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Abstract

Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an
explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational
modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding
their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and
error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation
perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated
using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie’s algorithm,
provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using
particle-based kinetic Monte Carlo methods. This ‘‘network-free’’ approach produces exact stochastic trajectories with a
computational cost that is independent of network size. However, memory and run time costs increase with the number of
particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation
method that combines the best attributes of both the network-based and network-free approaches. The method takes as
input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The
model is then transformed by a process of ‘‘partial network expansion’’ into a dynamically equivalent form that can be
simulated using a population-adapted network-free simulator. The transformation method has been implemented within
the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-
based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach
and a monetary cost analysis provides a practical measure of its utility.
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Introduction

Rule-based modeling
Cell signaling encompasses the collection of cellular processes

that sample the extracellular environment, process and transmit

that information to the interior of the cell, and regulate cellular

responses. In a typical scenario, molecules outside of the cell bind

to cognate receptors on the cell membrane, resulting in

conformational changes or clustering of receptors. A complex

series of protein binding and biochemical events then occurs,

ultimately leading to the activation or deactivation of proteins that

regulate gene expression or other cellular processes [1]. A typical

signaling protein possesses multiple interaction sites with activities

that can be modified by direct chemical modification or by the

effects of modification or interaction at other sites. This complexity

at the protein level leads to a combinatorial explosion in the

number of possible species and reactions at the level of signaling

networks [2].

Combinatorial complexity poses a major barrier to the

development of detailed, mechanistic models of biochemical

systems. Traditional modeling approaches that require manual

enumeration of all potential species and reactions in a network are

infeasible or impractical [2–4]. This has motivated the develop-

ment of rule-based modeling languages, such as the BioNetGen

language (BNGL) [5,6], Kappa [7,8], and others [9–12], that

provide a rich yet concise description of signaling proteins and

their interactions [13]. The combinatorial explosion problem is

avoided by representing interacting molecules as structured objects

and using pattern-based rules to encode their interactions. In the

graph-based formalisms of BNGL and Kappa, molecules are

represented as graphs and biochemical interactions by graph-

rewriting rules. Rules are local in the sense that only the properties

of the reactants that are transformed, or are required for the

transformation to take place, affect their ability to react. As such,

each rule defines a class of reactions that share a common set of

transformations (e.g., the formation of a bond between molecules)

and requirements for those transformations to take place (e.g., that

one or more components have a particular covalent modification).

The number of reactions encoded by a rule varies depending on
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the specifics of the model; a rule-based encoding is considered

compact if it contains rules that encode large numbers of reactions.

Overviews of rule-based modeling with BNGL can be found in

Sec. S3.1 of Text S1 and Refs. [6,14]. A description of the graph-

theoretic formalism underlying BNGL is provided in Sec. S4.1 of

Text S1, building on a previous graph-theoretical treatment [15].

Network-based and network-free simulation of rule-
based models

An important characteristic of rule-based models is that they

can encode both finite and infinite reaction networks. If the network

is finite and ‘‘not too large’’ (=10000 reactions [16]) it can be

generated from the rule-based model algorithmically by a process

known as ‘‘network generation’’ [5,6,14,15,17]. Network genera-

tion begins by applying the rules of a rule-based model to a set of

initial ‘‘seed’’ species, which define the initial state of the model

system, to generate new species and reactions. The new species are

then matched against the existing species to determine whether or

not they are already present in the network [18]. Any species that

are not already present are added to the network and an additional

round of rule application is performed. This iterative process

continues until an iteration is encountered in which no new species

are generated. The resulting system of reactions can then be

simulated using a variety of network-based deterministic and

stochastic simulation methods. For example, network-based

simulation methods currently implemented within BioNetGen

include SUNDIALS CVODE [19] for ordinary differential

equation (ODE)-based simulations, Gillespie’s stochastic simula-

tion algorithm (SSA; direct method with dynamic propensity

sorting) [20,21], and the accelerated-stochastic ‘‘partitioned-

leaping algorithm’’ [22].

The rule-based methodology also provides a way to simulate

models with prohibitively large or infinite numbers of species and

reactions. This ‘‘network-free’’ approach involves representing

molecular complexes as particles and applying rule transforma-

tions to those particles at runtime using a kinetic Monte Carlo

update scheme [23,24]. At each simulation step, reactant patterns

are matched to the molecular complexes within the system to

calculate rule propensities. The rule to next fire is then selected

probabilistically as in the SSA [20] and the particle(s) to participate

in the transformation is (are) selected randomly from the set of

matches. When the rule fires, transformations are applied to the

reactant complexes to create the products. Since the reactants and

products are determined at runtime there is no need to enumerate

all species and reactions a priori as in network-based methods. This

procedure is a particle-based variant of Gillespie’s algorithm

[23,24] and a generalization of the ‘‘n-fold way’’ of Bortz et al.

[25], which was originally developed to accelerate the simulation

of Ising spin systems. An efficient, open-source implementation

that is compatible with BNGL models is NFsim, the ‘‘network-free

simulator’’ [16]. Other network-free simulation tools for rule-

based models include RuleMonkey [26], DYNSTOC [27], SRsim

[28], and KaSim [24]. A recent paper [29] compares the rejection-

based sampling technique [23] used in NFsim with the rejection-

free approach employed in RuleMonkey. For models of multiva-

lent ligand-receptor binding, rejection-based sampling was shown

to be more efficient in the vicinity of the solution-gel phase

boundary, while rejection-free sampling was more efficient for

simulating the dynamics within the gel phase.

Since only the current set of molecular complexes and the

transformations that can be applied to them are tracked, network-

free methods can efficiently simulate systems that are intractable to

network-based methods [16,23,24,29]. However, the explicit

representation of every molecule in the system is a major

shortcoming of the approach. As such, network-free methods

can require large amounts of computational memory for systems

that contain large numbers of particles, a potential barrier to

simulating systems such as the regulatory networks of a whole cell

[30,31]. A typical eukaryotic cell, for example, contains on the

order of 103{104 protein-coding genes, 104{105 mRNA

molecules, and 109{1010 protein molecules [32,33], along with

much larger numbers of metabolites, lipids, and other small

molecules. Simulating a cell at this level of detail using a network-

free approach would be impractical. There is a need, therefore, for

new approaches that can reduce the memory requirements of

network-free simulation methods.

Computational complexity
A common measure of the computational cost of an algorithm is

its computational complexity. In basic terms, computational complexity

measures how the computational cost increases as an algorithm is

applied to increasingly larger data sets [34]. For the simulation

methods considered in this paper, two types of computational

complexity are important: (i) space complexity, the number of

memory units consumed during the execution of an algorithm; (ii)

time complexity, the number of computational steps required to

complete an algorithm.

Network-based exact-stochastic simulation methods, like Gilles-

pie’s SSA [20,35,36], treat species as lumped variables with a

population counter. Therefore, their space complexity is constant

in the number of particles in the system. However, representing

the reaction network has a space complexity that is linear (or worse

if a reaction dependency graph is used [37,38]) in the number of

reactions. Network-based SSA methods are thus space efficient for

systems with large numbers of particles, but less so for systems with

large numbers of reactions. The time complexity of SSA methods

is more difficult to quantify. It depends on model-specific factors

such as the number of reactions in the network and the values of

rate constants and species concentrations, as well as methodolog-

ical factors such as how the next reaction to fire in the system is

selected [20,21,37–41] and how reaction propensities are updated

Author Summary

Rule-based modeling is a modeling paradigm that
addresses the problem of combinatorial complexity in
biochemical systems. The key idea is to specify only those
components of a biological macromolecule that are
directly involved in a biochemical transformation. Until
recently, this ‘‘pattern-based’’ approach greatly simplified
the process of model building but did nothing to improve
the performance of model simulation. This changed with
the introduction of ‘‘network-free’’ simulation methods,
which operate directly on the compressed rule set of a
rule-based model rather than on a fully-enumerated set of
reactions and species. However, these methods represent
every molecule in a system as a particle, limiting their use
to systems containing less than a few million molecules.
Here, we describe an extension to the network-free
approach that treats rare, complex species as particles
and plentiful, simple species as population variables, while
retaining the exact dynamics of the model system. By
making more efficient use of computational resources for
species that do not require the level of detail of a particle
representation, this hybrid particle/population approach
can simulate systems much larger than is possible using
network-free methods and is an important step towards
realizing the practical simulation of detailed, mechanistic
models of whole cells.

Hybrid Simulation of Rule-Based Models
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after each reaction firing [37,38]. However, for our purposes, what

matters is that the time cost per event (reaction firing) for these

methods is constant in the number of particles in the system and

increases with the number of reactions in the network.

Network-free methods, in contrast, represent each particle

individually. Thus, their space complexity is linear in the number of

particles. This is the primary shortcoming of these methods, as it

limits the size of system that can be feasibly simulated. However,

since reactions are not enumerated, their space complexity is

linear in the number of rules, rather than the number of reactions.

This is a key advantage for models where very large reaction

networks are encoded by a small number of rules. Network-free

methods also have an advantage over network-based methods in

that their time complexity per event also scales with the number of

rules, rather than the number of reactions. Since the number of

rules in a rule-based model is typically far less than the number of

reactions, this can be a substantial improvement. For example,

NFsim has been demonstrated to significantly outperform

network-based SSA methods for a family of Fce receptor signaling

models with large reaction networks [16]. We also note that for

many models network-free methods have a time cost per event

that is constant in the number of particles. However, for systems in

which large aggregates form (e.g., models with polymerization

dynamics [42,43]) the cost can be significantly higher, scaling with

the number of particles [16,24]. Nevertheless, network-free

methods are still usually the best option in these cases because

these types of models tend to encode very large reaction networks

[16].

In Table 1, we summarize the space and time complexities for

different network-based SSA variants and for the network-free

algorithm. Of most relevance to the current work are the entries

that show: (i) the space complexity of network-based methods is

constant in the number of particles and linear (or worse) in the

reaction network size; (ii) the space complexity of network-free

methods is linear in the number of particles and independent of

the reaction network size, depending instead on the number of

rules; (iii) the time complexity of network-based methods depends

on the number of reactions in the network while for network-free

methods it depends on the number of rules. Network-based

methods are thus the best choice for systems with large numbers of

particles and a small to moderate reaction network, and network-

free methods are the best choice for systems with a large reaction

network and small to moderate numbers of particles. However,

neither method is optimal for systems that contain both a large

number of particles and a large reaction network.

Combining network-based and network-free
methodologies

The key idea pursued in this work is that memory consumption

can be reduced in network-free simulators if simple species and

small molecular complexes that exist in the system in large

numbers are treated as population variables with counters rather

than as particles. However, retaining the ability to address

combinatorial complexity requires retaining the particle represen-

tation for species and complexes that are comprised of many

molecules and/or have a large number of internal states. Here, we

present an approach, termed the hybrid particle/population (HPP)

simulation method, that accomplishes this. Given a user-defined

set of species to treat as population variables, the HPP method

partially expands the network around these population species and

then simulates the partially-expanded model using a population-

adapted particle-based method. By treating complex species as

structured particles, HPP capitalizes on the reduced time

complexity with respect to network size characteristic of the

network-free approach. However, for the subset of species treated

as population variables, we take advantage of the constant

memory requirements of the network-based methodology. It is

important to emphasize that in the HPP approach it is the system

that is represented in a hybrid manner, as a collection of particles

and population variables. The underlying simulator remains the

same particle-based variant of Gillespie’s algorithm that is used in

existing network-free simulators [23,24], but with small modifica-

tions to support population variables. This distinguishes HPP from

other types of hybrid methods that combine different simulation

methodologies, e.g., ODE/SSA integrators [44–53].

Related work
While numerous rule-based modeling frameworks have been

developed, little has been done with regard to hybrid particle/

Table 1. Space and time complexities for network-based (SSA) and network-free (NF) stochastic simulation algorithms.

SSA NF

Particles (P) Reactions (R) Particles (P) Rules (R~)

Space O(1) O(R)a, O(d(R):R)b O(P) O(R~)a

Time (per event) O(1) O(d(R))c, O(d(R) log2 R)d, O(R)e O(1), O(P)f
O(R~)g

aNo dependency graph.
bDependency graph [37,38].
cLogarithmic classes (with dependency graph) [21,39,40].
dNext-reaction method (with dependency graph) [37].
eDirect method (with or without dependency graph) [20].
fPolymerizing systems in gel phase [23,42] (see Fig. 5B).
gDirect method-like implementation.
Scalings are shown with respect to particle number, P, and number of reactions, R, or rules, R~. For combinatorially-complex models, R~%R. Note that time complexity is
given on a ‘‘per event’’ (reaction/rule firing) basis. If a reaction dependency graph [37] is used, the space and time complexities of SSA methods with respect to R

depend on d , the maximum number of reactions updated after each reaction firing [37,38]. In combinatorially-complex models, d often increases with R (see Figure S1
of the supporting information). The time complexity of SSA methods with respect to R also depends on the method used for selecting the next reaction to fire in the
system. Scalings are shown for three different SSA variants that use different selection methods [20,21,37,39,40]. Also note that optimized variants of the direct method
[21,38,41] have been shown to outperform methods with lower asymptotic complexity in some cases [38]. Space and time complexities of the NF algorithm with
respect to assume no dependency graph and that the next rule to fire is selected as in Gillespie’s direct method [20], although in principle other variants are possible.
doi:10.1371/journal.pcbi.1003544.t001
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population simulation. Kappa [7,8] has the concept of

‘‘tokens,’’ which are structureless population-type species.

Modelers can write hybrid models in terms of both structured

‘‘agents’’ and structureless tokens and simulate them using

KaSim 3, the most recent version of the Kappa-compatible

network-free simulator (https://github.com/jkrivine/KaSim).

However, there is no facility for transforming a model written

exclusively in terms of agents into a hybrid form, as in our HPP

method. Bittig et al. [10] have developed a spatial rule-based

language called ML-Space that builds upon the multi-level

language ML-Rules [9]. ‘‘Entities’’ that are assigned optional

attributes such as shape, volume, and position in continuous

space are automatically treated as particles diffusing via

Brownian motion, while those without these attributes are

treated as population variables reacting and diffusing within a

discretized space (subvolumes). For non-spatial models, the

population-based network-free algorithm (PNFA) of Liu et al.

[54] employs a similar philosophy: all multi-state (structured)

species are automatically treated as particles, while single-state

species are treated as population variables. Both ML-Space

and PNFA lack a general representation of intermolecular

bonding, which makes it difficult to account for combinatorial

complexity associated with aggregation processes [2,29].

Falkenberg et al. [55] have proposed a hybrid deterministic/

stochastic method that specifically addresses the problem of

aggregation. Their approach first calculates occupancy prob-

abilities as a function of time for all binding-site types by

treating them as population variables and numerically

integrating an associated set of deterministic ODEs describing

the binding/unbinding kinetics. An ensemble of system states

is then obtained by randomly distributing bonds, based on

these probabilities, among a finite number of discrete

molecules. The method assumes that inter- and intra-molec-

ular bond formations occur with equal rates. Thus, although

efficient for problems with high symmetry, its applicability to

more general cases may be limited.

Other approaches aimed at improving the efficiency of rule-

based simulations include ‘‘on-the-fly’’ network generation

[17,56,57], where the reaction network is gradually built up by

adding reactions only when new species appear in the system.

The approach has only been developed within the context of

discrete-stochastic simulation and has been shown to be

significantly less efficient than network-free approaches when

applied to combinatorially-complex models [23,58]. An alter-

native approach to reducing computational cost is exact model

reduction (EMR) [59–64]. EMR aims to reduce the state space

of a rule-based model while preserving the exact system

dynamics with respect to observable quantities. These methods

can achieve dramatic reductions in model complexity when

applied within the context of ODEs, so long as the model does

not contain significant cooperative or allosteric interactions

[62,64]. EMR for stochastic simulations, however, has so far

been less successful (see http://infoscience.epfl.ch/record/

142570/files/stochastic_fragments.pdf).

Methods

Example models
We have tested the performance of the HPP method by

applying it to four example models, summarized in Table 2

and discussed in further detail below. All of the models are

biologically relevant and are either taken directly from the

literature or are based on models taken from the literature.

Complete BNGL encodings, HPP configuration files (contain-

ing actions for loading models, defining population maps, and

executing simulations), and partially-expanded versions of all

example models are provided as Texts S5, S6, S7, S8, S9, S10,

S11, S12, S13, S14, S15, S16, S17 of the supporting

information.
Trivalent-ligand bivalent-receptor. The trivalent-ligand

bivalent-receptor (TLBR) model is a simplified representation of

receptor aggregation following multivalent ligand binding. TLBR

has biological relevance to antigen-antibody interaction at the cell

surface, where bivalent IgE{FceRI receptor complexes aggre-

gate in the presence of multivalent antigen [65]. A theoretical

study of the TLBR system was presented by Goldstein and

Perelson [65], who derived analytical conditions for a solution-gel

phase transition in terms of binding equilibrium constants, free

ligand concentration, and receptors per cell. A more recent study

considered the effects of steric constraints and ring closure on the

solution-gel phase transition [42].

Despite its simplicity, the TLBR system experiences a state-

space explosion near the solution-gel phase boundary. A

computational study by Sneddon et al. using NFsim [16]

reproduced the analytical results of Goldstein and Perelson.

Due to large excesses of ligand and receptor under certain

conditions, TLBR is a natural test case for HPP. We simulated

the TLBR system using HPP with free ligand and receptor

treated as population species. All simulations were performed

with parameters as defined in Monine et al. [42], which lie

within the solution-gel phase coexistence region. A cell-scale

simulation assumed 1 nl extracellular volume per cell (106

cells/ml) with 8:3 nM ligand and 3|105 receptors per cell.

Simulations were performed at fractional cell volumes, f ,

ranging from 0:001 to 0:1 with a lumping rate constant

k_lump= 10000/s (see below).
Actin polymerization. Actin polymerization plays a key role

in cell morphology and motility [66,67]. Roland et al. [43]

presented a dynamic model of actin polymerization featuring

Table 2. Summary of example models used to test the performance of the HPP method.

Model Rules Reactions Species Particles (f = 1) Population species Rules after PNE t_end (s)

TLBR [16,42,65] 4 ‘ ‘ 5.36106 2 9 500

Actin [16,43] 21 ‘ ‘ 1.26106 2 25 1000

Fce RI [16,70,81] 24 58 276 3744 6.96106 1/6 25/38 2400

EGFR [18,71,72] 113 415 858 18 950 2.26106 29 159 1200

Number of particles is for an NFsim simulation of a full cell volume (f ~1). Fractional cell volumes as low as 0.001 and as high as 1 are used in the performance analyses
(see ‘‘Example models’’ for details). Number of rules after PNE includes the population-mapping rules (one per population species).
doi:10.1371/journal.pcbi.1003544.t002
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filament elongation by monomer addition, stabilization by ATP

hydrolysis, and severing mediated by actin depolymerizing factor

(ADF)/cofilin. Sneddon et al. [16] presented a rule-based

formulation of the Roland et al. model and replicated their results

using NFsim. The model features an excess of actin monomer and

ADF molecules. Therefore, we speculated that substantial memory

reduction would be possible using the hybrid approach. We

applied HPP to the Sneddon et al. rule-based model of actin

dynamics (hereafter referred to as the Actin model) with actin

monomer and ADF treated as population species. A cell-scale

simulation assumed 1 pl intracellular volume with 1 mM actin

monomer and 1 mM ADF/cofilin. Simulations were performed at

fractional cell volumes, f , ranging from 0:01 to 1 with a lumping

rate constant k lumps. = 10000/s

FceRI signaling. FceRI is a membrane receptor that binds

IgE antibodies. Signaling through FceRI regulates basophilic

histamine release in response to IgE antibody-antigen interaction

[68]. Faeder et al. [69,70] developed a rule-based model of FceRI
receptor assembly and activation in which receptor dimerization/

clustering is mediated by chemically cross-linked IgE, which serve

as multivalent ligands. Dimerized receptors are transphosphory-

lated, leading to Syk and Lyn recruitment and phosphorylation.

Sneddon et al. [16] presented several extensions of the Faeder et

al. model, including the gamma2 variant with two c phosphoryla-

tion sites. Particle-based NFsim simulations of the gamma2 model

were found to be substantially faster than network-based SSA

simulations.

Due to the excess of free ligand, the HPP method was

applied to the gamma2 model to reduce memory consumption.

The method was applied with two different sets of population

species. In the first case, only free ligand was treated as a

population species (FceRI : 1). In the second, cytosolic Lyn and

all four phosphorylation states of cytosolic Syk were also

treated as populations (FceRI : 6). A cell-scale simulation

assumed 1 pl intracellular volume with 1 nl extracellular space

per cell (106 cells/ml), 10 nM ligand, and 4|105 receptors per

cell. Simulations were performed at fractional cell volumes, f ,

ranging from 0:001 to 0:1 with a lumping rate constant

k lumps= 10000/s.

EGFR signaling. A model of signaling through the

epidermal growth factor receptor (EGFR), beginning with

ligand binding and concluding with nuclear phospho-ERK

activity, was constructed by combining three existing models:

(i) a rule-based model of EGFR complex assembly [18]; (ii) a

Ras activation model [71]; (iii) a pathway model of Raf, MEK

and ERK activation [72]. Ras activation was coupled to the

EGFR complex assembly by treating receptor-recruited Sos as

the Ras GEF. Activated Ras was coupled to the Raf/MEK/

ERK cascade through RasGTP-Raf binding and subsequent

phosphorylation of Raf. Parameters for the combined model

were obtained from the respective models. However, param-

eters governing Ras-GEF (i.e., Sos) activity had to be

changed from their original values [71] in order to account

for the known GEF-mediated activation of Ras [73]. Specif-

ically, we used KM,GDP~KM,GTP~1:56|10{7 M and

D~1000 (unitless).

Free EGF and Raf-, MEK-, and ERK-based species were

treated as population species in the hybrid variant. Ras-based

species were also treated as populations except for those that

include a Sos molecule. A cell-scale simulation assumed 0:94 pl
cytosolic and 0:22 pl nuclear volume, with 0:94 pl extracellular

space, 10 nM ligand, and 4|105 receptors per cell. Simulations

were performed at fractional cell volumes, f , ranging from 0:01 to

1 with a lumping rate constant k lumps= 100000/s.

Performance metrics
HPP was evaluated for peak memory use, CPU run time, and

accuracy as compared to particle-based NFsim simulations. For

models where network generation is possible (FceRI and EGFR),

comparisons were also made to SSA simulations (as implemented

within BioNetGen [6]). All simulations were run on a 2| Intel

Xeon E5520 @ 2.27 GHz (8 cores, 16 threads, x86_64 instruction

set) with 74 GB of RAM running the GNU/Linux operating

system. To ensure that each process had access to 100% of the

compute cycles of a thread, no more than 12 simulations were run

simultaneously.

Peak memory. Average peak memory usage for each

simulation method was calculated based on seven independent

simulation runs. Peak memory for each run was evaluated by peak

virtual memory allocation reported by the operating system with

the command ‘‘cat/proc/,PID./status’’. For all tested models,

peak memory was achieved early in the simulation and remained

steady throughout (data not shown).

CPU run time. Average CPU run time for each simulation

method was calculated based on seven independent simulation

runs using clock time as a metric. Clock time for each run was

recorded using the Time::HiRes Perl module. Run time

included initialization as well as the simulation phase. Partial

network expansion for HPP simulations was a one time cost,

typically a few seconds, and was not included in the

calculation.

Accuracy. Simulation accuracy was quantified using several

approaches. First, since HPP, NFsim, and SSA are all exact-

stochastic methods, they should all produce statistically the same

number of reaction firings. To verify this, for all tested models the

total number of reaction firings was recorded for each of 40

independent simulation runs of each method (firings of population-

mapping rules were subtracted from the total in HPP simulations).

The Mann-Whitney U test [74,75] was then used to test the null

hypothesis that none of the methods produces a larger number of

reaction firings.

For the TLBR and Actin models, we further compared

equilibrium distributions for key observables. These include

the number of receptor clusters in the TLBR model and the

length of actin polymers in the Actin model. 10 000 samples

were collected over 100 000 seconds of simulated time and

distributions were compared by binning samples (20 bins) and

performing a two-sample chi-squared test [76]. For the FceRI
and EGFR models, we compared dynamic trajectories for key

observables. These include c{phosphorylated receptor and

receptor-recruited, a{ phosphorylated Syk in the FceRI
model, and activated Sos and nuclear phosphorylated ERK

in the EGFR model. Due to complications of autocorrelation,

a statistical test was not applied to the dynamic trajectory

comparison. Instead, moving averages and 5{95%
frequency envelopes, based on 40 simulation runs of each

method using a sampling window of 10 s, were plotted for

inspection by eye.

Software
All HPP and NFsim simulations reported in this work were

run using NFsim version 1.11, which is available for download

at http://emonet.biology.yale.edu/nfsim. All simulations (SSA

included) were invoked through BioNetGen version 2.2.4,

which implements the hybrid model generator and is distrib-

uted with NFsim 1.11. Instructions for running simulations

with BioNetGen (ODE, SSA, and HPP) can be found in Secs.

S3.2 and S3.3 of Text S1 and Refs. [6,14]. NFsim and

BioNetGen source code are available at http://code.google.
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com/p/nfsim and http://code.google.com/p/bionetgen, re-

spectively. Additional documentation for BioNetGen can be

found at http://bionetgen.org.

Results

A hybrid particle/population simulation approach
In this section, we first present an approach, termed ‘‘partial

network expansion,’’ for transforming a rule-based model into

a dynamically-equivalent, partially-expanded form. We then

describe a simple modification to the network-free simulation

protocol that permits simulation of the transformed model as a

collection of both particles and population variables. We refer to

the combination of these methods as the hybrid particle/

population (HPP) simulation method. The basic workflow is

shown in Fig. 1.

The HPP approach is analogous to the coupled procedure of

network generation and simulation described above, where a rule-

based model is first transformed into a fully-expanded reaction

network and then simulated as a collection of population variables

(i.e., species) using a network-based simulator. The obvious

differences are that in HPP the network is only partially expanded

and the system can only be simulated stochastically using a

population-adapted network-free simulator. The partial network

expansion algorithm has been implemented within the open-

source rule-based modeling package BioNetGen [5,6,14] and

resulting hybrid models can be simulated using version 1.11 (or

later) of the network-free simulator NFsim [16], which has been

modified to handle population-type species. For convenience, we

adhere in this paper to the BNGL syntax, which is summarized in

Sec. S3.1 of Text S1 of the supporting material. However, the

HPP method is generally applicable to any rule-based modeling

language for which there exists a network-free simulator capable of

handling a mixed particle/population system representation, e.g.,

KaSim 3.x for Kappa language models (see https://github.com/

jkrivine/KaSim).

Population species and population-mapping

rules. Given a rule-based model, the first step in the HPP

approach is to select a subset of species to treat as ‘‘lumped’’

population variables. There are no hard-and-fast rules for doing

this but, generally speaking, species that are good candidates for a

population treatment (i) have a small number of components and

internal states, (ii) participate in a small number of rules, and (iii)

maintain a large population throughout the course of a simulation.

An example is a simple ligand species that exists in great excess in

the extracellular environment and interacts with cell surface

receptors. It is our experience that these simple rules of thumb,

combined with the experience and intuition of the modeler, are

usually sufficient for selecting an adequate set of population

species. However, in some cases a more systematic approach may

be desirable. We will return to this topic below.

For now, however, let us assume that we have selected a suitable

set of population species. The next step in the HPP approach is to

map each of these to an associated unstructured species. The

mapping is accomplished by defining a population-mapping rule,

which follows the same syntactic conventions as a standard BNGL

rule. For example, the rule

Egf rð Þ?pop EgfðÞk lump

maps the unbound EGF ligand, Egf(r), to the unstructured species

pop_Egf(). To avoid confusion, we will henceforth refer to species

on the reactant side of a population-mapping rule, such as Egf(r),

as structured population species and to those on the product side as

unstructured population species. Importantly, unstructured population

species differ from conventional unstructured molecules in BNGL

in that they possess a property, called a count, which records their

current population (see Sec. S3.3 of Text S1 and Texts S4, S7,

S10, S13, S14, and S17 to see how the population keyword is used

to make this distinction). The action of the population-mapping

rule above is thus to delete the Egf(r) molecule and to increment by

one the count of pop_Egf(). The role of the rate parameter

k_lump, termed the lumping rate constant, will be explained in

detail below.

Partial network expansion. Ultimately, our goal in the

HPP method is to replace in the simulation environment large

numbers of indistinguishable particles with small numbers of

lumped objects containing population counters (the unstructured

population species), thus significantly reducing memory usage. In

order to accomplish this without losing any information regarding

the dynamics of the system, we must partially expand the rule set

of the original model until all interactions and transformations in

which the structured population species participate as reactants (see

below) are enumerated. We can then swap the structured species

with their unstructured counterparts, which have been specified

via the population-mapping rules. We refer to this procedure as

partial network expansion (PNE).

The PNE algorithm is comprised of three basic steps, which are

applied to each rule of a rule-based model:

1. For each reactant pattern in the rule, identify all matches of

that pattern into the set of structured population species. Also

collect a self-match of the reactant pattern unless it equals one of

the population species (this can only happen if the reactant

pattern is a fully-specified species; see below for further

discussion).

2. Derive an expanded set of rules by applying the rule to all

possible combinations (the cartesian product) of the pattern

matches collected in Step 1.

3. For each derived rule from Step 2, replace each instance of a

structured population species with its unstructured population

counterpart.

The result is an expanded rule set consisting of three general

types of rules: (i) particle rules, in which all reactants are

Figure 1. Basic workflow of the HPP simulation method. Given a
rule-based model and a user-specified set of population-mapping rules
(which define the population species), partial network expansion (PNE)
is performed to generate a hybrid version of the original model. The
hybrid model is then passed to a population-adapted network-free
simulator (e.g., NFsim 1.11), which generates the time-evolution
trajectories for all observable quantities specified in the original model.
doi:10.1371/journal.pcbi.1003544.g001
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conventional reactant patterns; (ii) mixed particle/population

rules, where at least one reactant is a conventional reactant

pattern and one is an unstructured population species; (iii) pure

population reactions, where all reactants are unstructured popula-

tion species. This expanded rule set has the property that every

possible action of the original rule set on the population species is

enumerated while actions on particle objects remain pattern-based

(i.e., non-enumerated). For a more formal presentation of the PNE

algorithm, complete with pseudocode, we direct the reader to Sec.

S4.2 of Text S1.

Role of the population-mapping rules. After completion

of PNE, the final step in transforming a rule-based model into

a form that can be simulated as a hybrid particle/population

system is to append the population-mapping rules to the

expanded rule set. The reason for doing this is not immediately

obvious. We have seen above that the population-mapping

rules specify which structured species are to be replaced in the

transformed model with population variables. However, an

obvious question to ask is why we have chosen to specify this

information via a set of reaction rules, rather than simply as a

list of species to be lumped. The answer is combinatorial

complexity.

As explained above, systems that are combinatorially

complex are comprised of a relatively small number of

constituent parts but exhibit an explosion in the number of

potential species and reactions due to the myriad number of

ways in which these parts can be connected and arranged.

Rule-based modeling is effective in representing these systems

because it focuses only on the portions of molecular complexes

that affect biochemical reactivity, not on entire species.

However, a consequence of this approach is that there is often

ambiguity regarding the products of a reaction rule. A rule

may describe the breaking of a bond between two molecules,

for example, but the exact composition of the resulting

complexes is left necessarily ambiguous (see Fig. 2).

With regard to the HPP approach, this ambiguity in the

products of a reaction rule complicates the process of PNE.

Application of a reaction rule to one complex may produce a

population species, whereas application of the same rule to a

different complex may not. Distinguishing between cases

where population species are produced and where they are

not is difficult, and may even be impossible if the system is

combinatorially complex. Thus, the strategy that we have

adopted here is to expand the network out only to the point

where all population species on the reactant side are enumerated

and to handle the ambiguity in products by adding the

population-mapping rules to the rule set. The role of the

population-mapping rules is thus to detect any instances of

structured population species that appear in the simulation

environment as products of a rule application and to gather

them up into the unstructured population pool.

This returns us to the issue of the lumping rate constant,

k_lump. In Step 1 of the PNE algorithm, if a reactant pattern

equals a population species then we discard the self-match (the

structured version of the population species). To see why we do

this, consider the binding rule depicted in Fig. 2A. However,

different from Figs. 2B–D, assume that molecules A and B have

only one binding site each. If we choose to lump the unbound

molecules then we must define the following population-mapping

rules:

A bð Þ?pop AðÞk lump,

B að Þ?pop BðÞk lump:

Obviously, these structured population species are equivalent to

the reactant patterns in Fig. 2A. However, let us choose not to

discard the self-matches in this case. PNE would then generate the

following four derived rules:

A bð ÞzB að Þ?A b!0ð Þ:B a!0ð Þkf,

pop AðÞzB að Þ?A b!0ð Þ:B a!0ð Þkf,

A bð Þzpop BðÞ?A b!0ð Þ:B a!0ð Þkf,

pop AðÞzpop BðÞ?A b!0ð Þ:B a!0ð Þkf:

We see that the first three of these rules have conventional

(structured) reactant patterns. However, if k_lump is suffi-

ciently large then particle instances of A(b) and B(a) will never

exist in the system long enough to be matched to these

patterns. Thus, these rules can be safely discarded, which is

equivalent to discarding the self-match in Step 1 of the PNE

algorithm. Retaining only the fourth derived rule (the pure

population version) simplifies the process and keeps the size of

the derived rule set to a minimum.

The consequence of this is obviously that the HPP method is

formally exact only for an infinite lumping rate constant. From a

practical point of view, this could be a problem if the network-free

simulator being used does not support infinite rates (e.g., NFsim

currently does not). However, our performance tests indicate that

as long as k_lump is ‘‘large’’ with respect to the model dynamics

then essentially exact results can be obtained (see ‘Performance

Figure 2. Simple illustration of ambiguity in the products of
reaction rules. (A) A simple rule encodes the reversible binding of two
molecule types, A and B. (B)–(D) If both molecules have multiple
binding sites then they may be present within arbitrarily complex
complexes. Breaking the bond between A and B thus produces a variety
of product species, some of which may correspond to population
species and others not. Dashed line represents a bond addition/
deletion operation.
doi:10.1371/journal.pcbi.1003544.g002
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analyses’). Nevertheless, we have implemented in BioNetGen a

‘‘safe’’ mode for PNE that retains all of the self-matches and,

hence, produces exact results for any value of k_lump (see Sec. S3.3

of Text S1 for instructions on how to call this method). For a select

number of examples, we have confirmed that both approaches

give essentially identical results for sufficiently large k_lump and

that the ‘‘safe’’ mode is less efficient (data not shown).

Simple example of PNE. PNE is best illustrated through an

example. In Fig. 3, we present a simple rule-based model of

receptor activation (for brevity, parameters, initial populations,

and output observables are omitted; see Text S2 of the supporting

material for the complete model in BNGL format). The model

includes a ligand, L, its cognate receptor, R, and three cytosolic

proteins, A, B, and C, that are recruited to the phosphorylated

receptor. The 16 rules (six unidirectional and five reversible),

describing ligand-receptor binding, receptor phosphorylation/

dephosphorylation, and protein recruitment, encode a reaction

network comprised of 56 species and 287 reactions. In applying

the HPP method, eight species are selected for lumping: free

ligand, free A, B and C, and complexes of A, B and C that

exclude the receptor. Receptor complexes are treated as particles

because there are many possible receptor configurations (48

total).

In Fig. 4, a step-by-step application of PNE to rule 11f (forward)

of Fig. 3 is presented. First, both reactant patterns are matched to

the structured population species. Reactant pattern 1 has one

match, while reactant pattern 2 has two. Note that since neither

reactant pattern exactly equals a species (i.e., is isomorphic to one)

Figure 3. Simple receptor activation model in BNGL format. Abridged; see Text S2 of the supporting material for the complete model and
Text S3 for the population-mapping rules.
doi:10.1371/journal.pcbi.1003544.g003
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the self match (identity automorphism) is added to the reactant

match list in both cases. Next, the rule is applied to each possible

reactant set (the cartesian product of the reactant match lists). This

results in a set of six derived rules. The structured population

species are then replaced in these rules by their associated

unstructured species, resulting in one pure particle rule (the

original rule), three mixed particle/population rules, and two pure

population reactions. Including the population-mapping rules, the

hybrid model contains a total of 42 rules, more than the original

16 but significantly less than the 287 reactions of the fully-

expanded network. The complete partially-expanded HPP model

in BNGL format can be found in Text S4 of the supporting

material.

Population-adapted network-free simulation. Although

modified relative to the original, the hybrid model generated from

PNE remains properly a rule-based model. As such, it can, in

principle, be simulated with any of the network-based (after

network generation) and network-free simulation methods de-

scribed above. However, the advantage of recasting the original

model into the hybrid form is that it can be represented as a

collection of particles and population objects and simulated using a

modified network-free method that has the following attributes: (i)

a population count property for each molecule object; (ii) a

transformation that performs population increments and decre-

ments; (iii) a method for calculating population-weighted propen-

sities (rates). Examples of population-adapted network-free simu-

lators are NFsim 1.11 and KaSim 3.x.

The population-weighted propensity of a rule Rm can be

calculated as

am~
km

sm
P
Mm

r~1

XX

x~1

r(x)gm,r(x)

 !
: ð1Þ

Here, km is the rate constant (more generally, the ‘‘single-site rate

law’’ [6]), sm is the symmetry factor (see Note 4.21 of Ref. [6]), Mm

is the number of reactant patterns in the rule (i.e., the molecularity),

X is the total number of complexes in the system, r(x) is the

population of complex x (unity in the case of particles), and gm,r(x)

is the number of matches of reactant pattern r into complex x
(unity or zero for unstructured population species, i.e., the species

either is the reactant or it is not). The difference between Eq. 1 and

the formula used for calculating propensities in standard network-

free simulators is the term r(x); a fully particle-based network-free

Figure 4. Partial network expansion (PNE) applied to Rule 11f of Fig. 3. See Text S4 of the supporting material for the complete, partially-
expanded model.
doi:10.1371/journal.pcbi.1003544.g004
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calculation is recovered if all r(x)~1. Conversely, the difference

between Eq. 1 and the formula used in network-based SSA

simulators is the term gm,r(x); a fully population-based calculation

is recovered if all gm,r(x)~0 or 1, in which case X is the total

number of species in the network. Equation 1 thus generalizes the

concept of propensity for hybrid systems comprised of both

particles and population variables.

Also note that for symmetric population reactions, e.g.,

pop_A()+pop_A()RA(a!0).A(a!0), the possibility of a null event

must be calculated in order to prevent reactions involving the

same molecule. This is accomplished by rejecting the event with

probability 1=r(x). Furthermore, since population species have

zero components, if complex x is a population species and

gm,r(x)~1, then gm,r(y)~0 for all y=x. This property is useful

because it guarantees that a reactant pattern matches either

particles or population species exclusively, never a mixture of both.

Thus, once a rule has been selected to fire, the particles to

participate in that rule can be selected from a uniform distribution

rather than from a population-weighted distribution.

Performance analyses
Peak memory use and CPU run time. In Figs. 5–8, panels

A, we show absolute and relative (with respect to NFsim) peak

memory use as a function of cell fraction, f , for all models

considered. We see that in all tested cases HPP requires less

memory than NFsim. For NFsim, we also see the expected linear

relationship (Table 1) between peak memory use and particle

number (i.e., cell fraction; the slight deviation from linearity is an

artifact of how memory is allocated in NFsim). For HPP, peak

memory use also scales linearly with particle number, but with a

smaller slope. This is the expected behavior since as the cell

fraction is increased (keeping concentrations constant) a portion of

the added particles, and hence memory cost, is always absorbed by

the population portion of the system. Furthermore, in cases where

network generation is possible (FceRI, Fig. 7A; EGFR, Fig. 8A),

we see the expected constant relationship between memory usage

and particle number for the SSA (Table 1). We also see that the

SSA requires more memory than both NFsim and HPP for all cell

Figure 5. HPP performance analysis for the TLBR model. (A)
peak memory usage (left: absolute, right: relative to NFsim); (B) CPU run
time (left: absolute, right: relative to NFsim); (C) number of reaction
events fired during a simulation (f ~0:01); (D) equilibrium distribution
of number of clusters (f ~0:01). The slight deviation from linearity for
‘NF’ in (A) is an artifact of how memory is allocated in NFsim.
doi:10.1371/journal.pcbi.1003544.g005

Figure 6. HPP performance analysis for the actin polymeriza-
tion model. (A) peak memory usage (left: absolute, right: relative to
NFsim); (B) CPU run time (left: absolute, right: relative to NFsim); (C)
number of reaction events fired during a simulation (f ~0:01); (D)
equilibrium distribution of actin polymer lengths (f ~0:01). The slight
deviation from linearity for ‘NF’ in (A) is an artifact of how memory is
allocated in NFsim.
doi:10.1371/journal.pcbi.1003544.g006
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fractions considered. This is due to the high memory cost of the

dependency update graph [38] used in the SSA implementation

within BioNetGen, which scales with the product of the number of

reactions in the network and the number of reactions updated

after each reaction firing (see Table 1).

In Figs. 5–8, panels B, we show absolute and relative (with

respect to NFsim) CPU run times as a function of cell fraction.

Generally speaking, HPP and NFsim run times are comparable in

all cases, indicating that the reductions in memory use seen in

Figs. 5–8, panels A, are not achieved at the cost of increased run

Figure 7. HPP performance analysis for the FceRI signaling
model. (A) peak memory usage (left: absolute, right: relative to NFsim);
(B) CPU run time (left: absolute, right: relative to NFsim); (C) number of
reaction events fired during a simulation (f ~0:01); (D) timecourses
( m e a n s a n d 5{95% f r e q u e n c y e n v e l o p e s ; f ~0:01) f o r
c{phosphorylated r e c e p t o r ( t o p ) a n d r e c e p t o r - r e c r u i t e d ,
a{phosphorylated Syk (bottom). The slight deviation from linearity
for ‘NF’ in (A) is an artifact of how memory is allocated in NFsim. SSA
timecourses are virtually indistinguishable from those in (D) and have
been omitted for clarity.
doi:10.1371/journal.pcbi.1003544.g007

Figure 8. HPP performance analysis for the EGFR signaling
model. (A) peak memory usage (left: absolute, right: relative to NFsim);
(B) CPU run time (left: absolute, right: relative to NFsim); (C) number of
reaction events fired during a simulation (f ~0:05); (D) timecourses
(means and 5–95% frequency envelopes; f ~0:05) for activated Sos
(top) and nuclear phosphorylated ERK (bottom). The slight deviation
from linearity for ‘NF’ in (A) is an artifact of how memory is allocated in
NFsim. Due to high computational expense, SSA statistics were not
collected in (C) and (D).
doi:10.1371/journal.pcbi.1003544.g008

Hybrid Simulation of Rule-Based Models

PLOS Computational Biology | www.ploscompbiol.org 11 April 2014 | Volume 10 | Issue 4 | e1003544



times. In fact, HPP is slightly faster than NFsim in most cases. This

is because operations on population species (e.g., increment/

decrement) are less costly than the graph operations applied to

particles (e.g., subgraph matching). Also note in Fig. 5B the

expected quadratic relationship between run time and particle

number for the TLBR model (Table 1), which is due to the

formation of a super aggregate near the solution-gel phase

boundary [23,42]. In Figs. 7B and 8B, we see that the SSA is

slower than both NFsim and HPP for all cell fractions considered.

The difference is most pronounced at small cell fractions and is

much more significant for EGFR than for FceRI. This is expected

since previous work [16] has shown that network-free methods

perform particularly well for systems with small numbers of

particles and large networks (the EGFR network is significantly

larger than the FceRI network; Table 2). Finally, we see in Fig. 7B

that the CPU run time increases as we increase the number of

species treated as populations in the FceRI model, even though

the memory usage remains constant (Fig. 7A). This is interesting

because it suggests that the FceRI : 1 variant, with free ligand as

the only population species, is near-optimally lumped for the cell

fractions considered. We revisit the issue of optimal lumping sets

below.

Accuracy. In Figs. 5–8, panels C, we show distributions of the

number of reaction firings per simulation run for each of the

simulation methods considered. It is evident that for all models the

distributions, as illustrated by box plots, are similar for NFsim,

HPP, and SSA (the latter for FceRI only; Fig. 7C). Statistically

speaking, the two-sided Mann-Whitney U test [74,75] was unable

to reject the null hypothesis in all cases at the 5% significance level

(TLBR: p~0:25; Actin: p~0:90; FceRI: p~0:27; EGFR:

p~0:07). There is no evidence, therefore, that HPP does not

generate statistically identical numbers of reaction firings to both

NFsim and SSA. This is as expected since all methods are exact-

stochastic approaches.

Figure 9. HPP performance analyses for various lumping thresholds at cell fraction f ~0:01. (A) TLBR; (B) Actin; (C) FceRI; (D) EGFR. In all
plots, threshold values for different lumping sets are shown on the x-axis. For TLBR and Actin, some thresholds yield the same set of population
species as larger thresholds and are thus omitted from the figures. For TLBR, results for thresholds v16 are omitted due to impractically large partial
networks in those cases. Results for NFsim (‘NF’) and the hand-picked lumping sets from Figs. 5–8 (‘HPP’) are shown in all plots for comparison. Error
bars show standard error (three samples).
doi:10.1371/journal.pcbi.1003544.g009
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In Figs. 5–8, panels D, we compare distributions obtained

from NFsim and HPP simulations of all models. In Fig. 5D, we

show equilibrium distributions of the number of receptor clusters

in the TLBR model (f ~0:01). In Fig. 6D, equilibrium

distributions of polymer lengths in the Actin model are shown

(f ~0:01). In both cases, the NFsim and HPP distributions are

statistically indistinguishable (TLBR: p~0:50; Actin: p~0:66).

In Fig. 7D, time courses for c{phosphorylated receptor and

receptor-recruited, a{phosphorylated Syk are shown (f ~0:01).

In Fig. 8D, time courses for membrane-recruited (active) SOS

and nuclear phospho-ERK are shown (f ~0:05). Although we

did not perform any statistical tests, visual inspection of the

trajectories clearly shows that in all cases the NFsim and HPP

results are virtually identical.

Systematic approach to selecting population species. All

of the HPP results presented in Figs. 5–8 were obtained with

‘‘hand-picked’’ sets of population species chosen based on modeler

experience and intuition. The significant memory savings seen in

these plots imply that this approach will often be sufficient in

practice. However, it is fair to ask whether a more systematic

approach to selecting population species can achieve additional

memory savings. In order to address this question, we considered a

variety of different lumping sets for each example model and

compared their performance in terms of memory usage and CPU

run time. The lumping sets were chosen based on average species

populations calculated over the course of a single NFsim pre-

simulation at cell fraction f ~0:01. Specifically, at periodic

intervals, the full set of complexes in the system was collected,

each complex canonically labeled, and the number of instances of

each label (i.e., species) counted. Average values over the entire

simulation were then calculated for each species. Sets of

population species were constructed by lumping all species with

an average population greater than a range of pre-defined

thresholds. For convenience, we chose thresholds of 2n,n[½0,10�.
Average species populations obtained from each NFsim pre-

simulation are provided in supplementary Dataset S1. The script

that implements this method (for a single threshold) has been

included in the recent BioNetGen 2.2.5 release (auto_hpp.pl in the

Perl2 subdirectory).

In Fig. 9, we show peak memory use and CPU run times for

HPP simulations of each model at each lumping set considered. In

general, these results illustrate the success of the hand-picked

lumping sets, which produced memory savings close to the optimal

in most cases. There was, however, some room for improvement

in the FceRI model (Fig. 9C). This is because the fourth and fifth

most populated species for this model were complexes comprised

of five molecular subunits (see Dataset S1). Since we did not

anticipate this result, these high-population species were not

included in the hand-picked lumping set. The majority of the

memory savings seen in Fig. 9C for thresholds w32 are due to

lumping of these species. Thus, our results also illustrate the value

of using a more systematic approach to selecting population

species in some cases.

It is also interesting to note in Figs. 9C and 9D the presence of

an optimal lumping threshold between the maximum and

minimum values considered. At high thresholds, most species

are treated as particles and higher memory use is expected. At low

thresholds, however, the higher memory use is due to the larger

size of the partially-expanded network. Also interesting is that the

run time results in Fig. 9 show a weak (if any) dependence on the

chosen threshold, despite the fact that the time complexity of

network-free methods scales linearly with rule set size (Table 1).

Presumably, this is because the lower cost operations (increment/

decrement) associated with the population species offset the

increased cost of larger rule sets. This robustness of the time cost

with respect to the size of the lumping set is a positive attribute of

the HPP method.

Discussion

We have presented a hybrid particle/population simulation

approach for rule-based models of biological systems. The HPP

approach is applied in two stages (Fig. 1): (i) transformation of a

rule-based model into a dynamically-equivalent hybrid form by

partially expanding the network around a selected set of

Figure 10. Memory use vs. simulated volume for different
simulation methods, including a hypothetical automated HPP
(aHPP). For finite networks, aHPP memory use plateaus once the entire
reaction network has been generated. For infinite networks, the scaling
at large volumes should fall somewhere between constant and linear
(no worse than HPP) depending on the model (see Sec. S2 of Text S1 for
an analysis).
doi:10.1371/journal.pcbi.1003544.g010

Figure 11. Cost of running simulations on the Amazon Elastic
Compute Cloud (EC2). The minimum cost as a function of memory
requirement was calculated based on January 2012 pricing (http://aws.
amazon.com/ec2/) of all Standard, High-CPU, and High-Memory EC2
instances (see Sec. S1 of Text S1 for details of the calculation). Also
included are values for NFsim, HPP, and SSA simulations of the EGFR
model at cell fraction f ~1.
doi:10.1371/journal.pcbi.1003544.g011
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population species; (ii) simulation of the transformed model using a

population-adapted network-free simulator. The method is

formally exact for an infinite population lumping rate constant,

but can produce statistically exact results in practice provided that

a sufficiently large value is used (Figs. 5–8, panels C and D). As

currently implemented, the primary advantage of the HPP method

is in reducing memory usage during simulation (Figs. 5–8, panels

A). Importantly, this is accomplished with little to no impact on

simulation run time (Figs. 5–8, panels B).

We have shown that peak memory use for HPP scales

linearly with particle number (with a slope that is smaller than

for NFsim; Figs. 5–8, panels A) and confirmed that when

network generation is possible SSA memory use is approxi-

mately independent of particle number (Figs. 7A and 8A). At

the system volumes that we have considered here, HPP

memory use is significantly less than for SSA. However, the

linear scaling of HPP and the constant scaling of SSA indicate

that with further increases in the system volume there will

invariably come a point where HPP memory use exceeds that

of SSA. This is because species that are rare at small volumes,

and hence chosen to be treated as particles, become plentiful at

large volumes. Intuitively, a partially-expanded network should

never require more memory than a fully-enumerated network.

However, as currently implemented, there is no way to strictly

enforce this restriction because HPP requires that population

species be chosen prior to PNE.

In Fig. 9, we have shown how a systematic approach to

choosing population species can optimize memory usage for a

given system volume. However, this approach requires running

an NFsim pre-simulation, which may not be feasible for

systems with extremely large numbers of particles (e.g., whole

cells). Thus, we propose to develop a more general version of

HPP that dynamically tracks the populations of species during

the course of a simulation and automatically selects those to

treat as population variables based on some criteria, e.g., that

their population exceeds a certain threshold. In this automated

version of HPP (aHPP), PNE would be performed every time a

new species is lumped. If all species in the system become

lumped then the network will naturally become fully enumer-

ated. Hence, the memory load will never exceed that of the

fully-expanded network. In Fig. 10, we provide a qualitative

sketch of how we expect the memory usage of this hypothetical

aHPP method to scale with system volume (particle number).

Included for comparison are scalings for HPP, NFsim, and

SSA. For models with finite networks (such as FceRI and

EGFR), aHPP memory use should plateau once the entire

reaction network has been generated. For models with infinite

networks (such as TLBR and Actin), we expect aHPP memory

use at large volumes to scale somewhere between constant and

linear (no worse than HPP) depending on the model. A

detailed analysis of the space complexity of a hypothetical,

‘‘optimal’’ aHPP method is provided in Sec. S2 of supple-

mentary Text S1.

In order to frame our results within a real-world context, we

have estimated the cost of simulation based on hourly rates of

on-demand instances on the Amazon Elastic Compute Cloud

(EC2). In Fig. 11, we show the hourly cost (per ‘‘effective

compute unit’’) of simulation as a function of required memory

per simulation (details of the calculation can be found in Sec.

S1 of Text S1). Also included in the plot are values for HPP

(0:3 GB), NFsim (2:1 GB), and SSA (22:0 GB) simulations of the

EGFR model at cell fraction f ~1 (Fig. 8A). Our calculations

show that below 1:82 GB of required memory High-CPU

instances are the most cost effective. Above this threshold

High-Memory instances are the better option. The HPP

simulation falls below this cutoff while both NFsim and SSA

lie above. There is a quantifiable benefit, therefore, to

reducing memory usage in this case; HPP simulations on the

EC2 would be *2:5 and *33 times less expensive, respec-

tively, than NFsim and SSA (HPP is slightly faster than NFsim

and significantly faster than SSA; Fig. 8B). Thus, the reduction

in memory usage offered by HPP is not simply of academic

interest but can impact, in a tangible way, the cost of doing

computational research.

Finally, even greater benefits are possible if, in addition to

reducing memory usage, the speed of HPP simulations can be

increased. t leaping [36,77–79] is an approach for accelerating

stochastic simulations of chemically reactive systems. With a

few exceptions (e.g., Ref. [80]), t{leaping has been applied

primarily to fully-enumerated reaction networks. We believe

that the HPP method provides a unique setting for the

application of t leaping because, unlike in pure particle-based

methods, there exists a partial network of reactions that act on

population species. Thus, a network-based t{leaping method

can be applied exclusively to the population component of a

system while retaining the network-free approach in the

particle component. We have recently implemented a

t{leaping variant in BioNetGen, known as the partitioned-

leaping algorithm [22], and are actively working on integrating

it with the HPP.
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Fig. 9.
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Figure S1 Average number of reactions that must be updated

after each reaction firing (i.e, dependencies) for a collection of

FceRI signaling models of varying network size (all models are

included in the BioNetGen 2.2.5 release available at http://

bionetgen.org).
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Text S1 Sec. S1: Details of the monetary cost analysis shown in
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HPP simulations with BioNetGen/NFsim; Sec. S4: BNGL
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model of Fig. 3 (receptor_activation.bngl).
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model, including population mapping rules and instructions for
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tion.bngl).
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Text S6 HPP configuration file for the TLBR model

(run_tlbr.bngl).
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Text S7 HPP version of the TLBR model (tlbr_hpp.bngl).

(TXT)

Text S8 BNGL file for the Actin model (actin_simple.bngl).

(TXT)

Text S9 HPP configuration file for the Actin model (run_ac-

tin_simple.bngl).

(TXT)

Text S10 HPP version of the Actin model (actin_sim-
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(TXT)

Text S11 BNGL file for the FceRI model (fceri_gamma2.bngl).

(TXT)

Text S12 HPP configuration file for the FceRI model

(run_fceri_gamma2.bngl).

(TXT)
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