Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Voices of victory: A computational focus group framework for tracking opinion shift in real time

Lin, YR and Margolin, D and Keegan, B and Lazer, D (2013) Voices of victory: A computational focus group framework for tracking opinion shift in real time. In: UNSPECIFIED.

[img] Plain Text (licence)
Available under License : See the attached license file.

Download (1kB)

Abstract

Social media have been employed to assess public opinions on events, markets, and policies. Most current work focuses on either developing aggregated measures or opinion extraction methods like sentiment analysis. These approaches suffer from unpredictable turnover in the participants and the information they react to, making it difficult to distinguish meaningful shifts from those that follow from known information. We propose a novel approach to tame these sources of uncertainty through the introduction of "computational focus groups" to track opinion shifts in social media streams. Our approach uses prior user behaviors to detect users' biases, then groups users with similar biases together. We track the behavior streams from these like-minded subgroups and present time-dependent collective measures of their opinions. These measures control for the response rate and base attitudes of the users, making shifts in opinion both easier to detect and easier to interpret. We test the effectiveness of our system by tracking groups' Twitter responses to a common stimulus set: the 2012 U.S. presidential election debates. While our groups' behavior is consistent with their biases, there are numerous moments and topics on which they behave "out of character," suggesting precise targets for follow-up inquiry. We also demonstrate that tracking elite users with well-established biases does not yield such insights, as they are insensitive to the stimulus and simply reproduce expected patterns. The efffectiveness of our system suggests a new direction both for researchers and data-driven journalists interested in identifying opinion shifting processes in real-time. Copyright is held by the International World Wide Web Conference Committee (IW3C2).


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: Conference or Workshop Item (UNSPECIFIED)
Status: Published
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Lin, YRYURULIN@pitt.eduYURULIN
Margolin, D
Keegan, B
Lazer, D
Date: 1 December 2013
Date Type: Publication
Journal or Publication Title: WWW 2013 - Proceedings of the 22nd International Conference on World Wide Web
Page Range: 737 - 747
Event Type: Conference
Schools and Programs: School of Information Sciences > Information Science
Refereed: Yes
ISBN: 9781450320351
Date Deposited: 23 Jun 2014 21:47
Last Modified: 31 May 2019 14:55
URI: http://d-scholarship.pitt.edu/id/eprint/22033

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item