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University of Pittsburgh, 2014

The success of embryogenesis requires coordinated cell-cell signaling, tissue patterning, and

morphogenetic movements. In order to understand how birth defects such as spina bifida

occur, we must understand how signaling and patterning integrate mechanically to drive

morphogenetic movements. Although there are many different scales to consider (molecular,

cellular, or tissue), this dissertation is unique in its attempt to bridge molecular biophysics

to cell- and tissue-scale biomechanics. On the molecular level, filamentous actin (F-actin)

and non-muscle myosin II (NMM II) motors are cytoskeletal proteins responsible for cell

motility and shape change. Currently, there are no techniques for measuring in vivo forces

generated by cortical actomyosin. In order to gain a better understanding of the behavior of

actomyosin in vivo, we have developed theoretical models, beginning with a simple rotational

model for actomyosin, and extended the theory to a simple sliding filament system. Based on

the results and intuition gained from these simple models, we developed a 2D model where

we can study the emergent morphology of the filaments and motors. In vivo, we observe

actomyosin punctuated contractions which initiate from a quiescent background of F-actin

to flow into a region of high intensity and disassemble, returning to baseline levels. Previous

research showed the correlation between the locations of these punctuated contractions and

the resultant cell shape change during development. The 2D model allows us to explore

the kinematics of F-actin arrays and the dynamics of their force production as we vary

biophysical parameters. We can also test the model results against in vitro observations

of purified actin and myosin. Although still simplified, our model has set the groundwork
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for future studies on the role of actin binding proteins in actomyosin dynamics, simulating

the role of actomyosin in cell shape change, and making comparative measurements for

experimental studies of purified cytoskeletal actomyosin.
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1.0 INTRODUCTION

The aim of this dissertation seeks to investigate force production and morphology in the ac-

tomyosin cytoskeleton in cells. The actomyosin cytoskeleton is responsible for cell movement

and shape change, as well as structure, and intracellular trafficking. At the molecular scale,

we seek to understand how cells generate the force needed to drive their large scale move-

ments. Understanding cellular forces helps to know how cells act within a healing tissue, and

move to generate tissue layers and organs in development. The primary goal of this project

is to understand how cortical actomyosin dynamics play a role in coordinating cell motility

and shape change with tissue-level mechanics during morphogenesis.

Actomyosin is a general reference to a complex of cytoskeletal proteins including fila-

mentous actin, its associated motor myosin, and various actin binding proteins. Filamentous

actin or F-actin, is a polymer composed of G-actin monomer subunits. The F-actin polymer

has an inherent polarity with a “plus” end (sometimes called “barbed” end), where assem-

bly or polymerization dominates, and a “minus” end (sometimes called “pointy” end), where

disassembly or depolymerization dominates. F-actin arrays take on different morphologies

in cells depending on the cell’s location in a tissue (e.g. [Feroze et al., tted]), and to some

extent, the external mechanics (e.g. [Zemel et al., 2010]; fig 1.1A). There are 6 gene isoforms

for actin in birds and mammals[Perrin and Ervasti, 2010], 139 myosin motors which act on

actin (phylogenetic tree, [Hodge et al., 2000]), and 162 distinct and separate actin binding

proteins, not including synonyms or isoforms [Dos Remedios et al., 2003]. Myosin motors are

the motor protein associated with F-actin and are responsible for producing forces that drive

cell shape change and contractility. The 139 myosin motors are conserved with a “head”

domain that binds to F-actin and categorized based on the structure of their “tail” domain

and binding motif (fig 1.1B).
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Figure 1.1: Actomyosin: (A) Example of 3 different arrangements of actin filaments (red)

in a crawling fibroblast (Fig. 16-47, p.1006 [Alberts, 2008]). (B) Cartoon depiction of a

single non muscle myosin II molecule (top) and a bundled, processive mini-thick filament

comprised of multiple non-muscle myosin II molecules (Figure 1, [Vicente-Manzanares et al.,

2009]).

2



Figure 1.2: Actin filament associated proteins. Illustrating the many fundamental roles

and proteins affecting actin dynamics which make the actomyosin system complex (Panel

16-3 in [Alberts, 2008]).
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Additional proteins to be considered with actomyosin are actin binding proteins which

are categorized based on structure and function [Pollard and Cooper, 1986] (see examples in

fig 1.2). Because actin binding proteins are essential to normal development, they are often

considered to be highly redundant, suggesting overlapping biophysical functions [Ponte et al.,

2000]. There are model systems for mutations in actin binding proteins, for example, mouse

where more than 1/3 of mutations causing neural tube defects are in actin binding proteins

and signaling pathways that regulate actomyosin dynamics [Zohn et al., 2005].

There are multiple roles of actomyosin in the cell including lamellipodial protrusions, and

vesicle and organelle trafficking. The lamellipodia is a thin actin protrusion at the edge of a

cell and is used for cell migration [Ponti et al., 2004a]. Vesicle and organelle trafficking are

seen with the intracellular transport of pigment granules in Xenopus [Snider et al., 2004], or

vacuole transport for cell division [Hill et al., 1996]. Actomyosin also enables cell motility

[Ghosh et al., 2004], muscle contraction [Reisler, 1993], and creation and maintenance of cell

junctions [Howard et al., 1993].

Most research concerning the mechanics of actomyosin focus on the protrusion of lamel-

lipodia at the leading edge of migrating cells and a region dense with F-actin but little

myosin [Lauffenburger and Horwitz, 1996, Rafelski et al., 2009, Burnette et al., 2011]. Re-

cently, however, observations of actomyosin in the cortical layer of embryonic cells have raised

many questions about the mechanics and role of these punctuated actomyosin contractions

during morphogenesis [Martin et al., 2009, Solon et al., 2009, Wozniak and Chen, 2009, Kim

and Davidson, 2011]. Punctuated actomyosin contractions have been observed during mor-

phogenesis in C. elegans, Drosophila, and Xenopus laevis (fig 1.3) and show remarkable

similarities in the time scale and geometry of actomyosin contractions [Martin, 2010, Solon

et al., 2009, Gorfinkiel and Blanchard, 2011b].

Actomyosin not only affects the shape of single cells, but also regulates macroscopic

properties, such as the viscoelasticity of embryos [Davidson et al., 2009]. Dorsal tissue

stiffness in the Xenopus embryo has been shown to decrease in stiffness with a reduction in

actomyosin contractility [Davidson et al., 2009, Zhou et al., 2009]. The underlying mechanics

of actomyosin contractions and how they contribute to essential aspects of morphogenesis,

such as convergent extension [Keller et al., 2000, Davidson et al., 2010], are unknown.
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Figure 1.3: Punctuated actin contraction: Time-lapse images of a single actin contrac-

tion in Xenopus laevis (fig 3I, [Kim and Davidson, 2011]).

Through the use of high resolution live cell confocal imaging and image analysis, our lab

has shown that during the process of convergent extension in the Xenopus laevis embryo,

punctuated actomyosin contractions (fig 1.1) increase in frequency and are aligned in the

direction of the axis of elongation for mesodermal cells [Kim and Davidson, 2011] (fig1.4).

Even though these data demonstrate a relationship between actomyosin dynamics and cell

shape change, what remains unanswered are the biophysical mechanisms actomyosin uses to

drive cell shape changes.

Actomyosin biochemistry and the biophysical intricacies of the complex are well char-

acterized. Experimental studies have given estimates for actin assembly/disassembly and

myosin processivity rates [Kouyama and Mihashi, 1980, Cooper et al., 1983, Amann and

Pollard, 2001, Lecuit et al., 2011] and rules for their interaction[Schaub et al., 2007, Bur-

nette et al., 2011]. Studies on actomyosin dynamics and cell motility describe the crawling

motion of single cells as a process involving protrusion of the leading edge (from actin poly-

merization), adhesion to the surface (through focal adhesion complexes), retraction of the

rear of the cell (disassembly of actin filaments), and finally breaking focal adhesions at the

rear [Pollard and Borisy, 2003].

The current modeling approaches used to investigate the role or function of actomyosin

can be divided into three general categories: (i) understanding actomyosin organization and

force generation in the lamellipodia, (ii) simulating actomyosin sorting and alignment, and

(iii) understanding the mechanics of the network. Theory of actomyosin organization and
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Figure 1.4: Frequency and orientation of actin contractions: A frequency and orien-

tation map shows where punctuated actin contractions occur compared to the major axis of

the cell (Figure 4H (b,c,e,e’,f,f’) [Kim and Davidson, 2011]).

force generation in the lamellipodial regions of the cell are very well documented and closely

match experimental observations for various cell culture systems [Schaub et al., 2007, Bur-

nette et al., 2011, Waterman-Storer and Salmon, 1997, Mogilner and Oster, 1996, Chan and

Odde, 2008]. The hypothesized mechanisms for actomyosin force generation and organiza-

tion in the cortical region of the cell, however, are thought to be different than actomyosin

organization in the lamellipodial region. It is believed that the expression of actin genes and

actin binding proteins are locally different within the cell and thus change the architecture

of the network of local populations of actomyosin.

There have been many theoretical studies on the sorting and organization of F-actin for

cellular events such as the contractile ring of the cleavage furrow during cell division [Zemel

and Mogilner, 2009, Zumdieck et al., 2007], and the organization of cytoskeletal components

for spindle separation during prophase [Sommi et al., 2011, Loughlin et al., 2010, Burbank

et al., 2007]. There have even been studies on the sorting of the “disorganized,” aster-like,

filament clusters, but these models assume that the filament network is stabilized and myosin
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are added to exert a localized force and bring neighboring asters together without allowing

the network morphology to emerge [Smith et al., 2007, Ziebert et al., 2009]. These models

are somewhat related to experimental observations of filament location and dynamics, but

the models were designed to capture properties of the static network, not the dynamics of

the network.

One approach to understand the mechanics of the actomyosin network, is to consider

reconstituted F-actin gels. These models consider a fixed network of actin filaments that

are then acted upon by crosslinking proteins and myosin motors to generate a change in the

network which can then be mechanically quantified [Spiros and Edlestein-Keshet, 1998, Kruse

et al., 2004, Murrell and Gardel, 2012, Dasanayake et al., 2011]. These approaches assume a

linear interaction between network architecture and resulting force changes, but in vivo the

F-actin is dynamically remodeled as a result of mechanical and chemical cues, which then

leads to dramatic changes in F-actin organization.

In order to implement a dynamic model of actomyosin contractions, we have chosen to use

the Monte Carlo method. The Monte Carlo method uses random sampling with assigned

properties and probabilities [Sobol, 1994]. With a finite number of motors and filaments

there are interactions and processes which are inherently stochastic, e.g. attachment or

detachment of a motor or the turnover of an actin filament. Monte Carlo techniques allow

us to properly include these random processes. To implement the stochasticity, we generate

a random number at each stochastic event and compare it to the rate or probability of the

event occurring. Even with the randomness, we find that the models have a steady state

morphology that emerges. For example when filaments form an aster (Chapter 5), how it is

formed is different every time, but the end morphology is the same.

To understand the complex non-linearities of actomyosin dynamics we developed quanti-

tative tools to quantify the actomyosin network and the forces generated while cells change

their shape and move. In addition we identified a few essential components of the actomyosin

system that help it to act in an optimal manner for cell shape change and motility. Once the

essential mechanisms for actomyosin dynamics are thoroughly understood through our mod-

els, future research will be able to model specific actomyosin network morphologies. They
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will be able to vary parameter values in order to achieve the desired network morphology,

and then use the identification of the parameter to target experimental studies appropriately.

1.1 SPECIFIC AIMS

1.1.1 AIM 1: Identify how rates of F-actin polymerization and myosin gen-

erated forces affect actomyosin dynamic morphology

Introduction. Even though the composition of actomyosin system is potentially very com-

plex, we hypothesize that the ability of myosin to exert forces on actin filaments, and the

turnover rates of actin filaments through polymerization are the two essential mechanisms

through which actomyosin contraction dynamics and F-actin morphology are regulated. In

order to address this, we will investigate actin polymerization rates, calculate generated forces

and parameters that affect this force, and identify characteristic contraction morphologies.

AIM 1.1: Investigate the role of actin polymerization rates in creating or

deconstructing actomyosin contractions. We will use a range of models from a simple

model of rotation, to a more complex 2D model for F-actin (Chapters 3, 4, and 5).

AIM 1.2: Calculate forces generated by actomyosin contractions and how

these forces vary with filament morphology, polymerization, and motor con-

tractility. Utilizing our 2D model, we will calculate the spring force generated by the

myosin II motors at every time step of a Monte Carlo simulation to determine the forces

present to induce actomyosin contractile morphologies. We are also able to calculate the

force of the myosin II motors for any continuum model extension of the discrete model. We

consider “force” as the forces produced by myosin motors on individual filaments. We will

use our quantity representing “order” or morphology of our actomyosin system to establish

any correlations between the morphology and the forces generated by the myosin motors. We

will be able to vary parameters of the model very simply and then use our order parameter

in order to deduce how polymerization rates, or starting geometry affect the resulting forces

generated by the myosin motors.
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AIM 1.3: Identify characteristic actomyosin contraction morphologies and

their associated “rules”. Through the use of our 2D model, we will run multiple sim-

ulations of actomyoisn contractions with different initial geometric configurations and then

identify what morphologies emerge. Once we identify the characteristic actomyosin con-

traction geometries, we can compare them to the characteristic morphologies from Xenopus

laevis embryonic tissue.

The development of our models will help us to understand how specific biophysical pro-

cesses contribute to actomyosin contraction morphology. Correlating these models to the

experimental data will strengthen the validity of our models and modeling approach, as well

as help us understand the in vivo actomyosin contraction dynamics.

1.1.2 AIM 2: Test the role of actin crosslinking proteins on dynamic mor-

phology

Introduction. The main objective of this aim is to increase the physiological relevance

of our models by including actin crosslinking proteins. Our working hypothesis is that

crosslinking proteins change the geometry of actomyosin contractions.

AIM 2.1: Determine how crosslinkers will affect actomyosin morphology.

We will build upon our previously established model for actomyosin dynamics by including

actin crosslinking proteins. Actin crosslinking proteins are extremely diverse with some

serving to bundle filaments into parallel arrays, bundle filaments into orthogonal arrays, or

create branching morphologies. Specifically, we will consider the role of a “universal” actin

crosslinking protein, to bundle actin filaments together. Our assumptions for modeling the

actin cross linker will include binding to a filament pair within a certain angle difference of

and spatial distances from each other. This way we can use the cross linker to represent any

class of actin bundling proteins. aim 1.1.2
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1.2 OUTLINE OF THE DISSERTATION

Since understanding the molecular biology and cell mechanics is extremely important when

building models, I co-authored a review on mechanosensing proteins and their roles during

development in Chapter 2. The review points to the importance of understanding the molec-

ular roles of force generation and reaction to forces, and how to relate force at this level to

the cellular level.

Our modeling efforts began by developing an actomyosin model that focused on rotational

movements of actin filaments driven by myosin II motors (Chapter 3). Since we focused solely

on the rotation of pinned filament-type rods about a point, the model geometry was non-

physiological, but the mathematics was tractable and we were able to develop continuum

theory to validate our computational simulations. Although the geometry and physics are

extremely simple, we found that without actin turnover, filaments reach a state of permanent

alignment. We also found that once filament polymerization was introduced into the model,

there exists a steady state solution for the morphology of the filaments.

We built upon the simple rotational model to consider translational sliding of filaments

(Chapter 4) and found similar dependencies and existences of steady states of morphology

that depended on polymerization. This model is more physiological for aligned actin arrays,

but the continuum analysis is difficult to determine. To create a simple, physiologically rele-

vant model of actomyosin, we extended our rotational and sliding models into two dimensions

(Chapter 5). We found that an aster geometry was the steady state morphology for the 2D

network and was dependent on the rate of polymerization, as were the previous models. We

were able to take this model a step further, though, and simulated in vitro experimental

results from purified actin and myosin, in addition to building the model’s complexity by

considering actin crosslinking proteins.

As an example of the types of experimental questions we are addressing, Chapter 6 de-

scribes a study on the role of temperature in the mechanics of the developing embryo. I

contributed to the study by investigating how temperature affects in vivo actomyosin con-

tractions. I was able to image live actomyosin contractions and develop an analysis technique

for determining the duration of actomyosin contractions. In the conclusions chapter (Chap-
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ter 7), we describe ideas for how to use the models to investigate the role of temperature in

development to complement this experimental study.

We outline future directions of this research in the conclusion (Chapter 7). We have

also taken the opportunity to begin to address the role of actin binding proteins from Aim

2 (1.1.2). At the conclusion of this research, we have a physiologically relevant theoretical

model that is closely correlated to experimental data. Through the use of the model and

experiment we are able to explore the biophysical basis of in vivo mechanics and dynamics.

Our model is a tool to help other researchers determine factors that affect the force generating

capacities of the actomyosin system, and to understand how these factors may be applied to

achieve desired dynamics in stem cell differentiation or cancer metastasis research. We hope

to provide our code through the lab website so other researchers can easily use to simulate

and analyze their data using our methods.
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2.0 THE INTERPLAY BETWEEN CELL SIGNALING AND MECHANICS

IN DEVELOPMENTAL PROCESSES

In this paper Dr. Davidson and I wanted to reach an audience of geneticists who would be

unfamiliar with biomechanics and communicate the need for examining complex feedbacks

between mechanical signals/response and genetic signals/response. We reviewed the litera-

ture for known mechanically active gene transcription and protein activation, and, in most

cases, hypothesized the role of these factors in developmental systems. This examination of

proteins and the complexity of interaction and signaling to actomyosin further motivates my

research trying to understand the basic mechanics of actomyosin contractions before adding

in all the additional in vivo complexities. This paper was published in Nature Reviews

Genetics in October 2013 [Miller and Davidson, 2013].

2.1 INTRODUCTION

Behind the motions of cells and tissues in the early embryo lie forces and mechanics. Uni-

versal principles of mechanics reveal how forces shape the early embryo and drive tissues to

move, strain, and deform (see Box A.3 - Terminology of Mechanics - for a brief introduction

to engineering terms and principles). The spatial and temporal regulation of gene expression

and protein activity that guide cell physiology and behavior regulate the production of force

and the mechanical response of embryonic cells and tissues to those forces. New findings

suggest that mechanical cues may also directly alter gene expression and protein activity

which in turn play a role in deciding cell fates and cell behaviors. Thus the developing

12



form of the embryo and the phenotype of the organism are the direct consequence of these

biomechanical processes and are constrained by the physical laws of mechanics.

Early studies of the physical and mechanical constraints on development [His, 1888,

Rhumbler, 1902, Morgan, 1927] included the construction of physical analog models of mor-

phogenesis to test hypotheses on the origin of forces and role of tissue architecture in guiding

movements. For example, assemblies of physical analogs consisting of elastic rubber bands,

and brass bars allowed embryologists to simulate gastrulation and other examples of mor-

phogenesis in the amphibian Amphioxus maculatum and to test their ideas about the cellular

production of mechanical bending moments [Lewis, 1947]. The goal of these early studies

was to test the plausibility of the application of physical laws to morphogenesis.

Recent experimental biomechanics studies have exposed previously concealed forces and

the roles of mechanics in cell and developmental biology. Additional experiments consider

the capacity of cells to sense physical force and mechanical cues, similar to how they sense

chemical gradients and guidance cues. From these initial studies, several broader roles have

been identified for mechanics in development, such as force generation from actomyosin

contractions that ‘pull’ tissue edges. To serve such functions, cells must first be able to

evaluate or measure mechanical ‘signals’ from their environment, as well as their own internal

mechanical state. Second, cells must be able to transduce those signals into changes in

gene expression and cell behaviors. Third, the cell must be able to generate and transmit

mechanical forces to others.

However, one of the greatest challenges to understanding the role of mechanics in de-

velopment is that the physics of mechanical structures cannot be ‘knocked out’ in the same

sense as individual genes can be mutated. Instead, mechanics must be investigated on the

systems level, where the role of mechanics is studied through perturbation. The general

experimental design of these studies is to introduce a molecular perturbation (such as by

knockdown or using an acute-acting inhibitor) or through mechanical perturbations (such as

by laser cutting or other micro mechanical manipulations) and to identify the most proximal

consequences of that perturbation on the cell or tissue scales. Molecular-scale biochemistry

and biophysics is the final arbiter of these perturbations, but their action at the molecular
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scale is beyond the scope of this Review (see [Howard, 2001], for example, for an introduction

the biophysics of motor proteins and the cytoskeleton).

In this Review we discuss recent studies in developmental biology, cell biology and bio-

physics and how they are revitalizing the field of developmental biomechanics. These exam-

ples illustrate the classical, direct role of physical mechanics in shaping tissues, as well as

the potential role of mechanics in cell signaling and in patterning cell identity. We then turn

to reviewing several examples of the sensory and signaling pathways that may play a part

in these processes. Along the way we introduce engineering principles that can be used to

describe the important physical mechanics that shape tissues and we conclude with a dis-

cussion of the challenges that remain in connecting molecular mechanisms to developmental

mechanics.

2.2 THE ROLE OF MECHANICS IN SCULPTING TISSUES

Cell-shape change: cause or effect?

Embryologists studying the role of mechanics in shaping tissues, such as the vertebrate

neural tube [Selman, 1955, Selman, 1958, Smith and Schoenwolf, 1991, Smith et al., 1994,

Alvarez and Schoenwolf, 1992, Smith and Schoenwolf, 1997] and the echinoderm archen-

teron [Ettensohn, 1985, Gustafson and Wolpert, 1963], recognized that the establishment

of geometric patterns of cell shapes in tissues can either indicate programmed active cell-

shape changes, such as cells adopting wedge shapes in order to bend the tissue, or can

reflect passive shape changes in the tissue in response to forces applied outside the field; for

example, when a tissue is folded by the action of cells outside the folded region. In genetic

terms, the passively shaped cell is responding to non-cell-autonomous processes, whereas the

processes directly shaping the cell are cell-autonomous processes. To distinguish between

these two cases, embryologists have micro surgically isolated specific layers to determine

which tissue contains the ‘motor’ that drives tissue shape change (box A.4). For example,

they have isolated the vegetal plate of the blastula from the surrounding ectoderm in the

starfish Dendraster eccentrics [Moore and Burt, 1939]. The modern genetic approach to the
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same question relies on localized expression of a mutant protein or on mosaically knocking

out a protein in a specific tissue.

The interaction of forces during tissue movement The transmission of force

through a tissue integrates the activities of multiple cells and tissues, enabling otherwise

disconnected cellular processes to contribute to the same morphogenetic movement (box

A.3). An elegant series of papers on dorsal closure in Drosophila melanogaster demonstrates

this principle [Hutson et al., 2003, Peralta et al., 2007, Toyoma et al., 2008, Kiehart et al.,

2000]. Using biophysical modeling, laser microdissection and high-resolution live time-lapse

confocal imaging of embryos (box A.4) in which key morphogenetically active proteins were

mutated, it was shown that dorsal closure relies on multiple discrete motors. Large-scale

tissue movements in the whole embryo are coordinated by long-range stresses generated

by: pulsatile actomyosin contractions within the amnioserosa (an epithelium that covers a

transient hole in the early dorsal epidermis) [Solon et al., 2009, Gorfinkiel et al., 2009, David

et al., 2010]; a contractile actin purse-string at the margin of the lateral epidermis [Young

et al., 1993, Edwards et al., 1997, Jacinto et al., 2002]; and the fusion of epidermis at the

anterior and posterior ends [Millard and Martin, 2008], or acanthi, of the amnioserosa (figure

2.1). Large laser cuts across many cells were used to isolate and identify force-generating

tissues within target tissues (box A.4). Local recoil from smaller laser-induced wounds

on single cell-cell junctions were used to quantify the relative contribution of each motor

to the global movements. Together with genetic manipulation, these biophysical studies

demonstrate how multiple sources of force combine to shape a complex structure and how

none of these individual motors acting in isolation can reliably seal the dorsal epidermis.

Thus, to understand the role of mechanics in driving morphogenesis, it is crucial to describe

the molecular mechanisms that generate force as well as those mechanisms that transmit

and coordinate forces within complex tissues.

Mechanical equivalency of cellular processes. A range of different cellular and

molecular mechanisms are capable of driving nearly identical morphogenetic movements.

Two or more cellular or molecular mechanisms are capable of driving nearly identical mor-

phogenetic movements. Two or more cellular or molecular mechanisms could be mechanically

equivalent in that they contribute similar forces or maintain equivalent mechanical proper-
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Figure 2.1: Forces contributing to tissue movements in development. The process of

Drosophila melanogaster dorsal closure is shown and the individual mechanical components

that help to complete closure are illustrated. In the early-stage embryo, the amnioserosa

cells are located in the ‘hole’ that prospective epidermal cells will cover. The embryo is

already polarized into an anterior (A) section, where the head will form, and a posterior (P)

section. Closure is driven to completion by three distinct cellular processes that contribute

to global tissue movements. First, the actomyosin purse string (shown in pink) forms at the

boundary between the epithelial cells and amnioserosa cells. Second, as the epidermal cells

meet at the anterior and posterior ends of the amnioserosa, they fuse and create a zipper

(pink) that progressively seals the epidermal sheet over the amnioserosa. Third, cells in the

amnioserosa undergo cycles of actomyosin contractions (amnioserosa contractility) to narrow

their exposed apical faces and draw the epidermal margins of the AS together.
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ties in the embryo. Similar patterns of force or stress may not necessarily be attributed

to the same molecular mechanism. For example, a computer simulation used to study the

invagination of a simple, single-cell-layered epithelial sheet in the sea urchin demonstrated

how this movement could be driven by five distinctly different cellular mechanisms [Davidson

et al., 1995] (box A.5). First apical constriction within the vegetal plate can drive cytoplasm

to move in the basal direction. Second, cells lateral to the vegetal plate fracturing towards

the centre of the plate can cause buckling. Third, contraction of a multicellular actomyosin

ring or purse-string surrounding the vegetal plate can cause buckling. Fourth, apical-basal

contraction in the cytoskeleton shortens the height of vegetal plate cells and can generate

a compressive force within the vegetal plate cells, resulting in buckling. Fifth, differential

swelling by localized secretion of a hydrophilic chondroitin sulphate proteoglycan can cause

a swelling in the apical lamina that causes buckling of the vegetal plate [Davidson et al.,

1995]. Subsequent experimental measurement of the mechanical properties of the embryo

(box A.4), separating the contributions of the extracellular matrix (ECM) from those of the

cytoskeleton, were then used to rule out the plausibility of theories requiring a compliant

ECM, leaving those requiring a stiff ECM to be tested further [Davidson et al., 1999].

Another example can be found in the biomechanics analysis of gastrulation movements

in ascidian embryos [Sherrard et al., 2010]. This study tested the contributing role of dif-

ferent tissues and different cellular programs of mechanical contractility in driving the large

epithelial in-folding of mesoderm progenitors. Detailed immunofluorescence studies of the

location and activation of myosin regulatory light chain allowed the construction of a com-

puter simulation of the process (box A.5). These computer simulations provided testable

predictions of the ‘trajectory’ of both cell- and tissue- shape changes in the embryo as the

program me of force production was altered. The predicted shapes were then compared with

those found within gastrulating embryos subjected to inhibitors of actomyosin contractility.

Studies such as these involving whole embryos provide a basic framework for investigating

the biomechanics of morphogenesis [Koehl, 1990] and have been inspired by advances in

biophysics and cell mechanics. These examples suggest that different cellular processes may

be mechanically equivalent because they can drive the same movement.
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2.3 BIOMECHANICAL CUES AND CELL FATE AND BEHAVIOR

May of the early studies of cell mechanics were motivated by a desire to understand the cel-

lular basis of morphogenesis (see [Trinkaus, 1984] for a classic and still relevant monograph).

Qualitative measurements of the forces generated by individual cells [Harris et al., 1980]

have given way to precise measurements collected using traction force microscopy [Dembo

and Wang, 1990]. The application of traction force microscopy, sophisticated micro fabrica-

tion methods and advanced imaging tools have revealed a central role for focal adhesions in

both guiding cell movement [Wang et al., 2001] and signaling [Chen et al., 1997]. For exam-

ple, cultured cells can ‘sense’ the mechanical properties of their microenvironment through

focal adhesions and can use these cues to guide movements.

To investigate the role of force in directing stem cell fate, a key study cultured muscle-

derived stem cells on stiffness-tunable elastic substrates in the physiological ranges of 100 Pa

to more than 100 kPa [Engler et al., 2006]. The authors were able to direct these cells into

osteogenic fates with stiff substrates, neurogenic fates with soft substrates and myogenic

fates with intermediate substrates; substrate stiffnesses were tuned to mimic the stiffness

of the endogenous microenvironment for each of these cell types. Thus, information from

the mechanical microenvironment of a cell can complement information from growth factor

signaling in the patterning of cell identities. In these studies, cell-fate decisions seem to take

several days to progress through the stages of commitment, specification and differentiation,

analogous to developmental programs. This leads to further questions concerning the specific

signaling factors that mediate these choices, how cells integrate mechanical and chemical

signaling, and whether cells sense bulk stiffness or fine-scale features of ECM compliance

[Trappmann et al., 2012]. It is unclear whether the biological principles of cell mechanics in

cultured cells, many of which have evolved to provide physiological adaptation or to allow

cells to thrive on tissue-culture plastic, behave similarly to cells during normal development.

Another study has shown that substrate geometry can regulate human mesenchymal stem

cell differentiation [McBeath et al., 2004]. However, microfabricated geometry clues might

not reflect endogenous geometry cues present during development. In terms of the role of

biomechanics during development and the nature of these potential cues in the embryo,
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numerous questions remain, such as where and when these cues operate, whether these are

hidden patterns of mechanical cues, and how the mechanical cues might be regulated by

gene expression and protein activity (figure 2.2a).

In vivo studies in developing amphibian [Brodland et al., 1994, Beloussov et al., 1990,

Beloussov et al., 2006] and D. melanogaster [Desprat et al., 2008, Farge, 2003, Kumar and

Shivashankar, 2012] embryos suggest that differentiation can be triggered by high levels of

mechanical strain. These are opportunities to investigate the role of mechanics in the model

systems of D. melanogaster epithelial morphogenesis [Lecuit et al., 2011] and the early

stages of development in Xenopus laevis [Keller et al., 2003]. Because one of the primary

roles of mechanical strain is to drive tissue movement, it is often difficult to distinguish the

direct or immediate roles of mechanical cues in differentiation from the classical secondary

inductions, as these movements bring new contacts between signaling and responding tissues.

For example, mechanical processes that drive the extension of the anterior mesoderm into

the forming head result in novel signaling between these cells and the overlying neural tissues

[Sampath et al., 1998]. The forces driving the mesoderm into contact with new ectodermal

cells enable a new round of nodal signaling; this new round of signaling then divides a single

domain of gene expression that drives eye formation into separate left and right domains.

Force and mechanics are clearly necessary for this secondary induction, but mechanical

signaling events are not directly controlling gene expression within the prospective eye field.

Several in vivo studies in which exogenously applied strains have produced changes in

gene expression have suggested that mechanical signals could create auto regulatory feed-

back loops. Such feedback would be triggered as an endogenous mechanical cue initiates a

cell signaling pathway, which then drives force production and a morphogenetic movement.

Such a mechanism might operate in D. melanogaster ventral furrow formation or in midgut

invagination during gastrulation, in which high levels of exogenously applied mechanical

strain can trigger Twist (Twi) expression and can activate myosin II contractility [Farge,

2003, Pouille et al., 2009]. Temporal control of myosin II contractility [Martin et al., 2009]

and the restriction of actomyosin to the apical caps of these epithelial cells drive folding and

gastrulation [Mason et al., 2013]. Mechanically induced Twi expression can drive ectopic

invagination and can redirect the cell fates of induced cells. Whether the redirection of cell-
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Figure 2.2: Information flow and molecular origins of mechanics
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Figure 2.2: Information flow and molecular origins of mechanics a) This flow chart

shows the intricacies involved with connecting molecular-, cellular- and tissue-scale behaviors

and mechanisms. At the molecular scale, there is molecular signaling that causes intermolec-

ular force production. This force production feeds back into more molecular signaling and

also translates into cell-shape changes or movements at the cellular scale that induce signal-

ing to neighboring cells. The cellular scale can then feedback into molecular-scale dynamics

or can result in tissue-scale movements or bulk mechanical property changes. Isolating any

portion of this intricate feedback look is extremely difficult without considering all upstream

and downstream effects. b) Different molecules involved in sensing and signaling force are

shown. Vinculin is located inside the cell at sites of focal adhesions and is also a candi-

date for sensing forces during development. Fibronectin is an extensible extracellular matrix

fiber that might sense tension within the tissue. Transient receptor potential cation chan-

nel subfamily V member 4 (TRPV4) is a membrane mechanosensitive ion channel that is

believed to open in response to tension in the cell membrane. Piezo is a protein part of

a cation channel that induces an electrical current in response to force. I-BAR (inverse-

Bin-Amphiphysin-Rvs) proteins are located at protrusions of the cell membrane, and F-

BAR (Fes/CIP4 homology-BAR) proteins are located at invaginations of the cell membrane.

Kruppel-like factor 2 (KF2) is a transcription factor that becomes transcribed when the cell

experiences shear flow. Yes-associated protein-transcriptional co-activator with PDZ-binding

motif (YAP-TAZ) is activated when the cell is on stiff substrates. Dorsal is a transcription

factor upstream of Twist (Twi) and Snail (Sna) that is responsible for mesoderm invagination

in Drosophila melangaster

fate decisions is due to mechanical cues or is the product of more conventional downstream

signaling pathways, such as secondary induction, is an active area of invagination [Somogyi

and Rorth, 2004].
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2.4 SENSING MECHANICAL SIGNALS

One of the difficulties in understanding the molecular biology of cell mechanics is that molec-

ular factors that generate and transmit forces may also sense forces and mediate cellular

responses. We consider below a set of candidate molecular mechanosensors (figure 2.2b)

capable of detecting mechanical conditions both outside and inside cells and transducing

that information to intracellular signaling pathways that regulate cell fate and behaviors.

Distinguishing between factors that transmit mechanical information and factors that are

involved in sensing and transducing mechanical information is difficult: for example, classi-

cal knockdown or knockout of factors responsible for maintaining the mechanical integrity

of a tissue might produce the same effect as removing a factor that senses biomechanics cues

conveyed by a tissue. Below, we describe the role that each candidate mechanosensor has in

cultured cells and, where possible, in developmental model systems.

Sensing mechanical signals from the microenvironment of a cell. Elements

of the ECM such as fibronectin and proteins within the focal adhesion complex such as

vinculin have been implicated as key components of mechanosensing signaling pathways,

but they also transmit force and maintain tissue integrity. The ECM may have roles in

providing mechanical stiffness, serving as a scaffold for migration or cell rearrangement,

and providing polarity cues for tissue architecture. Fibronectin is an ECM fiber that is

extremely extensible, experiences large strain and contains cryptic cell-binding sties [Garcia

et al., 1999] that open with increased molecular strain [Krammer et al., 1999]. Furthermore,

fibronectin fibril assembly requires the mechanical action of cells. Fluorescence resonance

energy transfer analysis has shown that fibril assembly occurs only after cryptic sites in the

molecule, which are kept in a partially unfolded state, are opened at the cell surface [Klotzsch

et al., 2009]; these sites refold when cell tension is reduced [Baneyx et al., 2002]. This suggests

that fibronectin may sense tension within the tissue. Antisense morpholino knockdown and

genetic mutations reveal that fibronection is essential to both early development and later

organogenesis. For example, fibronectin is required for X. laevis gastrulation [Marsden and

DeSimone, 2001, Davidson et al., 2006], zebrafish heart development [Trinh and Stainier,

2004], endothelial invasion or migration in the developing kidney [Chiu et al., 2012], and the
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establishment of left-right asymmetry [Pulina et al., 2011]. The requirement of fibronectin

during development and its tension-dependent assembly into fibrils make it a key candidate

in mechanosensing pathways.

Several candidates for mechanosensing during development can be found at sites of cell-

cell adhesion, such as adherents junctions or desmosomes. Plakoglobin [Weber et al., 2012],

β-catenin [Farge, 2003], α-catenin [Raich et al., 1999, Yonemura et al., 2010] and vinculin

[Kong et al., 2013] have all been implicated as potential sites where physical cues are trans-

ducer into intracellular signaling pathways. Another candidate for mechanosensing in de-

velopment is vinculin, a cytoskeletal protein found in focal adhesions and cell-cell adherents

junctions [Kong et al., 2013]. Vinculin is also required for normal development. During

mouse development, vinculin mutants show a lack of midline fusion of the neural tube and

have delayed heart development accompanied by structural defects; such defects are proba-

bly due to the function of vinculin in regulating cell adhesion and motility [Xu et al., 1998].

Beyond the adhesion complex, these factors transmit and might sense tension between the

ECM and intracellular actomyosin contractile structures. Vinculin also seems to play a part

in sensing tension at cell-cell junctions. For example, the mechanosensing role of vinculin

within E-cadherin complexes has been observed with magneto twisting cytometry, a tool that

allows the application of force to a cell through adherent micro-beads, applied to MDCK or

F9 cells [le Duc et al., 2010]. The role of vinculin in F9 cells has been further dissected by

direct determination of the adhesion forces and creep modulus (the tendency of a material

to deform) using magnetic tweezers (another tool for applying force to cells). This finding

suggests that vinculin contributes to the mechanical properties of the cell under large exter-

nal forces through the regulation of contractile stresses in actomyosin [Mierke et al., 2008].

Using magnetic tweezers, total internal reflection fluorescence microscopy and atomic force

microscopy, another study revealed that forces transmitted by talon (another scaffold protein

linking ECM integrin receptors to the cytoskeleton) to vinculin altered cytoskeletal reorga-

nization by exposing cryptic binding sties on vinculin [del Rio et al., 2009]. It is important

to recognize that the principles of cell mechanics have mostly been explored in cultured cells,

with only a few rigorous studies carried out in developing embryos or in intact embryonic

tissues.
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Sensing mechanical signals from the plasma membrane and cell cortex.

Mechanical cues may be sensed along the apical or basolateral faces of cells by stretch-

sensitive channels, such as transient receptor potential cation channel subfamily V member

4 (TRPV4), Bin-Amphiphysin-Rvs (BAR) proteins, or Piezo proteins. Whereas the ability

of a cell to sense forces exerted on it is discussed above, we discuss below the ability of a

cell to sense intracellular mechanical conditions. These sensors might still reflect external

cues but might also detect stresses and forces produced inside the cell. A role for stretch-

sensitive channels in transducing mechanical cues at the membrane can be seen in the ability

of mammalian endothelial cells to reorient when exposed to, for example, fluid shear or to

cyclic stretch; when TRPV4 channels are knocked down, the cells fail to reorient to flow [Ho

et al., 2012]. TRPV4 triggers reorientation by activating phosphoinositide 3-kinase (PI3K),

which then activates β1 integrins [Thodeti et al., 2009]. In addition to the role of TRPV4

in transducing fluid shear forces, its more general role in mecahnotransduction has been

studied in single muscle fibers [Ho et al., 2012]. In zebrafish, TRPV4 channels within re-

nal cilia are throughout to sense mechanical stimuli and are also thermosensitive [Kottgen

et al., 2008]. In D. melanogaster, TRPV4 homologues have a role in photo-transduction

mechanical sensing [Cosens and Manning, 1969], and in Caenorhabditis elegan, TRPV4 ho-

mologues have a role in olfactory cue sensing mechanotransduction [Liedtke et al., 2003].

Piezo proteins are another family of channel proteins that are thought to be responsible for

converting mechanical forces into electrophysiological signals. Patch clamp studies of the

D. melanogaster homologue Piezo expressed in human embryonic kidney cells demonstrated

that Piezo channels can open in response to mechanical forces applied by a fine glass pipette

[Coste et al., 2012]. In vivo, Piezo mediates noxious response to high temperature and is

essential for sensing noxious mechanical stimulus [Kim et al., 2012]. In zebrafish, Piezo1

regulates cell extrusion in order to maintain homeostatic epithelial cell numbers in the grow-

ing tail fin [Eisenhoffer et al., 2012], a function that may parallel its role in regulating cell

density within confluent MDCK cultures. In mice, PIEZO1 is required for the initiation of

mechanically activated currents in neuroblastoma cells [Coste et al., 2010]. These examples

have been identified in mechanosensing pathways in cultured cells and physiology studies,

and are likely to have important roles in mechanical feedback signaling during development.
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How these endogenous biosensors trigger behavioral or cell-shape changes in cells is mostly

unknown.

It has long been recognized that cell protrusive activity can be triggered by mechanical

events at the cell membrane and cell cortex; for example, during contact inhibition of cell mi-

gration or tension-induced protrusion [Weber et al., 2012]. Recent examples of responses to

applied tension include the response of X. laevis embryonic mesendoderm cells [Weber et al.,

2012] and single neutrophils [Houk et al., 2012]. One candidate family of proteins that might

mediate the sensing of these types of mechanical events in the cortex are the BAR family of

proteins. BAR proteins are membrane-deforming or membrane curvature-sensing proteins

that connect F-actin structures to the plasma membrane [Itoh et al., 2005] and have been sug-

gested to sense mechanical cues. Owing to their conformation, F-BAR (Fes/CIP4-homology

BAR) proteins accumulate within intracellular invaginations or concave-shaped membrane

structures, whereas I-BAR (inverse-BAR) proteins accumulate within cellular protrusions or

convex-shaped membrane structures. Deformed membranes also correlate with positive or

negative membrane strains [Suetsugu, 2010]. Signaling to the actin cytoskeleton can occur

via the I-BAR domain because it can induce strong phosphatidylinositol-4,5-bisphosphate

clustering [Saarikangas et al., 2009]. In zebrafish, loss-of-function studies also found defects

in ciliary structures that are directly related to BAR protein function [Schler et al., 2013].

These proteins have not yet been shown to have a role in early development or morphogenesis.

2.5 FROM MECHANICAL CUES TO GENE EXPRESSION

After a mechanical cue has been converted into a conventional intracellular signal, cell fate

choices are made through the activation of mechanically responsive transcription factors,

such as TWI [Desprat et al., 2008, Farge, 2003], Kruppel-like factor 2 (KLF2) [Parmar

et al., 2013, Lee et al., 2006, Groenendijk et al., 2004, Wang et al., 2006] and the newly

identified Yes-associated protein-transcriptional co-activator with PDZ-binding motif (YAP-

TAZ) complex [Dupont et al., 2011, Gee et al., 2011, Morin-Kensicki et al., 2006]. The
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downstream targets of KLF2 and YAP-TAZ are being elucidated, but the targets of the

transcription factor TWI have been subjected to detailed analysis [Sandmann et al., 2007].

TWI initiate a broad range of developmental modules, including differentiation, the cell

cycle, cell migration and morphogenesis [Sandmann et al., 2007]. The following example

highlights the prospective role of Twi in the mechanics of mesoderm invagination, apical

constriction and anterior endoderm compression by germ-band extension in D. melanogaster

[Farge, 2003]. Conventional signaling pathways that are active during mesoderm patterning

that turn on the Dorsal transcription factor turn on overlapping expression of the tran-

scription factors Twi and Snail (Sna). It has been hypothesized that Sna expression over a

broad region activates myosin II and drives pulsatile contractions in the mesoderm [Martin

et al., 2009]. This first wave of contractility activates the pathway downstream of the gene

folded gastrulation (Fog). Cells with an activated Fog signaling pathway and that express

Sna-induced genes then initiate Twi expression; this stabilizes actomyosin in the apical cap

and results in a second contraction wave that drives cell-shape changes and the formation of

the ventral furrow [Pouille et al., 2009, Mason et al., 2013]. Twi mutants revealed these two

phases of furrowing, in which the forces produced by the first wave of actomyosin contrac-

tions activate signaling pathways to produce the next wave of stable contractions that drive

the furrow to deepen. In Twi mutants, the second constriction wave is defective, whereas in

Sna mutants with Fog still expressed, both the first and second waves are defective. This

suggests that Sna directs the expresso of factors that control the first contraction wave,

whereas Twi targets, including Fog are necessary for the second wave. In Sna homozygous

mutants, applying a local deformation with a micromanipulated needle succeeds in inducing

furrowing in nearly 70% of the embryos [Pouille et al., 2009]. In Sna and Twi double mu-

tants, mechanical indentation does not rescue the defect but activates Fog signaling in the

mesoderm, suggesting that Twi directs the expression of mechanical force sensors required

for the mechanical rescue of Sna mutants [Pouille et al., 2009] (figure 2.3. Further studies of

apical constriction in ventral furrow formation have found that activated myosin II no longer

accumulates at the apical cortex in Twi and Sna mutants and that myosin II remains in cell-

cell junctions, suggesting that mechanical cues may reorganize the apical cortex, reinforcing

it as ventral furrow format progresses [Martin et al., 2009].
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Figure 2.3: Mechanical feedback during morphogenesis. A pathway depicting the

genetic control of ventral furrow formation and anterior midgut invagination in Drosophila

melanogaster and a role in that network for mechanical cues. Snail expression is responsible

for the mechanical cues produced by the first phase of myosin II contraction. Strain within

the epithelium might redirect actomyosin to the apical cap and activate folded gastrulation

(Fog) signaling, and strain and Fog signaling act during the second, Twist-dependent phase to

stabilize actomyosin contractions and to drive epithelial folding. Furrowing and invagination

in Twist mutants can be rescued by exogenously applied strain either by laser ablation or

by physical indentation. After the rescue of invagination, larval development was reported

to proceed as normal.
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A similar role for Twi in a mechanotransduction pathway has been proposed during in-

vagination of the anterior midgut primordial in D. melanogaster. Magnetic tweezers were

used in conjunction with laser ablation to rescue the differentiation of the stomodeal pri-

mordium. Twi expression in stomodeal primordia could be blocked by the ablation of nearby

cells and restored after magnetically controlled compressive forces were applied to the pri-

mordial [Desprat et al., 2008]. Mechanical perturbations of ventral furrow formation and

anterior midgut invagination in D. melanogaster have been conducted at the tissue scale,

where forces must be transmitted and integrated before being sensed.

Another transcription factor, KLF2, is expressed in response to shear strains resulting

from fluid flow. For example, artery, vein and capillary formation depends on KLF2 signaling

in response to blood flow. KLF2 is a member of the Kruppel-like factor family of zinc

finger-containing transcription factors with homology to the D. melanogaster segmentation

gene product Kruppel [Pearson et al., 2008]. In vitro studies have been used to refine the

nature of the mechanical cues that trigger KLF2 expression. Cultured human umbilical

vein endothelial cells have increased KLF2 expression when subjected to pulsatile shear

flow and decreased KLF2 expression after exposure to reciprocating oscillatory shear flow

[Wang et al., 2006]. In vivo, KLF2 expression correlates with disturbed patterns of local

fluid flow. KLF2 expression in chick embryonic vasculature is found in regions of high shear

stress [Groenendijk et al., 2004]. Similar studies in mice also suggest that KLF2 expression

correlates with the rise in fluid shear forces during development [Lee et al., 2006]. Studies

of zebrafish silent heart mutants (in which the heart does not beat) revealed highly altered

vascular expression of Klf2a, suggesting a direct dependence of Klf2a expression on blood

flow in vivo [Parmar et al., 2013].

The role of mechanics in driving gene expression has been quantified more thoroughly in

vitro with the application of defined shear forces [Wang et al., 2006]. These studies demon-

strate that cell fate and behavioral decisions can be responsive to mechanical cues, but the

molecular mechanisms for sensing biomechanical conditions and triggering signaling path-

ways have been difficult to identify. A direct connection between mechanical stimulation

and transcriptional response has been made int he case of the transcription factor YAP and

its transcriptional co-activator TAZ. YAP and TAZ are unregulated in mammary epithelial
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cells cultured on high stiffness substrates [Fu et al., 2010]. Most work with YAP has been

in cell culture; however, knockout and knockdown studies have implicated this transcription

factor in vascularization and anterior-posterior axis elongation [Morin-Kensicki et al., 2006].

YAP knockdown studies in both fish and frogs have implicated that YAP may have a role

in axis formation, as well as in epiboly during gastrulation [Gee et al., 2011]. The strongest

cases for a correlation between mechanics and YAP-TAZ activation are found when cells are

cultured under well-defined mechanical conditions [Fu et al., 2010]. In order to determine

whether YAP-TAZ transcription activation reports ECM stiffness, transcriptional activity

was measured in various cell types (mammary epithelial cells, MDA-MB-231 cells and HeLa

cells) cultured on stiff and soft fibronecyin-coated hydrogels [Fu et al., 2010]. Stiff substrates

had YAP-TAZ transcriptional activity that was comparable to that in cells grown on plastic,

whereas on soft substrates YAP-TAZ activity was reduced to levels comparable to those

in YAP-TAZ knockdowns [Fu et al., 2010]. Furthermore, on soft substrates YAP-TAZ is

found in the cytoplasm, but on hard substrates it moves into the nucleus. Micropatterned

fibronectin substrates could also drive YAP-TAZ from the cytoplasm into the nucleus as

cells adopt a spread-out morphology. To determine whether YAP-TAZ was reacting to the

cell spreading or the ECM contacts, both the stiffness of the substrate and the density of

fibronectin were controlled by culturing cells on micropillars- elastomeric moulded microp-

osts the height of which corresponds to the rigidity of individual pillars [Fu et al., 2010]. On

shorter or stiffer micropillars, YAP-TAZ remained int he nucleus, even though the spread-

ing area of the cell was the same. YAP-TAZ activation is also regulated by intracellular

actomyosin contractility, as inhibition of RHO or reduced F-actin assembly also inhibits

YAP-TAZ transcriptional activity. Similar responses of YAP-TAZ to reduced RHO kinase

(ROCK) and non-muscle myosin activity suggest that cytoskeletal tension drives YAP-TAZ

nuclear location. YAP-TAZ may have a key role in stem cell differentiation because YAP-

TAZ depletion prevents stem cells from responding to changes in ECM stiffness [Dupont

et al., 2011]. In D. melanogaster, increasing the activity of the YAP homologue, Yorkie,

increases F-actin assembly [del Rio et al., 2009].
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2.6 MECHANICS, FEEDBACK AND ROBUST DEVELOPMENT

The ability of the embryo to develop amid genetic, maternal and environmental variation has

puzzled developmental biologists for decades. Considerable experimental evidence suggests

that cells and embryos must be able to modulate cell signaling networks, gene expression pat-

terns and cell behaviors to accommodate variation (for example, [Manu et al., 2009]). Still,

even with these robust programs, there remains considerable phenotypic variation [Tyszka

et al., 2005]. Several factors might provide feedback between the mechanical environment

and signaling networks as part of these programs. On the molecular scale, the motor complex

of myosin II can adjust force production based on the mechanical loading [Howard, 2001].

At the cell scale, the shape of a cell can dictate its protrusive activity [Jiang et al., 2005],

as well as its commitment to specific cell lineages [McBeath et al., 2004]. Finally, at the

tissue scale, the classical processes of secondary induction might serve to signal the success

of a particular tissue movement or elicit further morphogenetic movements. The molecular

scale and cellular scale processes that provide feedback from the mechanical processes of

morphogenesis are poly understood, and their resolution will provide deeper insights into

many larger questions in evolution, as well as the nature of disease liability and birth defects

[Farge, 2003, von Dassow and Davidson, 2011, Farge, 2011, Shook and Keller, 2008].

2.7 FUTURE CHALLENGES

Advances in developmental mechanics are revealing the hidden contribution of biomechanics

to patterning, morphogenesis and organogenesis and are extending our understanding of the

origin of structural birth defects. These advances are being accomplished by unifying the

efforts of geneticist, cell biologists, physicists, and engineers. One of the crucial challenges

to progress is that one cannot simply knock out a mechanical process in the same way

as one knocks out a gene. Furthermore, there are no one-to-one correspondence principles

between gene functions and the mechanical events that they affect. It is clear that mechanical

processes have a polygenic origin and that dozens if not hundreds of genes are responsible for
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physical processes operating on a range of scales from molecular to cellular to the tissue level.

There are many ways for mechanical processes to influence development, including through a

direct and immediate effect on gene expression, through guiding cell behaviors and through

the long-term consequences of tissue movements. The challenges of characterizing these roles

for mechanics, and in particular distinguishing between what are causes and what are effects,

are well understood by geneticists. To overcome these challenges, developmental biologists

are turning to systems biology with principles borrowed from control theory and computer

simulation.

A systems or theoretical approach to studying morphogenesis involves breaking down the

biochemical and biological processes of force generation, transmission and sensing into mul-

tiple separate processes operating on different scales and then recombining those processes

in a mathematical or computational framework. Processes that are difficult to isolate exper-

imentally in vivo are easily controlled in a computer model. For example, motor proteins

such as myosin II have roles in force generation, transmission and coordination within the

tissue. Furthermore, single-molecular studies have shown that myosin II can directly ‘sense’

levels of applied force and can adjust their own force production to compensate so it seems

likely that this might occur universally during morphogenesis. Alternatively, another report

suggests that cells directly sense force in vivo and trigger the recruitment of myosin II to the

site where applied forces were sensed [Fernandez-Gonzalez et al., 2009]. This is an attractive

hypothesis, but it is unclear what stresses are present in vivo and whether the magnitude

or range of those forces are physiologically relevant at the scale of the cell or are relevant to

physical demands of morphogenesis. Efforts to understand the role of myosin II feedback in

vivo in either a cell or a tissue setting will require sophisticated experimental designs that

parallel earlier in vitro single-molecule studies in which the loads and processivity of myosin

II were controlled [Sweeney and Houdusse, 2010]. Such future studies will require laser

ablation and photoactivation, methods for applying controlled forces, and loss-of-function

mutants.

Future progress in developmental biomechanics will require new experimental techniques

and theories for controlling mechanical loads on tissues [von Dassow et al., 2010], assessing

changes in gene expression, protein activity and signaling, and evaluating their effects on the
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rates of morphogenesis and phenotypic variation. Experiments that rigorously evaluate the

role of mechanics in directing cell fate or in providing feedback to improve the robustness

of developmental programs are difficult to design. The long time-lag between a mechanical

stimulus and cell differentiation and the difficulty in ruling out a role for secondary induc-

tion are only two challenges. Falsifying hypotheses involving both mechanical and chemical

signaling pathways requires testing tissue or cellular responses to well-defined mechanical

stimuli. Advances in cell mechanics, tunable elastic substrates and micro fabrication provide

increasingly sophisticated tools for controlling the mechanical microenvironment of cells and

tissues. Advances in cell biology and imaging are providing tools for interrogating the cell

signaling pathways that are needed to report the status of mechanically stimulated cells.

Together with theoretical and systems biology, these experimental biomechanics approaches

are leading to more complete, integrated views of developmental mechanics that will provide

lasting insights into development and the self-organizing processes that assemble organs and

lay the foundation for physiological function.
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3.0 ROTATIONAL MODEL FOR ACTIN ALIGNMENT BY MYOSIN

To begin our examination of Aim 1 (1.1.1; Identify how rates of F-actin polymerization

and myosin generated forces affect actomyosin dynamic morphology), we decided to start

with an extremely simplified model of F-actin and non-muscle myosin II. The physics of the

system only considered the rotation of F-actin and made even more non-biological simplifying

assumptions for how the actomyosin interactions would occur. Dr. Ermentrout helped us

develop the model and derive the continuum equations to further analyze the model and

system. I developed the code to simulate the rotational model and performed subsequent

analysis in Matlab 2011a. In addressing Aim 1 (1.1.1), this study allowed us to address

how actin polymerization rate affected morphology, perform a parametric analysis of model

parameters, and quantify how these parameters affected force and morphology. This paper

was published in the Journal of Theoretical Biology in May 2012 [Miller et al., 2012].

3.1 INTRODUCTION

Filamentous actin or F-Actin and its associated motor protein myosin II are fundamen-

tal cytoskeletal proteins essential to the physiological function of cells, establishment and

maintenance of cell shape, and enabling cell motility. Actomyosin regulates cell shape and

cell motility by restricting contractility to specialized regions in the cell such as the apical

cell cortex [Martin, 2010], or the trailing edge of migrating cells [Yam et al., 2007, Kim and

Davidson, 2011]. In these cases the role of actomyosin is experimentally tested by perturbing

either the assembly of F-actin or the cross-linking and contractility of myosin II. However,

given the ubiquity of actomyosin within non-muscle cells it has been difficult to resolve
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the specific role of actomyosin and related regulatory proteins within multicellular tissues.

Actin rotation is believed to play a role in stress fiber formation, formation of the cytokinetic

actin ring, initiation of filopodia, and podosome extension[Condeelis, 1993, Yamaguchi et al.,

2006].

Recent advances in mathematical and biophysical models of cytoskeletal filaments and

motors have provided an important framework in which to analyze the dynamic proper-

ties of the cytoskeleton. Theoretical studies of cytoskeletal dynamics of microtubules and

their associated motor protein kinesin [Karsenti et al., 2006, Nedelec et al., 2003] have been

used to elucidate the formation and function of spindles during mitosis. In vitro studies of

the rheology of purified protein have found a multiple stage aggregation process by which

myosin motors organize actin filaments into contracted states [Soares e Silva et al., 2011].

Similar models of the actin cytoskeleton have been used to study the role of actin polymer-

ization in powering intracellular movement of Listeria monocytogenes [Alberts and Odell,

2004]. Although there are many theoretical models for actomyosin dynamics [Sommi et al.,

2011, Kruse and Jülicher, 2006, Kruse et al., 2004, Spiros and Edlestein-Keshet, 1998], these

analyses have used “agent-based” computer simulations in which discrete elements, indi-

vidual filaments, and structural elements are modeled within a complex geometry. Such

models create a virtual assembly of “agents” with association rules and biochemical rates

describing all interactions mediated by simple physics of diffusion, chemistry, and mechan-

ics. To simplify the physically and biochemically complex cytoskeleton a range of alternative

theoretical approaches have been adopted to break the complex biology of actomyosin into

simpler systems whose behaviors can be explored analytically rather than computationally

[Mogilner and Oster, 1996, Chan and Odde, 2008, Zemel and Mogilner, 2009]. However,

few of these studies have investigated the role of polymerization and motor contractility in

aligning filaments. Given that filament alignment may be involved in diverse processes that

reorganize F-actin, we developed theoretical models to directly explore these processes.

We hold the filaments pinned at their minus ends in order to prevent translational move-

ments of filaments and expose mechanisms which play a role in aligning filaments. The

polarity of the actin filament and its motor protein myosin II is a critical property and dis-

tinguishes the cytoskeleton from more generic types of polymer gels. In order to understand
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the complex behavior of actomyosin in complex morphologies we must consider the polarity

and assembly of actin filaments, actin filament bending, the dual role of myosin motors as

cross- linkers, and how motors shape and contribute to the mechanical properties of solid-like

multi-filament structures. Through our simulations and analysis we found that filaments will

always align and the time needed for alignment to occur depends on an optimal velocity for

the myosin motors. We also investigated what mechanisms would inhibit alignment, and

found that actin polymerization is a natural source of noise to destabilize alignment. We

found that a phase transition to strong alignment occurs when either polymerization rates

are reduced or the velocity for the myosin motor is changed toward an optimum.

3.2 MODEL AND METHODS

3.2.1 Simple geometry of actin-myosin interaction

Within the cell cortex actin filaments are present with arbitrary orientations and myosin

motors attach to the filaments, move toward filament plus-ends exerting a force which acts

to align the filaments. If confined to a two dimensional plane each actin filament has three

degrees of freedom: the position of its center of mass in the plane, and its orientation with

respect to that center of mass. We first consider a simplified actomyosin array of one motor

and two filaments (Figure 3.1A). In the cell, myosin II is organized into anti parallel arrays

of bundled motors [Pollard and Borisy, 2003]. In our model we represent a single bundle as

a mini thick filament and refer to such a bundle as a single “motor.” Filaments are only

allowed to change their orientation. Minus ends which remained pinned at a fixed location

we call the “origin.” Motors first attach at the pinned minus ends of a pair of filaments

move toward the plus end, exerting a spring-like force on the filament pair (Figure 3.1B).

We can define the angle of orientation for each filament (θ1 and θ2), and the distance from the

minus-end to the attached motor (s1 and s2). The position of the two motors can be written

in a Cartesian frame of reference as (s1 cos θ1, s1 sin θ1) and (s2 cos θ2, s2 sin θ2). As motors

move to filament plus-ends, we assume they move with a constant velocity, v. As the two
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Figure 3.1: Description of geometry, method, parameters, and variables. (A) Car-

toon depicting the biological interaction between actin filaments (red) and myosin II motors

(green). (B) Simplified depiction of interaction between two actin filaments and one motor.

(C) Idealized geometry for the motor-filament configuration used in our models. We refer

interested readers to the supplementary material for simulation details.

ends of the myosin motor move apart toward the plus-ends of their respective filaments the

myosin acts as a dynamic spring exerting forces on each filament in the pair [Dunaway et al.,

2002, Neumann et al., 1998, Nagornyak et al., 2005], resulting in movement and rotation of

both filaments.

From this biophysical description of motors, actin filaments, and their interactions we

can describe the life-cycle of a myosin motor. The motor begins its life-cycle unattached to

any filaments, waiting at the origin until it chooses to attach to a random pair of filaments.

Once the motor attaches to a pair of filaments, the motor walks toward the plus-ends of the

filament pair, generating force which pulls the filaments towards each other. The motor can

detach from the filament pair as a result of a random stochastic process, and if the motor

detaches, returns to the pool of unattached motors at the origin. On the other hand, if the

motor reaches the end of the filament pair, it will fall off and return to the origin.

We have also simulated actin filament polymerization and depolymerization by allowing

randomly selected filaments to disappear and be replaced by polymerization at the same

time at a new angle. Polymerization rates represented by a rate per filament which allows

the random, stochastic removal of a filament and placement of a new filament during our

Monte Carlo simulations. In the event that a motor is attached to a depolymerizing filament,

the motor will detach.
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3.2.2 Equations of motion for the myosin motor and filament pair

Based on these rules we derive and compute the equations of angular motion for the filament

pair as a myosin motor draws them into alignment. To extend the equations to the N

filaments and M motors case, we only need to consider that the forces sum linearly. We

derive the equations of motion for two filaments and one motor (Equation 3.1), where k is

the spring constant, µ is a viscous damping term, and s is the distance between the filament’s

plus end and the attachment of the motor.

θ̇1 =
k

µ
s2 sin(θ2 − θ1) (3.1)

θ̇2 =
k

µ
s2 sin(θ1 − θ2).

More generally, we can define the change in angle for filament i from N total filaments as the

sum of forces exerted by each motor m from the pool of motors (M) which are all attached

to filament i (Equation 3.2).

θ̇i =
k

µ

∑
m∈M

s2
m sin(θp(m,i) − θi) (3.2)

Since we have to calculate the change in angle between the filament pair to which the motor,

m, is attached, we define the index for one filament to be i and the other filament’s index

to be p(m, i).

From these equations of motion we can evaluate the mean of the distance the motor

travels along the filament, s, squared. This term can be related to the mean rate of alignment

and the average force exerted by the system (Equation 3.3).

〈s2〉 =
k

µ

1

T

∫ T

0

s2(t) dt. (3.3)
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We can also describe the morphology of the resulting actin array with an order parameter

(Z), a measure of alignment of the filaments in our system. Z is defined as follows:

S(t) :=
1

N

N∑
i=1

sin(θi(t))

C(t) :=
1

N

N∑
i=1

cos(θi(t)) (3.4)

Z := lim
T→∞

1

T

∫ T

0

√
S2(t) + C2(t) dt.

In the statistics of circular or periodic distributions (1 − Z) is often called the circular

variance [Zar, 1999]. The order parameter can be determined explicitly in the case of two

filaments (Equation 3.5), where the difference in the angle between the filament pair, φ(t),

is defined for −π to π.

Z = lim
T→∞

1

T

∫ T

0

∣∣∣∣cos
φ(t)

2

∣∣∣∣ dt (3.5)

The order parameter as it relates to our Monte Carlo simulations describes the degree

to which a set of filaments is co-aligned. For instance, in the case where the order param-

eter is one (Z = 1), all filaments are perfectly co-aligned with the same orientation angle.

Alternatively, when the order parameter is zero (Z = 0), the filaments will have orientation

angles uniformly distributed around the circle.

3.2.3 Biophysical properties of actin filaments and myosin motors

All of the parameters and their associated most commonly used value for the Monte Carlo

simulations are found in table form with the supplementary information (TableB1), along

with all of the variables (TableB2). The Monte Carlo simulations were carried out using

MATLAB and the algorithm, represented as a simple flow chart (FigureB3), has been in-

cluded in the supplementary information.

Actin filament polarity and length (L) – Actin microfilaments or F-actin vary from

minimal lengths of a few G-actin subunits to more than 10 µm with a distinct polarity of

plus- and minus- ends. For the majority of our simulations and continuum analyses we set

38



filament length to 1 µm. This may be considered either the fixed length of a stable filament

or the dynamic length of a tread-milling filament.

Myosin motor geometry and velocity (v) – Each functional myosin II subunit is as-

sembled from two heavy chains, two essential light chains, and two regulatory light chains.

Myosin II mini thick filaments are assembled from multiple subunits into an antiparallel

array with the globular ATPase head domains at the opposite ends of the filament and the

rod-like domain of the subunits bound in antiparallel arrays in the center bare region of the

mini-filament. The composition and length of mini thick filaments vary from cell type to cell

type of ∼20 myosin II complexes and are approximately ∼350 nm in length [Niederman and

Pollard, 1975]. Little is known experimentally about the force-producing capabilities of mini

thick filaments but they can stretch and act like springs [Neumann et al., 1998, Nagornyak

et al., 2005, Dunaway et al., 2002, Smith et al., 2007].

We assume that ATP levels are high and myosin II motor ATPase activity is maximized.

Model time (t) – Model time is reported in seconds and the Monte Carlo simulations

are advanced with individual time-steps of 0.01 seconds.

Myosin motor attachment rate (r0) – In the cell, the rate of motor attachment would

reflect several factors including the rate of diffusion of myosin mini-filaments, the volume

each mini-filament can search, and the relative density of F-actin binding sites. In our unique

geometry the situation is considerably simplified since all unbound motors are held within

binding range of F-actin at their minus-end. Thus, for a majority of our simulations we fix

the motor attachment rate at 0.7 per second.

Myosin motor detachment rate(r1) – Myosin motors are highly processive but do occa-

sionally dissociate from filaments before reaching the plus-end. Since these rates are poorly

characterized in vivo we choose detachment rates that range from 0.1 to 0.8 per second. This

rate may also vary based on the amount that the motor is stretched; e.g. load (Section 3.5).
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Depolymerization rate (r2) – Actin filaments within cells are constantly being turned

over so we introduce a depolymerization rate per filament. This rate may be dependent on

the length of the filament and may be controlled within the cell. Polymerization rates are

allowed to vary from 0.01 to 0.2 per second. In vivo, the polymerization / depolymerization

rates may control actin abundance, however, within our simulations we enforce constant

F-actin density and promptly polymerize a new filament when one filament depolymerizes.

Viscosity (µ) – In the cell, filaments experience viscous drag forces as they rotate through

the cytoplasm. By contrast, myosin mini thick filaments, due to their smaller size, do not

experience such drag forces. In our model, we only consider the viscous drag of water and

explicitly simulate filament-filament interactions that would contribute to cytoplasmic vis-

cosity. If we increase the viscosity parameter, we would see that the time it would take

to align would increase since the increase in viscosity would make it more difficult for the

filaments to rotate through the space. The viscosity of water is defined as 1× 10−3 Pa s.

Motor stiffness (k) – As the two ends of the myosin II motor mini-filaments move apart

on pairs of actin filaments the mini-filament exerts spring-like forces on the two filaments.

Thus, our simulations include a motor spring stiffness term k. Myosin mini-filament stiff-

ness has been measured from 1.7 to 5.0 pN/nm [Kaya and Higuchi, 2010, Neumann et al.,

1998, Nagornyak et al., 2005, Dunaway et al., 2002].

(µ/k) – For our equations of motion and continuum analysis, we do not use separate values

of µ and k but instead use the ratio of stiffness to viscosity. Due to uncertainty in the exact

value of this term, ranging from 0.2 to 0.6 (s/m2) we set this ratio to 1.
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3.3 RESULTS

3.3.1 Two filaments, one motor

For simplicity, we first consider two filaments and one motor. The two filaments lie at specific

angles (θ1 and θ2) and may be bound together at a distance, s, from their origin by a motor.

We found it advantageous to consider the angle between the two filaments (φ := θ2 − θ1)

rather than the orientation angle of each filament. We found a single equation of motion

could replace the two equations defined previously (see Section 3.2.2, Equation 3.1):

φ̇ = −2s2 k

µ
sinφ. (3.6)

For the case of two filaments and one motor, we used this equation of motion to follow

events that occurred during a typical simulation (Figure 3.2A): (a) the motor attached to the

filament pair and started to pull filaments together as the motor traveled down the filament

at a fixed velocity, (b) the motor fell off the filaments before it reached the ends of the

filament pair, (c) the motor spent time waiting to attach to the filament pair, (d) the motor

reached the plus-end of the filament and fell off. For all simulations perfect alignment is

guaranteed since there were no other processes which could cause the difference in filament

angle (φ) to increase. Thus, the changing morphology of the system could be followed as

the order parameter (Equation 3.5) increased to a value of one and force-generated by the

motor decreased to zero (Figures 3.2B-F).

However, actomyosin in cells rarely assumes the form of static bundles and we turned to

investigate processes that could destabilize or prevent formation of aligned bundles. Since

actin filaments are constantly turning over in the cell we introduced the processes of poly-

merization and depolymerization. These processes introduced a form of noise into our sim-

ulations; by contrast, thermal noise could also prevent perfect alignment, but for filaments

in a viscous media this source of noise is negligible.

Allowing filaments to undergo depolymerization and polymerization resulted in more

complex dynamics for the two filament case. We considered the events along a typical

time course (Figure 3.2F): (a) the motor attached to the filament pair and pulled filaments
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Figure 3.2: Monte Carlo Simulations for two filaments and one motor.(A) Visual

of one Monte Carlo simulation time course for motor movement (red) and the resulting

change in angle of the filament pair (black) without polymerization: (a) motor attaches to

the filament pair, (b) motor falls off before it reaches the end of the filaments, (c) motor

waits to attach, (d) motor falls off when it reaches the end of the filaments. Continued on

next page
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Figure 3.2: Continued from previous page (B) Plots of order parameter (blue), and force

generated (black) for one Monte Carlo simulation. (C) Color evolution plot of the order

parameter for 100 Monte Carlo simulations. Given enough time, the two filaments become

aligned by the motor. (D) Color evolution plot for the force generated by the motor for

the 100 Monte Carlo simulations in C. (E) Average order parameter (blue) and average

force generated (black) for the 100 Monte Carlo simulations shown in C and D. (F) One

Monte Carlo simulation time course for motor movement (red) and the change in angle of

the filament pair (black) with polymerization: (a) motor attaches to the filament pair, (b)

motor falls off before it reaches the end of the filaments, (c) motor waits to attach, (d)

motor falls off when it reaches the end of the filaments, (e) one filament depolymerizes and

a new filament instantaneously polymerizes at a new angle. (G) Plots of order parameter

(blue), and force generated (black) for one Monte Carlo simulation with polymerization. (H)

Color evolution plot of the order parameter for 100 Monte Carlo simulations. In contrast

to C, the addition of polymerization impedes long term alignment of the two filaments. (I)

Color evolution plot for the force generated for the 100 Monte Carlo simulations in H. (J)

Average order parameter (blue) and average force generated (black) for the 100 Monte Carlo

simulations shown in H and I.

together as the motor traveled down the filament at a fixed velocity, (b) the motor sponta-

neously fell off the filaments, (c) the motor spent time waiting to attach, (d) the motor fell off

once it reached the end of the filaments, (e) a filament depolymerized while a new filament

polymerized at a new angle, discontinuously changing the value of the angle difference (φ).

The motor worked to reduce the angle difference between filaments only to have that angle

reset by a depolymerization and polymerization event. By including polymerization, perfect

alignment is no longer possible. We described the degree of imperfect alignment through the

time-evolution of the order parameter and the forces generated (Figures 3.2G-J). During the

course of a single representative simulation run, the order parameter could rise to one and
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forces generated by a shared motor dropped to zero as filaments were completely aligned.

However, once a filament depolymerized, the order parameter decreased and the motor again

generated force.

Even though depolymerization destabilizes the actomyosin system, we found that the

angle difference between filaments in a population was still reduced over time. To understand

this effect, we considered a histogram for the angle difference between filaments (φ). The

distribution of angles for a long Monte Carlo simulation for two-filaments, one-motor showed

a large number of perfectly aligned filament pairs and that depended on motor function

(Figure 3.3A). As the rate of depolymerization increased, however, the angle distribution in

the population became flatter with more filament pairs having larger filament angles.

When we varied the motor velocity instead of the rate of depolymerization, we also

observed a non- monotonic dependence of filament alignment on motor velocity (Figure

3.3B). In this case, both low and high motor velocities acted to flatten the distribution of

angle differences. In order to understand the relationship between motor velocity and the

difference in filament angles, we considered the average force generated (〈s2〉) for a large

number of simulations as we varied motor velocity (Figure 3.3C). We found that average

force reaches a maximum value at a unique motor velocity and this velocity in turn depends

on the rates of motor attachment and detachment.

These effects could be understood if one took the perspective of a myosin motor. For any

given set of motor filament interactions, e.g. rates of attachment and detachment, the most

rapid alignment occurred when the motor spent the largest fraction of its life-cycle bound to

the filament pair. For example, if the rate at which an unbound motor attached was reduced

(that is, it took longer for the motor to attach), then the percent of the motor’s life-cycle

devoted to aligning the filament pair was also reduced (compare red and black curves in

Figure 3.3C). In order to increase the time devoted to aligning the filament pair the motor

needed to slow down so it would not reach the end of the filament and fall off. As a correlate,

if the rate of the motor spontaneously falling off was increased, then the velocity required

for optimal alignment increased (compare red and green curves in Figure 3.3C). Thus, the

ability of myosin motors to align filaments depended on both its velocity as well as its rates

of attachment and detachment.
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Figure 3.3: Comparing effects of parameters on order with Monte Carlo simu-

lations for two filaments, one motor. (A) Distribution of the angle between the two

filaments, φ, as the polymerization rate, r2, increased. (B) Distribution of the angle between

filaments as motor velocity increased. (C) Average force as a function of velocity for different

rates of attachment, r0, and detachment, r1. (D) Order parameter (black) and average force

(red) for the Monte Carlo simulations as motor velocity varied. r0 = 0.4, r1 = 0.1, r2 = 0.05.
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Intriguingly, motor velocities that produced maximal average force generation (〈s2〉) also

produced the most aligned filament pairs (Figure 3.3D). The functional dependence of mor-

phology and force production on motor velocity suggested we might be able to analytically

derive these functions from a continuum representation of the dynamics of the two filament,

one motor system.

3.3.2 Recasting the stochastic model of two filaments and one motor as a con-

tinuum model

In order to understand the relationship between actin filament alignment and forces gener-

ated by the motor we derived continuum equations which described the two filament, one

motor dynamical system. Motor activity within a two filament network could be thought of

as an example of a ‘two-state process’: either the motor was detached and waiting to attach

to a filament at the minus end (P0), or the motor was moving toward the plus ends of the

two filaments and pulling the pair into alignment (P1). We considered the time evolution of

populations of motors in each of these two states:

∂P0(φ, t)

∂t
=vP1(φ, L, t) + r1

∫ L

0

P1(φ, s, t) ds − r0P0(φ, t)

Lost from plus-end Randomly detach Attach

+
r2

2π

∫ π

−π

∫ L

0

P1(ψ, s, t) ds dψ (3.7)

Detach after depolymerization

The population or density of motors not bound to any filaments (P0, Equation 3.7) changed

by: 1) motors falling off the plus-end of any filament (from the group of filaments with

attached motors, P1), 2) motors randomly detached as they moved toward the filament’s

plus-end, 3) motors bind to filament minus-ends, and 4) motors fell off filaments that de-

polymerized. Since motors could detach at any distance, s, along a filament’s length (defined

from 0 to L), the second term in Equation 3.7 was integrated over all possible motor posi-

tions. We noticed that the first three terms in Equation 3.7, the loss and gain of motors, were
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independent of the filament pair’s orientation; only the last term depended explicitly on the

rate of depolymerization. It was important to note that while filaments without attached

motors could depolymerize, the last term of this equation only considered depolymerization

of filaments with bound motors. The time evolution of motors bound to filament pairs was

similar but we needed to include the density of motors at various positions along the length

of the filament pairs:

∂P1(s, φ, t)

∂t
=− v∂P1(s, φ, t)

∂s
+
k

µ
s2 ∂

∂φ
(sinφP1(s, φ, t))

Motor movement Filament movement

− r1P1(s, φ, t) −r2P1(s, φ, t) (3.8)

Randomly detach Detach after depolymerization

The density of motors attached to filaments must include movement of motors: 1) as

motors moved toward the plus-ends of the filament pair, 2) as motors moved with the angular

movement of filaments, 3) as motors randomly detached from filaments, and 4) as motors

detached when filaments depolymerized.

We investigated solutions which led to stable assemblies of filament systems, i.e. the

steady state solution which yielded the stationary distribution of filaments over filament

angles, φ, and motor positions, s. We began by defining a distribution, Q, which denoted

the stationary solution and obtained expressions for force and the order parameter:

〈s2〉 =

∫ π

−π

∫ L

0

Q1(φ, s)s2 ds dφ

Furthermore, we were able to derive an equation for the steady state marginal distribution

of the distance along the filaments,
∫ π
−πQ1(φ, s)dφ and thus compute 〈s2〉 (Equation 3.9; see

Appendix B.2).

〈s2〉 =
r0

r2
1

2v2 − e−r1/v(2v2 + 2vr1 + r2
1)

r1 + r0(1− e−r1/v)
. (3.9)

With this exact solution we calculated analytically how force generation depended on motor

velocity, rates of motor attachment and detachment, and rates of filament polymerization

(Figures 3.3D and 3.4). We found that our continuum equations were able to exactly replicate
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the Monte Carlo simulations for the two filament, one motor actomyosin system (Figure 4).

In addition, the continuum solution was able to validate our Monte Carlo simulations of

the two filament, one motor actomyosin system. For instance, we previously considered the

density of steady state angles from our Monte Carlo simulations (Figures 3.3A and 3.3B) and

the continuum equations showed us exactly how these densities depended on the parameters

of the model.

Further analysis of these equations and their steady state solutions (see Appendix B.2)

allowed us to investigate exact relationships between rates of motor-filament attachment and

detachment, motor velocities, polymerization rates, filament morphology, and force genera-

tion. For instance, as the rate of attachment decreased, the motor spent more time off the

filaments and so the motor velocity must have been chosen so it maximized the amount of

time the motor spent attached to the filaments.

3.3.3 Multiple Motors, Multiple Filaments

In order to understand more complex actomyosin networks we investigated the behavior of

multiple-motors and multiple-filaments arranged with the same geometry as the simpler two

filament, one motor system discussed previously. Initially, we suspected that the competi-

tion between multiple motors attached to the same filament might impede the progress of

filament alignment. To test this hypothesis we returned to Monte Carlo simulations. These

simulations started with multiple filaments randomly distributed around 360◦ and multiple

motors all in an unbound state waiting to attach to the filament minus-ends. Each simula-

tion was run for 400,000 steps with a time step of 0.01s. In order to compare steady state

rates of filament alignment in each simulation, we averaged the order parameter over the

last 300,000 steps. The reason for this, was that once the simulation started, if given enough

time, the filaments would get closer and closer to their natural alignment, e.g. filament

dynamics approached steady state.

Interestingly, we found that filaments aligned in a manner analogous to the two filament,

one-motor case (Figures 3.5 and 3.6 and Movie C.1) and exhibited the same dependence on

parameters that were observed previously. For example, as we allowed the rate at which the
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Figure 3.4: Monte Carlo simulations and continuum solution. (A) Plot of the con-

tinuum solutions calculation of < s2 > (black) compared to the Monte Carlo simulation

calculation of < s2 > (red) for r0 = 0.4, r1 + r2 = 0.15. (B) Plot of the continuum solutions

calculation of < s2 > (black) compared to the Monte Carlo simulation calculation of < s2 >

(red) for r0 = 1.4, r1 + r2 = 0.6.
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motors spontaneously fell off the filaments to increase, the velocity at maximal alignment

also increased which was accompanied by a decrease in the magnitude of alignment (Figure

3.5A). Thus, the process of filament alignment is slowed as motors spend less time bound to

the filaments. Furthermore, we found that the velocity which produced maximal alignment

was independent of filament density(Figure 3.5B). When the ratio of filaments to motors had

fewer motors, however, the maximal degree of alignment decreased, even though the optimal

motor velocity remained the same.

When we considered the rate of depolymerization, we found that the order or alignment

of our system was extremely sensitive to the rate of depolymerization (Figure 3.5C and

Movie C.2) and that depolymerization is the only stochastic process capable of impeding

the progress of filament alignment. Furthermore, the extremely steep decrease in alignment

with a small increase in the rate of depolymerization suggested that a phase transition from

a completely disordered (in this case a perfectly uniform distribution of filaments) to an

ordered or aligned state may occur.

From our parameter analysis, we concluded that the motor velocity and depolymerization

rate of filaments are key parameters that control alignment of actin filaments. In order to

draw a more descriptive conclusion as to how these two parameters effect the alignment of

our system, we next considered the density angles between two filaments (Figure 3.7). In

the case where filaments of the system were mostly aligned, the distribution has a tall, sharp

peak about the angle difference of zero and flattens after the motor velocity is shifted from

this optimal value (Figure 3.7A), or after the rate of depolymerization is increased (Figure

3.7B). To investigate the behavior of our actin network near this phase transition we turned

from the Monte Carlo simulations to a continuum representation for our multiple filament,

multiple motor system.
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Figure 3.5: Same behavior for multiple filament, multiple motor case, as previously

for two filaments, one motor. (A) Plot showing the dependence of the order parameter

on the rate of detachment (r0) for 40 filaments and 20 motors. As expected, an increase

in detachment resulted in a decrease in order. r0 = 0.7, r2 = 0.05. (B) Plot examining

the relationship between the relative densities of motors to filaments. When the ratio of

filaments to motors was the same, the same amount of order is expected; however, the

optimal motor velocity required to achieve maximum alignment was independent of filament

and motor density. r0 = 0.7, r1 = 0.1, r2 = 0.05. (C) Plot showing the sensitivity of the

order parameter of the system to the rate of depolymerization (r2). Blue shows a larger

discretization than green, with red being the most fine discretization of sampling order.

51



Figure 3.6: Monte Carlo Simulations: multiple filaments, multiple motors. (A)

Order parameter (blue) and force generated (black) for one Monte Carlo simulation with

multiple filaments and multiple motors without polymerization. Note the same characteris-

tics as seen in Figure 3.2B. (B) Color evolution plot of order parameter for 100 Monte Carlo

simulations without polymerization. (C) Color evolution plot for force generated by the 100

Monte Carlo simulations shown in B. (D) The average order parameter (blue) and average

force generated (black) by the 100 Monte Carlo simulations in B and C. (E) Order parameter

(blue) and force generated (black) for one Monte Carlo simulation with polymerization. (F)

Color evolution plot of order parameter for 100 Monte Carlo simulations with polymeriza-

tion. (G) Color evolution plot for force generated by the 100 Monte Carlo simulations shown

in F. (H) The average order parameter (blue) and average force generated (black) by the

100 Monte Carlo simulations in F and G.
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Figure 3.7: Effects of motor velocity and rate of polymerization (r2) on multiple

filament and multiple motor alignment. (A) The distribution of the difference in angle

between all filaments compared to filament #1. As motor velocity decreased from high (blue)

to low (green), there was an intermediary velocity which caused the sharpest peak in the

distribution, and thus the most alignment (red). (B) The distribution of the difference in

angle between all filaments compared to filament #1. As polymerization rate increased from

low (red) to high (blue), note the quick flattening of the distribution peak which suggested

a phase transition dependent on the rate of polymerization.
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3.3.4 Mean field analysis of multiple filaments and multiple motors

We considered an array of a large number of filaments, N , where each filament was at a

discrete angle (θi) with a large number of motors, M . From this discrete model we calculated

forces experienced by a single filament:

f(θi) =
k

µ

N∑
j=1

M∑
r=1

pijrs
2
r sin(θj − θi) (3.10)

The average force on a filament was found by linearly summing all the forces exerted by the

motors which were attached to that filament. An attached motor, r, connects filament i and

j. The term pijr was the probability that motor r was attached to filaments i and j. Since

motors may contact any 2 out of N filaments, and connections are chosen randomly this

probability factor was 1/(N(N − 1)).

In order to compute a mean field equation for the network of motors and filaments,

we let the number of motors and filaments grow to infinity, keeping the ratio of motors to

filaments as a fixed number, c. When we did this, the sum in Equation 3.10 became an

integral (Equation 3.11).

f(θi, t) =
kc

µ

∫ π

−π

∫ L

0

s′2 sin(θ′ − θi)P1(θ′, s′, t) ds′ dθ′. (3.11)

Next, we returned to the two-state model for myosin motors within a much larger F-

actin array. Recall the definitions of P1 and P0 from the two filament, one motor case before

where P1 was the density of motors attached to filaments, and P0 was the density of unbound

motors. The time-evolution of motor density within these two states was:

∂P1(s, φ, t)

∂t
=− v∂P1(s, φ, t)

∂s
− ∂

∂θ
(P1(s, φ, t)f(θ))

Motor movement Filament movement

− (r1 + r2)P1(s, φ, t) (3.12)

Detachment
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∂P0(s, t)

∂t
=vP1(L, θ, t) −r0P0 +

∫ L

0

r1P1(s′, θ, t)ds′

Lost from plus-end Attach Randomly detach

+
1

2π

∫ L

0

∫ π

−π
r2P1(s′, θ′, t) dθ′ds′ (3.13)

Detach after depolymerization

In contrast to the density functions for the simple case of two filaments and one motor, we

considered the actual angle rather than the difference of angles. Since forces depend on the

density of motor-bound filaments we found a nonlinear term that represented the movement

of motors as filaments moved. Thus, unlike the two filament case, the density equations were

nonlinear due to the fact that f(θ) was itself a function of P1.

Since motors can only attach to filaments at the minus ends, we enforced a boundary

condition that related motors leaving the pool of unbound motors with the motors attached

at the minus-end of the filament pairs.

P1(θ, 0, t) =
r0

v
P0(θ, t). (3.14)

Readers familiar with the analysis of coupled oscillators will see a strong similarity be-

tween Equation (3.12) and the Kuramoto equation [Kuramoto, 1984] (see Appendix B.5).

Because this was a nonlinear equation, there was no simple closed form solution; however, we

used these equations to investigate the transition driven by high rates of depolymerization

from a completely disordered state to an aligned state (referred to as the “asynchronous

state” in coupled oscillators).

When we considered the density distribution of relative filament angles and increasing

rates of depolymerization, we concluded that there existed a solution which was uniform in

the filament angle, θ (Figure 3.7B; see Appendix B.3). These solutions were the marginal
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densities of the distance traveled for attached motors, W1(s) =
∫ π
−πQ1(φ, s) dφ, and the

density of unattached motors, W0 =
∫ π
−πQ0(φ) dφ (see Appendix B.3).

P1(θ, s, t) =
1

2π
W1(s)

P0(θ, t) =
1

2π
W0

Returning with these solutions to our continuum equation for the force on a single filament

we found:

f(θ) =
kc

µ

1

2π

∫ L

0

s2W1(s)

∫ π

−π
sin(θ′ − θ) dθ′ ds = 0

The term f(θ) represented the angular flux of filaments moving under the influence of bound

motors. As the array of filaments approached steady state this term disappeared and we

were left with a steady state analogous to that found in our earlier analysis of two filaments

and one motor.

This equilibrium solution corresponded to a completely disordered state in which the

distribution of the filament angles was uniform. Since the equations for the two filament,

one motor case were linear they do not include the integration of angular filament flux, and

the completely disordered state was never a solution. The equation which described arrays

of multiple filaments and multiple motors was nonlinear, so there may be more than one

possible steady state. The most direct method to determine if there were other possible

stationary distributions of motors was to examine the stability of the disordered state as

parameters, such as the motor velocity, were varied.

We searched for a possible nonlinear phase transition by investigating the stability of

different periodic modes of the disordered state (see Appendix B.4). If the fully disordered

state was unstable with respect to perturbations to the distribution of filaments, then this

mode would grow and the distribution might remodel into a single peak. With this approach

we linearized the full equations about the trivial steady state and then solved the resulting

linear system.

We discovered that F-actin morphology alone was not a predictive indicator of force

production. Whereas a unique filament array morphology that did produce a unique level

of maximal force (see asterisk in Figure 3.8B). Force production at even slightly lower levels
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produced by two distinct filament morphologies (see “arrow heads” in Figure 3.8B). One, a

tightly aligned and another, a disorganized filament arrays produced identical levels of force.

Thus, morphology alone was not a sufficient index for the assessment of force production

within arrays of actin filaments which were free to rotate.

3.3.5 Biological Complexities: How does the behavior of this simplified system

change as more realistic conditions are introduced?

Thus far, our simulations and analysis did not limit the length that myosin motors could

stretch between pairs of actin filaments. To test the importance of this assumption, we ran

simulations where motors detached once they exceeded a threshold length (Figure 3.9A).

This change lowered the motor velocity needed for optimal alignment of the filaments (Figure

3.9A’). Simulations where we introduced a threshold of myosin detachment behaved as if we

had simply increased the rate of detachment of the motor (e.g. increased r1). Alternatively,

when we increased the threshold we found that the filaments aligned more strongly and the

motor velocities needed for optimal alignment also increased.

Up to this point our simulations used filaments of uniform length (Figure 3.9B); to test

the importance of this assumption we ran simulations with filaments having different fixed

lengths. With increased filament length, we found that filaments aligned to a greater degree

and that the motor velocity needed to optimally align filaments also increased (Figure 3.9B’).

If we allowed filaments to have random lengths between 0.75 and 1.25, so their average length

would be 1.0. We found almost no change in the velocity needed to optimally align filaments,

however, the magnitude of alignment decreased slightly (Figure 3.9B’).

3.4 CONCLUDING REMARKS

Actomyosin networks shape a diverse array of cellular structures. Many of these, such as

the alignment of actin filaments into the cytokinetic furrow or into the base of dynamic

filopodia, are likely to involve filament rotation. To understand the principles that shape
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Figure 3.8: Examining the relationship between polymerization, motor velocity,

order, and force with the continuum model. (A) Contour plot for the continuum

equations solutions show the domains of high and low order as a result of the polymerization

rate (r2) and the motor velocity (v). (B) Solutions predicted from the continuum model

for force and order as the rate of polymerization increases. We observed that there exists a

region where two differently ordered morphologies generate the same force.
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Figure 3.9: Introducing complexities to the model yields the same results. (A, A’)

The model allowed motors to stretch as far as necessary in order to stay attached to the

filament pair; however, in vivo, it is more likely that the motor is limited in its stretch. We

restricted the distance the motors can stretch which reduced the order of the system. (B,

B’) We assumed filaments had fixed lengths of one for our Monte Carlo simulations. We

introduced complexity by varying the fixed length, which resulted in a decrease in order for

a shortened filament length. To increase complexity even further, we considered filaments

with random lengths that had an average length of one and found both the fixed length of

one and random lengths with average length one, had the same order.
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these networks we have constructed a set of theoretical models to study the evolution of

F-actin morphology and dissected the relative contributions of F-actin polymerization and

myosin-motor based alignment to changes in filament morphology and force production.

Monte Carlo simulations and continuum models identified regimes where actin filaments

are stably bundled and other regimes where actin filament depolymerization leads to an

asynchronous state where actomyosin forms a perpetually contractile array. The models

suggest biophysical mechanisms through which myosin activity and F-actin polymerization

reshape the cytoskeleton and drive cell shape change.

We first derived the equations of motion for a simple system of two filaments and one

myosin II motor complex and defined a statistical property of circularly distributed actin

filaments, the order parameter, to assess the morphology of arbitrarily large filament-motor

arrays. Implementing simple stochastic processes that allow motors to bind or detach from

filament-pairs, walk toward filament plus-ends, and pull filaments together, we performed

Monte Carlo simulations in order to understand how these processes shape the morphology

of filament pairs.

We found that maximal alignment of the filament pair occurred at a unique motor velocity

and depended on both the rates of the stochastic processes and the length of the filaments.

Motors aligned filaments more rapidly when they spent the largest fraction of their duty-

cycle actively contracting the two filaments. At one extreme, if a motor traveled too slowly

it would fall off the filament pair before reaching the end; and, at the other extreme, a motor

that traveled too rapidly spent too much time waiting to bind to the pair of filaments.

These relationships suggested the existence of an underlying biophysical principle so we

simplified the motor-filament interaction slightly and re-cast the problem using continuum

equations for a “two-state process and investigated the evolution of the filament-motor sys-

tem as density functions. These equations were solved explicitly, reproduced the findings

from our Monte Carlo simulations and provided a direct link between parameters govern-

ing motor-filament interactions, the resultant filament morphology, and contractile strength.

Remarkably, this analysis demonstrated that no matter how many motors or filaments there

are, the density of motor positions is always the same.
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In order to generalize these two-filament one-motor systems to systems with multiple

filaments and motors we returned to Monte Carlo simulations. These systems reproduced

the same general behaviors seen in the simpler system, namely, that filaments rapidly align

over a wide range of model parameters and that the alignment peaks for conditions where

motors spend the largest fraction of their duty cycle contracting filament-pairs.

Rapid alignment of filaments underlie a range of cellular processes such as the forma-

tion of the cytokinetic furrow in dividing cells and the convergence zone at the rear of

lamellipodia in migratory cells. During the initial steps of cytokinesis, myosin II motors

bind disordered actin filaments within the cortex and reorient those filaments aligning them

within the cytokinetic furrow [Bonder et al., 1988, Vavylonis et al., 2008]. Retrograde flowing

actin filaments within lamellipodia first encounter myosin II at the rear of the lamellipodia.

In this region, named the convergence-zone, filaments are anisotropically contracted, reori-

ented perpendicular to the direction of the flow, and are rapidly depolymerized [Ponti et al.,

2004b, Vallotton et al., 2004].

However, other cellular processes driven by actomyosin dynamics progress without align-

ment, for instance actomyosin assemblies at the rear of migrating cells, and a range of

processes that direct cell shape change during morphogenesis in embryos [Blanchard et al.,

2010, Kim and Davidson, 2011, Martin et al., 2009, Rauzi et al., 2010, Solon et al., 2009].

To investigate processes that might destabilize filament alignment we modified our models

to include filament polymerization/depolymerization. Both our two-filament, one-motor and

multiple filament, multiple motor models revealed that the rate of depolymerization can alter

the speed of alignment but could also produce morphologically stable arrays of permanently

contractile filaments.

These models revealed that motor activity and polymerization underlie the ability of

F-actin networks to undergo a phase-transition from organized aligned filaments into dy-

namically disorganized, permanently contractile arrays. This transition could be controlled

by both the motor velocity and the frequency or rate of depolymerization. We propose that

cells manipulate the state of actomyosin by controlling this phase transition. Actomyosin

interactions can result in distinct patterns of force generation in addition to altering the

morphology of filament arrays. In the absence of F-actin polymerization, myosin II quickly
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align filaments into tight bundles. However, such bundled filaments no longer generate con-

tractile forces. In contrast, once polymerization is introduced, arrays of filaments can achieve

some alignment, but instead of forming stable bundles, they form a dynamically disorganized

contractile array. Polymerization, or rather depolymerization, allows the actin network to

continuously generate contractile force. Thus, actin filament alignment combined with poly-

merization and depolymerization allows the cytoskeleton to remain continuously contractile

even as its morphology is continuously changing.

To build our intuition about the performance of actomyosin we intentionally omitted

numerous details of both actin filament and myosin II function. As we explored the behavior

of the simple system we extended our models to include many of these omitted details

and test their relevance as a more “realistic” biology. For instance, after allowing varying or

random length filaments we found we could interpret the results in the context of our simpler

model. Our greatest simplification for the model was fixing the minus-ends of filaments

together in the center of an array. This simplification allowed us to investigate the complex

interactions between polymerization and myosin motor function without the confounding

effects of filament translocation or lateral movement. Clearly, more realistic models will

require complex geometries of free-associating actin filaments. However these future efforts

will to be able to build on both the Monte Carlo models and continuum-level theory that

we developed here.
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4.0 SIMULATING AND ANALYZING LINEAR MORPHOLOGIES OF

ACTOMYOSIN

In Chapter 3, we modeled a simple actomyosin network where filaments rotated as non-

muscle myosin II (NMM II) motors remodeled the F-actin array [Miller et al., 2012]. To ex-

tend this model to more physiologically relevant conditions, we considered arrays of aligned

actin filaments. We also want to continue to address Aim 1 (1.1.1), identifying how rates of

F-actin polymerization and myosin generated forces affect actomyosin dynamic morphology.

The most common example of aligned actin are in muscle cells where actin and myosin are

arranged into parallel, contractile bundles (fig 4.1A; [Littlefield et al., 2001]). The dynam-

ics and mechanics of these contractions are very well understood, but there are additional

systems driven by parallel actin arrays. During cell division, the cytokinetic furrow is an

organized ring of parallel bundles of actin that contracts based on myosin contractility, even-

tually pinching the dividing cells into the two daughter cells (fig 4.1B; [Kamasaki et al.,

2007]). There have been many models of parallel actin rings to study this phenomenon

[Zumdieck et al., 2007, Zemel and Mogilner, 2009].

Another example of parallel bundles of actin filaments is found in stress fibers in cultured

cells. The degree of the alignment depends on the stiffness of the substrate (fig 4.1C; [Zemel

et al., 2010]), which suggests that aligned actin arrays serve a mechanical role in either

sensing external environments, or maintaining cell integrity in different environments. Thus,

the current hypothesis is that actin fibers align in response to externally applied stresses.

In development, the classical example of aligned actin is the ring of bundled actin found

at the cell-cell junctions below the apical surface of epithelial sheets (fig 4.1D; [Martin et al.,

2009]). In order for the tissue to experience the bending of invagination (definition A.1),

actin forms into parallel arrays along the cell’s boundary and then contracts making the
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Figure 4.1: Examples of aligned actin. (A) Cardiac myocytes stained for F-actin demon-

strated highly organized parallel arrays of actin. Arrows indicate pointed ends of filaments,

and ’Z’ indicates the Z-lines. (Fig 1a from [Littlefield et al., 2001]). (B) cdc25 cells were

sectioned longitudinally and examined with transmission electron microscopy to show the

parallel arrays of actin beneath the plasma membrane in early anaphase comprising the actin

ring for cell division (Fig 2c from [Kamasaki et al., 2007]). The pointed ends of clockwise ori-

ented filaments are in red and counterclockwise filaments are in blue (Fig 2d from [Kamasaki

et al., 2007]). (C) hMSCs were cultured on substrates of varying stiffness and the aligned

actin arrays were observed (Fig 1a,b,c from [Zemel et al., 2010]). (D) The apical surface

of Drosophila epithelial experiences convergent extension during development and the cells

changed shape accordingly. Spider-GFP (red) marks cell boundaries, and Myosin-mCherry

(green) labels actin (Fig 2a from [Martin et al., 2009]). (E) Cartoon model of apical actin

rings showing the localization of f-actin (red) and myosin (green) to the cell boundary and

how this ring contracts to change cell shape over the course of development (Fig 2f from

[Martin et al., 2009]). (F) Utrophin labeled F-actin in Xenopus laevis epithelial cells on the

apical surface. Cells with organized F-actin arrays were found closest to the blastopore lip,

with disorganization increasing the further away cells were from the involuting lip edge (Fig

4a from [Feroze et al., tted]).
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boundary shorter (fig 4.1E; [Martin et al., 2009]). Contraction along cell edges and the

resulting reduction in cell boundary length often creates “rosette” structures where various

numbers of cells share the same apex point [Pohl et al., 2012]. In several, but not all cases,

the number of cells in the rosette has been correlated with convergent extension tissue and

cell shape changes [Pohl et al., 2012].

Another case of aligned actin in the animal cap has recently been observed during blasto-

pore closure in Xenopus laevis. The apical cortex of epithelial cells moving over the lip and

joining endodermal epithelial cells lining the archenteron exhibit organized, aligned actin

networks (fig 4.1F; [Feroze et al., tted]). This observation suggests that cells exhibiting

aligned actin arrays are affected by different mechanical forces than cells further away from

the blastopore lip which exhibit more disorganized actin arrays.

In initially constructing a simple model of aligned F-actin, we simulated sliding of F-

actin by myosin motors, similar to our purely rotational model published earlier [Miller

et al., 2012]. However, earlier models of aligned cytoskeleton considered sliding filament

bundles [Zemel and Mogilner, 2009], spindle arrays for microtubules (analogous to actin

filaments) [Craig et al., 2011, Mogilner and Rubinstein, 2010], and the filaments within the

cytokinetic furrow during cell division [Zumdieck et al., 2007].

Recent work by Thievessen et al [Thievessen et al., 2013] demonstrated that focal adhe-

sion complexes in the lamellipodial and lamellum regions of migrating cells were responsible

for transmitting forces from the internal actomyosin cytosekelton to the substrate through

a protein of that complex, vinculin. Vinculin transmits forces through its head and tail do-

mains [Grashoff et al., 2010] and also bind with F-actin in the cell cortex [Humphries et al.,

2007]. Thus, force transmission occurring at the cell membrane or boundary. Therefore, for

our next model, we consider an array of linearly sliding filaments where a limited number of

filaments are connected to a defined boundary via a spring (see fig 4.2). Another advantage

of our approach is that we can calculate the tension and force directed onto the boundary

through a spring connecting the filament array to the boundary.

Since we restrict filament arrays to linear translational movements our f-actin sliding

model appears similar to models of muscle actin and myosin in the sarcomere. The dynamics

of our model, however, distinguish our sliding model from sarcomere models as we include
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Figure 4.2: Sliding model: The boundary of the simulation is shown by the blue line on

the left of the figure. Actin filaments are red, and have plus symbols to show their polarity

orientation. Some of the filaments are connected by a spring (in blue) to the boundary. The

rest of the filaments are considered “free” because they are not connected to the boundary,

but can interact with filaments connected to the boundary by the boundary spring. Myosin

motors are unattached (2-headed green curls), or bundled into a mini-thick filament, attached

to two filaments and walking to the plus ends (green filaments). We make the additional

assumption that filaments are on the same “linear track,” but are shown in pictures to be

separated along the vertical axis.
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“free” sliding filaments which are not bound to the boundary. These free filaments are crucial

because they allow force transmission through the array to couple spring-bound boundary

filaments. By using physiologically relevant geometries and parameters, we are able to

estimate forces produced at the boundary, spring bound filaments, and understand how the

physics of overlapping filaments, number of laddering free filaments, and contractile motors

affect the emergent morphology of the F-actin array.

4.1 MODEL/SIMULATION DESCRIPTION

Constructing a numerical simulation requires the choice of a range of parameters for explicit

variables as well as a set of implicit assumptions that guide implementation. In this section

we list explicit parameters (Table 4.1) and discuss their implementation in the simulations.

Viscosity - The cytoplasm is a dense aqueous environment comprised of colloidal sus-

pensions of vesicles and organelles, large multi protein complexes, and the cytoskeleton

[Luby-Phelps, 2000]. Rather than incorporate the full complexity of the cytoplasm, we use

a single value of viscosity (coefficient of viscosity, 1× 10−3 Pa s).

Filament length- The length of actin filaments is anywhere between 6 nm and 10 µm

in vitro [Murrell and Gardel, 2012], however it was observed that in vitro, with the addition

of myosin, the persistence length is approximately 1 µm [Murrell and Gardel, 2012].

Time- In general we ran our simulations for a “long” time, with 20,000 steps equating

to 1,000s.

Domain size-We simulated a domain of approximately 2 µm, and for comparison,

the 2D actin filament array from Dasanayake, et. al assumed a domain of 5 µm × 5 µm

[Dasanayake et al., 2011].

Motor velocity - Our motors move at a speed of 1 µm/s, which is within the physio-

logical range of 1-3 µm/s [Kron and Spudich, 1986, Murphy et al., 2001].

Motor attach/detach- Myosin motor attachment and detachment rates are not known,

however, the affinity of the mini-thick-filament to bind to the actin is much greater than

dissociation [Lecuit et al., 2011]. Therefore, we assume that the attachment rate is 5/s while
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Table 4.1: Aligned filament model parameter descriptions

Parameter Parameter name Coding value Reference

symbol

µ Viscosity 1× 10−3 Pa s [Lang et al., 1986]

l Length of filament 0.8 µm [Murrell and Gardel, 2012]

Duration Time for simulation 1,000 s, or

to stop running approx 17 mins

Domain Outside boundaries 2 µm [Dasanayake et al., 2011]

for spring bound filaments

dt Time step size 1/20 s

v Motor velocity 1 µm/s [Kron and Spudich, 1986]

[Murphy et al., 2001]

r1 Rate of motor 5 /s

attachment

r0 Rate of motor 0.4/s

detachment

r3 Rate of filament 0.00006/s - 0.6/s [Pollard, 1981]

polymerization

k1 Stiffness of wall spring 0.1 nN/µm [Lehenkari and Horton, 1990]

k2 Stiffness of motor spring 0.6 nN/µm [Kaya and Higuchi, 2010]
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the detachment rate is much smaller, 0.4/s. We assume the detachment rate is dependent

on the amount of stretch the myosin experiences (i.e. the probability of detaching is higher

the further stretched the myosin becomes).

Filament polymerization- We consider a smaller rate of filament polymerization than

what has been observed with in vitro actin arrays. The in vitro rates of growth/polymerization

are in the range of 0.7/s-1.2/s [Pollard, 1981, Amann and Pollard, 2001], and the decay rates

range from 9.3 × 10−8s to 1.77 × 10−7s [Kouyama and Mihashi, 1980]. Since our filament

polymerization rate representing both polymerization and depolymerization, our values of

6×10−4/s to 0.6/s are within this diverse range. Its also worth noting that in vivo there are

multiple other proteins which interact with actin to advance, inhibit, or decrease filament

growth. As an example, ARP 2/3 was shown in vitro to slow the overall polymerization of a

single actin filament [Amann and Pollard, 2001], because ARP 2/3 allowed for branching of

the filament to occur so the G-actin monomeric subunits were quickly recruited to increase

filament length in other directions versus having the entire population entirely devoted to

increasing a single F-actin filament.

Motor stiffness- Mini thick filaments of non-muscle myosin II (NMM II) in vitro have

a stiffness between 1.7 to 5.0 nN/µm [Kaya and Higuchi, 2010]. However, the range for

individual units of skeletal muscle myosin range from stiffnesses of 0.17-1.79 nN/µm (Table

S1 from [Kaya and Higuchi, 2010]), so we are within the order of magnitude range of myosin

stiffness.

Boundary springs- The stiffness of the boundary spring to bind the F-actin to the

presumed focal adhesion complex, transmembrane bound, is not known. The binding stiff-

ness of integrins of two cells has been approximated to be 26.28 nN/µm [Lehenkari and

Horton, 1990], but we would anticipate that the binding stiffness between an integrin and a

single F-actin filament to be much smaller. Therefore we assume that the boundary spring

represents the connection between an integrin protein complex and a single F-actin filament,

so the boundary spring stiffness is smaller than the motor spring stiffness.

F-actin filament implementation- We implement this simulation using the approach

we used with our previous model for filament rotation [Miller et al., 2012]. Filaments move

in the x direction only. We plot the filaments at different y values so their positions can
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be observed, but do not make any assumptions about filaments colliding with each other.

We simulate 2 types of filaments, boundary and “free.” We can specify the number of

filaments attached to the left or right boundaries. In general, we assume that there are two

boundary filaments, one each attached to the right and left boundaries. All other filaments

are free, meaning they are not bound to the boundary. The free filaments slide left or right

based on the forces exerted by the myosin motors. The free filaments can also experience

polymerization, which is triggered by a Monte Carlo event (based on the polymerization

rate, Table 4.1), or when a filament slides past the boundary. Instead of considering the

biological definition of polymerization (the addition and subtraction of G-actin monomers to

the F-actin), we consider polymerization as a source of noise, so if polymerization occurs, a

“free” filament will disappear and a new one will reappear in a new X location at a random

orientation (right or left).

Myosin motor dynamics- The motor dynamics include being in three states at any

point in time. The motor can be unattached, at which point it would randomly diffuse

right or left. One leg of the motor can attach to a filament if the rate of attachment event

occurs, and if a filament is overlapping the X location of the motor. If multiple filaments are

overlapping the location, then one filament of the multiple possibilities is randomly selected.

Once one “leg” of the motor is attached, then, if the rate of attachment event occurs again,

the second leg attaches to a second filament. If one “leg” is only attached to one filament,

the motor can walk toward the plus end of the filament, but it will not exert any forces to

slide the filament because it is not attached to two filaments.

All variables are in Table 4.2, and we assume that l < L < 2l in order to insure that there

is filament overlap of our spring bound filaments (xR−xL ≤ l). We consider motors to be in

five fundamental categories of left oriented spring-bound filaments (L), right oriented spring-

bound filaments (R), plus oriented filaments without a spring attached (P), negative oriented

filaments without a spring attached (N), and unattached motors (0). In the progression of

attaching to two filaments, an unattached motor must first pass through one of the four

attached states (L,R,P,N), then bind to a second filament (fig 4.3). Motors diffuse along the

x-axis while they are unattached, and then will bind to any random filament that crosses its
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Table 4.2: Functions for movement and dynamics of aligned filament arrays

Equation symbol Equation Definition

x real spatial distance

xL left boundary

xR right boundary

l length of filament

L length of domain, such that 0 ≤ xL ≤ x ≤ xR ≤ L

r0 rate of attachment

r1 rate of detachment

ρ(x, t) unattached motors at position x at time t

qL(sL, t) motors with one “leg” attached to the left filament at distance

sL from boundary xL such that 0 ≤ sL ≤ l

qR(sR, t) motors with one “leg” attached to the right filament at distance

sR from boundary xR such that 0 ≤ sR ≤ l

q(sL, sR, t) attached motors with “legs” at sL on left filament and

sR on right filament
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current x-position with a rate of attachment, r1. All steady state equations of motion are in

appendix D.1.

4.2 RESULTS

For our model of aligned actin arrays we assumed the following restrictions: that the fil-

aments are already established in an aligned network, and filaments maintain this parallel

alignment throughout the simulation. In addition, we wanted to establish a method for deter-

mining how much force the network of filaments was generating so we introduced boundary

filaments which are connected to the boundary by a spring (see methods for a description).

The general question was what conditions are necessary to pull the boundary filaments to-

gether, analogous to an actomyosin contraction. We investigated this question by looking at

variations in model parameters.

If we consider 2 boundary filaments located within the domain and long enough that

they overlap. We assume that a myosin motor initially binds vertically to a pair of filaments.

In the case of boundary filament initial overlap, the probability that a myosin motor will

directly connect the boundary filaments is high, making it possible for the motor to quickly

slide the boundary filaments past each other and increase the amount of overlap. On the

other hand, if the boundary filaments are in a domain where there is no initial overlap, then

it would be impossible for a myosin motor to directly bind to the boundary filament pair.

Therefore we introduce the “free” filament network, a constant number of linearly sliding

filaments that are not connected to the boundary by a spring and are allowed to experience

turn over. The “free” filament network then acts like a ladder for motors to make indirect

attachments to the boundary filaments via the “free” filaments. Then the motors are able to

slide the boundary filaments based on their connections to “free” filaments to possibly reach

a point where the boundary filaments would overlap. There are three possible morphologies:

boundary filaments are not pulled toward the center at all (fig 4.4A, stiff), pulled into the

center of the domain and slide past each other to bring their plus ends to the same place (fig

4.4A, soft), or pulled only a little toward the center (fig 4.4A, standard). For this model, we
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Figure 4.3: Non-muscle myosin II transition states for the aligned filament model.

The simulation begins with motors unattached, state 0. Motors attach to a filament at a

rate of attachment, r0 (solid arrows). The motor can bind to a left-oriented, spring-bound

filament (L), right-oriented, spring-bound filament (R), plus-oriented free filament (P), or

negative-oriented free filament (N). A motor can fall off of a filament based on the rate

of detachment, r1 (dotted line). In this case the motor returns to the previous state. All

two-letter states are possible combinations of filament pairs which is when the two legs of

the motor are attached to two different filaments and can exert a force to slide the filaments.

The cases when a motor would bind to two of the same oriented filaments are not shown

because the motor would just walk down the filaments and no forces would be exerted to

slide these filaments.
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consider polymerization as a source of translational noise, analogous to our rotational noise

from Chapter 3. So, at a rate of polymerization, only “free” filaments, will disappear and

a new one will reappear at a random position along the x-axis, the only dimension we are

considering (Movie D.2).

We wanted to be able to assess how varying the model parameters would affect the end

morphology for the spring bound ends, so we plotted where the plus ends of the spring

bound filaments were over time, averaged over 50 simulations. To see a better idea of the

distribution of the plus ends over time, we were also able to average the plus end positions

for the last half of the simulation, assuming that was when the initial start up of motors

binding to filaments normalized (fig 4.4B). For the standard parameter set, we find that

most simulations end up with the plus ends of the boundary, spring-bound filaments in the

center of the domain (the middle concentration of white in fig 4.4B at t=20,000), but there

are still a few sims with plus ends that have relaxed at the boundary point (evidenced by

the time average position plot in fig 4.4C). In essence, this means that the two spring-bound,

boundary filaments “lost” their interaction with the inside “free” filaments.

4.2.1 Filament parameters

If we halved the number of filaments to n=10, this meant that 2 filaments were spring-

bound, but the remaining 8 were free. In this case, the free filaments were more strongly

able to bring the boundary filaments to the center, versus doubling the number of filaments

to n=40, when the spring bound filaments were either pulled in towards the center a little

bit, or completely relaxed to the boundary (fig 4.5A). The reason for this has to do with the

number of potential interactions for the motors.

Some of what dictates how the plus ends of spring-bound filaments moves is the number

of opportunities of motors to bind to the spring filaments, via direct connections or linking

connections via free filaments. We looked at the effect of shortening or lengthening the

filaments. If the filaments are shorter, then we are insuring that there is no initial overlap

between the spring bound filaments at the boundary, and the intermediary “free” filaments

are also short, decreasing the probability of having a large number of options for motors to
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Figure 4.4: Morphologies and analyzing aligned actin arrays (A) Examples of filament

location for varying boundary filament spring stiffness. In the softer case, boundary filaments

(bright red) have plus ends at the center, L/2 position at time T. Below the schematic is a

histogram of boundary filament (bright red) plus end location at time T, for 100 different

simulations. When the boundary spring stiffness is increased to a standard value, boundary

filaments (bright red) are pulled in toward the center (L/2) position, but are not pulled all

the way into the center. For 100 different simulations, the sample histogram also shows two

peaks off center from the L/2 position. When the boundary spring stiffness is much stiffer,

then the boundary filaments (bright red) are not pulled away from the boundaries 0 and L.

The same data is captured with the sample histogram for 100 different simulations showing

peaks at the 0 and L positions. (B) Time evolution plot of the histograms of the boundary

filament positions over 50 sims for 20,000 time steps. In the beginning, plus ends are sharply

pulled toward the center from the boundary edges. A large number of simulations ended with

the boundary plus ends closely located at the center of the domain. (C) Average number

of filament plus ends for the last half of the simulation (shown in the blue box in (B)). The

peaks of this histogram show that there is a portion of simulations where filaments ended in

the center of the domain, but also simulations where boundary filament plus ends were at

the edges.

75



Figure 4.5: Morphology changes with filament parameters for aligned actin arrays.

(A) Doubling the number of filaments (200%; n=40) results in boundary filaments relaxed

back to the boundary edges and another population pulled a little bit into the center, but not

all the way. Halving the number of filaments (50%; n=10) results in most simulations with

plus ends of boundary filaments at the center of the domain. (B) Longer filaments (l=1.6)

means motors have more opportunities to make connections to boundary filaments and bring

the plus ends together. Short filaments (l=0.4) mean the motors have less opportunities

to make connections to the boundary filaments at the edges. (C) Increasing the rate of

turnover (r3 = 0.0003) causes the boundary filament plus ends to spread further out from

the center. Increasing the turn over by another order of magnitude (r3 = 0.003) causes the

boundary filaments to separate even further. At the fastest rate of turn over (r3 = 0.03),

the populations of plus ends pulled away from the edges a little bit but not in the center.
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bind, and make linkages between “free” filaments and the spring bound filaments. When

we make the filaments longer, then we are starting out with the spring bound filaments

overlapped, which means that there is always the possibility of a motor connecting the two

spring bound filaments, and more possibilities of linkages via the “free” filaments (fig 4.5B).

Finally, based on our previous research in Chapter 3, we knew that polymerization should

be able to disrupt the morphology, and reach a new steady state. Increasing polymerization,

increases the noise in position experienced by the free filaments, but since the boundary

filaments do not experience polymerization, our graphs will only show how the position of

boundary filaments changes over time. With low polymerization (fig 4.4 B), a fraction of the

boundary filaments were brought into the center of the domain. We found that as the poly-

merization rate increases, the boundary filaments move slightly off center, to a steady state

position offset from the boundary (fig 4.5C), however there is still a variance in position. As

the polymerization rate continues to increase, the variance in plus ends decreases, but the

position is slightly pulled in from the boundaries. Because the free filaments are constantly

disappearing and reappearing in new positions with new left or right orientations, the con-

nections made between boundary filaments and free filaments are extremely short lived (once

a filament polymerizes, all connected motors fall off or disconnect), however connections are

made to pull the boundary filaments into the domain, otherwise we would expect to see the

boundary filaments at the boundaries.

4.2.2 Motor parameters

If we decrease the number of motors then the number of opportunities for motors to make

connections between filament pairs that ultimately results in a connection between the two

boundary filaments is less likely. Then the boundary filaments should end at the boundary

because the connections from boundary to free to opposite boundary were unable to occur.

If we increase the number of motors, then we expect that the motors will be able to quickly

relocate the spring bound filaments to the center, or slide filaments past each other (fig

4.6A). As we decrease the spring stiffness constant, motors are unable to exert as much force

onto the spring-bound filaments and are unable to bring the plus ends into the center. If the
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motor spring stiffness constant is increased, then the motors are able to bring the plus ends

of the filaments into the center very quickly (fig 4.6B).

If we decrease the speed of the motor, then the motor spends more time on the filament,

except that the chance of the motor falling off (rate of detachment, r1) is much higher

meaning that the motor is doing less work sliding filaments. We observe that the plus ends

of the spring bound filaments are mostly congregated at the boundaries in this case. If we

increase the speed of the motor, then it is able to go much faster and spend more time on

the filaments because it is less likely to fall off. In this case, we see that the plus ends of

the filaments are pulled toward the center, although there is some variance in how tightly

clustered the plus ends are (fig 4.6C).

If we decrease the spring stiffness of the boundary filaments, then the free filaments and

motors are able to bring the spring-bound filaments towards the center. If we increase the

spring stiffness of the spring-bound filaments, then the interaction between free filaments and

motors will be unable to generate enough force to dislodge the plus ends from the boundaries

(fig 4.7).

4.3 CONCLUSIONS

The sliding model had similar conclusions as our rotational model (Chapter 3): polymer-

ization destabilized the contractile geometry with no polymerization, but a steady state

morphology was observed even with the addition of polymerization. Varying the filament

and motor parameters changed the aligned actin morphology based on the probability and

duration of connections between the boundary filaments and the free filaments. Including

the boundary filaments gave us a new “tool” for determining forces from the network.

The aligned actin model only addresses part of Aim 1.1.1. We are able to model what

might be occurring in in vivo aligned actin arrays once they are already established, but

we still have questions surrounding how the aligned array arises, and then disassemblies

when no longer needed. We are still seeking to understand dynamic, two dimensional in vivo

filament morphologies. Therefore, we decided to combine the known biophysics of actomyosin
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Figure 4.6: Morphology changes with motor parameters for aligned actin arrays.

(A) Doubling the motors (200%; m=200) results in boundary filaments brought towards

the center. Halving the number of motors (50%; m=50) results in the boundary filaments

relaxing to the boundary edges. (B) Doubling the stiffness of the motor spring (k2=0.6), the

boundary filaments are quickly pulled past each other to the center. Halving the stiffness of

the motor spring (k2=0.15), the boundary filaments relax to the boundaries. (C) Decreasing

the motor speed (v=0.01) results in the plus ends of the boundary filaments relaxing to the

boundary edges because the motors are not spending enough time on the filaments to do the

work to slide them past each other and bundle in the center. Increasing the motor speed

(v=0.5) means the motors are able to quickly slide the boundary filament plus ends past

each other towards the center.
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Figure 4.7: Varying the stiffness of the boundary spring for aligned actin arrays.

Increasing the stiffness of the boundary spring (k1=0.1) results in the plus ends migrating

to the boundary edges. Decreasing the stiffness of the boundary spring (k1=0.005) results

in the plus ends of the boundary filaments coming towards the center.

networks for rotation from Chapter 3 and sliding from Chapter 4, with the spring-bound

force “sensor” boundary filaments developed for this model to create a more realistic 2D

model in the next chapter (Chapter 5).
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5.0 2D MODEL FOR ACTIN MORPHOLOGY REARRANGEMENT BY

MYOSIN MOTORS

In order to fully address Aim 1 (1.1.1), identify how rates of F-actin polymerization and

myosin generated forces affect actomyosin dynamic morphology, we have developed a 2D

model of actomyosin in the cell cortex, a very thin region of the cell underlying the plasma

membrane. Chapters 3 and 4 began to address Aim 1 (1.1.1), but the 2D model will help

to simulate experimentally observed actomyosin morphologies, and understand the factors

contributing to characteristic geometries of actomyosin contractions.

5.1 INTRODUCTION

Actomyosin plays a critical role in multiple developmental events, such as the contractile actin

purse-string located at the margin of the lateral epidermis during dorsal closure in Drosophila

[Young et al., 1993, Edwards et al., 1997, Jacinto et al., 2002], fusion of the epidermis

along the anterior and posterior ends of the epidermis at later stages of dorsal closure in

Drosophila [Millard and Martin, 2008], bending of the tissue to facilitate invagination during

gastrulation in Drosophila [Martin et al., 2009], stiffening of the Xenopus embryonic tissue

during neural tube closure [Zhou et al., 2009], and cell shape changes resulting in convergence

and extension of the Xenopus embryonic tissue [Kim and Davidson, 2011]. Tools used

to examine actomyosin morphology include imaging techniques such as fluorescent speckle

[Waterman-Storer and Salmon, 1997], and in vitro observations of purified actin and myosin

[Kouyama and Mihashi, 1980, Cooper et al., 1983, Amann and Pollard, 2001]. In vitro

experiments try to determine rates of actin polymerization, branching, bending, breaking,
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and annealing, whereas in vivo experiments determine locations and frequencies of pulsatile

contractions, and actin polymerization, and branching in the thin lamellipodia region [Lecuit

et al., 2011]. Although these experiments are essential to understanding the dynamics of the

actomyosin complex, a different approach must be taken in order to determine how the

network organizes and generates forces based on the network organization.

To investigate cortical actomyosin morphology in embryonic Xenopus tissue, our group

has developed techniques for quantifying and analyzing actomyosin contractions and used

these tools to describe differences in actin morphology in different tissues. For example, we

can make a live, time-lapse movie of cortical actin dynamics with fluorescently labeled F-

actin (fig 5.1). The concentration of F-actin is recorded using confocal microscopy. Regions

of dense F-actin appear as brighter than average pixels. As the F-actin dissipates we observe

a drop in pixel intensity (fig 5.2). We can use a kymograph to look at a small patch of the

contractile area over time, in addition to plotting the normalized mean intensity of the pixels

over time.

We have observed that the basal surface of the epithelium (fig 5.3A) has a different actin

morphology than the apical surface (fig 5.3B). Both surfaces, however, have actin contraction

dynamics even though the morphologies are different. The apical surface of cells bordering

the blastopore lip (fig 5.3C) show highly aligned actin suggesting a unique mechanical role

in orienting cells for the involuting tissue. The high frequency of contractions in the apical

cortex of the neural epithelium suggests actin dynamics play a role in convergence extension

and the creation of the neural folds on the apical, neural epithelia surface (fig 5.3D).

Drugs are used experimentally to modify the biochemistry of actin polymerization and

NMM II contractility [Kim and Davidson, 2011]. Jasplakinolide stabilizes F-actin (fig 5.3E),

and we observe more stable asters, or high-density concentrations of actin. Latrunculin

B depolymerizes actin (fig 5.3F), and the network becomes much more sparse with actin

concentrated at the edges of the cells. Y27632 inhibits the contractility of NMM II, leading

to a sparser actin network that has lower intensity actin asters (fig 5.3G). Lastly, Calyculin

A increases the contractility of NMM II which increases the intensity and concentration of

the F-actin network (fig 5.3H).
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Figure 5.1: Experimental technique for fluorescently tagging F-actin in Xenopus

(A) Our labeling protein is an actin binding protein (ABP) connected to green fluorescent

protein (GFP). (B) The protein is injected into the newly fertilized egg in the area of interest.

For example, the region of the fertilized egg which will develop into the animal cap. (C)

After giving the fertilized egg time to develop, and testing to insure fluorescent expression,

the animal cap explant is cut away from the embryo and placed into an imaging chamber.

(D) The explant is carefully placed onto a fibronectin coated glass and held in place with a

tiny slip of glass (not shown). Media is sealed in the acrylic chamber by placing a smaller

glass coverslip onto the top. (E) Actin dynamics are observed with confocal microscopy and

time-lapse movies are made of the fluorescent actin.
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Figure 5.2: Quantifying actomyosin dynamics. To the left is the image of a cell from the

apical surface of the neural epithelium. The F-actin has been labeled using Utrophin-GFP,

and the higher intensity of F-actin is encircled to show the location of a contraction. The

pink arrow points toward a zoomed in image of the same contraction area over the period of

the time lapse imaging. Another way of examining the contraction is to consider the small

blue strip of each frame and piece these strips together over time to create a kymograph of

the contraction. Lastly, we can plot the normalized mean intensity of the contraction area

over the course of the movie.
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Figure 5.3: Diverse morphologies of cortical F-actin in Xenopus . (A) Utrophin-GFP

labeled F-actin on the basal surface of the epithelial tissue of an animal cap explant. The

basal surface is placed on a fibronectin coated glass. (B) Utrophin-GFP labeled F-actin on

the apical surface of the epithelial tissue of an animal cap explant. This surface is placed

on a cleaned glass surface without any fibronectin present. (C) Utrophin-GFP labeled F-

actin at the blastopore lip (R. Feroze and J. Shawky). (D) Utrophin-GFP labeled F-actin

in the apical surface of the neural epithelium (D. Vijayraghavan). (E) Moesin-GFP labeled

F-actin in a dorsal marginal zone explant treated with 5 nM of Jasplakinolide (H.Y. Kim).

(F) Moesin-GFP labeled F-actin in mesendoderm tissue treated with 0.6 µM of latrunculin

B (H.Y. Kim). (G) Moesin-GFP labeled F-actin in a dorsal marginal zone explant treated

with 50 µM of Y27632 (H.Y. Kim). (H) Moesin-GFP labeled F-actin in a dorsal marginal

zone explant treated with 50 nM Calyculin A (H.Y. Kim).
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Our motivation in developing 2D models is to understand why the F-actin networks

adopt different morphologies depending on the tissue or surface of cells, and how these

morphologies regulate global force. We will also examine the effects of actin polymerization

and myosin contractility in network morphology since these variables experimentally affect

actin morphology.

Previous models have examined actomyosin contractions, most notably in sarcomeres

where actin and myosin are organized in parallel, sliding arrays to shorten muscles [Hill,

1938]. However, we are interested in cortical actomyosin punctuated contractions that are

disorganized compared to sarcomeres. The Gardel group developed a 2D model to investigate

disorganized actin networks and how myosin would contract the network [Lenz et al., 2012].

Their model considers the extension and contraction experienced by single F-actin from a

tension created by a myosin attached to a different F-actin. They assume that the orientation

and strength of the applied tension can cause bending and eventual buckling of the F-actin.

Buckling within the network results in a global contraction of the network and they assume

this is the same mechanisms of contraction of disorganized F-actin networks in vivo and

in vitro. In a different, but related model, a 2D network of actin filaments was created

with stable cross linkers placed at all overlapping filament apices and contractile myosin

motors put a contraction stress on the entire network [Dasanayake et al., 2011]. Although

both of these recent examples give insight how this complex morphology of “disorganized”

actomyosin generates a contractile force to induce tension in the cell cortex, they are not

considering the more complex dynamic biophysical aspects of the network.

In addition there are physical models of actomyosin utilizing reconstituted F-actin gels

[Falzone et al., 2012]. The idea is that a reconstituted gel represents the cortex of the cell

and the mechanical properties of the gel can be determined. Furthermore, researchers can

add actin crosslinking proteins and see how the stable actin network changes in morphology

and material properties. The limitations with these analog models are that they do not

capture the extensive dynamics of actomyosin observed in vivo.

To expand on these models, and extend our previous work on the rotational model

(chapter 3; [Miller et al., 2012]), and sliding linear arrays (chapter 4), we have created

a simple dynamical model for a two-dimensional array of actin filaments containing non
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muscle myosin II (NMM II). First, we discuss assumptions made in developing the model.

Second, we describe the model and simulation specifics, the modeling assumptions and the

rationale behind them. Third, we discuss results arising from this simple model, such as how

a contraction arises, how it is possible to disrupt it, and extend our model to simulate in

vitro experiments. Finally, we conclude with a discussion about our model and our unique

approach, and discuss future directions for biophysical models of actomyosin dynamics.

5.2 2D MODEL AND METHODS

In order to understand how actomyosin contractions arise and generate force, we simulated

a two dimensional (2D) patch of F-actin and NMM II mini-thick filaments. We picked

a hexagonal boundary for the simulation because our previously published image analysis

technique breaks the cell into a series of hexagons that are then used to examine differences

in pixel intensities between the individual hexagons compared to the mean intensity of the

cell [Kim and Davidson, 2011]. Furthermore, the hexagonal domain can be extended to a

more generalized polygon domain.

From our experimental studies, we know that the thickness of cortical F-actin, the region

of F-actin just below the plasma membrane of the cell, is approximately 2 µm thick, essen-

tially planar when compared to the thickness of the Xenopus embryonic cells (40 µm). There

could be some 3D aspect to the network which would change the physics of the actomyosin

contraction, but we assume that the third dimension is negligible. Furthermore, we assume

that F-actin filaments are able to move through and past each other. We have chosen not to

include F-actin collisions and entanglements in the model, but these events could be repre-

sented by viscous drag. Our model follows the same outline as our rotational model [Miller

et al., 2012] where F-actin filaments have polarity (fig 5.4A) and NMM II motors randomly

bind to a pair of filaments (fig 5.4B) and walk toward the plus or barbed end of the filament

(fig 5.4C).

As with our previous models, F-actin remodeling is driven by the ATP-ase function of

myosin II. Cross bridge cycling is the processes by which individual head domains of myosin
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change configuration to become activated and able to bind to F-actin. Then through ATP

hydrolysis, the bound head domain folds and propels itself towards the F-actin plus end. We

assume that the cross bridge cycle is implicitly represented in the myosin motor velocity.

By itself, a NMM II filament is unable to exert a force on F-actin because it consists of

only one filament with the head binding domain. Individual NMM II filaments are inactive

when they are in a folded configuration and then are activated when they extend their tail

domain, which allows multiple NMM II tails to bundle together to form a processive bipolar

motor called a mini-thick filament [Lecuit et al., 2011]. Our model assumes the mini-thick

filament has already been formed and that NMM II is “active.” We can include a switch

from inactive to active states for the NMM II by adding in additional rates of activation or

inactivation for NMM II.

NMM II exerts a spring-like force while walking, rearranging the filaments. This force is

generated from the bipolar arrangement of multiple NMM II filaments into the mini-thick

filament arrangement and the action of cross bridge cycling along F-actin at each end of

the bipolar mini-thick filament. For simplicity, we assume that our motor, representing a

NMM II mini-thick filament, has a rest length of 0 and from the moment it is stretched

begins exerting a spring force on the pair of filaments. The maximum force the model’s

motor is allowed to exert is based on the motor’s spring stiffness and the maximum stretch

(a parameter set in the beginning of the simulation) of the motor.

Motors have a specific rate of attachment to bind to a random pair of filaments that

are located within the motor’s threshold of attachment stretch. We assume the radius of

attachment for motors is smaller than, or the same size as a single NMM II filament (∼300

nm), and this parametric length also serves as the maximum stretch allowed once the motors

bind to a pair of filaments and begin walking (fig 5.4E). Motors fall off of the filaments once

they reach the plus end of the filament, but there is also a small rate of detachment where

motors fall off before they reach the end of the filament. While motors are waiting to attach

to filaments, they diffuse within the domain. If a motor diffuses out of the domain, a new

motor appears at a random location within the domain so the population of motors for the

simulation remains constant.

88



Although the dynamics of the model seem straight forward and simple, the model is

inherently nonlinear. The polarity of F-actin significantly complicates the polymer models

[de Gennes, 1979]. The F-actin array then sorts or sequesters motors, creating heterogeneous

patterns.

5.2.1 Setting up the actomyosin network

Our models are created with filaments of the same length, placed at random positions (xi, yi)

and angles (θi) within a hexagonal boundary. We chose a hexagon because it reflects a unit

of the cell cortex from our image analysis and allows integration with the microenvironment.

Over the course of a simulation, if motors or filaments move past the boundary, then new

motors or filaments appear within the hexagonal boundary. For most of the simulations we

use a hexagonal boundary and later extend the boundary to polygonal shapes.

If we model polymerization we would need to consider two populations of actin, G-

actin the monomer and F-actin the filamentous form. Polymerization would dictate the

rate at which G-actin would add to F-actin increasing the F-actin length and depleting the

population of G-actin. Depolymerization is the rate of F-actin disassembling and changing

back into G-actin, decreasing the population of F-actin and increasing the population of G-

actin. For simplicity we use a single turnover rate for polymerization and depolymerization

that dictates if a random filament disappears and a new filament appears at the exact

same instant in a new spatial position and orientation. The implementation of F-actin

turnover introduces spatial noise into our simulations. If there were any motors attached to

the filament that polymerized they fall off. Turnover in our rotational and sliding models

similarly served to introduce spatial noise into these models (chapter 4 and chapter 3; [Miller

et al., 2012]). All of the parameter values for a standard simulation are in table 5.3.

5.2.2 Biophysical theory for actomyosin

Extending our previous rotational and sliding models to a 2D domain requires the addition

of biophysical theory to account for free filament movement. All symbols are in table 5.1. We

need to consider forces that translate the filament in addition to forces rotating the filament
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Figure 5.4: Cartoon of biophysics of actomyosin and simulation dynamics (A)

Depicts the biophysical dynamics of F-actin where the monomer, G-actin, binds to the plus

end of the filament in the act of polymerization, and the filament disassembles at the minus

end becoming individual monomers in the act of depolymerization. (B) Individual NMM II

filaments bundle together into a multi-headed mini-thick filament which can bind to F-actin,

or detach from F-actin. (C) The mini-thick filament of NMM II walks to the plus end of

F-actin. (D) Pictorial diagram of the break down of forces and movements on an F-actin-

like rod. The perpendicular force (blue), is broken into a component that goes towards

perpendicular translation of the filament (blue dotted) and a distributed torque (red curved

arrows) to the ends of the rod. Translational force goes toward translational movement. (E)

Cartoon flow-chart of the simulation where first, a motor searches for a pair of filaments to

bind. The motor binds to the pair of filaments, then walks at a certain speed toward the plus

ends. After one walking time step, the motor exerts a force on the filaments, contracting,

and pulling the filaments together.

90



(fig 5.4D). In general we know that we can calculate a force vector acting upon a filament and

break the force into a parallel and perpendicular component. The parallel component is used

to determine how the filament will slide in that direction. The perpendicular component is

broken up further into a portion that slides the filament sideways and a portion that applies

a torque or rotation to the filament. Furthermore, because we are considering a cylinder

moving through a viscous media, we know that the viscosity components for resisting parallel

sliding are smaller than for perpendicular sliding, or rotation.

To determine the total force acting upon a filament by motors our algorithm checks each

filament to see if there are motors attached and then finds the average motor force vector

acting on the filament. We average the positions of all of the attached motors on the actin

filament as the starting point for a motor location vector (x, y), then average all the second

leg motor positions (which are attached to different filaments) to get an ending point for a

motor location vector (xE, yE) (eqn 1, table 5.2). The resulting magnitude of the motor

force can then be calculated (eqn 2).
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Table 5.1: Symbols for 2D model equations

Symbol Description

N Number of filaments

m Number of motors

(xp, yp) Position of plus end of filament

(X1j, Y 1j) Position of leg 1 of motor j

(X2j, Y 2j) Position of leg 2 of motor j

(x, y) Average position of attached motors to a filament

(xE, yE) Average end vector position of attached motors to a filament

k Spring stiffness constant for motors

φ Angle between the filament and the force vector

L Length of the filament

η Dynamic viscosity of the media

p Ratio of length of filament to its diameter

γperp=0.84, γpar=0.114, Constants when p =∞

and γrot=-0.662

β Angle of translational movement

b Viscous term for cortex filaments

E Young’s modulus

ε Strain
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Table 5.2: Equations of 2D motion for filaments from forces generated by motors

Equation Number Description

x =
1

m

∑
j

X1j 1 Determining the resulting stretched motor vector by

y =
1

m

∑
j

Y 1j summing up all attached motors to a filament

xE =
1

m

∑
j

X2j

yE =
1

m

∑
j

Y 2j

||F || = k
√

(x− xE)2 + (y − yE)2 2 Magnitude of motor exerted force

A =
√

(x− xp)2 + (y − yp)2

B =
√

(x− xE)2 + (y − yE)2

(continued)
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Table 5.2 – (continued)

Equation Number Description

C =
√

(xp − xE)2 + (yp − yE)2

cosφ =
C2 − A2 −B2

−2AB
3 Angle between filament and force vector

Fperp = ||F || sinφ 4 Perpendicular force component

Fpar = ||F || cosφ 5 Parallel force component

Fperp1 = Fperp
L− l1
L

6 Perpendicular force distributed to plus end (1) and minus end (2)

Fperp2 = Fperp
L− l2
L

Fτ =
1

2
(Fperp1 − Fperp2) 7 Torque on the filament

FCOM =
1

2
(Fperp1 + Fperp2) 8 Perpendicular force to move the center of mass of the filament

Γperp =
4πηL

log p+ γperp
9 Drag coefficients

Γpar =
2πηL

log p+ γpar

(continued)
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Table 5.2 – (continued)

Equation Number Description

Γrot =
1
3
πηL3

log p+ γr

vT =

∣∣∣∣ FτΓrot

∣∣∣∣ 10 Rotational velocity

ω = vT/(L/2) 11 Angular velocity

dθ

dt
= ω 12 Change in filament angle

vperp =
Fperp − FCOM

Γperp
13 Perpendicular translation velocity

vpar = Fpar/Γpar 14 Parallel translational velocity

dx

dt
=
√
v2
perp + v2

par cos β 15 How the plus end moves over time

dy

dt
=
√
v2
perp + v2

par sin β

σcortex + σfree = bv 16 Cortex stress and free filament stress

∆x =
σcortex + σfree

b
dt 17 Change in cortex filament location

σcortex =
Fcortex

Areacortex
= Eε 18 Cortex stress

(continued)
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Table 5.2 – (continued)

Equation Number Description

Fcortex = kcortex∆x = εEAreacortex
19 Cortex force

kcortex = Et/N 20 Cortex spring stiffness constant

∆x =
Edx+ Fmotor

L0b
dt 21 Simplified change in cortex filament location

∆x = 3
Edx+ Fmotor

L0E
dt 22 Further simplified, assuming b = 3 ∗ E

Favg =
1

M

∑
||F || 23 Average force for all motors.

var =
1

N

∑
i

√
(xpi − x̄p)2 + (ypi − ȳp)2 24 Variance of filament plus ends.

96



In order to determine the perpendicular (eqn 4) and parallel (eqn 5) components of force

acting on the filament, we calculate φ, the angle between the filament and the force vector

F (eqn 3). The torque (eqn 6) is a portion of the perpendicular force (eqn 4) distributed to

each end of the filament, where l1 is the distance from the base of the force vector to the

filament’s plus end, and l2 is the distance from the base of the force vector to the filament’s

minus end (l1 + l2 = L). We can then determine the total torque force (eqn 7) and the

translational component of the perpendicular force (eqn 8).

Once a set of forces have been applied to a filament we must calculate how it moves.

Since filaments are embedded within a viscous cytoplasm, we need to understand how a

filament might move using equations that relate the movement of long cylinders in a viscous

fluid. We represent viscous drag as a resistance to rotation and translation based on pre-

viously established theory for a cylinder moving through a viscous fluid [Hunt et al., 1994].

We use drag constants to represent the three directions of resistance: parallel translation,

perpendicular translation, and rotation (eqn 9): p is the ratio of the length (L) to diameter

(di) of the cylinder, and γperp=0.84, γpar=0.114, and γrot=-0.662 are constants when p =∞

[Tirado and Garcia de la Torre, 1979]. We assume the filaments experience high shear, so

the dynamic viscosity, η, is higher than water. From the viscosity terms, we can calculate

the tangential velocity (eqn 10) and then determine the angular velocity (eqn 11). Based

on the angular velocity, we update the filament’s orientation angle (eqn 12). The speed of

perpendicular (eqn 13) and parallel (eqn 14) translation are determined similarly. In order

to determine how the filament’s center of mass moves in the simulation frame of reference,

we calculate, β, the angle of the force vector in the simulation frame of reference, and then

update the center of mass accordingly (eqn 15).

5.2.3 Analysis techniques

All of the physics of the simulations were calculated in MATLAB and the plotting was done

in ImageJ. We can create a movie to let us see how filaments and motors move over the time

of the simulation. For most cases, the simulations were run for 1,000 time steps at a step size

of 0.01s, which translates to 10 seconds. From the movie we can create a kymograph, just
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like we would when analyzing an experimental time-lapse of labeled F-actin. We can also

calculate the mean intensity of F-actin, essentially the density of F-actin, within a certain

area over the simulation. We found that the F-actin asters consisted of radially oriented

F-actin whith all the plus-ends in the center. Because we have data for the locations of

filaments and motors, and motor generated forces for each time step, we can determine the

mean motor generated force over time, and the variance in the filament plus-ends over time

(eqn 24). We can also determine the fraction of filament plus ends that are clustered together

by creating a matrix that represents a 2D histogram of plus end locations. We search through

the matrix to determine clusters of elements, find the largest cluster, and sum how many

plus ends are in that cluster.

5.3 RESULTS

Our first goal was to generate an actomyosin contraction using the simplified 2D model and

whether these contractions would produce an aster. Aster is a morphologically defined radial

array of F-actin with plus ends at the center and minus ends pointed out. To match the

simulation with in vivo observations, we are also interested in understanding what parameter

cases or additional complexities are necessary in order to deconstruct the aster after it has

already formed.

5.3.1 Sparse Network

To validate the biophysics simulated by our model, we simulated a sparse network of F-actin

(50 filaments) and NMM II motors (250 motors; table 5.3 parameter values as the standard;

fig 5.5A). We observed the network of F-actin contracting into clusters. We can calculate

all of the motor generated forces (eqn 23), average them for each time step and observe how

force changes over time (fig 5.5B). We can also calculate the morphological features such as

the variance in the position of the filament plus ends over time (eqn 24). We observe the

system reaches a steady state, a state where variance and force no longer vary over time.
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Figure 5.5: Simulating and analyzing a sparse filament network. (A) A sparse network

simulation for 1,000 time steps, 50 filaments (white) and 250 motors (not shown). (B) The

mean motor exerted force (blue) over the time course of the simulation and the variance in

the plus ends (red) of the filaments over time. (C) The evolution of mean motor exerted

force over time for 100 different simulations (each initial morphology is random). (D) The

evolution of the plus end variance over time for the same 100 simulations shown in C.
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Because the initial starting location of filaments is random for each simulation, we ran

100 different initial conditions and compared the mean motor exerted forces (fig 5.5C), and

plus-end variances (fig 5.5D). The initial randomness of the network does not lead to huge

differences in the steady state of force or variance, although some differences do exist. We

anticipate that increasing the density of filaments and motors would decrease the observed

differences so we assume that the results from one simulation can represent the general results

for multiple simulations.

5.3.2 Dense network

In the sparse network simulation (fig 5.4E), we see that the actin network rearranges into an

aster. The next step was to consider the dynamics of a denser actin and myosin network (fig

5.6A; Movie F.1). In this case, we consider a network of 1,000 filaments and 5,000 motors.

With the denser network we see that the actin network is reorganized by the myosin motors

to an intermediary ring structure (time 250, fig 5.6) which continues to contract into a stable

aster (time 500-1,000, fig 5.6A). We find that the normalized mean intensity within a small

circle at the center of the hexagonal cortex increases over time, and eventually saturates (fig

5.6B). The reason the mean intensity decreases after the maximum is reached is because the

aster has moved out of the bounding circle. This is not the same reason for the decrease

in intensity for our in vivo experimental observations where the actin contractile bundle

dissipates. Therefore, we hypothesize that there must be an additional mechanism to break

up actin contractions.

We are also able to take a one pixel strip of the merged image of the simulation at

each time point to see the kymograph of the contraction over time (fig 5.6C). Again, the

contraction has moved away from the kymograph line, which is the reason for the depletion

of actin and myosin at the end of the kymograph. Because we are simulating actomyosin,

we can plot the mean motor exerted force over time (fig 5.6D) and the variance of the

filament plus ends over time (fig 5.6E). Both the force and variance plots show the steady-

state reached by the network. The force curve is similar to our rotational model (chapter 3;

[Miller et al., 2012]). The variance increases because of the ratio of filaments in the aster to
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Figure 5.6: Continued from previous page (C) A strip kymograph of the strip in the merged

image in A over time. (D) The mean motor exerted force (blue) over time for the simulation.

(E) The centroid variance (purple) over time for the simulation. (F) A plot of the fraction

of filament plus ends in the aster over time (green).

filaments outside of the aster (fig 5.6F). More filaments are not a part of the aster because

the motors have become trapped by the concentration of plus-end filaments. The polarity of

filaments within the aster have laid tracks to direct all walking, bound motors to the center

(fig 5.6A, myosin location in green). The density of filaments at the aster location insures

that motors are more likely to bind (if rate of attachment is preferable, then there is a huge

population of filaments within the motor’s search radius), and the motors are not capable

of diffusing fast enough to escape this “sink” since every time they bind, they are deposited

back into the center of the aster by walking on filaments until they fall off the plus ends.

5.3.3 Changing actin network morphology

Another benefit of modeling is that we can vary the parameters within and outside the

physiologically observed ranges and determine how the morphology of the aster changes or

stays the same. Our approach in varying parameters is analogous to experimental studies

where cells can be incubated with small molecule inhibitors which stabilize or destabilize F-

actin, and increase or decrease NMM II contractility (fig 5.2F-I)[Kim and Davidson, 2011].

In each of the following sections we began each simulation with the hexagonal boundary

and random initial locations for the actin and myosin. Simulations execute for 1,000 time

steps and generate steady state morphology (fig 5.7). The physiological ranges used in our

simulations are summarized in Table 5.3.
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Figure 5.7: Aster formation as biophysical parameters controlling filaments. The

images are the end actin morphology after 1,000 time steps. The yellow box indicates the

same ending image for a simulation with the standard set of parameters, but each row depicts

a different parameter variable. Each parameter variable starts at a random initial condition,

and the end images at t=1,000 are shown here. All biologically relevant parameters are

shown in green text, parameters outside the biological range are in red, and parameters for

which we have no reference are in white.
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Table 5.3: Parameter values for 2D model with references to in vitro values

Parameter name Symbol Coding value In vitro value Reference

Time to run simulation time 10 s ∼1-2 min [von Dassow et al., 2014]

Number of filaments N 1000

Number of motors M 5000

Persistence length L 1 µm 6nm-10µm [Murrell and Gardel, 2012]

of filament

Rate of motor p0 1/s Lower than p1

detachment

Rate of motor p1 10/s Higher than p0

attachment

Rate of filament p2 0.7/s 0.7-1.2/s [Pollard, 1981, Amann and Pollard, 2001]

polymerization

Time step size h 0.01s

Search radius of motor r 0.3 µm ∼0.3 µm length [Shutova et al., 2012]

of a single NMM II

Motor velocity v 1 µm/s 1-3 µm/s [Kron and Spudich, 1986, Murphy et al., 2001]

Dynamic viscosity eta 0.1 nN s/µm2 1× 10−6 nN s/µm2 [Hunt et al., 1994]

(continued)
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Table 5.3 – (continued)

Parameter name Symbol Coding value In vitro value Reference

Motor stiffness k 3 nN/µm 1.875 nN/µm [Kaya and Higuchi, 2010]

(single myosin)-

1,250 nN/µm

(skeletal muscle)

Rate of motor d 0.02/s

diffusion

Mean step size mu 0.001 µm

of motor diffusion

Diameter of actin filament di 0.008 µm 0.006-0.008 µm [Howard, 2001]

Hexagon diameter cote 2 µm 5 µm in 2D [Dasanayake et al., 2011]

simulation
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5.3.3.1 Varying parameters that affect filament properties Once formed, the aster

is a robust, steady state morphology. If F-actin was stable, i.e. no turnover (p2 = 0), the

filaments were stabilized with plus ends oriented into the center (see fig E2), but not all of the

filaments were bundled into the aster. This configuration depends on parameters that control

how large a region is “swept” by searching motors and how long motors dwell in these regions,

discussed next in motor parameters section. When the motors are walking at a certain

speed and then are quickly deposited into the center of the domain from the actin tracks

organizing like asters, the motors are trapped and can’t escape. In addition, when motors

can only stretch a small distance to bind to filament pairs, they cannot stretch out across

the entire domain to grab any additional filaments. In contrast, when the polymerization

rate is increased (p2 = 5), the aster can no longer form because the filaments are constantly

disappearing and reappearing, destabilizing any work motors are doing.

Changing filament length is similar to changing filament density and results in multi-

aster structures (L = 0.5), or a single, domain encompassing aster (L = 2; fig 5.7). Changing

the dynamic viscosity (η) for filament movement tunes the amount of force filaments expe-

rience and so can prevent large scale filament movements (η = 5), trapping filaments at the

periphery of the hexagon, or allow filaments to move right past each other, disrupting the

density of aster formation (η = 0.1; fig 5.7).

5.3.3.2 Varying parameters that affect motors In contrast to the filament param-

eters, we do not see any changes in the aster for motor detachment rates (p0). Likewise, the

motor attachment rate only disrupts the aster when the rate is small (p1 = 1; fig 5.8). Myosin

contractility does affect the aster formation. When we consider extremely soft motors, below

physiological range, filaments never congregate into an aster, but are more concentrated at

the periphery, if not multi-astered at the periphery (k = 0.5, 1; fig 5.8). Varying the motor

velocity did not result in a morphological difference in aster formation but did affect how

many plus ends were in the aster (see fig E3). As expected, when the motors move fast

(v = 3), they are unable to spend enough time on filament pairs to pull them into the aster

before becoming trapped (fig 5.8). Motor stretch (r) most strongly affected aster formation

because this parameter dictates how many possibilities there are for a motor to bind to a
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pair of filaments with the range, in addition to the time a motor can spend on a pair of

filaments before stretching too far and falling off (although this is not a huge factor, see E4).

5.3.4 Destabilizing and reestablishing the aster

In vivo we see asters form and also dissipate. Since we could simulate their formation we

also wanted to know whether we could simulate their assembly. To address this question

we turned to studying the stability of asters once a parameter was altered. In practice, we

refer to this as a “parameter switch.” The theory behind this approach was to begin with

a steady-state morphology (use the filament and motor locations at t=1,000 as the initial

starting position for a new simulation), change one of the parameters, run the simulation for

another 1,000 time steps, and see what the ending morphology of the actin network is. Since

there are a few parameter cases that do not show a single aster morphology at t=1,000 (fig

5.7), we consider these parameters in particular to determine if (1) we can deconstruct the

single aster from the standard case by switching a parameter and (2) we can reestablish the

aster by switching a parameter back to the standard case.

First we considered cases where we would start a simulation with an initial condition for

filament and motor locations from the t=1,000 case for our standard parameter set where

the stable aster is already well established. Beginning from this morphology, we changed

one parameter that we expected to destabilize the aster based on figure 5.7. We ran the new

simulation for the same length of time, t=1,000, and saw that the ending morphologies were

likewise destabilized, but all still showed small remnants of the initial aster (fig 5.9A).

The next question was if we could “rescue” or reestablish the aster by starting with

morphologies at t=1,000 whose parameters did not end up in a single stable aster (fig 5.7).

We then switched the abnormal parameter back to the standard value, ran the sim for

t=1,000 and found that all ending morphologies resulted in the single, stable aster (fig

5.9B).
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Figure 5.8: Aster formation as biophysical parameters controlling motors. The

images are the end actin morphology after 1,000 time steps. The yellow box indicates the

same ending image for a simulation with the standard set of parameters, but each row depicts

a different parameter variable. Each parameter variable starts at a random initial condition,

and the end images at t=1,000 are shown here. All biologically relevant parameters are

shown in green text, parameters outside the biological range are in red, and parameters for

which we have no reference are in white.
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Figure 5.9: Factors that destabilize or rescue asters. (A) All simulations started with

the morphology for the standard case when t=1,000 (down the center). One parameter

was changed, either increasing or decreasing, and the simulation was run for another 1,000

time steps. The ending morphology is shown to the left or right of the center column. (B)

Simulations started with the t=1,000 morphology for the center column. The parameter was

changed to the standard value in an attempt to rescue the original morphology.
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5.3.5 Transmitting force to surrounding cortex

Since the actomyosin contraction correlates to localized changes in cell shape, we wondered if

we could incorporate a type of cortex filament (fig 5.10B), similar to the boundary filaments

in our sliding model (chapter 4) to act as a type of “sensor” so we could gauge the amount

of applied force an aster could generate, and couple the filament to transfer force to a

boundary element of the cortical F-actin network to the rest of the cell. We assume that

our simulated domain is a small patch of the cell’s cortex (fig 5.10A). We simulated sensor

filaments whose plus ends are initially placed on the vertices of a polygonal boundary. The

sensor filaments are only allowed to slide in or out of the boundary of the polygonal patch

based on the forces exerted on them. Motors connect sensor filaments to free filaments in

the domain. Therefore, the motor force vector is projected onto the sensor filament so it is

parallel to the filament and we assume the cortex filaments do not experience any torque or

perpendicular translation. Since sensor filaments should return to the vertices if there are

no motors attached, we connect them to the boundary with a spring of stiffness, kcortex. The

spring seeks to return the sensor filaments to their initial position. The vector force balance

equation for the sensor filament (eqn 16), is simplified from Toyama, et. al [Toyoma et al.,

2008] where σcortex is the stress from the surrounding material around the patch, σfree is the

stress from the free filaments inside the patch, b is a viscous term, and v is the speed at

which the sensor filament is moving away or toward the vertex point. We can then calculate

the change in cortex filament position (eqn 17). Movement of the free F-actin is opposed by

viscous drag, b.

The stress within the cortex (eqn 18) is calculated using Areacortex, the cross-sectional

area of the cortex, or the perimeter of the patch times the thickness (t) of the cortex (fig

5.10A). E is the Young’s modulus for reconstituted F-actin gel. Strain is equal to ∆x
L0

, where

L0 is the initial diameter of the free actin domain. If there are N sensor filaments, then the

cortex force simplifies (eqn 19) and we can calculate the sensor spring stiffness (eqn 20). If

we used a Young’s modulus of 100 Pa [Falzone et al., 2012], a cortical thickness of 2 µm, and

6 sensor filaments (hexagonal patch), the stiffness required for a vertex spring is 0.2 nN/µm.

The physiological range for kcortex depends on the physiological range of E = 0.03 to 3,000
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Figure 5.10: Introducing cortex filaments and multi-sided polygons. (A) A cartoon

explaining the theory behind introducing cortex filaments (blue). The simulation is assumed

to be a patch of the entire actomyosin cortex, with cortex filaments (blue) under force

conditions analogous to the entire actomyosin cortex. The free filaments (red) are able to

move and contract as normal, but the cortex filaments are only allowed to slide in or out

when motors exert a force on them. Furthermore, the cortex filaments have plus ends on

the boundary, so they are oriented out from the center. (B) Simulating a 20-sided polygon

(icosahedron) with 20 cortex filaments (white) simulates a cortex Young’s modulus of 1 kPa

(table 5.2, eqn 20). (C) Simulating a 100-sided polygon (hectogon) with 100 sensor filaments

and a cortex Young’s modulus of 1 kPa.
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Pa, so the range of stiffness for sensor filaments, kcortex, would need to range from 0.00006

to 6 nN/µm. Since seek to understand how the plus end of the sensor filament moves, we

solve for the change in sensor filament plus end from vertex point, ∆x (eqn 21), where dx is

the current distance from the vertex of the hexagon to the analogous sensor filament’s plus

end, Fmotor is the projected force from all attached motors, dt is the change in time step

size for the simulation, and L0 is the initial diameter of the actin domain. We can simplify

the equation further using the conclusion from the Gardel group [Falzone et al., 2012], that

reconstituted F-actin gels have viscosity, b, 3 fold smaller than the modulus, E (eqn 22). It

is not clear if this relation is also true in tissues.

Simulating actomyosin within an icosahedron (20-sided polygon) with a Young’s modulus

1 kPa (fig 5.10B), we find actomyosin contracts into a stable aster, with some of the sensor

filaments brought into the center with the rest of the free filaments, but not all (fig 5.10B).

The force and variance plots appear similar quantitatively to the simulations run without

stiff boundaries (fig 5.6D, E). When we increase the number of sides of the polygon and the

number of sensor filaments to a hectogon (100-sided polygon), maintaining the same cortex

modulus of 1 kPa, we no longer see the stable, single aster (fig 5.10C; Movie F.2). Instead,

filaments begin to contract into a ring structure,and bundle. The number of bundles depends

on the distance spanned by motors (data not shown) and these bundles align with the plus

ends of sensor filaments. We believe we can think of the plus-ends of the sensor filaments

as the domain-edge and even the cell-edge if we changed boundary conditions for the free

filaments. This observation supports both Rauzi, et al. and Martin, et al.’s observations

that the boundary elements can draw asters to the cell edge [Rauzi et al., 2010] and cause

the boundary to shorten [Martin et al., 2009].

In our experimental analysis with tissues treated with Latrunculin B (increases F-actin

depolymerization), for example, we see filament asters at the boundaries of the cells (fig 5.2F).

We see this in our simulation when we reduce the filament length (fig 5.7), which would be

analogous to a case when filament depolymerization is high, decreasing the persistence length

of F-actin. Furthermore, it suggests that localization of actin binding or stabilizing proteins

to specific areas can relocate or even break apart emergent asters.
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Figure 5.11: Reconstituted fluorescent actin contracted by myosin VI Image from

Reymann, et al. [Reymann et al., 2012] showing fluorescent actin contracted by myosin VI

over time. Actin was micro patterned into a bar shape using an actin nucleating protein

stamp. Then a mixture of actin monomers and myosin VI were added. Actin quickly

nucleated from the bar pattern, and then myosin VI contracted the actin into an aster

structure.

5.3.6 The control of F-actin morphology with patterned substrates

Recent studies examined the dynamic remodeling of F-actin, Myosin VI and II, and actinin

within reconstituted gels [Reymann et al., 2012]. They stamped an actin nucleating protein,

Wiskot-Aldrich syndrome protein (WASp), onto a micropatterned bar and added G-actin

with actin promoting factors to form a dense actin network on the bar with F-actin filaments

plus ends on the bar and minus ends off the bar. Then they added myosin and ARP 2/3 to

observe the contraction of the bar network. Myosin then contracted the actin network into

an aster (fig 5.11). We were able to simulate the experiment and observe similar results (fig

5.12A; Movie F.3). Instead of adding in the complexity of polymerizing F-actin to create the

bar geometry, we began with F-actin located within the bar, and a population of filaments

with plus ends on the bar and minus ends off of the bar. We then allowed motors to be

located over the entire domain (simulating the addition of a myosin solution). We observed

that the myosin walks and relocates to the bar area while moving the filaments. Once

myosin’s were on the bar, they contracted the structure down into an aster.

Reymann, et al. also examined interactions between filaments polymerizing from a rect-

angular domain of filaments and myosin motors tethered to the substrate. In this case they

considered myosin VI. Tethered motors have one “leg” of the motor bound to the substrate
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Figure 5.12: Simulating in vitro experiments of purified actin and myosin (A) A

“bar” of actin: The simulation begins with a portion of filaments totally located inside the

bar and a portion of filaments with plus ends on the bar and minus ends off of the bar.

Continued on next page
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Figure 5.12: Continued from previous page Myosin motors begin located over the entire

domain. Over time, the myosin motors bind to the filaments and walk towards the plus

ends, congregating onto the bar. Once myosin motors are on the bar, they contract the actin

network into an aster. (B) Tethered motors: A portion of the motors are “tethered” to the

bottom eighth of the hexagon, meaning one leg is fixed into an area in the bottom eight,

and the other leg is able to bind to filaments. The rest of the motor population are “loose”

across the entire hexagonal domain. Over time, the aster forms as usual, but the tethered

motors are able to deplete the bottom portion of the aster, pulling these filaments away.

and the other “leg” free to bind and walk on filaments. They observed that the bar of motors

pulled the bar of filaments down to the motor location. We decided to simulate this using

our hexagonal boundary, and having a portion of myosin motors tethered (fig 5.12B; Movie

F.4). The tethered motors had one leg attached to the substrate in the bottom eighth of the

hexagon, and the other leg was free to bind to a filament, move towards the filament plus

end, exerting a force, and pulling the filament toward its substrate bound leg. In this case we

observe that the free motor network contracts the actin into the characteristic ring and then

to the single aster while the tethered motors pull at the actin structure, pulling and depleting

the aster at the bottom. This suggests that tethered filaments (e.g. the boundary sensor

filaments from fig 5.10) and tethered motors pull and move an aster structure, repositioning

the aster to the source of the tether.

5.4 DISCUSSION

Although our simulation implements only simple biophysical interactions of actin and myosin,

we are able to capture a range of phenomena observed both in vivo and in vitro. We demon-

strated that by “tuning” parameters for actin and myosin dynamics within their physiological
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ranges, we were able to generate different actomyosin morphologies, further supporting the

role played by motor activities and F-actin turnover in shaping the actomyosin network.

In vivo, filament movement is primarily due to motors, but filaments can undergo de-

polymerization. In the cell F-actin can polymerize or depolymerize depending on the con-

centrations of G-actin and polymerization factors. The structure of the G-actin monomer

creates an inherent polarity when the monomers polymerize together and create F-actin.

At a critical concentration of G-actin, there is no change in F-actin length. Below critical

concentration, F-actin shortens, and above critical concentration F-actin lengthens. In gen-

eral the polarity of F-actin is defined as a fast growing plus end, and a slow growing minus

end [Howard, 2001] (fig 5.4A). In vitro experiments have shown that actin monomers expe-

rience rapid polymerization at the beginning, but then reach a persistent length once the

population of monomers is largely depleted [Alberts, 2008]. The current model assumes the

system is at steady state, where G-actin and proteins stabilize the rates of polymerization to

maintain filament lengths. We plan to extend the model in the future, however, to include

the populations of G-actin monomer and vary filament lengths.

Reconstitued actin gels are able to generate a contraction in the actin network, but the

disassembly of the contraction is not understood [Falzone et al., 2012]. Since experimental

work for in vivo actomyosin show punctuated contractions that assemble and disassemble,

understanding the mechanism for disassembly is as important as understanding assembly.

Through our simulations of parameter switches (fig 5.9) we have begun to address this

question. Running the simulation to a certain point in time, changing a parameter value,

restarting the simulation for another period of time demonstrates destabilizing or reestab-

lishing the single aster morphology and occurs on an extremely fast time scale. To consider

more physiologically relevant activations of parameter variation, such as increasing the rate

of polymerization when myosin density is high, we can extend our model to consider a range

of hypotheses concerning filament and motor density activating certain proteins.

By including sensor filaments, we were able to destabilize the single aster, and relocate

smaller, bundled asters. Also, we were able to place restrictions on motor location, which

causes filaments to be pulled to a different location. Through restrictions placed on filament

and motor locations, we were able to disrupt, or relocate the steady state aster morphology.
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This result suggests two more mechanisms possibly used by cells in vivo to disassemble

and relocate the punctuated actin contractions. We would be interested in extending this

concept of moving asters to a mechanical regime where an anisotropic force is applied to the

cortex boundary and results in a change in steady state morphology. Extending the model

in this way would help to address questions of how cells react to externally applied forces

and remodel their cytoskeleton accordingly.

Our “steady state” morphology is a radial aster, and although we were able to break apart

the aster via parameter changes or different mechanisms, we did not see bundles of parallel

arrays of actin, or what we would term co-aligned filaments like we observe experimentally.

We can argue that the transitioning ring contraction morphology is a sort of co-aligned

structure, like what is observed during the formation and contraction of the cytokinetic

furrow, but we did not see a sort of stress-fiber co-alignment. To take this next step in

modeling we would need to consider a cross-linking actin binding proteins, such as filamin.

We could also consider the nucleating and actin-branching protein ARP 2/3 if we simulated

varying filament lengths based on monomer concentrations and (de)polymerization rates. It

is reasonable to assume that activation of these proteins (and the rest of the plethora of actin

binding proteins) would lead to different, emergent actin morphologies, based on when the

activation occurred, how long it lasted, and to what degree it was activated. In the future,

we will be considering these additional dynamics and players of the actomyosin system but

maintain our philosophy that the addition of these dynamics and proteins will be a simple

emergent morphology.
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6.0 BIOMECHANICS AND THE THERMOTOLERANCE OF

DEVELOPMENT

The purpose of this study was to examine the role that temperature plays in development.

Dr. von Dassow began examining the temperature effects on Xenopus laevis embryos within

the physiological range (16◦ to 26◦C) and observed that the bulk mechanical properties

of the embryos did not change, however, the reaction to electrically induced contraction

decreased at lower temperature. I was brought onto the project to image and analyze

actomyosin contractions at the low, room, and high temperatures. I found that the duration

of actomyosin contractions increased at low temperature compared to high, however, there

was also a population of short duration contractions at low temperatures that was absent

from both room and high temperature data. This study was published in PLoS One in April

2014 [von Dassow et al., 2014].

6.1 ABSTRACT

Successful completion of development requires coordination of patterning events with mor-

phogenetic movements. Environmental variability challenges this coordination. For example,

developing organisms encounter varying environmental temperatures that can strongly influ-

ence developmental rates. We hypothesized that the mechanics of morphogenesis would have

to be finely adjusted to allow for normal morphogenesis across a wide range of developmental

rates. We formulated our hypothesis as a simple model incorporating time-dependent appli-

cation of force to a visoelastic tissue. This model suggested that the capacity to maintain

normal morphogenesis across a range of temperatures would depend on how both tissue vis-
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coelasticity and the forces that drive deformation vary with temperature. To test this model

we investigated how the mechanical behavior of embryonic tissue (Xenopus laevis) changed

with temperature; we used a combination of micropipette aspiration to measure viscoelas-

ticity, electrically induced contractions to measure cellular force generation, and confocal

microscopy to measure endogenous contractility. Contrary to expectations, the viscoelastic-

ity of the tissues and peak contractile tension proved invariant with temperature even as rates

of force generation and gastrulation movements varied three-fold. Furthermore, the relative

rates of different gastrulation movements varied with temperature: the speed of blastopore

closure increased more slowly with temperature than the speed of the dorsal-to-ventral pro-

gression of involution. The changes in the relative rates of different tissue movements can be

explained by the viscoelastic deformation model given observed viscoelastic properties, but

only if morphogenetic forces increase slowly rather than all at once.

6.2 INTRODUCTION

Developing organisms encounter variable environmental conditions. They may be exposed

to environmental toxins, limited nutrients, extreme temperatures, etc. We are particularly

interested in one of these environmental factors, temperature, since temperature extremes

can result in a diverse sent of birth defects [Edwards, 2006, Banhidy et al., 2005, Moretti

et al., 2005, Miller and Church, 2013]. High fever is one of the largest risk factors leading to

birth defects. Fevers as high as 38.9◦C during the first month of pregnancy have been linked

to defects observed in animal models [Graham et al., 1998]. Since the timing of exposure

correlates to early morphogenetic movements that shape the body plan of the early embryo,

we considered the role of temperature in the biomechanics of these early movements in the

frog Xenopus laevis.

The most surprising aspect of temperature is not that it causes defects, but that many

ectothermic animals develop normally across a wide permissive range of temperatures. How-

ever, the frequency of developmental defects jumps to 100% above or below this range [Bach-

mann, 1969, Schirone and Gross, 1968, Bingham et al., 1997, van der Have, 2002]. Within

119



the permissive range, developmental rates can vary by more than three-fold with tempera-

ture, with little change in the frequency of defects. Most studies indicate little or no change

in the frequency of defects. Most studies indicate little or no change in the relative timing of

morphogenetic events as developmental rate varies [Atlas, 1935, Ryan, 1941, Tyler, 1936, Fu-

jisawa, 1993, Jarosik et al., 2004, Kimmel et al., 1995, Stephens, 1972], although differences

in the temperature dependence of cleavage stages and embryo mic morphogenesis have been

observed [Schirone and Gross, 1968, Ryan, 1941]. To understand why development fails at

high and low temperatures, we need to understand the mechanisms that prevent it from

failing, despite dramatic variation in developmental rate, across intermediate temperatures.

Temperature is a key regulator of rates of chemical and biological processes during de-

velopment. Much of this variation can be understood in the temperature dependence of

chemical reaction rates such as the rate of the ATPase activity, the rate of myosin cross

bridge cycling [Kawai et al., 2000, Rall and Woledge, 1990] or the rate of exchange of GDP

for GTP on actin monomers and the rates of actin polymerization. Temperature depen-

dence of diffusion may also regulate cellular processes such as signaling and the assembly

of multi-protein complexes. Rates of simple reaction and diffusion processes vary smoothly

with temperature but complex events, such as progression through the cell cycle, often do

not [Chan et al., 2010].

We hypothesized that coordinating the biochemical processes of patterning with the

mechanical processes of tissue deformation and movement is crucial to maintaining normal

morphogenesis across the permissive temperature range [von Dassow and Davidson, 2011].

Since morphogenesis requires both forces to deform tissues and the establishment of stiff

tissues to limit or resist deformation [Davidson, 2011], we propose that the rate of mor-

phogenetic movements should depend on the forces driving the movement, the viscoelastic

resistance of the embryonic tissue, and the actomyosin contractility underlying these phys-

ical processes. Both cellular force generation and viscoelasticity are strongly dependent on

temperature [Evans and Yeung, 1989, Liu et al., 2007, Mitchison and Swann, 1954, Norris,

1940, Picard and A., 2009, Rico et al., 2010, Sung et al., 1982, Sunyer et al., 2009, Yoneda,

1976, Kieβling et al., 2013]. For example, cultured human alveolar epithelial cells are much

stiffer and more solid-like, while exerting twice the traction forces, at 37◦C than at 13◦C
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[Sunyer et al., 2009]. Therefore, we expected that temperature dependence of developmental

rate would require fine control of the mechanics of the embryonic tissue. In this study we

formulate biomechanics models of the temperature dependence of morphogenesis and test

both the assumptions and consequences of those models within a temperature range that

permits normal development.

Gastrulation is one of the earliest and most significant morphogenetic movements in

vertebrate development (Movie G.1). In the frog, Xenopus laevis, gastrulation integrates

the action of multiple cell behaviors, including epiboly, involution, convergent extension,

and convergent thickening, to close the blastopore over the endoderm and establish the

archetypical body plan consisting of the three primary germ layers [Keller and Shook, 2004].

The stages of gastrulation are marked by: 1) constriction of bottle cells to encircle the yolk

plug; 2) formation of a groove at the site of bottle cell contraction, initially at the dorsal-

anterior end of the yolk plug, and progressing to the ventral-posterior end of the yolk plug;

3) initial involution at the dorsal anterior end of the blastopore lip spreading to the ventral-

posterior lip; and 4) closure of the blastopore [Nieuwkoop and Faber, 1967]. Blastopore

closure often fails when cell motility, cell adhesion, or the cytoskeleton are perturbed. We

investigate the temperature dependence of blastopore closure because these movements are

easily visualized and exhibit clear milestones.

Biomechanical contributions to the temperature dependence of developmental rate ap-

pear necessary to explain how tissue movements and deformations are coordinated with

molecular patterning processes within the permissive temperature range. Many other molec-

ular and cellular processes may influence the temperature dependence and temperature limits

of development. These include the temperature dependence of cell-cycle regulation [van der

Have, 2002] or membrane fluidity [Nelson et al., 1982], excessive apoptosis at high temper-

atures and/or limits to protection by heat shock proteins and other pathways that protect

against cell damage [Edwards, 2006, Mirkes et al., 1997, Hosako et al., 2009, Podolsky,

2003]. Here we focus solely on biomechanics and variation in developmental rates over the

permissive temperature range.
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6.3 RESULTS

6.3.1 Changes in viscoelasticity and force generation

To understand the dependence of morphogenesis on temperature we first developed a simple,

generalized model (Model 6.5.5.1; Text G.3.1) to predict expected changes in tissue viscoelas-

ticity and force generation with temperature. We then tested the model’s assumptions and

predictions using micro aspiration to measure tissue viscoelasticity, and electrically induced

contractions to measure force generation (Fig. 6.1A-D) [von Dassow et al., 2010]. Even

without considering the complexities of cell adhesion, cell signaling, cytoskeletal dynamics,

etc., a three dimensional (3D), non-linear, large-deformation viscoelastic model would in-

volve large numbers of poorly constrained parameters. This would limit its predictive value.

A simplified linear, small deformation model allows us to incorporate the essential features

(temperature dependence of deformation rates, forces, and viscoelasticity) with a minimum

of parameters, all of which can be experimentally constrained.

We formulated our initial model by assuming that the relative timing and magnitude of

tissue deformation is identical at different temperatures (Model 6.5.5.1). This is based on

the observations that different developmental stages look similar at different temperatures

within the permissive range, and that the proportion of time spent in each stage is simi-

lar at different temperatures (e.g. [Atlas, 1935]). Thus, we assumed that stages define a

temperature-independent “developmental time” that is proportional to clock time through

a temperature-dependent constant (see Model 6.5.5.1, eqn.6.5 for definition). For the same

reason, we assume that the relative timing of gene expression and protein activation are

identical at different temperatures. Furthermore we assume that the timing and magnitude

of force generation scales uniformly with temperature: forces exerted by the tissues vary

the same way with stage at every temperature, except for possibly a temperature-dependent

proportionality factor. This assumption is biologically plausible since we assume force pro-

duction is controlled by changes in gene expression and protein activity, the timing of which

we already assumed varies uniformly with temperature. Furthermore, there are a small

number of proteins that contribute to generating force in the embryo (primarily actomyosin
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complexes [Lecuit et al., 2011, Zhou et al., 2009]) and it is parsimonious to assume that these

proteins are affected by temperature in the same way in every cell. Making these assump-

tions allows us to predict how the viscoelastic properties should change with temperature

over the permissive range (Model 6.5.5.1: eqns. 6.14 & 6.15). Specifically, we predicted that

the exponent (β; see Table 6.1 for a list of symbols) in the power law model of viscoelasticity

(eqn. 6.13) should be independent of temperature. This parameter indicates whether the

tissue behaves more like a solid (β = 0) or a fluid (β = 1).

We tested the prediction that β is independent of temperature using microaspiration,

and then tested our assumption that deformations during induced contractions (Fig. 6.1)

and normal gastrulation are independent of temperature. We performed microaspiration at

16◦C and 26◦C and fitted the deformations to a power law model of viscoleasticity (eqn.

6.1) to estimate β and J [1] (the compliance- the proportionality between strain and stress -

at 1 second after stress is applied). The temperature dependence of cell stiffness and force

generation depends on myosin activity in human alveolar epithelial cells [Sunyer et al., 2009].

Therefore we tested for effects of inhibiting myosin contractility by applying blebbistatin at

these two temperatures.

Consistent with the prediction of our model, there was little or no change in β with

temperature (Fig. 6.1E; Tables 6.2 &6.3), whereas incubation of the embryo in blebbistatin

increased β slightly but statistically significantly, indicating that inhibiting myosin contrac-

tility made the tissue slightly more fluid-like (Fig. 6.1E, Table 6.2). The interaction between

temperature and blebbistatin treatment was not statistically significant for β (Table 6.2).

Our model assumes that the large scale deformations of morphogenesis are independent

of temperature (eqn. 6.6). Therefore, we expected that small scale deformations associated

with cell contractions should also be independent of temperature. To test this in a controlled

manner, we electrically induced contractions of tissues in the channel of the microaspirator.

Contrary to our predictions, the magnitudes of contractions were reduced by 44% at 26◦C

compared to contractions at 16◦C (Fig. 6.1A, F; Tables 6.2 & 6.3). Contractions lasted 3.4

times longer at 16◦C than at 26◦C (Fig. 6.1A & G; Tables 6.2 & 6.3). Blebbistatin did not

significantly affect contraction magnitude or duration (Fig. 6.1F-G, Table6.2).
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Table 6.1: Symbols

Symbol Description

c Proportionality between stress at T2 and stress at T1 in generalized model

f Peak apical tension during contraction

h Duration of apical tension during contraction

J Compliance: relates strain and stress as a function of time since

stress application

k Hypothetical constant of proportionality between peak apical tension and

stress driving blastopore closure

RCP Relative duration of blastopore closure to progression of involution: tC/tP

t Clock time

T Temperature

tC Time for blastopore closure

tP Time for dorsal-ventral progression of involution

w Slope of stress in ramp model

α Proportionality between developmental time and clock time in

generalized model

β Exponent that determines time dependence of compliance

ε Strain (Ln[L/L0]), a non-dimensional measure of deformation

σ Stress (force/area)

τ Developmental time in generalized model (Model 6.5.5.1)
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Figure 6.1: Temperature dependence of compliance and strength of induced con-

traction Representative kymographs of microaspiration with electrically induced contrac-

tions at 900 seconds at 16◦C (upper) and 26◦C (lower). Continued on next page
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Figure 6.1: Continued from previous page (B) Fit of power law viscoleastic model to the

aspirated length from 600 to 900 s for the 26◦C case. (C) Flow chart for analysis of con-

tractions. (D) Contraction analysis. ‘X’s indicate half-max, max, and return to half-max for

each curve. Panels B and D show data from the lower embryo in A. Arrowheads in A and

B indicate electrical stimuli. (E) β (F) maximum displacement during induced contraction,

(G) duration (half-maximum until return to half-maximum displacement) of contraction, (H)

compliance at 1 s (triangles) and at 300 s (circles), (I) maximum apical tension during in-

duced contraction, (J) duration of apical tension. Triangles and circles: individual embryos;

X’s: means.

In contrast to results from studies with human cells [Sunyer et al., 2009], temperature had

little effect on the compliance of the tissue (J [1] or J [300]; Fig. 6.1A, H, Tables 6.2 & 6.3).

Blebbistatin did not significantly affect the compliance at 1 second, but - due to the change

in β- it did increase compliance at 300 s (Fig. 6.1H, Table 6.2). The interaction between

temperature and blebbistatin treatment was statistically significant for J [300], though not

for J [1] (Table 6.2). Therefore, myosin activity may influence the temperature dependence

of stiffness in the system.

From the contraction profiles we can calculate the forces driving induced contractions

based on the viscoelastic properties of the tissue (Fig. 6.1B-D; [von Dassow et al., 2010]).

Previous results suggest that these forces are best described as apical tensions [von Dassow

et al., 2010]. Note that our method for calculating apical tensions assumes that the compli-

ance does not change during contractions. We have been unable to test this so far because

contractions are transient. However, neither the calculated tensions nor the viscoelastic pa-

rameters varied significantly with temperature. Therefore, it is parsimonious to assume that

temperature does not substantially affect the true tension or compliance during contractions.

The peak apical tension was not significantly affected by temperature (Fig. 6.1; Tables

6.2 & 6.3). The higher contraction speed, but unchanged viscoelasticity and unchanged
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Table 6.3: Temperature dependence of mechanical and morphogenetic parameters

Process Parameter (X) X(16◦C)/X(26◦C) (LB, UB)1

Morphogenesis tC (time for blastopore closure) 2.73** (2.29, 3.26)

tP (time for dorsal to ventral 3.29** (2.75, 3.94)

progression of involution)

RCP (tC/tP ) 0.83** (0.72, 0.94)

Viscoelasticity Compliance J [1] 0.98 (0.85, 1.13)

Compliance J [300] 1.02 (0.9, 1.16)

β 1.04 (0.88, 1.24)

Simulated contractions Contraction Duration 3.36** (2.23, 5.06)

Contraction Magnitude 1.75* (1.29, 2.38)

Tension duration (h) 2.85** (2.26, 3.6)

Peak Apical Tension (f) 1.37 (0.98, 1.94)

Endogenous actin Duration2 1.32** (1.10, 1.57)

dynamics

*P ≤ 0.05; **P ≤ 0.01; Significant difference between 16 and 26◦C for log transformed

parameters.

1Estimated mean and confidence interval for log-transformed parameters were determined

using ANOVA (mechanics and actin) and Tukey’s honestly significant difference criterion,

or T-tests (morphogenesis).

Values were then transformed back to a linear scale to provide estimates of the lower and

upper bounds (LB, UB) on the ratio. To obtain confidence bounds here, we used ANOVA

with temperature treatment as a categorical variable, and explant as a random factor; clutch

was excluded because it was non-significant.

2Comparing 17◦ and 27◦C. Ratios for the durations of actin contractions were 0.9 between

16.9◦C and 21.3◦C, and 1.5 between 21.3◦C and 26.7◦C.
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peak force, drive the decrease in contraction magnitude at higher temperature. The small

reduction in apical tension and tension duration in blebbistatin treated embryos was not

statistically significant (Fig. 6.1I-J, Table 6.2). The molecular mechanisms responsible for

contraction in response to electrical stimulation in these tissues have not been elucidated,

and may depend more on F-actin polymerization-dependent changes in membrane tension

[Lieber Arnon et al., 2013] than myosin-mediated contractility.

6.3.2 Temperature dependence of morphogenesis

Given the failure of our prediction that contraction magnitudes would remain unchanged with

temperature, we tested our assumption that the relative timing of morphogenetic events is

independent of temperature (Model 6.5.5.1, eqn. 6.5). To test this we measured how the

ratio of the durations of two morphogenetic processes changed with temperature. While

chosen primarily due to the clarity of their beginning and end points, these two processes-

blastopore closure, and the dorsal-to-ventral progression of superficial involution (Fig. 6.2A;

Movie G.1)- also reflect distinct processes. Blastopore closure involves large scale tissue

movements, whereas superficial involution is much more local, and likely represents the

timing of signaling events that trigger changes in cell behaviors. Therefore the dorsal-to-

ventral progression of involution reflects the difference in timing of cell behaviors between

the dorsal and ventral side (Fig. 6.2A).

Contrary to our assumptions, the relative durations of different morphogenetic move-

ments varied with temperature. The time (tp) between the beginning of involution on the

dorsal side and the beginning of involution on the ventral side was 3.3 times longer at 16◦C

(n = 8 clutches) than at 26◦C (n = 7 clutches). However the time (tC) between the beginning

of dorsal involution and the completion of blastopore closure was only 2.7 times longer at 16◦

than 26◦C. These changes in the timing of developmental events were similar to the changes

in duration of induced contractions (Fig.6.1G). The relative duration of blastopore closure

(RCP ), measured as the ratio of tC to tP , was significantly reduced at lower temperature,

from 2.55 ±0.29 at 26◦ to 2.11±0.27 at 16◦C (mean ± SD; Fig. 6.2B; P = 0.01; t-test; Table

6.3).
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Figure 6.2: Blastopore closure at high and low temperatures. (A) Upper: vegetal

view of an embryo showing the blastopore soon after the start of dorsal superficial involu-

tion. Lower left: kymograph of blastopore cosure at 26◦C, taken along the yellow line from

the dorsal side to the ventral side, showing the points when dorsal (DI) and ventral (VI)

superficial involution begin, and when the blastopore closes (BC). Right: kymograph taken

along a line from the dorsal to the ventral side at 16◦C. (B) the ratio (RCP of the time

for blastopore closure to the time for dorsal-to-ventral progression of involution versus the

time (tP ) for dorsal-to-ventral progression of involution. Dots indicate embryos. X’s indicate

medians for clutches (4 to 8 embryos each).
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6.3.3 The role of the time dependence of force generation

We were curious whether the viscoelastic model of morphogenesis could explain the effect

of temperature on the relative durations of developmental processes, specifically on RCP .

Here we relax the assumption that all developmental processes follow the same clock. We

assume instead that “patterning”, including all the molecular processes driving changes in

cell behaviors, follows one clock, but that large scale morphogenetic movements deviate from

the timing of patterning due to tissue viscoelasticity.

To investigate how the dependence of force production on developmental time might

alter the temperature dependence of morphogenesis, we compared two specific variants of

the linear viscoelastic model (Models 6.5.5.3 & 6.5.5.4). In the step model we assumed the

force driving blastopore closure turns on all at once at the beginning of blastopore closure,

immediately reaching a peak force and remaining there. In the ramp model we assumed

that the forces driving blastopore closure increased gradually with a constant slope, and

that the slope was proportional to the rate of patterning. We assume that all cellular

responses including gene activation, and cell behaviors, follow the same clock. Blastopore

closure is thought to be driven in large part by convergence and extension of the mesoderm,

which pulls the ectoderm over the embryo as the mesoderm shortens laterally [Keller and

Shook, 2008]. The mediolateral cell intercalation behaviors that drive this do not occur

simultaneously throughout the dorsal mesoderm, but instead start and spread progressively

[Shih and Keller, 1992]. Therefore we might expect that the forces driving blastopore closure

ramp-upwards with time (Fig.6.3A). In both the step and ramp models, we assumed that

temperature had the same effect on cell-generated forces driving blastopore closure as it does

on the induced contractions.

In these more specific versions of the general model we made the following simplifying

assumptions which tie it to our experimental measurements, leaving no free parameters.

We assumed that the progression of superficial involution reflects the timing of patterning

events rather than mechanical events. Superficial involution is a localized phenomenon and

normal dorsal to ventral progression of superficial involution can be reversed by placing

embryos in temperature or oxygen gradients [Black, 1989, Black et al., 1996]. These obser-
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Figure 6.3: Comparison of viscoelastic models of morphogenesis for ramped versus

stepped forces. (A) Diagram of model. Summed contractions (wavy lines) average out to

stepped or ramped stresses (σ) depending on when cells begin contracting. When applied

to the viscoelastic material with compliance J [t], the deformations (strains, ε) follow the

time course of ramped forces more closely than stepped force. This can be visualized as

adding up strains due to a series of stepped forces applied over time (dotted lines on right).

(B) Predictions for RCP , the ratio of the time for morphogenesis (blastopore closure) to the

time for patterning (D-V progression of involution), as a function of the time for patterning

at temperature T , normalized to the time for patterning at 16◦C, for ramped vs. stepped

models for different values of β. Yellow dots: grand mean of experimentally observed values.

The curves automatically converge to the right hand dot (at 16◦C) where T2 = T1 since tC

at T1 is used to calculate RCP at T2. Continued on next page
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Figure 6.3: Continued from previous page (C) Comparison of the observed RCP at 26◦C to

the predictions for models with ramped or stepped forces, and with temperature invariant or

varying mechanical properties (inset: prediction for stepped force model with temperature

dependent mechanical properties on a log scale.) Error bars indicate confidence intervals.

(D) Histogram of bootstrap resampling estimates of RCP at 26◦C for each model (10,000

resamples total).

vations suggest that progression of involution from the dorsal to the ventral side does not

involve large scale mechanical interactions around the embryo, but is tied to the local rate

of cellular differentiation. Given this assumption, the rate of patterning (e.g. the timing

of when cells begin force-generating behaviors) is inversely proportional to the time for the

dorsal-to-ventral progression of involution (tp). We approximated the complex movements

of blastopore closure with a one-dimensional (1D), linear viscoelastic model (Text G.3.1).

Additionally, we assumed that the viscoelastic parameters measured by micro aspiration (5

minute time scale) could describe viscoelasticity at the time scales of morphogenesis (2 to

6 hrs). Finally, we assumed, based on the lack of statistically significant effects from our

microaspiration and induced contraction experiment, that β, J [1], and the magnitude of cell

generated force are unaffected by temperature.

With these assumptions, the step model with invariant mechanical parameters, predicts

that the time for blastopore closure (tC) would be independent of the time for progression of

involution (tP ) since neither the force nor the viscoelasticity change. Therefore RCP would

increase rapidly as tP goes down (Fig. 6.3B): at low temperatures the blastopore would close

quickly relative to the propagation of cell behaviors driving involution. In addition, RCP

would be independent of the how solid or fluid the tissue is (the value of β; Fig. 6.3B). The

predicted value of RCP for the step model at 26◦C (based on the ratio at 16◦C) is much

higher than the experimentally observed value (Fig.6.3C).
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By contrast, the ramp model predicts a much weaker dependence of RCP on tP . Because

the driving force increases with time more slowly when tP is larger than when tP is small,

tC increases with tP (Fig.6.3B). In addition, the dependence of RCP on tP varies strongly

with the value of β, i.e. with how solid-like or fluid-like the tissue is (Fig. 6.3B). Using the

average value of β for the DMSO control embryos at both temperatures (Fig. 6.1E), and

the value of RCP at 16◦C, the predicted value of RCP at 26◦C is surprisingly close to the

observed value (Fig. 6.3C).

The absence of statistically significant effects of temperature on mechanical parameters

measured by micro aspiration and induced contraction does not mean that the observed dif-

ferences are not real. Including our observed values of each mechanical parameter for each

temperature (From the DMSO controls) substantially changes the outcome of the model.

When mechanical parameters vary with temperature, the ramp predicts a higher than ob-

served RCP at 26◦C (Fig. 6.3C). However, it is still closer to the observed value than for

the step model, and the bootstrap confidence intervals overlap the observed value. When

mechanical parameters vary with temperature, the step model predicts an extremely high

RCP at 26◦C, although the broad confidence interval includes the observed value (Fig. 6.3C).

Furthermore, we note that the step model is extremely sensitive to variation in mechanical

parameters, much more so than the ramp model (Fig. 6.3C-D). Given observed levels of

variation in mechanical parameters, the step model predicts larger variation in RCP at 26◦C

(Fig. 6.3D) than we observed in live embryos (Fig. 6.2B).

6.3.4 Temperature regulates duration of punctuated F-actin contractions

Recent reports of actomyosin dynamics during morphogenesis (see review [Gorfinkiel and

Blanchard, 2011a]) and a previous report by our group that electrically induced contractions

are accompanied by a phase of F-actin remodeling [Joshi et al., 2010] suggested that acto-

myosin dynamics might underlie the complex dependence of morphogenesis on temperature.

Furthermore, cortical F-actin dynamics have been implicated in regulating both cell behav-

iors and biomechanics properties of Xenopus embryos at these stages [Zhou et al., 2009, Kim

and Davidson, 2011, Zhou et al., 2010b, Skoglund et al., 2008]. Due to technical challenges
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in recording actomyosin dynamics during micro aspiration we investigated actin contractions

in the basal cell cortex of ectodermal explants (e.g. animal cap explants). To understand

how temperature regulates these dynamics we collected time-lapse sequences of punctuated

actin contractions within isolated animal cap explants cultured on fibronectin-coated glass

(Fig. 6.4A). We confirmed the incidence of actin contractions in animal caps at 21.3◦C (room

temperature) as well as at 16.9◦C and 26.7◦C (Fig. 6.4B). Single confocal images did not

reveal differences in the qualitative appearance of cortical F-actin across this range of tem-

peratures but time-lapse sequences highlighted consistent retardation of F-actin dynamics

at low temperatures and acceleration at high temperatures (see Movie G.2).

Quantitative analysis of the duration of F-actin contractions across three temperatures

reveal how dynamics of these contractions change as temperatures either increase or decrease

from room temperature. As the temperature was reduced from 26.7 to 21.3◦C the average

duration of contractions increased from 92 seconds (+/-34 seconds; n = 113) to 122 seconds

(+/-37; n = 114; Fig. 6.4B). Surprisingly, as the temperature was reduced further, from

21.3 to 16.9◦C, the average duration remained essentially unchanged (199 +/- 58 seconds;

n = 124). The non-linear effects of temperature on contraction duration were statistically

significant (Table 6.4; clutch- embryos from the same male and female frog). Further analy-

sis of the cumulative distribution for contractions at these three temperatures revealed that

the low temperature regime was marked by the addition of many short duration contrac-

tions (Fig. 6.4C). By contrast, the distributions of contraction durations at 21 and 26◦C

were qualitatively similar, albeit time-shifted by a factor of 1.5. We suspected that these

short duration contractions might not have been observed at 26.7◦C; however, our observa-

tions at 21.3◦C would have revealed this population had it existed. Confocal observations

of actomyosin contractions suggest a redistribution of contraction durations at the lower

temperature. Thus, the duration of endogenous F-actin contractions qualitatively paralleled

the temperature dependent changes in induced contraction at the high temperature regime

but not at the low temperature. The temperature dependence of either morphologies or the

duration of stimulated contractions, but was more aligned with the temperature dependence

of the tissue viscoelasticity.
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Figure 6.4: Duration of actomyosin contractions depends on temperature. (A)

Sequential frames from a representative time-lapse sequence collected from the basal cortex

of an animal cap ectoderm explant cultured on fibronecyin-coated glass substrate. F-actin

dynamics are revealed in cells expressing the actin-binding domain from moesin coupled to

EGFP (moe-GFP) (left column). This sample collected at 16◦C. Continued on next page
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Figure 6.4: Continued from previous page (A’) Schematic of frames matching those in (A)

highlighting the cell outline (dotted line) and hexagonal regions of the cell cortex identified

as “F-actin contractions.” Regions are categorized as contractions when their integrated

intensities are 50% greater than the mean intensity of the basal cell cortex. (B) Duration

of individual F-actin contractions across the three temperature regimes. (C) Frequency

distribution of the duration F-actin contractions at three temperatures. Note abundant

short duration contractions at the low temperature regime.

6.4 DISCUSSION

Our simple models suggest that a combination of how solid-like or fluid-like the tissue is,

and the precise timing of forces driving morphogenesis (all at once, as in the step model,

or gradually, as in the ramp model) are critical to determining how well or how poorly

morphogenetic processes remain coordinated across a range of temperatures. In contrast, our

experimental results suggest that temperature driven variation in developmental rates does

not involve either changes in the viscoelastic properties of the embryo, or the magnitude of

cell- generated forces, neither of which change with temperature. Instead, the temperature

dependence of developmental rate appears to depend on changes in the timing of force

generation, and tolerance of variation in the relative rates of different developmental processes

(Table 6.3). The rate of dorsal-to-ventral progression of involution, which we suspect reflects

the progression of patterning, increased more quickly with temperature than the rate of

blastopore closure, which appears to reflect large scale mechanical interactions [Keller and

Shook, 2008, Keller et al., 2008]. One exceptional example of tolerance to variation in

development during gastrulation is described in Text G.3.2. This study was conducted

within the normal developmental temperature range of X. laevis. We hypothesize that

developmental defects may result when asynchronies among developmental processes exceed

normal tolerance limits.
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Table 6.4: ANCOVA table for endogenous F-actin contraction duration*.

T2 T clutch explant(clutch)

P=0.0001 P=0.0002 P=0.4 P=0.02

F1,345=16.6 F1,345=14.2 F10,3,94=1.4 F7,345=2.3

*P values and corresponding F values. Temperature (T) and T2 were fixed co-variates;

“clutch” and “explant” were random factors, with explant nested within clutch.

Statistically significant entries in bold.

Because our models are simplified generalizations of the process of morphogenesis they

should be applicable to a wide range of morphogenetic processes. However, to make a gen-

eralized model, we had to leave out the complications of the real 3D geometry, large strains,

material non-linearity, and plasticity. Xenopus embryonic tissue stiffens with increasing

strain, although tissues exhibit near linear mechanical properties up to fairly large strain

[von Dassow et al., 2010, Zhou et al., 2009]. Most critically, our models treat morphogenesis

as a purely viscoelastic deformation, lacking any mechanism that would produce permanent

changes in tissue lengths during morphogenesis, e.g. that tissue architecture would remain

unchanged by plastic deformation, shear slippage at interfaces, unrecoverable creep, or cell re-

arrangement. Although Luu et al [Luu et al., 2011] have argued that the Xenopus embryonic

epithelium displays a long-term “pseudo-elasticity,” consistent with our models, we suspect

that the apparent long-term elasticity they observe may be an artifact of wound-induced

contractions [Joshi et al., 2010]. At present however, mechanical measurements presented

here and elsewhere [von Dassow et al., 2010, Zhou et al., 2009, Luu et al., 2011, Wiebe and

Brodland, 2005a] do not provide sufficient constraints on plasticity, unrecoverable creep, or

the mechanics of cell rearrangement to incorporate these phenomena into our model. Finally,

our models invoke several as yet untested assumptions regarding the relationship among the
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force of induced contractions, endogenous forces driving blastopore closure, and the time

dependence of forces driving blastopore closure. Although such complications would change

the quantitative predictions of the models, they would not alter the conclusion that the

time-dependence of the forces and the time-dependence of deformation could strongly affect

the sensitivity of morphogenesis to variation in developmental rates.

Surprisingly, our viscoelastic deformation model predicts that toxins or mutations which

alter cell viscoelasticity or the time dependence of force generation will alter the temperature

dependence of morphogenetic rates and the temperature sensitivity for defects in opposite

ways. For example, blebbistatin treated embryos have more fluid-like tissues (higher β; Fig.

6.1E). Therefore we would expect that the rate of blastopore closure should increase more

slowly with temperature in blebbistatin treated embryos, but the permissive temperature

range should be narrower because the reduced temperature sensitivity of tissue movements

should lead to great asynchrony between tissue movements and patterning (Fig. 6.3B). The

cellular processes driving closure are likely to begin uniformly around dorsalized or ventral-

ized embryos, therefore such embryos should exhibit a more step-like onset of the forces

driving blastopore closure than normal embryos. Hence, we would also expect reduced tem-

perature dependence of rates of blastopore closure, but a narrower permissive temperature

range, in dorsalized/ventralized embryos than in normal embryos. Future studies should

investigate whether the model accurately predicts teratological effects of interactions among

temperature and other perturbations.

A surprising finding was that the durations of stochastic actin contractions, whose dy-

namics are considered major contributors to morphogenesis [Guillot and Lecuit, 2013], were

much less sensitive to temperature than either morphogenetic rates or stimulated, force-

generating cellular contractions. Therefore we suspect at least two regulatory mechanisms

control the temperature dependence of cytoskeletal dynamics. Actomyosin contractility in

the cell cortex observed by confocal microscopy correlated qualitatively with the changes in

the speed of current-induced contractions in the micro-aspirator. This relationship was best

observed in the higher temperature regime; however, at the low temperature regime there ap-

peared to be little correspondence between the duration of F-actin contractions and induced

contractions. Large numbers of short duration contractions in the cortex at 16◦C suggest
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that actomyosin contractility may become decoupled from the long-duration contractions

that produce tension in the embryo. Formally, it is possible that we may have under-counted

large numbers of short duration contractions at the highest temperature, however, predicted

short duration contractions were not observed at intermediate temperatures.

These findings suggest that molecular controls on actomyosin contractility function differ-

ently at high and low temperatures. It is unclear how these changes in cytoskeletal dynamics

might work to maintain levels of force production and mechanical properties from 16 to 26◦C,

or whether these dynamics contribute to the failure of morphogenesis outside that range.

By considering how organisms tolerate the forms of environmental variation they have

evolved to withstand in nature, we gain new insights into the mechanisms of development.

Our models suggest that biomechanics parameters - viscoelasticity and the time dependence

of force generation - have a major role in determining the temperature dependence of devel-

opment. However, it is not the role we first expected. By modulating the synchrony of mor-

phogenesis and patterning, these parameters might influence the evolution of heterochrony

and affect the temperature dependence of developmental defects. Our study suggests that

embryos tolerate some variation in the relative rates of patterning and mechanical tissue

movements, but we hypothesize that increasing levels of asynchrony may lead to gastrula-

tion defects or congenital birth defects. Further work needs to be done to test the predictions

of our models, and to test the relationship between short-time scale induced force generation

and endogenous forces driving morphogenesis. Additional studies will be needed to extend

the experimental work here to temperature ranges that induce developmental defects and

develop complimentary models that provide insights into the critical processes that break

down under these conditions and increase the risk of birth defects int dal populations of

vertebrate embryos.
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6.5 METHODS

6.5.1 Ethics statement

Animals used in this study were treated according to an IACUC approved protocol issued to

Dr. Davidson(# :0903349; Assurance # : A3187-01) which has been reviewed and approved

by the University of Pittsburgh Institutional Animal Care and Use Committee. Embryos

were collected and cultured as described previously [von Dassow et al., 2010], and kept at

15◦C until late blastula stage (stage 9, [Nieuwkoop and Faber, 1967]).

6.5.2 Micro-aspiration and electrical stimulation

Micro-aspiration was carried out similarly to our previous approach, using a 125 µm diam-

eter channel cast in polydimethylsiloxane [von Dassow et al., 2010], however the chambers

were miniaturized (to 23 × 34 mm) for drug and temperature experiments. Temperature

control was done using two aluminum tubes mounted within the polycarbonate body of the

micro aspirator. The temperature of fluid running through the tubes was controlled using

a recirculating chiller (ThermoCube, Solid State Cooling Systems; Wappingers Falls, NY).

Because we could not have metal-media contact, temperature equilibration took up to 10

minutes and had to be adjusted manually to within ±0.25◦C. Temperature was monitored

using a thermistor (Quality Termistor, Inc. QTMB-14C3) mounted in the media, no further

than 5 mm from the embryo. Temperatures were recorded using a USB Thermistor measure-

ment system (Robert Owen Inc., Albertson, NY). Pressures were controlled hydrostatically

using a programmable syringe pump (New Era Pump, Pump Systems Inc., Farmingdale,

NY) that was controlled through a custom VI in LabView 2009 (National Instruments Inc.,

Austin, TX). Tissue boundaries were tracked automatically within the LabView VI but had

to be manually corrected in videos from two embryos.

For the experiment to test whether temperature or blebbistatin affected viscoelastic

properties and contractions, one (or in a few cases two) embryos from each clutch was chosen

at random for each treatment combination (16 vs 26◦C and Blebbistatin vs. DMSO carrier

control). A total of 6 clutches were used, one per day. Blebbistatin (100 µM, racemic;
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EMD Millipore, Billerica, MA, USA) and DMSO carrier control media were made fresh

each day. Both solutions were made with 1/3-strength Modified Barths Saline [Sive et al.,

2000] to which 8 µl/ml antibiotic-antimycotic (A5955; Sigma-Aldrich, St. Louis, MO) and

2 mg/ml bovine serum albumin (Sigma-Aldrich) was added, with a final concentration of

0.2% w/v DMSO (Molecular Biology Grade; Fisher Biotech, Pittsburgh, PA, USA). The

order of Blebbistatin or DMSO treatment was randomized on each day, but in the first runs

the 26◦C treatments were done prior to the 16◦C treatments because of the great difference

in developmental rates. If an embryo was damaged, or a video was unusable (due to poor

imaging or leakage), a new embryo was selected at random. Embryos were cultured at

15◦C until late blastula stage (stage 9), after which they were kept at different temperatures

so that embryos could be measured at the same developmental stage. We have not seen

morphogenetic defects in embryos transferred from 15 to 26◦C or vice versa.

Microaspiration measurements were made at stage 11 on the dorsal quadrant between

the blastopore and the equator of the embryo (midway between the animal and vegetal pole).

The embryos were held at a low baseline suction (-1 Pa) for 10 min to improve the image of

the tissue edge; the suction was then dropped to -11 Pa at -0.82 Pa/s for a 5 minute creep

test, after which a 4 mx×2.5 µA (channel positive) electrical pulse was applied to stimulate

contraction (Fig. 6.1; [von Dassow et al., 2010]).

Analysis of tissue viscoelasticity and contractions was carried out using custom code in

Matlab version R2010a (Mathworks, Natick, MA). A linear viscoelastic model with power-

law viscoelasticity [von Dassow et al., 2010, Zhou et al., 2010a] was fitted to the aspirated

length (L) of the tissue as a function of time (t):

L[t] = L0 − θ · r ·
∫ t

0

J [1] · (t− γ)β ·
(
dP [γ]

dγ

)
dγ (6.1)

L was measured along the channel centerline. L0 is the initial aspirated length; r is

channel radius, J [1] is the compliance at 1 second; β is the exponent of the power law creep

compliance; and P is pressure in the channel (negative for suction). θ is a proportionality

constant that depends on channel wall thickness, and the ratio of tissue thickness to channel

radius. For thick tissues and a very thick walled channel, as used here, θ is approximately

0.97 [von Dassow et al., 2010, Aoki et al., 1997]. This model is based on a viscoelastic
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half-space model [Sato et al., 1990], incorporating Boltzmann’s superposition principle [von

Dassow et al., 2010, Findley et al., 1989, Merryman et al., 2009]. Previous work showed

that the tissue thickness in the aspirated region was always greater than 100 µm (1.6*r;

typically much greater) in the measured region of the embryo [von Dassow and Davidson,

2009]. Therefore deviations from the half-space model due to finite tissue thickness would

be ≤ 17% [Aoki et al., 1997, Boudou et al., 2006].

Because the pressure changes occurred as a series of k ramps, this model takes the

following form:

L[t] = L[ts]− θ · r · J [1] ·
k−1∑
j=0

(
Pj+1 − Pj
tj+1 − tj

− Pj − Pj−1

tj − tj−1

)
·(

H[t− tj](t− tj)β+1 −H[ts − tj](ts − tj)β+1

β + 1

)
(6.2)

Here, times are relative to the baseline suction, tS is the time at which the creep test began,

Pj is the pressure at the end of ramp j (P0 = P−1 = 0), and H is a step function.

Previous work suggested that a model in which apical tension drives electrically in-

duced contraction explains effects of suction pressure on contraction magnitude better than

a model in which isotropic contraction stresses occur throughout the aspirated tissue [von

Dassow et al., 2010]. As described in von Dassow et al 2010, apical tensions are calculated in

four steps (Fig. 6.1B-D). First, the viscoelasticity of the tissue is calculated from aspirated

lengths prior to the electrical stimulus. Second, we calculate the “displacements” (m) as

the difference between the measured aspirated lengths after stimulation, and extrapolated

aspirated lengths. The extrapolation is based on applied pressures and measured viscoelas-

ticity. Third, “equivalent pressure” changes at each time point (Qk) are calculated from the

displacements and viscoelasticity. These are the changes in suction one would have to apply

to mimic the tissue displacements observed during the contraction. To minimize any effect

of the discretization of the contraction forces, a slight refinement to the contraction analysis

[von Dassow et al., 2010] was implemented. Instead of treating the equivalent pressures as

a series of steps, they were treated as a series of ramps. Therefore, the vector of equivalent
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pressure changes ∆Q (each component is the change in equivalent pressure at a given time

point) can be calculated from a vector of displacements m:

∆Q =
−1

θr
· C−1 ·m

Ck,j = H[tk − tj] · J [1] ·
(

(tk − tj−1)β+1 − (tk − tj)β+1

(β + 1) · (tj − tj−1)

)
(6.3)

The elements of the matrix C assume ramped changes in stress applied to material with

power-law viscoelasticity between tj and tj+1. H[x] = 1 for x > 0, and H[x] = 0 for x ≤ 0.

In addition the displacements were smoothed with a 3-point moving average filter before

calculating equivalent pressures to reduce noise in tissue positions that can cause spikes in

the equivalent pressures. Finally, the equivalent pressure and estimated radius of curvature

(R) or the aspirated tissue were used to calculate the apical tension (f) at each time step,

based on the Young-Laplace relation:

fk =
Rk

2

k∑
i=1

∆Qi

Rk =
(r2+L2

k)

2Lk
, 0 < Lk ≤ r

Rk = r, Lk > r

(6.4)

The radius of curvature of the tissue was estimated assuming the tissue approximates a

spherical cap.

Fitted viscoelasticity and contraction parameters were analyzed using ANOVAs (Matlab

R2010a) with type 3 sums of squares. Temperature and media (Blebbistatin vs DMSO

control) were treated as fixed factors, and clutch was treated as a random factor. Two-

way interactions were included in the ANOVA model; however the three-way interaction

term was not included because there was only one embryo for each treatment-media-clutch

combination in most cases.
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6.5.3 Morphogenesis

Time-lapse series of morphogenesis were collected using automated image acquisition soft-

ware (MicroManager plugin [Stuurman et al., 2007] for Image J [Rueden and Eliceiri, 2007])

to control a motorized stage (Ludl XY and MAC2000 controller, Ludl Electronic Products

Ltd., Hawthorne, NY) mounted on a CCD-equipped (Scion Inc, Frederick, MD) inverted

microscope (Zeiss Axiovert 100) with a 2.5× lens. Temperatures were maintained using a

chamber warmed or chilled by passing fluid through two stainless steel capillary tubes im-

mersed in the media within 1 to 4 mm of that embryos. The temperature was maintained

using a recirculating chiller (ThermoCube), and monitored with a thermistor placed in the

media as close as possible to the embryos on the bottom coverslip. To minimize temperature

variation, a box was placed over the chamber and a thin, closed air space was formed under

the chamber using a second coverslip separated from the chamber by a washer. Temperature

within the chamber varied by ≤ 0.4◦C with time or position, and usually by ≤ 0.2◦C.

Blastopore closure was filmed in 6 to 8 embryos from each of several clutches at 16◦

and 26◦C. The ratio of the time for blastopore closure or the time for the dorsal-to-ventral

progression of involution was measured for each embryo. Because there may be clutch-to-

clutch variation in the timing of morphogenesis, the medians of these two parameters were

calculated for each clutch. Those embryos which rolled out of view before the completion of

blastopore closure were not analyzed. Excluding these embryos did not have a substantial

effect on the results. We used t-tests (comparing the set of clutch medians) to test whether

clutches incubated at different temperatures differed in the timing of morphogenesis. Data

analysis of the timing of morphogenesis was carried out in Microsoft Excel 2010.

Bootstrap analysis [Efron and Tibshirani, 1993] of the predictions of the ramp and step

models was carried out with custom code (Matlab R2010a). Because the variables in the

model come from two experiments, data from the two sets was resampled separately and

entered into the equations in Models 2A & B (below, 6.5.5.3 & 6.5.5.4). J [1], f , and h

always appear together as a product in those equations, so the product of these variables

was calculated for each embryo and resampled. Confidence intervals were estimated using

the percentile method.
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6.5.4 Actin dynamics

In order to track F-actin dynamics, fertilized Xenopus laevis eggs were injected at the 1-cell

stage with synthetically transcribed mRNA encoding the actin binding domain of moesin

coupled to EGFP (moeGFP) [Kim and Davidson, 2011, Litman et al., 2000]. Embryos were

cultured to late blastula or early gastrula stages in 1/3-strength Modified Barths Saline

[Sive et al., 2000]. Animal cap ectoderm was dissected from staged embryos and gently

compressed under glass cover-slip fragments so that the basolateral surface of deep cells

faced fibronecyin-coated glass mounted in a custom chamber designed for stable temperature

control. The chamber and connected temperature controlled circulating water bath was

identical to the one used for time-lapse imaging of whole embryos. Fluorescence images were

optimized [Joshi et al., 2012] and time-lapse sequences were collected using a laser scanning

confocal microscope mounted on an inverted compound microscope (Leica TCS SP5; Leica

Microsystems, Bannockburn, IL). Time-lapse sequences were subsequently analyzed within

image processing software (ImageJ) where the starting and ending frame of each contraction

were identified. Contraction durations were analyzed using ANCOVA in Matlab R2010a.

Temperature was included as a continuous variable incorporating linear and quadratic terms

in the ANCOVA [Zar, 1999]. To account for the possibility of embryo-to-embryo and clutch-

to-clutch differences, clutch and explant were included in the ANCOVA as random factors

(explant nested within clutch; [Zar, 1999]). Data was plotted using SigmaPlot (SPSS Inc.,

Chicago, IL).

6.5.5 Models

In each of the following models (Models 6.5.5.1 and 6.5.5.2) we approximate the complex,

non-linear, three dimensional (3D) deformations of morphogenesis as a one-dimensional (1D),

spatially homogenous, linear viscoelastic process to focus on the effect of temperature (Figure

6.5; Text G.3.1).

6.5.5.1 Model 1: Generalized model We started by assuming that the process of

development is identical at different temperatures except that every process is accelerated
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Figure 6.5: Model schematic. (A) Diagrams of blastopore closure from the lateral side.

The ectoderm and neurectoderm (gray) spreads over the embryo during gastrulation. Invo-

lution begins on the dorsal side at t = 0, and begins on the ventral side at tP ; the blastopore

closes at tC . In the generalized model (Model 6.5.5.1) we assumed all morphogenetic du-

rations (tP , tC , etc) changed by the same proportion with temperature. In the step and

ramp models (Models 6.5.5.3 & 6.5.5.4) tP is used, as an estimate of the timing of cell be-

haviors that exert morphogenetic forces, to predict tC . A strip of tissue (A, to right of each

whole embryo schematic) experiences spatially and temporally varying stresses (open arrow;

stresses from deep tissues not shown), which elongate it and change its shape. We approxi-

mate this deformation as uniform stretching of a strip of material (B). The generalized model

(Model 6.5.5.1) assumes temperature only affects the speed of morphogenesis, therefore each

morphogenetic event occurs at fixed, but unspecified strains (εP , εC , ...). In the step and

ramp models (Models 6.5.5.3 & 6.5.5.4) the main forces driving blastopore closure begin near

the start of ventral involution (so ε[0] ≈ 0), and blastopore closure occurs at a fixed strain

(ε[tC ] = εC); however, the strain at tP varies with temperature.
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or decelerated by the same amount for a given change in temperature. This implies that we

can define a time scale- developmental time (τ)- that is proportional to clock time (t) via a

factor (α) that is a function of temperature (T ) so that a developmental event occurring at

developmental time τ at temperature T1 would occur at the same developmental time at all

other temperatures:

τ = t/α[T ] (6.5)

Strain is a non-dimensional measure of deformation. For extension or compression, strain

can be measured as Ln[L/L0], where L is the deformed length of the material, and L0 is the

undeformed length. Since all deformations are identical at a given developmental time τ , all

strains (ε∗) are identical at a given developmental time:

ε∗[τ, T1] = ε∗[τ, T2] (6.6)

For a highly simplified linear, small deformation, one dimensional model [Findley et al.,

1989], this implies:

ε∗[τ ] =

∫ τ

0

J∗[τ − ξ, T1] · dσ
∗[ξ, T1]

dξ
dξ

=

∫ τ

0

J∗[τ − ξ, T2] · dσ
∗[ξ, T2]

dξ
dξ (6.7)

Here, J∗ and σ∗ are the creep compliance and stress as functions of developmental time (eqn.

6.5). Creep compliance is a material property that relates the applied stress (force per unit

area to strain. For an elastic (spring-like) material, compliance is the inverse of the elastic

modulus (Young’s modulus for tension or compression).

We further assume that the stress at any developmental time T2 is proportional to the

stress at the same developmental time at T1:

σ∗[τ, T2] = c[T2, T1] · σ∗[τ, T1] (6.8)

This implies:

ε∗[τ ] =

∫ τ

0

J∗[τ − ξ, T1] · dσ
∗[ξ, T1]

dξ
dξ

=

∫ τ

0

J∗[τ − ξ, T2] · c[T2, T2] · dσ
∗[ξ, T1]

dξ
dξ (6.9)
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The Laplace transform of equation 6.9 gives:

L{J∗[s, T1]} · (−σ∗[0, T1] + s · L{σ∗[t, T1]})

= L{J∗[t, T2]} · c[T2, T1] · (−σ∗[0, T1] + s · L{σ∗[t, T1]}) (6.10)

This expression simplifies to:

L{J∗[t, T1]}/c[T2, T1] = L{J∗[t, T2]} (6.11)

Taking the inverse Laplace transform gives:

J∗[τ, T1]/c[T2, T1] = J∗[τ, T2] (6.12)

Given our definition of developmental time, the creep compliance, and the temperature

dependence of force generation: it exhibits time-temperature superposition [Kieβling et al.,

2013], with identical time scaling as morphogenesis.

The Xenopus laevis gastrula epithelium exhibits power law creep compliance [von Dassow

et al., 2010]:

J [t, T ] = J [1, T ]tβ[T ] (6.13)

Substituting the developmental time into equation 6.13, putting it into equation 6.12 and

rearranging gives:

(
J [1, T1] · (α[T1]τ)β[T1]

)
/
(
J [1, T2] · (α[T2]τ)β[T2]

)
= c[T2, T1] (6.14)

Since J [1, T ] and α[T ] are independent of time (time is fixed at 1 in J [1, T ]), the only way for

this expression to be independent of time is if β is independent of temperature. Therefore,

this simplified model predicts that β is independent of temperature.

In addition, the coefficient, J [1, T ], the stress ratio c, and the temperature dependence

of morphogenesis are related by:

J [1, T1]

J [1, T2]
·
(
α[T1]

α[T2]

)β
= c[T2, T1] (6.15)

This predicts that if development slows down at lower temperatures, and the coefficient

J [1, T ] does not change with temperature, then morphogenetic forces should be weaker at
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lower temperatures. For T2 = 16◦C, and T1 = 26◦C, the ratio of α’s approximately was 1/3,

the ratio of J [1]’s was 1, and β is approximately 0.2. Therefore for contractions, we would

expect c, the ratio of the peak apical tension at 16◦C to the peak tension at 26◦C, to be

approximately 0.8, rather than the observed value of approximately 1.4.

6.5.5.2 Models 2A and 2B: Specific models These models retain the simplifying

assumption that the complex 3D, large deformation process of morphogenesis can be ap-

proximated by a simplified 1D, linear viscoelastic model (Fig. 6.5; Text G.3.1 includes a

justification for this approximation). One outcome of our approximation approach is that

we characterize the progress of blastopore closure by a single parameter that scales approx-

imately with the strain field throughout the whole system. This parameter, ε, behaves as

the strain in the linear 1 dimensional models below. Because all of the complex deforma-

tions during blastopore closure are indexed to this parameter, blastopore closure occurs at

a particular value of this “strain,” εC .

6.5.5.3 Model2A: Step model A step of stress starting at t = 0 would give strain (ε)

as follows, where σ is the step stress, and the other variables are as described for model

6.5.5.1:

ε[t] = σ · J [1]tβ (6.16)

Solving of the time, tC , to reach the level of strain, εC , needed to close the blastopore gives:

tC =

(
εC

(σ · J [1])

)1/β

(6.17)

With εC the same at each temperature, we can substitute 6.16 back into 6.17 to determine

how tC varies with temperature.

tC [T2] =

(
σ[T1] · J [1, T1] · tC [T1]β[T1]

σ[T2] · J [1, T2]

)1/β[T2]

(6.18)

We assume we can express σ in terms of the measured contraction forces. We assume that

blastopore closure is driven by pulses of force produced as individual cells intercalate. The

average force will be proportional to the force per pulse (f), multiplied by the average
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number of pulses occurring at a time. The average number of pulses occurring at a time

equals the pulse duration (h) multiplied by the rate of pulse initiation. We assume that the

pulse duration (h) and force (f) change with temperature in the same way that duration and

force of induced contractions change. Because involution involves localized deformations, its

dorsal-to-ventral progression should closely follow the initiation times of the cell behaviors

that drive it. Therefore, the time (tP ) it takes for dorsal-to-ventral progression of involution

should scale with temperature similarly to the timing of cell behaviors, such as force pulses.

Therefore, we assume the rate of force pulses scales inversely with tP . These assumptions

imply the following, with k a constant of proportionality:

σ = k · h · f/tP (6.19)

Substituting this into equation 6.18 and dividing by tP gives an expression predicting how

RCP (the ratio tC to tP ) varies with tP , which changes with temperature:

RCP [T2] =

(
tC [T2]

tP [T2]

)
=

(
J [1, T1]h[T1]f [T1]tP [T2](tC [T1])β[T1]

J [1, T2]h[T2]f [T2]tP [T1]

)1/β[T2]

/tP [T2] (6.20)

If we assume that f , J [1], and β are independent of temperature (based on the lack of sta-

tistically significant effects), and that h is proportional to tP (both biochemcially-controlled

durations change the same way with temperature), this simplifies to the following:

RCP [T2] = tC [T1]/tP [T2] (6.21)
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6.5.5.4 Model 2B: Ramp model A ramp of stress starting at t = 0 would give strain

(ε) as follows, where w is the slope of the ramp in stress, and the other variables are as

described before:

ε[t] =
w · J [1] · tβ+1

β + 1
(6.22)

We make the same assumptions regarding the force as in the step model, but with the

addition that the frequency of force pulses increases with developmental time with a constant

slope. As in the step model, the rate of pulses at any given developmental stage should vary

inversely with tP . In addition, the time it takes to get to that stage varies directly with tP .

Therefore, slope of the ramp in stress should be as follows:

w = k · h · f/t2P (6.23)

Substituting and rearranging as in the step model gives the following expression for RCP ,

where each parameter is assumed to be a function of temperature:

RCP [T2] =

(
(β[T2] + 1)J [1, T1]h[T1]fT1]tP [T2]2tC [T1]β[T1]+1

(β[T1] + 1)J [1, T2]h[T2]f [T2]tP [T1]2

)1/(β[T2]+1)

/tP [T2] (6.24)

If we assume that f , J [1], and β are independent of temperature, and that h is proportional

to tP , this simplifies to the following:

RCP [T2] = RCP [T1] · (tP [T1]/tP [T2])β/(β+1) (6.25)

In summary, differences among the models are illustrated graphically in Figure6.6. The

generalized model (Model 6.5.5.1) makes no assumptions about the time course of morpho-

genetic forces; the step and ramp models assume specific time courses of morphogenetic

forces (stepped or ramped; Models 6.5.5.3 & 6.5.5.4). The generalized model assumes that

the relative durations of morphogenetic events (e.g. the ratio, RCP , of tC to tP ) do not

vary with temperature; the step and ramp models predicts the changes in relative durations

(RCP ) with temperature. The generalized model predicts the temperature dependence of

compliance and stress magnitude; the step and ramp models take these as inputs.
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Figure 6.6: Differences among models. Hypothetical stress (left), creep compliance

(middle), and deformation (strain, ε; right) in the tissue. (A) The generalized model (Model

6.5.5.1) assumes the relative timing and the strains, of all events (1,2,3,...) are independent

of temperature (cool (blue) vs warm (red)), as in a movie played faster. The generalized

model does not specify the developmental course of strain or stress, only that timing scales

with temperature. The generalized model predicts how stress and compliance vary together

as temperature changes (Model 6.5.5.1, eqn. 6.15). Continued on next page
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Figure 6.6: Continued from previous page (B) Step and ramp models (Models 6.5.5.3 &

6.5.5.4). The step and ramp models assume morphogenetic stresses are stepped (top) or

ramped (bottom) with time. For a step stress (upper), the change in tP with temperature

does not affect the time tC to reach strain εC (when the blastopore closes) because peak

stress and compliance are unchanged (Model 6.5.5.3, eqns. 6.20-6.21). A ramp is the sum of

stress increments (gray lines; bottom left). Stress timing (hence the slope of the ramp) scales

with tP , and therefore with temperature (red, warm; blue, cool). The time tC varies with

tP (and therefore temperature) for the ramp model (upper; Model 6.5.5.4, eqns. 6.24-6.25),

because train increments follow the change in timing of stress increments (gray lines).
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7.0 CONCLUSIONS

The goal of this dissertation was to develop the tools to examine force generated by the

actomyosin cytoskeleton in cells. The project involved a thorough understanding of the multi-

scale feedback mechanism that exists between molecular, cellular, and tissue level mechanics

and signals. We needed an understanding of the current techniques and challenges researchers

face when trying to experimentally determine the role of the cytoskeleton during development

and other model systems, as well as understand how to build computational models and

simulations that would answer these questions. The project addressed two specific aims (1.1.1

and 1.1.2). Aim 1.1.1 extensively investigated modeling and understanding of actomyosin

networks (Chapter 3,4,5) and led to further motivation for understanding the role of actin

crosslinking proteins addressed in Aim 1.1.2. The role of cross linkers was addressed in

discussions for each of the models in Chapters 3, 4, and 5, but preliminary studies into

crosslinking proteins are presented here as a foundation for future work with the novel

modeling technique.

My contributions to the project investigating the effects of temperature on development

(Chapter 6) served to expose me to the challenges of experimental set up, gathering data,

and data analysis for biological tissues. It also led to the question of why the actin network

had short and long duration contractions at low temperature only, when bulk mechanical

properties of the embryo remained the same. Although the model and simulation were not

utilized in this paper, the 2D model (Chapter 5) has been set up to help understand this

phenomenon. With the cortex filaments around the hexagonal boundary serving as a type

of force sensor for the hexagonal patch, they can be used to perform in situ mechanical

testing on the hexagonal patch. The mechanical testing will tell us the range (because each

simulation is random) of mechanical properties for the patch of actin cortex. We can then
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tune the parameters based on the expected behavior of the proteins in various temperature

conditions. Another approach would be to tune parameters in order to slow down the

duration of contraction of the aster to analogous times as experimentally observed [von

Dassow et al., 2014]. We hypothesize that the short duration contractions with the long

duration contractions at low temperature are a remodeling response to maintain mechanics

at lower temperature. Knowing the mechanical properties of the simulation patch, and

tuning the contraction to match the data will allow us to investigate the mechanisms by

which the short and long duration contractions are helping the embryo to maintain its bulk

mechanical properties across a range of temperatures and how these mechanisms might fail

outside the range of developmentally permissive temperatures.

Working on the review of mechanically sensing proteins in development (Chapter 2;

[Miller and Davidson, 2013]) challenged me to narrow the communication gap between geneti-

cists, biologists, and engineers. It also helped to solidify my understanding of the extremely

complex feedback that exists between actomyosin and force sensing proteins, for example

at cell junctions. Once researchers discover mechanically activated proteins or genes, the

exact role they play in the local environment is only hypothesized because of limited testing

strategies. Because my model has started out extremely simplified, it is easy to build upon

the simple actomyosin interactions and add specific mechanical sensing proteins or gene

activation. Furthermore, we can use the model to explore conditions within the external

mechanical environment that might trigger mechanosensors in the patch that could in turn

trigger protein or gene activation. Simulating feedback may offer a quicker solution than

biologically testing knock downs or over expression, and would direct researchers in more

efficient experimental design.

The simplified rotational model of actomyosin (Chapter 3; [Miller et al., 2012]) helped

us gain an initial understanding of the interactions between actin and myosin. It also laid

the foundation for building more complex simulations. Because of its simplified structure,

we were able to develop continuum solutions for the computed Monte Carlo sims. From

the continuum solutions, we arrived at a very interesting hypothesis that there is a region

where the actomyosin system can be generating the same amount of force, but two different

morphologies are possible just by turning up or down the polymerization rate of the actin
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(fig 3.8B). Our experimental observations of actin behavior at various stages of development

in specific tissues also point towards this hypothesis. The best way to test this hypothesis

would involve selecting a specific tissue system with well defined actomyosin dynamics over

a time course of development, for example mesoderm during convergent extension, then test

for genes that are activated or differences in protein expression over that period of time.

Our model suggests that the greatest differences in morphology may be driven by actin

polymerization rates, so the genes and proteins of interest should be ones that would affect

actin polymerization.

The sliding model of actomyosin (Chapter 4) built upon the rotational model and helped

to lay the ground work for the 2D model and the intuition behind the boundary filaments

(Chapter 5). We found that morphologies where boundary filaments were pulled into the

center depended on the probability of interactions between boundary and free filaments.

Aligned actin filaments can be found in muscle cells, the cytokinetic furrow, stress fibers,

circumapical ring at cell-cell junctions, and cells along the blastopore lip in Xenopus laevis

(fig 4.1). Several forms are thought to be a consequence of the external mechanical environ-

ment. The sliding model identifies what happens once actin is already in this arrangement,

but image analysis might help identify cases of sliding F-actin in specific tissues and times.

The model can then be used to predict how the cell boundary edges perpendicular to the

parallel arrays will remodel.

Finally, our 2D model of actomyosin (Chapter 5) closely captures several features of

actomyosin behaviors observed in vitro, as well as the events leading to formation of a

contractile F-actin aster. The simplified approach we took to develop our model opens the

doors for many opportunities for extending its use as an experimental tool in the future. I

will specifically focus on these ideas in the following sections.

7.1 IMAGE ANALYSIS TECHNIQUES

Our lab has begun investigating the complicated process of neural tube development in

Xenopus laevis. Preliminary studies have found the existence of rosettes which are correlated

157



with the process of convergent extension [Pohl et al., 2012, Vijayraghavan and Davidson,

prep]. Thus we have the ability to quantify the changes in cell shape over this time period.

Furthermore, we found that we see a similarly dynamic, more dense actomyosin network

at the apical surface of the neural epithelium. We are able to quantify the duration of

these contractions, but in order to relate these data to the 2D model, we need to improve

quantifications and identification of actomyosin. Since the 2D model represents a small patch

of the actin cortex within a cell, we can parallelize the code to make it more efficient and piece

multiple hexagons together using mean field analysis or homogenization. Then the boundary

filaments act as the sensors between neighboring hexagons to build a “cell.” We would

then expect to see similar actin contractions as observed experimentally. Furthermore, we

know how a cell changes shape through development, so we can use the model to determine

what actomyosin morphologies and forces would be necessary to reshape a simulated cell

accordingly.

Building a model cell would bridge the molecular and cellular scales. In order to improve

the connection to the experiments, we can analyze the experiments by considering where

peaks of actin intensity are occurring and quantify where these peaks are in terms of distances

from the cell boundary toward the center of the cell, and even where they are in the direction

of tissue convergent extension. Once we are able to build the 2D model into a representative

cell, we can then consider neighboring cells with localized areas of contractions to better

understand rosette formation and their mechanical role in development. This level would

extend the model up to the tissue level.

7.2 ACTIN BINDING PROTEINS

As we have discussed, there are other proteins that contribute to shaping actomyosin mor-

phology and keep it dynamic (see review [Lee and Anderson, 2008]). We began to investigate

ways of destabilizing the steady state aster in Chapter 5, by fixing filament location or fixing

motor location (figs 5.10 and 5.12). This observation brings us to Aim 1.1.2 where we want

to consider actin crosslinking proteins that might serve to localize F-actin or bind F-actin
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to other cytoskeletal scaffolds. The key to adding in additional complexity into our model

lies with understanding the biophysics of these proteins and how these properties can be

translated into our model framework.

The three major categories of actin binding proteins are capping proteins, bundling pro-

teins, and membrane proteins [Pollard and Cooper, 1986]. Capping proteins are responsible

for affecting the rates of polymerization and depolymerization of F-actin by sequestering

monomers of actin (G-actin), or binding to an end of F-actin [Cooper, 2000]. Two exam-

ples of capping proteins are profilin and cofilin [Alberts, 2008]. Profilin binds to free actin

monomers to stimulate the exchange of ADP to ATP. ATP G-actin is then allowed to bind

to the plus end of F-actin, but not to the minus end. The profilin-actin complex then caps

the plus end of the filament, not allowing anymore monomers to bind, and prevents the

monomer from detaching from the filament. Cofilin on the other hand, binds to the ADP

actin and keeps it in ADP form so the monomers can no longer bind to the filament which

halts polymerization of F-actin [Cooper, 2000]. Capping proteins are also able to stabilize

filament length (effectively shortening them through the aforementioned mechanisms), sever

the filament to create shorter filaments with new plus/minus ends for new binding cites, and

possibly bind the plus end of the filament to the membrane [Pollard and Cooper, 1986].

Bundling proteins are cross-linking proteins that have properties based on how they bind

and bundle actin filaments. Fimbrin and Fascin, for example, bind to a pair of co-aligned

filaments with one cross-linker every 3.5-5 actin monomers, and keep the F-actin 10 nm

apart, oriented with the same polarity [Pollard and Cooper, 1986]. Fimbrin and Fascin limit

the ability of NMM II to interact with the filaments. α-actinin, on the other hand, binds to

a pair of filaments, orienting their polarity, and maintains a spacing of 40 nm. α-actinin also

allows NMM II to continue to interact and contract the network [Cooper, 2000]. Filamin is

a v-shaped molecule which binds at the cross-over point between orthogonal filaments and

is flexible allowing the network to deform [Cooper, 2000].

To model a “universal” cross linker, we allowed cross linkers to bind to a filament pair

within 40 nm and π/8 radians of each other (fig 7.1). We do not observe parallel alignment

of filaments, but we have halted the single aster from forming. Since we saw the “ring”

alignment of filaments versus parallel stress-fiber-like parallel alignment, we hypothesize
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Figure 7.1: Testing a “universal” actin crosslinker. Red “actin” filaments are across

the top row for t=1 to t=1,000. In yellow are the actin crosslinking proteins (1,250) which

are only allowed to bind at the same rate as the myosin motors (p0), to filaments that are

within π/8 degrees of each other, and 0.04 µm apart. The cross linkers bind to the shortest

distance between candidate filament pairs. The bottom row are the merged images for the

time course of the simulation.
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Figure 7.2: Restricting the initial condition of filaments. To begin, we assumed that

all plus ends of the filaments were within the hexagon. Then filament (red) orientation was

chosen to be a random number between 0 and π/8. Therefore the minus ends of the filaments

can be out of the hexagon. Crosslinkers (yellow) follow the same rules as in figure 7.1 where

filament pairs must be within 0.04 µm and π/8.
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that filaments in vivo are acted upon by other actin binding proteins to begin to form

parallel arrays and then the bundling proteins move in and stabilize the morphology. As

a preliminary test, we ran a simulation where the initial orientation of randomly placed

filaments were all within π/8 of each other (fig 7.2). The motors continue to act upon the

filaments, contracting toward an aster, but it appears that the aster has formed where most

plus ends of the initial array were oriented.

The best way to incorporate actin binding proteins is to include G-actin monomers to

serve as a pool for polymerization of F-actin filaments. Capping proteins would then af-

fect the rates of length increase (polymerization) and decrease (depolymerization). In this

case we would consider the G-actin monomer population as a constant rather than con-

serving the number of already established filaments (current model). Then we can consider

cofilin/profilin as one molecule, which has a parameter of probability of either being cofilin

(increasing the rate of polymerization), or profilin (decreasing the rate of polymerization).

The rate of attachment of cofilin/profilin to a filament should be 1 /s (from [Mogilner and

Edelstein-Keshet, 2002]). Once the filament has a capping protein attached, profilin will

activate at a rate of 20/s, and coffin will activate at a rate of 10/s [Mogilner and Edelstein-

Keshet, 2002]. If the filament is in the “profilin-active” state, then it will have a rate of

polymerization lower than the standard value. If the filament is in the “cofilin-active” state,

then it will have a rate of polymerization higher than the standard value. If profilin and

cofilin are bound to the filament but not “active”, then nothing changes for the polymeriza-

tion rate. There will also be a rate of detachment for the capping protein. The population

of profilin/cofilin will be the same as the number of filaments based on the idea that every

filament can have a capping protein [Pollard and Cooper, 1986]. Extending the model to

incorporate monomeric G-actin and capping proteins would involve a few extra sections of

bookkeeping code, but otherwise would be fairly easy.
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7.3 CONCLUDING REMARKS

We were able to take a very simple rotational model and build upon it to create a model that

mimics in vitro experiments with purified actin and myosin. Furthermore, we have laid the

foundation for using the 2D model in the future to gain valuable insight into the localized

mechanics of cells. Our model has addressed the dynamic remodeling property of in vivo

cortical actomyosin and has the theory behind its inception which will drive researchers to

predict actomyosin network remodeling in response to externally applied forces.

Even though the current model is extremely simplified and we are able to apply the results

to experimental observations, I hope that the model could be extended into something more

directly related to experimental observations. For example, the most powerful application

for the model would be to have a short experimental time-lapse movie of actin in a tissue

or cell of interest, and by using the positional information of the actin over the time-lapse,

the model can then be used to predict how the network morphology would change in the

next time step. Being able to directly simulate and accurately predict the “next step” in

the future would allow us to do in silico testing with the model to determine how we could

mechanically perturb the “next step.” We could then use this intuition to drive experiments,

testing how external mechanical environments would affect the tissue. We would have all

the molecular level understanding of protein location and force generation, and the model

extends this molecular level to the cellular level of shape change and rearrangements.
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APPENDIX A

NATURE REVIEWS GENETICS SUPPLEMENT

A.1 DEFINITIONS

gastrulation- Stage of embryonic development when large cell rearrangements occur and

the three germ layers - endoderm, mesoderm and ectoderm - of the embryo are established.

Vegetal plate- The columnar epithelium at the vegetal pole of an echinoderm embryo. The

thickened vegetal plate forms a pocket and tube by invagination during gastrulation to form

the archenteron, or primitive gut, of the embryo.

Blastula- The early stage of a developing embryo after rapid cell divisions have created a

sphere, sometimes hollow, of many cells.

Ectoderm- The outermost germ layer of the embryo. Cells from this layer differentiate into

skin and neural tissues.

Dorsal closure- A step in Drosphila melanogaster development in which the epidermis

closes over the exposed amnioserosa

Amnioserosa- A layer of epithelial cells that covers dorsal regions of the early Drosophila

melanogaster embryo

Epidermis- The outermost epithelial layer of an embryo

Anterior- The axis of the embryo defined by the tissues fated to form the head.

Posterior- The axis of the embryo defined by the tissues fated to form the tail.

Invagination- The ‘in-folding’ of an epithelium.

Apical- Surfaces that face the ‘outside’ or lumen.
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Basal- Surfaces that face in the opposite direction to apical surfaces; that is, away from the

‘outside’.

Traction force microscopy- A method used to determine the force that a cell or tissue

exerts on a substrate to which it is adhered.

Focal adhesion complex- A dynamic protein complex that connects the cytoskeleton of

the cell to the extracellular matrix.

Desmosomes- A spot-like junctional complex for cell-cell adhesion that is distinct from

adherents junctions (which connect epithelial cells to neighbors at their apical ends).

Cell cortex- A layer of cytoplasm just inside the plasma membrane. Cytoskeletal proteins

in the cell cortex maintain the shape of the cell.

Stomodeal primordium- A tissue fated to give rise to the Drosophila melanogaster foregut.

A.2 BOXES

A.3 ENGINEERING PRINCIPLES AND TERMS

Translation and rotation

An object can move or translate by moving up, down, left or right. Rotation can be described

by the angle of change the object experiences; see the figure A1, part a, where the object

before translation at time t0 moves to its final location at tf after translation.

Tension and stretch

Tension(T) (see the figure A1, part b, where T is a pair of forces applied to the object) is an

engineering term for the forces that tend to stretch an object from t0 to tf . Stretch can be

measured as a normalized engineering strain (see the figure A1, part b, where l0 represents

the initial length and lf the final length).

Deformation and strain

Deformations of cells and tissues are changes in the shape of the cells and tissues over time

or in response to an applied force, normally measured using live cell time-lapse imaging.
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Engineers use the term strain, which is a measure of deformation normalized to the size of

the structure, to quantify deformations. Also, from a measure of deformation over time, a

strain rate can be determined. The units of deformation are in units of length (l) (see the

figure A1, part b). Strain is generally dimensionless but is sometimes noted as length/length

(for example, mm/mm), and strain rate is given per a measurement of time.

Force and stress

Force is any influence that causes an object to undergo a change such as translation, rotation

or deformation. Stress is a measure of force applied over a surface, either perpendicular to

the surface (for example, tension or compression) or within the plane of the surface (shear).

The units of force are mass times acceleration and the units of stress are force per unit area.

See the figure A1, part c, for an illustration of its physical definition, where F is force and

A is area.

Fluids and solids

In addition to the ability to generate force, biological tissues all exhibit some resistance to

mechanical force. If they flow in response to force, they are considered to be a viscous fluid.

If they deform in proportion to the applied force and recover their original shape when the

force is removed, they are considered to be an elastic solid (by contrast, a fluid will not recoil

once the applied force, or load, is removed).

Viscoelastic

In practice, cells and tissues typically exhibit behaviors of both solids and fluids, and are

considered to be viscoelastic: they deform slowly under a load or adopt a new shape after

the load is removed. Often, viscoelastic behaviors of a tissue are reported in terms of a

combination of springs (elastic elements) and dashpots (viscous elements), but these are

only convenient mathematical representations and do not necessarily mean that the tissue

consists of microscopic springs and fluids. The behavior of the material to a constant force

or stress applied between time points ‘1’ and ‘2’ (see the figure A1, part d) shows whether it

is considered to be elastic (material deforms immediately once force is applied or removed),

viscous (material slowly deforms once force is applied and does not return to original shape

once force is removed) or viscoelastic (material slowly deforms once force is applied but

returns to the original shape once the force is removed).
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Figure A1: Engineering Principles and Terms
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A.4 TOOLS USED TO MEASURE AND DETERMINE MECHANICAL

PROPERTIES

Cutting tissue to determine stresses

One cannot easily ‘see’ stress in tissues, so to determine the mechanical stresses within a

tissue early experimentalists turned to physically cutting tissues or attaching them to de-

formable substrates. Laser cutting allows for a specific area of the tissue, such as a portion

of the epithelial layer, to be targeted and ablated with a high-powered laser. After laser

ablation, measurements are taken of the recoil of the surrounding cells and tissue within

the first few seconds to infer the mechanical state of the tissue, including the forces, such

as tension, that were present in order to hold the tissue together before ablation [Beloussov

et al., 1990, Ma et al., 2009, Rodriguez-Diaz et al., 2008, Benazeraf et al., 2010, Varner et al.,

2010]. Another strategy involves fixing a tissue to a deformable substrate, such as a silicone

membrane, that can be mechanically manipulated [Eisenhoffer et al., 2012, Beloussov et al.,

1988]. This approach allows precise control over the magnitude and rate at which local me-

chanical conditions are changed. Investigation of the stress at the cellular and tissue scales,

however, involves two different approaches: laser cutting and microsurgery. Similarly to

laser cutting, microsurgery can be used to investigate the local mechanics of a tissue, but it

can also be used to isolate tissue-specific mechanical processes without the influence of the

surroundings of the tissue, which greatly simplifies the system.

Measuring deformation and strain

Because mechanical properties are a measure of the ratio of deformation under externally or

internally applied forces, quantifying the deformation and calculating the strain is the first

step in estimating the stresses and forces that are present in the tissue. Live cell and tissue

imaging plays a key part in these measurements. Confocal time-lapse microscopy allows

quantitative analysis of cell movements and shape changes that can be related to deforma-

tion and engineering strain. Because the big questions are how tissues and cells generate

forces and what forces are acting on cells and tissues during morphogenesis, analysis must

be framed by assumptions about the basic mechanical nature of the cells and surrounding

tissues [Beloussov et al., 1975, Sokolow et al., 2012, Peralta et al., 2008]. Other crucial as-
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pects of measuring and quantifying deformations involve deducing additional principles that

guide moving tissues and developing new models and methods to test these new principles.

Examples of such methods include measuring the gradient velocities of moving cells [Blan-

chard et al., 2009] and identifying geometries that are common to developing tissues and

deducing the reason behind these emergent geometries [Gibson et al., 2006].

Engineering-based tensile and compression tests

The physiologically relevant mechanical properties of the tissue or embryo can be determined

using micro indentation compression tests or micro aspiration tensile tests. From these tests,

the stiffness of the tissue can be calculated and can be used in conjunction with cutting exper-

iments to complete the mechanical profile of morphogenic tissues. There are many different

tools available for carrying out tensile or compression tests, such as the nanoNewton Force

Measuring Device (nNFMD [Zhou et al., 2009, Zhou et al., 2010b]), glass or metal needles

[Wiebe and Brodland, 2005b, Zamir and Taber, 2004], parallel plate compression [David-

son et al., 1999, Foty et al., 1996, Forgacs et al., 1998], and microaspiration [von Dassow

et al., 2010]. Furthermore, tools designed to measure mechanical properties of the whole em-

bryo can be combined with tools that perturb mechanics such as electrical stimulation [von

Dassow et al., 2010], laser activation of proteins or nano-perfusion to reveal ways in which

electrophysiological and biochemical pathways might interface with mechanical pathways

[Joshi et al., 2010].

A.5 COMPUTATIONAL APPROACHES TO MODELING MECHANICS

IN DEVELOPMENT

Theory and computer simulation are routinely used in mechanical engineering and develop-

mental mechanics to test the plausibility of new hypotheses and to aid the interpretation of

complex mechanical experiments. Modeling allows one to assess the contribution of specific

aspects of an experiment that are difficult to control experimentally: for example, the rates

of actin polymerization. Furthermore, because the models are explicitly defined, in silico ex-

periments and the resulting kinematic can provide insights into which aspects of the biology
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are most important. These tools can suggest new research directions by identifying aspects

of the biology that most affect the overall mechanics and behavior of the cells and tissue.

Theoretical and computational tools can take many forms, but the process of creating the

models is mostly uniform. For example, when observing the formation of the heart tube, one

study began by characterizing the in vivo folding and then creating a model that describes

the necessary stresses the tube would experience in order to replicate the same folding. The

researchers further validated the theoretical model by creating computational simulations

with finite element techniques that they used to match their model to the experimental

results [Zamir and Taber, 2004, Voronov and Taber, 2002, Zamir et al., 2003]. Other notable

models include those of sea urchin primary invagination [Davidson et al., 1995, Davidson

et al., 1999], head-fold formation in the avian embryo [Varner et al., 2010], coordination of

cell behaviors during ascidian gastrulation [Sherrard et al., 2010], ventral furrow formation

in Drosophila melanogaster [Odell et al., 1981, Brodland et al., 2010] and looping of the gut

[Savin et al., 2011].

Computer simulation is a common strategy for dealing with an ‘ill-posed’ problem, in

which there is incomplete understanding of the biology of a particular mechanical process.

For example, in trying to understand which cellular behaviors contribute to the mechanical

morphogenetic event of convergent extension, one group created a cellular finite element

model in which the different cellular behaviors could be implemented (see the figure A2).

This allowed them to determine which emergent behavior of the model (that is, external force-

driven reshaping (see the figure A2, part a), lamellipodium-driven reshaping (see the figure

A2, part b); the white tubes indicate the lamellipodia which are membrane-like extensions

seen at the leading edge of motile cells) or mitosis-driven reshaping (see the figure A2, part c))

was most closely correlated to experimentally observed tissue shape and behavior [Brodland

and Veldhuis, 2012]. Computer simulations can be used to test the basic plausibility of a

hypothesis. The best simulations and models are ones in which the behavior is emergent

and predictive on the basis of a few fundamental facts about cell and tissue behavior, and in

which the outcome that emerges closely correlates with both existing observations and those

from new experiments.
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Figure A2: Computational modeling of convergent extension [Brodland and Veldhuis, 2012]
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APPENDIX B

ROTATIONAL MODEL APPENDICES AND SUPPLEMENT

B.1 DERIVING THE EQUATIONS OF MOTION

We begin with the vector defining the position of the motor along filament

j (xj = s(cos θj, sin θj) for j = 1, 2), and derive the potential and kinetic energy for the

system (Equation B.1), where k is the spring constant and m is the mass of the motor.

P.E. = k||~x1 − ~x2||2 = ks2[1− cos(θ2 − θ1)] (B.1)

K.E. =
1

2
m
(
||~̇x1(t)||2 + ||~̇x2(t)||2

)
=

1

2
ms2[θ̇2

1 + θ̇2
2] +

1

2
mv2.

In order to obtain equations of motion from the potential and kinetic energy equations, we

consider the Lagrangian equations (Equation B.2).

∂

∂t

(
∂K.E.

∂θ̇i

)
− ∂K.E.

∂θi
=
∂P.E.

∂θi
(B.2)

We assume that motors operate without a drag force, based on the known sizes of myosin.

However, we do consider a viscous damping term (µ) which opposes the movement of actin

filaments and is analogous to the friction the filaments might experience when moved through

water. Substituting into the potential and kinetic energies equations for filaments 1 and 2,

we can explicitly derive our Lagrangian equations (Equation B.3).

ms2θ̈1 + µθ̇1 = ks2 sin(θ2 − θ1) (B.3)

ms2θ̈2 + µθ̇2 = ks2 sin(θ1 − θ2)
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Since the masses of the motor and filaments are small, we ignore the momentum term and

solve for the equations of motion for the change in filament angle (Equation B.4; Equation

3.1 in the main text).

θ̇1 =
k

µ
s2 sin(θ2 − θ1) (B.4)

θ̇2 =
k

µ
s2 sin(θ1 − θ2).

B.2 SOLVING THE COUPLED INTEGRO-PARTIAL DIFFERENTIAL

EQUATIONS

For the distribution Qj which denotes a stationary solution, we can write an equation for

force (〈s2〉) and the order parameter (Z):

〈s2〉 =

∫ π

−π

∫ L

0

Q1(φ, s)s2ds

Z =

∫ π

−π/2
cosφ/2

(∫ L

0

Q1(φ, s)ds+Q0(φ)ds

)
dφ

The histogram of the values of the angle difference, φ, is a plot of QM(φ) = Q0(φ) +∫ L
0
Q1(φ, s)ds, the marginal distribution of the angles. These stationary solutions are repre-

sented by a pair of coupled integro-partial-differential equations and are generally difficult to

solve numerically or analytically. However, in this case we can get a closed expression for the

filament distributions and thus an exact expression for our torque-like term, 〈s2〉 (Equation

10). We can then use this distribution to approximate the dependence on the difference in

angles, φ, and estimate the order parameter Z.

The marginal densities with respect to the motor distance down the filament pair, s, is

found by integrating Q0,1 with respect to φ:

0 =

∫ π

−π

(
−v∂sQ1(φ, s) +

k

µ
∂φ[sinφQ1(φ, s)]− (r1 + r2)Q1(φ, s)

)
dφ (B.5)

0 =

∫ π

−π

(
vQ1(φ, s) +

∫ L

0

[
r1Q1(φ, s) +

1

2π

∫ π

−π
Q1(θ, s) dθ

]
ds− r0Q0(φ)

)
dφ.
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Let

W1(s) =

∫ π

−π
Q1(φ, s) dφ

W0(s) =

∫ π

−π
Q0(φ) dφ

denote the marginal densities. Then from Equation B.5, we see that

0 = −vW ′
1 − (r1 + r2)W1 (B.6)

0 = vW1(L)− r0W0 + (r1 + r2)

∫ L

0

W1(s) ds (B.7)

W1(0) =
r0

v
W0. (B.8)

Finally, we must have the normalization:

W0 +

∫ L

0

W1(s) ds = 1.

Remarkably, the marginal density for the motor position involves no unknown integrals with

respect to φ and so we can solve it exactly. Furthermore, we can easily compute 〈s2〉. To

save on some notational headaches, we set L = 1 without loss in generality. We also note

that as far as the marginal motor position is concerned, r1 and r2 serve only to dislodge the

motors; this is evident by the observation that they always appear as a sum r1 + r2. For the

moment, we absorb the effects of r2 into an effective r1 to simplify the algebra. That is, if

r1 = 0.1 and r2 = 0.05, as was the case in Figure 3.3 from the paper, then the effective r1 is

0.15, the sum. Equation (B.6) and the boundary condition in Equation B.8 imply

W1(s) =
r0

v
W0 exp

(
−r1

v
s
)
.

Normalization allows us to solve for W0:

W0 =
r1

v(r1 + r0(1− e−r1/v))
,

So that

W1(s) =
r0r1

v

e−r1s/v

r1 + r0(1− e−r1/v)
. (B.9)
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We can now integrate Equation B.9 against s2 to compute:

〈s2〉 =
r0

r2
1

2v2 − e−r1/v(2v2 + 2vr1 + r2
1)

r1 + r0(1− e−r1/v)
. (B.10)

Equation B.10 allows us to see how the optimal velocity depends on the parameters. If we

set the derivative of Equation B.10 to zero, we get an expression to determine the maximum.

It is not possible to solve the resulting derivative for v since the equation involves a mix of

exponentials and rational functions. However, we can solve the resulting equation for r0 and

thus we obtain an expression, r0 = ρ0(v, r1) such that Equation B.10 is maximal. Figure B1

shows plots of this expression for three different values of r1. The way to interpret this plot

is to, say, fix r0 = 1, r1 = 1 then observe that this corresponds to a value of v ' 0.8 on the

red curve (which corresponds to r1 = 1). As r0 → 0, the three curves appear to intersect

the v-axis at values which depend on r1. In the loglog plot (Figure B1), all three curves

asymptote with the same slope, the translation depends only on r1. The intersection with

the v-axis can be found by letting r0 tend to zero in the expression for ∂F/∂v; we find that

this expression vanishes when

exp(r1/v) = 1 + r1v + (1/2)(r1/v)2 + (1/4)(r1/v)3.

There is a unique positive root, r1/v ' 1.45, so we see that for r0 small, the optimal velocity is

linearly proportional to r1. We can also understand this intuitively. As r0 tends to zero, this

means we spend a great deal of time with the motor unattached to the filaments. We thus

want to choose v to maximize the amount of time spent on the filaments and in particular,

we want to choose v so that we get as far out as possible toward the ends of the filaments

where the most work is done. Since the expected time to remain on the filament is 1/r1,

then by choosing v ' r1, we can get to the end of the filament before falling off while at the

same time, not going so fast that we reach the ends. The linear asymptotes in the loglog

plot can also be easily found by letting v → ∞ whence, we find that v ∼ √r1r0/2. This is

satisfying since it says that for large rates, the optimal velocity is the geometric mean of the

rate of falling off and the rate of attaching.
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Figure B1: Examining the relationship between attachment and detachment rates

on optimal motor velocity for maximizing force. The curves depict the maximal

values of force for two filaments and one motor with varying rates of detachment and at-

tachment, and the resulting optimal motor velocity. The green curve depicts a small rate of

detachment (r1 = 0.2/s), the red curve a medium rate of detachment (r1 = 1.0/s), and the

blue curve a high rate of detachment (r1 = 5/s). For the curves we do not consider the rate

of polymerization, but we are able to deduce the relationship between all the variables that

affect force.
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B.3 CALCULATING THE MARGINAL DENSITY OF THE ANGLE

DIFFERENCES

We now turn to the marginal density of the angle differences. To obtain an equation for

this, we integrate Equation B.5 with respect to s. Let S0(φ) = Q0(φ) and let S1(φ) =∫ L
0
Q1(φ, s) ds. Note that S0,1(φ) are the densities for the angle between the filaments when

the motors are off, on respectively and independent of the motor position. S1(φ) satisfies

0 = v[Q1(φ, 0)−Q1(φ, L)] +

∫ L

0

s2 k

µ

∂ sinφQ1(φ, s)

∂φ
ds− (r1 + r2)S1(φ).

Unfortunately, this expression does not just involve S1, but also requires knowledge of the

joint distribution, Q1(φ, s). We now make an approximation; we suppose that Q1(φ, s) =

S1(φ)W1(s). That is, we assume that the variables s and φ are independent.While it is true

that the value of s is independent of φ (which is why we could solve for the marginal density,

W1(s)), the angle difference, φ should depend on s as this governs the effective strength of

the spring. With this approximation, we get

0 = v[W1(0)−W1(L)]S1(φ) +
k〈s2〉
µ

[sinφS1(φ)]′

−(r1 + r2)S1(φ) (B.11)

0 = vW1(L)S1(φ) + r1S1(φ)− r0S0(φ)

+r2
1

2π

∫ π

−π
S1(ψ) dψ (B.12)

vS1(φ)W1(0) = r0S0(φ) (B.13)

Equation B.13 is the approximate boundary condition. Let S̄1 = 1/(2π)
∫ π
−π S1(φ)dφ and

X2 := 〈s2〉. Then we can solve Equation B.12 to get

r0S0 = vW1(L)S1(φ) + r1S1(φ) + r2S̄1

and use Equation B.13 to obtain a single equation for S1(φ):

d

dφ
[sinφS1] =

µr2

kX2

[S1 − S̄1] (B.14)
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For notational simplicity, let r = (µr2)/(kX2). In order to solve Equation B.14, we observe

that it is symmetric about zero, and singular at −π, 0, and π. So we just have to solve it

in the interval (0, π), and then can reflect this solution about zero to obtain the solution

for the interval (−π, 0). Then, we must take appropriate limits. We remark that it is not

necessary that S1(φ) has a well-defined limit as φ → 0; we only require integrability. For

simplicity we let S1(π/2) = 1, which we can always scale later since Equation B.14 is linear

and homogeneous in S1. (The actual value will come about from normalization). Solving

the ODE, we obtain

S1(φ) =

[
1− rS̄1

∫ φ

π
2

(
1− cosψ

sinψ

)−r
dψ

] [
1− cosφ

sinφ

]r
1

sinφ
(B.15)

We rewrite the expression for S1 as

S1(φ) = F (φ)

(
tan

φ

2

)r
1

sinφ

F (φ) = 1− ra
∫ φ

π
2

(cot
ψ

2
)rdψ

m = S̄1

We notice that
(
tan φ

2

)r 1
sinφ

goes towards infinity like the function (π−φ)−(r+1) as φ goes to

π, which is not integrable on our interval of (0, π). So in order for S1(φ) to be integrable on

the interval of (0, π), F (π) must go to zero as φ goes to π. We choose a to make F (φ)→ 0.

Then, applying L’Hopital’s rule it is easy to show that limφ→π S1(φ) is finite. Next, we need

to address the case of φ going to zero. We can approximate the behavior of F (φ) as φ→ 0 as

the function k1φ
1−r+k2, and tan(φ/2)r/ sinφ as the function φr−1. Then S1(φ) ≈ k1+k2φ

r−1,

which is singular for 0 < r < 1 near φ = 0, but is integrable. So if we integrate S1(φ) from

zero to π, we find, using integration by parts the following:

∫ π

0

S1(φ) dφ =
1

r

[(
tan

φ

2

)r (
1− ra

∫ φ

π/2

cot

(
ψ

2

)r
dψ

)]π
0

− 1

r

∫ π

0

(
tan φ

2

)r
r

(
−ra cot

(
φ

2

)r)
dφ

= 0 + aπ = aπ.
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We use L’Hopital’s rule to show the first expression is zero. This integration shows that∫ π
−π S1(φ) = 2πa so that S̄1 = a as required for self-consistency. We can rewrite the expression

and use Equation B.12 to write:

S1(φ) =
1

sinφ
tanr

φ

2

∫ π

φ

cotr
ψ

2
dψ (B.16)

S0(φ) =
1

r0

[(vW1(L) + r1)S1(φ) + r2a] . (B.17)

B.4 DETERMINING THE STABILITY OF THE TRIVIAL STATE

We write P1(θ, s, t) = (1/2π)W1(s) + p1(θ, s, t) and P0(θ, t) = (1/2π)W0 + p0(θ, s, t) and find

that to linear order:

∂p1

∂t
= −v∂p1

∂s
−KW1(s)

2π

∂

∂θ

(∫ L

0

∫ π

−π
sin(θ′ − θ)s2p1(θ′, s, t) ds dθ′

)
−(r1 + r2)p1 (B.18)

∂p0

∂t
= vp1(θ, L, t)− r0p0

+

∫ L

0

(
r1p1(θ, s′, t) +

1

2π

∫ π

−π
r2p1(θ′, s′, t) dθ′

)
ds′ (B.19)

p1(θ, 0, t) =
r0

v
p0(θ, t). (B.20)

Where K = kM
µN

, M is the number of motors and N is the number of filaments. In addition,

we must have the normalization of the perturbation∫ L

0

∫ π

−π
p1(θ, s, t) + p0(θ, t) dθ ds = 0.

Equation B.18 is a convolution in θ and is homogeneous with respect to t and θ, so that we

can look for solutions of the form

p1(θ, s, t) = ψ1(s)eimθeλt

p0(θ, t) = ψ0e
imθeλt

where m is an integer and ψj are unknown. If, for some m, the real part of λ is positive,

then solutions will grow with respect to that mode, m, and the completely disordered state
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will be unstable. We plug this form into Equations B.18-B.20 to get a sequence of linear

eigenvalue problems. We consider three distinct cases: m = 0, m = 1, and m ≥ 2. First, we

will address the first and last cases, and then turn to the more difficult m = 1 case. The

cases for which m 6= 1 are simplest because the integral term in Equation B.18 vanishes since

the convolution over θ involves only sin θ.

B.4.1 Case 1: m = 0

When m = 0, the eigenvalue problem is

λψ1 = −vψ′1 − (r1 + r2)ψ1

λψ0 = vψ1(L)− r0ψ0 + (r1 + r2)

∫ L

0

ψ1(s′) ds′.

The solution to the first equation along with the boundary condition implies

ψ1(s) =
r0ψ0

v
e−(λ+r1+r2)s/v.

We exploit a special property of m = 0. The normalization implies that

ψ0 +

∫ L

0

ψ1(s′) ds′ = 0.

Plugging the formula for ψ1(s) into the normalization yields

ψ0 + ψ0
r0

λ+ r1 + r2

[1− exp(−[λ+ r1 + r2]L/v)] = 0.

Dividing by ψ0 and rearranging, we get

(λ+ r1 + r2 + r0)eλL/v = r0e
−(r1+r2)L/v

Multiply both sides by L/v and call z = λL/v to obtain

ezz + aez = b

where a = (r1 + r2 + r0)L/v and b = r0(L/v) exp(−(r1 + r2)L/v). We rewrite one more time

as

−aez + b− zez = 0.
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Bellman and Cooke [Bellman and Cooke, 1963] prove that all roots, z to this equation have

negative real parts if and only if −a < 1, −a < −b, and one more condition that requires

that −b be less than a positive number. Clearly all three conditions hold since a > b > 0.

Thus, we conclude that with respect to perturbations with m = 0, the trivial state is stable.

B.4.2 Case 2: m > 1

When m > 1, then the eigenvalue equation is

λψ1 = −vψ′1 − (r1 + r2)ψ1

λψ0 = vψ1(L)− r0ψ0 + r1

∫ L

0

ψ1(s′) ds′.

As in the m = 0 case, we have

ψ1(s) =
r0ψ0

v
e−(λ+r1+r2)s/v.

Unfortunately, we can no longer make use of the normalization condition since
∫ π
−π e

imθ dθ = 0

for m 6= 0. We now plug this into the second equation to obtain

λ = −r0

(
1− r1

λ+ r1 + r2

)(
1− e−(λ+r1+r2)L/v

)
.

There are no positive values of λ that satisfy this equation since the right-hand side will be

negative. We can rewrite the equation as

λ(λ+ r1 + r2)

λ+ r2

= −r0

(
1− e−λL/ve−(r1+r2)L/v

)
. (B.21)

For L/v large enough, there can be no roots with positive real parts since the right-hand

side goes to −r0 and thus, we must have

λ(λ+ r1 + r2) + r0(λ+ r2) = 0

which has only roots with negative real parts. Thus, as L/v gets smaller, the only way to get

positive real parts is that a root must have a zero real part. Since we have eliminated any
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possible real zero roots, we must then have an imaginary root, iω. In this case we substitute

λ = iω into Equation B.21 and obtain

r1ω
2

r2
2 + ω2

+ i
ω(r2r1 + r2

2 + ω2)

r)22 + ω2
= −r0

(
1− e−(r1+r2)L/veiωL/v

)
.

As ω varies, the right-hand side traces out a circle centered on the real axis and entirely

in the left-half plane. The left-hand side traces out a curve that is in the right-half plane.

Thus, there can never be an intersection so that there can never be an imaginary root. Thus

there is no way to get roots with a positive real part as L/v varies and we conclude that all

roots to Equation B.21 must have negative real parts.

B.4.3 Case 3: m = 1

We finally turn to the most interesting case. So far, we have seen that perturbations in modes

of the form exp(imθ) where m 6= 1 decay exponentially. For m = 1, the linear equation is

λψ1 = −vψ′1 − (r1 + r2)ψ1 +
K

2
W1(s)

∫ L

0

s′2ψ1(s′) ds′.

λψ0 = vψ1(L)− r0ψ0 + r1

∫ L

0

ψ1(s′) ds′

ψ1(0) =
r0

v
ψ0.

One could solve these linear equations explicitly to find an equation for the eigenvalues, λ.

However, the resulting equation is very complicated and offers little analytic insight. Thus,

rather take the difficult approach, we make the following observations. First, if K = 0,

then the eigenvalue equations are the same as for the m ≥ 2 case and we know that there

are no eigenvalues with positive real parts. Thus, we can ask if increasing K can cause

some of these “stable” eigenvalues to cross the imaginary axis. There are two ways that

this can happen: (i) a negative real eigenvalue becomes a positive real eigenvalue; or (ii)

a pair of complex conjugate eigenvalues crosses at an imaginary eigenvalue. Our numerical

simulations show that the alignment seems to always produce a stationary peak rather than

a peak that rotates at a constant velocity. This empirical fact suggests that the loss of

stability of the uniform state occurs through a real eigenvalue crossing zero as in the second
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case, time periodic (rotating) solutions would be expected. Thus, we will ask if there is a

value of K such that there is a zero eigenvalue. Hence we must solve

0 = −vψ′1 − (r1 + r2)ψ1 +
K

2
W1(s)

∫ L

0

s′2ψ1(s′) ds′.

0 = vψ1(L)− r0ψ0 + r1

∫ L

0

ψ1(s′) ds′

ψ1(0) =
r0

v
ψ0.

There is one differential equation and two algebraic conditions, so we cannot expect there to

be a nonzero solution for any K. However, picking the correct K will tell us the critical value,

K above which there will be alignment and below which there will be a uniform distribution

of filament angles. For notational simplicity, we write ψ1(s) = ψ0φ(s), σ := (r1 + r2)/v, and

W1(s) = A exp(−σs). Let

D :=

∫ L

0

s2φ(s) ds.

Then φ(s) satisfies
dφ

ds
= −σφ+

KAD

2v
e−σs

which with the boundary condition yields

φ(s) =

(
r0

v
+
KAD

2v
s

)
e−σs.

Let

µn :=

∫ L

0

sne−σs ds.

Then the unknown constant, D satisfies

D =

∫ L

0

s2φ(s) ds =
r0µ2

v
+D

KAµ3

2v

or

D =
2r0µ2

2v −KAµ3

.

We finally use the equation for ψ0 to obtain:

0 = −r0ψ0 + vψ0φ(L) + r1

∫ L

0

ψ0φ(s) ds.
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Dividing this by φ0, we obtain an equation of the form:

0 = −r0 + r0e
−σL +

r0r1

r1 + r2

(1− exp(−σL)) +
KAD

2v

(
vLe−σL + r1µ1

)
.

A final bit of rearranging and use of the definition of D yields

r0r2

(r1 + r2)(Lve−σL + r1µ1)

(
1− e−σL

)
=

KAr0µ2

v(2v −KAµ3)
. (B.22)

The lefthand side is strictly positive. The righthand side is a function of K which vanishes

when K = 0 and tends to infinity as K tends to 2v/(Aµ3). Thus, for any parameters, we

can find a unique value of K, call it Kcrit solving Equation B.22:

Kcrit =
2zv2

A(zvµ3 + r0µ2)
(B.23)

where the lefthand side of Equation B.22 is abbreviated as z. Since all of these functions and

constants are known, we can plot Kcrit as a function of any parameter, in particular, v.

Figure B2 shows the value of Kcrit as the velocity of the motors varies. If K > Kcrit,

then there is a real positive eigenvalue and the uniformly distributed orientation is unstable.

That is, we expect to see the beginnings of alignment along a single direction. First, note

that in all cases the curve has a single minimum value at a particular velocity. Kcrit goes to

infinity as v goes to both 0 and infinity. We can interpret the curves as follows. Suppose for

example, that K = 0.6, r0 = 0.7, r1 = 0.1, r2 = 0.1. Then for a band of velocities between

0.05 and 0.35, K > Kcrit so that we expect to see alignment only when the velocity is in this

narrow band.

The position of the minimum of Kcrit is most dependent on r1 +r2 (compare black, green,

and blue curves). The parameter r0 tends to pull down the right part of the curve; large

r0 makes Kcrit independent of v for large velocities. This is because, when r0 is large, you

spend almost all your time on the filaments so the velocity doesn’t matter so much, there is

no “penalty” for going fast.
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Figure B2: Determining how Kcrit is a function of motor velocity Kcrit depends on

all the variables of the model: motor velocity, and rates of attachment, detachment, and

polymerization. The curves specifically show how Kcrit depends on motor velocity, but also

how it depends on the three variable rates. The blue curve shows a low rate of attachment

(r0 = 0.7), a low rate of detachment (r1 = 0.1), and a high rate of polymerization (r2 = 0.1).

The rest of the curves are as follows: green (r0 = 0.7 (low), r1 = 0.4 (high), r2 = 0.025

(low)), black (r0 = 0.7 (low), r1 = 0.1 (low), r2 = 0.025 (low)), and red (r0 = 2.8 (high),

r1 = 0.1 (low), r2 = 0.025 (low)). Notice that the minimum value of Kcrit depends most

on the sum of the rate of detachment and polymerization. The asymptotic approximation

yields the range of motor velocities for which maximal alignment is expected.
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We can use MAPLE to compute an asymptotic approximation for Kcrit at the extremes

of v → 0 and v →∞. We find that as v → 0,

Kcrit ∼
r2(r2 + r1)(r2 + r1 + r0)

r0

1

v
,

and as v →∞,

Kcrit ∼
6r2

r0

v.

The latter is independent of r1, which makes sense for when v is very large, the probability of

ever falling off the filament is virtually zero and the key parameters are the waiting time r0

and the depolymerization, r2. We note that for small r2, both of the asymptotic expressions

are proportional to r2; the more orientation “noise”, the larger is the spring strength needed

to overcome it. The asymptotic expansions can be added together to get a qualitatively

good approximation of the true curve:

Kapprox =
r2(r2 + r1)(r2 + r1 + r0)

r0

1

v
+

6r2

r0

v.

This simple function has a minimum at

v = vmin :=
√

(r1 + r2)(r0 + r1 + r2)/6

which is a reasonable approximation of the minimum of Kcrit. What the minimum tells us is

the velocity for which the weakest motors (lowest value of K) could cause some alignment.

We emphasize that the analysis here is a linearized analysis, so that it does not necessarily

tell us about what happens far from the onset of the alignment instability. Thus, we cannot

necessarily infer the optimal velocity from this calculation; we can only determine the range

of velocities for which alignment is possible.
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B.5 KURAMOTO MODEL SIMILARITIES

∂P1(s, φ, t)

∂t
= −v∂P1(s, φ, t)

∂s
− ∂

∂θ
(P1(s, φ, t)f(θ))− (r1 + r2)P1(s, φ, t) (B.24)

∂P0(s, t)

∂t
= vP1(L, θ, t)− r0P0 +

∫ L

0

r1P1(s′, θ, t)ds′

+
1

2π

∫ L

0

∫ π

−π
r2P1(s′, θ′, t) dθ′ds′ (B.25)

Equations B.24 and B.25 bear a close resemblance to the well-studied Kuramoto model

for synchronization of a pool of globally coupled oscillators.

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi) + ωξi

In the Kuramoto model, θi represents the phase of the ith oscillator, K the coupling

strength, ωi, the uncoupled frequencies of the oscillators and σξi the external noise. In the

limit as N goes to infinity, we write an equation for the density, ρ(θ, ω, t) of the oscillators:

∂ρ

∂t
= − ∂

∂θ

(
ρ(θ, ω, t)

[
ω +K

∫ ∞
−∞

g(ω)

∫ 2π

0

sin(φ− θ)ρ(φ, ωt)dφdω

])
+
σ2

2

∂2ρ

∂θ2

Here g(ω) is the density for the distribution of oscillator frequencies. There are two

sources of disorder in the Kuramoto model, extrinsic noise, σ, and the heterogeneity of the

frequencies. In our model, the noise comes from the de/polymerization of the filaments

and since the new filaments occur at any angle, the noise does not appear locally as phase

diffusion as in the Kuramoto model. Both our equations and the Kuramoto equations have a

similar nonlinearity and both equations admit a completely disordered state as a solution. In

our analysis and the Kuramoto analysis, the key to the onset of order (synchronization in the

Kuramoto model) is that this disorder state becomes unstable as some parameter increases.

Thus, while the two equations come from completely different motivating systems, they bear

a close resemblance simply because they both describe dynamics of systems which lie on the

circle.
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Figure B3: Algorithm flow chart for Monte Carlo simulations. Pictorial flow chart

describing the Monte Carlo simulation code used in the paper.
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Table B1: Parameters and values most often used in the code

Parameter Symbol Description Default Value Units

k Motor’s spring stiffness 1 pg/s2

µ Viscous term 1 µm2/s

L Filament length 1 µm

r0 Rate of motor attachment 0.7 1/s

r1 Rate of motor detachment 0.1 1/s

r2 Rate of filament polymerization 0.025 1/s

Table B2: Variables for the code

Variable Symbol Description Units

T Time s

N Number of filaments

M Number of motors

v Motor velocity µm/s

sj Motor j’s position along the filament µm

θi Orientation angle of filament i rad

φ Difference in angle between motor bound filament pair rad
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APPENDIX C

ROTATIONAL MOVIES

C.1 NO POLYMERIZATION

This movie is from a Matlab simulation of the rotation of F-actin-type-rods from processive,

non-muscle myosin II-like-springs. Blue lines are the filaments with minus ends pinned at

the origin. Red lines are motors attached to two filaments. The green * are motors that

have both legs attached to the same filament.
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C.2 POLYMERIZATION

This movie is from a Matlab simulation demonstrating our concept of polymerization as a

source of angular noise. Blue lines are filaments with minus ends pinned at the origin. Red

lines are motors attached to two filaments. The green * are motors that have both legs

attached to the same filament. The thick black filaments that flash are new filaments that

have reappeared after a polymerization event has occurred.
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APPENDIX D

SLIDING MODEL SUPPLEMENT

D.1 SLIDING MODEL: STEADY STATE EQUATIONS

In order to determine how the linear array of filaments will move, we have a series of equations

to dictate how the filaments will move based on connected motors, and how the pools of

motors are related to each other at steady state. For simplicity, we have included equations

for a set of four filaments: two boundary filaments with left and right orientations, and two

free filaments with left and right orientations. xL is the position of the plus end for the left

oriented boundary filament, xR is the position of the plus end for the right oriented boundary

filament, xP is the position of the plus end for a “plus” or right oriented free filament, and xN

is the position of the plus end for a “negative” or left oriented free filament. The left and right

boundary filaments will move based on the forces from the boundary spring with stiffness

k0, and attached motors with motor stiffness km. The plus and negative free filaments will

move only from the influence of attached motors. We sum all attached motors and calculate

the motor generated force by considering the stretch of a motor (yj − y), where yj is the

location of the other “leg” of the attached motor, and y is the location of the attached leg

on the filament.
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Equations of motion

ẋL = −k0xL +
∑
j

km(yj − yL) (D.1)

ẋN =
∑
j

km(yj − yN) (D.2)

ẋP =
∑
j

km(yj − yP ) (D.3)

ẋR = −k0xR +
∑
j

km(yj − yR) (D.4)

To determine where motors will be at steady state, we consider the various pools of

motors based on their “state” (q): waiting to attach (q0), one leg on a left boundary filament

(qL), one leg on a plus oriented free filament (qP ), one leg on a negative oriented free filament

(qN), one leg on a right boundary filament (qR), attached to a pair of left and right boundary

filaments (qLR), attached to a left boundary filament and a plus oriented free filament (qLP ),

attached to a left boundary filament and a negative oriented free filament (qLN), attached

to a right boundary filament and a negative oriented free filament (qRN), attached to a

pair of free filaments with negative and positive orientations (qNP ), and attached to a right

boundary filament and a plus oriented free filament (qRP ). Motors attach to a filament one

leg at a time with an attachment rate of r1. They detach from a filament one leg at a time

with a detachment rate of r0.

Steady State Equations

q̇0 = −4r0q0 + r1[qp + qN + qL + qR] (D.5)

q̇L = −4r1qL + r0[q0 + qLP + qLR + qLN ] (D.6)

q̇P = −4r1qP + r0[q0 + qRP + qNP + qLP ] (D.7)
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q̇N = −4r1qN + r0[q0 + qRN + qNP + qLN ] (D.8)

q̇R = −4r1qR + r0[q0 + qRN + qLR + qRP ] (D.9)

q̇LR = −2r1qLR + r0[qL + qR] (D.10)

q̇LP = −2r1qLP + r0[qL + qP ] (D.11)

q̇LN = −2r1qLN + r0[qL + qN ] (D.12)

q̇RN = −2r1qRN + r0[qR + qN ] (D.13)

q̇NP = −2r1qNP + r0[qN + qP ] (D.14)

q̇RP = −2r1qRP + r0[qR + qP ] (D.15)
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D.2 SLIDING MODEL EXAMPLE

This movie shows left oriented filaments in blue, and right oriented filaments in red. Motors

are shown in black lines and the black * denote motors that only have one leg attached to a

filament. The top blue filament and the bottom red filament are the spring-bound filaments

(springs to boundaries not shown). When a “free” filament disappears, a new one reappears

in the same y-position in the ladder, but has a randomly selected orientation (left or right

with equal probability), and a random x-placement.
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APPENDIX E

2D MODEL SUPPLEMENT

E.1 SQUARE BOUNDARY CONDITION

To determine whether the single asters observed in our simulations developed as an artifact

of a hexagonal boundary, we ran simulations in a square boundary instead of a hexagon (fig

E1). We still observed the single, stable contraction, although the geometry of contraction

begins as a square ring instead of the circular ring we saw before (fig 5.6) as it transitioned

to the final aster structure. The filament plus-end variance increased, but the domain area is

likewise larger even though the radius of the square and hexagon are the same. Nevertheless,

force and variance still reach a steady state, as quickly as they did for our hexagonal sim.
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Figure E1: Testing a square boundary condition. Simultaion run within a square

boundary. The actin still forms an aster structure, with similar force (blue) and variance

(red) plots as hexagonal boundary controls.

Figure E2: Filaments are color coded so the plus end half is green, and the minus end half is

red. This is the case where there is no polymerization (p2 = 0), and the ending morphology

at t=1,000.
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Figure E3: Parametric analysis of the fraction of plus ends in aster We calculated

the fraction of plus ends in the aster in each of the parameter cases.
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Figure E4: We counted how many motors fell off at each time step due to stretching too far.

As expected, when the motors are not allowed to stretch very far, then there are more that

fall off, however, the difference between the stretch thresholds does not significantly affect

the number of motors stretching too far.
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APPENDIX F

2D MOVIES

F.1 2D SIMULATION FOR STANDARD CASE

On the left in red are the filaments, and on the right in green are the motors. Motors are

shown if they are unattached or attached. When they are unattached they diffuse within the

hexagonal boundary. The movie runs for 1,000 time steps at a rate of 20 frames per second.

F.2 2D SIMULATION FOR 100-SIDED POLYGON

On the left in red are the free filaments, and white shows the sensor filaments. Sensor

filaments are attached to the vertices of the 100-sided polygon by a spring. Motors are on

the right in green. The movie runs for 2,000 time steps at a rate of 20 frames per second.
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F.3 2D SIMULATION FOR AN IN VITRO BAR OF FILAMENTS

On the left in red are the filaments which are placed so that they are within a rectangle

region, or plus ends are on the rectangle with minus ends off of the bar. On the right in

green are the myosin motors which are assumed to initially cover the entire domain of the

simulation. The movie runs for 1,000 time steps at a rate of 20 frames per second.

F.4 2D SIMULATION FOR MOTORS THAT ARE TETHERED TO THE

SUBSTRATE AND SOME THAT ARE FREE

On the left in red are the filaments which are randomly placed within the hexagonal region.

On the right in green are motors. The lower eighth of the hexagon contain the population of
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tethered motors which have one “leg” anchoring them to the substrate, and the other “leg”

is free to interact with filaments within its stretch threshold.
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APPENDIX G

THERMOTOLERANCE SUPPLEMENT

G.1 GASTRULATION AT 16◦ AND 26◦C

This movie shows gastrulation at 16◦C (left) and 26◦C (right) starting at the late blastula

stage, ending after blastopore closure, as the neural plate converges on the dorsal side (top).

Embryos are in a vegetal pole view. Movies were rotated so that the dorsal side is towards the

top of the image, cropped to fit, and contrast was adjusted to optimize the image. Note that

the embryo at 16◦C was filmed at 2 minutes per frame, while the embryo at 26◦C was filmed

at 1 minute per frame. For this combined movie their playback rates were adjusted to match,

and they were synchronized to the beginning of involution on the dorsal side. Early on in

each embryo, the apices of bottle cells contract strongly. This begins on the dorsal side of the

embryo, eventually forming a dark ring of cells with narrowed apices around the blastopore.

Soon after the ring fully forms, the superficial layer of tissue outside the blastopore on

the dorsal side begins to involute (“dorsal involution”), appearing to roll inwards over the

blastopore lip and inside the embryo. Involution progresses around the blastopore, until

it occurs on the ventral side as well (“ventral involution”). This time difference is tP .

The blastopore finally closes (“blastopore closure”) sometime after involution begins on the

ventral side, but involution continues after blastopore closure. Note that the ectoderm and

mesoderm move vegetal while the ring of bottle cells contracts, before superficial involution

begins. However, we defined the time for blastopore closure (tC) based on the beginning of

involution because it is a much more clearly marked time point.
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G.2 F-ACTIN DYNAMICS AT LOW (16◦C) AND HIGH (26◦C)

PERMISSIVE TEMPERATURES

Confocal time lapse sequences of moe-GFP within the basal cell cortex of deep ectodermal

cells from gastrula stage embryos. Both sequences were collected with the same confocal

settings and magnification at 10 second intervals. Sequences appear to fade at times due to

thermal drift which was corrected manually during the collection. The scale-bar indicates

10µm.
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G.3 SUPPORTING TEXT

The supplemental text includes a justification for using a linear, one dimensional approxi-

mation in models of blastopore closure (G.3.1) and a description of an unusual example of

tolerance to variation in gastrulation (G.3.2).

G.3.1 1D, small deformation approximation

Blastopore closure is a complex, large-deformation problem (hence geometrically non-linear),

involving materials that are likely to display non-linear material properties at sufficiently

large deformations [von Dassow et al., 2010, Zhou et al., 2009]. Furthermore material prop-

erties and force generation vary spatially [Zhou et al., 2009]. A full model would require a

very large number of parameters, many of which are unknown, and most of which are poorly

characterized. Those parameters that have been measured are highly variable [von Dassow

et al., 2010, Zhou et al., 2009, von Dassow and Davidson, 2009, Kalantarian et al., 2009].

We seek a simplified model, with as few parameters as possible, to explore the effects of

variation in viscoelasticity and timing of force generation on the temperature dependence of

morphogenesis.

Here we argue that a simple linear, scalar (1D) model is a reasonable first approximation

given the number of unknown parameters, and high levels of mechanical variation. This

model captures expected behaviors such as: 1) increased forces lead to increased deformation;

2) usually (though not always) the rate of deformation declines with time after application

of a load; and 3) compliance measured in the micro aspirator should correlate with tissue

responses to stresses driving blastopore closure (i.e. tissues that appear softer in micro

aspiration should behave as through they are softer during blastopore closure). We also

expect that if the tissue behaves like a solid in the micro aspirator, it will behave like a solid

during blastopore closure. Similarly if it behaves like a fluid in the micro aspirator, it should

also behave like a fluid during blastopore closure.
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Consider the full 3D, non-linear, large-deformation model. The strain tensor (µij) at

time t and position X = {x, y, z} is a function of the stress tensor σ and compliance tensor

C:

µij[X, t] = f [Cijkl[X, γ], σkl[X, γ], t] (G.1)

We assume zero strain at the beginning of gastrulation. C and σ are functions of both time

and position in the embryo, and f is a function of C and σ over all points in time prior to t

(represented by γ). Let us take σkl = skl ∗Θ, where Θ is a scalar, with f going to zero as Θ

goes to zero (i.e. when stress is zero at all times). Then approximating with a Taylor series

around Θ = 0,

µij[X, t] =
df

dθ
θ + ω[θ] (G.2)

Where ω[θ] are higher order terms in the series. The term (df/dθ)θ is the linear, small

deformation viscoelastic model. So we can write:

µij[X, t] = θ

(∫ t

0

Cijkl[X, t− γ]
dskl[X, γ]

dγ
dγ

)
+ ω[θ] (G.3)

Furthermore, we can split skl into two terms:

skl[X, t] = zkl[X]v[t] + ykl[X, t] (G.4)

Here zkl[X] is the time averaged value of skl at position X, v[t] is a scalar function of time,

and ykl[X, t] are the deviations from zkl[X]v[t]. We can choose v[t] in a way that minimizes

the contribution of y[X, t]kl to the strain (it is not important how to do this, only that there

exists a choice of y and v that would maximize the contribution of z). Hence,

µij[X, t] = θ

(
zkl[X]

∫ t

0

Cijkl[X, t− γ]
dv[γ]

dγ
dγ +

∫ t

0

Cijkl[X, t− γ]
dykl[X, γ]

dγ
dγ

)
+ ω[θ]

(G.5)

Both ω and y are unknown even to sign, and y is chose so that its contribution is as small

as possible. Therefore, it is reasonable to take as a first approximation, the linear model:

µij[X, t] ≈ θzkl[X]

∫ t

0

Cijkl[X, t− γ]
dv[γ]

dγ
dγ (G.6)
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The compliance and strain are still 2nd and 4th order tensors. If we assume that Cijkl

can be approximated as the product of a scalar valued term (J) dependent on time, and a

tensor (cijkl), we get:

µij[X, t] ≈ cijkl[X]θzkl[X]

∫ t

0

J [t− γ]
dv[γ]

dγ
dγ (G.7)

(Alternatively one could use a similar division into the sum of two tensors as used for sij).

This means that µij[X, t] must also be approximately separable into products of a spatially

varying term (gij[X]) and a temporally varying term (ε[t]) in the same way. All the spatial

variation can be separated into one set of terms, and we can simplify to a scalar equation

equivalent to our linear model. The unknown proportionality term (K) cancels out of the

final model:

ε[t] ≈ K

∫ t

0

J [t− γ]
dv[X, γ]

dγ
dγ (G.8)

The scalar ε is not the only parameter that characterizes the progression of gastrulation, so

we can map morphogenetic events (deformation states) to ε[t]. Hence, blastopore closure

begins and ends at a particular values of ε (0 and εC respectively).

Clearly, we have cut out a lot of important processes and parameters to get to this

point. Furthermore, we have not accounted for changes in compliance over development

[Zhou et al., 2009, von Dassow and Davidson, 2009]. However, given the unknowns, and

the variation in the known parameters, this linear, scalar-valued model is a reasonable first

approximation. It is also minimal: all parameters other than those that whose importance

we wish to determine (v[t]), can be tied to measurements (J [t]), or cancel out (K).

G.3.2 An example of tolerance to variation in gastrulation

A remarkable illustration of embryos’ capacity to tolerate morphogenetic variation occurred

in one clutch (a batch of embryos collected from the same female at the same time). In this

clutch (Figure G1) gastrulation took a very different path than in others (7 of 8 embryos).

Bottle cell formation began normally. However, at the point when superficial involution

would normally begin at the dorsal blastopore edge, a tongue of material (most likely pre-

sumptive notochord) extended out across the blastopore from the dorsal side. Superficial
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involution then began at a point further up the dorsal side, and blastopore closure occurred

over the tongue of material. Despite its abnormal trajectory, blastopore closure completed

successfully and the resulting embryos looked essentially normal at later stages (neural and

early tadpole). Because blastopore closure was so unusual in this clutch, these results were

not analyzed for shifts in developmental timing, yet they provide a clear example of how

robust morphogenesis can be.
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Figure G1: Variation in the trajectory of morphogenesis. (A) Time lapse images

of the vegetal side of an embryo in a clutch with an unusual trajectory of morphogenesis.

A tongue of material extended over the blastopore from the dorsal side at the time when

normal embryos (B) would be undergoing dorsal superficial involution. Images in A and

B are at hourly intervals from bottle cell contraction (left) to blastopore closure (right) at

26◦C. (C) The same time point midway through blastopore closure in all 8 embryos from

this unusual clutch. (D) Posterior ends of the same eight embryos at neural stages had

completed blastopore closure. (D) The same eight embryos at tadpole stages showed only

minor defects. Contrast and brightness were adjusted to optimize images; images in A-C

were rotated dorsal side up. B shows embryo from Figure 6.2A.
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