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Abstract

The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized
epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde
and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged
KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that
KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis,
KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is
increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation,
indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL
membrane in polarized LLC-PK1 cells which lack the m1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is
independent of m1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we
evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell
surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1
with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally,
we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For
these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that
KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe
the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells.
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Introduction

In various epithelia, including colonic, airway and salivary

epithelia, agonist-mediated activation of Ca2+-dependent K+

channels (KCa) is known to play a key role in the regulation of

transepithelial ion and water transport. Thus, transepithelial Cl2

secretion requires activation of numerous transporters/channels,

including the Na+/K+-ATPase on the basolateral (BL) membrane

to maintain transmembrane ionic gradients. Also, activation of the

BL membrane Na+-K+-2Cl2 cotransporter allows Cl2 to accu-

mulate above its electrochemical equilibrium. Activation of an

apical membrane Cl2 channel allows Cl2 to move down its

equilibrium potential. Finally, activation of BL membrane K+

channels maintains a membrane potential favorable for the

continuous Cl2 efflux across the apical membrane, while also

recycling K+ taken up by Na+-K+-2Cl2 cotransporter and the

Na+/K+-ATPase. We previously characterized the KCa in colonic

epithelia using both whole-cell [1] and single channel [2] methods

and later confirmed this was KCa3.1 [3] following its molecular

cloning [4,5]. It is now well-recognized that KCa3.1 is a major BL

K+ channel critical for maintenance of the electrochemical driving

force for Ca2+-mediated Cl2 secretion across these epithelia

[6,7,8,9]. Given the critical role of KCa3.1 in maintaining

transepithelial ion and fluid transport, it is not surprising that this

channel has been suggested to play a role in the etiology of various

diseases. Indeed, KCa3.1 has been implicated in Crohn’s disease

[10], ulcerative colitis [11], cystic fibrosis and chronic obstructive

pulmonary disease [12,13] and ADPKD cyst formation [14].

Clearly, a key component dictating the physiological response of

an epithelial cell to an increase in Ca2+ is the number of KCa3.1

channels at the plasma membrane. We [15,16,17] and others [18]

have identified molecular motifs within the N- and C-termini, as

well as the transmembrane domains, that are critical in the

assembly and anterograde trafficking of KCa3.1. Utilizing a Biotin

Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 we demonstrated,
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in human embryonic kidney (HEK293) cells and human

microvascular endothelial (HMEC-1) cells, that KCa3.1 is

endocytosed from the plasma membrane and targeted to the

lysosome via an endosomal complex required for transport

(ESCRT)- and Rab7-dependent pathway [19]. Further, we

demonstrated that KCa3.1 is initially ubiquitylated following

endocytosis and then deubiquitylated by USP8 prior to lysosomal

degradation [20]. Schwab and colleagues [21] have also demon-

strated that KCa3.1 is endogenously expressed in MDCK cells

and that it is endocytosed in a clathrin-dependent manner in non-

polarized, migrating cells.

In contrast to the studies above, there is little information

regarding the anterograde and retrograde trafficking of KCa3.1 in

polarized epithelia. Therefore, the aim of this study was to

investigate the trafficking of KCa3.1 in polarized epithelia. Herein,

we demonstrate that KCa3.1 is expressed solely at the BL

membrane in the model polarized epithelial cell lines, MDCK,

Caco-2, FRT and LLC-PK1, indicating this localization is

independent of the adaptor protein, m1B. In polarized cells,

KCa3.1 is ubiquitylated at the BL membrane and this is increased

following endocytosis after which the channel is targeted for

protosomal and lysosomal degradation. We further demonstrate

that Rab1 and Rab8 are critical for ER/Golgi exit and subsequent

plasma membrane expression of KCa3.1. Finally, we demonstrate

that, following Golgi exit, KCa3.1 does not traffic through either

RME-1- or transferrin receptor (TfnR)-positive recycling endo-

somes on the way to the plasma membrane in polarized epithelia,

suggesting KCa3.1 traffics directly to the plasma membrane.

These results are the first to characterize the anterograde and

retrograde trafficking of KCa3.1 in polarized epithelia cells.

Materials and Methods

Molecular Biology
Our HA-, myc- and biotin ligase acceptor peptide (BLAP)-

tagged KCa3.1 (also referred to as IK1 or SK4) constructs, as well

as the bicistronic plasmid (pBudCE4.1) expressing both BLAP-

KCa3.1 and BirA-KDEL have been previously described

[22,23,24]. BLAP-KCa3.1 was also subcloned in to the pAdlox

(SwaI modified) adenoviral shuttle plasmid using EcoRI and SalI

restriction sites. In order to biotinylate KCa3.1 within the

endoplasmic reticulum before trafficking to the plasma membrane,

we subcloned BLAP-KCa3.1 as well as BirA-KDEL (generously

provided by Dr. Alice Ting, Massachusetts Institute of Technol-

ogy, Cambridge, MA) into the bicistronic adenoviral shuttle

plasmid DUALCCM-CMW-MCS2 (Vector Biolabs; Philadelphia,

PA). In this construct, both cDNAs are located behind unique

CMV promoters. BLAP-KCa3.1 and BirA-KDEL were sequen-

tially subcloned using EcoRI/XhoI and NheI/SalI restriction

sites, respectively. BLAP-KCa3.1 and BirA-KDEL/BLAP-

KCa3.1 replication deficient adenoviruses were generated by the

University of Pittsburgh Vector Core facility and Vector Biolabs,

respectively. The transferrin receptor (TfnR) adenovirus was

generously provided by Dr. Ora Weisz (University of Pittsburgh,

Pittsburgh, PA). Generation of the GFP- and Flag-tagged variants

of Rabs 1, 2, 6 and 8 have been previously described [25,26,27].

Rab 10 was purchased from Addgene (Cambridge, MA). Wild

type (WT) and dominant negative (DN) GFP-tagged receptor-

mediated endocytosis-1 (RME-1) constructs were generously

provided by Dr. Barth Grant (Rutgers University, New Brunswick,

NJ).

Cell Culture
Madin-Darby canine kidney (MDCK) and pig epithelial (LLC-

PK1) cells were cultured in a-MEM medium, human epithelial

colorectal adenocarcinoma (Caco-2) and human embryonic

kidney (HEK293) cells were cultured in Dulbecco’s modified

Eagle’s medium (Invitrogen) and Fischer rat thyroid (FRT)

epithelial cells were grown in F12 (Sigma-Aldrich, St. Louis,

MO). All media were supplemented with 10% fetal calf serum,

and 1% penicillin/streptomycin. Both the wild type LLC-PK1 cells

and the LLC-PK1 cell line stably expressing the FLAG-tagged m1B

subunit of the AP1 adaptor complex was generously provided by

Dr. Michael Caplan (Yale University, New Haven, CT) [28]. The

MDCK, Caco-2, HEK293, LLC-PK1 and FRT cell lines were

obtained from the ATCC (Manassas, VA). All cells were grown in

a humidified 5% CO2/95% O2 incubator at 37uC. A stable FRT

cell line was generated by transfecting in the pBudCE4.1 bicistronic

plasmid expressing both BLAP-KCa3.1 and BirA-KDEL using

Lipofectamine 2000 (Invitrogen) following the manufacturer’s

instructions and selecting a stable cell line using zeocin (850

mg/ml) (protocol approved by the University of Otago Institutional

Biological Safety Committee, approval code GMD003298-33).

HEK293 cells were transfected using Lipofectamine 2000

following the manufacturer’s instructions. MDCK, Caco-2,

LLC-PK1 and FRT cells were seeded onto TranswellH permeable

supports (Corning Inc., Corning, NY) and grown to confluence

forming a polarized epithelium (3–4 days post seeding). Polarized

MDCK, Caco-2, LLC-PK1 or FRT cells were transduced with the

BLAP-KCa3.1 or BirA-KDEL/BLAP-KCa3.1 adenoviruses, as

indicated for each experiment. Briefly, well-polarized cells were

washed three times with Ca2+-free PBS followed by addition of

adenovirus to the apical side of the filter. After 1 hr of incubation

at 37uC in a 5% CO2/95% O2 atmosphere, cells were washed

once with PBS and allowed to recover until the next day in normal

growth media. In some experiments, 6 hrs after adenoviral

addition in MDCK cells the cells were further transfected with

WT or DN RME-1 or appropriate Rab construct using

Lipofectamine 2000, following the manufacturer’s instructions.

Biotinylation of KCa3.1 using recombinant biotin ligase
BLAP-tagged KCa3.1 was either biotinylated using recombi-

nant biotin ligase (BirA), as described [22] or by co-expression with

BirA-KDEL [23]. Plasma membrane BLAP-KCa3.1 was then

labeled with streptavidin-Alexa555 (0.01 mg/ml, Invitrogen) for

15 min at 4uC. The cells were extensively washed to remove

unbound streptavidin and incubated for various periods of time at

37uC as indicated or immediately fixed and permeabilized with

2% paraformaldehyde plus 0.1% Triton X-100 [22]. The apical

plasma membrane was labeled with WGA-Alexa488 (wheat germ

agglutinin, 5 mg/ml), (Invitrogen). Nuclei were labeled with DAPI

(Sigma-Aldrich). Cells were imaged by laser-scanning confocal

microscopy (Olympus FluoView 1000 system) using a 636 oil

immersion lens as described [19]. Z-stacks were taken to cover the

entire thickness of the cell in a step size of 0.5 mm.

Antibodies
GFP antibody was obtained from Santa Cruz Biotechnology,

Inc. (Santa Cruz, CA). Monoclonal a-streptavidin antibody was

obtained from Abcam (Cambridge, MA). Monoclonal Flag, a-

tubulin and b-actin were purchased from Sigma-Aldrich. Anti-

bodies against Myc and HA were obtained from Covance

(Princeton, NJ) and Rab8 antibody was purchased from BD

Transduction laboratories (San Jose, CA).

Trafficking of KCa3.1 in Polarized Epithelia
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Immunoprecipitations and immunoblots
Our immunoprecipitation (IP) and immunoblot (IB) protocols

have been described [15,16]. Briefly, cells were lysed and

equivalent amounts of total protein were pre-cleared with protein

G-agarose beads (Invitrogen) followed by incubation with the

indicated antibody. Normal IgG was used as negative control.

Immune complexes were precipitated with protein G-agarose

beads, washed extensively, and resuspended in Laemmli sample

buffer. Proteins were resolved by SDS-PAGE and transferred to

nitrocellulose for IB analysis. To eliminate interference by the

heavy and light chains of the immunoprecipitating antibody in the

IP, mouse or rabbit IgG Trueblot ULTRA (eBioscience, San

Diego, CA) were used as a secondary antibody for the detection of

immunoprecipitated proteins in the IB.

Determination of degradation rate for plasma membrane
of KCa3.1

The degradation rate for endocytosed membrane KCa3.1 was

determined as described [22]. Briefly, KCa3.1 in polarized

MDCK, Caco-2 or FRT cells was specifically biotinylated using

BirA and labeled with non-conjugated streptavidin after which the

cells were incubated for various periods of time at 37uC, as

indicated. In some experiments, the lysosomal protease inhibitors

leupeptin (100 mM) and pepstatin (1 mg/ml; Leu/Pep) (Sigma-

Aldrich), the proteasome inhibitor lactacystin (10 mM, Lacta) or a

general deubiquitylase (DUB) inhibitor PR-619 (50 mM) (Life-

Sensors Inc., Malvern, PA) were added to both apical and BL

membranes prior to the 37uC incubation step. The cells were then

lysed and equivalent amounts of total protein were separated by

SDS-PAGE, followed by IB for streptavidin. Bands were

quantified by densitometry using ImageJ software (NIH; http://

rsb.info.nih.gov/ij/). The obtained band intensities for the various

time points were normalized relative to the intensity at time 0

(T = 0) and are reported. The blots were also probed for a-tubulin

and b-actin as a protein-loading control.

Pulldown of ubiquitylated KCa3.1 using TUBEs
To determine the ubiquitylation state of KCa3.1 at the plasma

membrane, and following endocytosis, we used GST-tagged

tandem-repeat ubiquitin-binding entities (TUBEs) (LifeSensors

Inc.), as described [20]. Caco-2 cells were enzymatically

biotinylated and streptavidin labeled at the plasma membrane

after which the cells were lysed in the presence of GST-TUBEs

(200 mg/ml) or returned to 37uC for various periods of time to

allow endocytosis to occur, and then lysed in the presence of

TUBEs. The TUBEs were subsequently pulled down on

glutathione agarose beads followed by SDS-PAGE. The resulting

IB was probed with a-streptavidin Ab. In this way, only the

streptavidin-tagged KCa3.1, which was ubiquitylated and hence

bound to TUBEs, was detected [20].

Recycling endosome ablation assay
MDCK cells were transduced with TfnR and BirA-KDEL/

BLAP-KCa3.1 adenoviruses. After 24 hrs, recycling endosome

ablation was carried out based on the methods of Ang et al. [29].

MDCK cells were incubated with 0.010 mg/ml Tfn-HRP and

Tfn-Alexa488 in serum starved media for 45 min at 37uC, washed

twice in serum-free aMEM media, and incubated for 20 min at

37uC. Cells were then washed twice on ice-cold PBS. Surface-

bound Tfn-HRP and Tfn-alexa488 were removed by two 5 min

washes in 0.15 M NaCl plus 20 mM citric acid, pH 5.0. After

washes with ice-cold PBS, the cells were incubated in PBS

containing 0.1 mg/ml diaminobenzidine (DAB; Sigma-Aldrich) in

the absence (control) or presence (ablation) of H2O2 (0.025%) for

1 hr on ice in the dark. The Tfn-HRP reacts with DAB and H2O2

forming an insoluble precipitate that prevents the fusion of post-

Golgi vesicles with the recycling endosome. The ablation reaction

was stopped by washing cells twice in PBS with 1% BSA.

Following recycling endosome ablation, neutravidin biotin binding

protein (600 mg/ml) (Thermo Scientific, Rockford, IL) was added

to the control and ablated cells for 2 hrs at 4uC such that all

plasma membrane localized BLAP-KCa3.1 channels would be

bound and ‘‘blocked’’ from binding to subsequently added

streptavidin. The cells were then incubated in media with

cyclohexamide (400 mg/ml, Sigma-Aldrich) for 90 min at 37uC
to allow ER/Golgi-resident KCa3.1 channels to potentially traffic

to the plasma membrane. To determine whether ER/Golgi-

resident channels had trafficked to the plasma membrane

following recycling endosome ablation we labeled with streptavi-

din-Alexa555 (0.01 mg/ml, Invitrogen) for 15 min at 4uC.

KCa3.1 trafficking from Golgi to the plasma membrane
MDCK cells were transduced with BirA-KDEL/BLAP-KCa3.1

adenovirus and subsequently transfected with GFP-tagged WT or

DN RME-1. Plasma membrane localized and biotinylated BLAP-

KCa3.1 was ‘‘blocked’’ with neutravidin (600 mg/ml), as above. In

order to allow accumulation of channels in the Golgi, cells were

incubated for 2 hrs at 19uC in the continued presence of

neutravidin. Cells were then washed twice on ice-cold PBS, warm

media was added and the cells were incubated for 30 min or 2 hrs

at 37uC to allow channels to traffic to the plasma membrane.

Finally, the newly resident plasma membrane channels were

labeled with streptavidin-Alexa555, for IF localization studies or

with non-conjugated streptavidin followed by IB with a-strepta-

vidin antibody to quantify the rate of plasma membrane KCa3.1

appearance. Similarly, HEK293 cells were transfected with BirA-

KDEL/BLAP-KCa3.1 and each Rab construct followed by

neutravidin ‘‘block’’, incubation at 19uC to allow KCa3.1 Golgi

accumulation and subsequent incubation at 37uC for the indicated

periods of time to allow trafficking of KCa3.1 from the ER/Golgi

to the plasma membrane. Plasma membrane localized KCa3.1

was then labeled with non-conjugated streptavidin, followed by IB

with a-streptavidin antibody to quantify plasma membrane

appearance.

Statistical analysis
All data are presented as means 6 SEM, where n indicates the

number of experiments. Statistical analysis was performed using a

Student’s t-test. To compare the normalized values of the IB band

intensities, statistical analysis was performed using the non-

parametric Kruskal-Wallis test. The traffic from ER/Golgi to

plasma membrane was analyzed using a two-way Anova test

followed by Bonferroni post-test comparing WT and DN at each

time point. A value of p,0.05 is considered statistically significant

and is reported.

Results

Expression and localization of KCa3.1 in polarized
epithelial cells

To determine the plasma membrane localization of KCa3.1 in

polarized epithelial cells, we transduced MDCK, Caco-2 and FRT

cells grown on Transwell filters with BLAP-KCa3.1 adenovirus.

The following day, KCa3.1 was labeled specifically at the plasma

membrane using recombinant BirA followed by incubation with

streptavidin-Alexa555. The apical plasma membrane was

co-labeled with WGA–Alexa488. As shown in Fig. 1A,

Trafficking of KCa3.1 in Polarized Epithelia
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BLAP-KCa3.1 was localized exclusively to the basolateral (BL)

membrane of each of these polarized epithelial cells. These results

were confirmed using TranswellH-grown cells, which were

independently labeled at either the apical (AP) or BL membrane

with streptavidin followed by IB using an a-streptavidin antibody.

As is apparent, KCa3.1 is highly expressed at the BL membrane

with negligible expression associated with the apical membrane

(Fig. 1A). To determine the degradation time of KCa3.1 at the BL

membrane we labeled channels and allowed internalization at

37uC for the indicated periods of time followed by IB, as above. As

shown in Figs. 1B and C, KCa3.1 was degraded with a similar

time-course in MDCK and FRT cells, whereas in Caco-2 cells the

degradation rate was slowed.

Basolateral membrane KCa3.1 is targeted to the
lysosome and proteasome for degradation

To determine whether lysosomes are implicated in the

degradation of BL membrane KCa3.1 we utilized Caco-2 and

FRT cells grown on TranswellH filters under normal conditions

and following inhibition of lysosomal proteases with leupeptin and

pepstatin (Leu/Pep). BLAP-KCa3.1 was biotinylated and labeled

with streptavidin, as above and incubated at 37uC for the times

indicated followed by IB to determine the amount of KCa3.1

remaining. As shown in Fig. 2, in Caco-2 cells 2863% of KCa3.1

remained after 24 hrs and this was increased to 7366% in the

presence of Leu/Pep (n = 4; P,0.05). Also, in FRT cells we

observed a similar effect of Leu/Pep at 5 hrs, i.e., in control cells

2961% of KCa3.1 remained and this was increased to 8164%

Figure 1. Localization and degradation of KCa3.1 in polarized epithelia cells. A. BLAP-KCa3.1 was transduced into MDCK, Caco-2 or FRT
cells grown to confluence on TranswellH filters. Basolateral (BL) and Apical (AP) plasma membrane KCa3.1 channels were specifically biotinylated
using recombinant BirA and labeled with either streptavidin-Alexa555 (red) for IF localization or unconjugated streptavidin for IB. Apical membrane
was co-labeled with wheat germ agglutinin (WGA)-Alexa488 (green) and nuclei were labeled with DAPI (blue) for IF localization. The top panels show
a single confocal section through the mid-plane of the cells and the bottom panels show a z-stack. For the IB experiments, BL and AP membranes
were independently labeled on separate Transwell filters. 30 mg of protein was loaded per lane. Data are representative of 3 separate experiments.
KCa3.1 was localized exclusively to the BL membrane as assessed by both IF and IB. B. KCa3.1 was biotinylated at the BL membrane as above in MDCK
and Caco-2 cells or biotinylated at the level of the ER in FRT cells stably expressing BirA-KDEl/KCa3.1-BLAP and its degradation evaluated over time.
Note the different time points used for each cell line. Tubulin was used as a loading control. C. Quantification of the blots shown in B for at least 3
separate experiments. *P,0.05 with respect to T = 0.
doi:10.1371/journal.pone.0092013.g001
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(n = 6, P,0.05) in the presence of Leu/Pep (data not shown),

indicative of lysosomal degradation following endocytosis.

We also determined whether the proteasome inhibitor,

lactacystin would alter the degradative fate of BL KCa3.1

expressed in polarized epithelia. As shown in Fig. 2, lactacystin

abrogated KCa3.1 degradation such that 6762% of KCa3.1

remained in Caco-2 cells after 24 hrs; significantly more than in

control conditions (n = 4; P,0.05), suggesting a role for the

proteasome in the degradation of BL KCa3.1.

KCa3.1 is ubiquitylated at the plasma membrane and
following endocytosis

To determine whether KCa3.1 is ubiquitylated in polarized

epithelia, Caco-2 cells were grown on TranswellH supports and

KCa3.1 expressed and labeled, as above. As shown in Fig. 3A, at

T = 0, KCa3.1 is localized to the BL membrane and after 8 hrs at

37uC, KCa3.1 has been endocytosed. To evaluate the ubiquityla-

tion of KCa3.1, cells were lysed in the presence of GST-tagged

TUBEs (see Methods) [20]. At T = 0, we observed a small amount

of ubiquitylated KCa3.1 (Fig. 3B, lane 1) and this was significantly

increased following endocytosis for 8 or 12 hrs (8 hrs: 14364%

and 12 hrs: 13961%; n = 3, P,0.05, Fig. 3B, lane 2 and 3),

despite the decreased total expression of KCa3.1 due to

degradation. These results indicate that KCa3.1 is ubiquitylated

at the BL membrane of polarized epithelia and this is increased

following endocytosis.

Deubiquitinating enzymes (DUBs) are proteases that remodel or

cleave ubiquitin from target proteins before they undergo

proteasome-and/or lysosome-degradation [30,31]. We deter-

mined whether DUBs play a role in KCa3.1 degradation in

polarized Caco-2 cells, transduced with BLAP-KCa3.1 and grown

on TranswellH supports, as above. The cells were incubated at

37uC for 24 hrs in the presence or absence of the general DUB

inhibitor, PR-619 after which the expression of KCa3.1-BLAP was

evaluated by IB. As shown in Fig. 3C and D, after 24 hrs KCa3.1

was extensively degraded, averaging 2461% of that observed at

T = 0 (n = 3; P,0.05), similar to our results above. In PR-619

treated cells, channel degradation was significantly inhibited with

8761% of KCa3.1 still remaining after 24 hrs (n = 3; P,0.05).

The lysosomal protease inhibitors Leu/Pep were used as a positive

control in these experiments and prevented degradation of

KCa3.1, similar to our results above with 6862.6% of KCa3.1

remaining (P,0.05). These results suggest that the deubiquityla-

tion of KCa3.1 by DUBs is required for proper degradation of the

channel in polarized epithelia.

Trafficking of KCa3.1 from the ER/Golgi to the plasma
membrane requires Rab1 and Rab8

Rabs 1, 2 and 6 have been shown to be involved in the

trafficking of proteins from the ER to Golgi, whereas Rabs 8 and

10 are known to be involved in the trafficking of protein from the

Golgi to the plasma membrane [26,27,32,33]. We initially

determined whether these Rabs are involved in the trafficking of

KCa3.1 to the plasma membrane in HEK293 cells. For these

studies, we co-transfected BirA-KDEL/BLAP-KCa3.1 with either

WT, DA or DN forms of each of these Rabs such that BLAP-

KCa3.1 would be biotinylated in the ER. Plasma membrane

BLAP-KCa3.1 was then detected by streptavidin labeling and IB,

as above. We evaluated total KCa3.1 expression by co-transfecting

a myc-tagged KCa3.1 with the relevant Rabs and blotted for myc.

As shown in Figs. 4A and B, while WT or DA forms of Rab1

(Q70L) and Rab 8 (Q67L) did not affect plasma membrane

expression of KCa3.1, dominant negative Rab8 (T22N: 37610%,

n = 3; P,0.05) and Rab1 (N124I: 4864%; S25N: 4468%; n = 3;

P,0.05) significantly decreased KCa3.1 plasma membrane

expression. In contrast, we did not observe any effect of Rabs 2

or 6 on plasma membrane expression of KCa3.1 (Fig. 4B).

Similarly, we observed no effect of Rab 10 on plasma membrane

expression of KCa3.1 (data not shown). We also determined

whether the effects of the Rabs observed were specific for KCa3.1

or whether the plasma membrane expression of another family

member, KCa2.3, would be similarly affected. As shown in

Fig. 4D, Rabs 1, 2, 6 or 8 had no effect on plasma membrane

expression of KCa2.3.

We also carried out co-IP experiments to determine whether

KCa3.1 is associated with Rab1 WT/DN or Rab8 WT/DN.

Thus, we co-transfected HA-tagged KCa3.1 with either Flag-

tagged Rab1 or GFP-tagged Rab8 in to HEK293 cells and

immunoprecipitated with a-HA antibody followed by IB for the

appropriate heterologously expressed Rab. As shown in Figs. 5A

and B, KCa3.1 co-immunoprecipitated predominantly with the

DN forms of Rab1 and Rab8. Additionally, in our Rab8

experiments we were able to directly assess interactions between

KCa3.1 and endogenous Rab8 by blotting using an aRab8 Ab. As

shown in Fig. 5B (lower panel), we were able to co-IP endogenous

Rab8 with KCa3.1 in the presence of heterologously expressed

Figure 2. BL localized KCa3.1 is degraded in the lysosome.
BLAP-KCa3.1 was transduced in Caco-2 cells grown to confluence on
TranswellH filters and BL plasma membrane channels specifically
biotinylated and labeled with streptavidin. Cells were treated with
leupeptin (100 mM) and pepstatin (1 mg/ml) (Leu/Pep) or lactacystin
(10 mM, Lacta) and degradation of KCa3.1 determined. Both Leu/Pep
and Lacta inhibited degradation of KCa3.1. 30 mg of protein was loaded
per lane. Averages from 3 experiments are plotted below; *P,0.05 with
respect to T = 0, # P, 0.05 with respect to T = 24 hrs in Caco-2 cells.
doi:10.1371/journal.pone.0092013.g002
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WT and DN Rab8. Indeed, we observed similar levels of

endogenous Rab8 in both conditions, indicating that some Rab8

continues to associate with KCa3.1 and promote forward

trafficking of the channel in the presence of DN Rab8.

If the expression of a DN Rab is slowing the exit of KCa3.1

from the ER/Golgi this should be apparent as a decreased rate of

trafficking to the plasma membrane. Our method for defining this

step is shown by IF in Fig. 6A. For these studies, we expressed

BirA-KDEL/BLAP-KCa3.1 in HEK293 cells. Expression of

BLAP-KCa3.1 at the plasma membrane is confirmed by

streptavidin-Alexa488 labeling (T = 0 at 4uC). Immediately

labeling with streptavidin-Alexa555 results in no signal (T = 0 at

4uC; Strep-555), confirming that the biotin sites on KCa3.1 are

saturated or ‘‘blocked’’ by streptavidin-Alexa488 binding. The

cells are then incubated at 19uC for 2 hrs to accumulate BLAP-

KCa3.1 in the ER/Golgi (T = 2 hrs at 19uC). As is apparent, some

of the streptavidin-Alexa488 channel has been endocytosed during

this 19uC incubation step, however, no additional channel has

trafficked to the plasma membrane as assessed by the lack of

streptavidin-Alexa555 labeling. Following incubation of the cells at

37uC for 80 min, we observed small green puncta inside the cell

consistent with endocytosis of plasma membrane KCa3.1. In

addition, new channels have trafficked to the plasma membrane

from the ER/Golgi such that they can be ‘‘captured’’ as is

apparent by our ability to label these newly arrived channels with

streptavidin-Alexa555. To quantify this rate, we utilized neutra-

vidin to ‘‘block’’ existing BLAP-KCa3.1 channels at the plasma

membrane and ‘‘captured’’ newly arrived channels with strepta-

vidin followed by IB, as above. The amount of channel ‘‘captured’’

at any time point was then compared to the amount of channel

present at T = 0, which represents steady-state expression levels.

Any signal left following ‘‘block’’ was subtracted from all

subsequent time points as this represented the amount of channel

that could not be bound by neutravidin. As shown in Fig. 6B,

KCa3.1 rapidly exits the ER/Golgi and begins to appear at the

plasma membrane within 10 min and the level of channel

expression continues to increase over time. In the presence of

WT Rab1 or Rab8 after 2 hrs at 37uC expression levels of KCa3.l

at the plasma membrane had returned to 5467% and 4665% of

those seen at T = 0, respectively. In contrast, in the presence of DN

Rab1 and Rab8 this was only 2867 (n = 3; P,0.05) and 2764%

(n = 3; P,0.05), respectively, indicating that expression of DN

Rab1 and Rab8 decreases the rate of KCa3.1 trafficking from the

ER/Golgi to the plasma membrane.

Figure 3. KCa3.1 is ubiquitylated following endocytosis in polarized Caco-2 cells. A. IF localization of KCa3.1 (red) in confluent Caco-2 cells
on TranswellH filters following labeling as in Fig. 1 at T = 0 and following 8 hrs at 37uC. After 8 hrs, KCa3.1 is endocytosed. Nuclei are labeled with
DAPI (blue). B. Ubiquitylated KCa3.1 was evaluated by TUBEs pulldown at T = 0 when KCa3.1 is localized to the BL membrane and following
endocytosis for 8 and 12 hrs (see Methods). An increase in ubiquitylated KCa3.1 is apparent at 8 and 12 hrs despite the channel being degraded
[strep(KCa3.1) blot]. Actin was used as a loading control. C. Inhibition of deubiquitylases by PR-619 (50 mM) prevents degradation of KCa3.1. Leu/Pep
was used as a control for these experiments. 30 mg of protein was loaded per lane. Actin was used as a loading control. D. Quantification of the blots
shown in C for at least 3 separate experiments; *P,0.05 with respect to T = 0, # P,0.05 with respect to T = 24 hrs.
doi:10.1371/journal.pone.0092013.g003

Trafficking of KCa3.1 in Polarized Epithelia

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e92013



We further determined whether Rabs 1 and 8 are involved in

the trafficking of KCa3.1 to the plasma membrane in polarized

MDCK and FRT cells. Initially, we carried out IF studies by

transducing BirA-KDEL/BLAP-KCa3.1 and transfecting either

WT or DN Flag-Rab1 or GFP-Rab8. BLAP-KCa3.1 was

labeled at the plasma membrane with streptavidin-Alexa555 and

Figure 4. Plasma membrane localized KCa3.1 is decreased by DN Rab1 and Rab8, but not by Rab2 or Rab6. HEK293 cells were co-
transfected with BLAP-KCa3.1 and either WT, DA or DN Rabs 1, 2, 6 or 8 and plasma membrane localized KCa3.1 evaluated by specific biotinylation,
streptavidin labeling and IB (see Methods). As shown in A and C, DN Rab8 (T22N) and two different DN Rab1s (N124I, S25N) decreased expression of
plasma membrane KCa3.1. In contrast, DN Rab2 and Rab6 had no effect on membrane expression of KCa3.1 (B and C). 30 mg of protein was loaded
per lane. The bar graphs in C are averages of 3 experiments; *P,0.05 with respect to WT Rabs. D. HEK293 cells were co-transfected with BLAP-KCa2.3
and either WT, DA or DN Rabs 1, 2, 6 or 8 and membrane localized KCa2.3 evaluated as above. None of these Rabs had any effect on membrane
expression of KCa2.3 (n = 3).
doi:10.1371/journal.pone.0092013.g004
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Flag-Rab1 was labeled with a-Flag Ab following fixation/

permeabilization; GFP-Rab8 was directly visualized. As shown

in Fig. 7A, expression of either DN Rab1 (N124I) or Rab8 (T22N)

resulted in an apparent decrease in plasma membrane expression

of KCa3.1. To confirm this result biochemically, we carried out IB

of plasma membrane BLAP-KCa3.1. As shown in Figs. 7B and C,

both DN Rab1 and Rab8 resulted in a significant decrease in

plasma membrane expression of KCa3.1 in both MDCK and

FRT cells. In 3 experiments, Rab1 N124I decreased plasma

membrane expression to 6063% and 4567% (P,0.05) of that

observed following WT Rab1 expression in MDCK and FRT

cells, respectively (Fig. 7C). Similarly, Rab8 T22N decreased

plasma membrane expression to 5768% and 4764% (P,0.05) of

that observed following WT Rab8 expression in MDCK and FRT

cells, respectively (Fig. 7C). Similar to our HEK293 data, DN

Rab2 had no effect on plasma membrane KCa3.1 expression in

MDCK cells (Fig. 7B).

The AP-1 adaptor protein, m1B is not required for proper
BL sorting of KCa3.1 in polarized epithelia

It has been shown that the m1B subunit of the adaptor protein

complex AP-1 is important in the BL sorting of several proteins in

polarized epithelia [34]. Importantly, while m1B is expressed in

MDCK cells it is not expressed in LLC-PK1 cells resulting in the

mis-targeting of some BL proteins [35]. To determine whether

m1B was required for BL targeting of KCa3.1 we transduced

BLAP-KCa3.1 in to both parental and m1B-Flag corrected LLC-

PK1 cells and evaluated BL vs apical localization by both IF and

IB, as above. As shown in Fig. 8, KCa3.1 was targeted to the BL

membrane in both LLC-PK1-WT and m1B-expressing LLC-PK1

cells based upon both IF (A) and IB (B). Expression of m1B was

confirmed by IB (Fig. 8C). These data indicate that the BL sorting

of KCa3.1 in polarized epithelia is independent of the m1B subunit

of AP-1 complex.

KCa3.1 traffics directly to the basolateral plasma
membrane in polarized epithelia

It has been shown that proteins destined for the BL membrane

can traffic either: 1) from the Golgi to the BL membrane directly

or 2) from the Golgi through recycling endosomes to the BL

membrane [36,37]. To determine whether KCa3.1 traffics via

recycling endosomes we carried out recycling endosome ablation

in MDCK cells [29]. We transduced MDCK cells with both

transferrin receptor (TfnR) and BirA-KDEL/BLAP-KCa3.1

adenoviruses. Initially, both Tfn-HRP and Tfn-Alexa488 were

bound to TfnR and allowed to internalize for 45 min at 37uC,

thereby allowing the TfnR with bound substrate to traffic through

early and recycling endosomes. Subsequently, BLAP-KCa3.1 was

labeled with either streptavidin-Alexa555, to confirm expression of

the channel at the plasma membrane at T = 0, or neutravidin to

‘‘Block’’ plasma membrane resident channels (see also, Fig. 6). As

shown in Fig. 9, at T = 0 Tfn-Alexa488 was located in endosomal

compartments, as is apparent from the green puncta, whereas

KCa3.1 is localized to the plasma membrane. Next, recycling

endosome ablation was carried out by treating the cells with DAB,

in the absence (control) or presence (ablation) of H2O2. As is

apparent in the images labeled ‘‘Block’’, in the absence of DAB the

Tfn-Alexa488 is located in vesicles throughout the cytoplasm,

Figure 5. KCa3.1 immunoprecipitates with Rab1 and Rab8. A. Co-IP of HA-tagged KCa3.1 and either WT or DN Rab1 (Flag) was carried out in
HEK293 cells as described in the Methods. Total cell lysates were subject to IP using either an a-HA Ab (lanes 5, 6) or an a-V5 Ab as IgG control (lanes
3, 4) and subsequently blotted for Rab1 (a-Flag). B. Co-IP of HA-tagged KCa3.1 and either endogenous (bottom panel) or GFP-tagged WT and DN
Rab8 (top panel). Total cell lysates were subject to IP as in A and subsequently IB for either endogenous Rab8 (a-Rab8) or GFP-tagged Rab8 (a-GFP).
Lysates for WT and DN Rab1 or 8 are shown in the first two lanes of each blot (5 mg loaded per lane). These data confirm an association between
KCa3.1 and Rabs1 and 8. Data are representative of 3 experiments.
doi:10.1371/journal.pone.0092013.g005

Trafficking of KCa3.1 in Polarized Epithelia

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e92013



Figure 6. DN Rab1 and Rab8 slow ER/Golgi-to-plasma membrane delivery of KCa3.1. A. IF illustration of plasma membrane BLAP-KCa3.1
blocking protocol and subsequent appearance of new BLAP-KCa3.1 to the plasma membrane along the biosynthetic pathway. HEK293 cells were
transfected with BLAP-KCa3.1 and BirA-KDEL in the pBudCE4.1 plasmid such that BLAP-KCa3.1 is specifically biotinylated at the level of the ER (see
Methods). Top row: Plasma membrane BLAP-KCa3.1 was labeled with strepatavidin-Alexa488 (left; green) and subsequently with streptavidin-
Alexa555 (middle; red). As is apparent, strep-488 saturated the biotin binding sites, precluding strep-555 labeling; demonstrating block of existing
plasma membrane localized KCa3.1 channels. Middle row: Following 2 hrs at 19uC to accumulate KCa3.1 in the Golgi, some of the channels initially
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whereas in the presence of DAB the Tfn-Alexa488 is localized

exclusively to perinuclear recycling endosomes, as reported [29].

These results confirm recycling endosome ablation such that TfnR

can no longer exit from these vesicles. Also, BLAP-KCa3.1 could

not be labeled by streptavidin-Alexa555, confirming ‘‘Block’’ by

neutravidin. Finally, the cells were returned to 37uC for 2 hrs in

the presence of cyclohexamide such that KCa3.1 could exit the

Golgi and traffic to the plasma membrane after which these

channels were labeled with streptavidin-Alexa555. As shown

(Block +2 hrs 37uC), KCa3.1 trafficked to the plasma membrane

in both the control and recycling endosome ablated cells,

consistent with KCa3.1 trafficking directly to the plasma

membrane rather than via the TfnR-positive recycling endosomes.

As an alternate strategy to disrupt recycling endosomes we co-

expressed either WT or DN RME-1 (G429R) with BLAP-KCa3.1.

DN RME-1 induces redistribution of recycling endosomes and

inhibits the exit of proteins such that cargo delivered to the DN

RME-1 positive endosomes becomes trapped in this compartment

[38]. Thus, we determined whether expression of G429R-RME-1

would inhibit delivery of KCa3.1 to the plasma membrane

following Golgi exit. MDCK were transduced with BirA-KDEL/

BLAP-KCa3.1 adenovirus and transfected with WT or DN GFP-

tagged RME-1. As shown in Fig. 10A, at T = 0, KCa3.1 was

labeled with strepavidin-Alexa555 at the plasma membrane in the

presence of WT or DN RME-1 and this labeling could be blocked

by neutravidin (Block). Following incubation at 19uC to accumu-

late KCa3.1 in the Golgi, we were unable to detect KCa3.1 in the

plasma membrane (Block+19uC), as above (Figs. 6 and 9). Finally,

the MDCK cells were returned to 37uC for 2 hrs to allow channels

to exit the Golgi and traffic to the plasma membrane after which

the channel was labeled with strepavidin-Alexa555 (Block+19-

uC+2 hrs 37uC). As is apparent, in both WT and DN RME-1-

expressing MDCK cells, KCa3.1 trafficked to the plasma

membrane. We confirmed this result by IB by determining

whether the rate of KCa3.1 appearance at the plasma membrane

was altered by DN RME-1 expression. As shown Figs. 10B and C,

blocking with neutravidin eliminated the signal associated with

plasma membrane KCa3.1. After Golgi release at 37uC for

20 min KCa3.1 is clearly apparent at the plasma membrane and

this expression increases after 2 hrs. Importantly, similar levels of

KCa3.1 were expressed at the plasma membrane in MDCK cells

expressing either WT or G429R RME-1. In 3 experiments, after

2 hrs at 37uC there was no difference in expression of KCa3.1 at

the plasma membrane, being 66611% of control (T = 0) in WT

RME-1 expressing cells and 6266% of control (T = 0) in G429R

RME-1 expressing cells (Fig. 10C). These results further demon-

strate that KCa3.1 traffics directly from the Golgi to the BL

membrane rather than indirectly via recycling endosomes.

Finally, we determined whether TfnR would be trapped in

RME-1-positive endosomes by transducing MDCK cells with

TfnR followed by transfection with either WT or DN GFP-tagged

RME-1. TfnR was bound to Tfn-Alexa546 and allowed to

endocytose for 45 min at 37uC, after which the cells were fixed for

IF localization. As shown in Fig. 10D, in the presence of WT

RME-1, the TfnR is in endosomes throughout the cytoplasm.

However, in the presence of DN RME-1, the TfnR is clustered in

the RME-1-positive compartment. This result confirms that DN

RME-1 is capable of trapping proteins that traffic via recycling

endosomes.

Discussion

It is now clear, based on both electrophysiological and

pharmacological data, that KCa3.1 is expressed in the BL

membrane of numerous epithelia [6,7,8,9]. However, more recent

evidence has demonstrated K+ secretion in both primary cultures

of human bronchial epithelium [12] and proximal colon [39] that

is sensitive to block by apical charybdotoxin and clotrimazole;

indicative of KCa3.1 channels in the apical membrane. Based on

these data, Rajendran and colleagues [40] identified a unique

transcript, KCNN4c, that lacks exon 2 which encodes for the

second transmembrane domain of KCa3.1. These authors

demonstrated that this channel targeted to the apical membrane

when co-assembled with the large conductance, Ca2+-activated K+

channel b-subunit [40]. While these data demonstrate that

KCa3.1 can be targeted to either the apical or BL membrane of

polarized epithelia, depending on the transcript expressed, there is

no information to date demonstrating how this channel is targeted

to the BL membrane or its’ endocytic fate once it is in the BL

membrane. Herein, we have used the BLAP-tagged KCa3.1 to

begin to address these questions. We demonstrate that KCa3.1-

BLAP is highly expressed at the BL membrane with insignificant

expression in the apical membrane of three different polarized

epithelial cell models, MDCK, Caco-2 and FRT (Fig. 1A). Similar

to what we previously reported in HEK293 cells [22], KCa3.1 was

degraded with a half-time of ,3-5 hrs in MDCK and FRT cells.

However, in Caco-2 cells the half-time for degradation was

significantly longer, being ,16 hrs (Fig. 1B). At present it is

unclear why the degradation of KCa3.1 is slowed in Caco-2 cells.

While this may suggest that KCa3.1 degradation is uniquely

regulated in intestinal epithelia, more studies are required to

determine this.

We demonstrate that, following endocytosis from the BL

membrane of polarized epithelia, degradation is blocked by

inhibiting lysosomal proteases (Fig. 2); similar to what we

previously reported in HEK293 cells [19]. While we have

demonstrated a role for p97/Derlin-1 and the proteasome in the

degradation of mis-folded KCa3.1 channels in the ER [17] a role

for the proteasome in the degradation of KCa3.1 following

endocytosis has not been investigated. As shown in Fig. 2,

lactacystin inhibited KCa3.1 degradation, indicative of a role for

the 26 S proteasome in targeting KCa3.1 to the lysosome for

degradation. Numerous studies have shown that the degradation

of membrane resident proteins is also blocked by inhibitors of the

labeled at the plasma membrane (strep-488) have been endocytosed. Labeling with strep-555 demonstrates that no new channels have trafficked to
the plasma membrane during this 19uC incubation, as expected. Bottom row: Further incubation at 37uC for 80 min results in endocytosis of KCa3.1
channels initially labeled with strep-488 at T = 0. Labeling with strep-555 demonstrates that new KCa3.1 channels have appeared at the plasma
membrane, consistent with trafficking out of the Golgi. Nuclei are labeled with DAPI (blue). B. Experiments were carried out as illustrated in A except
that blocking of existing plasma membrane KCa3.1 was carried out using neutravidin. As shown in lane 2 for each blot, neutravidin eliminated greater
than 90% of the labeling attributed to streptavidin binding to plasma membrane BLAP-KCa3.1. Within 10 min incubation at 37uC, KCa3.1 begins to
appear at the plasma membrane following ER/Golgi exit. After 2 hrs, KCa3.1 has recovered ,50% relative to T = 0 in the presence of WT Rab1 and
Rab8, whereas this is decreased to ,27% in the presence of DN Rab1 and Rab8. 30 mg of protein was loaded per lane. The average of 3 experiments
is shown in the bar graphs. The solid bars indicate expression of KCa3.1 in the presence of WT Rab while the open bars show expression of KCa3.1 in
the presence of DN Rab (* P,0.05 with respect to same period of time with WT Rab). ‘‘,’’ indicates a non-specific band. These results indicate that
DN Rab1 and Rab8 slow exit of KCa3.1 from the ER/Golgi resulting in decreased plasma membrane expression as suggested in Fig. 4.
doi:10.1371/journal.pone.0092013.g006
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Figure 7. DN Rab1 and Rab8 decrease plasma membrane expression of KCa3.1 in polarized epithelia. A. BLAP-KCa3.1 and either WT or
DN Flag-Rab1 (N124I) (top row) or GFP-Rab8 (T22N) (bottom row) were transfected into confluent MDCK cells. Plasma membrane KCa3.1 was labeled
with streptavidin-Alexa555 (red) after which the cells were fixed/permeabilized and Rab1 labeled with a-Flag Ab (Rab8 is GFP tagged). Both DN Rab1
(top panels) and Rab8 (bottom panels) result in an apparent decrease in plasma membrane KCa3.1 expression. Nuclei are labeled with DAPI (blue). B.
BLAP-KCa3.1 and either WT or DN Flag-Rab1 (N124I) or GFP-Rab8 (T22N) were transfected into either MDCK (left) or FRT (right) cells and plasma
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proteasome [41,42,43]. In this regard, it has been suggested that

the ubiquitin-proteasome pathway is involved in the endosomal

sorting step of some proteins to the lysosome [44]. More recently,

it was shown that Ecm29 binds the 26 S proteasome and links the

proteasome to various endocytic proteins, including Rab11 and

rabaptin via its N-terminal end and molecular motors via its C-

terminal end [45]. Also, proteasomal inhibition by MG132 for

20 hrs caused redistribution of the endosomal adaptor protein,

APPL1 as well as the early endosomal marker, Rab5 to the

perinuclear region of cells, whereas the early endosomal marker,

EEA1 was unaffected [46]. Thus, the 26 S proteasome may be

directly coupled to KCa3.1-containing endosomes, thereby

influencing its’ degradation.

To date, more than 60 Rabs have been identified and it is

thought that each Rab is related with a particular organelle or

pathway [32,47]. Rab 2 has been shown to be predominantly

localized to the ER/Golgi intermediate compartment (ERGIC)

where it is involved in the retrograde transport from the ERGIC to

the ER [48]. Rab 6 is mainly localized to the Golgi and the trans-

Golgi network (TGN) where it modulates the retrograde transport

between the Golgi cisternae or from the Golgi to the ER [25].

Expression of DN Rab 2 and Rab 6 have been shown to inhibit

the anterograde transport of numerous proteins, including the

cystic fibrosis transmembrane conductance regulator (CFTR) and

G-protein coupled receptors (GPCR) [48,49]. Also, Rab 1 is

localized in the ER and the Golgi where it regulates anterograde

transport from the ER to the Golgi and among the Golgi

compartments [32]. The manipulation of Rab1 function has been

shown to block the ER to cell surface transport of a-adrenergic,

angiotensin II type 1 and human calcium sensing receptors

[50,51,52]. Finally, Rab 8 and Rab 10 have been extensively

investigated in polarized epithelial cells where they have been

shown to play a role in protein trafficking from the Golgi to the BL

membrane [27,33,53]. Herein, we demonstrate that Rab1 and

Rab8 play a crucial role in the anterograde trafficking of KCa3.1

to the BL membrane of polarized MDCK cells (Fig. 7), whereas

Rabs 2, 6 and 10 appear to play no role in KCa3.1 trafficking.

Indeed, we demonstrate that expression of DN Rab1 or Rab 8

slowed the appearance of KCa3.1 to the plasma membrane in

HEK cells (Fig. 6), consistent with their known roles in the forward

trafficking of various proteins [27,50,51]. Interestingly, a closely

related family member, KCa2.3 was unaffected by expression of

DN forms of any of these Rabs (Fig. 4D), indicating a high degree

of specificity amongst these KCa family members. Unfortunately,

chimeras between KCa3.1 and KCa2.3 did not reveal any

apparent domains critical for this Rab-dependent trafficking of

KCa3.1 (C.A. Bertuccio and D.C. Devor, unpublished observa-

tions).

GPCR have been shown to directly interact with members of

the Rab family, including Rab1 and Rab8 which interact with

b2- and a2- adrenergic receptors [27,54]. Herein, we demonstrate

a close association between KCa3.1 and WT or DN Rab1 and

Rab8 by co-IP (Fig. 5). Interestingly, KCa3.1 preferentially

associates with the inactive, GDP-bound form of Rab1 and

membrane KCa3.1 evaluated by IB (see Methods). WT and DN Rab2 were transfected in to MDCK cells together with BLAP-KCa3.1 as a negative
control based on our HEK298 data (Fig. 4). 10 mg of protein was loaded per lane. Tubulin was used as a loading control. Expression of Rab1 and Rab8
were confirmed by IB using a-Flag and a-GFP Ab, respectively. C. Quantification of 3 separate blots demonstrates that DN Rabs1 and 8 decrease
plasma membrane expression of KCa3.1 in both MDCK and FRT cells (*P,0.05 with respect to WT Rabs), whereas DN Rab2 had no effect on
membrane KCa3.1 expression in MDCK cells.
doi:10.1371/journal.pone.0092013.g007

Figure 8. Basolateral targeting of KCa3.1 is independent of the adaptor protein, m1B. A. BLAP-KCa3.1 was transduced in to either WT LLC-
PK1 cells (left panels) or LLC-PK1 cells stably expressing m1B (right panels) grown to confluence on TranswellH filters. The AP and BL membranes were
biotinylated using recombinant BirA and biotinylated proteins labeled with streptavidin-Alexa555 (red). Apical membrane was co-labeled with WGA-
Alexa488 (green). Nuclei were labeled with DAPI (blue). The top panels show a single confocal section through the mid-plane of the cells and the
bottom panels show a z-stack. KCa3.1 was detected exclusively in the BL of both LLC-PK1 clones. B. Either AP or BL membranes of WT LLC-PK1 cells
(left panel) or LLC-PK1 cells stably expressing m1B (right panel) grown to confluence on TranswellH filters were biotinylated using BirA followed by
streptavidin labeling and subsequent IB to determine localization of KCa3.1. KCa3.1 was localized specifically to the BL membrane in both LLC-PK1
clones. Tubulin was used as a loading control. Blots are representative of 3 separate experiments. 20 mg of protein was loaded per lane. C. IB
confirming expression of Flag-tagged m1B in the LLC-PK1-m1B cell line.
doi:10.1371/journal.pone.0092013.g008
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Rab8, similar to what has been described for some GPCR [27,54].

Indeed, it has been suggested that these receptors can interact with

and activate Rab GTPases, thus facilitating their own transport

[27,55], although this is not known for KCa3.1.

Sorting of numerous proteins to the BL domain of polarized

epithelia is the result of an association with the m1 subunit of the

adaptor protein-1 complex (AP-1) [56,57]. The AP-1 complex is

the only clathrin-associated adaptor complex implicated in BL

sorting in polarized epithelia [58]. Importantly, while m1B is

expressed in MDCK and Caco-2 cells it is not expressed in LLC-

PK1 cells. Lack of the m1B subunit in LLC-PK1 cells has been

shown to result in the mistargeting of some BL proteins to the

apical surface and stable expression of m1B restores proper BL

targeting [35]. In addition, Ang et al. demonstrated that Rab8 acts

in conjunction with AP-1B to target proteins to the BL membrane

of polarized epithelia [53]. Since KCa3.1 is endogenously

expressed in MDCK cells [59], is endocytosed in a clathrin-

dependent manner [21] and its plasma membrane expression is

modulated by Rab8 (Figs. 4 and 7), we evaluated whether m1B was

required for BL targeting of KCa3.1 using both LLC-PK1-WT

and m1B-expressing LLC-PK1 cells. As shown in Fig. 8, KCa3.1

was targeted to the BL membrane in both WT and m1B-expressing

LLC-PK1 cells, indicating that the BL sorting of KCa3.1 in

polarized epithelia is independent of the m1B subunit of the AP-1

complex. Similarly, Caplan and colleagues demonstrated that the

sorting of the H+/K+-ATPase and Na+/K+-ATPase were inde-

pendent of m1B expression in polarized epithelia [28,60].

As noted, proteins trafficking to the plasma membrane along the

biosynthetic route, in both polarized and non-polarized cells, can

either traffic directly from the Golgi to the plasma membrane or

they can transit via recycling endosomes [29,32,37,61,62]. To

determine whether KCa3.1 traffics through recycling endosomes

before arriving at the plasma membrane, we monitored KCa3.1

appearance at the plasma membrane using two separate strategies.

First, we carried out recycling endosome ablation using Tfn-HRP

which resulted in the TfnR being trapped in a perinuclear

compartment (Fig. 9) [29]. However, KCa3.1 trafficked to the BL

membrane, indicating this channel does not traffic through TfnR-

positive recycling endosomes. Second, we utilized a DN RME-1

approach to disrupt recycling endosomes. Lin et al. [38] showed

that a mutation in the epsin homology domain (G429R) induced

redistribution of recycling endosomes and inhibits the exit of

proteins from this compartment. We demonstrated that, following

endocytosis, KCa2.3 is targeted to this RME-1-positive compart-

ment, whereas KCa3.1 was not [22]. In Fig. 10, we show that

KCa3.1 is similarly not targeted to recycling endosomes following

Golgi exit along the biosynthetic route. Indeed, we demonstrate

that the rate of KCa3.1 appearance at the plasma membrane is

not altered by DN RME-1 expression (Fig. 10B), suggesting no

alteration in the rate of delivery. Thus, using two separate methods

of disrupting the recycling endosome compartment demonstrates

that KCa3.1 does not traffic through this compartment along the

biosynthetic route.

The regulated trafficking of proteins to the BL membrane is an

important process that controls the amount of protein at the cell

surface and thereby modulates their function. Herein, we

demonstrate that KCa3.1 is targeted to the BL membrane of

polarized epithelia in a Rab1- and Rab8-dependent manner.

However, following Golgi exit the correct BL targeting of KCa3.1

is independent of the AP-1B complex. In addition, we demonstrate

that the trafficking itinerary of the newly synthesized KCa3.1

channels does not involve passage through the recycling endosome

compartment. Finally, following correct insertion in to the BL

membrane, KCa3.1 is endocytosed and targeted for lysosomal

degradation in a process that requires initial ubiquitylation

followed by de-ubiquitylation. Inhibition of this process by

lactacystin indicates that proteasomes are functionally associated

with KCa3.1-containing endosomes.

Figure 9. KCa3.1 does not traffic via transferrin-positive recycling endosomes to the plasma membrane in MDCK cells. MDCK cells
were transduced with Transferrin receptor (TfnR) and BirA-KDEL/BLAP-KCa3.1 after which the TfnR was bound to a mixture of Tfn-Alexa488 (green)
and Tfn-HRP and allowed to endocytose for 40 min at 37uC. Plasma membrane BLAP-KCa3.1 was then labeled with streptavidin-Alexa555 (red). This is
shown in the left panel (T = 0) and confirms that under these conditions we are able to label both TfnR and KCa3.1 in confluent MDCK cells. To
determine whether KCa3.1 traffics to the plasma membrane via TfnR-positive recycling endosomes, we labeled the TfnR as above and blocked
plasma membrane BLAP-KCa3.1 with neutravidin. Subsequently, recycling endosome ablation was carried out by reacting the Tfn-HRP with H2O2 +
DAB (DAB was omitted as a non-ablation control) and ER/Golgi exit allowed to proceed for 2 hrs at 37uC after which KCa3.1 that was newly trafficked
to the plasma membrane was labeled with strep-555 (see Methods and Results sections for additional details). As shown in the T = 0 panel and the no
DAB control (top right panels), Tfn-488 is expressed in endosomes throughout the cytoplasm as it recycles to the plasma membrane, as expected.
However, following DAB-dependent ablation, Tfn-488 is clustered in the recycling endosomes as evidenced by their perinuclear localization;
confirming recycling endosome ablation resulting in inhibition of TfnR trafficking back to the plasma membrane. Importantly, in both ablated and
non-ablated cells, BLAP-KCa3.1 traffics to the plasma membrane demonstrating that KCa3.1 does not traffic through TfnR-positive recycling
endosomes on the way to the plasma membrane. Images are representative of 3 separate experiments.
doi:10.1371/journal.pone.0092013.g009
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Figure 10. KCa3.1 does not traffic to the plasma membrane via RME-1-positive recycling endosomes. A. MDCK cells were transfected
with BLAP-KCa3.1 and either GFP-tagged WT (top panels) or DN (bottom panels) RME-1. Plasma membrane localized KCa3.1 could be labeled with
streptavidin-Alexa555 (T = 0) following biotinylation and this could be blocked by prior incubation with neutravidin (Block). Following block and ER/
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