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Abstract. While Bayesian network models may contain a handful of
numerical parameters that are important for their quality, several em-
pirical studies have confirmed that overall precision of their probabilities
is not crucial. In this paper, we study the impact of the structure of
a Bayesian network on the precision of medical diagnostic systems. We
show that also the structure is not that important – diagnostic accuracy
of several medical diagnostic models changes minimally when we subject
their structures to such transformations as arc removal and arc reversal.
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1 Introduction

Decision-theoretic approaches offer a coherent framework for dealing with prob-
lems involving uncertainty [1]. The most popular modeling tool for complex sys-
tems involving uncertainty, such as those encountered in medicine, is a Bayesian
network [2], an acyclic directed graph modeling the joint probability distribu-
tion over a set of variables. The popularity of Bayesian networks rests on their
ability to model complex domains and to provide a sound basis for model-based
inference. There exist algorithms for reasoning in Bayesian networks that com-
pute the posterior probability distribution over variables of interest given a set
of observations. This allows, for example, to calculate the probabilities of various
disorders given a set of symptoms and test results and, hence, to support med-
ical diagnosis. As Bayesian network algorithms are mathematically correct, the
ultimate quality of their results depends directly on the quality of the underlying
models. These models are rarely precise, as they are often based on judgments
of independence underlying their structure and rough subjective probability es-
timates. Even when models are learned entirely from data, these data may not
reflect precisely the target population. The question whether the quality of mod-
els matters has, thus, important practical implications on knowledge engineering
for Bayesian networks.
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There are two mechanisms by which a Bayesian network represents a joint
probability distribution: (1) independencies among the domain variables, mod-
eled by the structure of the directed graph, and (2) numerical probability distri-
butions of individual variables conditional on their direct ancestors in the graph.
There is a popular belief that it is the structure of Bayesian networks that is
important and that they are insensitive to the overall noise and precision of their
numerical probabilities. There is a body of empirical work showing that indeed
the precision of numerical parameters is not important to the quality of results
(e.g., [3, 4, 5, 6]). To our knowledge, there has been no parallel work testing the
importance of graphical structure of Bayesian networks.

This paper probes the question whether the structure of Bayesian networks
is important for the quality of their reasoning. We start from realistic gold stan-
dard medical diagnostic models learned from real data sets originating from the
Irvine Machine Learning Repository [7]. We subject these models to systematic
structure distortions and test the impact of these distortions on the accuracy
of the models. Our results suggest that also the precise structure of Bayesian
networks is not crucial. Structure transformations, such as arc removal and arc
reversal, turn out to have only moderate impact of the diagnostic quality of the
models.

2 Bayesian networks

Bayesian networks [2] are acyclic directed graphs modeling probabilistic depen-
dencies and independencies among variables. The graphical part of a Bayesian
network reflects the structure of a problem, while local interactions among neigh-
boring variables are quantified by conditional probability distributions. Bayesian
networks have proven to be powerful tools for modeling complex problems in-
volving uncertain knowledge.

Mathematically, a Bayesian network is an acyclic directed graph that con-
sists of a qualitative part, encoding existence of probabilistic influences among
domain’s variables in a directed graph, and a quantitative part, encoding the
joint probability distribution over these variables. Each node in the graph rep-
resents a random variable. Each arc represents a direct dependence between two
variables. Formally, the structure of the directed graph is a representation of a
factorization of the joint probability distribution. In case of a Bayesian network
that consists of n variables: X1, X2, ..., Xn, this factorization is represented as
follows:

Pr(X1, X2, .., Xn) =
∏
i

Pr(Xi|Pa(Xi)) , (1)

where Pa(Xi) represents parent variables of Xi. As many factorizations are
possible, there are many graphs that are capable of encoding the same joint
probability distribution. Of these, those that minimize the number of arcs are
preferred. From the point of view of knowledge engineering, graphs that reflect
the causal structure of the domain are especially convenient – they normally
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reflect expert’s understanding of the domain, enhance interaction with a hu-
man expert at the model building stage, and are readily extendible with new
information.

Figure 1 presents an example Bayesian network modeling three liver disorders
along with their risk factors and symptoms. It is a fragment of the Hepar II
network described in detail in [8]. The example captures also a prior probability
distribution for the node Obesity and a conditional probability distribution for
the node Chronic hepatitis given the node History of viral hepatitis.

Fig. 1. Example of a Bayesian network model.

Given observations of some of the variables (evidence nodes), Bayesian net-
work models allow for calculating posterior probability distributions over the
remaining nodes. In case of a diagnostic network, the output of a model can be
viewed as an assignment of posterior probabilities to various disorders.

3 Models studied and model quality criterion

In our earlier study, focusing on the impact of precision of numerical parameters
on the quality of Bayesian network results [5], we selected six medical data sets
from the Irvine Machine Learning Repository: Acute inflammation [9], SPECT
Heart, Cardiotocography, Hepatitis, Lymphography [10], and Primary Tumor
[10]. We used the following two selection criteria: (1) the data set had to have at
least one disorder variable and (2) it should not contain too many missing val-
ues and too many continuous variables. The latter selection criterion prevented
possible confounding effect of dealing with missing data and with discretization.
We have decided to use the same data sets in the current study. Table 1 lists the
basic properties of the selected data sets.

Our next step was creating gold standard medical diagnostic models from
the selected data sets. To that effect, we applied a basic Bayesian search-based
learning algorithm [11]. Because the algorithm accepts only discrete data, prior
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Table 1. Medical data used in our experiments (mv stands for missing values)

data set #instances #variables variable types #classes mv

Acute Inflammation 120 8 categorical, integer 4 no

SPECT Heart 267 23 categorical 2 no

Cardiotocography 2,126 22 categorical, real 3 no

Hepatitis 155 20 categorical, real 2 yes

Lymphography 148 19 categorical, integer 4 no

Primary Tumor 339 18 categorical, integer 20 yes

to learning we discretized all continuous variables. We used expert-based dis-
cretization, relying on domain-specific thresholds (e.g., in case of total bilirubin
test, we divided the range into three intervals: normal, moderately high, and
high). For the purpose of structure learning, we temporarily replaced all missing
values with the “normal” state of the corresponding variable. Two of six data
sets that we had analyzed, contained missing values: Hepatitis contained 5.4%
and Primary tumor contained 3.7% missing values. Then, in learning the model
structure, missing values for discrete variables were assigned to state absent (e.g.,
a missing value for Anorexia was interpreted as absent). In case of continuous
variables, a missing value was assigned to a typical value for a healthy patient
(e.g., a missing value for Bilirubin was interpreted as being in the range of 0–1
mg/dl). This approach of dealing with missing values, as we demonstrated in
our earlier work [12], leads typically to highest accuracy of medical diagnostic
systems. Table 2 lists the basic properties of the Bayesian network models that
resulted from this procedure.

Table 2. Bayesian network models used in our experiments (#nodes: number of nodes;
µ #states: average number of states per node; µ in-degree: average number of parents
per node; #arcs: number of arcs; #params: number of numerical parameters)

model #nodes µ #states µ in-degree #arcs #params

Acute Inflammation 8 2.13 1.88 15 97

SPECT Heart 23 2.00 2.26 52 290

Cardiotocography 22 2.91 2.86 63 13,347

Hepatitis 20 2.50 1.90 38 465

Lymphography 19 3.00 1.21 23 300

Primary Tumor 18 3.17 1.83 33 877

We assumed that the models obtained this way were perfect in the sense
of having the right structure and containing parameters as precise as the data
would allow.

A critical element of our experiments is comparison of accuracy of models. We
define diagnostic accuracy as the percentage of correct diagnoses on real patient
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cases. This is a simplification, as one might want to know the models’ sensitivity
and specificity for each of the disorders or even study the models’ ability to
detect a disorder in terms of their ROC (Receiver Operating Characteristic)
curves or AUC (Area Under the ROC Curve) measure. We have decided against
this because the ROC curves express models’ ability to detect single disorders.
So do sensitivity and specificity. We focused instead on a simple measure of the
percentage of correct diagnoses. Furthermore, because Bayesian network models
operate only on probabilities, we used probability as the decision criterion: the
diagnosis that is most likely given patient data is the diagnosis that the model
puts forward.

Because virtually each of the original data sets was rather small, we always
applied the method of “leave-one-out” [13] to test models’ performance. It in-
volves n-fold learning from n − 1 records out of the n records available and
subsequently testing it on the remaining nth record.

4 Measures of Bayesian network arc strength

Our experimental manipulation of Bayesian network structure involves arc re-
moval and arc reversal. Because we will want to perform these operations in a
strictly specified order, e.g., from the weakest to the strongest arcs, we first need
to introduce measures of arc strength.

The concept of an arc strength in BNs was first defined by Boerlage [14], who
introduced the concept of link strength for binary nodes and defined it as the
maximum influence that a parent node can have on the child node. Nicholson
and Jitnah [15] and later Ebert-Uphoff [16, 17] used mutual information as the
basis of the measure of link strength. Lacave [18] proposed a measure of link
strength for the purpose of explanation in decision support systems based on
Bayesian networks. Koiter [19] reviews a number of measures of arc strength
from the perspective of model visualization. He also proposes a measure of arc
strength based on the differences between the posterior marginal probability of
the child node, as the parent node changes. He proposed to calculate these dif-
ferences using standard measures of distance between probability distributions,
i.e., Euclidean distance, Hellinger distance, J-divergence, and CDF difference.
While Euclidean distance focuses on the absolute differences between probabili-
ties, Hellinger distance [20], is sensitive to relative differences. For example, the
distance between 0.1 and 0.11 is the same as the difference between 0.70 and
0.80 in Euclidean distance, but is much larger in Hellinger distance.

Because Koiter’s measure seems most practical, while being well grounded
in theory and has been used in practical applications in the past, in our experi-
ments, we use Koiter’s measures.

For each arc of the gold standard Bayesian network models described in
Section 3 and summarized in Table 2, we calculated its strength. While calculat-
ing this strength, we have applied two measures of distance: (1) the Euclidean
distance and (2) the Hellinger distance. Figure 2 presents histograms of arc
strengths based on Euclidean distance for each of the studied models. While
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Fig. 2. Histograms for arc strength of the Bayesian network models (clock-wise: Acute
Inflammation, Spect Heart, Cardiotography, Hepatitis, Lymphography, and
Primary Tumor). The Euclidean distance was applied.

there are several values of arc strength that are more likely than others, their
probability distributions are generally spread over the entire range of 0 − 1.

5 Experimental results

We conducted two experiments to investigate the impact of departures from the
ideal structure of a Bayesian network on its accuracy. There are two straight-
forward ways of distorting the structure of a Bayesian network: (1) removing
its arcs, and (2) reversing them. Please note that adding additional arcs would
not have much impact on the accuracy of Bayesian network models, as addi-
tional dependencies introduced by such arcs will be compensated in the learning
process by parameters that capture independence numerically.

5.1 Experiment 1: Arc removal

Our first experiment involved a gradual removal of arcs in our gold standard
Bayesian network models listed in Table 2. We have tested the accuracy of the
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Fig. 3. The diagnostic accuracy of the six models (clock-wise: Acute Inflammation,
Spect Heart, Cardiotography, Hepatitis, Lymphography, and Primary Tu-
mor) as a function of the percentage of arcs removed. Arcs ordered according to the
Euclidean distance.

original models, then removed 10%, 20%, 30%, . . . , 90%, and 100% of their
arcs, re-learned their numerical parameters from the Irvine Machine Learning
Repository data sets by means of the EM algorithm, and re-tested the resulting
distorted models at each step. The first model in this sequence (0% arcs removed)
was the original, gold standard model and the last model (100% arcs removed)
was a model including all original variables but no arcs, i.e., it assumed that all
model variables are independent of each other.

In the experiment, we followed three different orders of arc removal: (a) as-
cending order of arc strengths (i.e., from the weakest to the strongest arc),
(b) descending order of arc strengths (i.e., from the strongest to the weakest
arc), and (c) random order.

Figures 3 and 4 show the results of our experiment for each of the models
and for the two measures of distance, Euclidean and Hellinger, respectively. The
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Fig. 4. The diagnostic accuracy of the six models (clock-wise: Acute Inflammation,
Spect Heart, Cardiotography, Hepatitis, Lymphography, and Primary Tu-
mor) as a function of the percentage of arcs removed. Arcs ordered according to the
Hellinger distance.

graphs show the models’ diagnostic accuracy as a function of the percentage of
arcs removed. The accuracy at 0% removal equals to the accuracy of the original
models and the accuracy at 100% equals to the prevalence of the most likely
disease. To see the latter, please note that when there are no arcs, the posterior
probability distribution over the disease node is equal to its prior probability
distribution; the most likely diagnosis is the disorder with the highest a-priori
prevalence.

We can see that removing weaker arcs (ASC) has generally less impact on
the resulting model accuracy than removing stronger arcs (DESC) and that the
two provide generally the upper and lower bound on random removal of arcs
(Random). It is also clear that the impact of arc removal on the diagnostic
accuracy is not very strong, i.e., removing as many as half of the arcs decreases
the overall accuracy by a few percent.
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5.2 Experiment 2: Arc reversal

Our second experiment involved a gradual reversal of arcs in our gold standard
Bayesian network models listed in Table 2. We have tested the accuracy of the
original models, then reversed 10%, 20%, 30%, . . . , 90%, and 100% of their
arcs, re-learned their numerical parameters from the Irvine Machine Learning
Repository data sets by means of the EM algorithm, and re-tested the resulting
distorted models at each step. The first model in this sequence (0% arcs reversed)
was the original, gold standard model and the last model (100% arcs reversed)
was a model in which all original arcs were reversed.

Similarly to what we did in Experiment 1, we followed three different orders
of arc reversal: (a) ascending order of arc strengths (i.e., from the weakest to
the strongest arc), (b) descending order of arc strengths (i.e., from the strongest
to the weakest arc), and (c) random order. We were forced to deviate slightly
from the order. Since Bayesian networks are acyclic directed graphs and some
reversals could lead to cycles in the graph, not always were we able to reverse a
specific arc. In such case, we postponed the reversal of this arc, trying the next
arc in the order until we encountered an arc that could be reversed. The omitted
arcs remained always at the beginning of the queue and were reversed as soon
as it was possible. It is fairly easy to prove that this procedure terminates only
after all arcs have been reversed.

Figure 5 shows the results of Experiment 2 for each of the models for Eu-
clidean distance (we have omitted the Hellinger distance due to space constraints
– the plots looked very similar). The graphs show the models’ diagnostic accu-
racy as a function of the percentage of arcs reversed. The accuracy at 0% reversal
equals to the accuracy of the original models. We can see that reversing arcs ac-
cording to all three orders (ASC, DESC, and Random) leads to similar results.
It is also clear that the impact of arc reversal on the diagnostic accuracy is
minimal.

6 Discussion

This paper presented the results of two experiments probing the question of
sensitivity of accuracy of Bayesian networks to their structure. We started from
learning realistic gold standard medical diagnostic models from real data sets
originating from the Irvine Machine Learning Repository. We subjected these
models to systematic structure distortions and tested the impact of these dis-
tortions on the accuracy of the models. In the first experiment, we removed
systematically fractions of the existing arcs and in the second experiment we
systematically reversed a fraction of the arcs. Our results suggest that the pre-
cise structure of Bayesian networks is not as important as popularly believed.
Structure transformations such as arc removal and arc reversal turn out to have
only moderate impact of the diagnostic quality of the models. Of these, arc
removal seems to have a stronger impact.

It is clear that when using the relative probability of disorder as the main
decision criterion for choosing the diagnosis, prior probability distributions are
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Fig. 5. The diagnostic accuracy of the six models (clock-wise: Acute Inflammation,
Spect Heart, Cardiotography, Hepatitis, Lymphography, and Primary Tu-
mor) as a function of the percentage of arcs reversed. Arcs ordered according to the
Euclidean distance.

important. For example, diagnostic accuracy of the Spect Heart and Car-
diotography models reached 80% even after all arcs have been removed. The
dominating factor here is the prior probability distribution of the node represent-
ing the class variable, Cardiotography, with the following a-priori distribu-
tion (0.78, 0.14, 0.08). When no evidence reaches the Cardiotography node,
the model always chooses the first, most likely state as its diagnosis. This leads
to the accuracy of 78%.

In a problem as hard as testing whether the accuracy of Bayesian networks is
sensitive to their structure, no study will provide definitive answer. In addition to
increasing the sample size of models tested, we have several follow-up questions
and studies in mind. The first is applying different measures of accuracy. Pradhan
et al. [6], for example, focus on the posterior probability of the correct diagnosis.
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While this measure has several disadvantages, which we discussed earlier [4], it
might lead to different results.

The strongest test of sensitivity to structure will be node removal. This is
equivalent to the problem of feature selection. When important features have
been removed, the accuracy will suffer. While the end result will never fall below
the 100% arc removal baseline, the shape of the curves pictured in Figures 3
and 4 may be different. We have indirectly touched this problem – when all
paths between a feature node and the disease node have been removed, the
feature node has been de-facto removed.
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Agnieszka Onísko was supported by the Bia lystok University of Technology
grant S/WI/2/2013. Marek Druzdzel was supported by the National Institute
of Health under grant number U01HL101066-01.

All Bayesian network models in this paper were created and tested using
SMILE, an inference engine, and GeNIe, a development environment for reason-
ing in graphical probabilistic models, both developed at the Decision Systems
Laboratory and available at http://genie.sis.pitt.edu/.

References

[1] Max Henrion, John S. Breese, and Eric J. Horvitz. Decision Analysis and Expert
Systems. AI Magazine, 12(4):64–91, Winter 1991.

[2] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[3] Marek J. Druzdzel and Agnieszka Onísko. The impact of overconfidence bias
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