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Abstract

Varicella zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin
blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal
differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating
keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of
gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR,
protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal
cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were
accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and
desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time,
analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following
calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and
protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen
interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal
environment to promote its own replication and spread.
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Introduction

Replication in skin and mucosa is central to the pathogenesis of

varicella zoster virus (VZV), a member of the alphaherpesvirus

subfamily that causes chickenpox (varicella) upon a primary

infection and shingles (herpes-zoster) following reactivation from a

neuronal latent state. In both diseases, VZV replication in the

epidermal layer of skin results in the formation of large

polykaryocytes and the development of blisters containing

infectious cell-free virus. The epidermis is a continually regener-

ating tissue layer that develops a stratified structure, which is

maintained by keratinocytes, specialized cells which produce a

network of keratin filaments anchored to intracellular junctions to

provide structural support to the tissue. As keratinocytes transit

from the stem-cell rich basal to the uppermost layer of the

epidermis, they undergo a program of terminal differentiation.

Each stratum (basal, spinous, granular, lucidum and cornified) [1]

identified within the stratified epidermis is associated with

established signature patterns of gene expression [2] [3]. This

process is tightly regulated by homeostatic mechanisms that

involve calcium gradients, microRNAs, developmental signalling

pathways and proteolytic cascades [4,5,6,7,8,9].

Although VZV infects primary cultured keratinocytes [10] little

is known about the interaction between VZV replication and

epidermal differentiation. Previous work has shown that VZV

replication in skin differs from monolayer cultures in that certain

VZV proteins, such as ORF10 and ORF11, are not required for

replication in melanoma monolayer cultures but are necessary for

optimal replication in foetal skin xenografts of SCID-hu mice,

[11,12]. Additionally, the live attenuated VZV vaccine, vOKA,

replicates well in tissue culture but is attenuated for replication in

skin but not in lymphoid or neuronal xenografts in SCID-hu

mouse models [13].

In the present study we used an in vitro calcium induced model

of epithelial differentiation [5] and analysed the transcriptome of

uninfected and VZV-infected primary keratinocytes using RNA-
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seq. This approach identified not only the effect of VZV on

keratinocytes but also the consequence of keratinocyte differenti-

ation on VZV replication and maturation. Together our data

provides intriguing new insights into host–pathogen interactions.

Results

VZV infection of primary keratinocytes
As keratinocytes differentiate they lose basally expressed

cytokeratins (KRT5/14/15) and increase the expression of

differentiation markers e.g. suprabasal cytokeratins (KRT1/10)

and involucrin (IVL). The addition of calcium to primary

keratinocytes in culture, mimics the calcium gradient across the

epidermis and the process of epidermal differentiation [5]. To

assess the effect of calcium on primary keratinocytes we measured

by qPCR the change in the expression of selected keratinocyte

markers known to be altered by differentiation (KRT10, KRT15

and IVL) (Figure S1) and confirmed our findings by immunoblot-

ting for KRT10 and IVL (Figure S1). In our hands, the addition of

calcium to 1.2 mM increased the expression of the suprabasal

(KRT10) and granular marker (IVL) as well as reducing the

expression of the basal marker (KRT15), demonstrating that we

could use calcium to induce keratinocyte differentiation.

The ability of VZV to infect primary human keratinocytes has

previously been assessed [10]. Sexton and colleagues noted that

maintaining the keratinocytes in a low calcium media prior to

VZV infection resulted in a higher initial infection. We were able

to infect cells grown in low calcium [0.6 mM] (2calcium) and high

calcium [1.2 mM] (+calcium) media with VZV as detected by an

infectious centre assay (Figure 1A–B). Over the course of a 5 day

infection we observed an increase in the number of VZV foci,

indicating cell to cell spread, full replication and production of

infectious virus (Figure 1C). As previously observed [10] when

VZV was added to cells cultured in high calcium medium, the

number of foci was less and plateaued after one day, suggesting

reduced replication and spread. To optimise a model with which

to investigate the interaction of VZV and keratinocyte differen-

tiation, we next examined the effect of adding calcium [1.2 mM]

to cells already infected with VZV. By immunohistochemistry, the

VZV plaque size was comparable to the 2calcium cells

(Figure 1A–B), but the number of foci counted was still less when

calcium was added 3 days p.i. (Figure 1C). Primary keratinocytes

in culture are known to change size [14], develop tight junctions

and form clusters [15] when treated with calcium. To ensure that

this did not affect the number of VZV plaques counted, the

infected keratinocytes and the associated supernatants were

transferred onto MeWo cells and the VZV titres calculated.

VZV was not detected in the supernatants of any sample (data not

shown). The VZV titre in the +calcium cells at days 4–5 p.i. was

significantly less than in the 2calcium cells. However, by adding

the calcium to the cells 3 days after VZV infection, the VZV titres

were higher than in the +calcium cells and by day 5 no significant

difference was seen in the VZV titres between the 2calcium cells

and the cells which the calcium had been added 3 days p.i.

(Figure 1D). Flow cytometry analysis of VZV keratinocytes

confirmed that keratinocytes cultured in high calcium media

(+calcium) express fewer VZV proteins than the cells culture in

low calcium media (2calcium) but this could be increased by

adding calcium at 3 days p.i. (Figure S2). Moreover, this finding

was independent of whether cell-associated or cell-free VZV was

used to infect cells. VZV gene expression (ORF29) was compared

by real time PCR in cells grown in low calcium media (2calcium)

and cells switched to a high calcium media at day 3 post VZV

infection (Fig. 1E). The expression of ORF29 peaked at 48 hrs in

both the comparisons with increased expression seen in the

samples which had calcium added at day 3.

From the combined data above showing peak of VZV

gene expression at 48 hrs following the calcium switch and the

data showing increased expression of host differentiation markers

at 24–48 hours following the addition of calcium (Figure S1),

we determined that the optimal time point at which to examine

both host and viral gene expression together was 48 hrs after

calcium-induced differentiation of keratinocytes infected with

VZV 3 days previously. Using this model, we compared

undifferentiated (2calcium) and differentiated (calcium added at

day 3 post infection) keratinocytes as well as studying the effect of

the keratinocyte differentiation on the viral transcriptome

(Figure 1F).

To summarise, primary human keratinocytes were plated out at

day 0 and infected/mock infected with VZV at an m.o.i of 0.2 at

day 2. Cells were then incubated at 34uC until day 5 before either

maintaining the cultures in a low calcium media or switching to a

high calcium media at day 3 p.i. Total RNA was harvested at day

7 (48 hrs after changing media and 5 days p.i.) for all four

experimental conditions (K; Keratinocytes, KV; Keratinocytes

and VZV, KC; Keratinocytes and Calcium and KCV; Keratino-

cytes, Calcium and VZV) as illustrated in Figure 1H.

The cDNA was sequenced using the Illumina RNA-seq

platform. Between 15–366106 reads were generated per lane of

which 4.8–126106 mapped to the human transcriptome once

duplicate reads had been removed (Homo sapiens (release 37)

reference sequence GRCh37/hg19: Table S1). Similar distribu-

tions of reads per gene were found across all samples before

normalisation with no major outliers (Figure S3). The number of

duplicate reads per sample varied between 21–45%, with higher

levels of duplication observed in the samples from batch 3,

presumably due to a PCR batch effect. However, estimated library

sizes (10–326106) were independent of batch and average quality

scores rose from 31 for batches 1 and 2 to 38 for batch 3,

corresponding to updated Illumina reagents and protocol.

Post-normalisation, clustering transcriptome profiles by Spearman’s

rank correlation coefficient gave tight clusters for the calcium treated

Author Summary

Varicella zoster virus (VZV) causes chickenpox and shingles,
which are characterised by the formation of fluid-filled skin
lesions. Infectious viral particles present in these lesions are
critical for airborne spread to cause chickenpox in non-
immune contacts and for infection of nerve ganglia via
nerve endings in the skin, a pre-requisite for shingles.
Several VZV proteins, although dispensable in laboratory
cell-culture, are essential for VZV infection of skin, a finding
thought to relate to VZV interaction with a process known
as epidermal differentiation. In this, the specialised
keratinocyte cells of the outer layer of skin, the epidermis,
are continually shed to be replaced by differentiating
keratinocytes, which migrate up from lower layers. How
VZV interaction with epidermal differentiation leads to the
formation of fluid-filled lesions remains unclear. We show
using a keratinocyte model of epidermal differentiation
that VZV infection alters epidermal differentiation, gener-
ating a specific pattern of changes in that is characteristic
of blistering and skin shedding diseases. We also identified
that the differentiation status of the keratinocytes influ-
ences the replication pattern of the viral gene and protein
expression, with both increasing as the VZV particles
traverses to the uppermost layers of the skin. The findings
provide new insights into VZV-host cell interactions.

VZV Infection Alters Keratinocyte Gene Expression
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samples (KC and KCV), whilst those for the KV and K samples were

more dispersed with clustering being more heavily dependent on

keratinocyte batch. The exceptions were samples KV2 and KV5,

which clustered tightly with the KC samples (Figure S3).

To ensure that no bias was introduced into the cDNA

library, ten genes were amplified by real time PCR, and

shown to have good overall correlation to RNA-seq reports

when comparing the effect of virus in calcium-treated (KCV/

Figure 1. VZV infection of primary keratinocytes. Primary human keratinocyte were culture in a 24-well plate either in a low [0.6 mM]
(2calcium) or high [1.2 mM] calcium (+calcium) containing media and infected with VZV at an mo.i. of 0.2. For the final condition, cells were infected
with VZV as above and then at day 3 p.i. the calcium concentration was increased to 1.2 mM (calcium added Day 3). Cells were cultured for up to 5
days p.i. and fixed in 4% PFA. VZV infected cells were identified using IHC and images of the VZV colonies were captured and counted. (A)
Representative VZV colonies at day 5 post infection in triplicate from keratinocytes grown in the low, high or switched at day 3 calcium media. (B)
Representative images of VZV infected cells at day 5 p.i. grown in the three different conditions (scale bar = 500 mm). (C) The VZV foci number in
primary keratinocytes was counted up to 5 days post infection and the result represented as 6 standard deviation (n = 3). (D) VZV infected primary
keratinocytes treated with trypsin and titred onto MeWo cells at days 4 and 5 p.i. VZV colonies were identified by IHC and the ffu/ml calculated and
represented as 6 standard deviation (n = 3) the statistical difference between the conditions was determines (p values less than 0.05 (*) are indicated.
E) VZV infected primary human keratinocytes were processed for total RNA extraction following the calcium switch at day 3 post infection. The levels
of VZV ORF29 cDNA were determined by qPCR and normalised to the housekeeping gene RN5S, experiment was carried out in triplicate, p-values of
less than 0.05 (*) by Student’s t-test are shown. F) Representation of conditions used in RNA-seq experiment, keratinocytes were infected with cell-
free VZV (m.o.i of 0.2) at day 2 and either maintained in a low calcium media or changed to a high calcium media at day 5 (day 3 p.i.), RNA was
harvested at day 7. Four conditions were analysed K = Keratinocytes; KV = Keratinocytes infected with VZV; KC = Keratinocytes+calcium induced
differentiation; KCV = Keratinocytes infected with VZV and calcium differentiated.
doi:10.1371/journal.ppat.1003896.g001

VZV Infection Alters Keratinocyte Gene Expression
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KC) and untreated (KV/K) cells (Pearson’s r = 0.88 and 0.75

respectively, (Figure S3).

Overview of the human transcriptome analysis
A negative binomial generalised log-linear model was fitted to

the TMM-normalised read counts of 17463 human genes with

reads above a threshold of 1 Count Per Million (CPM) in at least 3

samples. From this, likelihood-ratio tests were performed, identi-

fying 3863 differentially expressed genes across 6 comparisons of

interest (KC/K, KV/K, KCV/KC, KCV/KV, KCV/K and

KV/KC), (Figure 2A–B).

The greatest degree of differential expression was seen by the

addition of calcium to uninfected keratinocytes (KC/K). A total of

1786 genes were altered (463 genes up-regulated, 1323 genes

down-regulated), the pattern of which was consistent with the

induction of keratinocyte differentiation with a decrease in the

expression of basally expressed cytokeratins and an increase in the

expression of most but not all of genes expressed in both the

suprabasal and granular layers (Figure S4) and in keeping with the

known limitations of the keratinocyte calcium-switch model, we

did not see changes in genes that are expressed in the cornified

layer. In contrast, relatively few genes were significantly altered by

viral infection alone (KV/K, 110 upregulated, 53 downregulated).

Although approximately the same viral titres were achieved in

both conditions, (Figure 1D) significantly more genes were

differentially expressed in the KCV/KC comparison (1049

Figure 2. Overview of transcription data. A) Summary of the number of significantly up and down regulated genes (FDR,0.01) observed across
all six possible comparisons of the four sample types e.g. 463 genes are up regulated in KC/K whilst 53 genes are down regulated in KV/K. B) Venn
diagram indicating the number of significant (FDR,0.01) differentially expressed genes across four key comparisons (KCV/KC, KC/K, KV/K and KCV/
KC) and the overlap between each set of genes. C–F) Detailed analysis between the four comparisons illustrating the overlap between up and down
regulated gene lists. Pairs of arrows in the intersection refer to the direction of fold change in the comparisons on the left and right hand sides
respectively. Comparisons are shown for: C) KCV/KV and KCV/KV, D) KC/K and KCV/KC, E) KV/K and KCV/KC and F) KC/K and KCV/KV genes. For these
four Venn diagrams (e.g comparison X vs. comparison Y), those genes that are up or down-regulated in X but not significantly altered in Y are shown
on the left-hand side with single arrows denoting the direction of fold change. The converse is shown on the right-hand side (i.e. genes that are
differentially expressed in Y but not in X), again with up or down arrows denoting the direction of fold change. The overlaps themselves show the 4
possible options: up in both X and Y, down in both X and Y, up in X and down in Y, or down in X and up in Y. These are denoted by pairs of arrows,
with the left-hand arrow referring to the direction of fold change in X and the right-hand arrow denoting the direction of fold change in Y e.g. in KC/K
vs. KCV/KC (D), 4 genes are up regulated in both comparisons, 2 are down regulated in both comparisons, 73 are up regulated in KC/K but down
regulated in KCV/KC whilst 159 are down regulated in KC/K but up regulated in KCV/KC.
doi:10.1371/journal.ppat.1003896.g002

VZV Infection Alters Keratinocyte Gene Expression
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upregulated, 371 downregulated). Of the 107 genes differentially

expressed following viral infection in both differentiated and

undifferentiated keratinocytes (KCV/KC and KV/K), 99 were

found to be upregulated and 8 downregulated in both comparisons

(Figure 2E), suggesting a common role for these genes in host

response to viral infection regardless of differentiation. As we could

not achieve 100% infection in either the KCV or KV samples

(Figure 1), we must consider that the uninfected bystander cells in

these samples could also contribute to the overall gene expression

changes observed.

Only 31 genes were found to be differentially expressed in both

virally infected (KV/K) and calcium treated (KC/K) conditions

(19% KV/K, 2% KC/K) (Figure 2B), strongly suggesting that

viral infection does not drive differentiation. A similar analysis of

the KCV/KC and KC/K comparisons identified 238 genes as

differentially expressed in both contrasts (17% KCV/KC, 13%

KC/K). However of these genes, 159 were upregulated in the

KCV/KC comparison but downregulated in KC/K, whilst 73

were downregulated in the KCV/KC but upregulated in the KC/

K comparison. The direction of changes was the same for only 3%

(6/238) of those genes differentially expressed in both conditions.

This finding further supports the contention that VZV infection

does not drive differentiation and raises the possibility that VZV

may in fact interfere with or hinder it. Some of the effects seen in

the VZV infected samples that were calcium switched (KCV) were

also apparent in VZV infected samples that were untreated (KV).

However the differences were not due solely to the effect of

calcium on keratinocytes. If this were the case, we ought to see

good agreement between those genes differentially expressed in

both KCV/KV and KC/K. That this overlap is relatively small

(85 genes: 5% total KC/K; 9% total KCV/KV) is in keeping with

the observation that the KCV samples were transcriptionally

distinct from both KC and K samples and reinforces the notion of

an interaction between VZV infection and the process of

keratinocyte differentiation.

In addition, there is only a relatively small overlap between

genes differentially expressed following addition of calcium and

those differentially expressed upon addition of calcium and viral

infection (215 genes, 12% KC/K, 16% KCV/K). Of these genes,

the direction of fold change is identical for almost all (91%, 50

genes upregulated in both comparisons, 145 genes downregulated

in both comparisons) suggesting the KCV samples possess a more

differentiated keratinocyte phenotype than the K samples.

However, the vast majority of genes found to be differentially

expressed in the KCV/K comparison (1113 genes, 84% KCV/K)

are not significantly up- or downregulated by the addition of

calcium alone, further supporting the notion that changes in gene

expression between the K and KCV samples are not solely a

consequence of keratinocyte differentiation.

Gene set enrichment analysis using the online DAVID

functional annotation resource [16] identified significantly en-

riched functional groups (PBH,0.05) altered by either calcium

(KC/K) (Figure 3A), by VZV infection of calcium differentiated

cells (KCV/KC) (Figure 3B) or by VZV infection of undifferen-

tiated cells (KV/K) (Figure 3C). Genes upregulated by calcium

treatment of uninfected keratinocytes (KC/K) showed enrichment

for several functional groups including cell cycle (GO:0007049)

and cell division (SwissProt PIR keyword) whilst those that were

downregulated in this comparison included regulation of tran-

scription (GO:0045449) and negative regulation of gene expres-

sion (GO:0010629). The categories identified in the KCV/KC

comparison were more varied with enrichment in the upregulated

genes for several functional groups including cell junction genes

(GO:0030054), the ECM-receptor interaction pathway (KEGG

hsa04512) and serine protease inhibitors (SwissProt keyword).

Enrichment was also observed for additional groups such as cell

adhesion (GO:0007155), epidermis development (GO:0008544),

serine proteases (SwissProt PIR keyword) and the integrin-

mediated signaling pathway (GO:0007229). Although relatively

few genes were significantly altered by viral infection alone (KV/

Figure 3. Representative functional groups enriched in differentially expressed gene lists. The genes which were differentially expressed
in the (A) KC/K (B) KCV/KC and (C) KV/K comparisons were analysed using the functional annotation tool in DAVID. Enriched functional groups
(Benjamini-Hochberg adjusted P-value,0.05) were identified for each comparison and groups representative of overall enrichment results for each
comparison are shown.
doi:10.1371/journal.ppat.1003896.g003

VZV Infection Alters Keratinocyte Gene Expression
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K), the upregulated genes showed functional enrichment for

epidermis development (GO:0008544) and serine-type endopep-

tidase activity (GO:0004252) as observed for KCV/KC. Although

several interferon-stimulated genes were significantly changed

after VZV infection, the corresponding GO terms (GO:0071357)

were not identified as being significantly enriched in either of the

VZV infected conditions (KCV or KV).

VZV replication dysregulates cytokeratin expression

A hallmark of epidermal differentiation are the changes that

occur in cytokeratin (KRT) expression [6]. Basal cytokeratins

(KRT5/14/15) are lost and suprabasal cytokeratins (KRT1/10)

are gained as the keratinocytes differentiate and migrate outwards.

Gene-annotation enrichment analysis using the online DAVID

database of both the KCV/KC and KV/K deduced that infection

with VZV profoundly affected the development of the epidermis

(Figure 3B–C). Specifically, we show here that VZV alters the

expression of several epidermal cytokeratins, regardless of the

differentiation status of the keratinocyte (Figure S5, Table S2). The

effect of VZV infection on the epithelial cytokeratins was

independently verified by qPCR and the fold change calculated

for a direct comparison to the RNA-seq data (Figure 4A–B). A

good concordance was seen between the methods. VZV infection

increased the expression of KRT15, a stem cell marker located in

the hair follicle isthmus in both the KCV/KC and KV/K

comparisons, although other stem cell markers (ITGB1, CD34

and CD200) (data not shown) and other basal layer cytokeratins

(KRT5/14) were not altered. At the same time, VZV either down-

regulated or prevented up regulation of the suprabasally expressed

cytokeratin heterodimers KRT1 and KRT10, which are the major

cytokeratins associated with keratinocyte differentiation [17] in

both the KCV/KC and KV/K comparisons. EM images of

differentiated keratinocytes infected with VZV show an abun-

dance of cytokeratin structures (Figure S5). This finding may be

related to the upregulation of KRT4/13 (131-fold and 34-fold

respectively for the KCV/KC comparison, figure 4A), KRT4/13

are normally present as heterodimers in the suprabasal layers of

mucosal but not stratified epithelium [18], and are thought to

function like KRT1/10 to maintain cellular architecture. Upre-

gulation of KRT4/13 may therefore have compensated structur-

ally for the reduced expression of KRT1/10. To test whether

VZV replication was responsible for the reduction of KRT1/10

expression, the qPCR experiment was repeated with UV-

inactivated VZV (Figure 4C–D). We again saw a downregulation

of the KRT1 and KRT10 gene expression, but these changes were

partially abolished by pre-treatment of the viral inoculum by UV

irradiation. We also determined the effect of VZV infection on

KRT10 and KRT15 protein expression by western blotting.

KRT10 expression was increased by the addition of calcium by

24 hrs. However, in the VZV infected cells the KRT10 levels were

reduced and this reduction was more pronounced by 48 hrs p.i. in

the undifferentiated cells, confirming that the virus downregulates

KRT10 regardless of the differentiation status of the cell. KRT15

expression was upregulated by VZV infection at 48 hrs p.i. and

again this effect was not dependent on the addition of calcium.

Further examination of the VZV infected keratinocytes by

immunofluorescence confirmed that not all cells were infected at

day 5 p.i. but, KRT10 expression was absent in the ORF23GFP

expressing cells. However, KRT15 expression was widespread and

not necessarily confined to the VZV infected cells, confirming that

not all the gene changes seen in our transcriptome data was a

direct result of VZV infected cells and that changes in the

bystander cells also contribute to the changes seen (Figure 4F).

The transcriptome data was confirmed for KRT10 using a

keratinocyte cell line, nTERTs. As with the primary keratinocytes,

we were unable to achieve100% infection of the nTERTs even at

an m.o.i. = 2 (as measured in MeWo cells) after 5 days and it was

easier to establish VZV infection in sparsely plated nTERTs (data

not shown). As the nTERTs become more densely populated, the

expression of KRT10 increased over the course of the experiment

as measured by real time PCR. However infection of these cells

with VZV significantly reduced KRT10 gene expression

(Figure 5A). The downregulation of KRT10 by VZV in nTERTs

was also observed at the protein level (Figure 5B). At both 24 and

48 hrs post infection the expression of KRT10 was reduced in

VZV infected nTERTs compared to the mock infected controls

and pre-treatment of the viral inoculum with PAA, which inhibits

VZV DNA polymerase and viral replication restored KRT10

expression (Figure 5C). To assess the expression of KRT10 in the

presence of VZV infection, the cells were examined by immuno-

fluorescence. The nTERTs are a heterogenous cell population and

not all the cells express KRT10, as shown in the mock infected

control (Figure 5D). However, KRT10 expression in VZV infected

cells was diminished, particularly in infected cells expressing the

late protein (gE) (Figure 5F). Closer examination of the VZV

infected showed that a number of cells where the expression of

ORF62 was confined to the nuclei, which is indicative of an early

VZV infection [19], still expressed KRT10 (Figure 5G–H), which

in addition to the UV-treated virus and PAA data indicates that

the effect of VZV on KRT10 is dependent on viral replication.

To determine whether the VZV associated downregulation of

KRT10 seen in VZV infected keratinocyte monolayers occurred

in more physiologically representative skin models, keratinocyte

organotypic rafts were infected with VZV. Organotypic raft

cultures are an in vitro system that recapitulates epithelial

differentiation and have previously been used to study VZV

replication in keratinocytes [20]. H&E staining revealed intact but

swollen cells in the VZV infected raft, which are typically seen in

early VZV skin lesions (Figure 6A). KRT10 expression was

confined to a continuous layer in the suprabasal region of the

mock-infected raft (Figure 6A vii) but disrupted in the VZV

infected raft (Figure 6A viii), with no expression of KRT10 seen in

the VZV infected pocket (indicated by VZV gE expression). These

findings were also confirmed in skin biopsy samples from VZV

cases (Figure 6B–G). As previously observed, KRT10 expression

occurred in the suprabasal layers of the epidermis and gross

examination suggested downregulation of KRT10 expression

restricted to VZV antigen positive infected areas (Figure 6B–C).

KRT10 mean intensity was compared in uninfected and VZV

infected cells within the suprabasal layer of the epidermis. Ten

VZV positive and ten VZV negative cells were selected within the

suprabasal layer of the epidermis and the fluorescence of the

KRT10 staining (red) was measured using ImageJ and found to be

significantly less in the cells staining positive for VZV gE

(Figure 6D). As KRT10 forms heterodimers with KRT1 within

the suprabasal layer of the epidermis [18], we also examined

KRT1 staining in a biopsy sample and carried out the same

analysis of the fluorescence intensity in VZV positive and negative

cells within the suprabasal layer (Figure 6E–F). In agreement with

the KRT10 result, KRT1 expression was also substantially

reduced in VZV infected cells (Figure 6G).

VZV dysregulates desmosomes
KRT1/10 bundles provide the cytoskeletal structure in the

suprabasal layers of the epidermis by interacting with desmosomal

proteins [21]. Detailed analysis of the intracellular structures

(GO:0030054 and GO:0007155, data not shown) indicate that

VZV Infection Alters Keratinocyte Gene Expression
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Figure 4. VZV infection dysregulates the expression of epidermal cytokeratins. A) Average fold change for KCV/KC and KV/K comparisons for
epithelial cytokeratins from the RNA-seq data, showing upregulation of basal (KRT15) and mucosal (KRT4/13) and downregulation of the suprabasal
cytokeratins (KRT 1/10). VZV infected and mock-infected primary human keratinocytes were processed for total RNA and protein extraction. At day 5,
48 hrs after the addition of calcium, the levels of epidermal cytokeratins were determined by qPCR and normalised to the housekeeping gene RN5S
(B). The fold change between the uninfected and VZV infected samples with and without the addition of calcium was determined and plotted 6
stdev. A representative graph from 4 individual experiments is shown and the dataset is comparable to the RNA-seq analysis for all the KRT genes
tested. The VZV inoculum was UV irradiated prior to infection and the qPCR was repeated for (C) KRT1 and (D) KRT10. Fold change was calculated for
the VZV and UV-VZV relative to the mock control for both genes, p-values,0.05 are shown (*). VZV infection again downregulated both KRT1 and
KRT10, but the downregulation was not observed in the UV-treated VZV for KRT1 and was partially restored for KRT10. Quantification of VZV ORF68
was used to confirm absence of viral transcripts in UV-VZV treated cDNA (data not shown). E) Protein extracts were analysed by immunoblotting for
KRT10 and 215 at 24 and 48 hrs after the calcium switch. The VZV infected cells are denoted by the presence of the late viral protein gE and GAPDH
was used as a loading control. Change in density of KRT10 (F) and KRT15 (H) expression after the addition of calcium relative to the no calcium
control were calculated using imageJ from figure 4E after VZV infection (D) KRT1, (E) KRT10 and (F) KRT15. The change in relative density of KRT10 (G)
and KRT15 (I) by VZV infection was calculated against the mock infected control at each timepoint. VZV infection reduced KRT10 expression and
increased KRT15 expression after 48 hrs regardless of the addition of calcium. J–K) Immunofluorescent staining of calcium treated primary
keratinocytes from uninfected and VZV samples. KRT10 (red) was downregulated and KRT15 (red) was upregulated in the presence of VZV expression
as reported by GFP-ORF23 (green). DAPI is shown in blue. Scale bar 50 mm. The data are representative of three individual experiments.
doi:10.1371/journal.ppat.1003896.g004
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VZV infection altered and downregulated the expression of

desmosomal components (Figure 7A, Table S3), particularly

Desmoglein1 (DSG1) and Desmocollin1 (DSC1). Both of these

genes are intrinsically involved in the formation of tight junctions

and the process of epidermal differentiation normally increases

their expression. From our trancriptome analysis we see that they

were upregulated by the addition of calcium (KC/K) by 9-fold and

5-fold respectively (Figure S4, Table S3), but both genes were

significantly downregulated by VZV infection (Figure 7A). In

contrast to Human Papillomavirus, another epitheliotropic virus

which downregulates b4 integrin to dysregulate epidermal

differentiation [22], VZV infection had no effect on the basal

hemidesmosomal proteins (Table S3).

Transcriptome data on the changes in desmosomal genes were

verified by qPCR (Figure 7B) and we confirmed that VZV

infection reduced the expression of both DSG1 and DSC1 at the

protein level by immunoblotting (Figure 7C). In the presence of

the VZV gE protein the expression of both DSG1 and DSC1 was

reduced in comparison to the mock infected cells. As seen for

changes in cytokeratin expression, downregulation of DSG1 and

Figure 5. Confirming the downregulation of KRT10 by VZV in a keratinocyte cell line. nTERTs were infected with an m.o.i of 0.2. and
processed for RNA and protein extraction. A) KRT10 gene expression is reduced by VZV infection up to 72 hrs p.i. as measured by real time PCR and
normalised to RN5S. KRT10 expression increases in the mock infected cells as they become more confluent. Experiment carried out in quadruplicates
and p-values calculated by Student’s t-test p,0.05 (*). B) KRT10 protein levels are reduced at 24 and 48 hrs in VZV infected cells which are shown by
the presence of the ORF63 protein, GAPDH was used as a loading control. C) Pre-treatment of cells with PAA, which inhibits VZV DNA polymerase and
viral replication prevents the reduction of KRT10 expression measured by western blot. Immunofluorescence showing downregulation of KRT10 in
VZV infected nTERTs, KRT10 staining (red) is abundant in the no virus control (D) whereas in cells positive for IE62 (E) or gE (F) (both green), KRT10
protein expression is absent, DAPI is shown in blue, scale bar = 50 mm. G–H) Higher magnification of (E), show that early in VZV infection, when IE62
expression (green and indicated by white arrows) is confined to the nuclei, KRT10 expression is still present in the VZV infected cells, scale
bar = 10 mm.
doi:10.1371/journal.ppat.1003896.g005
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DSC1 was dependent on VZV gene expression, and could be

ablated by UV-treatment and inactivation of the VZV viral

inoculum (data not shown). Desmosomes provide intercellular

adhesive strength required for the integrity of epidermis, and

electron microscopy imaging of uninfected (Figure 7D+G), early

VZV infection, as denoted by the presence of viral envelopes but

not intact virions (Figure 7E+H) and late VZV infection, where

virus particles accumulate at cellular boundaries (Figure 7F+I)

revealed that desmosomal junctions were no longer observed when

the VZV infection was well developed. Addition of phosphonoa-

cetic acid (PAA), which inhibits VZV DNA polymerase and viral

replication, also abrogated the down regulation of DSG1 and

DSC1 in VZV infected cells as measured by qPCR (Figure 7J–K).

Since late but not immediate early viral gene expression is

modulated by PAA treatment, the reduction in desmosomal

proteins in VZV infected cells may be due to proteins expressed

late in the replication cycle.

Serine proteases as a group were significantly enriched in both

the VZV infected samples (KC and KV) (Figure 3B–C). A

heatmap of the serine peptidases and non-peptidase homologues

Figure 6. VZV downregulated KRT1/10 expression in the epidermis. A) H&E of a cross-section of VZV infected primary organotypic rafts to
show swollen cells within the intact epidermis, typical of early VZV lesion formation which are not seen in the mock infected control, scale bar
200 mm. KRT10 (red) expression is suprabasal in the mock control (iii) but reduced in VZV infected pocket (vi) as indicated by VZV gE (green). Panels vii
and viii represent the merged images with DAPI stained nuclei. Scale bars 25 mm. (B–G) Immunofluorescent staining of human varicella skin biopsies,
showing KRT10 (red, top panels) and KRT1 (red, bottom panels) expression in the spinous layer. Dashed line represents the dermis/epidermis junction.
The loss of both KRTs are seen in VZV positive areas (green), scale bars 50 mm. D and G represent the mean fluorescent intensity (MFI) of KRT10 (D)
and KRT1 (G) from infected and uninfected cells from the spinous layer. Ten infected (green) and ten uninfected (not green) cells were taken from the
spinous layer and the intensity of the KRT10 fluorescence (red) measured from each using imageJ. The mean intensity of KRT10 was then measured 6
standard deviation and the associated p values calculated by a Student’s t-test.
doi:10.1371/journal.ppat.1003896.g006
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Figure 7. VZV infection affects the integrity of the epidermis by disrupting the desmosomal junctions. From the RNA-seq dataset the
average fold change (KCV/KC) show that genes associated with the desmosomes (A) were significantly downregulated (*p,0.01) in differentiated
keratinocytes after VZV infection. B) VZV infected and mock-infected primary human keratinocytes were processed for total RNA and protein
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group (IPR001314) (Figure 8A) displays the differential expression

of these genes under our four different conditions. Overall, the

majority of the genes are significantly upregulated in the KCV

samples, with a similar but less pronounced upregulation also seen

in the KV samples compared to K and KC (Table S4). Epidermal

serine proteases, such as the tissue kallikreins participate in

desquamation, the natural process by which individual corneo-

cytes are shed from the surface of the epithelium [23]. Mutations

that reduce the ability of the antagonist to inhibit the activity of the

proteases, result in uncontrolled proteolytic activity associated with

inflammatory skin conditions e.g. Nethertons syndrome [24]. Our

data demonstrates that VZV upregulated the expression of the

majority of the kallikrein genes (Figure 8B). The upregulation of

KLK5 and 27 was of particular interest due to their role in

cleaving DSC1 and DSG1 [25]. The upregulation of these genes

by VZV could augment the downregulation of DSG1 and DSC1

thereby further reducing cell-cell adhesion and the strength of the

epidermal barrier to withstand mechanical trauma. The upregula-

tion of the KLK5 and 27 genes was validated by qPCR

(Figure 8C–D respectively) and the effect of VZV on the KLK5

and 27 proteins was confirmed by immunoblotting in concen-

trated supernatants from mock and VZV-infected differentiated

keratinocytes (Figure 8E).

The addition of calcium to infected keratinocyte
differentiation increases VZV gene expression

RNA-seq enabled analysis of both host and viral transcripts

within the same sample. Paired-end reads from VZV infected

samples were mapped to the pOKA genome (accession number

AB097933). Between 1.46105–1.26106 reads were mapped to the

VZV genome (Table S1) with the exception of KV1 where the

number of mapped reads was at least ten fold lower. Visualisation

of the VZV transcripts for all infected samples using IGV

(Figure 9A) revealed that all viral genes were expressed in all

infected samples, indicating that lytic viral replication was

occurring under all conditions. This was also established by

electron microscopy examination of the infected cells, which

revealed the presence of highly cell associated virus particles in

both VZV infected cells treated or untreated with calcium (Figure

S6).

Overall, the pattern of VZV gene expression was similar for

untreated and calcium treated cells, but the average number of

mapped reads was approximately 9-fold higher in differentiated

cells (KCV1–3) (Figure 9B). Significantly higher viral expression

was observed in the differentiated cells compared to the

undifferentiated cells for every viral ORF without exception and

regardless of temporal classification (all ORFs up-regulated

between 4 and 15 fold; pFDR,0.01). Six viral ORFs were

significantly changed by the addition of calcium (p,0.01) although

only ORF14 (gC) and ORF55 were significant (pFDR,0.01)

following correction for multiple testing (Table S5) and when KV1

was excluded due to low VZV reads only ORF14 remained

significant. The increase in viral gene expression was indepen-

dently investigated by qPCR analysis for the three temporal classes

of herpesvirus genes. No difference was seen in the expression of

the IE gene (ORF63) at 48 hrs after the addition of calcium

(Figure 9C), however the expression of the early (ORF29) and late

(ORF14) viral genes was significantly increased in cells where

calcium was added 3 days after VZV infection as per our model

(Figure 9D–E). The qPCR data did not reflect the degree of

change and increase in VZV gene expression seen in the KCV

samples in RNA-seq data in comparison to the KV samples. We

were able to demonstrate an effect of calcium on the viral DNA

and observed a three-fold increase in VZV DNA as measured by

real time PCR after the addition of calcium to infected

keratinocytes on day three (Figure 9F). Taken together, our data,

whereby calcium induced differentiation of primary keratinocytes

increases VZV DNA replication and gene transcription, both of

which are required for the production of progeny virions implies

that the process of differentiation increases VZV replication, but,

we were unable to demonstrate that calcium differentiation

induced an increase in the number of VZV particles or replication

by either IF, infectious VZV foci or EM (data not shown).

Pattern of VZV gene expression is altered by keratinocyte
differentiation

In common with other members of the herpesvirus family, VZV

gene expression occurs in a temporally regulated cascade, which

can be categorized as; immediate early (IE), early (E) and late (L).

When viral reads were normalised separately to human reads,

distinct patterns of relative viral gene expression were observed for

the undifferentiated (KV) and differentiated (KCV) samples within

each sample (Figure 10A). A high degree of agreement was

observed between the differentiated samples (KCV1–3) indicating

that late viral genes were more highly expressed than immediate

early genes in the differentiated samples. Undifferentiated samples

KV3 and KV4 also showed good agreement, where in contrast to

KCV1–3, the immediate early genes were more highly expressed

than the late genes. However, samples KV2 and KV5, despite not

having been treated with calcium, had similar viral gene

expression patterns to the differentiated cells (KCV1–3). Analysis

of 1463 host genes which are differentially expressed after

treatment with calcium but not changed by VZV infection (i.e.

representative of keratinocyte differentiation) showed clustering of

KV2 and KV5 host gene expression profiles with the calcium-

shifted differentiated keratinocyte samples KCV1–3 (Figure 10B).

This finding was supported by Spearman’s rank correlation

coefficient (Figure S3) and principal component analysis of host

gene expression profiles (Figure S3), which again clustered samples

KV2 and KV5 with the calcium treated samples. Since KV2 and

KV5 were not treated with calcium, it is likely that these replicates

underwent spontaneous differentiation, something that is known to

happen when primary keratinocytes contact each other [26].

These data illustrate the impact of keratinocyte differentiation on

VZV gene expression as distinct from the effect of calcium. To test

our hypothesis that it is differentiation and not the addition of

calcium that is responsible for the increase seen in VZV gene

expression, the NOTCH pathway was activated by the addition of

the agonist, jagged-1 and inhibited by the addition of DAPT. The

canonical NOTCH pathway acts as a switch between the basal

extraction. At day 5 p.i., 48 hrs after the addition of calcium, the levels of the desmosomal genes were determined by qPCR and normalised to the
housekeeping gene RN5S (B). The fold change between the uninfected and VZV infected samples was determined and plotted 6 stdev. C) Immune
blotting to confirm decreased DSG1 and DSC1 expression in VZV infected keratinocytes. Electron microscopy images of keratinocytes that were (D+G)
uninfected, (E+H) early in VZV infection as shown by the presence of viral envelopes but not complete virions, and F+I) Late in VZV infection, where
intact virions are easily detectable. White arrows denote the desmosomal junctions, which are absent in the last panels, scale bar D–F = 2 mm and G–
I = 500 nm. Pre-treatment of keratinocytes with PAA, which inhibits VZV DNA polymerase and viral replication prevents the reduction of DSG1 (J) and
partially restores DSC1 expression (not significant) (K) expression measured by qPCR, n = 3 *p,0.05 by Student’s t-test.
doi:10.1371/journal.ppat.1003896.g007

VZV Infection Alters Keratinocyte Gene Expression

PLOS Pathogens | www.plospathogens.org 11 January 2014 | Volume 10 | Issue 1 | e1003896



Figure 8. VZV infection increases KLK expression. A) Heatmap analysis of transcriptome changes in the serine peptidases and non-peptidase
homologues group (IPR001314). A clear upregulation (yellow) of the majority of the genes in this group was observed in all KCV lanes. B) The majority
of the kallikreins were upregulated in the differentiated keratinocytes compared to the uninfected cells (KCV/KC). Upregulation of KLKs in
transcriptome of VZV infected differentiated keratinocytes was confirmed by qPCR for KLK5 and KLK7 (C–D). The relative expression of both genes 6
standard deviation, normalised to GAPDH is shown for the uninfected and VZV infected samples at day 5 p.i. after the addition of calcium at day3, p
values less than 0.05 are indicated (*). Immune blotting for KLK5 and 7 from concentrated supernatants of uninfected and VZV infected keratinocytes
at 1–3 days post-differentiation (E). GAPDH and gE from the cell lysates was used as a loading control and to show VZV infection respectively.
doi:10.1371/journal.ppat.1003896.g008
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and suprabasal genes and is a key regulator of keratinocyte

differentiation and its activation causes stem cells to exit their

niche and start the process of terminal differentiation [27].

NOTCH activation and ablation influenced gE expression as

measured by western blotting (Figure 10C). gE expression was

increased in comparison to the untreated keratinocytes, when the

NOTCH pathway was activated. Conversely a decrease gE

protein expression was observed relative to the untreated

keratinocytes when the NOTCH pathway was ablated.

To examine the effect of cellular differentiation on the

regulation of VZV genes, we used a recombinant viruses

expressing either luciferase or renilla reporter cassettes under

various VZV promoters (Figure 10D–G). Keratinocytes were

infected with one of the three viruses as per our model and the

reporter activity measured over the course of 6 days. Reporter

activity for ORF4, ORF14 and ORF9 increased over the

timepoints taken whereas ORF63 remained relatively level. In

all viruses, the reporter activity was altered by the addition of

calcium at day 3 post infection. With the reporter driven by an

immediate early promoter (Figure 10D and F) there was a

decrease in its activity after the addition of calcium whereas the

converse was true for the reporters driven by the late promoters

(Figure 10E and G). The increase in ORF4 promoter activity in

undifferentiated cells and not in the calcium treated cells as well as

the increase in the late viral promoter activity and viral early and

late gene products in the calcium differentiated cells suggests that

there was a relative block to viral replication which was overcome

by keratinocyte differentiation.

To investigate if the expression of the VZV proteins is affected

by differentiation in the epidermis, skin organ cultures were

intradermally injected with VZV to model skin infection and

stained for IE and late proteins 3 days post infection (Figure 10H).

Although epidermal infection throughout the section was evident,

the explant model did not demonstrate epidermal blistering unlike

the in vivo archival specimens (Figure 6B–G). VZV IE63 staining

was found predominantly in the nuclei throughout the epidermis

and the expression of late viral glycoprotein gE was largely

cytoplasmic with increased expression of gE seen in the uppermost

layers of the epidermis. Together with the observed differential

gene expression as keratinocytes differentiate under calcium, these

results indicate that VZV gene expression is tied to regulated

keratinocyte differentiation, with a switch from more efficient early

gene expression at the undifferentiated stage to late gene

expression as differentiation ensues.

Discussion

Keratinocytes, the predominant cell type found in the

epidermis, are a major target of VZV replication in skin. The

calcium switch method delivered a dynamic model of epidermal

differentiation which can be manipulated to allow investigation of

viral and host interactions during synchronized keratinocyte

differentiation without the presence of other cell types.

A number of alternative systems have been described to

investigate the biology of skin, including 3D raft cultures and

explants [20], [28]. A further model, using SCID-hu mice, has

previously been successfully used to study the infection dynamics

of VZV in vivo [13]. Both the 3D raft cultures and the explants

show a greater degree of differentiation, formation and definition

of the structural layers characteristic of skin in contrast to the

calcium shift model utilised in this study. Furthermore, the explant

system also contains the presence of specialised structures, such as

the sebaceous glands and hair follicles that are absent from raft

cultures and the monolayer system. However neither the explant

nor the SCID-hu mouse model was suitable for this study as

neither system can be manipulated experimentally to allow the

effects of differentiation on VZV gene expression to be examined.

In contrast, the development of 3D organotypic rafts whilst

offering a valid alternative model to allow investigation into the

effects of virus infection on cellular differentiation and vice versa

was not found to be reliable enough, particularly in the presence of

virus, for use in the RNA-seq part of our study.

The model has certain disadvantages e.g. the genes associated

with the stratum lucidum and stratum corneum are not expressed.

The titre of virus produced in primary keratinocytes is at least 2

logs lower than is seen in MeWo cells and remains highly cell

associated as we saw in our EM images. Thus although we were

able to show that calcium induced increases in gene expression

and viral genome replication, these were not associated with an

increase in the formation of infectious particles. Nonetheless, our

data clearly demonstrate that, in common with the archetypal

alphaherpesvirus HSV-1 [29] and previous observations [10,20],

VZV appears to preferentially infect undifferentiated keratino-

cytes. In epithelia, undifferentiated keratinocytes are localised to

the stem-cell rich basal layer of the epidermis and adnexal

structures. Our findings are consistent with histological evidence of

early Herpes Zoster lesions that shows VZV infecting the stem-cell

rich isthmus region of the hair follicle [30], following reactivation

from latency and prior to the onset of the epidermal infection or

distinctive cutaneous rash. By adding calcium to VZV infected

undifferentiated keratinocytes our model therefore mimics the

likely sequence of events in the skin, with infection of less

differentiated basal cells followed by differentiation of infected

cells. The fact that VZV spreads more easily in undifferentiated

cells fits with the model of cell associated virus inhabiting basal

epidermal layers while cell free virus in the upper epidermis is

necessary for transmitted infection [31]. Virus adapted for cell to

cell spread in the basal epithelium has been shown to differ from

cell-free virus. For example, VZV can spread efficiently cell to cell

in MeWo monolayers despite low levels of envelope glycoprotein

C [32] a protein that is necessary for the formation of cell free

Figure 9. Epidermal differentiation increases VZV transcription. A) Coverage plots of viral RNA-seq reads mapped to the annotated VZV
pOka genome. The top three panels represent KCV1–3 samples and the lower 5 samples are KV1–5. A schematic representation of the VZV open
reading frames is shown below. Each coverage plot uses an identical log scale, illustrating the higher degree of coverage in the KCV samples. Regions
with zero coverage are shaded grey. B) RPKM values for each of the VZV ORFs across the infected samples. The RPKM values are normalised relative
to the sum of human and viral reads per sample. The pattern of expression is similar across all samples with RPKM values for each ORF being greater
than 1 in every sample. RPKM values for the KCV samples are less variable than those for the KV samples with a median 9-fold upregulation per ORF
(KCV/KV, range 4–15 fold upregulation, all ORFs significantly upregulated with pFDRs,0.01). RPKM values for KV1 are noticeably lower than all other
samples. At day 5 p.i., 48 hrs after the addition of calcium, the levels of three VZV genes were determined by qPCR and normalised to the
housekeeping gene RN5S, no amplification was seen in the mock infected controls (data not shown). The upregulation of KRT10 in the uninfected
controls was used as a marker to ensure that the addition of calcium had caused keratinocyte differentiation (data not shown). The expression of (C)
ORF63 (IE) ORF29 (early) and ORF14 (late) genes was determined (n = 3) and plotted. Expression of ORF29 (D) and ORF14 (E) was significantly
increased after the addition of calcium, *p,0.05 by Student’s t-test. F) The rate of vDNA replication, as measured by qPCR increases after the addition
of calcium (at 48 hrs) in the differentiated cells (n = 3, 6 stdev).
doi:10.1371/journal.ppat.1003896.g009

VZV Infection Alters Keratinocyte Gene Expression

PLOS Pathogens | www.plospathogens.org 14 January 2014 | Volume 10 | Issue 1 | e1003896



Figure 10. Altered VZV gene expression following keratinocyte differentiation. A) Heatmap illustrating VZV ORF expression profiles for the
infected samples. RPKM values were calculated for each sample by normalising to viral reads alone and then median-centred for each ORF to
highlight relative fold changes across all samples. Samples are hierarchically clustered by Pearson’s correlation coefficient. ORFs are ordered by
temporal gene expression (i.e. whether they are currently categorised as late, early, immediate-early genes). Log2(fold changes) are shown relative to
the median RPKM for each ORF. B) Heatmap of 1463 human genes altered solely in the KC/K comparison. TMM-normalised CPM values are median-
centred for each gene to highlight relative fold changes across all samples. Genes and samples are clustered by Pearson’s correlation coefficient. Log2

(fold changes) are shown relative to the median CPM for each gene. Samples cluster primarily by experimental condition (i.e. addition of calcium)
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virus and VZV replication in skin [13,33]. This fits with our results

showing increased late viral protein expression in the suprabasal

layers where assembly of cell free virus occurs [31]. One model to

explain our results may therefore be that the generalised increase

in viral gene and protein expression seen with keratinocyte

differentiation is directed to maturation of cell-free virions from

the immature viral particles formed in the basal layers, rather than

a large increase in numbers of virions. Over time, as keratinocyte

maturation continues, high titers of cell-free virions accumulate in

the growing blister.

The blister lesions formed in VZV infections are by and large

discrete, although coalescence of mature lesions may occur. While

production of interferon by bystander cells has been shown to limit

viral spread in the skin [34] it is also possible that cell-to-cell spread

is limited by the physical barriers associated with keratinocyte

differentiation, thus explaining the reduced spread of virus

observed in differentiated cells. Alternatively, differentiation may

result in the loss of a cellular receptor rendering keratinocytes less

permissive to VZV infection. Of the three known putative cellular

receptors for VZV, mannose 6 phosphate receptor, reported to be

critical for the accumulation of cell free virus in vesicles and

Heparan sulphate are expressed only in basal layers and the

expression of both are lost as keratinocytes differentiate [31] [35].

Both are therefore candidates for viral spread in less differentiated

but not differentiated cells. In contrast, expression of the third

putative receptor, insulin degrading enzyme (IDE), increases as

keratinocytes differentiate (Jones M. unpublished data).

Notwithstanding the reduced cell-to-cell spread in differentiated

keratinocytes, our analysis revealed a quantitative increase in viral

gene and viral DNA expression after calcium induced differenti-

ation and by manipulation of the NOTCH pathway as well as by

calcium and contact induced differentiation we were able to show

that this was dependent on differentiation and not just the addition

of calcium to our cells. As previously outlined, these results are not

necessarily contradictory but are consistent with a model by which

the virus is able to enter and spread in undifferentiated

keratinocytes, but once infected, optimal replication and produc-

tion of mature virions requires the presence or loss of cellular

factors present as cells differentiate. Although VZV does not

persist in the skin, it shows a pattern common to other skin tropic

viruses. Human Papillomavirus (HPV) which maintains its genome

as a stable episome in basal cells until differentiation of the host cell

occurs [36] and the gamma-herpesviruses Kaposi Sarcoma

Herpesvirus (KSHV), whose lytic cycle is also known to be

activated by keratinocyte differentiation [37].

In our model, expression of all VZV ORFs was evident in both

untreated and calcium treated keratinocyte samples, confirming

that VZV undergoes full lytic infection in both conditions.

However, the distinct differences in the pattern of expression

were clearly apparent, with relatively more immediate early genes

(ORFs 4, 62 and 63) in the undifferentiated cells and relatively

more late genes (e.g. viral glycoproteins) expressed in the

keratinocytes that had undergone synchronized differentiation.

The apparent association of each condition with IE or late viral

gene expression suggests that the state of the host cell may impact

on the regulation of the molecular switch controlling the classical

temporal pattern of herpesvirus gene expression. Though not

definitive proof, this hypothesis is supported by our observations.

First, the expression of the VZV promoters in the recombinant

viruses clearly establishes differential activity of the reporters in

response to calcium induced keratinocyte differentiation. This

block in production of early and late viral proteins in undifferen-

tiated keratinocytes is consistent with a requirement for cellular

factors present in differentiated cells to regulate the switch to

early/late gene expression. Secondly, the expression of gC, which

is essential for viral replication in skin [13], was significantly

greater in the calcium switched cells. This result corroborates

previous work where increased gC expression was observed in

MeWo cells treated with hexamethyl bisacetamide (HMBA), a

known inducer of cellular differentiation [32]. Finally, using

immunohistochemistry we were also able to show that another late

protein, gE, was more highly expressed in the upper layers of the

epidermis in explants.

Of interest, several VZV ORFs which, based on their HSV-1

orthologues are presumed to be late genes, were more highly

expressed in the undifferentiated cells. These include ORFs 17

(virion host shutoff), 64 (tegument US10), 46 (tegument UL14), 27

(nuclear phosphoprotein UL31), 60 (gL) and 23 (capsid). Further

work is required to determine whether these findings reflect true

differences in VZV temporal gene expression or whether they are

indicative of keratinocyte specific differences in the gene expres-

sion patterns.

Analysis of the host transcriptome confirmed VZV does not

drive keratinocyte differentiation. Instead the virus clearly alters

the normal pattern of gene expression associated with differenti-

ation, generating a signature associated with skin blistering, which

itself is a characteristic feature of VZV disease. VZV downreg-

ulated or prevented the expression of the suprabasal genes, KRT1

and KRT10, but was not shown to alter the expression of other

differentiation markers such as involucrin. KRT1 and KRT10 are

known to play a role in maintaining the integrity of the epidermis

and are mutated in other blistering diseases such as epidermolytic

ichthyosis [38]. KRT10 has also been shown to inhibit prolifer-

ation and cell cycle progression of basal keratinocytes [39,40] and

its loss is also associated with increased cell turnover [41].

However, through its interactions with desmosomes, KRT1/10

form a dynamic scaffold in the cell and play an important role in

maintaining epithelial structure [42]. Autoantibodies to desmo-

somal proteins, DSG1 and DSC1 proteins are a hallmark of

blistering skin conditions including pemphigus foliaceus and IgA

with the exception of KV2 and KV5 which cluster alongside the calcium-shifted KC samples suggesting these 2 samples had undergone spontaneous
contact-induced differentiation. C) Primary keratinocytes were infected VZV at an mo.i. of 0.2 and treated with either DAPT [1 mM] or Jagged-1
[50 mM] and harvested for analysis by immunoblotting 48 hrs later. Jagged-1 treatment caused an increase and DAPT treatment showed a decrease
in Notch 1 expression respectively as seen in the uninfected keratinocytes. Treatment of VZV infected cells with jagged-1 increased gE expression and
DAPT treatment decreased gE expression relative to the untreated VZV infected keratinocytes, the changes in gE were quantified using ImageJ and
the numbers below represent the gE expression relative to the untreated VZV infected keratinocytes. Primary keratinocytes were infected with VZV at
day 0 with an m.o.i. of 0.2. At day 3 half of the samples were switched to a high calcium media. Duplicate samples were taken every 24 hrs to measure
luciferase and/or renilla. Three different recombinant viruses were used D) VZVLUC under the control of an IE promoter (ORF4), E) ORF14Luc and F–G)
ORF63LucORF9Renilla. The average relative luciferase/renilla units RLU/RRU for each virus is plotted 6 stdev. H) Skin explants were injected into the
dermis with cell associated VZV (1250 PFU), placed on grids, and harvested at 3 days post infection, fixed and embedded in paraffin. Sections were
stained with antibodies against the immediate early viral marker, IE63, and the late marker glycoprotein E (gE). Staining was developed with the
chromogen VIP. No staining was seen in the uninfected controls (data not shown). Although epidermal infection was evident, this model did not
demonstrate epidermal blistering. VZV staining is present throughout the epidermis and the expression gE was more apparent in the higher layers of
the epidermis.
doi:10.1371/journal.ppat.1003896.g010
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pemphigus [43]. As a group, the desmosomal genes, especially

DSG1 and DSC1 were identified as being significantly altered by

VZV infection while other junctional proteins were unaltered.

These findings support the notion that the interaction of VZV with

keratinocytes drives the pathognomonic blistering phenotype. The

accompanying upregulation of the serine proteases by VZV may

contribute to the observed reduction of DSG1 protein as well as

inducing a desquamative phenotype, which may promote the

dissemination of the virus.

An unusual finding which is not typical of blistering disorders

was the upregulation of the mucosal cytokeratins 4 and 13, a

phenotype previously observed in keratinocytes with impaired

SMAD 2, 4 and 7 signalling [44]. Jones et al. previously observed

such changes in the TGF beta pathway in a VZV infected SCID-

hu mouse model [45]. Although we observe the same gene pattern

changes as Buschke et al. in that we observed downregulation of

KRT1/10/DSG1 and upregulation of KRT4/13, we did not find

a significant enrichment of the TGF-beta pathway as a whole. It is

possible that our transcriptome analysis, which was a single

snapshot late on in VZV infection, failed to detect early signalling

changes responsible for KRT4/13 changes. Alternatively, VZV

may act via different pathways in this system.

Other observed changes in cytokeratin expression which do not

usually form part of a blistering signature include the upregulation

of KRT15 and KRT19 which are associated with stem cells in

adnexal skin compartments, a region which histologically is

positive for VZV early on in infection. KRT15 is also associated

with wound healing, but other markers of keratinocyte activation

in wound healing (e.g. KRT6, 16 and 17) [46] were unaltered in

our transcriptome data.

In summary, we have shown by combined analysis of host and

pathogen gene expression at a single time point that VZV gene

expression is linked to keratinocyte differentiation. VZV replica-

tion, in turn, alters the structure of stratified squamous epithelium,

driving a blistering, desquamative phenotype to form the typical

skin vesicles, which are essential to VZV pathogenesis. The major

functional groups studied in the manuscript i.e. the alterations

affecting cytokeratins, desmosomes and proteases, are controlled

by a number of regulatory pathways and further work is underway

to untangle the complex molecular interactions between VZV and

keratinocyte differentiation. While the data presented here are

only a snapshot of this complex process, they provide a roadmap

for further exploration of how VZV interacts with a target cell

central to its pathogenesis.

Materials and Methods

Ethics statement
Human skin from cosmetic reductive surgery was obtained with

written informed consent under the approval of the East Central

London Research Ethics Committee 1 (10/H0121/39).

Cells
Neonatal primary human epidermal keratinocytes (HEKn, Life

technologies, Paisley, UK) were cultured on mouse collagen IV

(0.67 mg/cm2 BD Biosciences, Oxford, UK) coated surfaces in

keratinocyte defined media containing epithelial growth factor

(KDM and EpiLife, Life technologies). Differentiation was induced

by shifting the cells to a high calcium media containing [1.2 mM]

calcium chloride. Neonatal Human Dermal Fibroblasts (HDFn,

Life technologies) were cultured in medium 106 supplemented

with low serum growth supplement (Life technologies). MeWo

cells were cultured in MEM (Sigma, Dorset, UK) supplemented

with 10% (w/v) FBS and 1% non-essential amino acids. nTERTs

cells were cultured in 3:1 DMEM:Ham’s F12 supplemented with

10% FBS, 1% L-glutamine (200 mM) and Ready Mix Plus

(0.4 mg/ml hydrocortisone, 5 mg/ml insulin, 10 ng/ml EGF,

5 mg/ml transferrin, 8.4 ng/ml cholera toxin and 13 ng/ml

liothyronine). All uninfected cells were cultured at 37uC, 5% CO2.

Skin explant culture
Segments of human skin (less than 2 cm2) were intradermally

inoculated with approx. 16105 infectious units of cell-free virus

and cultured at the air-liquid interface in Dulbecco’s modified

Eagle’s and Ham’s F12 medium (3:1), supplemented with 10%

foetal bovine serum, 1% L-glutamine, and supplemented with

RM+ (0.4 mg/ml Hydrocortisone, 5 mg/ml Insulin, 0.01 mg/ml

EGF, 0.0084 mg/ml Cholera toxin, 5 mg/ml Transferrin and

0.0013 mg/ml Lyothyronine) for 10 days. Mock-injected segments

were cultured in parallel as a control. Skin samples were fixed in

4% paraformaldehyde and embedded in paraffin.

Viruses
Infections for transcriptome experiments were carried out using

pOka and validation experiments were carried out using a strain

named THA, a low passage clade 3 clinical isolate. The VZV

ORF23 GFP, expressing an N terminal tag to the capsid OR23

protein, has been detailed previously [47]. A recombinant VZV

expressing luciferase (VZVLUC) driven by ORF4 promoter was

developed by cloning the ORF4 promoter upstream of the

luciferase gene in the vector PGL3 (Promega Corp), followed by

PCR amplification of the entire cassette and cloning into the pOka

based cosmid pspe23 at the unique AvrII site located between

OR65 and 66. This was then developed into recombinant VZV

with additional pOka cosmids as described previously [48]. The

ORF14-luciferase virus reports luciferase as a T2A directed

ribosome skipping motif fusion protein. Luciferase was amplified

by PCR from the plasmid pGL3basic (Promega Corp) using the

primers 59 GAGGGATCCGGTTCCGGAGAGGGCAGAGGA

AGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTG-

GCCCAATGGAAGACGCC AAAAACATA-39 and 59 AATTC-

GAATTCGCGCGCAGATCTTTACACGGCGATCTTTCCG-

CCCTTCTTGGC-39. The resulting fragment was digested with

EcoRI and BamHI and cloned into the vector pmCherryC1 cut

with EcoRI and BglII (underlined in primers), resulting in plasmid

pmCherryT2Aluc which contained mCherry fused in frame to

luciferase, separated by the T2A 22 amino acid ribosome skipping

motif. The expression of functional luciferase (containing a single

residue added to the amnio terminal end) and mCherry (with a 21

amino acid T2A C terminal addition) were confirmed in plasmid

transfected HEK293T cells (data not shown). The plasmid was cut

with EcoRI and BglII (both sites downstream from the T2A

luciferase gene) and a zeomycin resistance cassette was inserted

following its generation by PCR with primers to add bglII and

EcoRI flanking sequences (underlined in the following primers 59

AGATCTAGATCTCGAGTAATGGAACGGACCG TGTTG-

A C-39 and 59 – GCTGAC GTCGACGAATTCTGATCACT-

CAAGTTTCGAGGTCGAGGTG 39). The resulting plasmid

was used as the template for the PCR amplification of the entire

T2A-Luciferase-Zeo cassette using primers with 40 bp flanking

homology arms to allow recombination into ORF14 in the pOka

BAC, so it was an in frame fusion with the terminal residue of gC

(ORF14): using the primers gClucF2 59 CTTATCGCAGTTATC

GCAACCCTATGCATCCGTTGCTGTTCAATGGACGAGC-

TGTACAAG-39 and gClucR2 59 ATAAAATGATATACAC-

AGACGCGTTTGGTTGGTTTCTGTCTCGAGTATGATCA-

G TTATC 39. The PCR product was amplified, gel purified and

transformed for recombineering into pOka BAC [49] using
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pGS1783 bacterial host (a kind gift of Gregory Smith Northwest-

ern University IL), a VZV pOka BAC detailed previously [50] and

recombineering methods detailed by [51]. Chloramphenicol

resistant BACs also showing zeomycin resistance were validated

for DNA integrity and correct insertion into ORF14. Virus was

derived by cotransfection of the BAC purified DNA into MeWo

cells as previously described [50]. VZV containing both ORF63-

T2A luciferase and ORF9-T2A renilla reporters were generated

similarly. Renilla gene was first PCR amplified to add the T2A

motif to the N terminal end using the following primers and the

template pSV40 RL (Promega Corp) 5- AGAGGATCC GGT-

TCCGGAGAGGGCAGAGGAAGTCTGCTAACATGCGGTG-

ACGTCGAGGAGAATCCTGGCCCAATGACTTCGAAAGTTT-

A TG -39 and 59 GAATTCGAATTCTGTTCATTTTTGAGAA-

CTCGCTCAA-39. The EcoRI and BamHI digested product was

cloned into pEGFP-C1 cut with bglII and EcoRI, to generate the

plasmid pEGFPT2ARen. A kanamycin resistance cassette was

amplified from pEPS kan 2 [51] using primers that added flanking

repetitive sequences to allow subsequent recombineering removal

of the cassette, using 59 AGATCTAGATCTAGGATGACGACGA-

TAAGTAGG G-39 and ATTCGAATTCCGATGAACTCAG-

TAGCATTATTGTTCATTTTTGAGAACTCGCTCAACGAA-

CGATTTGATATCAACCAATTAACCAATTCTGATTAG-39

primers. The BglII and EcoRI digested cassette was cloned into

the unique EcoRI and bglII sites downstream of the renilla cassette

in pEGFPT2ARen. This was used as a template for PCR

amplification of the entire T2A-renilla kanamycin cassette with

primers that added 40 bp homology arms to ORF9, so as to place

the cassette as a fusion to the C terminal residue of ORF9 (59-

AGTAGGGCCCGTTCGGCATCAAGAACTGATGCGCGAA-

AAATG GAC GAGCTGTACAAG -39 and 59- TTATACAT-

AATACCGGGTAAACCGTTACTGCGTAATTAACTCGAG-

TATGATCAGTTATC 39

Recombinants of pOka BAC containing the cassette were

selected based on gain of kanamycin resistance. A second

recombination event was induced concordance with ISce induc-

tion [51] to remove the kanamycin cassette, and transformants

were screened for loss of kanamycin. The resulting pOka BAC

containing the ORF9-T2A renilla fusion was subjected to a third

induced recombination following transformation with a T2A

luciferase-Zeo cassette, amplified using primers to add flanking

40 bp homology arms to enable recombination to the C terminus

of ORF63 (59 GGAAAATATCAACATAAAATATATCATCG-

TAAAAATTCGAGTATGATCAGTTATC 39 and 59 GCTC-

CCGTCATAGCAAATACAAAGACAATTATTAGCGTAATA-

ATGGACGAGCTGTACAAG 39. Zeomycin resistant positive

transformants were screened for integrity and correct insertion

using sequencing. Finally, a kanamycin resistant cassette was

inserted into ORF71 to prevent rescue of the ORF63-T2A

luciferase cassette by the duplicated gene using a fourth induced

recombination. Virus was derived from the BAC on MeWo cells

and replicated efficiently as wild type (data not shown). The virus

derived from the BAC contained deletion of ORF71, a fusion of

ORF63 to T2A luciferase and a fusion of ORF9 to Renilla.

VZV growth and infections
All viruses were cultured and used at less than 20 passages.

Infected cell preparations were first treated with mitomycin C

(0.05 mg/ml for 3 hrs) prior to freezing and subsequently titered

on Mewo cells; we routinely achieved viral titres of greater than

16106 pfu/ml. Cell-free VZV was generated by a rapid freeze

(liquid N2) and thaw (37uC), followed by removal of cellular debris

by low speed centrifugation. In comparison to the cell-associated

VZV, titres for cell-free virus were reduced by 1–3 logs and we

achieved titres of approximately 16104 pfu/ml. For UV inacti-

vated VZV, cell-free VZV supernatants were treated for 20 min at

150,000 J/Cm2 using a Stratalinker UV Crosslinker (Stratagene).

For the transcriptome and subsequent confirmatory experiments,

36104 HEKn cells per well of a 6 well dish were plated out at day

0 and left for 48 hrs, one well was then used to calculate the cell

density and other wells were then inoculated with cell-free virus at

an m.o.i of 0.2 as calculated by viral titration on Mewo cells. The

cells were cultured at 34uC, 5% CO2 for 3 days before either

maintaining the changing the calcium at [0.6 mM] or increasing to

[1.2 mM]. Parallel wells were used to confirm the percentage of

cells infected as measured by flow cytometry. For immunofluo-

rescence, the experiments were carried out on a coverslip in a 24

well plate using 56103 cells, which were infected with an m.o.i. of

0.2. as above. other details are as above. Infection of nTERTs for

PCRs and westerns were carried out in a 6 well plate, with

0.256106 cells left for 24 hrs before infection with an m.o.i. of 0.2.

For immunofluorescence, 16104 nTERTs were plated on a

coverslip and infections carried out at an m.o.i. of 0.2 for 72 hrs

before fixation with 4% PFA.

HEKn were seeded onto a de-epidermilised dermis (DED) and

cultured at the air-liquid interface, as previously described [52].

Rafts were intradermally inoculated with approximately 16105

infectious units of cell-free virus nine days post-lifting. Mock-

injected segments were cultured in parallel as a control. Five days

post-infection, all cultures were fixed in 4% PFA and embedded in

paraffin.

Library preparation
Total RNA was extracted using TRIzol reagent (Life technol-

ogies) and cDNA libraries were prepared using reagents and

protocols supplied with the mRNA seq kit (Illumina, Essex, UK).

Briefly, poly-A tailed RNA was purified from 10 mg of total RNA

using oligodT beads. The purified RNA was fragmented

chemically and cDNA was synthesised using Superscript II

(25uC for 10 minutes, 42uC for 50 minutes, 70uC for 15 minutes;

Life technologies) primed with random primers supplied in the kit

(Illumina). Unique adaptors were ligated to the cDNA and 200 bp

fragments were size selected by agarose gel purification. Libraries

were validated by using a DNA high sensitivity chip (Agilent,

Cheshire, UK) and quantified by Qubit analysis using the Quant-

iT dsDNA HS Assay (Life technologies).

Illumina sequencing
Libraries were sequenced with a 36 bp paired end read using a

GAIIx sequencer (Illumina). Each library was loaded onto a

sequencing chip at a concentration of 16pM. The library was

amplified and the Read 1 sequencing primer was hybridised using

Paired end Cluster station reagents version 1 and 2 (Illumina). The

paired end module (PEMx) was attached to the GAIIx sequencer

for Read 2 preparation. Each run was quality controlled by

assessment of the Phix sequencing control, loaded at a concen-

tration of 6pM per chip.

Computational analysis
Solexa sequencing and pipeline analysis was performed by

J.Porwisz (UCL Genomics), generating FASTQ files for each

sample using GenomeAnalyzer pipeline v1.4 (Illumina) and

CASAVA v1.0 (Illumina). Paired end reads were mapped to host

and viral genomes (Homo sapiens (release 37) reference sequence

(GRCh37/hg19); pOka sequence (pOka, GenBank reference

AB097933)) using BowTie [53], TopHat [54], SAMtools [55].

Duplicate reads were then removed using PicardTools (http://

picard.sourceforge.net) and read counts per gene generated using
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HTSeq-count (http://www-huber.embl.de/users/anders/HTSeq).

R/BioConductor [56] were used to import the mapped count

data and the edgeR package used to normalise the data and

generate lists of differentially expressed genes. Specifically, a

filtering step was applied remove low expression genes with

fewer than 1 count per million (CPM) in at least 3 samples.

Counts were then normalised using a trimmed mean of M-

values [57] and fitted to a negative binomial generalised log-

linear model (GLM), using empirical Bayes tagwise dispersions

to estimate the dispersion parameter for each gene [58].

Differentially expressed genes were identified using GLM

likelihood ratio tests applying a FDR significance cut-off of

0.01, unless otherwise stated. The gplots R library was used to

construct heatmaps (http://cran.r-project.org/web/packages/

gplots/index.html). Functional classification of genes was

performed using the DAVID online database (http://david.

abcc.ncifcrf.gov/home.jsp) [16]. Gene expression heatmaps were

generated using the MEV software suite [59], [60] (http://www.

tm4.org/mev.html). Integrative Genomic Viewer (IGV) was used

to produce viral genome coverage plots [61]. The Venn

diagram in figure 2B was generated using the online tool

VENNY (http://bioinfogp.cnb.csic.es/tools/venny/index.html).

Real-time semi-quantitative reverse-transcription-PCR
3 mg of total RNA was DNaseI treated before being reverse

transcribed using MMLV reverse transciptase and random

hexamer primers (Promega, Southhampton, UK). qPCR was

performed using a Rotorgene 3000 cycler (Qiagen, Manchester,

UK) using 500 ng cDNA, specific primers [0.4 mM] (Text S1) and

SYBR green master mix (Qiagen). Each gene was normalised to a

housekeeping gene (GAPDH or RN5S) and relative expression

shown as 22DDCt [62].

Flow cytometry
HEKn were fixed in 4% PFA, blocked in 10% Goat serum,

washed in permeabilisation buffer (eBiosciences, Hatfield, UK)

and incubated with the anti-VZV-FITC (Millipore, Watford, UK)

for 30 min in the dark. Cells were subsequently washed in

permeabilisation buffer, resuspended in PBS, processed by FACS

Calibur and analysed using FloJo (v7.6.5).

Western blotting
Cell pellets were lysed in whole cell lysis buffer (20 mM HEPES

KOH (pH 7.4), 50 mM NaCl, 2%w/v NP40, 0.5%w/v NaDeox-

ycholate, 0.2%w/v SDS, 1 mM NaOrthovanadate, 1 mM EGTA

pH 7, 10 mM NaF, 1 mM PMSF, protease inhibitor cocktail

(Sigma-Aldrich). Protein concentration was determined by BCA

Assay (Thermo-Fisher Scientific, Loughborough, UK). Samples

were added to 46 Gel loading buffer (Life Technologies), DTT

(0.083M), heated to 70uC for 5 min. Secreted proteins were

concentrated from supernatents using Amicon Ultra 10K filters

(Millipore) and equal volume of concentrated supernatents were

added to 2XSDS loading buffer, heated to 95uC for 5 min.

Samples were resolved on a 4–12% Bis-Tris gel (Life technologies,

Paisley, UK) and transferred to a nitrocellulose membrane and

blocked in 5% PVP, 0.5% FBS. Membranes were incubated with

antibodies (Text S2) and detected by ECL plus (GE, Buckingham-

shire, UK).

Immunofluorescence
HEKn grown on coverslips were fixed in 4% PFA for 20 min at

RT before being washed in PBS, incubated in NH4Cl [10 mM]

for 10 min before being permeabilised with 0.05% (w/v) Triton

X-100 on ice for 5 min. Cells were blocked with 3% BSA and

incubated with the primary antibody (1:100) (Text S2) for 1 hr,

followed by the Alexa Fluor secondary antibody (Life Technolo-

gies) (1:1000) for 1 hr. Cells were mounted in Prolong gold (Life

Technologies) and visualized on a Zeiss Axiovision. Images were

analysed using AxioVision Rel. 4.8 and ImageJ. Statistical analyses

were performed using Prism (GraphPad Software).

Immunohistochemistry
5 mM paraffin-embedded sections were processed using con-

ventional techniques. Antigen retrieval was performed by heat-

treatment of deparaffinised sections in 10 mM citrate buffer

pH 6.0. Sections were treated with 3% hydrogen peroxidase and

biotin blocked (Vector Laboratories, Peterborough, UK) prior to

onset of immunostaining. VZV antigen was amplified using

Universal Elite ABC kit in conjunction with M.O.M Biotinylated

Anti-Mouse IgG (Vector Laboratories) and visualised using

fluorophore tyramide amplification reagent (Perkin Elmer Life

Sciences, Buckinghamshire, UK). Nuclear staining was visualised

by staining with Hoechst 33342 (Life technologies). Sections were

mounted in Immunomount (Thermo-Fisher Scientific, Loughbor-

ough, UK) and images were captured using a Leica epifluores-

cence microscope.

Electron microscopy
Cells were fixed in 0.5% glutaraldehyde in 200 mM sodium

cacodylate buffer for 30 min, washed in buffer and secondarily

fixed in reduced 1% osmium tetroxide, 1.5% potassium ferricy-

anide for 60 min, washed in water and stained overnight in 0.5%

Mg Uranyl acetate. The samples were then embedded flat in the

dish in Epon resin. Ultrathin sections (typically 50–70 nm) were

cut parallel to the dish stained with Reynold’s lead citrate and

examined in a FEI Tecnai electron microscope with CCD camera

image acquisition.

Plaque assays
Plates were fixed at time points post infection with 4%

paraformaldehyde and stained by immunohistochemistry using a

mixed VZV mAb (Meridian Life Sciences, Memphis, US),

followed by and biotin (Vector labs, Peterborough, UK)

streptavidin (Jackson ImmunoResearch, PA, US) amplification.

Plaques were visualised using Fast Red TR salt (Sigma, Dorset,

UK) and images of stained plaques were digitally captured and

counted using the ViruSpot Reader (AID GmbH).

Luciferase assay
Keratinocytes infected with VZVLuc were lysed and processed

for luciferase activity using the luciferase or dual-luciferase

reporter assay system (Promega) according to the manufacturer’s

protocol.

Viral DNA extractions
vDNA was extracted using the Qiagen DNeasy blood and tissue

kit and vDNA copy number was determined by real time PCR for

the VZV ORF29 gene, normalized to KRAS (Text S1) using a

standard curve.

Accession numbers for human and VZV genes
Cellular gene name (UniProtKB/Swiss-Prot). KRT1

(P04264), KRT10 (P13645), DSG1 (Q02413), DSC1 (Q08554),

KRT15 (P19012), KRT5 (P13647), KRT14 (P02533), KRT4

(Q6PIN2), KRT13 (P13646)
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KRT19 (P08727), KLK5 (Q9Y337), KLK7 (P49862), CD29

(P05556), CD34 (P28906)

CD200 (P41217), IVL (P07476)

Virus gene name (UniProtKB/Swiss-Prot). ORF14

(Q4JR11), ORF63 (Q77NN7), ORF4 (Q4JQX1), ORF68

(Q9J3M8), ORF17 (Q4JQV8), ORF64 (Q4JR15), ORF46

(Q4JQS9), ORF27 (Q4JQU8), ORF60 (Q9J3N1), ORF23

(Q4JQV2)

Supporting Information

Figure S1 Increasing calcium concentration induces
keratinocyte differentiation. Primary human keratinocytes

grown either in low calcium [0.6 mM] or high calcium [1.2 mM]

cultures were processed for total RNA and protein extraction. The

increase of CaCl2 concentration to 1.2 mM initiated cellular

differentiation of human keratinocytes beginning at 24 hrs, as

detected by qPCR for (A) KRT15, a basal layer gene which was

downregulated by the addition of calcium whilst KRT10 and IVL,

(B–C) markers of differentiation expressed in the suprabasal layer

and granular layer respectively were increased by calcium. P-

values less than 0.05 (**) or less than (*) by Student’s t-test are

shown. Expression of all three genes were normalised to the

housekeeping gene GAPDH. D) Immune blotting for protein

levels for the suprabasal cytokeratin marker (KRT10) and the

granular layer protein IVL shows that the addition of calcium

upregulates the expression of both these markers of differentiation

at 48 hrs after the switch to a high calcium concentration in

comparison to the samples maintained at a low calcium

concentration [0.6 mM]. GAPDH was used as a loading control.

(TIF)

Figure S2 Analysis of VZV infection in keratinocytes by
flow cytometry. Primary keratinocytes were infected with an

m.o.i. of 0.2 and either maintained in a low calcium or high

calcium media or switched to a high calcium media 3 days p.i.

Cells were harvested every 24 hrs, fixed and stained for VZV

IE62/gE-FITC and analysed by flow cytometry A) Left panel,

representative plot of a negative stain, VZV positive cells are seen

in the lower right quadrant all plots are representative of samples

at day 5 p.i. B) VZV staining (open histograms) shown relative to

the unstained control (grey filled histogram) at day 5 p.i.

Percentage of stained cells in all three conditions over the time

course using (C) cell-associated virus and (D) cell-free VZV.

(TIF)

Figure S3 Verification of transcriptome data. A) Analysis

of the transcriptome data set confirmed that good correlation was

observed between replicates and conditions. Boxplot showing the

distributions of reads per gene in each sample. Boxes range from

the mean to the 1st and 3rd quartile, whiskers extend to 1.56 IQR

and outliers are represented by circles. B) Heatmap illustrating the

level of correlation between the lanes. Samples are denoted as in

Figure 1G and numbers indicate the batch in which the sample

was run. Hierarchical clustering was performed using Pearson’s

correlation coefficients on scale-normalised data. C) Principal

component analysis of human reads for all samples. Projections are

shown for components 1 and 2. Sample conditions are denoted by

shape (KCV:triangles; KV:x’s; KC: circles and K:+’s). Batches are

denoted by colour (red: batch 1; green: batch 2; blue: batch 3).

Considering the first 2 components, samples cluster primarily by

batch, with the exception of the KC samples and KV2 and KV5

which all cluster tightly together regardless of batch. 1.2 mM

calcium was added to primary keratinocytes and RNA harvested

after 48 hrs. Ten genes were amplified by qPCR (D) in duplicate

(all normalised to GAPDH) and the average fold difference and 6

stdev calculated. The qPCR data (bottom panel) was compared to

the data obtained from the RNA-seq experiment (top panel).

Analysis showed good correlation between the two methods,

confirming the lack of bias in the library construction.

(TIF)

Figure S4 Effects of extracellular calcium on primary
keratinocytes grown in monolayer culture. From the

transcriptome dataset, the fold change in the expression of several

known markers of differentiation between undifferentiated and

differentiated keratinocytes (KC/K) is shown and is consistent

with epidermal differentiation. Genes are divided into either basal,

suprabasal or granular depending upon their expression in the

epidermis.

(TIF)

Figure S5 VZV alters cytokeratin expression. A) Analysis

of changes in epidermal development genes (GO0008544) in VZV

infected differentiated keratinocytes from transcriptome data

(KCV/KC). Dotted line indicates regions of two fold or greater

change. Points above dotted line denote genes increased by VZV

infection of differentiated keratinocytes and vice-versa. Epidermal

cytokeratins significantly altered by VZV infection, are shown in

open symbols. EM imaging of (B) uninfected and (C) VZV

infected keratinocytes show that cytokeratins bundles (white

chevron) are present under both conditions, scale bar = 2 mm.

(TIF)

Figure S6 VZV virions in primary keratinocytes. Repre-

sentative fields of electron microscope images of VZV infected

keratinocytes. Cells were either maintained in a low calcium media

(A) or switched 3 days p.i. as per our model (D). B–C and E–F)

show a higher magnification of image (A) and (D) respectively.

Inset (C) scale bar = 200 nm. VZV is highly cell associated in both

conditions. Note the high virion production seen in differentiated

keratinocytes.

(TIF)

Table S1 Summary of reads mapping to the human and
VZV genome. The number of paired-end reads mapping to the

human (hg19) and VZV (pOka) genomes for each lane alongside

various QC metrics. Sample conditions are denoted with the

following key: primary human keratinocytes (K); addition 3.36104

I.U of VZV (V), addition of .1 mM calcium to culture media (C) or

both (CV). Batches are represented by a number. Infected samples

KCV1–3 show a lower percentage of reads mapped to the human

genome due to a large proportion of reads mapping to the VZV

genome. Total number of mapped reads varies with batch due to an

upgrade in the Illumina reagents for batch 3. Similarly, the mean

base quality is higher for batch 3 although so too is the fraction of

paired-end reads that map to identical positions on the human or

VZV genomes. Estimated library sizes are independent of batch.

(XLSX)

Table S2 Effect of VZV on cytokeratins. Sample conditions

are denoted with the following key: primary human keratinocytes

(K); addition 3.36104 I.U of VZV (V), addition of calcium

[1.2 mM] to culture media (C) or both (CV). Mean counts per

million (CPM) values are shown for each of the cytokeratins in

each condition alongside log2 fold changes and FDR corrected P-

values for four comparisons (KC/K, KCV/KC, KV/K and

KCV/KV).

(XLSX)

Table S3 Effect of VZV on desmosomal genes. Sample

conditions are denoted with the following key: primary human
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keratinocytes (K); addition 3.36104 I.U of VZV (V), addition of

calcium to culture media (C) or both (CV). Mean counts per

million (CPM) values are shown for each of the desmosomal and

hemidesmosomal genes in each condition alongside log2 fold

changes and FDR corrected P-values for four comparisons (KC/

K, KCV/KC, KV/K and KCV/KV). VZV has a significant

effect on DSC1 and DSG1 in differentiated keratinocytes.

(XLSX)

Table S4 Effect of VZV on serine protease genes. Sample

conditions are denoted with the following key: primary human

keratinocytes (K); addition 3.36104 I.U of VZV (V), addition of

calcium to culture media (C) or both (CV). Mean counts per

million (CPM) values are shown for each of the desmosomal and

hemidesmosomal genes in each condition alongside log2 fold

changes and FDR corrected P-values for four comparisons (KC/

K, KCV/KC, KV/K and KCV/KV).

(XLSX)

Table S5 VZV ORFs significantly up- or downregulated
by the addition of calcium. Sample conditions are denoted

with the following key: primary human keratinocytes (K); addition

3.36104 I.U of VZV (V), addition of calcium to culture media (C)

or both (CV). ORFs are listed in order of significance from KCV/

KV comparisons (A) excluding and (B) including sample KV1.

Differential analysis was performed using edgeR on TMM-

normalised viral read counts alone. RPKM values are provided

to enable comparison of relative transcript abundance within

samples. (A) Only ORF14 is significantly up-regulated

(pFDR,0.01) in KCV/KV when excluding sample KV1. (B) Both

ORF14 and ORF55 are significantly up-regulated (pFDR,0.01)

when including sample KV1. Using a less stringent FDR cut-off

(pFDR,0.05), ORF14, ORF55, ORF4 and ORF43 are signifi-

cantly differentially expressed in both comparisons, ORF64 only

in (A) and ORF57 only in (B).

(XLSX)

Text S1 List of all primer sequences used in this
manuscript.

(DOCX)

Text S2 List of all antibodies used in this manuscript.

(DOCX)
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