with

K(M) ≥T (X,K(X))’.

Lemma 127. Let W = {α ∈ ω2+1 : cof(α) 6= ω1}. Then ω2 ≤ cof(K(W )) ≤ 2ω1. Therefore,

if c = 2ω1 then K(B) ≥ K(W ). But, under CH, there is no separable metrizable M with

K(M) ≥ K(W ).

Proof. That cof(K(W )) ≥ ω2 follows immediately from the fact that for every K ∈ K(W ),

K\{ω2} is bounded in ω2. Indeed, suppose not, then since K is closed in ω2 + 1, K\{ω2} is

closed and unbounded in ω2 and misses stationary ω2\W .
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On the other hand, if K ∈ K(W ) then there is α ∈ ω2 such that K ⊆ [0, α] ∪ {ω2}.

Otherwise, K would contain a strictly increasing sequence {xα : α < ω1}. Then, since the

limit of {xα : α < ω1} has cofinality ω1, it cannot be an element of W or K. Each [0, α] has

2ω1-many compact subsets and therefore cof(K(W )) ≤ ω2 × 2ω1 = 2ω1 .

The previous lemma and Lemma 5 imply the last two conclusions.
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5.0 OPEN PROBLEMS

The results in this work have suggested new directions of research and have raised new

questions. Among the most prominent are:

- Investigate the possible values of the spectrum of (ωω,≤∗);

- Investigate K(M) when M contains the Cantor set, and determine the position of K(Q)

in K(Sub(R));

- Determine what other posets embed in K(Sub(R)) and K(Sub(ω1));

- Investigate X when P ≥T (X,K(X)) and P is ‘nice’;

- Use antichains of K(Sub(R)) to construct large ‘antichains’ of Gul’ko compacta.

We discuss each of these problems in more detail.

Infinite sets realized as spec((ωω,≤∗)). We saw that spec((ωω,≤∗)) is fundamental for all

spectrum calculations and we would like to know what it can possibly be. From Theorem 60,

all finite sets of uncountable regular cardinals can be realized as spec((ωω,≤∗)). Now let I be

a countably infinite collection of uncountable regular cardinals. In the proof of Theorem 60

we defined A =
∏
{κ : κ ∈ I} and, using the fact that it is consistent to embed A cofinally

into (ωω,≤∗), we were allowed to work with spec(A) instead. The poset A was a natural

choice since it is clear I ⊆ spec(A). Another reason why the poset A is a natural choice

is the following: Lemma 14 and the fact that (ωω,≤∗) is countably additive imply that if

I ⊆ spec((ωω,≤∗)) then A ≤T (ωω,≤∗). So the main question is: what is spec(A)?

Properties of K(M) when M contains the Cantor set, and the position of K(Q).

The main goal of this work, understanding the cofinal structure of K(Sub(R)), was largely
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achieved through totally imperfect spaces. Therefore, understandably, we paid special at-

tention to these spaces, and studied the internal structure and Tukey relations of posets

associated with these spaces.

However, spaces that contain the Cantor set open new and exciting avenues of research as

well. One source of questions about these spaces is the problem of determining the position

of K(Q) in K(Sub(R)). We know that K(1) <T K(ω) <T K(ωω) and K(Q) lies strictly

above K(ωω). It seems reasonable to conjecture that K(Q) might be the unique immediate

successor of K(ωω). There are two types of potential counter-example to this conjecture: (1)

there is a separable metrizable M such that K(ωω) <T K(M) <T K(Q), or (2) there is an

M such that K(M) is Tukey incomparable with K(Q).

It was proven in [27] that for every uncountable totally imperfect B, K(B) ≥T K(Q), so

examples of type (1) or (2) must contain (many) Cantor sets.

We know that there is a counter-example to the conjecture. Indeed the non-Polish space,

X, from Corollary 72, with the property that K(X) has calibre ω1 provided that ω1 < p, has

K(X) strictly above K(ωω), but K(Q) 6≤T K(X). Oddly we do not know if K(X) is of type

(1) or (2)!

Are there type (1) examples? Are there type (2) examples? Where does the space X

sit and is it type (1) or (2)? The space X is a consistent example. Are there examples in

ZFC? Does the existence of an example of type (1), or (2), or with the special properties of

X imply some small cardinal inequality?

More on K(Sub(R)) and K(Sub(ω1)). By embedding P(ω) into K(Sub(R)), we showed

that every countable partially ordered set also embeds into K(Sub(R)). Since all bounded

subsets of K(Sub(R)) are c-sized, P(R) cannot embed in K(Sub(R)) and we wonder what

posets of size c embed in K(Sub(R)). Does every poset of size ≤ c embed in K(Sub(R))?

Does ω1 with the reverse order embed in K(Sub(R))? What about c with the reverse order?

One more question suggested by the somewhat discrete structure of K(Sub(ω1))) is the

following. Above ωω are there, in ZFC, gaps: M0,M1 such that K(M0) <T K(M1) but for no

N do we have K(M0) <T K(N) <T K(M1)?
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Subposets of K(Sub(ω1)) are largely unknown. We know that there are 2ω1-many Tukey

classes associated with stationary co-stationary subsets of ω1 but we do not know how this

part of K(Sub(ω1)) is structured. What partial orders can or cannot embed in K(Sub(ω1))?

As for comparing elements of K(Sub(R)) and K(Sub(ω1)) there are still a few interesting

questions left. We know that K(Q) ≤T [ω1]<ω × ωω and K(B) ≤T [ω1]<ω × ωω for every

totally imperfect space of size ω1. For what other M do we have K(M) ≤T [ω1]<ω × ωω? Is

it possible to have K(M) ≤T Σ(ωω1)? Do we have K(Q) ≤T Σ(ωω1)?

Investigating X when P ≥T (X,K(X)) and P is ‘nice’. When P = K(M) for some

separable metrizable M , we already know that P ≥T (X,K(X)) implies that X is very close

to being Lindelöf Σ. We would like to weaken the condition ‘P = K(M)’ to ‘P has calibre

(ω1, ω)’. One motivation for doing so is that the proof of Theorem 121 relies heavily on the

fact that K(M) has calibre (ω1, ω), which makes us wonder whether calibre (ω1, ω) is all that

is required. We would like to single out an internal property of X that is equivalent to ‘there

exists P with calibre (ω1, ω) such that P ≥T (X,K(X))’.

Another reason to weaken the condition ‘P = K(M)’ to ‘P has calibre (ω1, ω)’ is related

to certain collections of compact subsets arising in Analysis. Recall the characterizations of

some special compact subsets of Banach spaces: Eberlein, Talagrand and Gul’ko compacta.

All three of these classes have been characterized as those that embed in Cp(X) for some X

with the property that K(M) ≥T (X,K(X)). In particular, Eberlein compacta are precisely

the compact spaces that embed in Cp(X) when X is compact, or K(1) ≥T (X,K(X)); Tala-

grand compacta are the ones that embed in Cp(X) for some X with K(ωω) ≥T (X,K(X));

Gul’ko compacta are the ones embedded in Cp(X) with K(M) ≥T (X,K(X)) for some

M . A natural next step in this sequence is to consider compact subsets of Cp(X) where

P ≥T (X,K(X)) for some poset P with calibre (ω1, ω). Suppose K is a compact subset of

such Cp(X): is it Fréchet-Urysohn? If K is separable then is it metrizable? Is it Corson? We

know that in case of Eberlein, Talagrand and Gul’ko compacta we can choose X so that it

has only one non-isolated point. Is it true that if K is as above then K embeds in Cp(X(p))

where P ′ ≥T (X(p),K(X(p))) for some P ′ with calibre (ω1, ω) and X(p) that has only one

non-isolated point?
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In [40] Eberlein, Gul’ko and other special compacta were studied using elementary sub-

model techniques. We would like to use the techniques developed in Appendix B to study

the class of compact spaces associated with posets with calibre (ω1, ω).

‘Incomparable’ Gul’ko compacta. We already saw that there is a close connection

between Gul’ko compacta and the relative Tukey order. A further connection established in

[25] motivates an attempt to use a 2c-sized antichain in (Sub(R),K(Sub(R))) to construct

large families of Gul’ko compacta that are in some sense ‘incomparable’. In [5] powerful

machinery was developed for constructing Gul’ko compacta of high complexity. It was shown

in [25] that the complexity can be restated in relative Tukey order terms and, using the c+-

sized chain in K(Sub(R)), one can derive a c+-sized ‘chain’ of Gul’ko compacta, where spaces

that come later in the chain are strictly more complex than the spaces that come earlier.

All Gul’ko compacta involved in these arguments have weight c, and therefore it is natural

to attempt a construction of a 2c-sized ‘antichain’ of Gul’ko compacta.
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APPENDIX A

STRENGTHENINGS OF ARC-CONNECTEDNESS

The work on strengthenings of arc-connectedness was done in collaboration with Benjamin

Espinoza, Paul Gartside and Merve Kovan-Bakan. Two papers were written on this subject

— one is published and the other is accepted [17, 18]. Results included here are excerpts

from these papers.

A.1 n-ARC CONNECTEDNESS, ℵ0-ARC CONNECTEDNESS

A topological space X is called n–arc connected (n–ac) if for any points p1, p2, . . . , pn in

X, there exists an arc α in X such that p1, p2, . . . pn are all in α. Here an arc is a space

homeomorphic to [0, 1]. If a space is n–ac for all n ∈ N, then we will say that it is ω–ac.

Note that this is equivalent to saying that for any finite F contained in X there is an arc

α in X containing F . Call a space ℵ0–ac if for every countable subset, S, there is an arc

containing S. Evidently a space is arc connected if and only if it is 2–ac, and ‘ℵ0–ac’ implies

‘ω–ac’ implies ‘(n+ 1)–ac’ implies ‘n–ac’ (for any fixed n).

Thus we have a family of natural strengthenings of arc connectedness, and the main aim

of this section is to characterize when ‘nice’ spaces have one of these strong arc connectedness

properties. Secondary aims are to distinguish ‘n–ac’ (for each n), ‘ω–ac’ and ‘ℵ0–ac’, and to

compare and contrast the familiar arc connectedness (i.e. 2–ac) with its strengthenings.

Observe that any Hausdorff image of an n–ac (respectively, ω–ac, ℵ0–ac) space under a
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continuous injective map is also n–ac (respectively, ω–ac, ℵ0–ac). Below, unless explicitly

stated otherwise, all spaces are continua — compact connected metric spaces.

It turns out that ‘sufficiently large’ (in terms of dimension) arc connected spaces tend to

be ω–ac. Indeed, it is not hard to see that manifolds (with or without boundary) of dimension

at least 2 are ω–ac. Thus we focus on curves (1–dimensional continua) and especially on

graphs (those connected spaces obtained by taking a finite family of arcs and then identifying

some of the endpoints).

To motivate our main results consider the following examples.

(A) The arc is ℵ0–ac.

(B) The open interval, (0, 1); and ray, [0, 1), are ω–ac.

(C) From (A) and (B), all continua which are the continuous injective images of the arc,

open interval and ray are ω–ac. It is easy to verify that these include: (a) the arc, (b)

the circle, (c) figure eight curve, (d) lollipop, (e) dumbbell and (f) theta curve.

(a) (b) (c) (d) (e) (f)

Figure 4: ω-ac graphs

(D) The Warsaw circle; double Warsaw circle; Menger cube; and Sierpinski triangle, are ω–ac.

(E) The simple triod is 2–ac but not 3–ac. It is minimal in the sense that no graph with

strictly fewer edges is 2–ac not 3–ac.

The graphs (a), (b) and (c) below are: 3–ac but not 4–ac, 4–ac but not 5–ac, and 5–ac
but not 6–ac, respectively. All are minimal.
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(a) (b) (c)

Figure 5: (a) 3-ac, not 4-ac; (b) 4-ac, not 5-ac; (c) 5-ac, not 6-ac

(F) The Kuratowski graph K3,3 is 6–ac but not 7–ac. It is also minimal.

(G) The graphs below are all 6–ac and, by Theorem 128, none is 7–ac. Unlike K3,3 all are

planar. It is unknown if the first of these graphs (which has 12 edges) is minimal among

planar graphs. A minimal example must have at least nine edges.

Figure 6: 6-ac, not 7-ac graphs

In this section we will characterize the ω–ac graphs and characterize the ℵ0–ac continua

by proving the following theorems.

Theorem 128. For a graph G the following are equivalent:

(1) G is 7–ac,

(2) G is ω–ac,

(3) G is the continuous injective image of a sub–interval of the real line,

(4) G is one of the following graphs: the arc, simple closed curve, figure eight curve, lollipop,

dumbbell or theta curve.

Theorem 129. For any continuum K (not necessarily metrizable) the following are equiv-

alent:

(1) K is ℵ0–ac,
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(2) K is a continuous injective image of a closed sub–interval of the long line,

(3) K is one of: the arc, the long circle, the long lollipop, the long dumbbell, the long figure

eight or the long theta-curve.

A.1.1 Characterization of ω–ac Graphs

As noted in Example (C) the graphs listed in part (4) of Theorem 128 are all the continuous

injective image of a closed sub–interval of the real line, giving (4) implies (3), and all such

images are ω–ac, yielding (3) implies (2) of Theorem 128. Clearly ω–ac graphs are 7–ac, and

so (2) implies (1) in Theorem 128.

It remains to show (1) implies (4) in Theorem 128, in other words that any 7–ac graph

is one of the graphs listed in (4). This is established in Theorem 144 below. We proceed by

establishing an ever tightening sequence of restrictions on the structure of 7–ac graphs.

Proposition 130. Let G be a finite graph, and let H ⊆ G be a subgraph of G such that

G − H is connected, G−H ∩ H = {r} and r is a branch point of G. If G is n–ac, then

G−H is n–ac.

Proof. First note that G−H = (G−H)∪{r}. Hence every connected set intersecting G−H

and H − {r}, must contain r.

Let P = {p1, p2, . . . , pn} be a set of n points in G−H. Then, since G is n–ac, there

exists an arc α in G containing P . If α ⊆ G−H, we are done. So assume α intersects

H − {r}. Let t0, t1 ∈ [0, 1] such that α(t0) ∈ G −H and α(t1) ∈ H − {r}, assume without

loss of generality that t0 < t1. Hence there exists s ∈ [t0, t1] such that α(s) = r. Then

α([0, s]) is an arc in G−H containing P , otherwise r ∈ α((s, 1]) which is impossible since α

is an injective image of [0, 1]. This proves that G−H is n–ac.

The reverse implication of Proposition 130 does not hold. To see this, let G be a simple

triod and H be one of the edges of G. Clearly G is not 3–ac but G−H (an arc) is 3–ac.

Definition 131. Let G be a finite graph. An edge e of G is called a terminal edge of G if

one of the vertices of e is an end–point of G.
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Definition 132. Let G be a finite graph, and let I = {e1, e2, . . . em} be the set of terminal

edges of G. Let G∗ be the graph given by G− I. Clearly this operation can be applied to G∗

as well. We perform this operation as many times as necessary until we obtain a graph G′

having no terminal edges. We called the graph G′ the reduced graph of G.

The following is a corollary of Proposition 130.

Corollary 133. Let G be an n–ac finite graph. Then the reduced graph of G is an n–ac

finite graph containing no terminal edges.

Proof. Observe that the reduced graph of G can also be obtained by removing terminal edges

one at a time.

Now, from Proposition 130, if G is an n–ac finite graph and e is a terminal edge of G,

then G− e is n–ac. This implies that each time we remove a terminal edge we obtain an

n–ac graph. This and the observation prove the corollary.

Remark 1. Note that if X is an n–ac space and {p1, p2, . . . , pn} are n different points of X,

then there is an arc α such that {p1, p2, . . . , pn} ⊆ α and such that the end–points of α belong

to {p1, p2, . . . , pn}. To see this, let β be the arc containing {p1, p2, . . . , pn}, given by the fact

that X is n–ac. Let t0 = min {β−1(pi) | i = 1, . . . , n} and t1 = max {β−1(pi) | i = 1, . . . , n}.

Then β([t0, t1]) satisfies the conditions of α.

From now on, if X is an n–ac space, {p1, . . . , pn} are n different points and α is an

arc passing through {p1, p2, . . . , pn}, then we will assume that the end–points of α belong to

{p1, p2, . . . , pn}.

Lemma 134. Let G be a finite graph. Assume that G contains a simple triod T = L1∪L2∪L3

(with {q} = Li ∩ Lj, for i 6= j) such that for each i, Li − {q} contains no branch points of

G. For each i = 1, 2, 3, let pi ∈ int(Li). If α is an arc containing {p1, p2, p3}, then

(1) q ∈ int(α), and

(2) at least one of the end points of α lies in [q, p1] ∪ [q, p2] ∪ [q, p3].

Proof. Let G, T and p1, p2, p3 as in the hypothesis of the lemma. Let α ⊆ G be an arc

containing {p1, p2, p3}, and denote, for each i = 1, 2, 3, by [q, li] the arc Li.
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(1) Assume, without loss of generality, that α(ti) = pi and that t1 < t2 < t3. Then p2 ∈ int(α)

and α = α([0, t2]) ∪ α([t2, 1]).

We consider two cases: q 6∈ α([0, t2]) and q ∈ α([0, t2]). Assume q 6∈ α([0, t2]), then, since

L2 − {q} contains no branch points of G and p2 ∈ int(L2), we have that l2 = α(s) for

some s with 0 < s < t2. Hence [l2, p2] ⊆ α([0, t2]). Therefore, since {p2, p3} ⊆ α([t2, 1]),

p2 ∈ int(L2), L2 − q has no branch points of G, and α is a 1− 1 function, we have that

[p2, q] ⊆ α([t2, 1)). This implies that q ∈ int(α).

Now suppose that q ∈ α([0, t2]). If q ∈ α((0, t2]), then we are done. So assume that

q = α(0), i.e. q is an end-point of α. Using the same argument as in the previous case,

we can conclude that [l2, p2] ⊆ α([0, t2]). This implies, as before, that [p2, q] ⊆ α([t2, 1))

wich contradicts the fact that α is a 1− 1 function. Hence q ∈ int(α).

(2) First, assume that α(ti) = pi and that t1 < t2 < t3. We will show that one end point of

α lies on either [q, p1] or [q, p3]. The other cases (rearrangements of the tis) are done in

the same way as this case, the only difference is the conclusion: the end point lies either

on [q, p1] or [q, p2], or the end point lies either on [q, p2] or [q, p3].

By (1), q ∈ int(α) and if q = α(s), then s < t3; otherwise the arc α([0, t3]) would

contain p1, p2, p3 and q 6∈ int(α([0, t3])) which is contrary to (1). Similarly, t1 < s. Hence

t1 < s < t3.

If s < t2, then p1, q 6∈ α([t2, 1]) = α([t2, t3]) ∪ α([t3, 1]). Now, since L3 − {q} has no

branch points of G, q ∈ α([0, t2]), and p3 ∈ int(L3), we have l3 ∈ α([t2, t3]). Thus, since

α is a 1− 1 function, α([t3, 1]) ⊆ (q, p3]. This shows that α(1) lies in [q, p3].

If t2 < s, then a similar argument using −α (α traveled in the opposite direction) shows

that one of the end points of α lies on [q, p1].

We obtain the following corollaries.

Corollary 135. With the same conditions as in Lemma 134. If α is an arc containing

{p1, p2, p3}, and q = α(s), pi = α(ti) for i = 1, 2, 3, then tj < s < tk for some j, k ∈ {1, 2, 3}.
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Proof. To see this, note that if q does not lie between two of the pis, then either s < ti for

all i, or ti < s for all i. Then either α([s, 1]) or α([0, s]) are arcs containing {p1, p2, p3} for

which q is an end-point, this contradicts (1) of Lemma 134.

Corollary 136. Let G be a finite graph, and let {p1, p2, . . . pn} ⊆ G be n different points. In

addition, let α be an arc containing {p1, p2, . . . pn}, with end–points belonging to {p1, p2, . . . pn}.

If there are three different indexes i, j, k such that pi, pj and pk belong to a triod T satisfying

the conditions of (Lemma 134), and such that ([q, pi] ∪ [q, pj] ∪ [q, pk]) ∩ {p1, p2, . . . pn} =

{pi, pj, pk}, then either pi, pj or pk is an end–point of α.

Proof. By (2) of Lemma 134, at least one of the end points of α lies in [q, pi]∪ [q, pj]∪ [q, pk].

Hence, since the end-points of α belong to {p1, p2, . . . pn} and ([q, pi] ∪ [q, pj] ∪ [q, pk]) ∩

{p1, p2, . . . pn} = {pi, pj, pk}, one of pi, pj or pk is an end-point of α

Proposition 137. Let G be a finite graph. If G is 5–ac, then G has no branch point of

degree greater than or equal to five.

Proof. Assume, by contradiction, that G contains at least one branch point, q, of degree at

least 5. Then, since G is a finite graph, G contains a simple 5-od, T = L1∪L2∪L3∪L4∪L5,

such that {q} = Li ∩ Lj for i 6= j, and such that Li − {q} contains no branch points of G.

For each i = 1, . . . , 5, let pi ∈ int(Li). Then, since G is 5–ac, there exists an arc α ⊆ G

such that {p1, p2, . . . , p5} ⊆ α. Note that T contains a triod satisfying the conditions of

Lemma 134, hence q ∈ int(α). Let t0 ∈ (0, 1) be the point such that α(t0) = q. Then

α − {q} = α([0, t0)) ∪ α((t0, 1]), and either α([0, t0]) or α([t0, 1]) contains three points out

of {p1, p2, p3, p4, p5}, note that q is an end–point of α([0, t0]) and of α([t0, 1]). Without loss

of generality, suppose that p1, p2, p3 ⊆ α([0, t0]); then L1, L2, L3 and the corresponding pis

satisfy the conditions of Lemma 134 implying that any arc containing those points contains

q in its interior, a contradiction, since q is an end point of α([0, t0]). This shows that G does

not contain a branch point of degree greater than or equal to five.

From Proposition 137 we obtain the following corollaries.

Corollary 138. Let G be a finite graph. If G is n–ac, for n ≥ 5, then G has no branch

point of degree greater than or equal to five.
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The following proposition is easy to prove.

Proposition 139. Let G be a finite connected graph. If G has at least three branch points,

then there is an arc α such that the end-points of α are branch points of G and all the points

of the interior of α, except for one, are not branch points of G. So α contains exactly three

branch points of G.

Theorem 140. A finite graph with three or more branch points cannot be 7–ac.

Proof. Let G be a finite graph with at least three branch points.

By Proposition 139, there is an arc α in G containing exactly three branch points of G

such that two of them are the end–points of α. Denote by q1, q2, and q3 these branch points,

and assume without loss of generality that q1 and q3 are the end-points of α.

Let p3 be a point between q1 and q2, and let p5 be a point between q2 and q3. Since G

is a finite graph, we can find, in a neighborhood of q1, two points p1 and p2 such that p1,

p2, p3 belong to a triod T1 satisfying the conditions of Lemma 134, and such that q1 is the

branch point of T1. Similarly, we can find a point p4, in a neighborhood of q2, such that p3,

p4 and p5 belong to a triod T2 satisfying the conditions of Lemma 134, and such that q2 is

the branch point of T2. Finally, we can find two points p6, and p7, in a neighborhood of q3,

such that p5, p6 and p7 belong to a triod T3 satisfying the conditions of Lemma 134, and

such that q3 is the branch point of T3.

p3 p5

q1

q2
q3

p4

p1 p2

p6

p7

Figure 7: Three branch points

We show by contradiction that there is no arc containing {p1, p2, . . . , p7}. Suppose that

there is an arc β ⊆ G containing the points {p1, p2, . . . , p7}, using the same argument from

Remark 1, we can assume that the end points of β belong to {p1, p2, . . . , p7}.
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Now, by Corollary 136, one of {p1, p2, p3} is an end point of β. Similarly, one of {p3, p4, p5}

is an end–point of β, and one of {p5, p6, p7} is an end–point of β. So, since β is an arc with

end–points in {p1, p2, p3, . . . , p7}, we have that either

(i) p1 or p2 and p5 are the end–points of β, or

(ii) p6 or p7 and p3 are the end–points of β or

(iii) p3 and p5 are the end–points of β,

are the only possible cases. We will prove that every case leads to a contradiction.

(i) Assume that p1 and p5 are the end–points of β. Since the arc between q2 and q3 contains

no branch points of G, we have that either [q2, p5] ⊆ β or [p5, q3] ⊆ β.

Assume first that [q2, p5] ⊆ β. Then, by the way p4 was chosen and the fact that p4 ∈

int(β), the arc [p4, q2] ⊆ β; similarly, since the arc [q1, q2] contains no branch points of G

and by the fact that p3 ∈ int(β), the arc [p3, q2] ⊂ β. Then ([p3, q2] ∪ [p4, q2] ∪ [q2, p5]) ⊆

β, which is a contradiction since ([p3, q2] ∪ [p4, q2] ∪ [q2, p5]) is a nondegenerate simple

triod.

Assume that [p5, q3] ⊆ β. Then, by the way p6 was chosen and the fact that p6 ∈ int(β),

the arc [q3, p6] ⊆ β. Using the same argument we can conclude that the arc [q3, p7] ⊆ β.

Hence ([p5, q3] ∪ [p6, q3] ∪ [q3, p7]) ⊆ β, which is a contradiction.

The case when p2 and p5 are the end–points of β is similar the case we just proved. So

(i) does not hold.

(ii) This case is equivalent to (i), therefore (ii) does not hold.

(iii) Assume that p3 and p5 are the end-points of β. Then, since the arc [q1, q2] contains no

branch points of G and p3 is an end-point of β, either [q1, p3] ⊆ β or [p3, q2] ⊆ β.

Suppose that [q1, p3] ⊆ β. As in (i), since p1, p2 ∈ int(β), we have that the arcs

[p1, q1] and [q1, p2] are contained in β. This implies that the nondegenerate simple triod

([q1, p3] ∪ [p1, q1] ∪ [q1, p2]) ⊆ β, which is a contradiction.

Now assume that [p3, q2] ⊆ β. Then the arc [p5, q3] ⊆ β. Again, the same argument as

in (i) leads to a nondegenerate simple triod being contained in β since p6, p7 ∈ int(β).

Hence (iii) does not hold.

This proves that there is no arc containing {p1, p2, . . . , p7}. Therefore G is not 7–ac.
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Since every (n+ 1)–ac space is n–ac, we have the following corollary.

Corollary 141. A finite graph with three or more branch points cannot be a n–ac, for n ≥ 7.

Lemma 142. If G is a finite graph with only 2 branch points each of degree greater than or

equal to 4, then G is not 7–ac.

Proof. Let q1 and q2 be the two branch points of G. Then there exists at least one edge

e having q1 and q2 as vertices. Let p1 ∈ int(e). Since G is a finite graph, and q1 and q2

have degree at least 4, we can chose three points p2, p3, p4 in a neighborhood of q1 such

that T1 = [q1, p1] ∪ [q1, p2] ∪ [q1, p3] ∪ [q1, p4] is a simple 4-od, and three points p5, p6, p7 in a

neighborhood of q2 such that T2 = [q2, p1] ∪ [q2, p5] ∪ [q2, p6] ∪ [q2, p7] is a simple 4–od, and

they are such that T1 ∩ T2 = {p1}.

We show by contradiction, that there is no arc α ⊆ G containing {p1, p2, . . . , p7}. For this

suppose that there exists such an arc α, assume further that the end–points of α belong to

{p1, p2, . . . , p7}. Then, since {p2, p3, p4} satisfy the conditions of Corollary 136, we can assume

without loss of generality that p4 is an end–point of α. Similarly for the set {p5, p6, p7}, so

we can assume without loss of generality that p5 is an end–point of α. On the other hand,

the set {p1, p2, p3} also satisfies the conditions of Corollary 136, hence p1, or p2 or p3 is an

end-point of α which is impossible since α only has two end-points. This shows that there

is no arc in G containing {p1, p2, . . . , p7}. This proves that G is not 7–ac.

Corollary 143. If G is a finite graph with only 2 branch points each of degree greater than

or equal to 4, then G is not n–ac, for n ≥ 7.

Theorem 144. Let G be a finite graph. If G is 7–ac, then G is one of the following graphs:

arc, simple closed curve, figure eight, lollipop, dumbbell or theta–curve.

Proof. Let G be a finite graph. Suppose that G is n–ac, for n ≥ 7. We will show that G is

(homeomorphic to) one of the listed graphs.

Let K be the reduced graph of G. By Corollary 133 K is n–ac and contains no terminal

edges. By Theorem 140 K has at most two branch points, and by Corollary 138 the degree

of each branch point is at most 4. We consider the cases when K has no branch points, one

branch point or two branch points.
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In this case K is either homeomorphic to the arc, I, or to the simple closed curve, S1.

Assume first that K is homeomorphic to I, then, by the way K is obtained, K = G.

Otherwise, reattaching the last terminal edge that was removed gives a simple triod which

is not 7–ac, contrary to the hypothesis. In this case G is on the list.

Next assume K is homeomorphic to S1. If K = G, then G is on the list. So assume G 6=

K, and let e denote the last terminal edge that was removed. Then K∪e is homeomorphic to

the lollipop curve. Furthermore, G = K ∪ e, otherwise reattaching the penultimate terminal

edge will give a homeomorphic copy of the graph (a) of Example (E) which is not 7–ac, or a

simple closed curve with two arcs attached to it at the same point at one of their end points

which is not 7–ac either. Hence, again, G is on the list.

Note that the only possibility for K to have a single branch point of degree 3 is for K to

be homeomorphic to a simple triod or to the lollipop curve, the former is not 7–ac and the

latter is not a reduced graph. Hence the degree of the branch point of K is 4. In this case K

is homeomorphic to either a simple 4–od, a simple closed curve with two arcs attached to it

at the same point at one of their end points, or to the figure eight curve. The first two cases

are not 7–ac. Therefore K must be homeomorphic to the figure eight curve. If G = K, then

G is on the list. In fact, since attaching an arc to the figure eight curve yields a non 7–ac

curve, we must have that G = K.

Since the sum of the degrees in a graph is always even and K has no terminal edges, then

K can not have one branch point of degree 3 and another of degree 4. Hence the only options

are that K has two branch points of either degree 3 or degree 4. However, by Corollary 143,

K has only two branch points of degree 3.

If K has two branch points of degree 3, then it could be homeomorphic to one of the
following graphs.
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(a) (b) (c) (d) (e)

Figure 8: Two branch points of degree 3

However the graphs (a), (b), and (c) contain terminal edges. So K can only be home-

omorphic to the dumbbell (d) or the θ–curve (e); in any case if G = K, then G is on the

list. Note that neither curve, (d) nor (e), can be obtained from a n–ac graph (n ≥ 7) by

removing a terminal edge since by Theorem 140 the edge has to be attached to one of the

existing branch points; it is easy to see that such a graph is not 4–ac, just take a point in

the interior of each edge. Hence G = K. This ends the proof of the theorem.

A.1.2 Characterizing ℵ0–ac Continua

Call a space κ–ac, where κ is a cardinal, if every subset of size no more than κ is contained

in an arc. Note that for finite κ = n and κ = ℵ0 this coincides with the earlier definitions.

For infinite κ we have a complete description of κ–ac continua (not necessarily metrizable),

extending Theorem 129. To start let us observe that the arc is κ–ac for every cardinal κ.

We will see shortly that the arc is the only separable κ–ac continuum when κ is infinite. In

particular, the triod and circle are not ℵ0–ac, and so any continuum containing a triod or a

circle is also not ℵ0–ac. This observation will be used below.

To state the theorem precisely we need to make a few definitions. Note that a subset

of ω1 is bounded if and only if the set is countable. The long ray, R, is the lexicographic

product of ω1 with [0, 1) with the order topology. We can identify ω1 (with its usual order

topology) with ω1 × {0}. Evidently ω1 is cofinal in the long ray. Write R− for R with each

point x relabeled −x. The long line, L, is the space obtained by identifying 0 in the long

ray, R, with −0 in R−. The topology on the long ray and long line ensures that for any

x < y in R (or L) the subspace [x, y] = {z ∈ R : x ≤ z ≤ y} is (homeomorphic to) an arc.
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Note that any countable subset of the long ray, or the long line, is bounded, hence both the

long ray and long line are ℵ0–ac. To see this for the long ray take any countable subset S

then since ω1 is cofinal in R the set S has an upper bound, x say, and then S is contained

in [0, x], which is an arc.

Let αR be the one point compactification of R, and γL be the corresponding two point

compactification of L. The long circle and long lollipop are the spaces obtained from αR by

identifying the point at infinity to 0, or any other point, respectively. The long dumbbell,

long figure eight and long theta curves come from γL by respectively identifying the negative

(−∞) and positive (+∞) endpoints to −1 and +1, 0 and 0, or +1 and −1. As continuous

injective images of the ℵ0–ac spaces R and L, all the above spaces are also ℵ0–ac.

Theorem 145. Let K be a continuum.

(1) If K is separable and ℵ0–ac then K is an arc.

(2) If K is non–separable, then the following are equivalent:

(i) K is ℵ0–ac, (ii) K is a continuous injective image of a closed sub–interval of the long

line, and (iii) K is one of: the long circle, the long lollipop, the long dumbbell, the long

figure eight, or the long theta–curve.

(3) If K is κ–ac for some κ > ℵ0, then K is an arc.

For part (1) just take a dense countable set, then any arc containing the dense set is

the whole space. Part (2) is proved in Proposition 146 ((i) =⇒ (ii)), Proposition 149 ((ii)

=⇒ (iii)), while (iii) =⇒ (i) was observed above with the definition of the curves in (2)

(iii). For part (3) note that all non–separable ℵ0–ac spaces (as listed in part (2) (iii)) have

a dense set of size ℵ1, and so are not ℵ1–ac. Thus κ–ac continua for κ ≥ ℵ1 are separable,

hence an arc, by part (1).

It is traditional to use Greek letters (α, β et cetera) for ordinals. Consequently we will

use the letter ‘A’ and variants for arcs, and because in Proposition 146 we need to construct

a map, in this subsection by an ‘arc’ we mean any homeomorphism between the closed unit

interval and a subset of a given space. If K is a space, then by ‘A is an arc in K’ we mean

the arc A maps into K. When A is an arc in a space K, then write im(A) for the image

of A (it is, of course, a subspace of K homeomorphic to the closed unit interval). For any
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function f , we write dom f , for the domain of f .

Proposition 146. Let K be an ℵ0–ac non–separable continuum. Then there is a continuous

bijection A∞ : J∞ → K where J∞ is a closed unbounded sub–interval of the long line, L.

We prove this by an application of Zorn’s Lemma. The following lemmas help to establish

that Zorn’s Lemma is applicable, and that the maximal object produced is as required.

Lemma 147. Let K be an ℵ0–ac non–separable continuum. If K is a countable collection

of separable subspaces of K then there is an arc A in K such that
⋃
K ⊆ im(A).

Proof. Let K = {Sn : n ∈ N} be a countable family of subspaces of K, and, for each n, let

Dn be a countable dense subset of Sn. Let D =
⋃
nDn — it is countable. Since K is ℵ0–ac

there is an arc A in K such that D ⊆ im(A). As D is dense in
⋃
K and im(A) is closed, we

see that
⋃
K ⊆ im(A).

Lemma 148. Let K be an ℵ0–ac non–separable continuum. Suppose [a, b] is a proper closed

subinterval of L (or R), A : [a, b]→ K is an arc in K and y ∈ K \ im(A). Then either (i)

for every c > b in L there is an arc A′ : [a, c] → K such that A′ �[a,b]= A and A′(c) = y, or

(ii) for every c < a in L there is an arc A′ : [c, b]→ K such that A′ �[a,b]= A and A′(c) = y.

Proof. Fix a, b, the arc A and y. Let K = {im(A), {y}}, and apply Lemma 147 to get an arc

A0 : [0, 1] → K in K such that im(A0) ⊇ im(A) ∪ {y}. Let J = A−1
0 (im(A)), a′ = min J ,

b′ = max J and c′ = A−1
0 (y). Without loss of generality (replacing A0 with A0 ◦ ρ where

ρ(t) = 1− t if necessary) we can suppose that A0(a′) = A(a) and A0(b′) = b.

Since y 6∈ im(A), either c′ > b′ or c′ < a′. Let us suppose that c′ > b′. This will lead to

case (i) in the statement of the lemma. The other choice will give, by a very similar argument

which we omit, case (ii). Take any c in L such that c > b. Let A1 be a homeomorphism of

the closed subinterval [a, c] of L with the subinterval [a′, c′] of [0, 1] such that A1(a) = a′,

A1(b) = b′ and A1(c) = c′. Set A2 = A0 ◦ A1 : [a, c] → K. So A2 is an arc in K such that

A2(a) = A(a), A2(b) = A(b), A2(c) = y and A2([a, b]) = im(A). The arc A2 is almost what

we require for A′ but it may traverse the (set) arc im(A) at a ‘different speed’ than A. Thus

we define A′ : [a, c]→ K to be equal to A on [a, b] and equal to A2 on [b, c]. Then A′ is the

required arc.
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Proof. (Of Proposition 146) Let A be the set of all continuous injective maps A : J → K

where J is a closed subinterval of L, ordered by: A ≤ A′ if and only if domA ⊆ domA′

and A′ �domA= A. Then A is the set of all candidates for the map we seek, A∞. We will

apply Zorn’s Lemma to (A,≤) to extract A∞. To do so we need to verify that (A,≤) is

non–empty, and all non–empty chains have upper bounds.

As K is ℵ0–arc connected we know there are many arcs in K, so the set A is not

empty. Now take any non–empty chain C in A. We show that C has an upper bound. Let

J = {domA′ : A′ ∈ C}. Since J is a chain of subintervals in L, the set J =
⋃
J is also

a subinterval of L. Define A : J → K by A(x) = A′(x) for any A′ in C with x ∈ domA′.

Since C is a chain of injections, A is well–defined and injective. Since the domains of the

functions in C form a chain of subintervals, any point x in J is in the J–interior of some

domA′ (there is a set U , open in J such that x ∈ U ⊆ domA′), where A′ ∈ C, and so A

coincides with A′ on some J–neighborhood of x, thus, since A′ is continuous at x, the map

A is also continuous at x. If J is closed, then we are done: A is in A and A ≥ A′ for all A′

in C.

If the interval J is not closed then it has at least one endpoint (in L) not in J . We

will suppose J = (a,∞). The other cases, J = (a, b) and J = (−∞, a), can be dealt with

similarly. We show that we can continuously extend A to [a,∞). If so then A will be

injective, hence in A, and an upper bound for C. Indeed, the only way the extended A could

fail to be injective was if A(a) = A(c) for some c > a, and then A([a, c]) is a circle in K,

contradicting the fact that K is ℵ0–ac.

Evidently it suffices to continuously extend A′ = A �(a,b] to [a, b]. Let K = {A((a, b])} and

apply Lemma 147 to see that A′ maps the half open interval, (a, b], into IK , a homeomorphic

copy of the unit interval. Let h : [0, 1] → IK be a homeomorphism. So we can apply some

basic real analysis to get the extension. Indeed, the map A′ ◦h−1 is continuous and injective,

and hence strictly monotone. By the inverse function theorem, A′ has a continuous inverse,

and so is a homeomorphism of (a, b] with some half open interval, (c, d] or [d, c) in the closed

unit interval. Defining A(a) = h(c) gives the desired continuous extension.

Let A∞ be a maximal element of A. Then its domain is a closed subinterval of the long

line, L. We first check that domA∞ is not bounded. Then we prove that A∞ maps onto K.
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If A∞ has a bounded domain, then it is an arc. So it has separable image. As K is not

separable we can pick a point y in K\im(A∞). Applying Lemma 148 we can properly extend

A∞ to an arc A′. But then A′ is in A, A∞ ≤ A′ and A∞ 6= A′, contradicting maximality of

A∞.

We complete the proof by showing that A∞ is surjective. We go for a contradiction and

suppose that instead there is a point y in K \ im(A∞). Two cases arise depending on the

domain of A∞.

Suppose first that domA∞ = L. Pick a point x in im(A∞). Pick an arc A from x to y.

Taking a subarc, if necessary, we can suppose A : [0, 1]→ K, A(0) = x and A(t) /∈ im(A∞)

for all t > 0. Let x′ = A−1
∞ (x). Pick any a′, b′ from L such that a′ < x′ < b′. Then the

subspace A∞([a′, b′]) ∪ A([0, 1]) is a triod in K, which contradicts K being ℵ0–sac.

Now suppose that domA∞ is a proper subset of L. Let us assume that domA∞ =

[a,∞). (The other case, domA∞ = (−∞, a], follows similarly.) Pick any b > a, and apply

Lemma 148 to A = A∞ �[a,b] and y. If case (ii) holds then pick any c < a and A can be

extended ‘to the left’ to an arc A′ with domain [c, b]. This gives a proper extension of A∞

defined on [c,∞) (which is A′ on [c, a] and A∞ on [a,∞)), contradicting maximality of A∞.

So case (i) must hold. Pick any c > b, and we get an arc A′ : [a, c]→ K in K extending

A. Let T = A∞([a, c]) ∪ A′([a, c]). Observe that T has at least three non cutpoints, namely

A′(a) = A∞(a), A∞(c) and A′(c). So T is not an arc, but it is a separable subcontinuum of

the ℵ0–ac continuum K, which is the desired contradiction.

To complete the proof of Theorem 145 it remains to identify the continuous injective

images of closed sub–intervals of the long line. Recall that a countable intersection of closed

and unbounded subsets of ω1 is closed and unbounded (see [42], for example). The set Λ

of all limit ordinals in ω1 is a closed and unbounded set. The Pressing Down Lemma (also

known as Fodor’s lemma) states than if S is a stationary set and f : S → ω1 is regressive

(for every α in S we have f(α) < α) then there is a β in ω1 such that f−1(β) is cofinal in ω1.

Proposition 149. If K is a non–separable continuum and is the continuous injective image

of a closed sub–interval of the long line, then K is one of: the long circle, the long lollipop,

the long dumbbell, long figure eight, or the long theta–curve.
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Proof. The closed non–separable sub–intervals of the long line are (up to homeomorphism)

just the long ray and long line, itself.

Let us suppose for the moment that the K is the continuous injective image of the long

ray, R. We may as well identify points of K with points in R. Note that on any closed

subinterval, [a, b] say, of R, (by compactness of [a, b] in R, and Hausdorffness of K) the

standard order topology and the K–topology coincide. It follows that at any point with a

bounded K–open neighborhood the standard topology and K–topology agree. We will show

that there is a point x in R such that every K–open U containing x contains a tail, (t,∞),

for some t. Assuming this, then by Hausdorffness of K, every point distinct from x has

bounded neighborhoods, and so x is the only point where the K–topology differs from the

usual topology. Then K is either the long circle or long lollipop depending on where x is in

R (in particular, if it equals 0). The corresponding result for continuous injective images of

the long line follows immediately.

Suppose, for a contradiction, that for every x in R, there is a K–open set Ux containing

x such that Ux contains no tail. By compactness of K, some finite collection, Ux1 , . . . , Uxn ,

covers K. Let Si = Uxi ∩Λ, where Λ is the set of limits in ω1. Then (since the finitely many

Si cover the closed unbounded set Λ) at least one of the Si is stationary. Take any α in Si,

and consider it as a point of the closed subinterval [0, α] of R, where we know the standard

topology and the K–topology agree. Since α is a limit point which is in Uxi ∩ [0, α], and this

latter set is open, we know there is ordinal f(α) < α such that (f(α), α] ⊆ Uxi . Thus we

have a regressive map, f , defined on the stationary set Si, so by the Pressing Down Lemma

there is a β such that f−1(β) is stationary (and therefore cofinal) in ω1. Hence Uxi contains⋃
{(f(α), α] : α ∈ f−1(β)} = (β,∞), and so Uxi does indeed contain a tail.

A.2 STRONG ARC CONNECTEDNESS

In this section we present a further strengthening of n–ac property. We strengthen the

condition ‘there is an arc containing the points’ by requiring the arc to traverse the points

in a given order. We call this property n-strong arc connectedness (abbreviated n-sac), and
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we call a space which is n-sac for all n an ω-strongly arc connected space (ω-sac).

Evidently a space is 2-sac if and only if it is arc connected. Many naturally occurring

examples of arc connected spaces, especially those of dimension at least two, are ω-sac. For

instance it is easy to see that manifolds of dimension at least 3, with or without boundary,

and all 2-manifolds without boundary, are ω-sac. But note that the closed disk is 3-sac but

not 4-sac (there is no arc connecting the four cardinal points in the order North, South, East

and then West). We are led, then, to focus on one-dimensional spaces, and in particular on

curves: one-dimensional continua (compact, connected metric spaces).

To further sharpen our focus, we observe that there is a natural obstruction to spaces

being 3-sac. Suppose a space X contains a point x1 so that X \ {x1} is not arc connected,

and fix points x2 and x3 for which there is no arc in X \ {x} from x2 to x3. Then no arc in

X visits the points x1, x2, x3 in the given order, and thus X is not 3-sac. More generally, see

Lemma 150, if removing some n− 2 points from a space renders it arc disconnected, then it

is not n-sac. A continuum is said to be regular if it has a base all of whose elements have a

finite boundary. It is well known that all regular continua are curves. From our observation

it would seem that regular curves could only ‘barely’ be n-sac for n ≥ 3, if, indeed, such

spaces exist at all.

This section investigates the n-sac and ω-sac properties in graphs and regular curves.

The section is divided into three subsections, in Subsection A.2.1 we formally introduce n-

strong arc connectedness, give restrictions on spaces being 4-sac, or more generally n-sac.

In Subsection A.2.2 we study n-strong arc connectedness in graphs noting that graphs are

never 4-sac, and giving a simple (in a precisely defined sense) characterization of those graphs

which are 3-sac. In Subsection A.2.3 we observe that regular curves are never ω-sac, but

that there exist, for every n, a regular curve which is n-sac but not (n+ 1)-sac.

A.2.1 Preliminaries

In this section we introduce the basic definitions and notation use throughout the section.

Most of the basic notions are taken from [51].

A topological space X is n-strongly arc connected (n-sac) if for every distinct x1, . . . , xn
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in X there is an arc α : [0, 1]→ X and t1 < t2 < · · · < tn from [0, 1] such that α(ti) = xi for

i = 1, . . . , n — in other words, the arc α ‘visits’ the points in order. Note that we can assume

that t1 = 0 and tn = 1, or even that ti = (i− 1)/(n− 1) for i = 1, . . . , n. A topological space

is called ω-sac if it is n-sac for every n.

In connection with n-arc connectedness, observe that n-strong arc connectedness implies

n-arc connectedness. On the other hand, a simple closed curve is ω-arc connected but is

not 4-strongly arc connected, thus the class of n-strongly arc connected spaces is a proper

subclass of n-arc connected spaces.

Lemma 150. Let X be a topological space. If there is a finite F such that X \ F is discon-

nected, then X is not (|F |+ 2)-sac.

Proof. If F is empty thenX is disconnected and hence not 2-sac. So suppose F = {x1, . . . , xn}

for n ≥ 1. Let U and V be an open partition of X \ F . Pick xn+1 in U and xn+2 in V .

Consider an arc α in X visiting x1, . . . , xn, and then xn+1. Then α ends in U and can not

enter V without passing through F . Thus no arc extending α can end at xn+2 — and X is

not n+ 2-sac, as claimed.

Suppose α is an arc in X with endpoints a and b. Recall that α is called a free arc if

α\{a, b} is open in X.

Corollary 151. Let X be a topological space.

(1) If there is an open set U with finite boundary, then X is not (|∂U |+ 2)-sac.

(2) A continuum containing a free arc is not 4-sac.

(3) No compact continuous injective image of an interval is 4-sac.

Proof. (1) is simply a restatement of Lemma 150. For (2), apply (1) to an open interval inside

the free arc. While for (3) note that, by Baire Category, a compact continuous injective image

of an interval contains a free arc, so apply (2).

Call an arc α in a space X a ‘no exit arc’ if every arc β containing the endpoints of α,

and meeting α’s interior must contain all of α.

Lemma 152. If a space contains a no exit arc then it is not 4-sac.
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Proof. Let x1 and x2 be the endpoints of α. Pick x3 and x4 so that x1, x3, x4, x2 are in order

along α. Suppose, for a contradiction, β is an arc visiting the xi in order. Since x3 and x4

are in the interior of α, by hypothesis, β contains α. Now we see that if β enters the interior

of α from x1 then it visits x3 before x2. While if β enters the interior of α from x2 it visits

x4 before x3. Either case leads to a contradiction.

A.2.2 Graphs

From Corollary 151 (2) it is immediate that no graph is 4-sac. Since only connected graphs

will be considered, all graphs are 2-sac. In this section we give a characterization of 3-sac

graphs. In fact, we show that for a general continuum X the property of being 3-sac is

equivalent to the intensively studied property of being cyclicly connected (any two points in

X lie on a circle).

We begin this section by noticing that the triod and the figure eight continuum are not

3-sac, while the circle and the theta curve continuum are 3-sac. In [8], Bellamy and Lum

proved:

Theorem 153. For a continuum X, the following are equivalent:

(1) X is cyclicly connected;

(2) X is arc connected, has no arc-cut point, and has no arc end points.

Using the previous theorem we obtain the following characterization of 3-sac continua.

Proposition 154. For a continuum X, the following are equivalent:

(1) X is cyclicly connected;

(2) X is 3–sac;

(3) Any three points in X lie either on a circle or on a theta curve.

Proof. (3)⇒ (2): this follows from the fact that the circle and theta curve are both 3-sac.

(2)⇒ (1): if X is 3-sac, then for any x ∈ X, there is an arc that contains x in its interior.

So X has no endpoints. If X has an arc–cut point then, by Lemma 1, X is not 3-sac. Now

by Theorem 153 we have that 3-sac implies cyclically connected.
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(1)⇒ (3): Let x, y, z ∈ X. By (1) there is a circle C in X containing x and y. If z ∈ C

we are done. If z /∈ C, then by (1) there are two arcs, α and β, from z to x, that only meet

at the endpoints. Let a and b be the points when α and β first intersect C and let α′ and

β′ be parts of α and β from z to a and b respectively. If a 6= b, C ∪ α′ ∪ β′ is the desired

theta curve. If a = b, it should not be an arc cut point by the above theorem, so there is

an arc γ from z to some point on C other than a that misses a. Let γ′ be part of γ that

starts in (α′ ∪ β′) − {a}, ends in C − {a} and does not meet C ∪ α′ ∪ β′ otherwise. Then

C ∪ α′ ∪ β′ ∪ γ′ contains a theta curve that passes through x, y, z.

Notice, if X is a finite graph then ‘X is arc-connected, has no arc–cut point, has no

endpoints’ is equivalent to ‘X has no cut points’ so we get:

Corollary 155. For a finite graph X, the following are equivalent:

(1) X has no cut points;

(2) X is 3-sac;

(3) Any three points in X lie either on a circle or on a theta curve.

A.2.3 n-Strongly Arc Connected Regular Curves

In this section we construct, for every n ≥ 3, an n-sac regular continuum, then using the

Finite Gluing Lemma (Lemma 157) we show that for any n ≥ 2 there is a regular continuum

that is n-sac but not (n+ 1)-sac.

We start the section by introducing the basic elements needed to construct an n-sac

regular continuum.

Fix N ≥ 3. Suppose v1, . . . , vk are affinely independent points in RN−1. Denote by

〈v1, . . . , vk〉 the convex span of v1 through vk. Then 〈v1, . . . , vk〉 is a k-simplex. We call the

points v1, . . . , vk the vertices of 〈v1, . . . , vk〉. For any i 6= j, we call 〈vi, vj〉 the edge from vi

to vj, and we let vi ∧ vj be the midpoint between vi and vj. Note that the space of all edges,⋃
i<j≤k〈vi, vj〉, of 〈v1, . . . , vk〉, is a complete graph on the vertices v1, . . . , vk.

Fix v1, . . . , vN affinely independent points in RN−1, for example let v1 through vN−1 be the

standard unit coordinate vectors, and vN = 0. Define the operation Trix taking a simplex
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〈v1, . . . , vN〉 and returning a set of simplices, {〈vi, vi∧ vj : i 6= j〉 : i = 1, . . . , N}. Inductively

define sets of N -simplices as follows: T N0 = {〈v1, . . . , vN〉}, and T Nm+1 =
⋃
S∈T Nm

Trix(S).

Let TNm =
⋃
T Nm , and TN =

⋂
m T

N
m . Then TN is a regular continuum we call the N -trix.

Observe that the 3–trix is the Sierpinski triangle, and the 4–trix is the tetrix (hence our

name for these continua).

Some additional notation. Given a simplex S = 〈v1, . . . , vN〉, let T1 = Trix(S), and

T1 =
⋃
T1. Take any element of T1, say Si = 〈vi, vi ∧ vj : j 6= i〉. Call the point vi the

external vertex of Si, and call the points vi∧vj, for j 6= i, the internal vertices of Si. For any

S in T1, denote the external vertex of S by v(S). For any two elements, S and S ′ of T1, denote

the (unique) internal vertex common to S and S ′ by S ∧ S ′. Note that {S ∧ S ′} = S ∩ S ′.

Further for any x in T1, fix an element, S(x), of T1 containing x. It is easy to verify directly,

or by applying Theorem 153 and Proposition 154 that all N -trixes are 3-sac.

Lemma 156. Fix n ≥ 3. Let N = 6n2 + 12n+ 1. The N-trix is n-sac.

Proof. Let T = TN , the N -trix, and — since N is fixed to be 6n2 + 12n + 1 — otherwise

suppress the superscript N . Take any n points in T , say x1, . . . , xn. Then there is a minimum

m ≥ 1 such that the xi are in distinct simplices in Tm. Further there is a maximum m′ so

that all the xi are in the same simplex S of Tm′ . If there is an arc in S ∩ T visiting the

points in order, then that same arc visits the points in order inside T . So without loss of

generality, we can suppose that m′ = 0, S = T0, and the points x1, . . . , xn (obviously) each

lie in an element of T1, but not all in the same element. Now call m the height of the points,

x1, . . . , xn.

There are N = 6n2 + 12n+ 1 elements of T1. Each of the n points, xi, can only be in at

most 2 members of T1. Hence we can find a subset E of T1 such that E has at least 3n + 1

members, and no point xi is in any element of E . The lemma now follows from the next

claim, which we prove by induction on m.

Claim: For each m ≥ 0, points x1, . . . , xn of height m, and subset E of T1, such that

|E| > 3n and E ∩ {S(xi) : i ≤ n} = ∅ (for any choice of S(xi)), there is an arc α visiting the

points x1, . . . , xn in order, and, for i = 1, . . . , n, disjoint arcs (called ‘spurs’), βi from xi to

the external vertex, v(E), of some E in E .
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Base Step, m = 1. Since m = 1, we can assume that the sets S(xi), for i = 1, . . . , n, are

distinct.

Pick some C in E . Let E ′ = E \ {C}. For each i ≤ n, and j = 1, 2, 3, pick distinct Ei,j

from E ′. For each i ≤ n, pick three disjoint arcs in S(xi): α
−
i from xi to S(xi)∧Ei,1, α+

i from

S(xi) ∧ Ei,2 to xi, and βi from xi to S(xi) ∧ Ei,3. Extend βi by following the edge in Ei,3 to

v(Ei,3). These βi are the required ‘spurs’. Denote by Ω the set of simplices, Ei,3, containing

these spurs.

For i < n, let αi be the arc formed by following the natural edges (of elements of T1)

between these vertices in the prescribed order: S(xi)∧S(Ei,1), S(Ei,1)∧S(C), S(C)∧S(Ei+1,2)

and S(Ei+1,2) ∧ S(xi+1). Let α be the path obtained by following these arcs in the given

order: α−1 , αi, α
+
2 , α−2 , α2, α

+
3 , . . . , α−i , αi, α

+
i+1, . . ., and finally α−n−1, αn−1, α

+
n . Since all the

vertices appearing in the definition of the αi’s are distinct, α is a path which does not cross

itself, and so is an arc, which, by construction, visits the points x1, . . . , xn in order.

Inductive Step. We assume the claim is true when the points come from a level < m.

Prove for points on level m. First observe that for any S in T1, S ∩ Tm is homeomorphic to

Tm−1.

We will use Il to denote the set {1, 2, . . . , l}. Let x1, x2, . . . , xn be n points in T of height

m and {S1, S2, . . . , Sk} = {S(x1), . . . , S(xn)}. For each i ∈ Ik let x(i,1), x(i,2), . . . , x(i,ki) be

a reenumeration of all the xj’s in Si such that if xt = x(i,s) and xl = x(i,r) then s < r if

and only if t < l. For all S in T1, let Sm−1 denote S ∩ Tm. In each Si pick 6n + 1-many

simplices of S i1 that do not contain any of x(i,j)’s, none of them share external vertices, and

none contain the external vertex of Si; this can be done since S i1 consists of 6n2 + 13n + 1

simplices and Si contains at most n−1 elements of {x1, x2, . . . , xn}. Let this set of simplices

be Ei.

In the next step we will choose the simplices that will allow us to construct an arc between

two consecutive xis, whenever they lie on different elements of T1.

For each i ∈ Ik let Υi be a set of simplices Y(i,j) in T1 given as follows:

1. For j < ki,

a. If x(i,j) and x(i,j+1) are not consecutive points in {x1, x2, . . . , xn}, then pick Y(i,j) such
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that

Y(i,j) 6∈ {S1, S2, . . . , Sk} ∪ {
i−1⋃
t=1

Υt} ∪ {Y(i,1), Y(i,2), . . . , Y(i,j−1)},

Y(i,j) ∩ {x1, x2, . . . , xn} = ∅, and such that Y(i,j) ∧ Si lies in an element of Sm−1

different from the elements containing the x(i,j)’s.

b. If x(i,j) and x(i,j+1) are consecutive points in {x1, x2, . . . , xn}, then do nothing.

2. For j = ki,

a. If x(i,ki) 6= xn, then pick Y(i,ki) as above, satisfying the conditions on (a).

b. If x(i,ki) = xn, then do nothing.

3. For j = 1 (in some cases we are selecting twice for j = 1),

a. If x(i,1) 6= x1, then pick Y(1,0) as in (1), satisfying the conditions on (a).

b. If x(i,1) = x1, then do nothing.

Denote by y(i,j) the vertex Si ∧ Y(i,j).

Now, in each sequence {x(i,1), x(i,2), . . . , x(i,ki)} insert the points y(i,j) (if they exist) as

follows: y(i,0) before x(i,1), and y(i,j) immediately after corresponding x(i,j). So, for each

i ∈ Ik, we have constructed a sequence li in Si such that a point y(i,j) lies between x(i,j) and

x(i,j+1) only if x(i,j) and x(i,j+1) are not consecutive points on {x1, x2, . . . , xn}. Observe that

for each i ∈ Ik, the set of points x(i,1), x(i,2), . . . x(i,ki) have, in Si, height at most m−1, hence,

by the choice of y’s, the sequence of points li also has height at most m− 1.

By the Inductive Hypothesis, applied to Si, li and Ei, there is an arc αi in Si visiting

the points of li in order, and disjoint spurs βa for each a ∈ li to external vertices of some

elements in Ei.

Construction of an arc through x1, x2, . . . , xn: Pick C ∈ E containing none of the y’s or

x’s. For each i ∈ In−1, let γi be the arc connecting xi to xi+1 given as follows: If xi and

xi+1 are in the same St then γi is the subarc of αt connecting them. If not, then xi = x(p,j),

xi+1 = x(r,l) and y(p,j), y(r,l−1) exist. Let γi = γ1
i ∪ γ2

i ∪ γ3
i ∪ γ4

i ∪ γ5
i , where γ1

i , γ
2
i , γ

3
i , γ

4
i , γ

5
i

are as follows:

1. γ1
i is the subarc of αp from x(p,j) to y(p,j) if possible or else a spur from x(p,j) to some

vertex u of Sp, whichever is unused yet. In any case, there is a simplex U in T1 such that

u = Sp ∧ U or y(p,j) = Sp ∧ U . Let γ2
i be the edge in U connecting Sp ∧ U to U ∧ C.
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2. similarly as in (1), γ3
i is the subarc αr from x(r,l) to y(r,l−1) if possible or else a spur from

x(r,l) to some vertex v of Sr, whichever is unused yet. In any case, there is a simplex V

in T1 such that v = Sr ∧ V or y(r,l−1) = Sr ∧ V . Let γ4
i be the edge in V connecting

Sr ∧ V to V ∧ C.

3. let γ5
i be the edge in C connecting U ∧ C and V ∧ C.

Let α =
⋃n−1
i=1 γi. Because of how y’s and spur destinations were picked, α is an arc that

visits the points x1, x2, . . . , xn in order.

Construction of spurs to external vertices of elements of E : suppose we have constructed

spurs for all xl, l < i and xi ∈ Sj. If spur βxi of xi in Sj is not contained in α then it only

intersects it at xi, extend βxi as follows: let vi be the other endpoint of βxi . Let Vi be the

simplex in T1 \ ({
⋃k
i=1 Υi} ∪ (

⋃k
i=1 S

i) ∪ C) that intersects Sj at vi. Pick any simplex Ei in

E \ C that has not been picked for previous spur constructions. The spur βi consist of βxi ,

followed by the edge in Vi connecting vi and Ei ∧ Vi, and the edge in Ei connecting Ei ∧ Vi
with v(Ei).

Suppose βxi is contained in α. Observe that in this case xi = x(j,r) and x(j,r−1) are not

consecutive points of {x1, x2, . . . , xn}, otherwise βxi would not be contained in α. Hence

y(j,r−1) exists. Let δ be the subarc of αj connecting x(j,r) to y(j,r−1), let γ be the subarc of

α connecting x(j,r−1) to y(j,r−1), and let ω be the other end point of the spur βy(j,r−1)
. By

construction, α ∩ δ = {x(j,r), y(j,r−1)} and α ∩ βy(j,r−1)
= {y(j,r−1)}.

Since the diameters of the simplices in Tt approach zero as t increases, there exists, for

a sufficiently large t, a simplex Λ in Sjt with the following properties:

1. y(j,r−1) is a vertex of Λ,

2. x(j,r), x(j,r−1), ω 6∈ Λ,

3. Λ ∩ α is connected, and

4. Λ does not intersect any spur, except for βy(j,r−1)
.

By the choice of Λ, the arcs δ, γ and βy(j,r−1)
intersect Λ at different vertices of Λ, say

a, b, c respectively. Then revise α to go form b to y(j,r−1) through an edge of Λ and let β

consist of the following parts: the subarc of δ from xi = x(j,r) to a, followed by the edge in
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Λ from a to c, and followed by the subarc of βy(j,r−1)
from c to ω. Now extend β as in the

previous case to get the spur βi for xi.

Lemma 157 (Finite Gluing). If X and Y are (2n−1)-sac, and Z is obtained from X and Y

by identifying pairwise n−1 different points of X and Y , then Z is n-sac but not (n+1)-sac.

Proof. Let z1, z2, . . . , zn be any n points in Z. For each i, if zi ∈ X \ Y and zi+1 ∈ Y \X or

zi ∈ Y \X and zi+1 ∈ X \ Y , pick z(i,i+1) ∈ (X ∩ Y ) \ {z1, z2, . . . , zn, z(1,2), z(2,3), . . . , z(i−1,i)}

(if z(1,2), z(2,3), . . . , z(i−1,i) were picked). This is possible since |X ∩ Y | = n − 1. Let Z be

the sequence of zj’s with z(i,i+1)’s inserted between zi and zi+1 whenever they exist. And

let ZX be the sequence derived from Z by deleting the terms that do not belong to X.

Define ZY similarly. Since elements of ZX come either from {z1, z2, . . . , zn} or from X ∩ Y ,

|ZX | ≤ 2n−1. Similarly, |ZY | ≤ 2n−1. Let β be an arc in X going through elements of ZX
in order and γ be an arc in Y going through elements of ZY in order. Let a1, a2, . . . , ak be

z(1,2), z(2,3), . . . , z(n−1,n) whenever they exist, respectively. Without loss of generality, suppose

z1 ∈ X. Define α to be the union of the following arcs:

1. the subarc of β from z1 to a1;

2. the subarc of γ from a1 to a2;

3. the subarc of β from a2 to a3 . . .

4. the subarc of β or γ (depending on whether k is even or odd) from ak to zn.

Note that α is an arc visiting the points z1, z2, . . . , zn in order. Hence Z is n-sac. The

fact that Z in not (n+ 1)-sac follows by Lemma 150.

Observe that for n ≥ 2, Lemma 156 implies the existence of a (2n − 1)-sac regular

continuum G. Hence by Lemma 157 applied to two disjoint copies of G, there exists an n-

sac regular continuum that is not (n+ 1)-sac. We summarize this in the following theorem.

Theorem 158. For every n ≥ 2 there exists a n-sac regular continuum that is not (n+ 1)-

sac.

116



APPENDIX B

OTHER PROJECTS

B.1 SEPARATORS AND GENERATORS

Fix a (Tychonoff) space X and let G be a subspace of of Cp(X). Call G a separator if for

every distinct x, x′ in X there is g in G such that g(x) 6= g(x′). Call G a generator if for

every point x not in a closed subset C of X there is g in G such that g(x) 6= g(C). Recall

that a subset C of X is a zero set if there is f ∈ Cp(X) such that C = f−1{0}. Call G a

zero set generator if for every zero subset C of X there is g in G such that C = g−1{0}.

Clearly ‘zero set generator’ implies ‘generator’, and ‘generator’ implies ‘separator’. Also,

for every space X, Z = Cp(X) is a zero set generator for X. Various variants of these ideas

are also useful. Let G be a (0, 6= 0)-separator if for distinct x, x′ there is g in G such that

g(x) = 0 but g(x′) 6= 0. Let G be a (0, 6= 0)-generator if for x not in closed C there is g in G

such that g(C) = 0 but g(x) 6= 0. Let G be a (0, 1)-separator if for distinct x, x′ there is g

in G such that g(x) = 0 but g(x′) = 1. And let G be a (0, 1)-generator if for x not in closed

C there is g in G such that g(C) = 0 but g(x) = 1.

Recall from Section 0.5 of [4] that given any subspace F of Cp(X), the map ψF : X →

Cp(F ) defined by ψF (x)(f) = f(x) is continuous. Even when F is a generator it is not

guaranteed that ψF (X) is closed in Cp(F ). For example, let X = R, F = {arctanx}, then

F is a generator since arctanx is a homeomorphism, Cp(F ) = R, but ψF (X) = (−π/2, π/2)

while LFp (X) = R. The next lemma explores linear independence of ψF (X).

117



Lemma 159. Suppose F ⊆ Cp(X). Then (1) if F is not a separator then ψF (X) is linearly

dependent, (2) if F is a zero set generator then ψF (X) is linearly independent and (3) F

being a generator (or a separator) does not guarantee linear independence of ψF (X).

Proof. For (1) pick x, y ∈ X such that for each f ∈ F, f(x) = f(y), or equivalently, for all

f ∈ F, ψF (x)(f) = ψF (y)(f). So ψF (x) = ψF (y).

For (2) suppose ψF (X) is not linearly independent and we have non-zero a1, . . . , an ∈

R, x, x1, . . . , xn ∈ X, with a1ψF (x1) + . . . + anψF (xn) = ψF (x), meaning a1f(x1) + . . . +

anf(xn) = f(x), ∀f ∈ F . Now since X is Tychonov, C = {x1, x2, . . . , xn} is closed and it is

also an intersection of zero sets in X. So there is a zero set Z such that C ⊆ Z and x /∈ Z.

Since F is a zero set generator, there is f ∈ F sich that f−1{0} = Z. Thus f(xi) = 0,∀i and

f(x) 6= 0. But f(x) = a1f(x1) + . . .+ anf(xn) = 0, a contradiction.

For (3) let X = R and let i be the identity function on X. Let F = {i}. Then F is

a generator (for each C closed in X and x /∈ C, we have f(x) = x /∈ C = cl(i(C))). But

Cp(F ) = R and ψF (X) = R which is not linearly independent.

We know from [4] that if F is a separator then ψF is a continuous injection (and so X

condenses onto a subspace of Cp(F )). But the converse is also true. If ψF is injective then

for each pair of distinct x, y ∈ X we have ψF (x) 6= ψF (y) as functions on F . So there is

f ∈ F such that ψF (x)(f) 6= ψF (y)(f), i.e., f(x) 6= f(y). So F is a separator. Again from

[4] we know that if F is a generator then ψF is an embedding (and so X is homeomorphic

to a subspace of Cp(F )). There are many results describing a duality between properties of

X and properties of Cp(X). The above observations suggest that perhaps it is possible to

improve these results to duality results between X and its separators or generators.

The following two theorems are well-known [4].

Theorem 160. For a space X the following are equivalent:

(1) Cp(X) is second countable, (2) Cp(X) is first countable and (3) X is countable.

Theorem 161. For a space X the following are equivalent:

(1) Cp(X) has a coarser second countable topology, (2) points of Cp(X) are Gδ and (3)

X is separable.
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From proofs of these theorems we immediately see that existence of a ‘nice’ generator is

all that is necessary. Let 0 be the constantly zero function on X.

Corollary 162. For a space X the following are equivalent:

(1) X has a second countable (0, 1)-generator containing 0, (2) X has a first countable

(0, 1)-generator containing 0 and (3) X is countable.

Corollary 163. For a space X the following are equivalent:

(1) X has a (0, 6= 0)-generator with coarser second countable topology that contains 0,

(2) X has a (0, 6= 0)-generator containing 0 with all points Gδ and (3) X is separable.

The natural next step is to see what spaces have ‘nice’ generators. We present two

examples. Recall that the Tangent Disc Space is the set R × [0,∞) with the topology

generated by the following base: if y > 0 then basic open sets around (x, y) are R2-open

balls centered at (x, y); basic open sets containing (x, 0) are of the form Vn,x∪{(x, 0)} where

Vn,x is the R2-open ball of radius 1/n and centered at (x, 1/n). By ‘R2-open’ we mean ‘open

in the usual topology of R2’. Recall that a subset of Cp(X), B(f, F, ε), is defined to be

{g ∈ Cp(X) : |f(x)− g(x)| < ε ∀x ∈ F}.

Proposition 164. Let X be the Tangent Disk Space. Then X has a first countable (0, 6= 0)

generator containing 0.

Proof. Let Cn,x be the boundary of Vn,x in the usual topology of R2. We define gn,x :

X → R by describing its graph: graphs of gn,x consists of the point ((x, 0), 1/n), planar

region V c
n,x × {0}, line segments connecting the point ((x, 0), 1/n) with points (A, 0) where

A ∈ Cn,x\{(x, 0)}. Clearly, each gn,x is continuous on X.

Let Gn = {gn,x : x ∈ X}. The map φn taking x to gn,x is a homeomorphism from R with

discrete topology to Gn: φn({x}) = {gn,x} = B(gn,x, (x, 0), 1/(2n)), which is an open set in

Gn.

The open upper half plane has countable discrete (0, 6= 0) generator. We can pick an

injection i : Q3 → ω\{0} such that for each n, i(p, q, n) > n whenever p, q ∈ Q. Let Up,q,r be

R2-open ball of radius r that is centered at (p, q). For p, q ∈ Q, q > 0 assume that n is large

enough so that Up,q,1/n does not intersect R× {0}. Define gp,q,n by describing the graph: let

the graph of gp,q,n consist of the point ((p, q), 1/i(p, q, n)), planar region U c
p,q,1/n × {0}, line
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segments connecting the point ((p, q), 1/i(p, q, n)) with points (A, 0) where A belongs to the

R2-boundary of Up,q,1/n. Then each gp,q,n is continuous. Let G0 = {gp,q,n : p, q ∈ Q, q >

0, n ∈ ω\{0}}. Then it is easy to see that G0 is discrete.

Now define G′ =
⋃
n∈ω Gn. It is easy to see that each Gn is open in G′. Therefore G′ is

still discrete and hence first countable. Let G = G′ ∪ {0}.

To show that G is first countable we construct a local base at 0. Pick n and pick

p, q, r ∈ Q with r positive and q non-negative. Draw the infinite grid in R2 with side length

1/n having a vertex at (p, q). Let y1, . . . , yk be vertices of the grid that fall in Up,q,r+1. Then

let Bp,q,r,n = B(0; y1, . . . , yk; 1/n) ∩ G. The sets of the form Bp,q,r,n give a countable base

at 0. Let B = B(0, x1, . . . , xk, ε) ∩ G be any basic open set in G. Pick p, q, r so that all

points x1, . . . , xk fall in Up,q,r. Pick n so that 1/n < ε/4 and rectangles of the grid containing

points x1, . . . , xk sit inside Up,q,r. If g ∈ G0 ∩ Bp,q,r,n, then the graph of G is a cone of slope

< 1 (because i(p, q,m) > m for all m and p, q ∈ Q), therefore it must also fall in B. On

the other hand, suppose gm,x ∈ Bp,q,r,n for some m and some x. If m is large enough so

that Vm,x contains at most four yj’s, then 1/m < ε and g ∈ B. But if Vm,x contains at least

five yj’s then the grid associated with Bp,q,r,n is fine enough to ensure that f falls in B. So,

Bp,q,r,n ⊆ B.

G is a (0, 6= 0) generator since for each point x ∈ X and each basic open set x ∈ U ⊆ X

there is a function g ∈ G such that f(U c) = {0}, f(x) 6= 0.

Recall that the Bow-tie Space is the set R2 with the topology generated by the following

base: if y 6= 0 then basic open sets around (x, y) are R2-open balls centered at (x, y); basic

open sets containing (x, 0) are of the form Wn,x ∪ {(x, 0)} where Wn,x is the R2-open set

that lies between lines with slope of ±1/n through (x, 0) and vertical lines going through

(x− 1/n, 0) and (x+ 1/n, 0).

Proposition 165. Let X be the Bow-tie Space. Then X has a second countable (0, 6= 0)

generator containing 0.

Proof. Pick x ∈ R and n ∈ N and define hn,x : X → R as follows: the graph of hn,x consists of

planar regions Wn+1,x×{1/n} and W c
n,x×{0} and the rest of the graph consists of trapezoidal

faces connecting the following pairs of sides:
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• {(t, t
n
− x

n
) : x < t ≤ x+ 1/n} × {0} and {(t, t

n+1
− x

n+1
) : x < t ≤ x+ 1/(n+ 1)} × {1};

• {(t,− t
n

+ x
n
) : x < t ≤ x+1/n}×{0} and {(t,− t

n+1
+ x

n+1
) : x < t ≤ x+1/(n+1)}×{1};

• {(t, t
n
− x

n
) : x− 1/n ≤ t < x} × {0} and {(t, t

n+1
− x

n+1
) : x− 1/(n− 1) ≤ t < x} × {1};

• {(t,− t
n

+ x
n
) : x−1/n ≤ t < x}×{0} and {(t,− t

n+1
+ x

n+1
) : x−1/(n−1) ≤ t < x}×{1};

• {(x + 1/n, t) : −1/n2 ≤ t ≤ 1/n2} × {0} and {(x + 1/(n + 1), t) : −1/(n + 1)2 ≤ t ≤

1/(n+ 1)2} × {1};

• {(x − 1/n, t) : −1/n2 ≤ t ≤ 1/n2} × {0} and {(x − 1/(n + 1), t) : −1/(n + 1)2 ≤ t ≤

1/(n+ 1)2} × {1}.

Clearly, each hn,x is continuous on X. Let Gn = {hn,x : x ∈ X}. The map ψn taking x

to hn,x is a homeomorphism from R with usual topology to Gn and G = ∪Gn is the free sum

of countably many R’s.

Note that R2 with the x-axis removed has a discrete countable (0, 6= 0) generator. Let

Up,q,r be R2-open ball of radius r that is centered at (p, q). For p, q ∈ Q, q 6= 0 assume that

n is large enough so that Up,q,1/n does not intersect R×{0}. Define gp,q,n the same way as in

the proof of Proposition 164. Then, again, each gp,q,n is continuous and G0 = {gp,q,n : p, q ∈

Q, q 6= 0, n ∈ ω\{0}} is discrete.

Let G′ =
⋃
n∈ω Gn. It is easy to see that G′ is the free sum of countably many copies of

R and countably many points. So G′ is second countable.

Let G = G′ ∪ {0}. Then G is first countable (thus second countable since G′ is second

countable). The proof of first countability at 0 is similar to the proof for Proposition 164,

except q is allowed to be negative. The resulting collection, G is a (0, 6= 0) generator since

for each point x ∈ X and each basic open set x ∈ U ⊆ X there is a function g ∈ G such

that f(U c) = {0}, f(x) 6= 0.

B.2 ELEMENTARY SUBMODELS AND Cp(X)

This line of research was inspired by the way elementary submodels of set theory were used

to study Corson, Valdivia and Eberlein compact spaces in [40] as well as by the study of

upwards and downwards preservation of properties of spaces by elementary submodels from

121



[37, 38]. We are particularly interested in studying elementary submodels in connection with

the spaces of the form Cp(X).

Recall that for a cardinal θ, H(θ) is the set of all ‘hereditarily < θ-sized’ sets, or, more

precisely, the set of all sets with < θ-sized transitive closure [42]. When θ is regular and

uncountable all axioms of ZFC, with the exception of the Power Set Axiom, are true in

H(θ). For the rest of this section assume that θ is large enough regular cardinal so that

H(θ) contains all sets (and all power sets) required for arguments of this section to go

through. From now on (E,∈) is an elementary submodel of (H(θ),∈).

Recall that every countable element of E is also a subset of E and every finite subset

of E is also an element of E. Any set defined using elements of E is also an element of E.

Since almost all of ZFC is true in E, all natural numbers, ω, Q, R, ω1 and etc. are elements

of E. For any E, E ∩ ω1 is an ordinal.

B.2.1 YE and Cp(X)

Let Y be a topological space and B be a base for the topology on Y . Let E be such that

Y,B ∈ E. Define YE = Y ∩E with the topology generated by the base {B∩E : B ∈ B∩E}.

It is well-known (see [38]) that if Y is first countable then the topology of YE coincides

with the subspace topology of Y ∩ E. This is not true in general even if ‘first countable’ is

replaced by ‘Fréchet-Urysohn’ [38]. The space YE does not have to be a subspace of Y even

when Y ∩ E is second countable. For example, let Y = ω1 + 1 and E be countable. Then

Y ∩ E = α ∪ {ω1} for some countable α but YE is homeomorphic to α + 1.

We know that if Y is Ti then YE is also Ti, for i = 0, 1, 2, 3, 31
2
, while higher separation ax-

ioms are not preserved. For several cardinal functions f (for instance, cellularity, hereditary

density, hereditary Lindelöf number, character, pseudo-character, weight), f(YE) ≤ f(Y ).

But covering properties like compactness and Lindelöfness are not preserved. All these re-

sults can be found in [38]. We add two more cases of preserving cardinal functions. Recall

that the network weight of X, nw(X), is the smallest cardinality of a network of X (modulo

{{x} : x ∈ X}, by our earlier definition).

Lemma 166. Let Y be a space and E be arbitrary. Then nw(YE) ≤ nw(Y ) and iw(YE) ≤
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iw(Y ). The first inequality can be strict.

Proof. If W is a network for Y , then {W ∩ E : W ∈ W} is a network for YE because the

topology on YE is coarser than the subspace topology. The inequality can be strict since, by

elementarity, {W ∩ E : W ∈ W ∩ E} is a network for YE as well, and any countable E and

any Y with uncountable network weight will witness the strict inequality.

Let κ = iw(Y ). Then κ ∈ E and by elementarity there is a base for a topology on

X, Bκ, of size κ such that the identity map iX : (X,B) → (X,Bκ) is continuous. Let Xκ
E

be X ∩ E with the topology generated by Bκ ∩ E (this topology has weight ≤ κ). By

elementarity, E |= ∀x ∈ X,U ∈ Bκ(x ∈ U) → ∃V ∈ B(x ∈ V ⊆ U). Which translates to

∀x ∈ X ∩ E,U ∈ Bκ ∩ E(x ∈ U) → ∃V ∈ B ∩ E(x ∈ V ∩ E ⊆ U). So iX |E : XE → Xκ
E is

continuous.

We want to investigate preservation of properties under the operation of taking YE when

Y = Cp(X). Let B be a base for the topology on X and Bp be the base for Cp(X) that

consists of all open sets of the form: B(f, F, n) = {g ∈ Cp(X) : |g(x) − f(x)| < 1
n
,∀x ∈ F}

where F ⊆ X is finite, f ∈ Cp(X) and n ∈ N. Note that, X,B ∈ E implies Cp(X),Bp ∈ E.

We know that Cp(X) is a topological ring and a topological vector space over R. It is

natural to ask if the same is true of Cp(X)E. Let + ⊆ R3 be the addition function and

× ⊆ R3 be the multiplication function on R. Both of these functions are clearly absolute for

E, so +,× ∈ E.

Proposition 167. Cp(X)E is a topological ring and topological vector space over Q.

Proof. Since the formula “Cp(X) is a ring” can be stated using only elements of E, we

immediately deduce that Cp(X)E is a ring. Similarly, Cp(X)E is a vector space over Q.

We show that +p,×p,−p are continuous from Cp(X)2
E to Cp(X)E. By elementarity we

have E |= +p is continuous. So ∀f, g ∈ Cp(X)E, f +p g ∈ U ∈ Bp ∩ E, ∃V,W ∈ Bp ∩ E :

f ∈ V, g ∈ W, +p(V ×W ) ∩ E = +p((V ×W ) ∩ E) ⊆ U . This precisely means that +p is

continuous from Cp(X)2
E to Cp(X)E. The rest is similar.

It turns out that some relations between X and Cp(X) still hold for XE and Cp(X)E.

Let w(Y ) be the weight of Y and χ(Y ) be the character of Y , or the smallest κ such that

123



each point in Y has a local base of size κ. We know that |X| = χ(Cp(X)) = w(Cp(X)) and

nw(X) = nw(Cp(X)). Before proving these results, we prove a basic lemma.

Lemma 168. (1) Bp ∩ E = {B(f, F, n) : f ∈ E, F ⊆ E}.

(2) Cp(X)E densely embeds into Cp(XE) (hence in RX∩E).

(3) The canonical embedding j : X → CpCp(X) is an element of E and j|E is an

embedding of XE into (CpCp(X))E.

Proof. (1) If F ⊆ E then F ∈ E and together with f ∈ E they give B(f, F, n) ∈ E. On the

other hand, if B is a basic open set in E then there are f, F, n such that B = B(f, F, n) and

by elementarity, they can be picked in E.

(2) Define φ : Cp(X)E → Cp(XE) to be the restriction map: φ(f) = f |E for each

f ∈ Cp(X)E. By elementarity and the fact that standard base of R is a subset of E, φ

indeed maps into Cp(XE) . Further φ is injective: for f, g ∈ Cp(X)E, f 6= g elementarity

requires that f and g be distinguished by a point in E ∩ X, so φ(f) 6= φ(g). Part (1)

immediately implies that φ is an embedding. For denseness: take any finite F ⊆ E ∩X and

open interval Ix in R for each x ∈ F . Pick a rational number qx ∈ Ix for each x ∈ F . Now,

there is f ∈ Cp(X) such that f(x) = qx for each x ∈ F and by elementarity, we can arrange

for f ∈ E. So φ(Cp(X)E) is dense in Cp(XE).

(3) The space CpCp(X) and its standard base are in E and j is definable from X,Cp(X),

CpCp(X) and thus is an element of E. Since j : X → CpCp(X) is an embedding and bases

of X and CpCp(X) are elements of E, elementarity implies that j|E : XE → (CpCp(X))E is

also an embedding.

Proposition 169. |XE| = χ(Cp(X)E) = w(Cp(X)E).

Proof. We adjust the standard proof.

By Proposition 168 part (2), χ(Cp(X)E) ≤ w(Cp(X)E) ≤ w(RX∩E) ≤ |X ∩ E| = |XE|.

Suppose χ(Cp(X)E) < |X ∩ E|. Let 0X be the zero function on X. Since Cp(X)E is a

topological ring and 0X ∈ E, 0X witnesses our assumption: there is a local base γ ⊆ Bp ∩E

at 0X consisting of sets of the form B(0X , F, n), such that |γ| < |X ∩ E|. Let W =
⋃
{F :

B(0X , F, n) ∈ γ}. Then |W | < |X ∩ E|. By Proposition 168 part (1), W ⊆ X ∩ E. Pick
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x ∈ (X ∩ E)\W and let B = B(0X , {x}, 1). Then B ∈ E ∩ Bp. Fix any finite F ⊆ W ⊆ E.

Then there is g ∈ Cp(X) that maps all of F to zero and x to 1. Since all parameters are in

E, we can assume g ∈ E. So g ∈ Cp(X)E ∩ V for all V ∈ γ but g /∈ B. This contradicts γ

being a local base.

Proposition 170. nw(XE) = nw(Cp(X)E).

Proof. We know nw(XE) = nw(Cp(XE)). By Proposition 168 part (2), it follows that

nw(Cp(X)E) ≤ nw(Cp(XE)). So we have nw(Cp(X)E) ≤ nw(XE).

On the other hand, this inequality together with Proposition 168 part (3) gives nw(XE) ≤

nw((CpCp(X))E) ≤ nw(Cp(X)E).

A space Y is said to have Property K if and only if for any uncountable family, U , of

open sets, there is uncountable V ⊆ U such that for all V,W ∈ V we have V ∩W 6= ∅. The

space has the countable chain condition (ccc) if every pairwise disjoint collection of non-

empty open subsets of Y is countable. Clearly, separable implies Property K, and Property

K implies ccc. Any product of reals has Property K and, since Property K is preserved by

dense subsets, Cp(X) also has Property K and hence ccc.

Proposition 171. Cp(X)E has Property K.

Proof. We know that Cp(X)∩E is a Q-vector subspace of Cp(X). So the closure of Cp(X)∩E

is a R-vector space of Cp(X). Hence Cp(X)∩E is dense in its closure which embeds densely

in some Rκ (Lemma 5 in [24]). Hence Cp(X) ∩ E has Property K. Hence Cp(X)E, as its

continuous image, also has Property K.

By elementarity and the fact that a countable base for R is a subset of E, if f ∈ Cp(X)E,

then f |X ∩ E is continuous on XE. Since Cp(X) is a separator for X, by elementarity

{f |X ∩ E : f ∈ Cp(X)E} is a separator XE.

Proposition 172. Cp(X)E is a generator for XE but not necessarily for X ∩ E.

Proof. Fix x ∈ X ∩ E and U ∈ B ∩ E such that x ∈ U . Then E |= ∃f ∈ Cp(X)(f(x) =

1, f(U c) = {0}) since all parameters are in E. So there is such f ∈ Cp(X) ∩ E and we are

done.
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On the other hand, consider X = ω1 + 1 and let E be countable. Then E ∩ ω1 = α is a

countable limit ordinal. X ∩ E = α ∪ {ω1} with subspace topology and thus {ω1} is open.

Let x = ω1 and U = {ω1}. Then the only functions that separate x and U c are ones that are

constantly zero on α and non-zero at ω1. Pick any such g ∈ Cp(X). We know g is eventually

constantly b = g(ω1). If g ∈ E then, by elementarity, E |= ∃β ∈ ω1(∀γ > β (g(γ) = b)).

This becomes ∃β ∈ α (∀γ ∈ α\β (g(γ) = b)). We have a contradiction. No such g can be in

E and Cp(X)E is not a generator.

B.2.2 Y/E and Cp(X)

Let E be an elementary submodel of large enough H(θ). Let Y be a topological space with

base B and Y,B ∈ E. Recall that a subset U of Z is called cozero if and only if there is

f ∈ Cp(Z) such that U = f−1(0, 1). Clearly, if Z ∈ E then U ∈ E if and only if f ∈ E.

Define an equivalence relation on Y as follows: x ∼E y if and only if x ∈ V ⇔ y ∈ V for all

cozero sets V ∈ E. Then, by the above observation, x ∼E y if and only if f(x) = f(y) for

all f ∈ Cp(Y ) ∩ E (article by Dow in [33]).

Let Y/E be the set of equivalence classes and let π : Y → Y/E be the quotient map. We

give Y/E the topology generated by the set {π(V ) : V ∈ E, V is cozero in Y }. We call this

topology the E-quotient topology. For every f ∈ Cp(X)∩E, the map fE : Y/E → R defined

by fE([x]) = f(x) is well-defined and f = fE ◦ π. Also, clearly, π(f−1((0, 1))) = f−1
E ((0, 1)),

which implies that E-quotient topology is coarser that the usual quotient topology and fE is

continuous on Y/E. Then π is also continuous. It was proven in [15] that if Y is Tychonoff

then so is Y/E.

It is clear from the definition that there is a tight connection between Y/E and Cp(Y ).

The case when Y is compact has been studied closely [40]. In this case the E-quotient

topology and the standard quotient topology coincide on Y/E. Here are some other nice

properties that hold when Y is compact (these can be found in [40]).

Theorem 173. Let Y be compact. Then:

(1) the set {f̄ ◦ π : f̄ ∈ C(Y/E)} is equal to the set C(Y ) ∩ E (the closure is uniform

but the set also turns out to be closed in Cp(Y ));
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(2) the map j : (Y ×Z)/E → Y/E ×Z/E defined by [(y, z)] 7→ ([y], [z]) is a homeomor-

phism.

For non-compact Y things are not quite as nice. Let A = {f̄ ◦ πE : f̄ ∈ Cp(Y/E)}.

Then A does not have to be closed in Cp(Y ); in fact it does not have to contain Cp(Y ) ∩ E

(closure in Cp(Y )). However, as we showed above, if f ∈ Cp(Y )∩E then fE ∈ Cp(Y/E) and

therefore we have Cp(Y ) ∩ E ⊆ A. Recall that the Michael Line is the space obtained from

R by declaring irrational points isolated.

Proposition 174. Let Y be the Michael Line and E be countable. Then C(Y ) ∩ E * A.

Proof. The elementary submodel E contains all intervals with rational endpoints and since

all of them are cozero sets in Y , equivalence classes in Y/E are singletons (we will abuse

notation and pretend {x} = x), then πE is the identity map. However, the topology of Y/E

is strictly weaker than the Michael line topology: since E is countable, there exists r ∈ R\Q

that is not in E so {x} cannot be open in Y/E.

Note χ{x} ∈ Cp(Y ) and χ{x} ◦ πE = χ{x} but χ{x} /∈ Cp(Y/E). So χ{x} /∈ A. We

will show that χ{x} ∈ Cp(Y ) ∩ E. Pick four sequences of rationals converging to r, {pn}n,

{p′n}n, {qn}n, {q′n}n such that {pn}n, {p′n}n are increasing, {qn}n, {q′n}n are decreasing and

pn < p′n < q′n < qn for each n. Let the graph of fn : Y → R consist of (−∞, pn)∪(qn,∞)×{0},

[p′n, q
′
n]×{1}, the line connecting (pn, 0) and (p′n, 1) and the line connecting (q′n, 1) and (qn, 0).

Since we only used rationals to define the fn-s, they are elements of E and continuous on Y

(since they are continuous on R with usual topology). Then χ{x} is pointwise limit of the

fn-s, so χ{x} ∈ Cp(Y ) ∩ E.

Proposition 175. If Y × Z is Lindelöf then j : (Y × Z)/E → Y/E × Z/E defined by

[(y, z)] 7→ ([y], [z]) is injective.

Proof. For any g ∈ Cp(Y ) let φf : Y × Z → R be defined by φg(y, z) = g(y). If [y1] 6= [y2],

pick f ∈ Cp(Y )∩E such that f(y1) 6= f(y2). Then the function φf ∈ E witnesses [(y1, z)] 6=

[(y2, z)]. So, by symmetry, j is well-defined.

To show that j is injective we follow the proof in [40]. Suppose [(y1, z1)] 6= [(y2, z2)] and

suppose F ∈ E witnesses it. Then we may assume that F (y1, z1) < a < a′ < b′ < b <
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F (y2, z2) and a, a′, b, b′ ∈ E. Let C = F−1(−∞, a] ∈ E and D = F−1[b,∞) ∈ E. Since

Y × Z is Lindelöf and C and D are closed subsets of Y × Z, there are countable collections

U ∈ E and V ∈ E of basic open subsets of Y × Z such that C ⊆
⋃
U ⊆ F−1(−∞, a′] and

D ⊆
⋃
V ⊆ F−1[b′,∞). Then U and V are subsets of E and there are U ∈ U and V ∈ V such

that (y1, z1) ∈ U and (y2, z2) ∈ V . Then U = UY ×UZ and V = VY ×VZ and since U ∩V = ∅

we may assume, by symmetry, that UY ∩ VY = ∅. Since Y is Lindelöf and Tychonoff it is

normal and there exists f ∈ Cp(Y ) ∩ E such that f(UY ) = {0} and f(VY ) = {1}. Then f

witnesses [y1] 6= [y2].
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[14] N. Dobrinen and S. Todorčević, Tukey types of ultrafilters, Illinois J. Math. 55 (2011),
no. 3, 907–951.

[15] T. Eisworth, Elementary submodels and separable monotonically normal compacta,
Topology Proc. 30 (2006), no. 2, 431–443.

[16] R. Engelking, General Topology, Polish Scientific Publishers, Poland, 1977.

[17] B. Espinoza, P.M. Gartside and A. Mamatelashvili, n-Arc connected spaces, Colloq.
Math. 130 (2013), no. 2, 221–240.

[18] B. Espinoza, P.M. Gartside, M. Kovan–Bakan and A. Mamatelashvili, n–Strongly arc-
wise connected spaces, to appear in Houston J. Math..

[19] A. Fedeli and A. Le Donne, Eulerian paths and a problem concerning n-arc connected
spaces, Topology Appl. 161 (2014), 159–162.

[20] D.H. Fremlin, Consequences of Martin’s Axiom, Cambridge University Press, Cam-
bridge, 1984.

[21] D.H. Fremlin, Families of compact sets and Tukey’s ordering, Atti Sem. Mat. Fis. Univ.
Modena 39 (1991), no. 1, 29–50.

[22] D.H. Fremlin, Measure Theory, Vols 1-5, Torres Fremlin, 2000–2008.

[23] D.H. Fremlin, The partially ordered sets of measure theory and Tukey’s ordering, Note
Mat. 11 (1991), 177–214, Dedicated to the memory of Professor Gottfried Köthe.
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