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Approximately 46,420 Americans are diagnosed with pancreatic cancer and 39,590 individuals 

die from the disease annually. Pancreatic cancer is associated with a less than 5% five-year 

survival rate.1 Early diagnosis is rare and surgical treatment is most beneficial before the cancer 

becomes locally invasive or metastatic. Previously, we identified in vitro DAMPmiRs (Damage 

Associated Molecular Pattern molecule induced microRNAs, miR-34c and miR-214) that are 

differentially expressed in peripheral blood mononuclear cells (PBMCs) upon DAMP 

stimulation and play an important role in regulating the inflammatory response via targeting 

inflammatory pathways. DAMPs are passively released into the local micro-environment, and 

progressively, into the systemic circulation to initiate early innate and adaptive immune 

responses.2,3  Whether the microRNA (miRNA) expression in pancreatic cancer patients’ PBMC 

is different from those of normal healthy individuals is unknown. Here, we examined the miRNA 

expression profile of age and sex matched samples to identify potential miRNA markers. One of 

the most promising markers (miR-125a-5p) was selected for further analysis in patients enrolled 

in our recently completed phase I/II pre-operative treatment with hydroxychloroquine and 

gemcitabine. We also evaluated how individual immunological stimuli affect miR-125a-5p 

expression in normal PBMC and validated several miR-125a-5p predicted down-stream targets. 
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1.0  INTRODUCTION 

This chapter will cover important information, including key terms and a brief summary of the 

current literature related to how microRNAs (miRNAs), damage-associated molecular patterns 

(DAMPs), and immune cells play important roles in pancreatic cancer. This section will also 

give an overview of the rationale and goals of the dissertation regarding how to identify and 

validate miRNA biomarkers from pancreatic cancer patients’ peripheral blood mononuclear cells 

(PBMCs). Part of this chapter is from our previous publication.4,5 

1.1 ORGANIZATION OF THE INTRODUCTION 

This dissertation covers concepts in identifying miRNA biomarkers in pancreatic cancer 

patients’ PBMCs and changes in miRNA expression during treatment. It also covers concepts in 

identifying stimulations that alter miRNA expression and validate the downstream targets of 

microRNA markers. In this introduction, I will first review basic information on pancreatic 

cancer, the importance of miRNAs, and the role of DAMPs and pathogen-associated molecular 

patterns (PAMPs) in tumors. Finally, I will introduce the rationale and goals of the dissertation 

and summarize the dissertation in a schematic picture.  
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1.2 PANCREATIC CANCER 

Each year, approximately 43,140 Americans are diagnosed with pancreatic cancer and 36,800 

die from the disease.6 Pancreatic cancer is associated with a less than 5% five-year survival rate 

.1 Early diagnosis is rare and surgical treatment is most beneficial before the cancer becomes 

locally invasive or metastatic. Physical exam, chest X-ray, CT Scan, MRI, PET scan, endoscopic 

ultrasound, laparoscopy, endoscopic retrograde cholangiopancreatography, percutaneous 

transhepatic cholangiography, and biopsy are used to diagnose the disease; however, few signs 

or symptoms are noticeable in the early stages. The fact that the signs are similar those of other 

illnesses and the location of pancreas make the disease difficult to detect and diagnose early. 

Therefore, there is a substantial unmet clinical need to develop early diagnostic reagents for 

identifying pancreatic cancer. Although CA19.9 (a biomarker) is widely used to monitor therapy, 

it has proven to be detectable only late in disease and to be increased with pancreatitis.7 

Recently, miRNAs present within the tumor and in the blood are potential quantitative measures 

of tumor that may be identified earlier in disease.5  

1.2.1 Pancreatic Cancer 

Pancreatic cancer is a malignant neoplasm originating from mutant cells (both endocrine and 

exocrine) that form the pancreas. Ninety-five percent of pancreatic cancers are derived from 

exocrine cells, which produce pancreatic enzymes for digestion. The majority of exocrine-

derived tumors are pancreatic adenocarcinomas. In this dissertation, the pancreatic cancer 

patients’ clinical samples to which we refer are pancreatic adenocarcinomas.  
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1.2.1.1 Pancreatic Cancer Progression Model  

The progression of pancreatic duct lesions into invasive cancer is the widely-accepted pancreatic 

cancer progression.8 (Figure 1.1) First, a genetically-altered clonal cell population usually 

proliferates and forms a stage 1A pancreatic intraepithelial neoplasia (PanIN), which is usually 

associated with Her-2/new and K-RAS mutation. Then, inactivation of p16 causes the PanIN to 

progress into a higher grade ductal lesion (PanIN 2). Accumulation of additional (e.g. p53, 

DPCA, and BRCA2) occurs during PanIN 3 development and the PanIN eventually progress into 

pancreatic cancer. 

 

 

Figure 1-1:Pancreatic Cancer genetic mutations model 

Genetic mutations are accumulated as pancreatic cancer progress. K-RAS and Her-2/neu mutations happened during 
PanIN 1A and as the lesions progress into pancreatic cancer, additional mutations e.g. p16, p53, DPC4, BRCA2 are 
also accumulated. 
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1.2.1.2 Mutations Associated with Pancreatic Cancer 

Pancreatic cancer progression is associated with several defined mutations or losses of genes, 

including TGF/SMAD4, KRAS, BCRA, p53, and p16.9  Those mutations may also be associated 

with miRNA expression in pancreatic cancer patients’ tissue or blood samples (Figure 1.2).5  We 

will discuss the role of miRNA in pancreatic cancer later in this chapter. 

 Pancreatic cancer cells do not respond to transforming growth factor beta (TGFβ) 

signaling even in the presence of high-level TGFβ receptor expression, which limits the ability of 

TGFβ to inhibit cell growth and.10 The loss/mutation of SMAD4 in the TGFβ pathway in 

pancreatic cancer cells attenuates the inhibitory function of TGFβ. Furthermore, TGFβ is also 

associated with cancer invasiveness (and metastasis) and regulating extracellular matrix (ECM) 

expression, angiogenesis, and immunosuppression.11 

KRAS is the most frequently mutated gene (>95%) in pancreatic ductal adenocarcinoma 

(PDAC).12 Mutation in KRAS disables GTPase to hydrolyse GTP, resulting in a constitutively-

activated protein.  As PDAC progresses, KRAS-mutated tumor cells may accumulate mutations 

in other genes such as p53 and SMAD4. The KRAS mutation occurs in the early stage of 

pancreatic cancer development and is associated with the loss of tumor suppressor genes in late 

stages.13-19 Ras regulates cellular proliferation, differentiation, migration, and apoptosis via 

activation of the MAP kinase cascade (AKT and the P13K pathway). Ras is deregulated in many 

cancer types, leading to decreased apoptosis and increased cell invasion and metastasis.20 Active 

mutations of Ras are found in 90-95% of all pancreatic tumors (and a quarter of all other 

tumors). Thus, KRAS is one of the most frequent mutations in pancreatic cancer.  

Breast cancer type 2 susceptibility proteins (BRCA2) are essential for cell proliferation, 

differentiation, and DNA repair.21-23 In murine models, BRCA2 mutation, in concert with other 

 4 



mutations (e.g. KRAS, p53), defines a role for BRCA in PDACs.24  When p53 is intact, BRCA2 

mutation alone is not sufficient to drive PDAC, while double mutations can enhance PDAC 

development. Double mutation of BRCA and KRAS in p53-intact cells cannot fully drive 

PDAC, but when p53 is also mutated, mice rapidly develop PDAC. Pancreatic cancer patients 

with BRCA2 mutations are found to be sensitive to DNA cross-linking agent therapy, and some 

conversion from sensitive to resistant is occasionally due to the secondary mutation that restores 

expression of wild-type BRCA2.25,26  

p53 is one of the most frequently mutated human tumor suppressor genes that plays an 

important role in activating DNA repair, inhibiting autophagy, and promoting cell cycle arrest as 

well as apoptosis to limit transformation.27-30 It is also frequently mutated in pancreatic 

adenocarcinoma. p53 and its gene product TP53INP1 regulate the cycle though pre-

transcriptional, transcriptional, and posttranscriptional actions.31,32  

p16 is a tumor-suppressor protein also known as cyclin-dependent kinase inhibitor 2A 

(CKDN2A) p16Ink4A and multiple tumor suppressor-1 (MTS1). p16 proteins regulate cell cycle 

progression, apoptosis, and DNA repair, and the genes that encode p16 are lost in 80-95% of 

pancreatic cancer cases, which is observed in even the early stage of PanIN lesions.8,33 P16 

mutations, in combination with KRAS, p53, and SMAD4 mutations, have also been observed in 

advanced pancreatic cancer.34-36 Although many efforts have been made in the field to 

understand how genetic mutations relate to pancreatic cancer, translating knowledge about 

genetic mutations to therapy and diagnosis is still ongoing. 
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Figure 1-2: Predicted genetic lesions linking with pancreatic cancer miRNA markers 

Predicted network linking pancreatic cancer miRNA markers, known pancreatic cancer genetic lesions, and 
DAMPs. miR-21, miR-155, and miR-200 family members are connected to known genetic lesions found in 
pancreatic cancers including mutant K-ras,BRCA1, TGFA, and DAMPs (HMGB1) and DAMP-receptors (RAGE) 
as well as the p53 pathway. Note that the role played by c-Myc in apoptosis regulation is paradoxical; under some 
conditions, c-Myc promotes proliferation, and under other condition c-Myc promotes apoptosis.221 c-Myc is crucial 
for apoptosis and requires p53 to activate apoptosis. 
 

1.2.1.3 Stages of Disease Progression 

Pancreatic carcinoma in situ (stage 0) is defined when abnormal cells are found within the 

pancreas ductal cells. The abnormal cells may become cancerous and spread into the nearby 

normal tissue. Stage 1 pancreatic cancer is defined when cancer has taken form and is only found 

in the pancreas. The five-year survival rate of stage 1A (tumor size less than 2cm) pancreatic 

cancer is ~14% and ~12% for stage 1B (tumor size greater than 2cm). When the cancer begins to 

spread to nearby tissue and organs and potentially spreads to lymph nodes near the pancreas, the 

cancer is defined as stage II. The five-year survival rate of stage IIA (cancer has spread to nearby 
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tissue and organs but not to the nearby lymph nodes) pancreatic cancer is ~7%, while that of 

stage IIB (cancer has spread to the lymph nodes as well) is ~5%.  During stage III, cancer has 

spread to the major blood vessels near the pancreas and may have spread to nearby lymph nodes. 

Stage III pancreatic cancer has a ~3% five-year survival rate. The disease progresses to stage IV 

when the cancer has spread to distant organs such as the liver, lung, and peritoneal cavity. The 

cancer may also spread to organs and tissues near the pancreas or lymph nodes. The five-year 

survival rate of stage IV pancreatic cancer is ~1%. 

1.2.1.4 Current Treatments 

Pancreatic cancer treatment options depend on the stage of the disease and whether the tumor 

can be removed by surgery. When surgery is not an option, radiation, chemotherapy, and 

targeted therapy are the currently approved options. Other therapeutic strategies, such as 

immunotherapy, including transferring or modulating immune cells or administering cytokine to 

stimulate the immune response, are under investigation. Different options are available 

depending on the stage of the disease. 

 Currently, complete pancreatic surgical resection still remains the most effective 

treatment option, with a five-year survival rate of 7-34% compared to the median survival of 

three to 11 months for un-resectable cancer.37 Unfortunately, only 10% of patients have the 

option to undergo curative surgery. Furthermore, even in experienced hands, pancreatic resection 

has a high morbidity rate (as high as 50%) Although techniques including gastroenteric 

reconstruction and application of somatostatin may improve morbidity, results are not promising.  

 Radiation damages cell DNA through waves or a stream of particles. When cell DNA is 

damaged, it loses the ability to proliferate. Over time, the cell dies; thus, radiation can be used to 

kill or shrink tumors. The cell cycle stage is crucial for effective radiation therapy, as 
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proliferative cells are more sensitive than resting cells. Radiation actively kills both normal and 

cancerous proliferating cells. This therapy thus maximizes the destruction of cancer cells while 

minimizing the destruction of normal cells, which is very important. Radiation takes days or 

even weeks of treatment before cancer cells start dying. Chemotherapy or targeted therapy in 

conjunction with radiation therapy can extend the survival time for patients with locally-spread 

pancreatic cancer from five to 10 months and from 11 months to nearly two years after surgery. 

 Chemotherapy can be used to treat pancreatic cancer. Gemcitabine and 5-fluorouracil (5-

FU) are two common drugs used to treat the disease. Gemcitabine is a pyrimidine anti-metabolite 

that interferes with cell metabolism and growth.38 It replaces pyrimidine deoxycytidine in DNA 

to prevent the DNA from being synthesized or repaired; thus, the cells cannot proliferate and 

eventually die. 5-FU, another anti-metabolite, works in a similar manner. Both gemcitabine and 

5-FU can also affect normal proliferating cells, therefore affecting blood cells and increasing the 

risk of infection. Gemcitabine can be used in conjunction with other drugs like cisplatin or 

streptozotocin or radiation therapy. Gemcitabine can improve the median survival duration of 

five weeks; adjuvant chemotherapy with gemcitabine increases five-year survival from 10% to 

20%.39,40 Clinical trials show that combing gemcitabine with erlotinib (a tyrosine kinase inhibitor 

that acts on epidermal growth factor receptor) can slightly prolong median survival time from 

5.91 months to 6.24 months with a 5% one year progression-free survival rate increase.41 Other 

ongoing clinical trials for adjuvant (before surgery) and neoadjuvant (after surgery) therapy with 

gemcitabine are under investigation. 

 Immunotherapy, a strategy to enhance or suppress the immune response by activating 

immune cells, vaccines, or immunomodulators, can be used against pancreatic cancer. 

Immunomodulators including interleukins, cytokines, and chemokines have been used to 
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modulate the immune system to treat varies diseases. Interlukin-2 (IL-2), a T-cell growth factor, 

has been shown to be associated with an 8-10% complete response rate in renal clear cell 

carcinoma (RCC) and melanoma.42 The mechanism by which IL-2 works against cancer is not 

fully understood but is likely due to enhancing the T-cell response to cancer. IL-2 is associated 

with side-effects and requires ICU care during administration. Unfortunately, IL-2 has not been 

approved for pancreatic cancer treatment because of poor efficacy thus, understanding the 

difference between RCC, melanoma, and pancreatic cancer may help improve its efficacy. Other 

interleukins (IL-12, IL-15, IL-24,), cytokines (interferons, G-CSF), and chemokines (CCL2, 

CXCL7) are also potential immunomodulator targets for pancreatic cancer treatment.43,44 45-48 

The use of activating cytotoxic T lymphocyte (CTL) to induce the antitumor effect 

against pancreatic cancer is one of the aims of immunotherapy.49 Dendritic cells (DCs) present 

antigens to CTLs via MHC class I (endogenously synthesized antigens) or MHC class II 

molecules (exogenous antigens) and activate CTLs to initiate a tumor-specific immune 

response.50,51 The activated CTLs recognize MHC class I-peptide complexes in cancer and 

mediate cell death via effector molecules like granzyme B and perforin.52,53 CTLs can also be 

activated by T-cell receptor mediated activation in which proinflammatory cytokines (INF-γ, 

TNF-γ, and TNF-α) secreted from Th1 cells activate DCs, which can regulate the survival and 

persistence of CTL memory cells.54,55 The founding of tumor-associated antigens (TAAs) such 

as Wilms’ tumor gene 1 (75%), mucin 1 (MUC1) (>85%), human telomerase reverse 

transcriptase (hTERT) (88%), mutated KRAS (73%), survivin (77%), carcinoembryonic antigen 

(CEA) (>90%), HER-2/neu (61.2%), and p53 (67%) expressed on pancreatic cancer cells are 

potential targets for immunotherapy.56-63 Pancreatic cancer not only consists of cancer cells but 

also immune suppressive cells, including tumor-associated macrophages, regulatory T cells 

 9 



(Tregs), tolerogenic DCs, and myeloid-derived suppressor cells (MDSCs). Furthermore, immune 

suppressive cytokines like TGF β, IL-10, and IL-6 are also presented in pancreatic cancer. Thus, 

a strategy to deliver TAAs to recruit and activate CTLs while overcoming the 

immunosuppressive environment in the meantime in pancreatic cancer is needed.  

Coupled strategies to activate CTLs are used in clinical trial peptide vaccines, whole 

tumor cell vaccines, DC-based vaccines, and DNA-based vaccines. Peptide vaccines use 

antigenic protein fragments from TAAs and present them on the surfaces of antigen-presenting 

cells (APCs) to activate CTLs. Both short and long synthetic TAA peptides have been used to 

treat pancreatic cancer in clinical trials, and long synthetic peptides induce a long-term 

immunological memory response.59,64-73 Because only a limited number of synthetic peptides are 

known, whole tumor cell vaccines generating TAAs from autologous whole tumor cells or 

allogeneic tumor cell lines, are alternative strategies. Whole tumor cell vaccine a) does not 

require prior knowledge about the antigens, b) can present multiple TAAs on MHC Class I or 

Class II molecules, and c) protects against tumor escape variants because of polyclonal antigen-

specific CD4+ and CD8+ T cells. Autologous tumor cells vaccines have many technical 

drawbacks. First, only 10-15% of pancreatic cancer patients are eligible for surgery (autologous 

cell sources) and culturing sufficient numbers of cells with contaminations (bacteria, fungus, and 

fetal calf serum [FCS]) limits the clinical application. Using allogenic tumor cell line-generated 

TAAs solves the availability of cell numbers and well-characterized cell sources. Multiple 

clinical trials, using those testing allogeneic whole tumor cell vaccines, have shown an anti-

tumor effect.74-76 However, safety issues regarding the potential hazards of FCS and producing 

large batches of allogeneic whole tumor cells in good manufacturing practice-grade conditions 

remain challenging. Another approach uses DC-based vaccines to generate a CTL response 
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against tumor cells by using known tumor antigens, tumor cell lysate, apoptotic tumor cells, 

RNA derived from tumor antigens, and transfection with whole tumor cell nucleic acid.77-82 

Although DC-based vaccines have shown an anti-tumor immune response, further investigation 

to improve the efficacy of DC-based vaccines is needed due to the limited number of objective 

clinical responses in some cancer types.83-86 However, some ongoing clinical trials on DC-based 

vaccine pancreatic cancer treatments (targeting MUC1, hTERT) show promising results with 

improved survival, reduced recurrence, and a few cases of complete remission.68,87-91 Cell-based 

cancer vaccines can induce the antitumor immune response initially but can soon be attenuated 

by the host immune system, which recognizes them as foreign material.  Presenting the TAAs 

and stimulatory factors through DNA vaccine can extend antigen expression, induce memory 

responses, process the antigen in both exogenous and endogenous pathways, and has 

characteristics of multiple epitopes. Indeed, pancreatic cancer murine models have shown that 

DNA vaccinations targeting MUC1 or survivin can induce an antitumor immune response.92-94  

The benefits of using cancer vaccines are 1) they may prevent recurrence and metastasis 

after surgical resection, and 2) combining cancer vaccines with chemotherapy may also be 

synergetic.  Drawbacks include 1) limited number of known synthesized short peptides when 

using peptide vaccines, 2) they may not be effective to treat cancer, which has downregulated 

tumor antigens and MHC class I molecules, 3) pancreatic cancer patients may have defective 

APCs that cannot stimulate CTLs, and 4) the immunosuppressive environment created by 

MDSCs or Tregs may affect CTL function. 

Although many options, including surgery, chemotherapy, radiation therapy, 

immunotherapy, or adjuvant and neoadjuvant therapy, are available to treat pancreatic cancer, 

the five-year survival rate of pancreatic cancer remains approximately 5%. This is primarily due 
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to the difficulty of early diagnosis and that pancreatic cancer most often has already metastasized 

when symptoms are found.95 Therefore, biomarkers that can effectively diagnose and monitor 

pancreatic cancer are also important to improve the pancreatic cancer survival rate. 

 

Table 1-1: Individual Pancreatic Cancer Treatment Options  

Stage Options 

Stage I   
Cancer has formed and is found in the pancreas only 
Five-year Survival Rate: 

Stage IA (tumor<2cm) ~14% 
Stage IIA(tumor>2cm) ~12% 
 

Surgery with or without chemotherapy 
Surgery with chemotherapy & radiation therapy 
Clinical trial of combination chemotherapy 
Clinical trial of chemotherapy and targeted therapy, 
with or without chemoradiation 

Clinical trial of chemotherapy and/or radiation therapy 
before surgery 

Stage II 
Cancer may have spread to nearby tissue and organs and 
may have spread to lymph nodes near the pancreas.  
Five-year Survival Rate: 

Stage IIA (not spread to lymph node) ~7% 
Stage IIB (spread to the lymph node) ~ 5% 

Surgery with or without chemotherapy 
Surgery with chemotherapy & radiation therapy 
Clinical trial of combination chemotherapy 
Clinical trial of chemotherapy and targeted therapy, 
with or without chemoradiation 

Stage III 
Cancer has spread to the major blood vessels near the 
pancreas and may have spread to nearby lymph nodes 
Five-year Survival Rate~3% 

Palliative surgery or stent placement to bypass blocked 
areas in ducts or small intestine 
Chemotherapy (gemcitabine) with or without targeted 
therapy (erlotinib) 

Combination chemotherapy 
Chemoradiation followed by chemotherapy 

Chemotherapy followed by chemoradiation, for cancer 
that has not spread to other parts of the body 
Clinical trial of new anticancer therapies together with 
chemotherapy or chemoradiation 
Clinical trial of radiation therapy given during surgery 
or internal radiation therapy 

Stage IV 
Cancer may be of any size and has spread to distant 
organs, such as the liver, lung, and peritoneal cavity. It 
may have also spread to organs and tissues near the 
pancreas or to lymph nodes. 
Five-year Survival Rate ~1% 

Chemotherapy (gemcitabine) with or without targeted 
therapy (erlotinib) 
Combination chemotherapy 
Palliative treatments for pain, such as nerve blocks and 
other supportive care 
Palliative surgery or stent placement to bypass blocked 

areas in ducts or the small intestine 

Clinical trials of new anticancer agents with or without 

chemotherapy 
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Figure 1-3: Schematic summary of current immunotherapy with immunomodulators 

Schematic summary of current immunotherapy with immunomodulators (cytokines, interleukins, or chemokines) or 
vaccination (DNA/RNA, tumor antigen, whole tumor DNA, tumor lysate or apopototic tumor cells) to induce anti-
tumor immune response to pancreatic cancer 

1.2.2 Current Diagnosis and Unmet Clinical Need for Biomarkers 

Although pancreatic cancer therapy development is advancing, the five-year pancreatic cancer 

survival rate remains low (3% for stage III, 1% for stage IV, and lower early stage survival 

rates). This rate is also low compared to that of other top 10 deadly cancers: lung, colon and 

rectal, breast, prostate, leukemia, non-Hodgkin lymphoma, liver and intrahepatic bile duct, 

ovarian, and esophageal, according to a American Cancer Society survey (Table 1.2). Although 

early diagnosis and surgery can increase the survival rate, some patients have reoccurrence, liver 

failure, or liver metastasis, depending on the tumor’s aggressiveness and whether any 

microscopic tumor cells still remain in the patient after surgery. Thus, diagnostic techniques or 
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biomarkers to diagnose pancreatic cancer in the early stage and monitor the disease after 

treatment may help improve the survival rate. 

 

Table 1-2: Five-year Survival Rate for the Top 10 Deadly Cancers in United States 

Five- year Survival Rate for the Top 10 Deadly Cancers in United States with pancreatic cancer has the lowest 
survival rate in early stage.  
 
Rank by Cause of Death Stage IA Stage IB Stage IIA Stage IIB Stage III Stage IV 

Lung [non-small cell] (small 
cell) 

[49%] 
(31%) 

[45%] 
 

[30%] 
(19%) 

[31%] 
 

[14%] 
(8%) 

[1%] 
(1%) 

Colon  & Rectal 74%  67% 59% 73%-
28% 

6% 

Breast Cancer 88%  81% 74% 67-49% 15% 
Pancreas 14% 12% 7% 5% 3% 1% 
Prostate Local (100%) Regional (100%) Distant (29%) 
Leukemia Cure rate 

Chronic myelogenous leukemia  60-80%  
Acute lymphocytic leukemia  ~40% cure rate 
Acute myelogenous leukemia Children ~60-70% 

non-Hodgkin lymphoma Cure rate 
~67% depends on time of diagnosis 

Liver and intrahepatic Bile 
Duct 

Localized 28% Regional 10% Distant 3% 

Ovarian 94% 91% 76% 67% 34% 18% 
Esophageal Localized 38% Regional 20% Distant 3% 
 

Many pancreatic cancer signs and symptoms (e.g. jaundice, abdominal or back pain, 

weight loss & poor appetite, digestive problems, gallbladder enlargement, blood clots or fatty 

tissue abnormalities, and diabetes) will alert the physician to conduct more detailed diagnostic 

exams and tests to determine if the patient has pancreatic cancer. Details about why pancreatic 

cancer will cause those signs and symptoms are beyond the scope of this dissertation. More and 

more evidence has shown that diabetic patients are at increased risk for developing pancreatic 

cancer.96 Our laboratory has developed a spontaneous murine pancreatic cancer model to 
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investigate how pancreatic cancer is linked to diabetes with double KRAS and HMGB1 

(Unpublished). 

According to the American Cancer Association, when more than one sign or symptom is 

found, the physician will conduct a history & physical exam, imaging test, blood test, and biopsy 

to determine if the patient indeed has pancreatic cancer (Table 1.3). Although many exams and 

tests are available to diagnose pancreatic cancer, it quite often happens after the symptom or sign 

has developed, implying the cancer may have already spread. However, those diagnostic exams 

and tests do not give much information about therapy responsiveness or prognosis prediction. 

Therefore, a strategy to diagnose pancreatic cancer during the early stage and provide predictive 

therapy responsiveness and prognosis value is needed. 

Because of the difficulties of early-stage pancreatic cancer diagnosis and the challenges 

of effectively treating late-stage pancreatic cancer, biomarkers that can help early disease 

detection, therapeutic outcome, or prognosis prediction are highly desirable. A biomarker is “a 

characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention,” as 

defined by the NIH Biomarker Working Group.97  With the other word, a biomarker can either 

be used as a diagnostic, prognostic, or predictive tool for the disease.98 

An ideal diagnostic biomarker would be non-invasive and inexpensive with a high degree 

of sensitivity and specificity that would allow its use as a routine test to detect premalignant 

lesions, early invasive but curable cancer, or relapse after clinical treatment.98 A prognostic 

marker can be used to predict the patient’s expected survival, aggressiveness of the disease, and 

risk of recurrence, which help the clinician determine whether to use surgery or systemic 

treatment or closely monitor disease recurrence for high-risk individuals.98 A predictive 
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biomarker can be used to predict therapeutic outcome and help the clinician choose the most 

effective therapy or treatment strategy (surgery only, chemo/radiation/immune/therapy only, or 

adjuvant /neoadjuvant therapy) to optimize the treatment. Predictive biomarkers can facilitate a 

“personalized” treatment approach based on the specific tumor genotype or gene expression 

profile.98 

 

Table 1-3: Current Diagnostic Exams and Tests for Pancreatic Cancer 

Exams/Tests Procedure 

History and Physical 
(Symptoms) 

Get information about pain, appetite, weight loss, fatigue, and other symptoms 
Check for abdomen masses or fluid buildup, check skin and eye sclera for signs of jaundice, 
gallbladder, and liver enlargement; check for lymph node swelling 

 
Imaging Test 
(Tumor diagnosis) 

Computed tomography (CT, CAT) scan 
Diagnose pancreatic cancer and determine the stage and whether it has spread to the lymph 
nodes. 
Magnetic Resonance Imaging (MRI) 
Similar to CT and CAT, but most physician prefer to use CT and CAT instead 
Positron Emission Tomography (PET) scan 
Useful to determine if the pancreatic cancer has spread 
Ultrasonography (ultrasound) 
Useful if symptoms are not clear 
Endoscopic retrograde cholangiopancreatography  
Useful to check the blockage of ducts and remove cells for biopsy 

 
Blood Test 
(Tumor diagnosis) 

Chemical-based  
Look at the levels of different kinds of bilirubin and decide whether jaundice is caused by 
liver disease or a blockage of bile flow (one of the symptoms of pancreatic cancer) 
Tumor Markers 
Elevated blood levels of CA19-9 and CEA may point to a diagnosis of exocrine pancreatic 
cancer. However, those tests may not always accurate (will be discussed in the following 
section). 

 
Biopsy 
(Confirmation) 

 

Fine Needle Aspiration (FNA) biopsy 
Insert  a thin needle through skin and into the pancreas at the position where CT or 
ultrasonography detected the tumor 

 
Laparotomy or Laparoscopy 
A large incision through the wall of the abdomen to sample the biopsy or look at the 
pancreas with a microscope. If the surgeon confirms a tumor is present in the pancreas and 
has not spread, surgery is started immediately to remove the tumor. If the tumor has already 
spread, a small biopsy will be taken to confirm diagnosis. 
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Table 1-4: Current Biomarkers for Pancreatic Cancer 

Category Usage Category 

Diagnostic Detect early pancreatic cancer and distinguish it from 
other pancreatic diseases or detect relapse after 
treatment  

 

Diagnostic 

Prognostic Reveal the likelihood of the patient’s disease 
aggressiveness (resectable/metastatic), survival 
rate/time, and risk of recurrence, which can help the 
physician decide treatment options  

 

Prognostic 

Predictive Predict the clinical outcome of a specific therapy by 
assessing the genotype or gene expression profile of 
the tumor, which helps to optimize the therapeutic 
strategy for individual. 

 

Predictive 

 

1.2.2.1 Currently-Approved and Investigating Biomarkers  

CA 19-9, a sialylated Lewis antigen, is the only FDA-approved biomarker for pancreatic cancer. 

CA 19-9 is produced by exocrine epithelial cells and normally absorbed into the surface of 

erythrocytes. About 5-10% of population is Le a and Le b (enzymes that produce the antigen) 

negative, to whom CA 19-9 cannot be applied.99-102  CA19-9 is not an effective screening marker 

because it fails to distinguish between pancreatic cancer and other gastrointestinal 

complaints.103.However, CA 19-9 can serve as a promising pancreatic cancer marker to 

distinguish the disease from other pancreatobiliary diseases with sensitivity, specificity, positive 

and negative predictive values, and accuracy (70%, 87%, 59%, 92%, and 84%, respectively); 

similar performance has also been shown in other studies. 104-106 CA 19-9 has limited prognostic 

value in localized pancreatic cancer, which has a low Coz proportional hazard ratio, does not 

correlate with survival, and is falsely elevated in other pancreatic diseases and biliary tract 

conditions.107-110  Surgical procedures to remove the biliary obstruction make CA 19-9 a better 
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prognostic marker.111 Although CA 19-9 is not a good prognostic marker for localized pancreatic 

cancer, studies have shown that it can help to determine whether the tumor is resectable or 

not.112-114 On the other hand, CA 19-9 is a weak prognostic marker before treatment, but 

becomes informative after treatments (surgical resection, radiation, or chemotherapy). A CA 19-

9 level drop from the baseline of 20-75% was associated with a median of survival of one year 

compared to less than three months.115-121 

CEA and CA125, two other serum antigens, are also used to monitor the progression of 

the disease and therapeutic response; however, both CEA and CA125 are not FDA-approved for 

pancreatic cancer diagnostic application (they are approved for ovarian and colon cancer) 

because of their low sensitivities and specificities (30-60% and ~80%, respectively).104,122,123 

Ongoing investigations to identify new diagnostic, prognostic, and predictive biomarkers to 

better distinguish malignant and benign pancreatic disease forecast the nature of the disease and 

predict therapeutic outcome. 

Potential diagnostic biomarkers using proteomics (71%, 91%), metabolomics (in urine 

75%, 91%, in plasma 75%, 75%), miRNA (miR-21, 210, 155, 196a, 64%, 89%) and genotypic 

molecules (mutated KRAS in bile 94%, 89%, and in plasma 40-50% without specificity) as 

biomarkers yield sensitivity and specificity comparative to the current gold standard marker CA 

19-19 (60-70%, 70-85%, respectively).124-130  

Prognostic biomarkers to predict survival or likelihood of reoccurrence after resection 

have also been investigated. For instance, a study comparing gene expression profiles between 

patients with localized and metastatic pancreatic cancer discovered six genes (FOSB, KLF6, 

NFKBIZ, ATP4A, GSG1, and SIGLEC11) as a signature for poor survival.131,132 Another tissue 

microarray study compared a short (<12 months after resection) and long survival group (>30 

 18 



months after resection) with 13 putative pancreatic cancer biomarkers.133 A three univariate 

biomarker panel (MUC1, MSLN, and MUC2) that is more predictive than the current routine 

four pathologic features (lymph node metastases, resection margin, tumor size, and histologic 

grade) were identified.  Other studies that focused on identifying prognostic biomarkers to 

predict the reoccurrence pattern after surgery identified that loss of SMAD4 expression is 

associated with local failure and progression, but some contradicting results from other studies 

underscore the value of SMAD4 as a prognostic biomarkers.98,115,134 

The decision to apply the right therapeutic strategy to treat pancreatic cancer can be 

facilitated by a well-defined predictive marker. Studies have shown that pancreatic cancer 

patients with DNA repair pathway mutations are more sensitive to DNA-damaging agents (e.g. 

mitomycin C and platinum-based agents) or PARP inhibitors (protein that is important for DNA 

repair).135-139 Studies have found that patients with mutations in BRCA1/BRCA2 or PALB2 are 

more responsive to PARP inhibitors or mitomycin C therapies, respectively.140,141 Other studies 

have also identified predictive biomarkers for gemcitabine, including hENT1, RRM1, ERCC1, 

and cytoplasmic expression of HuR.142-144 HuR is found to be a promising predictive marker for 

gemcitabine responsiveness, in which it is independent of the tumor stage. 

Currently, there is still an unmet clinical need to 1) identify early diagnostic markers to 

detect and treat early stage pancreatic cancer and monitor reoccurrence after resection, 2) 

discover prognostic markers to help select the best therapeutic option (e.g. resection, adjuvant or 

ne-adjuvant therapy) based on the survival and reoccurrence pattern, and 3) predictive markers to 

optimize therapy based on the drug resistance of individual patients. Most of the above studies 

explore potential biomarkers in pancreatic cancer tissue, serum, plasma, bile, and urine; we 
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believe that assessing patients’ PBMC miRNA expression profile might reveal new biomarkers 

with diagnostic, prognostic, and predictive potential. 

1.3 MICRORNA 

MicroRNAs (miRNAs) are 18-22 nucleotide long, single stranded, non-coding RNAs that 

regulate important biological processes including cell differentiation, proliferation, and response 

to cellular stressors such as hypoxia, nutrient depletion, and traversion of the cell cycle by 

controlling protein expression within the cell. Many investigators have profiled cancer tissue and 

serum miRNAs to identify potential therapeutic targets, understand the pathways involved in 

tumorigenesis, and identify diagnostic tumor signatures. (Figure 1.4) In the setting of pancreatic 

cancer, obtaining pancreatic tissue is invasive and impractical for early diagnosis. Several groups 

have profiled miRNAs that are present in the blood as a means to diagnose tumor progression 

and predict prognosis/survival or drug resistance. Several miRNA signatures found in pancreatic 

tissue and the peripheral blood, as well as the pathways that are associated with pancreatic 

cancer, are reviewed here in detail.5 In this dissertation, we identified and validated potential 

miRNA expression profiles differentially expressed in pancreatic cancer patients’ PBMC 

compared to those of healthy individuals and explain how those miRNAs play a role in cancer 

progression. 
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1.3.1 miRNA Biogenesis and Mechanism to Regulate Gene Expression 

miRNAs are transcribed by RNA polymerase II/III in the nucleus and primary miRNAs (pri-

RNAs) are then processed by Drosha into hair-loop pre-miRNAs before they are exported to the 

cytoplasm by Exportin-5. In the cytoplasm, pre-miRNA is cleaved by Dicer into a mature single-

stranded miRNA hairpin loop, which regulates its cognate targeted gene messenger RNA 

(mRNA) by two primary mechanisms. (Figure 1.5) miRNAs utilize the RNA-induced silencing 

complex (RISC) to regulate target genes by binding the 3’ untranslated region (UTR). When 

miRNA is perfectly matched with the target mRNA, it will induce cleavage, thus inhibiting gene 

expression. When the miRNA is imperfectly matched, it will induce translational repression. 

Thus, the overall mRNA remains unchanged while gene expression is inhibited. miRNA can 

induce translational repression by: 1) translation initiation inhibition, 2) post-initiation inhibition, 

3) mRNA decay in removal foci, and 4) mRNA storage in stress granules.145 In brief, miRNA 

can induce translation initiation inhibition by repressing the 48S translational complex assembly, 

competing the m7G of mRNA binding site with eIF4E (miRNA binds to the Ago2 complex in 

order to bind to m7G) or blocking PolyA Binding Protein to affect translation initiation.146-149 

MiRNA can induce post-initiation inhibition by leading to higher rates of ribosome drop off,  

leading to immature termination during the elongation step.150  Argonaute proteins are part of the 

catalytic components in RISC and are able to bind to small non-coding RNAs (including 

miRNAs, small interfering RNAS (siRNAs), and Piwi-interacting RNAs (piRNAs).151,152  Some 

of the Argonaute proteins have endonuclease activity to enable degradation of perfectly 

complementary mRNA.153  In eukaryotes, Argonaute proteins have been identified in high 

concentrations in regional foci within the cytoplasm known as p-bodies.154,155 miRNA induces 
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sequestration of mRNA within P-bodies.156 miRNA can also induce temporary storage of mRNA 

in stress granules which can either be degraded or de-repressed later within the cell.157  

 

1.3.2 Role of miRNA in Cancer 

miRNAs can negatively regulate multiple gene targets and play an important role in cell cycle, 

proliferation, differentiation, immune response and cancer development.158 miRNA can either be 

tumor-suppressive or oncogenic depending on its down-stream targets. For example, the miR-

15a/miR-16-1 target anti-apoptotic gene BCL2 serves as a tumor suppressor in tumor 

development; it is frequently deleted or downregulated in B-cell chronic lymphocytic 

leukemia.159,160 Other tumor-suppressive miRs, including miR-143/miR-145 and the let-7 family, 

that negatively regulate cancer glycolysis rate-limiting enzyme and oncogene Ras, respectively, 

are frequently down-regulated or deleted in cancer.161-165 
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Figure 1-4: miRNA application in cancer research 

miRNA application in cancer  research. miRNAs can be used for both diagnostic and biologic 
studies. miRNA profiling usingmiR microarray, qRT-PCR, or RNA-seq can identify important miRNA expression 
changes at various disease stages. miRNA profiling (obtained from cancer tissue biopsies or patient’s blood) can be 
used to detect the presence of tumor and help define prognosis. miRNA profiling is widely used to identify signaling 
pathways involved in tumorigenesis, to develop new therapeutic strategies, or to directly target the oncogenic 
MicroRNAs as therapies. 
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Figure 1-5: miRNAs that are distinctly different in pancreatic cancer tissues and blood 

Primary miRNA (pri-miRNA) is transcribed in the nucleus and then processed by Drosha into pre-miRNA before 
being exported to the cytoplasm by Exportin 5. In the cytoplasm, the pre-miRNA, a hairpin/stem loop, is further 
processed by the enzyme Dicer, producing a double-stranded miRNA. One strand of the mature miRNA is then 
incorporated with RISC to regulate its gene targets. There are two distinct regulatory mechanisms: (1) mRNA 
cleavage if the miRNA is perfectly matched with its targets’ 3’ UTR and (2) protein synthesis inhibition if the 
miRNA is imperfectly matched with the targets’ 3’ UTR. The targeted genes’ mRNA will be transported to P-bodies 
or stress granules and are thus inaccessible to the translational machinery. Some of the miRNAs found in tumor cells 
will, with necrosis, be released into the plasma/serum or alternatively released in exosomes. 

1.3.3 miRNAs in Pancreatic Cancer 

Many investigators have profiled cancer tissue and serum miRNAs to identify potential 

therapeutic targets, understand the pathways involved in tumorigenesis, and identify diagnostic 

tumor signatures. In the setting of pancreatic cancer, obtaining pancreatic tissue is invasive and 

impractical for early diagnosis. Several groups have profiled miRNAs that are present in the 

blood as a means to diagnose tumor progression and predict prognosis/survival or drug 
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resistance. The following section summarizes the current literature on pancreatic cancer 

miRNAs. 

 

1.3.3.1 Origin of Blood miRNA 

miRNAs can be isolated directly from the blood (PBMCs are especially sensitive to micro-

environmental changes, including those arising in the setting of cancer), plasma, or serum. 

Studies of whole blood or PBMC miRNA expression to detect tumors (e.g. ovarian cancer and 

melanoma) are developing rapidly (BackgroundTable 5).166,167 Circulating miRNAs are also 

normally present in the serum or plasma.168 Many scenarios have been formulated to explain 

how miRNA can survive endogenous ribonucleases that are present within blood. These include 

miRNA binding to DNA for protection from RNases and DNases perhaps derived from 

exteriorized autophagosomes (exosomes).169,170 The latter scenario appears to be the most likely 

mechanism that preserves miRs in plasma and serum.168 Circulating miRs in the plasma and 

serum might originate from tumor-derived exosomes (e.g. miR-21, miR-106, miR-141, miR-14, 

miR-155, the mir-200 family, miR-203, miR-205, miR-214, etc.).  Note that only the miR-21 and 

miR-18 families have been found to be up-regulated in more than two cancer types (Table 1.5). 

Perhaps blood miRNA-markers are more cancer type-specific than tissue miRNA markers.171-174 

The lack of appropriate endogenous controls (miRNAs that do not change with disease stage) 

limits the predictive power and further validation of the biological role of such circulating 

miRNAs is needed. 
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Table 1-5: microRNA in Cancer Patients’ Blood 

Type of 
Cancer 

miRNAs 
Source 

Down-regulated Up-regulated Compare with Cancer 
Tissue 

Ref. 

Pancreas Serum, 
Plasma 

miR-18a, miR-21, 
miR-210, miR-155, 
miR-196a, miR-200 

N/A miR-18a, miR-21, miR-155, 
miR-200, miR-196 is also 
over-expressed in pancreatic 
cancer tissue and cell line. 

127,175,176 

Lung PBMCs let-7 a,c,d,e,f,g, miR-
15a, miR-20a,  miR-
98,miR-126, miR-
195 

let-7i, miR-19a, miR-22, 
miR-423-5p, 

miR-126, let-7 family, miR-
22, miR-19 expression in 
PBMCs are correlated with 
lung cancer tissue. MiR-20a 
is inversely correlated in lung 
cancer tissue.  

177 

Ovary Whole 
Blood 

Let 7f-1, miR-28-3p, 
miR-29a, mir-106b, 
miR-138-2, miR-
146a, miR-181a, 
miR-181a-2, miR-
192, miR-342-3p, 
miR-450-5p, miR-
616, miR-628-
5p,miR-1287 

miR-16, miR-30c-1, miR-
187, miR-191, miR-191, 
miR-383, miR-423-3p, 
miR-499-3p, miR-546-5p, 
miR-1181, miR-1228, 
miR-1253, miR-1254, 
miR-1289, miR-1908, 
miR-1915 

miR-30c-1, miR-191, miR-
155, miR-16, miR-106b, 
miR-146a, miR-29a, and 
miR-383 are connected to 
ovarian cancer while the 
other miRs are not reported 
to be connected to the 
ovarian cancer. 

167 

Gastric Plasma miR-21, miR-106b Let-7a Inverse relationship between 
plasma miRs and gastric 
cancer miRs expression level. 

178 

Acute 
Leukemia 

Plasma miR-92 N/A Acute leukemia cell might in-
take miR-92 with exosome 
thus decreasing the miR-92 
concentration in plasma. 

179 

Oral Plasma N/A miR-31 miR-31 is over-expressed in 
oral cancer tissue. miR-31 
level decreased after surgical 
removal of cancer; it is very 
likely that the circulating 
miR-31 is tumor-derived. 

180 

Colorectal Plasma N/A miR-29a, miR-92a miR-92 is also found to be 
up-regulated in breast cancer 
serum sample and in other 
cancer tissue. MiR-29a is up-
regulated in lung and 
advanced colorectal 
neoplasia and its role in 
cancer biology is still 
unclear. 

181 

Melanoma PBMC miR-452, miR216a, 
miR-17, miR-646, 
miR-217, miR-517, 
miR-593,let-7i,miR-
330-3p, miR-767-5p, 
miR-20b, miR-509-3-
5p, miR-519b-5p,  

Let-7d, miR-18a, miR-22, 
miR-30a,e, miR-99a, 
miR-125a-5p, miR-142-
3p, miR-145, miR-146a, 
miR-155-3p, miR-181a-2, 
miR-183, miR-186, miR-
199a-5p, miR-328, miR-  

miR-216a and miR-186 
expression levels correlate 
with the melanoma tissue 
miR expression levels. 

166 
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Table 1-5 (continued) 

Melanoma 
(Continue) 

 miR-518e, miR-221, 
miR-214, miR-106b, 
miR-18b, miR-108, 
miR-20a 

343-5p, miR-361-3p, 
miR-362-5p, miR-363-3p, 
miR-365, miR-378, miR-
422a, miR-501-5p, miR-
550, miR-584, miR-625, 
miR-664, miR-1249, 
miR-1280 

  

 

1.3.4 miRNA-profiling studies on pancreatic cancer patients’ blood 

Many studies have examined pancreatic cancer in the form of cancer-cell lines, mouse tumor, or 

human clinical specimens to identify miRNA signatures for diagnostic or therapeutic purposes 

(Table 1.6). Remarkably, perhaps reflecting the state of the science, the miRNA signatures found 

in these studies substantially differ from one another. This is, in part, due to the varied stages of 

pancreatic cancer examined as well as the heterogeneous patient populations. Importantly, it is 

also due to the differences between cancer cell lines and authentic primary tumors (tumor 

consisting of multiple cell types: blood components, endothelial cells, stromal cells, while cancer 

cell lines consist of only one cell type), the extraction method, comparison (tumor vs. normal 

surrounding tissue, tumor vs. normal healthy individual) and identification strategies (fold 

change threshold, pre-selected markers, clustering, etc.)  

1.3.4.1 Comparing clinical specimens and cancer cell lines 

For therapeutic purposes, it would be useful to identify pancreatic cancer miRNAs that are 

shared between clinical samples and cancer cell lines (cancer cell lines are more readily available 

for therapeutic target validation than clinical samples). One study compared the expression 

profiles of individual pancreatic cancer cell lines and clinical specimens using PCR (95 miRNA 
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primers). Eight miRNAs were found to be commonly expressed in both cell lines and clinical 

samples (miR-196a, mIR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b, and miR-

95).182 When examining the clinical specimens, 20 miRNAs were over-expressed in all five 

specimens and eleven miRNAs were over-expressed in at least four specimens. The results 

suggest that although there are similarities between pancreatic cancer cell lines and clinical 

specimens, the miRNA expression patterns are not identical. 

miRNA expression profiles in normal pancreatic tissue (referred to as pancreatic 

miRNome), PDAC, pancreatitis, and pancreatic cancer cell lines have been recently examined.183 

This study first created a pancreatic miRNome by clustering miRNAs that are highly expressed 

in pancreatic normal tissue compared to other tissues. The group used this miRNome as the 

parameter to measure miRNA expression changes in pancreatitis and PDAC miRNA. Twenty 

miRNAs were differentially expressed when comparing PDAC, chronic pancreatitis, and normal 

tissues. Twelve out of 20 miRNAs were also differentially expressed in cancer cell lines. 

Furthermore, two potential miRNA (miR-196a and miR-217) markers are over-expressed in both 

primary neoplastic ductal cells and in PDAC cell lines.  A similar study found that 23 (15 over-

expressed and eight under-expressed) miRNAs could be used to distinguish pancreatic cancer 

from pancreatitis with an extraordinary 93% accuracy.182 These similar studies identified 

divergent sets of miRNAs, possibly due to the differences in comparison strategies and the 

patient populations utilized by the two groups. One method compared expression to normal 

tissue while the other group compared expression to a pancreatic tissue-specific gene expression 

file.  

Pancreatic cancer-specific miRNAs are commonly expressed in both clinical specimens 

and pancreatic cancer cell lines, but the expression profiles are not identical to each other. Since 
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pancreatic tumors are indeed more than just pancreatic cancer cells, examining more stage- and 

cell type-specific miRNA profiles should provide a more refined result.  

 

1.3.4.2 Comparing between pancreatic cancer stages and tumor types 

 

Pancreatic cancer is a dynamic disease. Understanding the difference between the stages of 

pancreatic cancer utilizing miRNA profiles is very important. A murine RT2 pancreatic 

neuroendocrine tumor model study identified pancreatic cancer miRNA markers by stage.184 The 

study identified primary tumor stage miRNA signatures and metastasis-specific miRNA 

signatures by comparing the normal islets with primary tumor, liver metastases, and tumor pools. 

They identified miRNA signatures for hyperproliferation and angiogenesis using flow cytometry 

to sort hyperproliferating islets and angiogenic islets. The result of the study provides more detail 

on tumor stage-specific and cell type-specific miRNA signatures in pancreatic tumors. 

Two other studies compared pancreatic cancer tissue with adjacent tissue to identify 

miRNA markers.185,186 One study identified 20 miRNAs that are differentially expressed in both 

pancreatic adenocarcinoma and cancer cell lines compared to normal pancreatic tissue miRNA. 

185 The in situ result showed that miR-221 and miR-376a are localized to tumor cells, but not to 

benign pancreatic acini or stromal cells. Deregulation of miR-15a and upregulation of miR-214 

are also potential pancreatic cancer markers.186 Micro-sectioning to allow in situ hybridization on 

epithelial cells was also compared with matched normal pancreatic markers.186 Micro-sectioning 

to allow in situ hybridization on epithelial cells was also compared with matched normal 

pancreatic tissues.187 Ten miRNAs were differentially expressed and two miRNAs (miR-21, and 

miR-155) had the highest fold change, with miR-21 and miR-155 expression correlating with 
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precursor lesions. The results were congruent with murine RT2 studies demonstrating that miR-

21 and miR-155 are over-expressed in hyperproliferating and angiogenic islets.  

Nominally specific pancreatic cancer miRNAs could be shared with other cancer types. 

One study compared solid tumor samples’ (breast, colon, lung, pancreas, prostate, stomach) 

miRNA expressions with those of normal tissues (stomach, lung) from patients or non-cancer 

individuals (for the breast, colon, pancreas, and prostate cancer specimens).188 Twenty one 

miRNAs were shared among six individual solid cancer types. Twenty of the pancreatic cancer 

miRNAs were shared with more than one solid tumor type. Most of the targets of these 21 shared 

miRNAs are identifiable tumor suppressors and/or oncogenes. Seventeen miRNAs were up-

regulated and three were down-regulated. A possible reason for the variation between individual 

clinical pancreatic cancer profiling studies might be attributable to the stage of the patient sample 

and the type of cell that makes up the tumor. Therefore, a more-refined classification of 

pancreatic cancer with cell type-specific isolation before miRNA profiling could be important for 

identifying suitable pancreatic miRNAs.  

Another extensive study performed with human pancreatic cancer tissue identified 

miRNAs that are differentially expressed in individual patient groups.189 Ten miRNAs (miR-10a, 

miR-21, miR-143, miR-145, miR-155, miR-222, miR-223, miR-224, and miR-373) were up-

regulated while seven miRNAs (miR-148, miR-216, miR-217, miR-211, miR-345, miR-596, and 

miR-708) were down-regulated. The study also characterized some non-overlapping miRNAs: 

nine miRNAs to distinguish tumor stage, 16 miRs to distinguish tumor grade, four miRNAs 

distinguishing lymph node status, and miR-21 and miR-34a serving as survival-predictive 

miRNAs. 

 30 



1.3.4.3 Identify prognostic, survival, and chemo-resistant markers 

Since the current five-year survival rate for patients with pancreatic cancer is less than 5% and 

surgical resection remains the most effective therapy, identifying markers to predict survival and 

determine chemo-resistance may improve our ability to define subsets of pancreatic cancer 

patients most suitable for aggressive therapy. Some groups have combined clinicopathologic 

follow-up and miRNA expression data to identify useful biomarkers to help predict survival and 

clinical outcome.  Two independent studies found that miR-21 is a potential marker for survival. 

189,190 One group extracted RNA from fresh frozen samples while the other group used in situ 

hybridization to profile the miRNA. Both groups found that pancreatic cancer patients with high 

miR-21 expression had a low median survival time (13.7 months and 14.3 months) while patients 

with lower miR-21 expression had a longer median survival time (25.7 months and 23.1 months, 

respectively). The first group also identified potential markers for better prognosis (high 

expression of miR-29c, miR-30d, and miR-34a), and determined that patients who have high 

miR-21 expression are more effectively treated with chemotherapy than those who have lower 

miR-21 expression.  Pancreatic cancer patients with high miR-196a expression in their serum are 

correlated with poor survival with 100% sensitivity and 75% specificity (6.1 month vs. 12 

months for the low miR-196a expression group).191 One group extracted RNA from fresh frozen 

samples while the other group used in situ hybridization to profile the miRNA. Both groups 

found that pancreatic cancer patients with high miR-21 expressions have a low median survival 

time (13.7 months and 14.3 months), while patients with lower miR-21 expressions have a 

longer median survival time (25.7 months and 23.1 months, respectively). The first group also 

identified potential markers for better prognosis (high expressions of miR-29c, miR-30d, and 

miR-34a) and determined that patients who had high miR-21 expressions were more effectively 
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treated with chemotherapy than those with lower miR-21 expressions. Pancreatic cancer patients 

with high miR-196a expressions in their serum were correlated with poor survival with 100% 

sensitivity and 75% specificity (6.1 months vs. 12 months for the low miR-196a expression 

group).191 One study showed that patient tissue specimens with high expressions of miR-142-5p 

and miR-204 correlated with a better patient survival rate (45 months and 33 months vs. 16.3 

months and 16.3 months for lower expression group) when receiving gemcitabine treatment.  

Patients whose tumors express higher levels of miR-125a and miR-34a seem to be more 

effectively treated by gemcitabine, although these findings did not reach statistical 

significance.192 The miR-200 family and miR-21 are also predictive markers for an apparent 

increased benefit of chemotherapy.193,194 

 

Table 1-6: Potential microRNA markers in pancreatic cancer tissue/cell line 

a) Upregulated    
miRNA No. of studies Validated Potential Targets Biological Significance References 
miR-107 5 CDK6, DICER1, HIF-1 beta 

117,195,196 
Proliferation, Cell Migration, 
Invasion, Suppressing Hypoxia 
Signaling 

182,185,187,188 

miR-155 5 TP53INP1, PU.1. SPCS1. 
RAST 197-200 

Suppressing Apoptosis, 
Inhibiting Tumor Suppressor 

182,183,185,187 

miR-181-a 5 TIMP3, TCL1 201,202 Inhibit Tumor Suppressor, 
Suppressing Oncogene 

183-185,187 

miR-181-a 5 TIMP3, TCL1 201,202 Inhibit Tumor Suppressor, 
Suppressing Oncogene 

184,185,187 
 
 

miR-221 5 DVL2, SOCS1, p57, PTEN, 
p27 203-207 

Increase Cell Mobility, 
Inhibiting Tumor Suppressors 

182,185,188 

miR-15a,b and 
miR-16 

4 Cyclin E, BCL2 160,208 Inhibit Tumor Suppressor,  
Inducing Apoptosis  

184-187 

miR-21 4 Big-h3, PTEN, PDCD4, 
TPM1, maspin 209-215 

Inhibit Tumor Suppressor, 
Suppress Apoptosis, Cell 
invasion 

182,183,185,187 

miR-125 4 Bcl1-2, p53 gene 216,217 Suppressing Apoptosis 182,185,188,218 
miR-223 4 C-myc, artn, LMO2-L/-S 219-

221 
Repressing Estrogen receptor 
beta 1 expression, increase cell 
proliferation 

182,183,187,218 

miR-24 3 H2AX, FURIN, DND1, 
FAF1, DHFR, E2F2, MYC 
222-228 

Cell Proliferation,  
Inducing Apoptosis 

182,185,188 
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Table 1-6 (continued)    
miR-93 3 Integrin beta 229 Promoting tumor growth and 

angiogenesis 
182,183 

miR-181-d 3 TIMP3 230 Cell Invasion 182-184 
miR-92 2 ERbeta1, p63 231,232 Repressing Estrogen receptor 

beta 1 expression, increasing 
cell proliferation 

184,185 

miR-146 2 Up-regulated by breast 
cancer metastasis suppressor 
1 233 

Suppressing breast cancer 
metastasis 

183,218 

miR-214 2 PTEN , ING4 186,234 Apoptosis,  
Chemotherapy resistance 

186,188 

miR-222 2 PUMA, AKT, p27Kip1 235-240 Cell Survival,  
Cell migration 

183,218 

 

b) Downregulated    
miRNA No. of 

studies 
Validated Potential Targets Biological Significances  Reference 

miR-142 2 RAC1, LMO2-L/-S 221,241 Suppressing Cell Invasion 184,185 
miR-141 2 ZEB1 242 Inhibiting epithelial-

mesenchymal transition 
(EMT) 

182,184 

 

c) Contradicting    
miRNA No. of 

studies 
Potential Targets Biological Significance Reference 

miR-145 2 OCT4, FSCN1, c-Myc 243-247 Cell Proliferation,  
Tumor Suppressor function 

182,184,188 

miR-200 2 ZEB1, FAP1 248-251 Suppressing EMT, Suppressing 
Apoptosis inhibitor 

182,184 

 

1.3.5 miRNA-profiling studies in pancreatic cancer patients’ blood 

Tissue miRNA markers could do more to help us understand cancer biology, but also to advance 

therapeutic options in treating the disease. Such markers have clear limitations as early 

diagnostic tools for monitoring drug response and defining disease prognosis.  First, limited solid 

tumor samples are available to scientists. Second, such an approach requires invasive procedures 

to obtain biopsies from solid tumors if they are identifiable. Thus, tissue is not as an ideal 

approach as an early stage diagnostic method (before symptoms develop). More importantly, it is 
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not practical to repetitively obtain solid tumor tissue miRNA to monitor disease progression. On 

the other hand, patients’ blood is readily available. Blood samples can easily be obtained 

(pre/post treatment) and may be a more appropriate sample source to establish a miRNA-based 

biomarker for early diagnosis of cancer, prediction of drug responsiveness, and definition of 

prognosis. Studies have shown promising proof of concept to utilize cancer patients’ blood 

miRNA profiles as diagnostic and prognostic tools in pancreatic cancer. miRNAs can be isolated 

from the PBMC, serum, or plasma components of blood specimens. Three individual studies 

found six miRNAs expressed in pancreatic cancer patients’ serum and plasma as potential 

biomarkers. MiR-18a, miR-21, miR-210, miR-155, and miR-196a were over-expressed in the 

majority of the examined pancreatic cancer patients’ plasma, with at least two-fold 

increases.127,175,176 Sensitivity >40% and specificity > 70% (Table 1.7) can be achieved. When 

categorizing the patient population by age and sex, compared to healthy individuals, miR-200 a/b 

is over-expressed in primary pancreatic cancer and cancer cell lines, as well as pancreatic cancer 

patients’ serum.175 Sensitivities and specificities of 84.4% and 87.5%, respectively for miR-200a, 

and 71.1% and 96.9% for miR-200b were found. miR-18a (one of the miR17-92 gene cluster 

family) is upregulated in primary pancreatic cancer tissue and cancer cell lines.176 MiR-18a 

expression in patients’ serum was significantly reduced following surgical excision. Another 

study examined pancreatic cancer patients’ serum and investigated whether or not miR-21, miR-

155, miR-196a, miR-181a, miR-181b, miR-22, and miR-222, which are differentially expressed 

in cancer tissues, can serve as biomarkers.191 Higher expression of miR-21, miR-155, and miR-

196a are observed in pancreatic cancer patients’ serum, but both miR-155 and miR-196a are also 

upregulated in chronic pancreatitis. The group also found that patients with higher miR-196a 

serum expressions have a lower median survival (6.1 months vs. 12 months). Since immune cells 
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respond to the cancer micro- and macro-environments, we hypothesize that in the presence of 

pancreatic tumor, miRNA expression in patient PBMCs will be altered. . In this dissertation, we 

discuss profiling pancreatic cancer patients’ PBMC miRNA with TaqMan Low Density Array 

(TLDA) and comparing the profiles to those of age- and sex-match controls. We found miRNAs 

that are differentially expressed compared to those of healthy individuals.  

 

Table 1-7: Potential Pancreatic Cancer Patients’ Blood miRNA Markers 

Type of Cancer/ Source miRNA Sensitivity Specificity Reference 

Pancreatic Cancer Patients’ Plasma  miR-21 46  89 127 

miR-155 42 42 

miR-196a 53 78 

miR-210 43 84 

Pancreatic Cancer Patients’ Serum miR-200 a 84.4 87.5 175 

miR-200 b 71.1 96.9 

Pancreatic Cancer Patients’ Serum miR-18a N/A N/A 176 

 

1.3.6 microRNA125 Family 

The microRNA-125 family (including miR-125a-5p, miR-125a-3p, miR-125b-1, and miR-125b-

2) is encoded in several different chromosomal locations (miR-125b1,2 located on chromosomes 

11 and 21, miR-125a-5p on chromosome 19, and miR-125a-3p on chromosome 12). MiR-125a-

5p and miR-125b have similar sequences, with 87.5% base-paired identity, and share the same 

seeding sequence. (Figure 1.6) 
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miR-125b 1,2 and miR-125a-5p have the same seeding sequence and also play an 

important role in hematopoiesis.252 MiR-125 is highly expressed in the long term hematopoietic 

stem cell (HSC) and is down-regulated as the cell differentiates into a committed progenitor 

cell.253-255 While miR-125 is down-regulated as naïve T cells become activated, it is upregulated 

in activated macrophages.256,257 Validated immune-related miR-125 targets are TNF-, IL-2RB, 

and IL-10RA. Besides playing a role in immune cells, miR-125 is also dysregulated in multiple 

human tumor types (stomach, colon, pancreas, bladder, ovary, gliomas, breast, and 

melanomas).218,258-266 The MiR-125 family regulates cell survival, proliferation, and 

differentiation via upstream regulators of p53 (PPP1CA, PPP2CA, PRKRA, PLK3, PLAG1), 

p53 network pro-apoptotic genes (BAK1, PUMA, BMF, TRP53INP1, and KLF13), proliferative 

genes (DICER1, ST18, and SUV39H1), and inflammatory-related genes (IL-6, BLIMP-1, IRF-

4).252 In this dissertation, we focused on investigating how pancreatic cancer influences the 

expression of miR-125a-5p and how it plays a role in pancreatic cancer. 

 

 

Figure 1-6: miR-125 Family Matured Sequences 

miR-125a-5p, miR-125a-3p, miR-125b-1, miR-125b-2 are located in different chromosome but miR-125a-5p and 
miR-125b-1 shared identical seeding sequence. 
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1.4 PAMPS AND DAMPS 

1.4.1 PAMPs 

Pathogen-Associated Molecular Pattern (PAMPs) were initially called signal 0s and described as 

molecules recognized by receptors on antigen-presenting cells of the innate immune system.267 

PAMPs are derived from microbial components including microbial nucleic acid (unmethylated 

CpG), dsRNA, ssRNA, 5’-triphosphate RNA, lipoproteins, surface glycoproteins, and membrane 

component (peptidoglycans, lipoteichoic acid, lipopolysaccharide, and 

glycosylphosphatidylinositol).268  PAMPs activate Toll-like receptors (TLRs) and other pattern 

recognition receptor (PRRs) and localize to the cell surface, the cytoplasm, and/or intracellular 

vesicles to signal the host to trigger pro-inflammatory and antimicrobial responses. PAMPs 

signal though NF-kB, AP-1, and IRFs to activate the adaptive immune response against 

microorganisms by regulating gene expression of cytokine, chemokines, cell adhesion 

molecules, and immuno-receptors.269-273 

1.4.2 DAMPs 

In the setting of sterile inflammation, damage-associated molecular pattern (DAMPs) are 

released from stressed or damaged tissues to activate antigen-presenting cells to distinguish 

between self and non-self.274-277  DAMPs are cell derived molecules localized within the nucleus 

(HMBG1), cytoplasm (S100 proteins), exosomes (heat shock proteins), ECM (hyaluronic acid), 

plasma components (C3a, C4a, and C5a). DAMPs also include nucleic acids (ATP, uric acid, 

heparin sulfate, RNA, and DNA), and mitochondrial DNA.278 DAMPs are recognized by and 
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interacted with TLRs and the receptor for advanced glycation end products (RAGE) to initiate 

immunity in response to trauma, ischemia, cancer, and other settings of tissue damage. DAMPs 

signal though MAPKs, NF-kB, and PI3K/AKT signaling pathways to regulate cell survival and 

cell death.279 Increased DAMPs serum levels are associated with inflammatory diseases e.g. 

sepsis, arthritis, atherosclerosis, systemic lupus erythematosus, Crohn’s disease, and cancer.280 

1.4.3 Role of PAMPs/DAMPs in Cancer 

PAMPs and DAMPs shared some common receptors (TLRs) to activate innate immunity and 

adaptive immunity in response to pathogens and tissue damage.280 PAMPs and DAMPs act as 

double-edged swords in cancer in that they suppress or promote tumors. TLRs expressed on 

immune cells can activate innate and adaptive immune response. Bacterial toxins (later known as 

LPS) have an anti-tumor effect in soft tissue sarcoma patients, and signal via TLR4 to activate 

both innate and adaptive immune resposes against tumor.281 A penicillin-killed and lyophilized 

preparation of a low-virulence strain of Streptococcus pyogenes was tested as an 

immunotherapeutic agent to stimulate TLR4 signaling with promising results.282-285 TLR2/g 

agonist (Mycobacterium bovis BCG) or TLR2 knock-out studies showed that TLR2 and TLR4 

signaling can treat or protect against superficial bladder tumors, colorectal tumors, or lung 

tumors.286-288 Triggering TLR3, TLR9 with poly (I:C), CpG can induce apoptosis on tumor cells 

and vascular endothelium and promote B-cell differentiation and the anti-tumor T-cell 

response.289-295 Although TLRs activation on immune cells can have an anti-tumor effect, TLRs 

also expressed on tumor cells/cell lines and tumor cells use TLRs signaling to produce pro-

inflammatory cytokines, chemokines, and anti-apoptotic proteins to promote tumor 

progression.296-303 Activating TLR signaling on tumor cells can promote proliferation, anti-
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apoptosis, metastasis, ECM adhesion, production of immune-suppressive cytokines, and chemo-

resistance.299-301,304-326 Tumor cells release DAMP signaling though TLRs on tumor cells or 

immune cells to induce tumor growth, metastasis, and immune tolerance. Therefore, 

immunotherapy targeting TLRs with TLR agonists must specifically activate the innate immune 

response without activating TLR signaling on tumor cells.  

1.4.4 DAMPs Hypothesis in Cancer 

DAMPs are danger signal molecules. Normally sequestered within live cells, DAMPs are 

released from stressed/damaged/dying cells into the extracellular space and trigger significant 

host responses. There are three classes of DAMPs: 1) DAMPs exposed on the outer leaflet of the 

plasma membrane (e.g. chaperones); 2) DAMPs actively secreted or passively released 

extracellularly (e.g. ATP, uric acid, and HMGB1) and 3) DAMPs produced during cell death-

associated end-stage degradation (e.g. mitochondrial components, nucleic acids, and 

nucleosomes).327 DAMPs can recruit inflammatory cells to promote wound healing, tissue 

remodeling, angiogenesis, and modulation of the immune response and play an important role 

during cancer development.328 Stress- (e.g. tissue damage, radiation, infection) induced genomic 

mutation in normal cells leads to cancer. During the early pre-cancer stage, DAMPs induce 

immune tolerance while they promote inflammation in the late pre-cancer stage. When the 

cancer becomes invasive, DAMPs become immunosuppressive, which leads to further tumor 

progression. This is the central theme of the DAMPs hypothesis: genomic damage in cancer is 

linked to inflammation via interaction with DAMPs. In this dissertation, we describe our 

investigation of how DAMPs from pancreatic cancer lysate and other immune stimuli change 

miR-125a-5p expression in human PBMCs. (Figure 1.7) 
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Figure 1-7: DAMPs Hypothesis 

Stress (e.g. tissue damage, infection, and radiation) induce genetic mutations, and as more mutations accumulate, 
tumor cells progress into invasive cancer. As the tumor progresses, tumor cells release DAMPs that modulate 
immunity to facilitate tumor cell survival and metastasis. The central theme of the DAMPs hypothesis is that genetic 
damage in cancer is linked to inflammation via interaction of DAMPs. 
 

1.5 IN-VITRO DAMPMIRS 

In our previous publication (I was the second author of the paper), we used freeze-thaw cell 

lysate as DAMPs to stimulate PBMCs for 24 hours or 48 hours and demonstrated that 

microRNA expression profile in PBMCs will change in response to DAMPs.4 We also validated 

the downstream target of one of the in-vitro DAMPmiRs (namely miR-34c), IKK-γ which plays 

an important role in regulating inflammation via the NF-kB signaling pathway.  
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Figure 1-8: Hallmark of human PBMCs exposed to necrotic cell lysates 

A: Hierarchical clustering or heat map of microRNA expression signatures (after real-time TaqMan RT-PCR array 
profiling) in donor PBMCs exposed to cell lysates and/or LPS. Total RNA extracted from PBMC cultures was run 
on microRNA TaqMan low-density arrays (TLDAs). B: Figure depicting changes in fold expression as log 2-
transformed RQ (relative quantity) values of the statistically significant miRs (p values shown in from each of the 
four donors, after exposure to the respective conditions. All values were calculated from 22ddCt (RQ values) where 
the endogenous control was snoRNA U48. C: Differential expression of hsa-miR-34a, miR-34b, miR-34c and other 
miRs when donor PBMCs are exposed to HMGB1+/+ or HMGB12/2 lysates for eight hours.  
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Figure 1-9: miR-34c regulates IKKγ mRNA and protein expression levels in PBMC  

1.6 OVERVIEW OF THE DISSERTATION 

We examined miRNA expression in human PBMCs from patients with pancreatic cancer and 

normal individuals. Our central hypothesis was that when tumors undergo necrotic death, 

DAMPs are passively released into the local micro-environment and progressively into the 

systemic circulation to initiate early innate and adaptive immune responses.2,3 We previously 

found that miRNAs (miR-34c, miR-214, miR-146b, and the miR-125 family) are differentially 

expressed with DAMPs delivered to human PBMCs.329 We hypothesized that the pancreatic 

tumor micro- and macroenvironments will be associated with PBMC miRNA expression 

changes in patients and play an important role in regulating immunity.  

The outline for the upcoming chapters is as follows. First, in Chapter 2, we identify 

miRNAs differentially expressed in pancreatic cancer patients’ PBMCs compared to normal 

healthy individuals (age- and sex-matched controls). Then we compare our in vivo data with our 

previous in vitro data to see if in vitro DAMP-miRs are the same as in vivo DAMP-miRs. We 

then selected the miR that is commonly differentially expressed in our in vivo and in vitro data to 

further analyze miR expression and determine if the miR expression correlated with any clinical 

measurement and outcome (e.g. CA19.9A, survival) in Chapter 3. Finally, we examine how 
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immunological stimuli affect miR expression and validate the downstream target of miRs and the 

miR functional role in tumor growth in Chapter 4. Figure 1.10 depicts an overview of the work 

described in the upcoming chapters. 

 

 

Figure 1-10: Overview of the Project 
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2.0  IN VIVO DAMPMIRS IN PANCREATIC CANCER PATIENTS’ PBMC 

2.1 CHAPTER OVERVIEW 

Approximately 46,420 Americans are diagnosed with pancreatic cancer and 39,590 individuals 

die from the disease annually.330 Pancreatic cancer is associated with a less than 5% five-year 

survival rate. Early diagnosis is rare and surgical treatment is most beneficial before the cancer 

becomes locally invasive or metastatic. There is a substantial unmet clinical need to develop 

early diagnostic reagents for identifying pancreatic cancer. Although CA19.9 is widely used to 

monitor therapy, it has proven to be detectable only late in disease and to be increased with 

pancreatitis.7 Recently, miRNAs present within the tumor and blood have been found to be 

potential quantitative measures of tumor that may be identified earlier in disease.  In this chapter, 

we discuss identifying potential in vitro DAMPmiRs from pancreatic cancer patients’ PBMC. 
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2.2 RATIONALE 

 

DAMP molecules (including HMBG1, S100, purine metabolites, heat shock protein, etc.) initiate 

and propagate the host immune response.328 When tumors are stressed or undergo necrotic death, 

DAMPs are passively released into the local micro-environment and initiate early innate and 

adaptive immune responses via DAMP receptors.2,3 DAMPs can also be released by activated 

immune cells via a noncanonical pathway. DAMPs induce cytokine production in immune cells, 

which is responsible for inflammation, tissue repair, and regeneration.331 If those signals are 

uncontrolled, it may lead to cancer. HMBG1 can signal through RAGE and TLR2 and can 

increase neutrophil recruitment, increasing cytokine production in DCs.332-334 HMGB1 is also 

actively released from macrophages.335,336 S100 protein family member expression is increased 

in melanoma, non-small cell lung, gastric, breast, and pancreatic cancers, as well as lymphoma, 

and can recruit neutrophils and macrophages to tissue damage sites. Purine metabolites 

(including ATP, adenosine, and uric acid) in the extracellular space can also act as “danger” 

signals.337 High ATP levels suppress immunity by blocking pro-inflammatory cytokine 

synthesis, while low levels enhance emigration and maturation of myeloid DCs, plasmacytoid 

DCs, macrophages, and natural killer cells.338,339 Injured cells release uric acid, and at high 

concentrations (where it is high enough for precipitation), uric acid can activate DCs.340  

In a previous publication, we demonstrated that some miRs (miR-34c, miR-214, the miR-

125 family, and miR-146) are differentially expressed upon freeze-thaw lysate stimulation 

(DAMPs). We hypothesized that pancreatic cancer tumor will release DAMPs into the 

microenvironment, which would alter the microRNA expression in PBMCs.4 This can be used to 
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distinguish between patient groups and healthy individuals. Some of the in vitro DAMPmiRs 

may also be altered in pancreatic cancer patient PBMC. 
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2.3 MATERIALS AND METHODS 

2.3.1 Pancreatic Cancer Patient Sample Collection 

We collected blood samples from 14 individuals (seven with pancreatic cancer and seven age- 

and sex-matched healthy individuals) and isolated their PBMCs as described previously.4 In 

brief, each patient’s blood sample was diluted with Roswell Park Memorial Institute medium 

(RPMI) (Thermo Scientific) culture media (1:1 ratio) and overlaid on Ficoll-Paque (GE 

Healthcare). The blood sample was then spun at 400g for 30 minutes. PBMCs were collected at 

the interface. PBMCs were transferred into a new tube and washed with RPMI. Red cell lysis 

buffer (0.15M ammonium chloride, 10mM potassium bicarbonate, 372mg sodium EDTA) was 

added to remove any remaining red blood cells in the PBMC. They were then washed with 

RPMI, spun down, and re-suspended in freezing media (10% DMSO, 90% fetal bovine serum 

[FBS]) at 1x107 cells/ml and stored in the vapor phase of liquid nitrogen. 

2.3.2 miRNA Isolation 

Pancreatic cancer patients and healthy individuals’ PBMC RNA was isolated using the 

miRNeasy mini Kit (Qiagen) and RNA integrity was checked using the Bioanalyzer 2100 

(Agilent Technology). In brief, frozen pancreatic cancer patients’ PBMC were thawed in a 37°C 

water bath and washed with RPMI. The PBMCs were then lysed by Qiazol for total RNA 

extraction (in no more than 3x106 cells/ 700ul of Qiazol). Total RNA samples were then sent to 

the University of Pittsburgh Cancer Institute (UPCI) Genomic Core Facility for RNA integrity 
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(RIN) evaluation. Samples (with RIN higher than 8) were used for Taqman Low Density Array 

(TLDA) miRNA profiling. 

2.3.3 miRNA Profiling 

384-sample TaqMan low-density PCR arrays (Life Technologies) were used for microRNA 

expression profiling. In brief, 100ng of total RNA was reverse transcribed according to the 

instructions; then samples were diluted 62.5 fold and loaded onto 384-well TLDAs; the PCR 

program was used as the instructions recommended. 

2.3.4 Statistical Analysis of miRNA Profiling Data 

Raw Ct values from each sample were converted to RQ or 2^∆∆Ct values. In brief, ∆∆Ct values 

were calculated from: (Ctpatient-Ctendog. Cont.) – (Ct healthy – Ctendog cont). The endogenous 

control was the small nucleolar RNA U48. Statistical analysis was performed using a Student T-

test on the ∆∆Ct value. 
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2.4 RESULTS 

2.4.1 Three miRNAs are differentially expressed in patients’ PBMC 

To determine whether miRNA expression was differentially expressed in pancreatic cancer 

patients’ PBMC, we compared miRNA expressions to those of age- and sex- matched healthy 

individuals. Total RNA was isolated and applied to TLDA array for microRNA profiling, and 

each array was designed to detect 384 specific human miRNAs. Relative quantification of 

miRNA expression was presented with respect to healthy individuals, and normalized to internal 

RNA control. Statistically significant miRNAs were defined by Student T-test with a p value of 

<0.05. From this analysis, three differentially-expressed miRNAs were revealed: namely, miR-

125a-5p, miR-146b, and miR-29c. miR-146b and miR-29c were downregulated with an average 

fold change of 0.415 and 0.553, respectively. miR-125a-5p was upregulated with an average fold 

change of 2.007. (Figure 2.1) 

2.4.2 In vitro DAMPmiRs were not expressed in patients’ PBMC 

We previously demonstrated that miR-34c and miR-214 are upregulated in PBMCs when treated 

with DAMPs (freeze-thaw lysate).4 Surprisingly, miR-34c and miR-214 were expressed at only 

low levels in pancreatic cancer patients’ PBMCs with CT>35. Furthermore, there was no 

statistically significant difference between the miR-34c and miR-214 of the pancreatic cancer 
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patients’ group and the healthy individuals. Our in vitro control miR-155 was expressed in both 

the patient group and healthy individual group without apparent statistically significant 

difference. (Supplemental Figure 2.1) 

 

 

Figure 2-1: Three miRNAs are differentially expressed in patients’ PBMC 

Seven age- and sex-matched pancreatic cancer patients’ PBMC(P) microRNA expressions were profiled with 
TaqMan Low Density microRNA microarray assay and compared with healthy individuals (N). Student paired T-
test was performed and three microRNAs, miR-146b, miR-29c and miR-125a-5p, were found to be differentially 
expressed in pancreatic cancer patients’ PBMC with an average fold change of 0.414 (p<0.0012), 0.553 (p<0.0013), 
and 2.006 (p<0.0482),respectively. 
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S. Figure 2-1: In vitro DAMPmiR and PAMPmiR expression in patients’ PBMC 

Seven age- and sex-matched pancreatic cancer patients’ PBMC microRNA expressions were profiled with TaqMan 
Low Density microRNA microarray assay and compared with healthy individuals. Student paired T-test was 
performed previous identified DAMPmiRs (miR-34c, miR-214) were not expressed and PAMPmiRs expression 
(miR-155) was not significantly differences between two groups. 
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S. Figure 2-2: Patient Information and TLDA array 
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2.5 DISCUSSION 

Pancreatic cancer is associated with several defined genetic mutations or losses (e.g. TGF 

β/SMAD4 signaling pathway loss, KRAS and BRCA mutations, p53 loss or mutation, and 

p16INK4A alterations).341 Pancreatic cancer is not only a genetic disorder but also a disease 

associated with profound changes in the host within stromal and endothelial cells as well as 

recruited inflammatory cells.342-346 DAMPs including HMBG1, heat-shock protein, S100 

molecules, ATP, DNA, and uric acid are released into the micro-environment when cancer cells 

die or under conditions of stress, acting as immmunostimulatory or immunomodulatory 

factors.347-352 In our previous in vitro studies, we used freeze-thaw cell lysates to mimic DAMPs 

released from tumor cells and found that several miRNA genes, including miR-34c, miR-214, 

miR-210, miR-125, miR-146b, and miR-10b in human PBMC were involved in the 

inflammatory response to damaged cells. We identified additional miRNAs, including miR-

125a-5p, miR-146b, and miR-29c, in human circulating PBMC that respond to the pancreatic 

cancer micro-environment. miR-125a-5p and miR-146b were also involved in the inflammatory 

response to damaged cell lysates. Surprisingly, expression of other previously identified 

miRNAs such as miR-34c, miR-214, miR-210, and miR-10b were low in PBMC and not 

statistically significant. Differences in response to the pancreatic cancer micro-environment 

might be observed only within the tumor or draining lymph nodes themselves and not in the 

peripheral blood. 

The miR-125 family of miRs plays a crucial role in solid tumors, hematological 

malignancies, autoimmune disease, immune system development, and immunological host 

defense.353 The miR-125 family exerts both tumor-suppressor and tumor-promoting functions 

depending upon the cell context.218,262,263,354-365 miR-125 is down-regulated in ovarian, bladder, 
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and breast cancer, as well as, hepatocellular carcinoma, melanoma, cutaneous squamous cell 

carcinoma, and osteosarcoma. miR-125 inhibits lung cancer formation and hepatocellular 

carcinoma proliferation and metastasis and targets ETS1 (via the ERBB2/ERBB3 pathway), 

MUCI (to promote DNA damage-induced apoptosis), matrix metalloproteinase 11, vascular 

endothelial growth factor A, Mcl-1, and IL6R. In contrast to the above cancers, miR-125 is up-

regulated in pancreatic, prostate, and oligo-dendroglial cancers, as well as others. miR-125 

promotes breast cancer growth (through targeting STARD13), enhances invasive potential in 

urothelial carcinomas, and suppresses Bmf-dependent apoptosis in human glioblastoma 

multiform cells.366 367,368 

Besides modifying solid tumors, miR-125 also plays an important role in hematological 

malignancies, autoimmune disease, immune system development, and immunological host 

defense. Translocation of miR-125b is associated with B-cell acute lymphoblastic leukemia, 

myelodysplasia, and acute myeloid leukemia.65,369,370 Over-expression of miR-125b is found in 

megakaryoblastic and acute promyelocytic leukemia.371,372 miR-125a-5p is down-regulated in 

systemic lupus erythematosus (SLE). In that setting it negatively regulates the inflammatory 

response by targeting RANTES.373 miR-125a-5p is up-regulated in ischemic stroke patients’ 

macrophages following exposure to oxidized low density lipoprotein.374 miR-125b is also 

associated with eosinophilic chronic rhinosinusitis, Alzheimer’s disease, and Myotonic 

Dystrophy Type 2.375,376 miR-125b regulates HSC homeostasis and increases HSC engraftment 

and self-renewal in experimental transplantation models.377,378 miR-125b is up-regulated during 

B-lineage differentiation but is down-regulated during T cell differentiation, suggesting it targets 

BLIMP-1, IRF-4, and other T-cell differentiation genes.379-381 miR-125a-5p is also down-

regulated upon differentiation of hematopoietic stem cells (HSCs) and enhances HSC numbers, 
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possibly via targeting the pro-apoptotic gene BAK1.377,382,383 Unlike miR-125b, which is crucial 

in naïve T-cells, miR-125a-5p plays a role in activating T-cells via targeting KLF13 to reduce 

RANTES expression.373 Our results show that miR-125a-5p is up-regulated when treating PBMC 

with cell lysate in vitro and is also up-regulated in pancreatic cancer patients’ PBMC in vivo. We 

hypothesized that pancreatic tumors release DAMPs into the micro-environment, causing the 

miRNA expression changes that we observed in patient PBMC. 

miR-146b is involved in the inflammatory response and oncogenesis. It is up-regulated in 

inflammatory diseases (e.g. osteoarthritis and rheumatoid arthritis [RA]).384-386 miR-146 plays a 

crucial role in the TLR-signaling feedback loop by targeting tumor necrosis factor receptor-

associated family (TRAF) 6 and interlukein-1 receptor-associated kinase. miR-146 expression 

can be induced by LPS, TNF-α, and IL-1β stimulation.387 miR-146 plays a role in Th1/Th2/naive 

T-cell balance.388-390 miR-146 is up-regulated in autoimmune diseases including RA, with Th1 

cells dominating over Th2 , while it is down-regulated in patients with systemic lupus 

erythematosus (SLE)56. Furthermore, low levels of miR-146 result in higher levels of IFN-γ and 

IFN-α implying a role in regulating interferon production in PBMC to fine-tune the immune 

response.391 Our results show that miR-146b is expressed in healthy PBMC in vitro but 

surprisingly is down-regulated in pancreatic cancer patients’ PBMC. Our in vitro findings 

demonstrate that healthy individual PBMC treated with freeze-thaw lysate release a higher level 

of TNFγ which in turn up-regulates miR-146 expression.387 Furthermore, increase of IL-10 in 

pancreatic cancer patients’ plasma may indirectly inhibit miR-146 expression.392,393 It is also 

possible that the TLR-signaling pathway activating miR-146 transcription is mutated or blocked, 

causing an inappropriate chronic inflammatory response leading to cancer. Indeed, loss of miR-

146 and miR-145 expressions causes inappropriate activation of TIRAP and TRAF6 innate 

 55 



immune signaling pathways in myelodysplastic syndrome (one of the most common 

hematopoietic malignancies).394 

The miR-29c family, including miR-29a, miR-29b, and miR-29c, is associated with cell 

differentiation, senescence, proliferation, apoptosis, epigenetic modulation, and immune 

regulation. The miR-29 family is negatively regulated by c-myc, hedgehog signaling, NFκB, and 

Yin Yang 1 (YY1). They are up-regulated by p53 and Wnt signaling, forming a feedback loop 

with TGFβ.395-402 The miR-29 family is down-regulated in various tumors, including chronic 

lymphocytic leukemia, endometrial carcino-sarcoma, lung cancer, breast cancer, cervical 

carcinomas, melanoma, nasopharyngeal carcinomas, hepatocellular carcinoma, and mantle cell 

lymphoma.162,403-409 The miR-29 family negatively regulates cell proliferation, DNA synthesis, 

senescence, and differentiation by targeting CDK6, Ppm1d phosphatase, B-Myb, HDAC4, TGF-

β3, CVR2A andYY1.398,402,406,410-412 miR-29 inhibits apoptosis by targeting Mcl-1, Tcl-1, p85a, 

and CDC42, while positively regulating pro-apoptotic genes like BIM and PDCD4.408,410,413-415 

miR29 regulates metastasis by targeting the extracellular matrix protein encoding genes and the 

epithelial-mesenchymal transition (EMT)-related TGFβ-signaling pathway when oncogenic Ras 

signaling is not involved.404,407,416 miR-29 regulates epigenetics by targeting DNA 

methyltransferase and methylation-related genes (e.g. Sp1, p15INK4b, and ESR1) while 

upregulating demethylating genes.405,410,412,417-421 miR-29 can upregulate tumor suppressor genes 

including fragile histidine triad protein (FHIT) and WW domain-containing oxidoreductase 

(WWOX) by reducing the methylation of their promoter region. miR-29 can reduce IFN--

production (by targeting T-bet and Eomes), enhance natural killer cells’ effect (via targeting B7-

H3), and alter helper T-cell differentiation, thus interfering with the immune response. Knocking 

down miR-29 in mice leads to a more potent Th1 response and higher IFN-γ-producing cell 
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numbers.422-424 Here we show that miR-29 is down-regulated in pancreatic cancer patients’ 

PBMC but does not change when stimulated by DAMPs (freeze-thaw lysate). The NFκB 

signaling pathway was not activated in PBMCs following freeze-thaw lysate stimulation, nor 

were other pathways regulated by miR-29, e.g. hedgehog signaling, CEBPA, c-myc, p53, and 

TGFβ.  These targets were not present in freeze-thaw lysate. Interestingsly, IL-6, IL-1b, IL-10, 

and IL-13 are increased in pancreatic cancer patients’ plasma. Down-regulation of miR-29 

correlates with an increase of IL-6 and TNF-α production in patient DCs392,425 suggesting that 

miR-29 down-regulation in pancreatic patients’ PBMCs may be secondary to changes in 

cytokine levels. 

Previously, we identified miR-34c and miR-214 as in vitro DAMPmiRs. They are not 

expressed at a detectable level in pancreatic cancer patients’ circulating PBMC. It is possible that 

tumor infiltrating lymphocytes in tumor might be better at demonstrating these changes  than 

circulating PBMCs. Therefore, it will be interesting to compare the expression profiles of 

infiltrated lymphocytes and circulating PBMC in the future. Furthermore, the PBMCs we used to 

identify the in vitro DAMPmiRs came from healthy donors and pancreatic cancer patients’ 

PBMC may be impaired. 

Since the miR-125 family plays an important role in solid tumors, hematopoietic 

development, and the immune response, it is possible that some factors released from pancreatic 

tumor modulate miR-125a-p expression in patients’ circulating PBMC. Because miR-125a-5p is 

up-regulated in both in vivo and in vitro samples, we chose miR-125a-5p for further analysis. 
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3.0  IN VIVO DAMPMIR CHANGES IN RESPONSE TO TREATMENT 

3.1 CHAPTER OVERVIEW 

In the previous chapter, we identified three microRNAs (miR-125a-5p, miR-146b, and miR-29c) 

that are differentially expressed in pancreatic cancer patients’ PBMC compared to age- and sex-

matched healthy individuals. We also compared the in vivo DAMPmiRs to our in vitro data and 

found that only miR-125a-5p and miR-146b are differentially expressed both in vitro and in vivo. 

However, how those microRNA expressions change in response to treatment remains unknown. 

In this chapter, we examine how miR-125a-5p expression changed following chemotherapy and 

surgery. We also examine whether there is any correlation between miR-125a-5p expression and 

measurement (e.g. CA19.9, HMGB1 release, LC3) or clinical outcome (survival). The purpose 

of this chapter is to evaluate the potential of miR-125a-5p as a prognostic, diagnostic, and 

predictive marker. 
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3.2 RATIONALE 

Approximately 43,140 Americans are diagnosed with pancreatic cancer and 36,800 individuals 

die from the disease annually.330 Five-year survival for pancreatic cancer is low (<5%) because 

of late-stage diagnosis, lack of effective treatment protocols, early recurrence, and lack of 

clinically useful biomarker(s) for early diagnosis.426 Although CA19.9 is the most acceptable 

biomarker for pancreatic cancer, it has limitations such as poor specificity, lack of expression in 

the Lewis-negative population, and a high false positive rate for patients with obstructive 

jaundice.95 A biomarker for early diagnosis, prognosis, and predictive treatment outcome will 

help improve the survival rate of pancreatic cancer. Over the last two decades, many novel 

pancreatic cancer biomarkers have been discovered, such as pancreatic juice biomarkers, salivary 

biomarkers, stool biomarkers, serum biomarkers (growth factor, immunoglobulin, secreted 

proteins, antigen), and genetic markers (DNA, mRNA, and miRNA), which have shown 

promising or even superior results compared to CA 19-9 (by using them alone or combination 

with CA19.9 or CEA).427 However, further validation for reproducibility and clinical utility is 

required before using these biomarkers to manage pancreatic cancer. In chapter 2, we identified 

three microRNAs that are differentially expressed in pancreatic cancer patients’ PBMCs. In 

chapter 3, we will discuss the expression change in miR-125a-5p following chemotherapy and 

surgery and determine whether there is any correlation between miR-125a-5p expression, 

CA19.9 level, and clinical outcome. 
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3.3 MATERIALS AND METHODS 

3.3.1 Pancreatic Cancer Patients’ Samples Collection 

We collected blood samples at individual time points from 14 pancreatic cancer patients 

undergoing neoadjuvant chemotherapy on UPCI #09-122, approved by the University of 

Pittsburgh IRB. Samples were initially collected on day 29 following two cycles of 

chemotherapy and then again one month following surgical extirpation. PBMC were isolated as 

described in our previous publication.4 In brief, each patient’s blood sample was diluted with 

Roswell Park Memorial Institute medium (RPMI) (Thermo Scientific) culture media (1:1 ratio) 

and overlaid on Ficoll-Paque (GE Healthcare). The blood sample was then spun at 400g for 30 

minutes. PBMC were collected at the interface. PBMCs were transferred into a new tube and 

washed with RPMI. Red cell lysis buffer (0.15M ammonium chloride, 10mM potassium 

bicarbonate, 372mg sodium EDTA) was added to remove any remaining red blood cells in the 

PBMC. They were then washed with RPMI, spun down, and re-suspended in freezing media 

(10% DMSO, 90% fetal bovine serum [FBS]) at 1x107 cells/ml and stored in the vapor phase of 

liquid nitrogen. 

3.3.2 miRNA Isolation 

Pancreatic cancer patients’ PBMC RNA was isolated with miRNeasy mini Kit (Qiagen) and RIN 

was checked using a Bioanalyzer 2100 (Agilent Technology). In brief, frozen pancreatic cancer 

patients’ PBMC were thawed in a 37°C water bath and washed with RPMI. The PBMCs were 

then lysed by Qiazol for total RNA extraction (in no more than 3x106 cells/ 700ul of Qiazol). 
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Total RNA samples were then sent to the University of Pittsburgh Cancer Institute (UPCI) 

Genomic Core Facility for RNA integrity (RIN) evaluation. Samples (with RIN higher than 8) 

were used for Taqman Low Density Array (TLDA) miRNA profiling. 

3.3.3 miRNA Expression Assay 

TaqMan MicroRNA Array (Life Technologies) was used for miRNA expression profiling. In 

brief, 20ng of total RNA was reverse transcribed according to the instructions, then samples qt-

PCR with specific Taqman primer and run in StepOne (Life Technologies). Real-Time PCR was 

carried out with the recommended protocol. 

3.3.4 CA19.9, Survival, LC3, HMGB1 ELISA 

Serum CA19.9 (measured by UPMC Patient Care Service with a Chemiluminescence 

Immunoassay) and HMGB1 levels (IBL International Corp) and PBMC LC3 puncta using an 

ArrayScan II (Themo Scientific). Survival data were collected from patients enrolled on clinical 

trial UPCI # 09-122 in our laboratory, approved by the University of Pittsburgh IRB. 

3.3.5 Statistical Analysis of miRNA Profiling Data 

Raw Ct values from each sample were converted to RQ or 2^∆∆Ct values. In brief, ∆∆Ct values 

were calculated from: (Ctpatient-Ctendog. Cont.) – (Ct healthy – Ctendog cont). The endogenous 

control was the small nucleolar RNA U48. Statistical analysis was performed using a Student T-

test on the ∆∆Ct value. 
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3.4 RESULTS 

3.4.1 miR-125a-5p Expression is Downregulated after Chemotherapy 

There was significant downregulation in miR-125a-5p expression in pancreatic cancer patients’ 

PBMCs after receiving chemotherapy. (Figure 3.1) The average fold change was 0.8177 

(p<0.05) However, miR-125a-5p expression was upregulated significantly following surgical 

excision, demonstrating the dynamism of this marker in the peripheral blood mononuclear cells. 

The average fold change was 1.814 (p<0.05). We were able to collect PBMC samples from two 

of the patients three months following surgical excision; their miR-125a-5p expression was again 

downregulated three months after their surgical procedurewhen patients continue to receive 

chemotherapy, but more samples are needed to validate this result. 
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Figure 3-1: Dynamic Changes in miRNA following Neoadjuvant Treatment 

Patients who are diagnosed with early resectable pancreatic cancer received two doses of gemcitabine chemotherapy 
(on day 1 and day 15) along with daily oral hydroxychloroquine, undergoing surgical excision on day 29. Blood 
samples were drawn before any treatment (day 0, day 29 prior to surgery, and 30 days after surgery). miR-125a-5p 
expression was downregulated after patients received chemotherapy (average fold change 0.817, p<0.027) and 
upregulated following surgical excision (average 1.814, p<0.034) 

3.4.2 miR-125b Expression Did not Correlate Directly with Treatment 

No significant differences were found in miR-125b (a closely-related family member of miR-

125a-5p) following treatment (neither chemotherapy nor surgery). (Supplementary Figure 3.1) 
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S. Figure 3-1: miR-125b Did Not Change Significantly Following Treatments 

Patients who are diagnosed with early resectable pancreatic cancer received two doses of gemcitabine chemotherapy 
(on day 1 and day 15) along with daily oral hydroxychloroquine, undergoing surgical excision on day 29. Blood 
samples were drawn before any treatment (day 0, day 29 prior to surgery, and 30 days after surgery). miR-125b (a 
closely-related family member of miR-125a-5p) did not change significantly following chemotherapy or surgery. 

 

3.4.3 Correlation Between miR-125a-5p and Other Putative Markers 

Serum HMBG1 levels were low (with one exception, patient 11) and did not change significantly 

after chemotherapy (p>0.05), although most patients’ serum HMGB1 levels fell following 

chemotherapy (13/16). Basal miR-125a-5p before chemotherapy or serum HMBG1 level did not 

correlate directly with survival. When excluding one outlier, there was a significant difference 

between serum HMBG1 levels following chemotherapy; a bigger sample size is needed to 

confirm this observation (pre-treatment average 9.26ng/ml, post-chemotherapy average 

5.26ng/ml, p<0.005) and we are now performing a randomized prospective clinical trial to 

examine this. No correlation was found between changes in the serum HMBG1 level, miR-125a-
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5p expression, and serum CA19.9 level, although all decreased. (Figure 3.2 and Supplementary 

Figure 3.2) 

a) 

 

 

 

 

 

 

 

 

b) 
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Figure 3-2: Correlation of miR-125a-5p with Other Putative Biomarkers 

Serum CA19.9 and b) HMGB1 level was measured by ELISA and compared with the miR-125a-5p expression level 
for each patient. Fisher’s Exact Test was performed using GraphPad 2X2 contingency table and there was no 
correlation between miR-125a-5p expression level and serum CA19.9 or serum HMGB1 level. The lower limits of 
normal are <1.4ng/ml and the reference range of serum CA 19-9 is less than 37 U/mL. Shown for miRNA to the 
dotted line to the left are ‘detectable and increasing levels of miRNA (with smaller ΔCT values) and above the 
dotted line for detectable levels of CA 19-9 and HMGB1 respectively; open circles prior to therapy and closed 
circles, following. 
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S. Figure 3-2: Correlation between Changes in miR-125a-5p and Putative Markers 

Patients’ serum CA19.9 and HMGB1 level was measured by chemiluminescence immunoassay and ELISA 
respectively and compared with the miR-125a-5p expression of all patients. There was no apparent correlation 
between miR-125a-5p expression and serum CA19.9/HMGB1 levels. 
 

3.4.4 Correlation between Survival and miR-125a-5p 

We analyzed miR-125a-5p expression in PBMCs and serum HMBG1 level results to determine 

whether there was a correlation between miR-125a-5p and survival. There was no direct 

correlation between miR-125a-5p expression changes or serum HMBG1 level changes in 

disease-free survival (DFS) or overall survival. However, decreases in serum CA19.9 (the 

current gold standard for pancreatic cancer management as a marker) showed a correlation with 

both overall and disease-free survival. (Figure 3.3 and Supplementary Figure 3.3) The CA19.9 

responders (serum CA19.9 level decreased by more than 50%) had longer median survival 

(overall survival 20.0225 months, DFS 17.67 months) than the CA19.9 non-responders (overall 

survival 9.82 months, DFS 5.74 months)  (p<0.05 for both overall survival and DFS).  
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3.4.5 PBMC LC3 Puncta did not correlate with miR-125a-5p Expression  

We also measured patients’ PBMCs LC3 puncta (measurement of autophagy) to determine if it 

correlated with better survival or miR-125a-5p expression level. There was no correlation 

between miR-125a-5p expression change and autophagy or survival. (Supplementary Figure 3.4) 

 

 

Figure 3-3: miR-125a-5p did not correlate with Survival 

CA19.9 responder is defined by a decrease of serum CA19.9 of more than 50% following chemotherapy. A) The 
median DFS for the CA19.9 responder group was 15.66 months and 5.74 months for the non-responder group. The 
median OS for the CA19.9 responder group was 20.02 months and 9.82 months for the non-responder group. B) and 
C) shows the linear regression of CA19.9 change vs. DSF and OS. D) There was no correlation between miR-125a-
5p expression change after chemotherapy and survival. 
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S. Figure 3-3: miR-125a-5p and Serum HMGB1 did not correlate with DSF or OS 

Changes in miR-125a-5p expression (A and B) or change in serum HMGB1(C and D) after chemotherapy did not 
correlate with disease-free survival or overall survival with linear regression 
 

 

S. Figure 3-4: Change in miR-125a-5p expression did not correlate with LC3 puncta 

Change in miR-125a-5p expression did not correlate with change in LC3 puncta after chemotherapy with linear 
regression. 
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3.5 DISCUSSION 

In chapter 2, we identified three in vivo DAMPmiRs (miR-125a-5p, miR-146b, and miR-29c) 

that are differentially expressed in pancreatic cancer patient’s PBMCs. In this chapter we 

examined how miR-125a-5p expression changed in patients’ PBMCs after treatments 

(chemotherapy and surgery) and determined whether the expression change correlated with any 

clinical outcome (CA19.9 response and survival), serum HMBG1 release, and autophagy.  

We found that miR-125a-5p expression in PBMCs was down-regulated after pancreatic 

cancer patients received chemotherapy and autophagy inhibition with hydroxychloroquine and 

up-regulated immediately following surgical excision. The initial down-regulation of miR-125a-

5p could have been due to the response to chemotherapy, reduction in tumor size following 

chemotherapy, reduction of autophagy, or activation of an effective immune response. Serum 

CA19.9 levels (pre-treatment and post-treatment) is a developing prognostic biomarker for 

pancreatic cancer. Our results from this study and other studies from our research group show 

that the CA19.9 response to chemotherapy (reduction in serum CA19.9 after treatment) is 

associated with improved survival.117-121 Serum CA19.9 level is accepted as a measure of 

pancreatic cancer tumor burden. The down-regulation of miR-125a-5p did not correlate with 

serum CA19.9 level. Although serum CA19.9 increased in some of our patients’ samples 

following chemotherapy, implying their tumor burden increased after the treatment this does not 

necessary indicate that the short course of chemotherapy completely failed to activate the 

immune system or induce some tumor cell death. In addition, this was relatively short term 

treatment. We believe it is likely that chemotherapy-induced cell death releases both CA19.9 as 

well as DAMPs into the circulation. The DAMPs released from apoptotic cells, unlike necrotic 

cells, may be immuno-tolerizing and not capable of up-regulating miR-125a-5p expression. 

 70 



Therefore, measuring the percentage of apoptotic cells and necrotic cells before and after 

chemotherapy following surgical excision could be useful. Some chemotherapeutic agents 

induce immune activation. Indeed, gemcitabine can induce naïve T-cell activation.428,429 miR-

125b (one or the miR-125 family) is downregulated in active T-cells.381,429 

We previously showed that miR-125a-5p is up-regulated by DAMP simulation in vitro 

and is up-regulated in pancreatic cancer patients (compared to healthy individual) in vivo. We 

measured serum HMBG1 levels pre- and post- chemotherapy and the change in serum HMGB1 

release did not correlate with miR-125a-5p expression change. Since HMGB1 was not the only 

DAMP in our in vitro freeze-thaw lysate and in patients’ samples, miR-125a-5p expression level 

may correlate with other DAMPs, e.g. ATP, uric acid, chaperones, mitochondrial components, 

nucleic acids, and nucleosomes. Therefore, measuring the serum level of other DAMPs might 

give us a better picture of whether factors released from tumor regulate miR-125a-5p expression 

level. 

We showed that miR-125a-5p is up-regulated by DAMP simulation in vitro and is up-

regulated in pancreatic cancer patients (when compared with healthy individuals) in vivo. We 

measured serum HMBG1 levels pre- and post- chemotherapy and the change in serum HMGB1 

release did not directly correlate with miR-125a-5p expression changes. Since HMGB1 was not 

the only DAMP in our in vitro freeze-thaw lysate and in patients’ samples, miR-125a-5p 

expression level may correlate with other DAMPs alone or in combination with HMGB1. These 

would include ATP, uric acid, chaperones, mitochondrial components, nucleic acids, and 

nucleosomes. Therefore, measuring the serum level of other DAMPs might give us a better 

picture of whether factors released from tumor regulate miR-125a-5p expression level. 
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We hypothesized that tumor burden should initially decrease following surgery and that 

miR-125a-5p should be further down-regulated following surgical excision. However, 

surprisingly, miR-125a-5p was up-regulated immediately following surgical extirpation (within 

one month). This could possibly be due to postoperative wound healing or immune alterations, 

indeed, postoperative immune-suppression and soluble IL-2R level decreases have been 

observed following operative procedures in other studies.430 Those signals may temporarily 

dominate miR-125a-5p regulation. Our ongoing investigations shows a trend: miR-125a-5p is 

further decreased (three months after surgery) when the patient continues chemotherapy 

following operation (data not shown). 

MiR-125a-5p is down-regulated after chemotherapy in pancreatic cancer patients’ 

PBMCs. However, miR-125a-5p expression does not correlate with serum CA19.9 or survival. 

Therefore, further validation (e.g. increase sample size) is needed to determine whether miR-

125a-5p may serve as a prognostic or predictive marker for pancreatic cancer management or 

not. In chapter 4, we will identify immunological stimuli that can regulate miR-125a-5p 

expression and examine the role of miR-125a-5p in immunity. 
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4.0  EVALUATE THE FUNCTION OF MIR-125A-5P 

4.1 CHAPTER OVERVIEW 

In previous chapters, we identified three microRNAs (miR-125a-5p, miR-146b, and miR-29c) 

that are differentially expressed in pancreatic cancer patients’ PBMCs compared to healthy 

individuals and observed that miR-125a-5p expression is downregulated following 

chemotherapy but upregulated following surgery.  We found that miR-125a-5p expression does 

not correlate with serum CA19.9 level (tumor burden indicator, chemotherapy response marker), 

serum HMBG1 (DAMPs), LC3 puncta (autophagy in PBMCs), or survival (prognostic 

measurement). In this chapter, we examine how immunological stimuli affect miR-125a-5p 

expression and its downstream targets mRNA and protein expression. We also examine if miR-

125a-5p plays a role in proliferation and anti-tumor effects. 
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4.2 RATIONALE 

In chapter 3, we observed that miR-125a-5p is downregulated following chemotherapy, but the 

decrease did not correlate with decrease in tumor burden (serum CA19.9 level), decrease in 

DAMPs (HMGB1), or improve prognosis (improve median disease-free survival and overall 

survival). Following surgery, when tumor burden supposedly decreases significantly compared 

to post-chemotherapy, miR-125a-5p expression is upregulated. In a previous study, we used cell 

lysate generated from mouse embryonic fibroblasts as DAMPs and found that miR-125a-5p 

expression did not correlate with serum HMGB1 level in pancreatic cancer patients following 

chemotherapy. It is possible that DAMPs released from pancreatic tumor cells have different 

effects on PBMCs or some other factor can also regulate miR-125a-5p expression. Studies have 

shown that gemcitabine can activate naïve T-cells and post-surgery stress can alter cytokines 

(e.g. soluble IL-2). Therefore, in this chapter we examine how IL-2, CD3/CD28 activation, and 

tumor cell lysate alter miR-125a-5p expression. We also validate the potential downstream miR-

125a-5p targets IL-2RB, IL-10RA, and IL-6R. Finally, we evaluate if miR-125a-5p plays a role 

in PBMC proliferation and anti-tumor effects. 
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4.3 MATERIALS AND METHODS 

4.3.1 PBMCs Isolation 

Buffy coats were obtained from the UPMC blood bank and diluted with RPMI (Thermo 

Scientific) culture media (1:1 ratio) and and overlaid on Ficoll-Paque (GE Healthcare). The 

blood sample was then spun at 400g for 30 minutes. PBMCs were collected at the interface. 

PBMCs were transferred into a new tube and washed with RPMI. Red cell lysis buffer (0.15M 

ammonium chloride, 10mM potassium bicarbonate, 372mg sodium EDTA) was added to remove 

any remaining red blood cells in the PBMC. Then the PBMCs were washed with RPMI and spun 

down and resuspended in RPMI complete media (RPMI, 10%FCS and 1% pen-strep) in 1X10^6 

cells/ml for cell culture.  

4.3.2 Preparation of Tumor Cell Lsyate 

Sub-confluent Panc 2.0.3 cells were re-suspended in ice-cold 1X PBS, with 1 mM PMSF and 

centrifuged at 10,000g for 1 min at 4o C. The cells were re-suspended in cold non-denaturing 

lysis buffer (600 mM KC1, 20mM Tris-CI, pH 7.8 and 20% (v/v) Glycerol) at a concentration of 

about 100X106 cells/1.3ml of lysis buffer, supplemented with 1 mM PMSF(Invitrogen, Inc), 

protease inhibitors cocktails (Invitrogen, Inc) and 1 mM dithiotreitol (Invitrogen, Inc). The 

sample was dropped into liquid nitrogen until completely frozen and placed on ice to thaw 

slowly. When thawed, the sample was briefly vortexed at maximum speed. This was repeated 

three times. At this point, all cells were nonviable as determined by Trypan blue staining. The 

cell suspension was centrifuged at 10,000 g at 4o C for 10 minutes to pellet debris, and 
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supernatants aliquoted into small volumes and frozen at -80o C. For an equivalent of 3X105 

cells/ml of cell lysates in culture, about 7 ul of the supernatant was added to 2 ml of PBMCs 

culture. 

4.3.3 Cell Culture and Stimulation 

PBMC were cultured in RPMI completed medium (RPMI, 10% FCS (Gemini Bioproduct Inc) 

1% pen-strep (Invitrogen Inc) at 37o C, 5% CO2. Cells were treated with 6000UI/ml of 

recombinant IL-2 (Prometheus Inc.), 1:1 ratio of antiCD3/CD28 Dynabeads (Life Technology), 

or 7ul per 2 ml of tumor cell lysate for 48 hrs. In separate experiments, PBMC were stimulated 

with IL-2, or tumor cell lysate for 24hrs, 48hrs and 72hrs. 

Lenti-virus Transfection 

miR-125a-5p lentivirus and control lentivirus was generated and purchased from UPCI 

Lentiviral Core Facility. THP-1 and Jurkat cells are a kind gift from Dr. Hideho Okada’s 

laboratory at the University of Pittsburgh. THP-1 is transfected with MOI 10:1 viral particle and 

Jurkat cell with MOI 1:1 viral particle at 32o C, 5% CO2 overnight. We then pelleted the cells 

and removed media the following day and cultured the cells at 37o C for 7 days. GFP positive 

cells were sorted on day 8 and continued in culture as transfected THP -1 and Jurkat cells 

4.3.4 RNA Isolation 

PBMCs and transfected THP-1 or Jurkat cells’ RNA were isolated with a miRNeasy mini Kit 

(Qiagen) and RNA integrity was checked using a Bioanalyzer 2100 (Agilent Technology). In 

brief, frozen pancreatic cancer patients’ PBMC were thawed in a 37°C water bath and washed 
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with RPMI. The PBMCs were then lysed by Qiazol for total RNA extraction (in no more than 

3x106 cells/ 700ul of Qiazol). Total RNA samples were then sent to the University of Pittsburgh 

Cancer Institute (UPCI) Genomic Core Facility for RNA integrity (RIN) evaluation. 

4.3.5 miRNA and gene expression Taqman Assay 

From the returned results we selected IL-2RB, IL-6R and IL-10RA for additional investigation. 

Taqman MiRNA Array (miR-125a-5p, RNU48) and Gene Expression (IL-2RB, IL-10RA, IL-

6R, ERBB2, alpha-actin) assays (Life Technologies) were used for analysis. In brief, 20ng of 

total RNA was reverse transcribed according to instructions for miRNA array and 100ng of total 

RNA was reverse transcribed according to instruction for the gene expression array. Samples 

underwent qt-PCR with specific taqman primers and run on the StepOne (Life Technologies Inc) 

Real-Time PCR system with the recommended protocols. 

Conditioned Median Preparation 

0.3X10^6 of THP-1 cells (miR-125a-5p over-expressing or control vector) and 0.5X10^6 Jurkat 

cells (miR-125a-5p over-expressing or control vector) were cultured in T-75 culture flask in 

RPMI complete media for two days. The conditioned media was then stored in aliquots at -80 °C 

until use. 

4.3.6 Western blotting  

Downstream targets of miR-125a-5p proteins expression level were evaluated by western 

blotting. Samples were lysed in lysis buffer (20 nM Tris base, 150mM NaCl, 1 mMEDTA, 1 mM 
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EGTA, 2 mM Na3VO4, 1% NP-40, 10% Glycerol, pH 7.4) and probed for human IL-2Rb, IL-

10RA with specific antibodies (Sigma-Aldrich). 

4.3.7 Cell Cycle  

Transfected THP-1 and Jurkat cells were centrifuged at 800 rpm for five minutes and supernatant 

was then removed. Samples were fixed with 75% ethanol for four hours. Then samples were 

centrifuged at 1500 rpm and the cells were re-suspended in 400 ul of PBS (w/ 20ul of 1X RNase 

A) at 37°C for 30 minutes. 50ug//ml propidium iodide were added to the samples and kept at 4°C 

for two hours.  Samples were then run and analyzed with Accuri C6 and its software package. 

4.3.8 CCK8 Proliferation 

Panc 2.0.3 cells were seeded in a 96-well plate (5000 cells/well, at 37°C, 5% CO2) for 24 hours 

with normal RPMI complete media, RPMI complete media with LPS (100ng/ml), RPMI 

complete media with ionomycin (1ug/ml) +PMA (10nM), or conditioned media for 24 hours. 10 

ul of CCK-8 solution (Dojindo Molecular Technologies, MD) was added to each well of the 

plate. The plate was incubated for two hours and the absorbance was measured at 450 nm using a 

micro plate reader. 

4.3.9 Potential target screening 

The miR-Ontology Database from Ferro Lab (http://ferrolab.dmi.unict.it) was used to screen for 

potential downstream targets of miR-125a-5p. The database used targetScan, miRanda, and 
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Pictar for analysis. The database sorted the results into three categories (associated broad 

phenotypes, associated functions, and associate processes). From the returned results, we 

selected IL-2RB, IL-6R, and IL-10RA for future investigation. 

4.3.10 Statistical analysis of microRNA profiling data 

The raw Ct values from each sample were converted to RQ or 2^∆∆Ct values. In brief, ∆∆Ct 

values were calculated from: (Ctpatient-Ctendog. Cont.) – (Ct healthy – Ctendog cont). The 

endogenous control was the small nucleolar RNA U48. Statistical analysis was performed using 

Student T-test on ∆∆Ct value. 
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4.4 RESULTS 

4.4.1 MiR-125a-5p expression altered upon immunological stimulation 

To determine whether cytokines, T-cell activation/maturing signals, or DAMPs derived from 

pancreatic cancer cells were associated with miR-125a-5p expression changes in PBMC, healthy 

donor PBMC from several individuals were isolated from buffy coat and stimulated with IL-2, 

CD3/CD28 ligation, tumor cell lysate, or placed solely in culture media for 48 hours. Expression 

of miR-125a-5p was downregulated when cells were treated with IL-2 and anti-CD3/CD28, but 

was upregulated when treated with Panc 2.03 tumor cell lysate (Figure 4.1). miR-125a-5p 

expression level remained upregulated at 72 hours without any additional tumor cell lysate, while 

miR-125a-5p expression gradually returned to a normal level at 72 hours without additional anti-

CD3/CD28 (Supplementary Figure 4.1). 

4.4.2 DAMPs Increase miR-125a-5p Expression Level with Dose  

To determine whether miR-125a-5p expression changes induced by DAMPs is dose-dependent, 

PBMC were treated with increasing doses of DAMPs (untreated, 1X, 2X). Expression of miR-

125-a-5p increased more as tumor cell lysate quantity increased. The mRNA expression levels of 

the potential downstream targets IL-2RB, IL6R, and IL10RA were repressed as the miR-125a-5p 

expression level increased. ERBB2 is a validated downstream target of miR-125a-5p (Figure 

4.2). 

 

 

 80 



 

Figure 4-1: Immunological stimuli altered miR-125a-5p expression 

Healthy individual PBMC were stimulated by IL-2 (6000UI/ml), anti-CD3/CD28 dynabeads (1:1 bead to cell ratio), 
or tumor cell lysate (3x105 cells/ml of cell lysate) for 48 hrs. miR-125a-5p expression is down-regulated with IL-2 
or anti-CD3/CD28 stimulation compared to the untreated (average fold change 0.825, and 0.528, p<0.0257, 
p<0.0331 respectively) while it is up-regulated with tumor cell lysate (average fold change 1.958, p<0.005164) 
 

 

S. Figure 4-1: miR-125a-5p expression change after stimulation after 72hours 

miR-125a-5p expression in PBMCs treated with anti-CD3/CD28 dynabeads (1:1 cells to beads) was initially down-
regulated and returned back to normal level after 72 hrs. miR-125a-5p expression in PBMCs treated with tumor cell 
lysate (3X105 cells/ml of cell lysates) continued to be up-regulated at 72hrs. 
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Figure 4-2: Tumor Cell Lysate Upregulate miR-125a-5p Expression in a Dose-Dependently  

ERBB2, IL-6R, IL10RA as downstream targets were diminished at 1X (p<0.04) of tumor lysate and at 2X (p<0.05) 
of tumor cell lysate. (p<0.00286, p<0.0473, p=0.0505, p<0.0281 respectively) 
 

4.4.3 IL-10RA and IL-2RB are Potential Functional Targets of miR-125a-5p 

IL-6R, IL-10RA, and IL-2RB are computational targets of miR-125a-5p in the miR-Ontology 

Database from Ferro Lab (http://ferrolab.dmi.unict.it). We transfected THP-1 and Jurkat cells 

with lenti-virus to over-express miR-125a-5p (Supplementary Figure 4.2) and positively selected 

the GFP-positive cells to examine protein expression of the downstream targets. IL-10RA was 

downregulated in both THP-1 and Jurkat miR-125a-5p over-expressing cells, while IL-2RB was 

downregulated in Jurkat miR-125a-5p over-expressing cells, but not in THP-2 miR-125a-5p 

over-expressing cells (Figure 4.3). 
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4.4.4 miR-125a-5p over-expression does not affect immune cell cell cycle 

To determine whether miR-125a-5p expression affects the cell cycle in immune cells, THP-1 and 

Jurkat cells’ DNA content were accessed by propidium iodide staining and analyzed by flow 

cytometry (Supplementary Figure 4.3). No significant difference was found between the 

percentage of cells in G0/G1, S phase, or G2/M.  

 

 

Figure 4-3: miR-125a-5p inhibits IL-10RA and IL-2RB protein expression level 

10RA protein expression was decreased in both THP 125 and JK 125 over-expressing cells compared to controls. 
IL-2RB protein expression is decreased in JK 125 over-expressing cells, but not significantly different in THP 125 
over-expressing cells. 
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S. Figure 4-2: Positive Selection 

 

 

 

 84 



 

S. Figure 4-3: miR-125a-5p over-expression does not affect immune cell cycle 

No differences were found between the percentage of population in G0/G1, S phase, or G2/M in miR-125a-5p over-
expressing THP-1/Jurkat cells compared to the control vector. 
 

4.4.5 Conditioned Media has no effect on Panc 2.03 Cell proliferation 

To determine whether conditioned media from THP-1 or Jurkat miR-125a-5p over-expressing 

cells had any effect on tumor cell proliferation, Panc 2.03 cells were cultured with conditioned 

media and proliferation was assessed by CCK8 assay (Figure 4.4). There are not statistical 

significant different on their proliferation with ANOV analysis. 

 

 

S. Figure 4-4: Conditioned Media has no effect on Panc2.03 proliferation 

Panc 2.03 cells were cultured with RPMl complete media, RPMI complete+LPS (100ng/ml), RPMI 
complete+ionomycin(1ug/ml)+PMA(10nM), JK cont conditioned media, JK 125 conditioned media, THP cont 
conditioned media, THP 125 conditioned media for 24 hrs. There is no differences between their proliferations. 
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4.5 DISCUSSION 

In chapter 3, we observed that miR-125a-5p was downregulated in pancreatic cancer patients’ 

PBMCs following chemotherapy and was upregulated following surgery. In this chapter, we 

demonstrated that stimulating PBMCs by anti-CD3/CD28 dynabeads or IL-2 leads to miR-125a-

5p downregulation, while stimulating PBMCs with Panc 2.03 tumor cell lysate leads to miR-

125a-5p upregulation. The literature shows that gemcitabine can activate T-cells and reduce 

soluble IL-2 level after surgery; our in-vitro data implied that the reason why miR-125a-5p was 

downregulated in pancreatic cancer patients’ PBMCs following gemcitabine administration may 

be due to T-cell activation. MiR-125a-5p upregulation following surgery may be due to a 

decrease in soluble IL-2R. Thus, analyzing the PBMC subpopulation, activation stage, and serum 

cytokine level (especially IL-2) following treatment and then investigating correlation with miR-

125a-5p in the future may answer these questions.   

In chapter 3, we found no correlation between miR-125a-5p expression or change in 

expression with serum HMBG1 level (or change in serum HMGB1). Although HMBG1 is one of 

the major DAMPs, it is possible that it is not directly involved in the miR-125a-5p pathway. Our 

in-vitro results in this chapter showed that tumor cell lysate (a complex form of DAMP) 

upregulated miR-125a-5p expression, implying that other DAMPs may regulate miR-125a-5p 

expression.  

We also validated that miR-125a-5p can downregulate IL-6R, IL-10RA, and IL-2RB 

mRNA levels. IL-10RA and IL2-RB have been regulated by miR-125b (another closely-related 

miR-125 family member) in naïve CD4+ T-cells, but we are the first group to validate miR-

125a-5p downstream IL-10RA, IL-2RB, and IL-6R mRNA levels in PBMCs. The level of miR-

125a-5p upregulation is dose-dependent with tumor cell lysate and correlates with 
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downregulation of its downstream target mRNA level. We have also shown that over-expressing 

miR-125a-5p in Jurkat cells with lentiviral vector downregulated IL-2RB and IL-10RA protein 

expression.  
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5.0  SUMMARY AND FUTURE DIRECTION 

Approximately 46,420 Americans are diagnosed with pancreatic cancer and 39,590 individuals 

die from the disease annually. Pancreatic cancer is associated with a low five-year survival rate 

compared to the other top 10 deadly cancers. Early stage five-year survival is below 14% (Stage 

I ~12-14%, Stage II ~5-7%) compared to small-cell lung cancer (Stage I ~49%, Stage II ~31%). 

The five-year survival rate decreases substantially as it progress to Stage III (~3%) and Stage IV 

(<1%). Therefore, useful biomarkers for early stage diagnosis can significantly improve survival 

rate. Beside late stage detection, lack of effective treatment protocols and locoregional 

recurrence also contribute to the challenge of pancreatic cancer management.427 Currently, CA 

19-9 is the most widely-used biomarker in pancreatic cancer diagnosis and prognosis, but it has 

limitations, including lack of expression in the Lewis-negative group (5-10% population) and 

interference from obstructive jaundice.95 Because of the unmet clinical need for more ideal 

pancreatic cancer biomarkers, extensive research to discover body fluid markers (pancreatic 

juice, saliva, stools), cytokine or cytokine inhibitor, antigen, protein peptide genetic markers, and 

miRNA are ongoing and have yielded some promising nascent results. Further validation is 

required before applying the findings to clinical use.427  

In this dissertation, we used PBMC to identify potential miRNA markers to distinguish 

between pancreatic cancer patients and healthy individuals and see if the miRNA markers 

correlated with treatment (chemotherapy, surgery), CA 19-9 level, DAMPs (HMGB1 in our 
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case), and clinical outcome (disease-free survival and overall survival). Furthermore, we 

identified immunological stimuli that can alter miRNA marker expression and validated the 

potential downstream targets miRNA markers.  

In Aim 1, we found that miR-125a-5p, miR-146b and miR-29c were differentially 

expressed in pancreatic cancer patients’ PBMC, however previously identified in-vitro 

DAMPmiRs (miR-34c and miR-214) were not expressed in pancreatic cancer patients’ PBMCs. 

The in-vitro DAMPmiRs may be differentially expressed in the infiltrated lymphocyte 

population but not in the circulating PBMC. Therefore, future work to answer this question and 

follow up for Aim 1 include miRNA profiling of pancreatic cancer patients’ infiltrated 

lymphocyte and comparing the expression profile with circulating PBMC of tumor patients/ 

healthy individuals, and splenocytes of healthy individual lymph nodes.  

In Aim 2, we tried to see whether the miRNA markers that we identified in Aim 1 would 

change in pancreatic cancer patients’ PBMC following treatments. Because we have limited 

access to  samples (with the same amount of blood drawn in Aim 1, we were only able to 

allocate 1/6 for total RNA isolation and microRNA expression analysis) and resources, we 

selected miR-125a-5p for further investigation because its potential downstream targets (IL-

10RA, IL-2RB, IL-6R) play a role in immunity. We found that miR-125a-5p expression change 

following treatment and did not correlate with serum CA 19-9 level or HMGB1 level. We 

believed that this may be due to gemcitabine’s ability to activate T-ells and reducte soluble IL-

2R following operation. In Aim 3, we showed that T-cell activation signaling (anti-CD3/CD28) 

and IL-2 can downregulate miR-125a-5p expression. We used serum HMGB1 as the measure of 

DAMPs; we would expect that miR-125a-5p expression would correlate with serum HMGB1 

level. However, there is disconnection between serum HMBG1 level and miR-125a-5p 
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expression. Data from Aim 3 showed that miR-125a-5p expression is up-regulated by Panc 2.03 

lysate in vitro; therefore it is possible that other DAMPs regulate miR-125a-5p expression in 

patients’ PBMCs. In Aim 2, we saw that miR-125a-5p did not correlate with the change in CA 

19-9 level (an indicator of chemotherapy responsiveness and tumor burden) following 

chemotherapy; this could be due to the effect of gemcitabine on T-cell activation. Therefore 

future work includes measuring other DAMPs (e.g uric acid, ATP, IL-1β, S100) following 

chemotherapy, measuring soluble IL-2R and other cytokine level following surgery and 

determining if they are associated with miR-125a-5p expression. Furthermore, to validate if miR-

125a-5p is useful to monitor reoccurrence following surgery, longer-term studies on miR-125a-

5p is required. Finally, due to the limited access to the samples, we were not able to measure 

miR-146b and miR-29c expression. Including those miRNAs in the future studies would be 

beneficial. 

In Aim 3, we found that T-cell activation and maturing signal (via anti-CD3/CD28, and 

IL-2 stimulation) lead to a decrease in miR-125a-5p expression in PBMC and tumor cell lysate 

(complex DAMPS) up-regulated miR-125a-5p expression. We also validated that miR-125a-5p 

inhibits potential downstream targets’ mRNA expression (IL-2RB, IL-10RA, IL-6R) and 

confirmed that it downregulated IL-10RA and IL-2R protein expression in miR-125a-5p Jurkat 

cells. The future work for Aim 3 includes: identifying individual DAMP components that can 

regulate miR-125a-5p expression which can help us pre-select molecules to measure for Aim 2 

future work; determining miR-125a-5p expression levels in PBMC subpopulation after 

stimulation, as they might lead to future therapeutic targets; and more direct validate the 

downstream target by using luciferase reporter system. Figure 5.1 summarize the dissertation. 
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Figure 5-1: Summary of the dissertation 
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6.0  SIGNIFICANCE OF THIS WORK 

This dissertation work has been used to apply grant from Coulter Foundation and entered Student 

Healthcare Entrepreneurship Competition in 2011 and 2012, Randall Family Big Idea 

Competition in 2013 hold by University of Pittsburgh. The following were the applications. 

6.1 COULTER FOUNDATION APPLICATION 

6.1.1 Abstract 

Interleukin 2 can cure a small subset (<10%) of patients with advanced melanoma and kidney 

cancer. It is associated We will develop the premier strategy for identifying factors associated 

with miR regulation of responsiveness allowing: 1) Diagnostic strategies useful for more 

effectively identifying and only treating those patients; 2) Means to target these miRs or 

upstream/downstream pathways to increase responses in these diseases; and 3) Expand the target 

treatment population to include other epithelial malignancies such as lung, breast, prostate, 

colon, and pancreatic cancers. 
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6.1.2 Funding Outcome 

The application made it to the semi-final around but not funded. Two reviewers gave an A, one 

reviewer gave a B, and one gave a C because the idea was in nascent stage. 

6.2 STUDENT HEALTHCARE ENTREPRENEURSHIP COMPETITION 

6.2.1 Abstract (2011) 

Renal Cell Carcinoma (RCC) and melanoma cause more than 21,000 deaths with annually 

110,000 new cases each year in the US (58,240 new cases and 13,040 deaths for RCC; 68,130 

new cases and 8,700 deaths for melanoma). Survival for patients with stage III RCC is 22% and 

melanoma, 25-60%. For those with Stage IV disease, survival is measured in months. Interleukin 

2 can cure a small subset (<10%) of patients with advanced melanoma and kidney cancer. Who 

responds and why they respond is still obscure. We will develop the premier strategy for 

identifying factors associated with responsiveness, specifically the role of microRNA (miR) 

regulation allowing: 1) Quantitative diagnostic strategies useful for more effectively identifying 

and only treating those patients who will benefit from the disease; 2) Means to target these miRs 

or upstream/downstream pathways to increase the number of responses in these diseases; and 3) 

Expand the target treatment population to include other epithelial malignancies such as patients 

with lung, breast, prostate, colon, and pancreatic cancers. 
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6.2.2 Funding Outcome 

The application made it to the semi-final around but not funded. The reviewers believed that the 

idea was in nascent stage and not ready for commercialization. 

6.3 STUDENT HEALTHCARE ENTREPRENEURSHIP COMPETITION  

6.3.1 Abstract (2012) 

Approximately 43,140 Americans are diagnosed with pancreatic cancer and 36,800 individuals 

die from the disease annually. Pancreatic cancer is associated with less than a 5% five year 

survival rate. Early diagnosis is rare and surgical treatment is most beneficial before the cancer 

becomes locally invasive or metastatic. There is a substantial unmet clinical need to develop 

early diagnostic reagents for identifying pancreatic cancer. Although CA19.9 is widely used to 

monitor therapy, it has proven to be detectable only late in disease and to be increased with 

pancreatitis. Recently miRNAs (miRNAs) present within the tumor and in the blood are potential 

quantitative measures of tumor that may be identified earlier in disease. We will develop a 

microRNA based non-invasive strategy to detect pancreatic cancer. The strategy allowing: 1) 

Quantitative diagnostic strategies for identifying pancreatic cancer patient; 2) Means to target 

these miRs or theirs regulated pathway as a therapeutic approach; and 3) Apply the strategy to 

other epithelial malignancies population e.g. lung, breast, prostate, colon, and pancreatic cancers 

patients. 
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6.3.2 Funding Outcome 

The application made it to the semi-final around but not funded. The reviewers believed that the 

idea was in nascent stage and not ready for commercialization. 

6.4 RANDALL FAMILY BIG IDEA COMPETITION  

6.4.1 Abstract (2013) 

We are developing a strategy to using miR-125a-5p expression level in pancreatic cancer 

patients’ peripheral blood mononuclear cells to distinguish the disease population from normal 

population. From your preliminary data, we have shown that miR-125a-5p is up-regulated in the 

disease population with statistical significant. (P<0.05) The strategy can also apply to predict and 

monitor the chemotherapy outcome, supported by our preliminary result that patients who 

received the chemotherapy have miR-125a-5p expression decrease. Furthermore, the identified 

miRNA marker can also serve as a therapeutic target to enhance treatment efficiency as we are 

currently validating the functional target of the miR-125a-5p. 

6.4.2 Funding Outcome 

The application made it to the semi-final around and oral presentation but not funded.  
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APPENDIX A 

PUBLICATIONS 

Sebnem Unlu, Siuwah Tang, Ena Wang, Ivan Martinez, Daolin Tang, Macro E. Bianchi, 

Herbert J. Zeh III, Michael t. Lotze, “Damage Associated Molecular pattern Molecule-Induced 

microRNAs (DAMPmiRs) in Human Peripheral Blood Mononuclear Cells.” PLoSOne. 

2012;7(6)e38899. 

Tang S,  Bonaroti J, Unlu S, Liang X, Tang D, Zeh HJ, Lotze MT, “Sweating the small stuff: 

microRNA and genetic change define pancreatic cancer.” Pancreas. 2013 Jul;24(5):740-59. 

Tang S, Lotze MT, “The power of negative thinking: which cells limit tumor immunity?” Clin 

Cancer Res. 2012 Oct 1: 18(19):5157-9. 
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