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Abstract 

Carbon nanomaterials, especially the sp2 carbon allotropes such as carbon nanotubes (CNTs) and 

graphene, have gathered extensive research interest in the recent decades. Structurally, CNTs 

represent one dimensional (1D) tubes with single- or multiple-layer graphitic sidewalls; and 

graphene is two dimensional (2D) one-atom-thick sp2 carbon sheets.  With their remarkable 

intrinsic physical, chemical, and electronic properties, carbon nanomaterials have revolutionary 

potential to make impact on various existing technologies in many fields from construction and 

energy to electronics and biomedicine.  Current research activities are focused on harnessing the 

desired properties of carbon nanomaterials for practical applications by their rational 

functionalization. 

Among different covalent or noncovalent chemical functionalization schemes, 

heteroatom doping into the graphitic lattice most fundamentally alters the intrinsic properties of 

carbon nanomaterials. Nitrogen-doped CNTs are the most studied doped carbon nanomaterials 

due to their excellent electrochemical catalytic activity toward oxygen reduction reaction (ORR).  

Moreover, nitrogen-doping in multiwalled carbon nanotubes (MWCNTs) results in hollow 

compartments resembling stacked cups.  These nanocups, termed as nitrogen-doped carbon 

nanotube cups (NCNCs), may find potential applications as drug delivery carriers.  We managed 

to efficiently separate individual nanocups from their stacks through chemical and physical 

separation methods. By functionalizing separated NCNCs with gold nanoparticles (GNPs), the 
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nanocups can be effectively corked by GNPs on the cup opening. The GNP-corked NCNCs form 

self-enclosing nanocontainers with potential applications as drug delivery nanocarriers. 

The increasing use of carbon nanomaterials in biological and industrial applications 

inevitably raises the risk of exposure to humans and the environment with potential toxicological 

and ecological issues. This research dissertation also studies the enzymatic degradation of carbon 

nanomaterials as a potential remedy measure to mitigate their negative impacts. Following 

previous studies on the enzymatic degradation of single-walled carbon nanotubes (SWCNTs) by 

horseradish peroxidase (HRP), we studied HRP degradation of MWCNTs and its underlying 

mechanism. Furthermore, by using a more potent peroxidase, myeloperoxidase (MPO), we found 

that MPO triggers the opening of the GNP-corked NCNCs and catalyzes the subsequent 

degradation of the NCNC shells.  These findings allude to potential biological pathways of drug 

release and degradative clearance of the GNP-corked NCNCs in therapeutic applications. 
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1.0  INTRODUCTION 

1.1 OVERVIEW 

Carbon is the most fundamental element in materials and life sciences. The four valence 

electrons endow carbon with versatile bonding ability, leading to formation of diverse organic 

and inorganic compounds. Carbon also forms different elemental allotropes, such as sp3 

hybridized diamond and sp2 hybridized graphite. During the rapid development of 

nanotechnology over the past three decades, carbon nanomaterials which are based on the sp2 

graphitic structure have spawned enormous research interest. Graphene, a one-atom thick layer 

of graphite, is considered to be the basic building block of all graphitic materials.1-3 When 

graphene sheets are conceptually rolled-up along certain axis, one-dimensional carbon nanotubes 

(CNTs) are formed. Ever since their discovery in the early 1990’s,4-5 CNTs have been at the 

forefront of nanoscience research because of their outstanding physical, chemical, and electronic 

properties as well as their high aspect ratios and surface areas.6-9 

Depending on the number of graphitic walls, CNTs are classified as single-walled carbon 

nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) (Figure 1-1a). Essentially, 

SWCNTs can be viewed as a graphene sheet rolled up along the vector Ch = na1 + ma2 (Figure 

1-1b), where a1 and a2 are the graphene lattice vectors. The roll-up vector (n, m) determines the 

electric properties and chirality of nanotubes.7, 10 For example, when |n-m| = 3q (q is an integer), 
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the nanotubes are metallic; and otherwise they are semiconducting. When n = m, the SWCNTs 

are referred to have an armchair configuration; when m = 0, the SWCNTs are zig-zag; otherwise 

the SWCNTs are chiral.11-13  Figure 1-2 shows typical electronic band structure of metallic and 

semiconducting SWCNTs.  Semiconducting SWCNTs have a band gap of 0.5 – 2 eV, depending 

on their diameter and chirality as defined by roll-up vectors. Particular to their one-dimensional 

structure, the density of states (DOS) is found as discontinuous sharp spikes across the Fermi 

levels, known as the Van Hove singularities.14-15 The electronic transitions exist in both 

semiconducting and metallic SWCNTs, corresponding to transitions between the first (namely, 

S11 for semiconducting and M11 for metallic SWCNTs) or between the second (S22) Van Hove 

singularities. The electronic transitions form spectroscopic bands that can be revealed by vis-NIR 

absorption spectroscopy.16 

The MWCNTs consist of multiple concentric SWCNTs cylinders with typical diameters 

from several to tens of nanometers. The interlayer spacing between each graphitic wall is 0.34 

nm,17 which is slightly larger than the interlayer spacing of graphite sheets (0.335 nm) due to the 

constrain in the curved sp2 carbon sheets. While SWCNTs have typical diameters of around 0.4 

to 3 nm, the outer diameters of MWCNTs span from 2 – 100 nm, with inner diameters from 

several to tens of nanometers.18 Because the concentric SWCNTs that constitute MWCNTs are 

of different diameters and chirality, the MWCNTs overall are metallic with zero band gaps.19 
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Figure 1-1. (a) Morphological illustration of single-walled carbon nanotube (SWCNT) and 

multiwalled carbon nanotube (MWCNT); (b) Schematic of a graphene sheet with two lattice 

vectors a1 and a2, and one roll-up vector Ch = na1 + ma2; (c) Schematic representations of zig-

zag, armchair, and chrial SWCNTs. (a) is adapted from Ref. 20, Copyright 2007 John Wiley & 

Sons; (b) is adapted from Ref. 13, with permission from Nature 1998, 391, 62-64, Copyright 

1998 Nature Publishing Group; and (c) is reproduced from Ref. 12, with permission from 

Nanoscale 2009, 1, 96-105, Copyright 2009 Royal Society of Chemistry. 
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Figure 1-2. Energy structure of (a) metallic SWCNTs and (b) semiconducting SWCNTs, where 

X-axis is the density of states (DOS) and Y-axis is energy (E). The valence bands (VB) are 

colored and the conduction bands (CB) are white. The spikes in the band structure represent the 

Van Hove singularities.  

 

1.1.1 Synthesis of Carbon Nanotubes 

CNTs are mainly synthesized by three methods: arc-discharge, laser ablation, and chemical 

vapor deposition (CVD).10 The typical reactor set-up is shown in Figure 1-3. Arc-discharge was 

the first method reported to synthesize CNTs,4-5 in which a direct-current voltage is applied 

between two graphite-rod electrodes. Arc-discharge generates MWCNTs deposited on the 

cathode when pure graphite is used; however when the graphite-rod anode is infused with metal 

catalysts, such as Ni and Co, SWCNTs are produced in the form of soot.21 In 1995, Smalley and 
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co-workers produced carbon nanotubes using the laser ablation technique.22 In this method, a 

graphite target is irradiated by high-intensity laser and the carbon is evaporated under high 

temperature and then deposited on the collector to form either MWCNTs or SWCNTs.  Similar 

to the arc-discharge method, formation of SWCNTs can be controlled by introducing metal 

catalyst in the graphite target.23 Despite large amount of byproducts, both methods can yield 

SWCNTs with narrow diameter distribution. The CVD method uses evaporated hydrocarbon as 

precursors to deposit carbon nanomaterials on a substrate under pyrolysis.10 Compared to the 

former two methods, the CVD synthesis requires less energy input and lower temperature, yields 

less byproducts, and can be scaled up. However, the CVD method is more suitable for synthesis 

of  MWCNTs10, 24 or graphenes,25 because CVD synthesis of SWCNTs requires careful 

experimental control26-27 to produce highly uniform SWCNTs compared with those produced by 

arc-discharge or laser ablation. More detailed discussion of CVD synthesis is provided in the 

following chapters.  
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Figure 1-3. Illustration of the instrumental setup for (a) arc-discharge synthesis, (b) laser 

ablation synthesis, and (c) CVD synthesis of carbon nanotubes. (a) and (b) are adapted from Ref. 

28, with permission from Appl. Phys. A 1998, 67, 1-9, Copyright 1998 Springer. 

1.1.2 Applications of Carbon Nanotubes 

The unique morphology and outstanding properties of CNTs enable a wide range of applications. 

For example, the semiconducting properties of SWCNTs lead to applications in electronic 

devices such as field effect transistor (FET) sensors,29-33 field emitters,34-36 and transparent 

displays.37-39 The strong mechanical properties and good conductivity make MWCNTs a good 

candidate for reinforcement in composite materials40-43 and as a support for electrochemical 

catalysts.44-46  
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With their large surface area and diverse chemical properties for chemical 

functionalization, both SWCNTs and MWCNTs been explored as nanocarriers for drug 

delivery.47-51 Compared to the traditional chemotherapy with nonspecific injection of drugs, the 

highly efficient delivery of drug molecules to targeted cells is desired because it improves the 

local concentration of drugs in targeted tissues while reduces side effects on healthy tissues.49, 52 

The major advantages of CNTs for drug delivery are that they accommodate high payload of 

drugs on their surfaces51 or inside their tubular cavities;53 while through a double 

functionalization strategy54 other moieties can also be attached on CNTs to increase their 

solubility or cellular specificity, thus making CNTs excellent candidates for drug delivery 

carriers. 

1.1.3 Functionalization of Carbon Nanotubes 

Chemical functionalization of CNTs is often necessary to modify their properties for different 

applications. Typical chemical modification involves covalent and noncovalent functionalization 

approaches. Pristine CNTs are not soluble in water, and thus oxidation is a common approach to 

introduce oxygen functionalities on the surface of CNTs to improve their solubility55-56 and 

biocompatibility.57-60 The most common oxidation method uses 3:1 v/v H2SO4/HNO3 mineral 

acid mixture to react with CNTs under sonication. Such harsh condition opens the end caps of 

SWCNTs, creates structural defects on both the ends and the sidewalls of CNTs, and introduces 

oxygen-containing functional groups such as carboxylic, hydroxyl, and epoxy groups.61-62 The 

oxidation of CNTs opens a wide range of chemical functionalization based on the reactivity of 

carboxylic groups,63 especially the coupling reaction with amine groups.64  Through a typical 

carbodiimide-based coupling reagent such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
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(EDC),65 different functional moieties, from small molecules to proteins, DNA, and polymers, 

can be grafted on the surface of CNTs.66  

The graphitic nature endows CNTs with rich chemical reactivity associated with sp2 

carbon.8, 67 A number of organic reactions can be applied to functionalize the graphitic surface, 

including halogenation reaction followed by Grignard reaction,66, 68 cycloaddition,67, 69-70 radical 

addition,71-72 and other reactions.8, 67 The 1,3 dipolar cycloaddition of azomethine ylides on 

graphitic structures are one of the most common sidewall functionalization methods previously 

applied to fullerenes.73  This zwitterion-mediated reaction was adopted by the Swager group for 

both SWCNTs and MWCNTs with good reactivity and scalability under mild conditions.74 The 

1,3 dipolar addition has been used in combination with the carboxyl/amine coupling reactions to 

achieve double or multiple functionalization on the same CNTs, which is highly preferred for 

drug delivery applications as the potential nanocarriers can be simultaneously functionalized 

with targeting groups, labeling groups, and drug payloads.50-51, 54 

Covalent functionalization unavoidably alters the structure and the electronic properties 

of CNTs.  The noncovalent functionalization, which is based on van der Waal’s interactions 

achieved via either polymer-wrapping or π-π stacking with aromatic molecules, is more 

advantageous in terms of preserving the intrinsic properties of CNTs.8, 75 The graphitic structures 

show strong interaction toward compounds with π conjugated electrons. Aromatic molecules, 

such as doxorubicin (DOX), fluorescein isocyanate (FTIC), or pyrene derivatives can be 

efficiently attached on to the graphitic surfaces as “sticky labels”.33, 76-77 Moreover, the strength 

of π-π stacking interaction is dependent on pH, thus reversible attachment of the aromatic 

molecules can be controlled by adjusting the pH levels of the mixture.76 
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Polymer wrapping method was earlier reported by O’Connell and co-workers for the 

noncovalent functionalization of SWCNTs with polyvinyl pyrrolidone (PVP) and polystyrene 

sulfonate (PSS) polymers.78 Polymer-wrapping around the surface of SWCNTs can disrupt the 

bundles formed by individual CNTs and allow better dispersion of CNTs. Star and co-workers 

reported that starch amylose complexed with iodine can effectively form inclusion complexes 

with SWCNTs displacing the included iodine molecules.79 The formation of starch-SWCNT 

complexes was indicated by the color fading of the starch-iodine complex and the much 

improved dispersion of SWCNTs in water.  Liu and co-workers used phospholipid-polyethylene 

glycol (PL-PEG) to functionalize SWCNTs.77 The PL chains wrap around the CNTs via 

hydrophobic interactions, and the hydrophilic PEG residues improve the water solubility and 

biocompatibility of SWCNTs leading to enhanced blood circulation.80 The other terminal of the 

PEG molecules can be further functionalized with targeting groups or fluorescent tags to create 

multifunctional SWCNTs biological transporters.81 Some aromatic group-containing polymers, 

such as poly(meta-phenylenevinylene) (PmPV)82-83 or single-stranded DNAs (ss-DNAs),84 have 

significantly high affinity toward CNTs, due to the existence of both π-π stacking and 

hydrophobic interactions. 

1.2 CHARACTERIZATION OF CARBON NANOMATERIALS 

Both microscopic and spectroscopic techniques are utilized for characterization of carbon 

nanomaterials. The imaging of the carbon nanomaterial morphology is usually performed by 

electron or probe microscopes.  Spectroscopic methods are often applied to characterize the 



 10 

structural and chemical properties of the nanomaterials.  This section introduces six of the most 

frequently used characterization techniques in the carbon nanomaterial research. 

1.2.1 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is the most applied technique for imaging of 

nanomaterials. TEM operates an accelerated electron beam (80 – 400 kV) to pass through a thin 

specimen. During the transmission the electrons are scattered by the electron-rich atoms of the 

specimen, producing a pattern characteristic of the morphology of the sample in the transmitted 

beam.85 The transmitted electron signals are collected by fluorescent screen or a CCD camera. 

Due to the small de Broglie wavelength of an electron (12.2 pm for 10 kV electrons and 2.5 pm 

for 200 kV electrons), the resolution limit of an electron beam is much lower than that of an 

optical microscopy. A high acceleration voltage can result in point-to-point resolution as low as 

0.2 nm. TEM is particularly useful in characterization of carbon nanomaterials, as the transmitted 

electron beams not only probe the surface morphology, but also provide insight into the 

morphology of their hollow cavities. One drawback of imaging carbon-based nanomaterials is 

that the carbon may be burned by electrons with high energy, thus electron beams under low 

acceleration voltages such as 80 keV are frequently used. Because the TEM images are formed 

from the projection of the transmitted electrons through the sample, TEM can only provide 

imaging at x-y dimensions but is unable to probe the depth profile of the sample, unless special 

techniques are used, such as TEM tomography.86 TEM is not only limited to the transmitted 

electrons, but the scattered electrons can also provide rich information on the structure and 

chemical composition of the sample.  Different spectroscopic techniques have been developed as 

the accessory of TEM where the scattered electrons are collected for the chemical composition 
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analysis.  For example, energy-dispersive X-ray spectroscopy (EDX) measures emitted X-rays 

corresponding to the unique energy difference between electron shells of a certain element; and 

electron energy loss spectroscopy (EELS) measures the energy loss of an incident electron beam 

due to the inelastic collision between the incident electrons and the shell electrons from the 

atoms of samples.  

1.2.2 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) produces the image of a sample by scanning a focused 

electron beam on its surface with typical energy from 0.2 keV to 40 keV.87 A number of signals 

can be produced when the electron beam interacts with the atoms of the sample, including 

secondary electrons, back-scattered electron, and X-rays; each of them bears different 

information on either morphological topography or elemental composition.85 The secondary 

electron imaging (SEI) is the standard equipment in SEM.  The signals are derived from the 

ionized electrons of the specimen surface atoms generated by the inelastic scattering interaction 

with the incident electron beam.  The secondary electrons having energy less than 50 eV are 

collected by a photomultiplier. The number of secondary electrons is related to the angle 

between the surface and the beam, based on which the surface topographic information can be 

obtained.  The SEI can provide high resolution images of the surface to the detail of as low as 1 

nm.  SEI imaging requires that the specimen is electrically conducting to transfer the generated 

electrons, so non-conducting samples need to be first sputter-coated with metals. This step is, 

however, not required for imaging graphitic materials because of their inherent conductance.  In 

addition to the surface imaging, SEM can also be equipped with EDX accessory to measure the 
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X-ray emitted during the ionization process, which can also provide elemental composition of 

the specimen. 

1.2.3 Atomic Force Microscopy 

Atomic force microscopy (AFM) is a type of scanning probe microscopy (SPM) with high 

resolution,88 which consists of micrometer-long probe with a sharp tip of several nanometers, 

connected to a cantilever.  Different from a SPM that measures the tunneling current between the 

tip and the conductive specimen, AFM measures different types of atomic forces between the tip 

and the sample surface at enough proximity, including but not limited to van der Waals force, 

electrostatic force, and chemical bonding.85 The atomic forces lead to a deflection in the 

cantilever according to Hooke’s law.89 The deflection is recognized by the shift of a laser spot 

reflected on the cantilever, which is then converted to the surface topography. The advantage of 

AFM is in its vertical resolution, which typically can reach about 1 Å; but the lateral resolution is 

much lower – of about 100 nm.88 According to the nature of the tip motion, the AFM 

measurements are usually categorized to three modes: contact mode, tapping mode, and non-

contact mode. In the contact mode, the tip is adjusted by a feedback signal from the force in 

order to hold at a fixed distance toward the surface of specimen. In the tapping mode, the 

cantilever is driven to oscillate vertically with amplitude of 100 – 200 nm. The amplitude of the 

oscillation is adjusted according to the force from the surface so as to prevent the tip from 

contacting the surface, thus the tapping mode lessens the damages to the surface and to the tips, 

compared to the contact mode.  The non-contact mode is similar to the tapping mode, but the 

amplitude of the tip is much smaller to < 10 nm, which is suitable to measure the van der Waals 
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forces toward a soft surface.  AFM is a very useful technique to characterize the thickness of a 

sample, especially the number of layers of graphene sheets.90-92  

1.2.4 Absorption Spectroscopy 

Depending on the energy range corresponding to either electronic transitions or vibrational 

transitions, absorption spectroscopies are commonly referred to as ultraviolet-visible-near 

infrared (UV-Vis-NIR) spectroscopy or Fourier transform infrared (FTIR) spectroscopy. UV-

Vis-NIR spectroscopy probes the electronic transitions of a material from the wavelength of 

~200 nm to ~3000 nm, where SWCNTs have rich characteristic bands due to the electronic 

transition between the Van Hove singularities.14, 35 A typical mixture of metallic and 

semiconducting SWCNTs have strong M11, S22, and S11 transitions at about 725 nm, 1050 nm, 

and 1900 nm, respectively.16  Noteworthy, the change of intensity of the S11 band characterizes 

the process of the electron donation/withdrawal by the adsorbed molecular species to/from 

SWCNTs.16 For MWCNTs, however, no characteristic UV-Vis-NIR bands are discernable 

except only the π-conjugate electron broad peak at ~ 265 nm.93 The concentration of CNTs can 

be calibrated using one of their characterisitic bands according to the Beer-Lambert law. 

FTIR spectroscopy uses IR light to probe the vibrational states of chemical bonds in 

organic materials, which usually have absorption peaks from 500 cm-1 to 4000 cm-1. Only those 

vibrational modes causing a polarity change are IR active, so pristine carbon nanotubes do not 

have characteristic absorption bands.94 However, after oxidation, due to the introduction of 

oxygen-containing groups such as carbonyls and hydroxyl groups, these functionalities can be 

distinctively characterized from FTIR spectra.95-96 Similarly, hetero-atomic doping with N or B 

induces dipole-moments in the vibration modes, which can also be characterized by FTIR. For 
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example, the FTIR spectra of N-doped CNT samples show different vibrational bands from 

nitrogen bonding structures including N-H (3430 cm-1), C-N (1110 cm-1), C=N (1630 cm-1) and 

so on, confirming the existence of nitrogen functionalities. 

1.2.5 Raman Spectroscopy 

When a monochromatic light (e.g., a laser beam) irradiates on the sample substrate, the light may 

be scattered by the material, which excites an electron to a virtual energy state. When the excited 

electrons relax to their original energy state, they emit a photon with the same energy as the 

incident light, which is called Rayleigh scattering or elastic scattering; but when the excited 

electrons return to a different vibrational state, the emitted photon will have different energy 

relative to the incident light and the scattering is considered as inelastic, or Raman scattering.97 

The energy difference between the incident light and the scattered light gives the information of 

the vibrational modes in the material. Different from IR spectroscopy, Raman spectroscopy 

measures the change in the polarizability of a vibrational mode instead of the change in dipole 

moments. Therefore Raman is sensitive to nonpolar materials with symmetric vibrational modes, 

especially for the graphitic materials in which C-C bond vibrations do not typically induce IR 

activity.  

 Raman spectroscopy is commonly used to characterize the graphitic structures such as 

carbon nanotubes and graphenes. There are two Raman bands characteristic for graphitic 

materials known as the G band and the D band.98 In which, the G band, appearing at ~1580 cm-1, 

represents the tangential in-plane vibrational mode of graphitic carbon; and the D band at ~1345 

cm-1 is due to the disorder-induced symmetry breaking in sp2 carbon. Typically, Raman spectra 

of CNTs are taken by drop-casting and drying nanotube suspensions on a quartz slide and then 



 15 

focusing a 633 nm laser on the spot. The intriguing change of D and G bands makes Raman the 

most sensitive way to characterize the defects in carbon nanotubes. With increasing levels of the 

D to G band ratios, the graphitic structures are considered to be more defective.98 In addition, the 

2D band at about 2600 cm-1, which is an overtone of the D band, also indicates the number of 

layers in graphene sheets.98 

One important application of Raman spectroscopy is the remarkable enhancement of 

Raman signals on substrate coated with small gold or silver nanoparticles, an effect known as 

surface-enhanced Raman scattering (SERS). The Raman enhancement is believed to arise from 

the interaction of the surface plasmon of Au/Ag NPs with the local electromagnetic field. 

Although the detailed mechanism of SERS by GNPs is still unclear, it is generally accepted that 

the SERS effect may arise from electromagnetic (EM) or charge-transfer (CT) mechanisms. The 

EM theory emphasizes on the local enhanced electromagnetic field “hot spot” induced by the 

surface plasmon resonance of GNPs,99 which is typically more prominent on structures with 

sharp terminus or close interparticle proximity,100-101 and can usually incur more than 104 

enhancement.102 The CT mechanism attributes the SERS to the chemical charge transfer between 

metal nanoparticles and the substrate, and typically accounts for 10 – 100 folds of 

enhancement.103 It was mentioned by Osawa and co-workers that the SERS effect could be 

caused by a photon-induced charge-transfer process from Ag to the LUMO of the adsorbed 

molecules.104 

1.2.6 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is an elemental analysis technique which provides the 

elemental composition and bonding information of the material. When a material is irradiated by 
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high-intensity X-ray, the X-ray ionizes the core electrons from the materials. XPS measures the 

kinetic energy of the escaped electrons, equal to the energy difference between the incident light 

and the binding energy of the core electrons, which is determined by the type and structure of the 

specific atoms. The binding energy of a core electron is weakened by the shielding effect from 

other electrons, thus the slight shift in the binding energy of an element indicates its chemical 

environment. When an atom is donating electrons, the shielding effect is reduced and the binding 

energy is increased, and vice versa.  Because XPS detects those excited electrons that can 

actually escape out of the material, it only provides elemental information within 10 nm from the 

surface of the material. The quantitative ratio of element A and B can be determined from the 

XPS data using the following expression (Equ. 1):  

AB

BA

B

A

SI

SI

n

n
                                                                     (1) 

In which n is the atomic concentration, I is the spectral intensity obtained by integrating 

the signal and S is the corresponding atomic sensitivity factor. Pristine sp2 carbon nanomaterials 

have a carbon XPS signal at about 285 eV, oxidation of the carbon structure leads to the shift of 

the carbon signal toward higher binding energy.56  XPS is also useful to characterize the 

chemical structure of the doped  heteroatoms in the graphitic lattice, such as characterizing N-

doped CNTs.105 The nitrogen atoms show a peak profile at around 400 eV, which can be 

deconvoluted into different subpeaks corresponding to different binding configuration of 

nitrogen. 
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1.3 NITROGEN-DOPED CARBON NANOTUBES 

In addition to the aforementioned post-synthesis surface functionalization methods, doping of 

heteroatoms such as boron,106 nitrogen107-108 or phosphorus109 into the graphitic structures of 

CNTs is another important route of chemical functionalization. These dopant atoms, either 

behaving as electron acceptors (B) or donors (N, P), disturb the graphitic integrity of CNTs, and 

can efficiently tailor their intrinsic chemical and electronic properties. Both theoretical110 and 

experimental111 research showed that the mechanical strength such as Young’s modulus is 

weakened by doping B or N atoms into SWCNTs. And substitutional doping of B and N 

introduces strongly localized electronic features in the valence or conduction bands of CNTs, 

respectively,112 causing the materials to be either p-type or n-type semiconductors. Remarkably, 

nitrogen-doping into the graphitic structure of MWCNTs greatly alters the tubular morphology108 

of the CNTs and endows the MWCNTs with significantly enhanced electrochemical catalytic 

activity toward oxygen reduction reaction (ORR) comparable to the performance of the noble 

metal platinum catalysts.113 As a result, nitrogen-doped CNTs are intensively investigated 

materials nowadays compared to other doped CNTs. 

1.3.1 Synthesis of Nitrogen-doped Carbon Nanotubes 

Nitrogen doping can be performed by either in situ doping during the CNT synthesis or post-

synthesis doping. The common synthetic methods for in situ doping involve CVD and solvent-

thermal reactions.108, 114-119 Nitrogen species are introduced into the CVD furnace or an autoclave 

reaction chamber together with the precursors of carbon sources and metal catalysts. The 

principle of synthesis is based on the pyrolysis/atomization of the carbon and nitrogen 
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compounds and re-deposition on the metal catalytic nanoparticles (NPs). For the post-synthesis 

doping, nitrogen atoms are implanted into the pre-formed graphitic nanostructures by exposure 

of carbon nanomaterials to nitrogen-containing gas (e.g., NH3) at high temperature,120-121 or 

alternatively, by electrochemical functionalization in a nitrogen-containing electrolyte.122-123 

Other methods such as arc-discharge124 and dc magnetron sputtering125 were also reported for 

synthesis of nitrogen-doped CNTs. Comparatively, CVD is the most prevalently applied method 

for synthesis of nitrogen-doped CNTs because of its advantages of the simple procedures and 

ease of control.  

For the CVD synthesis, the nitrogen sources are typically small molecules such as 

acetonitrile,108 ammonia,114 melamine,126 pyridine,127 and other nitrogen-containing organic 

molecules. Iron NPs are the mostly used as CVD catalysts. Depending on the way Fe NPs are 

introduced to the CVD system, there are two different methods of CVD growth, namely “floating 

catalyst” and “fixed-bed catalyst” schemes.  

In the floating catalyst method, ferrocene is used as the catalyst-precursor and mixed with 

the liquid feed stock, which is then continuously injected to the tube furnace during the growth 

process. This method provides a much higher yield than the fixed-bed method because of the 

abundance of catalytic particles.128 In our synthetic method, the liquid precursor is comprised of 

xylenes (89.25 w%), acetonitrile (10 w%) and ferrocene (0.75 w%). In a double zone furnace, 

the liquid precursor is first injected into the lower-temperature zone at ~300 °C, where the 

thermal decomposition of ferrocene provides in situ generation of iron catalytic NPs brought on 

to the quartz slide placed in the higher-temperature zone (800 °C). The carbon and nitrogen 

sources are atomized and deposited on the Fe NPs to form tubular structures. The as-synthesized 

N-doped CNTs appear as a thick carpet on the quartz substrate and can be collected by peeling 
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off with a razor blade. The resulted CNTs are typically 1 – 4 μm long with diameters ranging 

from 12 – 40 nm.108  

The potential issue with the floating catalyst scheme is the random deposition of Fe NPs 

during the growth process. Due to lack of control over the diameter of the Fe NPs, the resulted 

nanotubes tend to exhibit a random distribution of diameters and higher levels of iron catalyst 

residues.  Alternatively, in the “fixed-bed” catalyst scheme, the Fe NPs are pre-synthesized and 

spin-coated on quartz substrate. Cheung and co-workers developed the method to control the 

diameter of undoped CNTs during CVD synthesis by controlling the sizes of iron particles 

deposited on the substrate.129 Fe NPs were first synthesized by thermal decomposition of iron 

pentacarbonyl (Fe(CO)5) and their sizes were controlled by using different fatty acid as capping 

ligands (oleic (C18), lauric (C12), or octanoic acid (C8)). It was found that the capping ligands 

with longer carbon chains result in smaller iron nanoparticles and that the diameter of as-

synthesized CNTs depends on the size of iron nanoparticles. This fixed-bed catalytic scheme was 

adopted in the synthesis of N-doped CNTs.114 The Fe NPs capped with either C18, C12, or C8 fatty 

acid were synthesized. The Fe NP suspension was spin-coated on a quartz slide and placed in the 

quartz tube, and the synthesis was carried out at 950 °C with a precursor absent of iron (5% NH3 

in EtOH). The resultant N-doped CNTs showed fairly uniform diameters, ranging from 16 ± 4 

nm for C18-capped Fe NPs, to 33 ± 5 nm for C8-capped Fe NPs.114 The iron impurities were 

greatly reduced. This method provides good control over the size of N-doped CNTs and high 

purity, but the only drawback is the low yield per batch synthesis, due to the scarce density of 

iron catalyst on the quartz slides. With increasing amount of Fe NPs coated, however, the NPs 

tend to melt together under high temperature and lose the uniform size.114  
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1.3.2 Purification of As-synthesized N-doped Carbon Nanotubes  

The introduction of impurities such as Fe NPs and amorphous carbon in the as-synthesized CNTs 

is a major issue for CVD synthesis. The presence of the impurities hinders the accurate 

characterization of the N-doped CNTs’ chemical and electrical properties,130 and may also 

trigger additional toxicity and carcinogenicity in biomedical applications, due to fine-metal-

particle induced health risks.131 The purification procedures are usually needed before further 

applications of N-doped CNTs. The purification methods can typically fall into three categories: 

physical separation, gas-phase oxidation, and liquid-phase oxidation.131 The physical separation 

typically involves filtration, centrifugation or chromatographic methods which separate 

impurities based on their different morphology or physical properties. One example is the 

magnetic filtration performed by Luzzi et al.,132-133 which uses a strong magnetic field to pull out 

the ferromagnetic metal particles during a filtration process. This method often has a low 

efficiency because most nanotubes containing metal particles enclosed are also pulled out. The 

purification method targeting to remove amorphous carbon is the gas-phase oxidation which is 

performed in the furnace after CVD growth in air, O2, or H2O vapor atmosphere at a temperature 

range of 300 – 600 °C. This method is fairly effective for purifying MWCNTs134 because of their 

resistance to high temperature at which the amorphous carbon impurities are burned off, and it is 

frequently combined with liquid-phase oxidation for the removal of metal NPs.135 For liquid-

phase oxidation, acid solutions including mixtures of HNO3/H2SO4 are often used to oxidize 

catalytic metal particles. However, this mixture is also known to damage graphitic walls.136 

Alternatively, HCl as a non-oxidative acid, is a good candidate to remove metal particles from 

nanotubes without damaging the graphitic structure, but during the CVD synthesis, the catalytic 

metal particles are often coated with amorphous carbon or entrapped inside nanotubes and thus 
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become inaccessible to HCl. Wang and co-workers developed a one-pot, solution-phase reaction 

to remove carbon-coated iron nanoparticles from SWNTs with good selectively and 

efficiency.137 By heating raw SWCNTs at 40 – 70 °C in an aqueous mixture of H2O2 and HCl, 

both amorphous carbon and iron particles can be effectively removed leaving SWCNTs intact. 

During this process, the iron impurities can catalyze H2O2 to form hydroxyl radicals (·OH), 

known as Fenton chemistry.138 The latter is a stronger oxidant that oxidizes the carbon coating 

shell, and opens the access of HCl to the iron particles. 

Although many research studies have addressed purification of undoped CNTs, a little is 

known about N-doped CNTs.139 Because the nitrogen doping disturbs the graphitic integrity of 

the nanotubes, N-doped CNTs are thought to be more susceptible to oxidation. Therefore, 

aggressive purification methods were avoided and the H2O2/HCl purification routine mentioned 

above was adopted.137 The as-prepared N-doped CNT samples contain large amounts of iron 

nanoparticle impurities with sizes 5 – 15 nm, most of which are either coated with amorphous 

carbon, or confined inside the nanotube shells. After the purification process, the iron 

nanoparticles outside the nanotubes were mostly removed, leaving mainly those inside the 

nanotubes unaffected, presumably due to higher resistance of the multi-walled structure toward 

H2O2 than amorphous carbon. This result suggests that the removal of iron contents from N-

doped CNTs is not as easy as from SWCNTs without damaging the graphitic structure. However, 

sonication with oxidative acids H2SO4/HNO3 can effectively remove the most majority of the 

iron impurities, but also introduce oxygen-functionalized structural defects.140 
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1.3.3 Morphology, Structure, and Growth Mechanism of Nitrogen-doped Carbon 

Nanotubes 

Unlike undoped MWCNTs with continuous tubular morphology, the N-doped CNTs consist of 

many compartmented structures resembling the shapes of bamboo joints or stacked cups.105, 107-

108, 141-143 The difference between the “bamboo-like” and the “stacked-cup” nanotubes are distinct 

in the case that the latter do not have covalent contact between adjacent segments.142 The 

morphology of the N-doped CNTs depends on the experimental condition such as the type and 

concentration of nitrogen source and catalyst.127, 143-144 For example, when melamine is 

pyrolyzed on Ni catalysts,126 or when cyanuric chloride (C3N3Cl3), ferrocene, and sodium azide 

(NaN3) are heated in a sealed system,141 the more “bamboo-like” morphology is obtained, where 

each compartment is cylindrical with parallel side walls more like bamboo joints (Figure 1-4a); 

Under some other conditions, such as using gaseous nitrogen sources (N2 or NH3),
114, 142, 144 or 

using acetonitrile as in our laboratory,105, 108 the “stacked-cup” morphology is obtained, where 

the compartments are more of conical shape with sidewalls unparallel to the tubular axis (Figure 

1-4b).  In this case, each of the cup-shaped compartments is inserted into the cavity of adjacent 

ones and connected via interlayer van der Waal’s interaction.105 The concentration of nitrogen is 

highly responsible to the formation of compartmented structures: with increasing amount of 

nitrogen source in the precursor, the well-defined uniform compartments eventually turn into 

corrugation of random interlinkages between the sidewalls (Figure 1-4c).127, 143 
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Figure 1-4. TEM images of different nitrogen-doped CNTs with (a) “bamboo-like” morphology; 

(b) “stacked-cup” morphology; and (c) Corrugated random interlinkages between the sidewalls. 

(a) is adapted from Ref. 141, with permission from Appl. Phys. Lett. 2007, 90, 113116, 

Copyright 2007 AIP Publishing LLC; (b) is adapted from Ref. 108, with permission from ACS 

Nano 2008, 2, 1914-1920, Copyright 2008 American Chemical Society; and (c) is adapted from 

Ref. 127, with permission from Carbon 2010, 48, 1498-1507, Copyright 2010 Elsevier.  

 

The growth of N-doped CNTs follows a vapor-liquid-solid (VLS) mechanism via either 

“base-growth mode” or “tip-growth mode” as proposed by previous studies (Figure 1-5a).107, 145 

The Fe NPs form liquid nanosized droplets under high temperature, in which atomized carbon 

and nitrogen are dissolved and precipitated on the liquid surface. The precipitation of the 

graphitic layers on the catalytic iron particles forms compression strain stretching the particles. 

Due to the size similarity between C and N atoms, nitrogen is easily incorporated into the 

graphitic lattices. Because N has one more electron in the valence shell than C, the dopant N 

atoms tend to introduce disorder in the graphitic structure, and cause a negative curvature change 

in the graphitic walls,146 which possibly generates a stretching force to the liquefied catalytic 

(b)(a) (c)
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metal particles during CVD growth and pulls them into cup-like shapes. The N atoms on the 

surface of graphitic walls mainly exist in two types (Figure 1-5b):112 substitutional (graphitic) N 

coordinated to three C atoms in a sp2-like fashion, which are possibly located at the tip of the 

cups inducing curvature; and the pyridine-type N with two N-C bonds and one electron pair, 

which tend to reside at the edges of either structural holes or the opening basal planes.  However, 

both theoretical calculation147 and experimental characterization142 showed that the N atoms are 

energetically unfavorable to incorporate into the graphitic network, but tend to form dangling 

bonds such as pyridines, pyrroles, and amines at the graphitic edge, discontinuing the subsequent 

nanotube growth. When the growth of graphitic basal plane is stopped by nitrogen doping, an 

individual cup is formed and the iron nanoparticle is ejected to form a new cup. The N atoms 

preferentially stay at the open edge of the nanotube cups, and the length of each compartment 

can be controlled by N/C ratio during the growth process.114, 127 
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Figure 1-5. (a) Schematic illustration showing the CVD growth of a N-doped CNT on a metal 

catalytic nanoparticle via either “base-growth mode” (left) or “tip-growth mode” (right); (b) The 

detailed growth mechanism of the “base-growth mode”: (i) formation of a liquid catalyst particle 

and dissolution of C and N atoms, (ii) precipitation of C, N atoms on the droplet surface, (iii) the 

curvature effect stretching the catalyst particle, (iv) precipitating the first graphite layer of a 

nanocup, (v) stopping growth when the cup edge is saturated with N, and (vi) beginning to 

precipitate the graphite sheets of the next nanocup. (a) is reproduced from Ref. 145, with 

permission from Nano Lett. 2007, 7, 2234-2238, Copyright 2007 American Chemical Society; 

and (b) is reproduced from Ref. 107, with permission from J. Appl. Phys. 2002, 91, 9324-9332, 

Copyright 2002 AIP Publishing LLC.  

1.3.4 Potential Applications of N-doped Carbon Nanotubes 

Nitrogen doping in MWCNTs leads to many potential applications including energy storage and 

conversion as well as electrochemical catalysis. Wang’s group showed that the N-doped CNTs 

have good performance in hydrogen148 and lithium storage149 and attributed it to the unique short 

(b)(a)

(i)

(ii)

(iii) (iv) (v) (vi)
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cup-shaped structure with discontinuous graphitic layers between each cup that opens access to 

H2 and Li binding. The Li nanocrystals were found on the inside surface of nanotube walls upon 

intercalation and brought disorder to the graphitic structures. Due to this interaction, the capacity 

of the Li ion in N-doped CNTs as the anode is much higher than that of graphite, which makes 

the material a potential candidate for the anodic material of Li ion battery. Recently, the N-doped 

CNT electrodes were found to catalyze a four-electron oxygen reduction reaction (ORR) with 

high electrocatalytic activity.113 Compared to commercial platinum-based electrodes, the N-

doped CNT electrodes have many advantages such as lower overpotential, smaller crossover 

effect, and better stability. The effective catalysis is thought to be due to a side-on adsorption of 

O2 (with both O atoms adsorbed) on the carbon atoms adjacent to nitrogen dopants where a 

charge delocalization happens. This diatomic adsorption configuration can weaken the O–O 

bond so as to facilitate the ORR. It is suggested that both nitrogen and iron residues in the N-

doped CNTs contribute to the ORR catalytic activity.150 Besides the ORR catalysis, the N-doped 

CNTs were also found to have similar electrocatalytic activity toward oxidation of H2O2,
151-152 

which can be potentially used in electrochemical sensors for H2O2 and biosensors. 

So far, most of the reports focused on undoped SWCNTs or MWCNTs for drug delivery 

applications, with rare examples of N-doped CNTs.153 However, their cup-shaped segments may 

act as excellent candidate as drug delivery carriers if they can be individually separated out of the 

stack. The intrinsic nitrogen functionalities may presumably provide more binding sites for 

different purposes, and the cup interior can be loaded with drug cargo. More importantly, N-

doped CNTs were found to have better biocompatibility with reduced pulmonary toxicity in mice 

even at high doses compared to SWCNTs and MWCNTs.154 These findings indicate that N-

doped CNTs may have better performance in drug delivery applications. 
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1.3.5 Separation and Manipulation of Individual Nanocups from N-doped Carbon 

Nanotubes 

Attracted by their potential applications as nanoscale containers, great efforts have been devoted 

to preparation of short CNTs since their discovery.155-158 Typical shortening of SWCNTs and 

MWCNTs involves cutting with strong oxidative acids (e.g., H2SO4/HNO3),
62, 155 or physical 

separation by probe-tip sonication.159 However, the interior space of short SWCNTs is very 

limited for material storage, and cutting MWCNTs is hard due to their structural integrity. 

Comparatively, the cup-shaped segments in the N-doped CNTs are very promising for 

nanocontainer applications, and the noncovalent interaction between adjacent stacked cups 

ensures the easy isolation of individual nanocups, which are termed as nitrogen-doped carbon 

nanotube cups or NCNCs for short. 

Both physical and chemical methods have been used for separation of NCNCs.  Physical 

techniques involve simple grinding with a mortar and pestle,107-108, 160 ball milling,161 or 

ultrasonication,105, 162 each with varying effectiveness. Chemically, the N-doped CNTs can be cut 

short following similar acid-oxidation treatment such as in H2SO4/HNO3 mixture,140, 163 or under 

microwave-assisted plasma etching.164 In our group, N-doped CNTs were earlier separated by 

mortar-pestle grinding.108 The as-synthesized N-doped CNTs were transferred into a glass mortar 

and pestle, to which several drops of ethanol were added, and constant grinding was performed 

for 30 min. The procedure is labor-intensive, time-consuming, and with low yield as individual 

nanocups are only sporadically obtained.  The separation effect was greatly improved after the 

adoption of the probe-tip sonication technique, which provides ultrasonic energy with high 

power density into the solution. Long duration (10 – 15 hr) sonication of N-doped CNTs in DMF 

solution effectively separated the cup segments into short stacks and individual cups.105  
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Furthermore, we combined both chemical oxidation and physical sonication for NCNC 

separation.140 The N-doped CNTs were first treated with the H2SO4/HNO3 mixture, and then 

processed with probe-tip sonication. The oxidative acid mixture creates oxygen defects on the 

graphitic structure, which weakens the interaction between adjacent cups and greatly facilitates 

the subsequent ultrasonic separation. The individual nanocups can thus be obtained with much 

improved yield. 

The separated NCNCs have active chemical properties due to the exposure of the 

nitrogen functionalities and can be further manipulated as nanocontainers.105 We have previously 

shown that by reacting with glutaraldehyde, they can be crosslinked to form nano-sized 

“capsules” and confine gold nanoparticle “cargo” in their interior cavities.114, 165 This 

phenomenon indicates the existence of the amine groups at the open rims of the cups that react 

with the aldehyde groups by imine condensation reaction. In this research, the intrinsic amine 

groups were confirmed by Kaiser test and were thiolated with 3-mercapto-propionic acid.105  The 

thiolated NCNCs showed high affinity towards commercial gold nanoparticles (GNPs), which 

effectively form corks on the opening of the cups, sealing the interior space. Most recently, we 

have demonstrated that the GNP corks can be more effectively formed on the open rims by in 

situ reduction of chloroauric acid (HAuCl4) in the presence of sodium citrate. These results will 

be discussed in detail in the following chapters. 

1.4 ENZYMATIC DEGRADATION OF CARBON NANOMATERIALS 

The intrinsic chemical inertness of graphitic structure makes CNTs rather stable unless that harsh 

oxidation conditions, such as high temperature or strong acid treatment, have been applied.136, 166 
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Our group has shown that oxidized SWCNTs can be further enzymatically degraded in 

horseradish peroxidase (HRP) environment with assistance of H2O2,
167-168 which opens a 

promising pathway to degrade carbon nanomaterials under mild and environmentally friendly 

conditions. 

Some of the material contained in this section was published as a review article in the 

journal Advanced Drug Delivery Reviews and reproduced with permission from Adv. Drug 

Delivery Rev. 2013, 65, 1921-1932, Copyright 2013 Elsevier. The full citation is listed as Ref. 

169.  
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1.4.1 Toxicity and Environmental Impact of Carbon Nanotubes 

Although many promising applications have been proposed for carbon nanotube materials, their 

potential health risks and environmental impact are still not fully understood, which inevitably 

hindered their potential biological or industrial applications. CNTs injected in vivo are likely 

captured by antibody opsonization inducing immune responses.80 It was observed that CNTs can 

cause pulmonary toxicity upon inhalation,170-171 including inflammatory response169, 172 and 

asbestos-like pathogenicity.173 In vitro cellular studies also showed oxidative stress, cytotoxic 

responses and apoptosis induced by CNTs.174-176 

The toxicity of CNTs varies a lot with different nanotubes, depending on their geometric 

structures such as length and specific surface area, and also the surface functional groups and 
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defects. For example, it was reported that MWCNTs have less cellular toxicity than SWCNTs; 

the latter showed less tendency toward phagocytosis by marcophages.177 Depending on their 

length, CNTs may exhibit different pathogenic behaviors.169 Long fibrous CNTs are difficult for 

macrophages to phagocytose, inducing asbestos-like pathogenicity and formation of granulomas 

and fibrosis in the lungs,57, 173, 178 while short and functionalized CNTs are more easily 

phagocytosed and cleared eventually.179-181 The surface modification of CNTs also directly 

affects their inflammatory response and toxicity. Some study showed that the oxidized CNTs 

with more defects have higher cytotoxicity than pristine CNTs,175 though the better 

hydrophilicity of oxidized CNTs allows for better cellular uptake and blood circulation. But this 

does not necessarily mean that pristine CNTs are more biocompatible, they are more easily 

captured by the reticuloendothelial system (RES) in vivo.182 A number of strategies are available 

to tune the surface properties of CNTs and mitigate their cytotoxicity, such as functionalization 

with DNA, protein, or polymers.183-185 Especially, Dai’s group showed that short SWCNTs 

functionalized with branched PEGylated phospholipids exhibited long circulation time and 

resistance to opsonization/nonspecific binding of proteins.80 

As the applications of carbon nanotube materials continue to rise, industrial products 

containing CNTs are likely to be more and more prevalent in our daily life and have better 

chances to pervade into the eco-systems.186-187 So far, there are reports showing that the CNT 

materials can be stabilized in aqueous systems by natural organic matter (NOM)188-189 and have 

toxic effects on aquatic organisms,179 but the detailed route of CNT materials in ecological 

circulations is not known yet, and they are likely to accumulate along the food chain due to their 

resistance to physiological or environmental degradation. Therefore, there is a necessity to 

investigate the subsequent disposal of these materials. 
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1.4.2 Peroxidases and Mechanism of Enzymatic Oxidation 

Peroxidases are a family of hemoprotein enzymes that catalyze the oxidation reaction by 

hydrogen peroxide (H2O2) in the organisms.190 Most peroxidases have a heme cofactor as the 

active site, which consists of a ferric (Fe3+) ion contained in a porphyrin structure (i.e., 

feriprotoporphyrin IX) in the resting state of the enzyme. There are two superfamilies of 

peroxidases derived from either plants (and fungi),191 or mammals,192 which are significantly 

different from each other in terms of sizes and the bonding mechanism of hemes. Mammal 

peroxidases often have much large sizes with about 576–738 amino acids compared to plant 

peroxidases (~ 300 amino acids).190 The major role of peroxidases in both plants and mammals is 

the defense against pathogens and stress, although they also participate in biosynthesis, 

metabolism, and degradation of toxic redundant. The ideal substrate for most peroxidases is 

H2O2, by which the heme active sites gets oxidized, resulting highly oxidative transient 

intermediates known as Compound I, able to oxidize a number of physiological donors or 

xenobiotics.190, 193 Here, two types of peroxidases derived from either horseradish roots 

(horseradish peroxidase, HRP) or human blood (human myeloperoxidase, hMPO) are 

introduced. 

1.4.2.1 Horseradish Peroxidase 

Horseradish peroxidase (HRP) is a secretory plant peroxidase excreted from the root of 

horseradish (Armoracia rusticana), participating a series of bioprocesses such as metabolism, 

biosynthesis, and extracellular defense.190  This enzyme has a wide biochemistry applications 

due to its sensitivity to catalyze H2O2 oxidation that allows the amplification a weak signal from 

a target molecules involved in a biological process.194 As shown in Figure 1-6a, HRP is a 
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monomeric enzyme containing a noncovalently bound ferriprotoporphyrin IX heme active center 

(molecular weight ∼44 kDa).195 The iron in the heme center is ferric state (Fe3+) in the resting 

enzyme with a coordination bond to the imidazole side chain from a histidine residue at the 

proximal site to the enzyme. When H2O2 binds to the heme group, it oxidizes the iron core 

forming a peroxide intermediate, which then undergoes proton-migration and dehydration 

forming an active enzyme with a oxy-ferryl (Fe4+=O) state and a porphyrin π cation radical 

known as Compound I.173, 193 Compound I is highly oxidative and gets reduced back to the 

Fe(III) state while oxidizing the enzyme substrate AH2, through a transient intermediate 

Compound II as described in the peroxidase cycle in Figure 1-6c.  During this process a H2O2 is 

reduced and the enzyme substrate, such as CNTs, gets oxidized. 

 

Figure 1-6. Molecular modeling of a carboxylated SWCNTs binding to the active site of (a) 

HRP; and (b) hMPO.  (c) Scheme of the peroxidase cycle for HRP and hMPO (black circle), the 

red lines show the halogenation cycle for hMPO.  Reproduced from Ref. 169, with permission 

from Adv. Drug Delivery Rev. 2013, 65, 1921-1932, Copyright 2013 Elsevier. 

 

(c)(a) (b)
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1.4.2.2 Myeloperoxidase 

Different from plant-excreted HRP, myeloperoxidase (MPO) is a dimeric hemoprotein that is 

predominantly expressed in granules of neutrophils (i.e., a type of professional phagocytes) from 

animals.169 Human MPO (hMPO) is extracted from human blood with a molecular weight about 

144 kDa, large than that of HRP (Figure 1-6b). In response to environmental stress (e.g., 

exposure to nanoparticles or bacteria), the cellular homeostasis is disrupted, which triggers the 

activation of NADPH oxidases in the phagocytic immune cells such as neutrophils leading to 

massive increasing levels of intracellular reactive oxygen species (ROS), known as the “oxygen 

burst”.196 The ROS including hydroxyl radicals are highly reactive and quickly converted to 

H2O2. Upon activation, the neutrophils also release MPO primarily into phagolysosomal 

compartment where the peroxidases are activated by the generated H2O2 and function as 

bactericide through the generation of oxidative species.  There are two catalytic cycles for MPO 

(Figure 1-6c):195, 197-199 the peroxidase cycle generates the reactive enzyme intermediates such as 

Compound I and Compound II following the similar route as HRP; in addition, activated MPO is 

also able to oxidize halides Cl−, Br−, and pseudohalides SCN−, forming strong oxidative 

(pseudo)hypohalous acids, known as the halogen cycle. Both catalytic path ways function 

synergistically thus creating a much stronger peroxidase of MPO compared to HRP.200-201 The 

standard redox potential between each state of both enzyme is shown in Table 1-1, in 

comparison to the standard potential of SWCNTs (0.5 eV)202-203 and HClO (1.48 V).204 
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Table 1-1. Standard reduction potentials (at pH 7) along the peroxidase cycle for peroxidase 

involved in CNT degradation/biodegradation.169 

Redox couple HRP hMPO 

Compound I/resting state ― 1.16 eV 

Compound I/compound II 0.898 eV 1.35 eV 

Compound II/resting state 0.869 eV 0.970 eV 

 

1.4.3 In vitro Degradation of Carbon Nanomaterials 

1.4.3.1 Degradation by HRP outside Living Systems 

It was previously discovered that oxidized SWCNTs undergo morphological changes such as 

shortening and deformation when statically incubated at 4 °C in the presence of HRP and H2O2 

(~40 μM) within a time frame of about 8 weeks.167 The SWCNTs eventually lost their tubular 

structures leaving only a few globular residues after 12 weeks of degradation.  It was found that 

pristine SWCNTs without oxidation experienced minimal degradation over the periods, based on 

which the degradation is considered to be defect-associated. In the following mechanistic 

study,168 the degradation period was shortened to 10 days by performing the experiment at room 

temperature with daily supplement of H2O2 and confirmed the importance of oxygen moieties 

and defects on the enzymatic degradation of SWCNTs. The oxygen functionalities such as 

carboxyl, carbonyl, and hydroxyl groups introduced by acid oxidation not only facilitates the 

dispersion of SWCNTs in aqueous solution, but also help the SWCNTs to orient themselves to 

the positively charged domains in HRP with close proximity toward the heme active center, as 
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studied by molecular modeling.  In contrast, due to their hydrophobicity, pristine SWCNTs do 

not orient the same way as carboxylated SWCNTs, but stay in a conformation with remote 

distance to the heme active site of HRP, therefore are not degraded.  Bianco and coworkers 

observed the similar degradation behavior in a study of HRP/H2O2 treatment of carboxylated 

SWCNTs and MWCNTs over 30 days.205 In our subsequent studies, we found the same defect-

induced enzymatic degradation behavior on different other carbon nanomaterials such as 

MWCNTs,206 N-doped CNTs, and graphene.91  During the enzymatic degradation by HRP on 

graphene oxide (GO) nanosheets, an intermediate holey structure is formed, termed as holey 

graphene (hGO). After reduction, the holey reduced GOs (hRGOs) showed semiconducting 

electronic properties with good sensitivity as FET sensing materials.207 

HRP represents a model system for the enzymatic degradation of carbon nanomaterials 

which provides fundamental knowledge on the degradation process. The HRP/H2O2 system has 

potential environmental applications related to the bioremediation of carbon nanomaterials as 

possible pollutant.  To understand the toxicological effect and biological behavior of carbon 

nanomaterials in the living system, hMPO is used for degradation of CNTs both in vitro and in 

vivo. 

1.4.3.2 Degradation of Carbon Nanotubes by hMPO in vitro 

In a representative study,208 Kagan and collaborators demonstrated the effective degradation of 

SWCNTs by hMPO in presence of H2O2 and NaCl. The hMPO appeared to be a potent oxidative 

enzyme with almost complete degradation of SWCNTs observed after 24 hr of incubation in the 

test tube.  The dispersion of SWCNTs in the solution became almost clear in color as evidenced 

by the diminishing of the UV-Vis absorption bands of SWCNTs and their characteristic Raman 

bands.  The nanomaterials were observed to be completely amorphous under TEM images. In the 
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control experiments with absence of chloride ions or H2O2, the SWCNTs underwent minimal 

degradation, which confirmed the importance of the synergetic function of both peroxidase cycle 

and halogen cycle in the degradation of SWCNTs. Presumably, the generated HClO as a strong 

oxidative agent is more efficient to degrade SWCNTs due to its ability to diffuse among the 

bulky nanostructures.209  

The hMPO catalyzed degradation of SWCNTs was further carried out in vitro by 

incubating SWCNTs with neutrophils.208 The neutrophils were first treated with fMLP and 

cytochalasin B to increase the activity of the cells and trigger the release of hMPO. Short, 

oxidized SWCNTs were opsonized with IgG for efficient internalization in the cells, and 

incubated with active neutrophils.  The activated neutrophils were shown to undergo “oxygen 

burst” with increasing levels of superoxide and H2O2.  The complete degradation of SWCNTs 

was confirmed by the Raman spectra over the period of 12 hr.  Without the IgG opsonization, the 

SWCNTs were not internalized into the cells and only 30% of them were degraded, which 

indicated that the majority of hMPO are generated inside the cells despite small amount of 

extracellular hMPO.210 It was noted that the NADPH oxidase is also essential for the degradation 

to proceed, because NADPH oxidase is responsible to generate ROS which leads to H2O2 

formation.  The extent of degradation in neutrophils is much higher than that in macrophages, 

which contain much lower level of MPO.  The biodegradation process renders the SWCNTs 

much less toxic; after pharyngeal aspiration of the residual CNT materials after MPO 

degradation, the degraded CNTs induced minimal pulmonary inflammation. 

1.4.3.3 Degradation of Carbon Nanotubes in vivo 

The biodistribution, clearance, and fate of CNTs in vivo are intensively investigated,80, 170, 173, 211-

212 which are influenced by many factors such as the administration method, length, and 
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functionalization of the nanomaterials. By far, the internal clearance of CNTs are mostly 

referring to the excretion of CNTs through lymphatic, biliary, or renal pathways, but the 

alternative clearance mechanism via in vivo enzyme-catalyzed biodegradation is rarely discussed 

in the literature.  Different groups recently addressed the in vivo degradation of CNTs in mouse 

lungs and brains, respectively.213-215 

In an earlier study by Elgrabli et al.,214 oxidized MWCNTs were intratracheally instilled 

into rat lungs. The injected MWCNTs were found to be predominantly distributed in the lungs 

and gradually diminished from the lungs during 180 days, with a significant increase of alveolar 

macrophages (AMs) responsible for engulfing MWCNTs.  The AM cells underwent apoptosis 

after engulfing MWCNTs and were then phagocytosed by other AMs.  During this process, 

MWCNTs were found undergoing structural deformation with decrease in length and loss of 

tubular structure 15 days after instillation, which might indicate their potential degradation in 

AMs. In a later collaborative study, we investigated the in vivo degradation of oxidized 

SWCNTs instilled via pharyngeal aspiration into the lungs of either wild-type (w/t) or 

myeloperoxidase knockout (MPO k/o) mice (mice with MPO deficiency).213 It was found that 

SWCNTs underwent significant diminution in the lungs of w/t mice, and the phagocytized 

SWCNTs remained persistent in the neutrophils of MPO k/o mice through quantitative imaging 

of the lung tissue sections. Further TEM and Raman characterization showed the significant 

degradation of SWCNTs in the w/t mice after 28 days, which indicate the crucial role of MPO in 

the in vivo degradation of CNTs. 

Nunes et al. recently investigated the fate of MWCNTs in mouse neuronal tissues using 

amine-functionalized MWCNTs.215 MWCNTs were stereotactically injected into the motor 

cortex of a mouse brain, where the microglia cells function as the primary professional 
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phagocytes for the brain's immune system. From TEM imaging, any MWCNTs internalized into 

microglia underwent severe structural deformation forming amorphous debris, indicating the 

initiation of degradation by microglia 2 days after injection. The degradation of MWCNTs was 

confirmed by Raman spectra which showed a decrease of D and G band intensities after 14 days 

of incubation. The authors attributed the in vivo degradation of MWCNTs to the high 

phagocytotic ability of microglia that possess both oxidative and low-pH lysosomal environment 

and rich hydrolytic enzymes. However, the detailed degradation mechanism still remains elusive. 
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2.0  SYNTHESIS, CHARACTERIZATION, AND GNP-CORKING OF NITROGEN-

DOPED CARBON NANOTUBE CUPS 

2.1 CHAPTER PREFACE 

Inspired by the unique cup-shaped morphology of the nitrogen-doped carbon nanotube cups 

(NCNCs), this project aim to effectively obtain the individual NCNCs from their stacked 

structure and use them for applications as drug delivery carriers. The first section of this chapter 

is focused on the synthesis and characterization of these individual nanocups. The amine 

functionalities on the NCNCs were determined and functionalized with commercial gold 

nanoparticles (GNPs). Due to the preferential distribution of amines on the open rims of the 

nanocups, the bound GNPs acted as stoppers corking on the opening of nanocups.  In the 

subsequent study described in the second section, we greatly improved the efficiency of NCNC 

separation by introducing both chemical and physical methods. And the resulted separated 

nanocups were more effectively corked with GNPs through sodium citrate reduction of 

chloroauric acid (HAuCl4).  The material contained in this chapter was reproduced with 

permission from ACS Nano 2012, 6, 6912-6921, Copyright 2012 American Chemical Society, 

and from J. Vis. Exp. 2013, e50383, Copyright 2013 JoVE.  
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2.2 CORKING CARBON NANOTUBE CUPS WITH GOLD NANOPARTICLES 

2.2.1 Preface 

Nitrogen doping of carbon nanotubes during chemical vapor deposition (CVD) synthesis can 

create unique stacked cup-shaped structures termed as nitrogen-doped carbon nanotube cups 

(NCNCs).  These cups have semi-elliptical hollow cavities and elevated reactivity which could 

lead to various applications.  In this work, by applying intense ultrasonication to the as-

synthesized NCNCs, we demonstrated an effective mechanical method to isolate the individual 

cups with opened cavities from their stacks.  The graphitic structures of the isolated cups and 

their inherent nitrogen functionalities were characterized by comprehensive microscopic and 

spectroscopic methods. In particular, we quantitatively determined the existence of amine 

functionalities on NCNCs and found that they were preferentially distributed at the open edges of 

the cups, providing localized reactive sites. Further, by thiolating the amine groups with 3-

mercapto-propionic acid, we were able to effectively cork the isolated cups by gold nanoparticles 

with commensurate diameters.  These cup-shaped carbon nanomaterials with controlled inner 

volumes and gold nanoparticle corks could find potential applications as nanoscale reaction 

containers or drug delivery vehicles. 

The material contained in this section was published as a full article in the journal ACS 

Nano and reproduced with permission from ACS Nano 2012, 6, 6912-6921, Copyright 2012 

American Chemical Society. The full citation is listed as Ref. 105. 
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2.2.2 Introduction 

Robust development of carbon nanotube (CNT) materials in various research fields over the 

past decade has been motivated by their outstanding mechanical, electrical, and chemical 

properties.6-8, 216  The sp2 graphitic structure of CNTs allows either post-synthesis 

functionalization50,217 or in situ chemical doping during the synthesis,109, 218 which can tailor the 

intrinsic properties of CNTs for different applications such as in composite materials,40 chemical 

sensing,29-30 and drug delivery.49, 51  Among different functionalization methods, nitrogen-doped 

CNTs are of particular interest.  The incorporation of nitrogen atoms into the sp2 graphitic 

structure results in the formation of cup-shaped compartments in CNTs,142 as well as the changes 

in their electronic and chemical properties.143, 219 These unique properties may lead to many 

potential applications.  For example, nitrogen-doped CNTs have been explored for hydrogen148 

and lithium149 storage.  Recently, researchers showed that nitrogen-doped CNTs have excellent 

electrochemical catalytic activity toward the oxygen reduction reaction.113,151 Moreover, 
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nitrogen-doped CNTs were found to have better biocompatibility and mitigated cytotoxicity as 

compared to undoped pristine CNTs,154, 220 and they were degraded by enzymatically catalyzed 

oxidation at ambient conditions.206  These findings are important when considering nitrogen-

doped CNTs as potential carriers in drug delivery applications.  

Previous studies have addressed different strategies to fill CNTs with different materials such 

as ferromagnetic nanoparticles,221 fluorescent polymers,53 and organic molecules.222  However, 

to achieve better performance, especially in biomedical applications, carriers with small sizes 

and facile surface modification are preferred.223  In this sense, cup-shaped segments in nitrogen-

doped CNTs can serve as desirable candidates for nanoscale containers.  As-synthesized 

nitrogen-doped CNTs are composed of separate cup-shaped segments, which can be isolated as 

individual “cups” by grinding with a mortar and pestle.108  These graphitic cups, termed later in 

the text as nitrogen-doped carbon nanotube cups (NCNCs), have a hollow structure with one end 

sealed and the other open.  The open rims of these cups possess reactive nitrogen groups that can 

be functionalized108 and cross-linked with glutaraldehyde.165 

Nitrogen doping has been shown to be essential to determine the unique morphology and 

properties of NCNCs.219  Although the exact assignment of nitrogen functional groups remains 

elusive, pyridinic nitrogen and graphitic nitrogen were considered as two main types of nitrogen 

functionalities in NCNCs.112  Moreover, the existence of dangling bonds such as amine groups 

was also suggested based on NCNC reactivity108,165 and acid-base titration experiments.224  In 

this work, we synthesized NCNCs by chemical vapor deposition (CVD) method and separated 

them into individual cups by treating them with a probe-tip sonicator.  A number of microscopic 

and spectroscopic techniques were implemented to scrutinize the morphological and chemical 

characteristics of NCNCs.  We have found that individual separated NCNCs largely maintained 
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their cup-shape and graphitic structure as in their stacked forms, whereas their nitrogen 

functionalities became more distinct after the sonication process.  By employing the Kaiser test 

and selectively decorating NCNCs with gold nanoparticles (GNPs), we were able to 

quantitatively determine both the concentration and distribution of amine functionalities on 

NCNCs.  By utilizing localized amine groups on the basal plane of the cups, we further managed 

to cover the opening of the cups with GNPs as “stopper corks”, which demonstrated a new 

pathway to implement these cup-shaped carbon nanomaterials as nanoscale containers and drug 

delivery carriers.  

2.2.3 Materials and Methods 

Citrate-coated gold nanoparticles with 10 nm diameters and silver nanoparticles with 40 nm 

diameters were purchased from Sigma Aldrich, and citrate-coated gold nanoparticles with 40 nm 

diameters were purchased from nanoComposix. Aldehyde-functionalized latex nanoparticles 

were purchased from Invitrogen. MWCNTs were purchased from Baytubes. All other analytical 

grade reagents and solvents were purchased from Sigma Aldrich and used as received. 

2.2.3.1 Growth of NCNCs via chemical vapor deposition (CVD) 

NCNCs were synthesized using CVD technique in a Lindberg/Blue tube furnace. NCNCs were 

grown on a quartz substrate placed in a quartz tube (1’’ dia.) inside the furnace. A liquid 

precursor containing 7.0 wt% of acetonitrile, 0.75 wt% of ferrocene, and 92.25 wt% of xylenes 

was injected at a rate of 1 mL/min under a H2 (37.5 sccm) and Ar (126.8 sccm) atmosphere. The 

system was maintained at 800 °C for 90 min and then allowed to cool down under an Ar 
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atmosphere for 1 hr. NCNC product formed as a black coating on the quartz substrate was then 

scraped off and collected using a razor blade. 

2.2.3.2 Mechanical separation of as-synthesized NCNCs 

Approximately 5 mg of as-synthesized NCNC fibers were first transferred to an agate mortar and 

pestle, to which several drops of EtOH were added.  After 30 min of grinding, the sample was 

collected and redispersed in 25 mL of DMF.  The suspension was then processed under Qsonica 

XL-2000 ultrasonic disassembler equipped with a ¼” titanium microprobe at 60 % of its 

maximal amplitude for 10 – 15 hr in ice bath. The resultant NCNC suspensions were briefly 

centrifuged to remove any large particles. 

2.2.3.3 Decoration of NCNCs with gold nanoparticles 

The separated NCNCs were first thiolated by reaction with 3-mercapto-propionic acid (MPA) 

through EDC/DMAP coupling reaction.  Approximately 0.1 mg of separated NCNCs were 

suspended in 4 mL of DMF.  To the suspension, 20 μL of MPA, 22 mg 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) and 1.4 mg 4-Dimethylaminopyridine (DMAP) were 

added and the mixture was stirred under N2 at room temperature overnight.  After repeated wash 

with EtOH, the thiolated NCNC suspension in EtOH was incubated overnight with citrate-coated 

GNPs with diameters either 10 nm or 40 nm. 

2.2.4 Results and Discussion 

NCNCs were synthesized using CVD method from a mixture of 92.25 wt% xylenes, 7.0 wt% 

acetonitrile and 0.75 wt% ferrocene as precursors (Figure 2-1a).  At 800°C under H2 and Ar 
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atmosphere, the precursor was injected into the CVD reactor at a rate of 1 mL/hr.  After 90 min 

of the reaction, NCNC product was formed as a thick carpet of a black material weighing 4 – 5 

mg and was then peeled off by a razor blade and dispersed in ethanol.  Transmission electron 

microscopy (TEM) images of the as-synthesized material (Figure 2-1b) showed that NCNCs 

have diameters ranging from 20 – 50 nm and lengths up to 15 μm.  Unlike undoped multi-walled 

carbon nanotubes (MWCNTs) with continuous hollow interior, tubular NCNCs consist of many 

conical compartments resembling the shape of stacked cups.  The nanotube cups were stacked in 

a head-to-tail fashion along the common direction of the tube axis.  Compared to our previous 

CVD synthesis method which used ethanol/acetonitrile/ferrocene as the precursors,108 we noticed 

that by changing ethanol to xylenes as the carbon source and decreasing the content of ferrocene 

catalyst, the shape and the diameters of resultant NCNCs became more uniform.  We assume that 

ethanol may introduce additional oxygen-containing defects in the graphitic structure225 that may 

influence the formation of the cup shape.  The reduced ferrocene catalyst concentration is 

assumed to result in a more uniform size distribution of iron nanoparticle seeds.  From TEM 

images (Figure 2-1b) it was occasionally observed that iron nanoparticles were confined 

between the graphitic segments, defining the inner diameters of nanotube cups.   

High resolution TEM images (Figure 2-1c) showed that the graphitic walls of stacked 

nanotube cups were not parallel to the longitudinal axis, but extended diagonally outward and 

terminated at the lateral surface.  A layer of amorphous carbon was often observed at the surface 

with about 2 nm thickness.  Due to the size similarity, the cups were compactly nesting into each 

other’s cavity taking up most the inner volume of the cup, with no interconnection of graphitic 

walls between each other. This observation indicated that the adjacent cups were not covalently 

connected but rather held together by the interlayer π-π interaction.  As a result, potential 
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separation of individual nanotube cups can be achieved via mechanical or chemical processes.  

Previous attempts of NCNCs separation involving grinding with a mortar and pestle have 

obtained individual nanotube cups out of their stacked structure only with a limited yield.108  To 

improve the efficiency of separation, we applied probe-tip sonication to the sample after 

grinding.  The sample was dispersed in DMF forming a stable suspension and then was treated 

with a 1/4"-probe sonicator for 15 hr in ice bath.  The probe-tip sonication effectively broke the 

stacked compartments in the long fiber into short stacked cups and individual cups.  The 

individual cups have common but moderately different shapes and sizes, mostly ranging 50 – 

200 nm in length and 30 – 50 nm in diameter (Appendix A1, Figure A1-1).  Figure 2-1d shows 

TEM image of a typical individual nanotube cup isolated from the stacking structure, having a 

semi-elliptical shape with the top sealed and the basal plane open.  High resolution TEM image 

(Figure 2-1e) revealed that the isolated individual nanotube cups maintained the graphitic 

structure on the sidewall where the parallel graphitic layers extended with a certain angle from 

the tube axis.  The graphitic edge at the basal plane of the cup was distinctly depicted which 

proved the three-dimensional cup-shaped morphology with open access to the hollow interior. 

Although incompletely separated nanotube cups in short stacks of several units were 

frequently observed (Appendix A1, Figure A1-1), the probe-tip sonication process significantly 

broke long NCNCs into smaller sections.  Based on over 300 measurements obtained from TEM 

images, the average lengths of NCNCs showed a significant decrease with the sonication time 

(Appendix A1, Figure A1-2a).  The length distribution histograms reflected a ten-fold decrease 

in the average length of NCNCs from ca. 4.3 μm to ca. 380 nm after 15 hr of mechanical 

separation (Appendix A1, Figure A1-2b).  A majority of over 70% NCNCs in the final sample 

ranged from 50 – 400 nm in length, corresponding to individual cups and short stacks of less 
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than 10 units.  Dynamic light scattering (DLS) measurements also showed that the length of 

NCNCs decreased from 2.24 ± 0.25 μm to 229 ± 15 nm after separation.  While the DLS results 

may not reflect the actual length of nanotubes because the DLS measurement calculates the sizes 

based on hydrodynamic volume of the nanoparticles in solution, the data still reveals the 

significant trend of decreasing in the length of NCNCs as the result of probe-tip sonication. 

Raman spectra further revealed that the probe-tip sonication process not only physically 

dissociated the nanotube cups from their stacks, but also cut more open edges on the graphitic 

surface of nanotube cups.  The relative intensity of D band (~1325 cm-1) and G band (~1575 cm-

1) in Raman spectra reflects the extent of structural disorders of graphitic materials.98  The 

Raman spectra were taken on samples after different duration of probe-tip sonication.  Figure 2-

2a shows the Raman spectra of NCNCs as-synthesized and after 2 – 15 hr of sonication, 

normalized to the G band.   The D to G band ratios were calculated and shown to increase 

linearly with the sonication time (Figure 2-2b).  The increase in D/G band ratio was 

accompanied with significant decrease in the length of NCNCs (Appendix A1, Figure A1-2a) 

and revealed the effect of high-intensity ultrasonication on physical dissociation of stacked 

NCNCs, which might have resulted in more cut edges on the graphitic structures.226  These 

extrinsic edges were further visualized by high-resolution TEM images (Appendix A1, Figure 

A1-3), as graphitic layers were observed to be damaged at the sidewalls and the tips of the cups.  

Raman spectra were also acquired on as-synthesized NCNCs at different N doping levels with 

7%, 10% and 15% acetonitrile fractions in the precursor (Appendix A1, Figure A1-4a).  

Compared to Raman spectra of undoped MWCNTs, as-synthesized NCNCs have much higher 

D/G band ratio, which increases along with increasing fractions of nitrogen source in the 
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precursor (Appendix A1, Figure A1-4b), showing that nitrogen-doping also resulted in more 

structural disorder in the graphitic lattice. 

It was previously proposed that the cup-shaped compartments arise from the 

incorporation of nitrogen atoms into the graphitic lattice during the growth process.107  Due to 

the extra electron in the valence shell, the nitrogen atoms tend to introduce disorder to the carbon 

graphitic structure, causing a negative curvature change in the graphitic walls,146 which then 

generates a stretching force to the liquefied catalytic particles and pull them into cup-like shapes, 

defining the shape of subsequent cups.145  The concentration and location of nitrogen 

functionalities in NCNCs can be approximately measured by electron energy-loss spectroscopy 

(EELS) combined with high-resolution TEM.  Figure 3a,b show high-resolution TEM images on 

two different sections of NCNCs and their corresponding EELS signals.  On the section with 

continuous hollow interiors (Figure 2-3a), EELS showed only signals from K shell ionization of 

carbon atoms at around 300 eV.  This continuous tubular structure resembling undoped 

MWCNTs may be due to insufficient local nitrogen supply during the CVD process.  On the 

other section with tightly-packed compartments (Figure 2-3b), the additional signal arising from 

nitrogen K shell at 401 eV appeared on the EELS spectrum,164 corresponding to a nitrogen 

content of about 1 – 2 at.%.  The enrichment of nitrogen content at the joint between the adjacent 

cups was also visualized by EELS elemental mapping shown in Appendix A1, Figure A1-5, as 

the nitrogen signal showed higher intensity at the intersections of a short stack of NCNCs.  These 

results supported the growth mechanism of NCNCs in which nitrogen-doping leads to the 

formation of cup-shaped compartments by creating curvatures on the graphitic networks of the 

cups. 
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Figure 2-1. (a) Chemical vapor deposition (CVD) synthesis of nitrogen-doped carbon nanotube 

cups (NCNCs) and their mechanical separation via probe-tip sonication. (b) Transmission 

electron microscopy (TEM) image of as-synthesized NCNC fibers. (c) High-resolution TEM 

image showing one segment from a stacked NCNC fiber, the white dashed lines in the figure 

depict the directions of the graphitic walls and the tube axis, the white arrow shows the existence 

of amorphous carbon. (d) TEM image of an individual NCNC after mechanical separation. (e) 

High-resolution TEM image of an individual NCNC. 
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Figure 2-2. (a) Raman spectra of NCNCs after different duration of probe-tip sonication: (1) as-

synthesized, (2) 2 hr, (3) 4 hr, (4) 10 hr, and (5) 15 hr. (b) Plot and linear fit of the D to G band 

ratio versus sonication time. 

 

Elemental analysis revealed that the NCNCs have an overall 1.01 at.% of nitrogen and 

1.72 at.% of hydrogen.  X-ray photoelectron spectroscopy (XPS) further analyzed the nitrogen 

functionalities in both as-synthesized and separated NCNC samples. Figure 2-3c shows nitrogen 

1s peaks for both samples at about 400 eV.  Since XPS only probes the elemental composition 

within several nm from the surface of the sample, it does not probe nitrogen functionalities in 

bulk materials.  However, an increase in nitrogen concentration was found from 0.6 at.% in the 

as-synthesized NCNC samples to 1.6 at.% in the separated samples, which may suggest that 

more nitrogen functionalities were exposed after the probe-tip sonication process, possibly due to 

the removal of surface amorphous carbon and the increasing surface area.   

The overall N1s profiles can be fitted into different nitrogen components.  It is necessary 

to mention that the sub-peaks for N1s high-resolution spectra in nitrogen-containing 

carbonaceous materials all have a relative broad full width at half maximum (FWHM) around 2 

– 3 eV due to the complicated chemical environment of nitrogen functionalities presented at a 

heterogeneous carbon structure.227  Therefore, the peaks were fitted by optimizing the peak shape 
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and position at a fixed Gaussian/Lorentzian ratio of 80:20 (S.I., Table S1).228    Four peaks were 

deconvoluted from the N1s profiles of the as-synthesized NCNC samples (Figure 2-3c).  The 

peak N1 at ~398.3 eV in the as-synthesized NCNCs may correspond to pyridinic nitrogen 

bonded with two carbon atoms in a six-membered ring structure.229  The assignment of the peak 

N2 at 399.9 – 400.0 eV can be different.  While pyrrolic nitrogen is typically assigned at 400.1 – 

400.6 eV, 229,230 this peak can be more likely ascribed to amine functionalities.227,231,232  The peak 

N3 at 401.6 – 401.7 eV may be assigned to graphitic (quanterary) nitrogen atoms which are 

triple-coordinated nitrogen incorporated in the graphitic networks by direct substitution of 

carbon atoms.227,233   The peak N4 at 404.3 – 404.6 eV may represent the molecular nitrogen 

which arises from the gaseous N2 molecules intercalated between the graphitic walls or trapped 

inside the sealed cups during the synthesis process.127,234  After the probe-tip sonication, the 

separated NCNCs showed a different N1s profile (Figure 2-3d). The peak N2 greatly increased 

with dominant intensity. We speculate that the increase of this peak results from the dissociation 

of nitrogen-containing compartments under the effect of intense sonication.  Presumably, the 

abrasion to the outer graphitic layers not only caused removal of surface amorphous carbon and 

exposure of the existing amine functionalities, but also altered the local C-N frameworks and 

created more dangling bonds such as amines. On the other hand, the peak N1 became 

indistinguishable in the separated NCNCs, which may partially be due to the overshadowing by 

the outshoot of the peak N2, but may also indicate the transformation of pyridinic nitrogen to 

amines under sonication.  After the separation process, there was a notable decrease in the peak 

N4, which may possibly be due to the release of molecular N2 once the cups were opened.  
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Figure 2-3. High-resolution TEM images (insets) and their corresponding electron energy loss 

spectroscopy (EELS) of (a) an uncompartmented section and (b) a compartmented section of 

NCNCs. X-ray photoelectron spectroscopy (XPS) of (c) as-synthesized NCNCs and (d) 

separated NCNCs after 15 hr of sonication. (e) Structural scheme of one graphitic layer from 

separated NCNCs showing the varieties of possible nitrogen functionalities.  This scheme is not 

drawn to scale. 

 

Fourier transform infrared spectroscopy (FTIR) provided qualitative bonding information 

on the overall chemical functionalities of NCNCs (Appendix A1, Figure A1-6).  The spectra 

were taken on both as-synthesized and separated NCNCs dried in a vacuum oven.  Because of 

their graphitic nature and limited functionalities, neither sample showed strong IR intensities.  

However, in comparison to pristine MWCNTs, the major absorption bands at ~3435 cm-1 may 

correspond to the N-H stretching vibration that arises from the potential pyrrolic or amine 

functionalities.  Small increases were observed on the bands at 2850 and 2920 cm-1 after 

sonication, corresponding to the C-H vibrational modes in methylene groups,231 which supported 
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the assumption that the probe-tip sonication may damage the carbon sp2 networks and create 

more saturated bonds.  Two broad bands appearing at ~1200 cm-1 and ~1550 cm-1 may be 

assigned to C–N and C=N stretching modes, respectively,235 which may arise from pyridinic or 

graphitic C/N functionalities. A schematic illustration in Figure 2-3e depicts the proposed 

morphology and structure of one graphitic layer of the separated NCNCs.  Possible nitrogen 

functionalities such as pyridinic, graphitic nitrogen and amine groups are shown based on the 

results of characterization.   

Although the exact assignment of all nitrogen functionalities cannot be explicitly 

determined, the potential existence of amine functionalities is of particular interest because they 

can provide diverse reactivity for surface functionalization of NCNCs.  Previously, the existence 

of amine groups on NCNCs was inferred based on the reactivity of NCNCs with (+)-Biotin N-

hydroxy-succinimide ester108 and glutaraldehyde.165,114  In this work, type and amount of amine 

functionalities on NCNCs were further quantitatively measured using a chemical colorimetric 

method known as Kaiser test, which was widely applied for amine detection in peptide 

synthesis.236  Both as-synthesized and separated samples were first analyzed without additional 

treatment.  The test results showed the existence of primary amines on the separated NCNCs, but 

no primary amines were detected in the as-synthesized samples.  The appearance of primary 

amines in separated NCNCs is consistent with the XPS results and supports our hypothesis that 

the probe-tip sonication can remove the surface amorphous carbon and create saturated structures 

such as primary amines.  The primary amine loading in separated NCNCs was calculated as 1.06 

± 0.35 μmol/g (Table 2-1), which was comparable to the literature value of amine loadings in 

NCNCs determined by an acid-base titration method.224 It should be noted that the Kaiser test 

only detects the surface primary amines with hydrogen on the alpha carbon, so presumably 
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aromatic amines and other sp2 nitrogen in NCNCs do not give a positive result (Appendix A1, 

Figure A1-7).  In order to quantify the total amine functionalities, NCNCs were functionalized 

with glycine molecules to yield primary amine terminals on the inherent amine groups.  Both as-

synthesized and separated NCNCs were reacted with Boc-protected glycine (N-(tert-

Butoxycarbonyl)glycine, Boc-Gly-OH) through EDC/DMAP coupling reaction, and then the 

materials were repeatedly washed and deprotected off the Boc groups to afford NCNC-glycine 

conjugates, on which the Kaiser test was performed.  After glycine functionalization, Kaiser test 

gave positive results on both as-synthesized and separated NCNC samples, indicating the 

inherent existence of aromatic amines on their surfaces.  The total amine loading in separated 

NCNCs further increased almost twice after glycine functionalization (Table 2-1), showing that 

aromatic amines account for a large part of the total amine functionalities.   

To confirm that the positive results were indeed attributed to amine functionalities, the 

amine reactive sites on separated NCNCs were reacted with di-tert-butyl dicarbonate (Boc2O) as 

illustrated in Scheme S1 to yield N-tert-butoxycarbonyl (NH-Boc) groups which protected the 

amine groups from Kaiser test reactions.  It turned out that Boc-protected NCNCs gave a 

negative Kaiser test result.  Upon removal of Boc groups, amine groups were detected again 

(Appendix A1, Scheme A1-1).  The amine loading was 0.97 ± 0.07 μmol/g, which was close to 

that of separated NCNCs before any treatment, showing that that the protected amine groups 

could be almost completely recovered.  
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Table 2-1. Primary amine and total amine loadings from Kaiser test results on as-synthesized 

NCNCs and separated NCNCs. a 

 

 As-synthesized Separated 

Primary — 1.06 ± 0.35 μmol/g 

Total 0.85 ± 0.12 μmol/g 2.76 ± 0.09 μmol/g 

 

a To obtain the total amine loadings, both samples were functionalized by Boc-Gly-OH 

and then deprotected off the Boc groups before Kaiser test. 

 

The existence of amine groups enables facile surface functionalization of separated 

NCNCs.  By EDC/DMAP coupling reaction, we were able to add thiol functionalities, which 

have strong affinity to gold nanoparticles (GNPs) through Au-S interaction,237 to the amine 

terminals using 3-mercapto-propionic acid (MPA) (Figure 2-4a).  The resulting thiolated 

nanocups showed no morphological differences from the untreated ones (Figure 2-4b).  After 

repeated washing and centrifugation, NCNCs were combined with citrate-coated GNPs with 10 

nm diameters.  From TEM images it was observed that GNPs were densely anchored on the 

surface of NCNCs (Figure 2-4c).  On short stacked NCNCs, GNPs prefer to decorate the lower 

part of each section, especially at the bottom open rim.  Because GNPs are bound to the thiolated 

amine sites, the distribution of GNPs can effectively provide a “mapping” of amine 
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functionalities on the surface of separated NCNCs.  Theoretical calculations showed that the 

nitrogen-doping sites are more energetic and tend to hinder the subsequent growth of the 

graphitic network.147  As amine groups are incompatible to the sp2 networks, they are likely to 

stay at the edge of graphitic walls which eventually terminate at the surface of NCNCs.  The 

inset in Figure 2-4c shows an individual NCNC functionalized with GNPs.  The GNPs were 

preferentially attached on the open rim of the cup marking the enrichment of amine 

functionalities at the opening.  The interaction between GNPs and thiolated NCNCs is strong and 

specific.  By simply mixing the GNPs with nonthiolated NCNCs in ethanol, free GNPs were 

randomly distributed throughout the sample with no specific interaction with NCNCs (Figure 2-

4d).  The GNPs can be easily washed off from nonthiolated NCNCs by centrifugation, but were 

bound strongly to thiolated NCNCs even after repeated washing.  UV-Vis spectroscopy shows 

that the surface plasmon resonance (SPR) band for GNPs bound to thiolated NCNCs had a 

substantial red shift compared to free GNPs (Figure 2-4e), which may be caused by the specific 

interaction between GNPs and the thiol chain ligands,238 as well as the close proximity between 

adjacent GNPs.239 

 



 57 

 

Figure 2-4. (a) Schematic illustration of functionalization of NCNCs with 10 nm gold 

nanoparticles (GNPs). (b, c) TEM images of separated NCNCs functionalized with 3-mercapto-

propionic acid before (b) and after (c) attachment of GNPs. The insets in each panel show the 

corresponding images of individual NCNCs. (d) TEM image showing the distribution of GNPs 

among separated NCNCs without thiolation treatment. (e) UV-Vis spectra showing the surface 

plasmon resonance (SPR) band of GNPs with NCNC samples with or without thiolation 

treatment. 
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With their cup-shaped structure and localized amine reactive sites, separated NCNCs can 

be considered as nanoscale containers to accommodate various cargo molecules inside their 

cavities.  From TEM images of separated NCNCs, we frequently noticed some residual 

amorphous material retained in the open cavities of separated NCNCs.  As shown in Figure 5a, 

in the short stack of three cups, the open cup on top showed a darker color than the sealed cups at 

the bottom.  This material was assumed to be the amorphous carbon residues formed during the 

sonication process that were adsorbed on the inner graphitic walls of the cups due to their 

hydrophobic interaction (Appendix A1. Figure A1-8).  In addition, the preferential distribution 

of thiolated amine groups on the open edge allowed us to effectively “cork” the opening of the 

cups using GNPs with appropriate sizes that fit the diameters of the cups.  Figure 2-5b shows 

that when incubating thiolated NCNCs with 40 nm GNPs, one GNP can fit on the open rim of 

the cup and confine the residual material inside.  Individual thiolated NCNCs corked by GNP 

“stoppers” were frequently observed in the samples (Appendix A1, Figure A1-9a-d).  This 

corking interaction between GNPs and NCNCs was fairly effective as depicted at a lower 

magnification (Appendix A1, Figure A1-9e), where the GNPs had preferentially corked several 

individual or short-stacked NCNCs at their open sides.  It was noted that the interactions were 

not exclusive on the open rims because GNPs may also bind to the thiol groups on the sidewalls 

of the cups due to their high aspect ratio (Figure 2-5b), and GNPs attached to the open sides 

might not necessarily be perfectly “corking” (Appendix A1, Figure A1-10).  However, the 

“corking” position is supposed to be thermodynamically more stable for 40 nm GNPs due to the 

enrichment of thiol groups at the open rims and their fitting shapes.  Statistically, there were ca. 

54% of short NCNCs functionalized with 40 nm GNPs, in which about 42% were corked, 

accounted for a percentage of ca. 23% corked NCNCs in total (Appendix A1).  On average, 
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each functionalized NCNC had about 2.6 GNPs, with over 1/3 of them staying at the open sides.  

Considering the high aspect ratio of NCNCs, the surface area of the sidewalls is roughly 19 times 

as that of the openings (Appendix A1), so the binding of GNPs to the open rims of NCNCs must 

be energetically favored.  The atomic force microscopy (AFM) image in a contact mode (Figure 

2-5c) also confirmed the observation that GNPs with diameters about 40 nm tended to bind to the 

end of the individual NCNCs as well as on the sidewalls. 

 

 

Figure 2-5. (a) TEM image of a NCNC retaining amorphous carbon inside the open cavity and 

(b) a thiolated NCNC corked with a 40 nm GNP and two other GNPs attached to its sidewall. (c) 

AFM contact-mode image of an individual NCNC functionalized with 40 nm GNPs. 

 

The preferential interactions between GNPs and thiolated amine groups on the open rims 

of the separated NCNCs were further confirmed using EELS elemental mapping in an energy 

filtered TEM (EFTEM) mode.  Figure 2-6a shows a typical TEM image of a GNP bound to the 

opening of the thiolated NCNCs.  The GNP with 40 nm in diameter was slightly wider than the 

inner diameter of NCNCs and effectively corked the cup.  We recorded the corresponding 

elemental maps for Au, N, and S.  The energy filtered image of Au O edge at 54 eV showed a 

bright sphere at the end of NCNCs confirming the chemical composition of GNPs (Figure 2-6a, 

inset).  Nitrogen map taken at the N K edge of 401 eV revealed that nitrogen was mainly 
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distributed at the lower part of NCNCs (Figure 2-6b).  Notably, the elemental mapping for 

sulfur at S L edge of 165 eV showed the enriched existence of thiol groups at the open edge of 

the NCNCs which essentially reflected the localized distribution of amine functionalities (Figure 

2-6c,d).  The thiol groups shared the same position as GNPs, which factually proved the 

mechanism of the “corking” behavior between GNPs and thiolated NCNCs.  

Because of the diverse chemical nature of the localized amine functionalities, the corking 

materials were not exclusive to GNPs.  Silver nanoparticles also had strong affinity to thiols and 

were able to stopper NCNCs as well (Appendix A1, Figure A1-11a).  Furthermore, by 

introducing 40-nm polystyrene latex nanoparticles containing aldehyde groups to separated 

NCNCs in ethanol, NCNCs can also be capped by these polymer nanoparticles with no need of 

further functionalization, presumably due to the formation of imine bonds (Appendix A1, 

Figure A1-11b).  The similar corking behavior was also observed in another study using amine 

functionalized silica nano test tubes.240  Our experimental results point to the application of 

NCNCs as graphitic nanoscale containers which can be corked with different nanoparticles.  

These hybrid carbon nanocup/metal or polymer nanoparticle nanoassemblies can be explored as 

multifunctional vehicles for applications such as drug delivery and biological targeting.  Future 

in vivo studies on these nanomaterials are necessary to test their effectiveness for the biological 

applications. 
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Figure 2-6. (a) TEM image of one GNP with 40 nm of diameter corking the opening of 

separated NCNCs. Inset: the energy filtered TEM (EFTEM) image of gold elemental mapping. 

(b,c) EFTEM images for nitrogen (colored blue) and sulfur (colored red) and (d) overlap of b and 

c. All scale bars represent 40 nm. 
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2.2.5 Conclusions 

In this study, we introduced a new methodology to obtain individual NCNCs using probe-tip 

sonication.  We showed that this method can effectively separate NCNCs from their stacked 

structures.  TEM images revealed that separated NCNCs largely existed as individuals or short 

stacks with less than 400 nm in length, and maintained their cup-shaped structures with more 

graphitic edges.  Spectroscopic characterization showed the existence of different nitrogen 

functionalities in separated NCNCs that are responsible for their cup-shaped morphology.  By 

adopting Kaiser test, we quantified the type and concentration of amine functionalities on the 

surface of NCNCs, which are particularly interesting due to their diverse reactivity.  By 

thiolation of the amine groups and functionalization with GNPs, we were able to visualize the 

distribution of amine groups on NCNCs and found that they were preferentially located at the 

open basal plane of the cups.  Taking advantage of these groups, we managed to effectively close 

NCNCs with larger GNPs as “corks” or “stoppers” due to the localized amine distribution, which 

was proved by EELS elemental mapping. These novel cup-shaped nanomaterials showed 

versatile property toward modification and manipulation, and may lead to potential applications 

such as nanoscale containers and drug delivery systems.   
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2.3 SYNTHESIS AND FUNCTIONALIZATION OF NITROGEN-DOPED CARBON 

NANOTUBE CUPS WITH GOLD NANOPARTICLES AS CORK STOPPERS 

2.3.1 Preface 

This work is follow-up study of separation and GNP corking of NCNCs. We discuss in this 

section the synthesis of individual graphitic nanocups, and improved the separation procedures 

including acid oxidation, probe-tip sonication, and filtration. By citrate reduction of HAuCl4, the 

graphitic nanocups were corked with gold nanoparticles on the chemically reactive nanocup 

edges with much better effectiveness. 

Nitrogen-doped carbon nanotubes consist of many cup-shaped graphitic compartments 

termed as nitrogen-doped carbon nanotube cups (NCNCs). These as-synthesized graphitic 

nanocups from chemical vapor deposition (CVD) method were stacked in a head-to-tail fashion 

held only through noncovalent interactions.  Individual NCNCs can be isolated out of their 

stacking structure through a series of chemical and physical separation processes.  First, as-

synthesized NCNCs were oxidized in a mixture of strong acids to introduce oxygen-containing 

defects on the graphitic walls. The oxidized NCNCs were then processed using high-intensity 

probe-tip sonication which effectively separated the stacked NCNCs into individual graphitic 

nanocups.  Owing to their abundant oxygen and nitrogen surface functionalities, the resulted 

individual NCNCs are highly hydrophilic and can be effectively functionalized with gold 

nanoparticles (GNPs), which preferentially fit in the opening of the cups as cork stoppers.  These 

graphitic nanocups corked with GNPs may find promising applications as nanoscale containers 

and drug carriers. 
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2.3.2 Introduction 

With their inherent inner cavities and versatile surface chemistry, hollow carbon-based 

nanomaterials, such as carbon nanotubes (CNTs), are considered to be good nanocarriers in drug 

delivery applications.8,241  However, the fibril structure of pristine CNTs has rather inaccessible 

hollow interiors and may cause severe inflammatory response and cytotoxic effects in biological 

systems.172, 177 Nitrogen-doped CNTs, on the other hand, have been found to possess higher 

biocompatibility than undoped multiwalled carbon nanotubes (MWCNTs)154, 220 and may have 

better drug delivery performance.  Doping of nitrogen atoms into the nanotube graphitic lattices 

results in a compartmented hollow structure resembling stacked cups which can be separated out 

to obtain individual nitrogen-doped carbon nanotube cups (NCNCs) with typical length under 

200 nm.108,105  Due to their graphitic structure and additional nitrogen functionalities, the NCNCs 
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are open to further surface functionalization to develop diverse chemical properties. With their 

chemical activity and accessible interiors, these individual graphitic cups, are highly 

advantageous for drug delivery applications.  

Among different synthetic methods for nitrogen-doped CNTs including arc-discharge124 

and dc magnetron sputtering,125 chemical vapor deposition (CVD) has been the most prevalent 

method due to several advantages such as higher yield and easier control over nanotube growth 

conditions. The vapor-liquid-solid (VLS) growth mechanism is commonly employed to 

understand the CVD growth process of nitrogen-doped CNTs.242  Generally there are two 

different schemes to use metal catalyst seeds in the growth.  In the “fixed-bed” scheme, iron 

nanoparticles with defined sizes were first synthesized by thermal decomposition of iron 

pentacarbonyl and then plated on quartz slides by spin coating for subsequent CVD growth.114 In 

the “floating catalyst” scheme, iron catalyst (typically ferrocene) was mixed and injected with 

carbon and nitrogen precursors, and the thermal decomposition of ferrocene provided in situ 

generation of iron catalytic nanoparticles on which the carbon and nitrogen precursors were 

deposited. While fixed-bed catalyst provides better size control over the resultant NCNCs, the 

yield of product is typically lower compared to the floating catalyst scheme. Based on our 

experience, the yield of NCNCs per batch of fixed-bed synthesis is less than 1 mg per mL 

precursor, compared to ~5 mg per mL precursor in the floating catalyst scheme. As the floating 

catalyst scheme also provides fairly uniform size distribution of NCNCs, it was adopted in this 

paper for CVD synthesis.  

CVD method affords as-synthesized NCNCs which exhibit fibril morphology comprised 

of many stacked cups.  Although there is no chemical bonding between adjacent cups,105 

challenges remain in effective isolation of the individual cups because they are firmly inserted 



 67 

into each other’s cavities and held by multiple noncovalent interactions and an outer layer of 

amorphous carbon.105  Attempts to separate the stacked cups include both chemical and physical 

approaches.  While oxidation treatment in a mixture of strong acids is a typical procedure to cut 

CNTs and introduce oxygen functionalities,62, 206 it can also be applied to cut NCNCs into shorter 

sections. Microwave plasma etching procedures have been also shown to separate the NCNCs.164  

Compared to the chemical approaches, physical separation is more straightforward.  Our 

previous study showed that by simply grinding with a mortar and pestle individual NCNCs can 

be partially isolated from their stacked structure.108  In addition, high-intensity probe-tip 

sonication, which was reported to effectively cut single-walled carbon nanotubes (SWCNTs),159 

was also shown to have a significant effect on separation of NCNCs.105  The probe-tip sonication 

delivers high-intensity ultrasonic power to the NCNC solution that essentially “shakes” the 

stacked cups and disrupts the weak interactions that hold the cups together.  While other 

potential separation methods are either inefficient or destructive to the cup structure, probe-tip 

sonication provides a highly effective, cost-efficient and less-destructive physical separation 

method to obtain individual graphitic cups.  

The as-synthesized fibril NCNCs were first treated in concentrated H2SO4/HNO3 acid 

mixture prior to their separation with probe-tip sonication.  The resultant separated NCNCs were 

highly hydrophilic and effectively dispersed in water.  We have previously identified nitrogen 

functionalities such as amine groups on NCNCs and utilized their chemical reactivity for NCNCs 

functionalization.108,105,165  Compared to our previously reported method of corking NCNCs with 

commercial nanoparticles,105 in this work, gold nanoparticles (GNPs) were effectively anchored 

to the surface of the cups by citrate reduction from chloroauric acid.  Due to the preferential 

distribution of nitrogen functionalities on the open rims of NCNCs, the GNPs synthesized in situ 
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from the gold precursors tended to have better interaction with the open rims and form GNP 

“cork stoppers” on the cups.  Such synthesis and functionalization methods have resulted in a 

novel GNP-NCNC hybrid nanomaterial for potential applications as drug delivery carriers.  

2.3.3 Specific Reagents and Equipment 

Table 2-2. Reagents involved in the experiment 

Reagent Name Company Catalogue Number 

H2 Valley National Gases Grade 5.0 

Ar Valley National Gases Grade 5.0 

Ferrocene Sigma-Aldrich F408-500G 

Xylenes Fisher Scientific X5-500 

Acetonitrile EMD AXO149-6 

H2SO4 Fisher Scientific A300-500 

HNO3 EMD NX0409-2 

DMF Fisher Scientific D119-500 

Ethanol Decon 2716 

Phenol Sigma-Aldrich P1037-100G 

Pyridine EMD PX2020-6 

Hydridantin Sigma-Aldrich H2003-10G 

Ninhydrin Alfa Aesar 43846 

HAuCl4 Sigma-Aldrich 52918-1G 

Sodium Citrate SAFC W302600 
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Table 2-3. Equipment used in the experiment 

Equipment Name Company Catalogue Number 

CVD Furnace Lindberg/Blue ― 

TEM (low-resolution) FEI Morgagni ― 

TEM (high-resolution) JOEL 2100F 

Probe-tip Sonicator Qsonica XL-2000 

UV-Vis Spectrometer Perkin-Elmer Lambda 900 

Zeta Potential Analyzer Brookheaven ZetaPlus 

EDX spectroscopy Phillips XL30 FEG 

 

2.3.4 Detailed protocol 

2.3.4.1 CVD synthesis of nitrogen-doped carbon nanotube cups (NCNCs) 

NCNCs were synthesized employing chemical vapor deposition (CVD) technique on quartz 

substrate using liquid precursors (Figure 1A).  

1.1) Place a three-foot long quartz tube (2.5 cm i.d.) in a Lindberg/Blue tube furnace as 

the reaction chamber. Place a quartz plate (1” × 12”) inside the tube as the substrate for product 

collection. Seal the quartz tube using homemade stainless steel caps with built-in gas and liquid 

injection connections/tubes.  

1.2) Make a solution of liquid precursor containing 0.75 wt% ferrocene, 10 wt% 

acetonitrile and 89.25 wt% xylenes. Before the growth, draw about 5 mL of liquid precursor into 

a gas tight syringe connected to the inlet to the quartz tube. Place the syringe on a syringe pump. 
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1.3) Assemble the CVD system. Connect all gas inlet and outlet. Flow Ar (845 sccm) to 

purge the CVD system and check leakage using Snoop® liquid leak detector. After purging for 

20 min, turn on H2. Set the flow rate of H2 to 37.5 sccm and Ar to 127 sccm. Turn on the 

furnace. Set the temperature of the furnace to 800 °C and wait till it is stable at 800 °C. 

1.4) Use the syringe pump to inject the liquid precursor into the quartz tube. Set the 

injection rate at 9 mL/h for 6 min to fill the dead volume of the injector tube. Then turn down the 

injection rate to 1 mL/h for the growth of NCNCs. After 90 min of growth, turn off the syringe 

pump and H2 gas flow, and shut down the furnace. Keep Ar flowing to maintain an inert 

atmosphere until the furnace was cooled down to room temperature.  

1.5) Disconnect all gas inlets and outlets, and the injection system. Disassemble the CVD 

system and take the quartz plate out. Use a one-sided razor blade to peel off the NCNCs film 

from the quartz plate. Disperse the collected product in ethanol. Respiratory protection is needed 

to prevent inhaling possible carbon materials if the work is conducted outside of fume hood. 

2.3.4.2 Oxidation of as-synthesized NCNCs by a mixture of acids 

2.1) Transfer about 10 mg of as-synthesized NCNCs to a 200 mL round-bottom flask. 

Add 7.5 mL of concentrated HNO3 to the flask.  Briefly sonicate the mixture in water bath for 

better dispersion.  Then add 22.5 mL of concentrated H2SO4 slowly.  (CAUTION: the strong 

acid mixture is highly corrosive; carefully handle these acids with safety protection.)  Sonicate 

the reaction mixture in water bath at room temperature for 4 hr. 

2.2) Dilute the reaction mixture with 100 mL of water while cooling down in ice bath. 

Filter the mixture through a polytetrafluoroethylene (PTFE) membrane with pore size of 220 nm 

using a water aspirator.  
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2.3) Wash the material on the filter membrane with 200 mL of 0.01 M NaOH solution to 

remove any acidic residual byproduct.243  Then wash with 200 mL of 0.01 M HCl solution, 

followed by copious amount of water until a neutral pH of the filtrate was achieved.  Disperse 

the resultant material (oxidized NCNCs) in water (20 mL) by sonication. The resulted suspension 

can be stored at room temperature for further experiments. 

2.3.4.3 Physical separation of NCNCs by probe-tip sonication 

3.1) Transfer the suspension of oxidized NCNCs in water to a 50 mL centrifuge tube 

placed in ice bath. Fill the centrifuge tube to the 25 mL mark with water.  Set the probe-tip 

sonicator equipped with a 1/4" diameter titanium microtip at 60% maximum magnitude (12 W).  

Submerge the microtip to the center of the solution and then process for 12 hr with 30 sec on/off 

interval.  Change the ice every 30 min to prevent overheating.  

3.2) Stop the sonication. Filter the NCNC suspension through a 220 nm pore-size PTFE 

filter membrane to remove any large particles.  The resultant NCNC samples can be store at 

room temperature for further applications. 

3.3) (Optional) As a comparison experiment, disperse another sample of as-synthesized 

NCNCs in DMF and directly sonicate the suspension with probe-tip sonication for 12 hr at the 

same settings as above.  

2.3.4.4 Quantitative analysis of amine functional groups on NCNCs by Kaiser test 

4.1) Prepare the reagent A: mix 1 g of phenol and 250 μL of EtOH in 2.5 mL of pyridine, 

add 50 μL of 0.01 M hydrindantin in H2O to the mixture.  Prepare the reagent B: dissolve 

ninhydrin (50 mg) in 1 mL of EtOH.   
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4.2) Weigh the NCNCs samples (~0.5 mg) on a microbalance and disperse them in 1 mL 

of 3:2 EtOH/water in small test tubes.  Add 100 μL of Reagent A and 25 μL of Reagent B to the 

sample suspension.  Seal the test tubes with parafilms and heat the mixture at 100 °C oil bath for 

10 min. Filter the sample through a syringe filter to remove solid particles and collect the filtrate 

solution.  

4.3) Take the visible spectra on the filtrate for colorimetric analysis with the blank 

sample made in the same process without adding NCNCs. Record the absorbance of the peak 

centered at 570 nm and calculate the amine loadings according to the Beer-Lambert law. 

2.3.4.5 Functionalization of NCNCs with GNPs 

5.1) Sonicate 4 mL of aqueous suspension containing separated NCNCs (0.01 mg/mL) 

using a water-bath sonicator for 5 min to achieve a uniform dispersion. 

5.2) Add 1 mL of HAuCl4 aqueous solution (1 mg/mL) to the NCNC suspension during 

sonication.  Then add 250 µL of 1 wt % trisodium citrate aqueous solution dropwise. Vigorously 

stir the reaction mixture at 70 °C on a hot plate for 2 hr.  

5.3) Centrifuge the reaction mixture at 3400 rpm for 15 min. Collect the NCNCs 

functionalized with GNPs in the precipitate and wash with water by centrifugation.  Disperse the 

precipitate in water (4 mL). 

2.3.5 Representative Results 

The as-synthesized NCNCs from CVD growth appeared as a carpet of black material on 

quartz substrate. Thick films of NCNCs weighing about several mg were obtained by peeling 

with a razor blade (Figure 2-7b). TEM images show the morphology of as-synthesized NCNCs 
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at different magnifications (Figure 2-7).  At the lower magnification (Figure 2-7c), the as-

synthesized NCNCs all showed a fibril structure with lengths of typically several micrometers 

and diameters of 20 – 30 nm. Unlike the continuous tubular structure of undoped CNTs, the 

NCNC fibers were compartmented with many cup-shaped segments.  High-resolution TEM 

imaging of the tip of a NCNC fiber reveals the curved graphitic structure of nanotube cups that 

are stacked on top of each other (Figure 2-7d).   

Figure 2-8a shows the TEM images of NCNCs after acid oxidation. The oxidation 

process cut the long fibers into shorter sections of about 1 µm in length in which the graphitic 

cups remained stacked.  The oxidized NCNCs formed stable suspension in water which was then 

processed with probe-tip sonication.  After 12 hr of sonication and filtration, TEM image shows 

the significant decrease in the length of NCNCs (Figure 2-8b).  Most NCNCs appeared as 

individual cups with length less than 200 nm. The individual cups isolated from the stacks 

typically have a semi-elliptical shape with one end sealed and the other open.  

The size distribution of NCNCs was based upon ~300 measurements from TEM images.  

The length distribution histograms (Figure 2-9a) of oxidized NCNCs, NCNCs after 12 hr 

sonication, and the final product show the effect of probe-tip sonication on separation of stacked 

NCNCs and obtaining individual cups. The oxidation process resulted in a change in zeta 

potential of NCNCs from positive to negative (Figure 2-9b), while the inherent amine groups on 

NCNCs were not affected according to Kaiser test (Figure 2-9c).   
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Figure 2-7. (a) Schematic setup of a tube furnace used for chemical vapor deposition (CVD) 

synthesis of NCNCs. (b) Photograph of the as-synthesized NCNC film peeled from the quartz 

substrate. (c) An overview transmission electron microscopy (TEM) image of as-synthesized 

NCNCs. (d) High-resolution TEM image showing the tip of an individual as-synthesized NCNC. 
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Figure 2-8. TEM images of (a) oxidized NCNCs and (b) NCNCs after subsequent 12 hr probe-

tip sonication and filtration. Inset shows an individual separated NCNC. 

 

Figure 2-9. (a) Length distribution histograms for NCNC samples of (1) after 12 hr probe-tip 

sonication only, (2) after oxidation, (3) after oxidation and 12 hr probe-tip sonication, and (4) the 

final product after filtration through a 220 nm pore-size membrane.  (b) Zeta potentials of as-

synthesized, oxidized, and the final NCNC samples. (c) Amine loadings on NCNCs after 12 hr 

sonication only and after both oxidation and 12 hr sonication. 
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Figure 2-10. (a) TEM image of NCNCs functionalized with GNPs by citrate reduction of 

HAuCl4 and collected by centrifugation.  (b) TEM image showing an individual nanocup corked 

with GNP.  (c) UV-Vis spectra of the reaction mixture, the supernatant solution and the 

precipitate of the GNP functionalization reaction.  The inset photograph shows the color 

difference between the supernatant (left) and the precipitate (right) solutions. 

 

The separated NCNCs were then functionalized with GNPs by citrate reduction of 

HAuCl4.  The reduction reaction occurred at 70 °C under vigorous agitation.  The initially 

colorless solution started to turn blue after 30 min and gradually changed to wine-red within 2 hr.  

TEM image of the centrifuge precipitate in Figure 2-10a shows the high coverage of GNPs on 

NCNCs.  Almost all nanotube cups were functionalized with GNPs, and the GNPs were 

frequently found to be preferentially located at the open rim serving as cork stoppers for the 

cups.  A magnified TEM image (Figure 2-10b) reveals that some GNPs were actually grown 

into the cup interior forming a “tight” cork.  There was a difference in color between the 

precipitate and the supernatant solution.  UV-Vis absorption spectra show that the surface 

plasmon resonance (SPR) band of GNPs in the precipitate has a red-shift compared to that of the 

supernatant (Figure 2-10c).   
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2.3.6 Discussion 

The primary goal of our experiments was to effectively produce graphitic nanocups from 

nitrogen-doped CNTs.  However, nitrogen-doping in the CVD synthesis does not guarantee the 

formation of the stacked cup-shaped structure.  Depending on the chemical composition of the 

precursor and other growth conditions, the morphology of the resulted product may vary a lot.127  

The concentration of nitrogen source is the primary factor influencing the structure because the 

compartmented structure results from the incompatibility of nitrogen atoms in the graphitic 

lattices.146  Generally, the length of the compartments decreases with increasing nitrogen 

concentration in the precursor.  At higher concentrations, the lateral segmentation layers become 

irregular and corrugated and the uniform cup-shaped compartmented structure is lost.127  In our 

procedure, we used 10% MeCN as the precursor which resulted in uniform cup-shaped structure 

with similar diameters.  Carbon source is another pivotal factor for NCNC synthesis.  Previous 

attempts using ethanol as carbon source sometimes formed irregular tear-drop-shaped segments 

in the resulted NCNCs,114 presumably due to oxygen defects originated from ethanol. Replacing 

ethanol with xylenes eliminated formation of any irregular shapes. Moreover, reduced ferrocene 

concentration (0.75 wt%) helped to form small uniform iron catalyst nanoparticles and relatively 

low carrier gas flow rate facilitated vertical growth. All these factors resulted in formation of 

NCNCs with more uniform diameters and higher yield.  

The as-synthesized NCNCs are long fibers of stacked cups.  High-resolution TEM image 

(Figure 2-7d) clearly shows the graphitic structure of adjacent stacked cups.  The graphitic walls 

of each cup extend along the direction with a certain angle from the cup axis, having no 

connections between adjacent cups. The adjacent cups were assumed to be held together by 

noncovalent interactions between graphitic layers, and also by an outer layer of amorphous 
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carbon as observed in Figure 2-7d.  The weak interactions that keep the cups together can be 

disrupted and individual nanocups can be isolated via chemical or physical methods.   

In our previous study,105 the separation procedure was carried out by physical separation 

only. The as-synthesized NCNCs were directly sonicated in N,N-dimethylformamide (DMF) 

under probe-tip sonication. 12 hr of sonication significantly reduced the average length of 

NCNCs from several micrometers to 556.9 ± 256.1 nm and effectively derived individual 

nanocups, though unseparated NCNCs were still frequently observed.  A major drawback for 

direct ultrasonication was that the as-synthesized NCNC fibers were highly hydrophobic and 

even poorly suspended in DMF. The efficiency of separation was compromised in this case 

because the NCNCs were not well dispersed initially.   To improve the dispersion of NCNCs in 

solvent and facilitate the ultrasonic separation, as-synthesized NCNCs were first treated with 

strong acids. This treatment was widely applied for oxidation of pristine CNTs.62  Energy-

dispersed X-ray (EDX) spectroscopy shows a significant increase of oxygen concentration in 

NCNCs after acid treatment (Table 2-4), indicating that oxygen functionalities were introduced 

to the graphitic structure.  The oxidation step not only increased the hydrophilicity of NCNCs, 

but might have also weakened the interactions between the graphitic layers of the adjacent cups 

by introducing oxygen lattice defects and removing the outer amorphous carbon.  The oxidized 

NCNCs formed even dispersion in water and thus were more susceptible to the subsequent 

ultrasonic separation. The average length of oxidized NCNCs measured from TEM images was 

770 ± 571 nm.  Upon 12 hr of probe-tip sonication, most individual cups were isolated out, and 

the average length was reduced to 178 ± 94 nm, which was below the 220 nm pore size of the 

PTFE membranes.  A filtration process thus further removed any longer NCNCs and reduced the 

average length to 110 ± 55 nm, leaving only individual and short stacked nanocups in the filtrate.  
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The final separated NCNCs were well dispersed in water forming stable suspension which 

showed little precipitation over period of several weeks.  

The acid oxidation process greatly altered the surface properties of NCNCs.  Due to the 

existence of nitrogen functionalities that tend to be protonated in solution, the as-synthesized 

NCNCs were slightly positively charged with a zeta potential of +9 mV.  Acid oxidation made 

NCNCs more suspendable with a negative zeta potential of about −30 mV.  It should be noted 

that the oxidation process did not alter the inherent amine functionalities on the surface of 

NCNCs as was quantified by Kaiser test.  On the contrary, more amine groups were found on 

separated NCNCs after 4 hr acid oxidation than on the samples separated by sonication only, 

which indicated that better separation exposed more amine functionalities.  The acid oxidation 

process also effectively removed iron catalyst residues from NCNCs as revealed by the EDX 

elemental analysis (Table 2-4).   

A main problem of the prolonged probe-tip sonication was the wear-out of titanium tips. 

Long and intensive ultrasonic vibration generates a lot of heat and is abrasive to the microtip.  

With the tip being worn out, the separation effect was weakened and the titanium particles 

tended to come off the tip as contamination.  To better protect the tip from damage, the sample 

was processed on 30 sec on/off intervals and the ice bath was replaced every 30 min to prevent 

overheating.  Due to its chemical inertia, the titanium contaminant was hard to be completely 

removed.  The filtration procedure through a 220-nm-pore membrane was effective in removal of 

any large titanium particles, and small particles could also be mostly removed by brief 

centrifugation at 3400 rpm for 4 min, though in the final separated NCNC samples about 0.2 

at.% of titanium was still present (Table 2-4).   
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The separated NCNCs have both oxygen and nitrogen functionalities on their graphitic 

framework, which provide diverse chemical properties essential for drug delivery applications. 

By thiolation of the amine groups, we were previously able to attach commercial GNPs on to the 

graphitic nanocups.105  Those GNPs, with an average diameter fitting the opening of the cups, 

tended to seal the cup as cork stoppers.  Using the hydrophilic oxidized NCNCs, GNPs can be 

more effectively anchored on the cups in aqueous phase by direct reduction of chloroauric acid 

with trisodium citrate as the reduction reagent. GNPs are likely to nucleate on the nitrogen 

functionalities and continue to grow under the reaction conditions. This bottom-up 

functionalization approach resulted in strong and specific interaction between GNPs and 

NCNCs.  Due to the preferential distribution of nitrogen functionalities on the open rim of the 

cups, GNPs had better chance to nucleate at the opening, and the subsequent growth often 

formed cork-shaped nanoparticles that extended to the interior of the cups.  This corking 

interaction was more frequently observed using the reduction approach compared to our previous 

method.  Free GNPs in solution were also present during the reduction reaction; they can be 

removed by centrifugation at 3400 rpm for 15 min.  There was distinct difference between the 

solution colors of the supernatant and the precipitate.  The former appeared as wine red with a 

SPR absorption band at 524 nm and the latter was purple with a SPR band at 540 nm.  The red-

shift in the SPR band may be attributed to the strong electronic interaction of GNPs on the 

surface of NCNCs.  
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Table 2-4. Elemental analysis of as-synthesized NCNCs and final separated NCNCs based on 

energy-dispersive X-ray (EDX) spectroscopy.  

Element 

(K Shell) 

As-synthesized Final separated 

at. % at. % 

C (including N) 98.0 95.9 

O 0.6 3.8 

Fe 1.4 0.1 

Ti ― 0.2 

2.3.7 Conclusions 

In conclusion, we adopted a series of synthetic techniques to obtain individual graphitic 

nanocups (i.e., NCNCs) from their stacking structures. Introduction of the acid oxidation and 

probe-tip sonication procedures is essential to ensure the high efficiency of separation and the 

hydrophilicity of the final nanocups. Through citrate reduction of HAuCl4, the NCNCs were then 

functionalized with GNPs which effectively closed the cups as cork stoppers. This novel GNP-

NCNC hybrid nanomaterial may have promising applications as nanoscale containers and drug-

delivery carriers. 
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3.0  ENZYMATIC DEGRADATION OF MULTIWALLED CARBON NANOTUBES 

3.1 CHAPTER PREFACE 

Because of their unique properties, carbon nanotubes and in particular multi-walled carbon 

nanotubes (MWCNTs) have been used for the development of advanced composite and catalyst 

materials.  Despite their growing commercial applications and increased production, the potential 

environmental and toxicological impacts of MWCNTs are not fully understood; however, many 

reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective 

and safe degradation of MWCNTs.  

In our previous investigation, we showed that a naturally existing enzyme – horseradish 

peroxidase (HRP) catalyzed the degradation of single-walled carbon nanotubes (SWCNTs) under 

a mild aqueous condition containing dilute hydrogen peroxide (H2O2).
167 The degradation is 

considered to be oxygen-defect-mediated such that the oxygen functionalities on carboxylated 

SWCNTs help the enzymatic interaction with the CNTs.168 In this article, we investigated the 

effect of chemical functionalization of MWCNTs on their enzymatic degradation with HRP and 

H2O2.  We investigated HRP/H2O2 degradation of purified, oxidized, and nitrogen-doped 

MWCNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side 

wall defects. These results provide a better understanding of the interaction between HRP and 
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carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of 

nanotubes. 

The material presented in this section was published as a full article in The Journal of 

Physical Chemistry A in a special issue: David W. Pratt Festschrift, and reproduced with 

permission from J. Phys. Chem. A 2011, 115, 9536-9544, Copyright 2011 American Chemical 

Society. The full citation is listed as Ref. 206.  

 

List of Authors: Yong Zhao, Brett L. Allen, and Alexander Star 

 

Author Contributions: All authors contributed to the design of project and participated in the 

results discussion. YZ performed the experiments and conducted the characterization. YZ and 

BA prepared the figures. YZ and AS wrote the manuscript. 

3.2 INTRODUCTION 

After almost 20 years since their discovery,4 carbon nanotubes (CNTs) still spawn broad 

research interest in numerous disciplines and are a primary focus of nanoscience research. Their 

unique tubular graphitic structure and outstanding mechanical, electronic and chemical 

properties6-8 lead to a wide range of applications such as in composite materials,415,40 chemical 

sensing,29-31 and drug delivery.50-51 There are two main types of CNTs: single-walled carbon 

nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). MWCNTs consist of 

several to dozens of concentric graphitic walls. Due to their low cost and large availability,136 

MWCNTs are advantageous over SWCNTs for high volume applications such as composite 
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materials. Their metallic nature also put forward the potential applications in fuel cells as 

electrode catalyst support.46 In addition, their multi-walled structure enhances their resistance to 

chemical treatment, which allows grafting of chemical functionalities at the surface of nanotubes 

while retaining their intrinsic mechanical and electrical properties.244 Acid oxidation is a 

common scheme of functionalizing MWCNTs, which can introduce oxygen-containing defective 

sites within their outer graphitic walls,136, 166 forming carboxylated MWCNTs (o-MWCNTs). 

Additionally, MWCNTs can also be doped with heteroatoms such as nitrogen into the graphitic 

structures during the synthesis process,108 forming nitrogen-doped MWCNTs (n-MWCNTs) 

which were reported to have excellent catalytic activity in oxygen-reduction reaction (ORR).113, 

151 The promising applications of MWCNTs and their low cost of synthesis have spurred a global 

production about 40 times higher than SWCNTs,245 which highly stressed the importance of 

investigating the enzymatic degradation of MWCNTs as their potential disposal in the 

environment increases. 

In addition to the potential environmental impact, there are reports that carbon 

nanomaterials may possess cytotoxicity, and pathogenicity.173, 177, 179, 188 By functionalizing 

CNTs with various bioconjugates such as DNA,183 peptides184 or phospholipid components,213 

the biocompatibility of carbon nanotubes is largely increased; still, CNTs remain resistant to 

physiological or environmental degradation under mild conditions in the long term, even after 

such functionalization.80, 188 We have recently demonstrated that carboxylated SWCNTs can be 

enzymatically degraded in the presence of low concentrations of H2O2 and peroxidases, such as 

horseradish peroxidase (HRP)167-168 and human myeloperoxidase (hMPO).208 As a result of their 

multi-walled morphology, MWCNTs are considered more difficult to be degraded than 

SWCNTs by enzymatic catalysis, which was shown in a recently published work.205 However, 
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the detailed mechanism of MWCNTs’ enzymatic degradation is still ambiguous. In this study, 

we explored the enzymatic degradation of o-MWCNTs with different degrees of carboxylation 

and n-MWCNTs. A variety of characterization methods were implemented to monitor possible 

degradation including dynamic light scattering (DLS), transmission electron microscopy (TEM), 

Raman spectroscopy, and gas chromatography–mass spectrometry (GC-MS). For up to 80 days 

of degradation with daily additions of H2O2, o-MWCNTs appeared to decrease in both diameter 

and length, although a complete disappearance of o-MWCNTs was not observed. In contrast, 

when incubated under the same HRP/H2O2 conditions, n-MWCNTs showed a complete 

degradation behavior within 80 days. In essence, these findings suggest that the presence of 

defects in MWCNT sidewalls play a critical role in the enzymatic degradation process. 

3.3 EXPERIMENTAL SECTION 

3.3.1 Materials 

MWCNTs were received from Columbian Chemical Company (Marietta, GA). Lyophilized HRP 

type VI and 3% H2O2 were purchased from Sigma Aldrich. Amplex Red (10-acetyl-3,7-

dihydroxyphenoxazine) was procured from Molecular Probes, Invitrogen. 

3.3.2 Carboxylation of MWCNTs 

As-received MWCNTs were pretreated by sonication in concentrated HNO3 at room temperature 

for 4 hr in order to eliminate impurities such as amorphous carbon and metal catalysts. 
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MWCNTs were then filtered through a 0.22 µm Teflon membrane and washed with H2O until a 

neutral pH was measured. Carboxylation of MWCNTs was performed by sonicating 

approximately 10 mg of pretreated MWCNTs in 5 mL of 3:1 H2SO4/HNO3 mixture at 40 °C. 

(This solution is highly oxidizing. Caution must be taken when handling this system.) After 5 

and 8 hours respectively, 2.5 mL of the suspension was taken out, diluted with 10 mL of double-

distilled water, filtered through a 0.22 μm Teflon membrane, and washed with copious amounts 

of water until the pH was approximately 6 to 7. The pretreated MWCNT samples are noted as 

“p-MWCNT” and the 5 hr and 8 hr carboxylated samples are respectively noted as “o-MWCNT 

(5hr)” and “o-MWCNT (8hr)” herein and after. 

3.3.3 Synthesis and purification of n-MWCNTs 

Nitrogen-doped MWCNTs were synthesized using chemical vapor deposition (CVD) technique 

in a Lindberg/Blue tube furnace.16 The quartz substrate was placed in a three-foot long sealed 

quartz tube under 950 °C in the furnace. A liquid precursor containing 5.0 w% of MeCN, 1.25 

w% of ferrocene, and 93.75 w% of EtOH was injected at a rate of 5 mL/min in H2 and Ar 

atmosphere. After 1 hr growth, the sample on the substrate was taken out and collected using a 

razor blade.  

Purification of as-synthesized n-MWCNTs was performed using the method adopted 

from Smalley et al.137 A sample of 4.4 mg as-synthesized n-MWCNTs was suspended in a 

mixture of 2 mL HCl (1 M) and 2 mL H2O2 (30%) and stirred at 60 °C for 4.5 hr with the same 

amount of HCl and H2O2 supplemented every 1 hr. After filtration of the slurry and washing with 

copious amount of water, purified n-MWCNT samples were collected and re-suspended in water. 
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3.3.4 Incubation with HRP and H2O2 

Around 1 mg of p-MWCNTs, o-MWCNTs (5hr and 8hr), and n-MWCNTs were transferred into 

four vials and sonicated in 4 mL of water for 1 hr to afford a stable suspension. HRP type VI 

aqueous solution (4 mL of 0.385 mg/mL) was then added into each vial followed by incubation 

for 24 hr. To start the degradation process, 8 mL of 800 μM H2O2 was added, and all vials were 

sealed with septum stoppers and wrapped with parafilm to keep them gastight. Additions of 250 

μL of 800 μM H2O2 were performed on a daily basis to compensate for H2O2 consumption. All 

vials were placed on a rotary shaker with constant shaking (220 rpm) at room temperature in the 

dark to prevent photolysis of H2O2.
246 

3.3.5 Transmission Electron Microscopy (TEM) 

TEM samples were prepared by centrifuging 250 µL the MWCNT suspension at 3400 rpm for 2 

hr. After removal of the supernatant, the precipitate was resuspended in 1 mL of EtOH through 

sonication, and around 10 μL of this suspension was dropped on a lacey carbon grid and dried in 

ambient conditions overnight for TEM imaging (FEI Morgagni, 80 keV, or JEOL 2100F, 200 

keV). Alternatively, TEM sampling was done by directly drop-casting sample solution on to 

grids.  

3.3.6 Raman Spectroscopy 

Approximately 50 μL of sample suspension before and during degradation was drop-casted onto 

a quartz slide and dried under ambient conditions. Raman spectra were taken on a Renishaw 
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inVia Raman microscope with an excitation wavelength of 633 nm. Spectra were scanned from 

1000-1800 cm-1 for 5 times at 15 s exposure time. For each sample 5 Raman spectra from 

different sample spots were collected and averaged. 

3.3.7 Gas Chromatography–Mass Spectrometry (GC-MS) 

The CO2 content in the headspace of the sample vials was measured with GC-MS. During the 

degradation process around 25 μL of headspace gases were injected using a gastight syringe into 

a Shimadzu QP5050A GC-MS unit through an XTI-F capillary column (150 °C).  

3.3.8 Dynamic Light Scattering (DLS) 

DLS was performed using a quasi-elastic light scattering spectrometer (Brookhaven 90 Plus 

Particle Size Analyzer) under 678 nm wavelength laser irradiation. MWCNT samples before and 

after 60 days of the enzymatic degradation were dispersed in 3 mL double-distilled water by 

sonication for 2 hr forming a translucent suspension, and DLS data were taken by averaging 

results from 5 runs with each run lasting for 1 min.  
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3.4 RESULTS AND DISCUSSION 

3.4.1 Carboxylation of MWCNTs through acid treatment 

It was previously shown that the exposure of either SWCNTs or MWCNTs to oxidative 

conditions (such as concentrated oxidative acids) could cause shortening in the length and 

introduction of defects on both the ends and side walls of carbon nanotubes.51, 62, 247 The defects 

are functionalized by oxygen-containing groups including mainly carboxylic groups, but also 

lactonic and phenolic groups.61 In this experiment, MWCNTs were first purified with nitric acid 

pretreatment, after that, there was almost no catalytic iron content left in the sample as shown by 

thermogravimetric analysis (TGA) and elemental analysis (Appendix A2, Figure A2-1). Then 

MWCNTs were carboxylated by sonication in H2SO4/HNO3 mixture for 5 hr and 8 hr 

respectively.  
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Figure 3-1. Normalized Raman spectra of MWCNTs with 0 hr (black), 5 hr (red) and 8 hr (blue) 

carboxylation before degradation. Inset: D to G band ratio vs. carboxylation time. 

 

Figure 3-1 shows the Raman spectra of pretreated, 5 hr, and 8 hr carboxylated MWCNTs 

before the enzymatic degradation process. The spectra were normalized to the G band at around 

1570 cm-1 in order to compare the change in the D band at around 1323 cm-1. The D to G band 

intensity ratio was observed to be increasing proportionally to carboxylation time. Since the D 

band characterizes the disorder-induced mode due to symmetry-lowering effects such as defects 

in sp2 hybridized carbon systems,98, 248 increase in D to G band intensity suggests an increase of 

defect sites introduced on MWCNTs.  In order to quantify the functional group loadings on 

CNTs’ surfaces, we performed an acid–base titration249 following a modified procedure.61, 250 As 

expected, the titration results showed an increasing acidic group loading along with increasing 

carboxylation time (Appendix A2, Figure A2-2), indicating that the surface functional group 
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loadings are positively correlated with the amount of defect sites on MWCNTs as quantified by 

TGA (Appendix A2, Figure A2-3). It should be mentioned that it is possible that small amounts 

of defects were also introduced on p-MWCNTs’ surface during the pretreatment process. Fourier 

transform infrared spectroscopy (FTIR) further revealed the existence of oxygen-containing 

functionalities on MWCNT samples (Appendix A2, Figure A2-4). 

 

 

Figure 3-2. Photograph showing enzymatic degradation process of MWCNTs after 

carboxylation for different durations on (a) Day 0 and (b) Day 60. (c) DLS showing decrease in 

size distribution of different MWCNTs before (dash lines) and after (solid lines) incubation with 

HRP and H2O2 for 60 days. 
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3.4.2 Enzymatic degradation of carboxylated MWCNTs 

Our previous study suggested that oxygen-functionalized defects play an important role in 

facilitating the enzymatic degradation process of SWCNTs by providing hydrophilic binding 

sites for HRP molecules.168 Since MWCNTs are essentially multiple layers of concentric 

SWCNTs, similar degradation behaviors on carboxylated MWCNTs were expected. To compare 

the degradation kinetics of differently carboxylated MWCNTs, samples of p-MWCNT, o-

MWCNT (5hr) and o-MWCNT (8hr) were investigated. MWCNTs were first incubated with 

HRP for 24 hr to allow sufficient interaction between the enzyme and the substrate, and the 

reaction was initiated by adding 8 mL of 800 μM H2O2 into the suspension. In comparison to our 

previous work,167-168 800 μM H2O2 (as opposed to 80 µM) was used in the presence of HRP. We 

speculated that by raising H2O2 concentration an order of magnitude, the degradation kinetics 

would be greatly accelerated, without denaturing HRP.168 Upon daily additions of 250 μL H2O2 

for over 60 days, visual evidence of degradation was observed as shown in Figure 2. The 

photographs of sample vials taken on Day 0 (Figure 3-2a) and Day 60 (Figure 3-2b) show an 

apparent decrease in light scattering and absorbance from the solutions of o-MWCNT (5hr) and 

o-MWCNT (8hr). This observation might indicate a decrease in MWCNT concentration after the 

degradation process, and it appeared that the p-MWCNT samples were less degraded compared 

to the others.  

To confirm this observation, Dynamic Light Scattering (DLS) measurements were 

implemented for all three samples before and after degradation (Figure 3-2c). It should be noted 

that DLS calculates the effective hydrodynamic radii of the particles which are presumably 

considered as spherical and monodisperse, thus the DLS data do not reflect the actual sizes of 

MWCNTs. The data showed a significant decrease in size distribution after 60 days of 
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degradation process. This decrease could be attributed to two effects: a decrease in the actual 

sizes (i.e., diameters and lengths) and (or) a decrease in the bundling effect of carbon nanotubes. 

While the bundling effect is primarily due to the π-π interaction between the sidewalls of 

nanotubes,251 a decreased bundling effect could point to disturbance in the surface sp2 carbon 

system. Thus for both reasons, the DLS data suggested the fact that MWCNTs were being 

degraded. It is seen that the pretreated MWCNTs were also degraded, albeit to a lesser degree; 

this was possibly because of the small amount of defects introduced on to the nanotubes during 

the pretreatment process.  

 

 

Figure 3-3. TEM images of carboxylated MWCNTs incubated with HRP and H2O2. Each row 

corresponds to different carboxylation times (0, 5 and 8 hours) and each column corresponds to 

different enzymatic incubation times (0, 4, 30 and 60 days). All scale bars are 200 nm. 
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Transmission electron microscopy (TEM) was used to track the morphological changes 

of MWCNTs as a result of enzymatic degradation (Figure 3-3). Before incubation with HRP and 

H2O2 (Day 0), all the carbon nanotube samples appeared to be intact with lengths of 

approximately 1 μm. After 4 days of incubation, it was seen that the boundary of nanotubes 

began to be distorted, forming carbonaceous sheets that spread among nanotubes. This 

phenomenon became more significant as the carboxylation time increased. For o-MWCNT (8hr) 

samples, the carbonaceous sheets became prevalent in the visual field surrounding most of the 

tubular structures. After 30 days, the continuous sheet structures were broken down into 

nebulous “flakes”. For the 8 hr carboxylated samples, most of the tubular structures became 

more undefined, and there appeared to be holes forming on these carbonaceous materials. The 

nanotubes and the residual flakes continued to undergo degradation in following days. At Day 

60, it was shown that the sizes of both nanotubes and flakes significantly decreased for o-

MWCNT (5hr) and o-MWCNT (8hr) samples. The length of 8 hr carboxylated MWCNTs was 

shortened from an initial 1 μm to around 100 – 400 nm, and significant bundling effects were not 

seen over 60 days as each nanotube was surrounded by a layer of carbonaceous sheets. The TEM 

images showed that MWCNT samples with a higher degree of carboxylation have a faster 

degradation rate. It was observed that the pretreated MWCNTs were also undergoing a 

degradation process, but at a much slower rate. The degradation experiment was continued for 

another 20 days (Day 80). From TEM images (Appendix A2, Figure A2-5) it was seen that 

there were no apparent changes to remaining nanotubes, while the carbonaceous flakes 

(Appendix A2, Figure A2-6) oxidized into progressively smaller pieces. This observation 

suggested that the degradation of nanotubes was inhibited in the later stage of degradation. It 

should be mentioned that the decrease in degradation rate is not because of denaturing of the 
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HRP enzyme, because after the degradation process, an Amplex Red assay168 was carried out for 

each sample and showed no decrease in the enzymatic activity (Appendix A2, Figure A2-7). 

 

Figure 3-4. Evolution of CO2 in the sample headspace as a final product of MWCNT enzymatic 

degradation measured by GC-MS on Day 0, 9 and 35 of incubating MWCNTs with HRP and 

H2O2. The control sample was made by mixing HRP and H2O2 only. 

 

Since the degradation process is a further oxidation of carboxylated nanotubes, a final 

degradation product of carbon dioxide (CO2) is expected. The CO2 content in the headspace was 

monitored by GC-MS. Figure 4 shows the CO2 (m/z: 44) content relative to N2 (m/z: 28) in the 

headspace measured at Days 0, 9 and 35 of incubation. Compared to the control sample (HRP 

and H2O2, no CNTs), CO2 was evolved progressively for all three MWCNT samples. The CO2 

concentration increased 4 – 5 times the initial level at Day 35 for MWCNT samples while 

remaining relatively stable for the control. Furthermore, the trend that more carboxylated 

MWCNTs had a faster CO2 evolution was observed as expected.  
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Figure 3-5. Raman spectra of (a) p-MWCNT, (b) o-MWCNT (5hr), and (c) o-MWCNT (8hr) 

showing decay of the D and G band intensity during the enzymatic degradation process (asterisk 

indicates contribution from quartz substrate). Insets: The changes of D to G band ratio of each 

sample versus degradation time. 

 

In addition, Raman spectroscopy (Figure 3-5) was performed to characterize the 

degradation process. It is known that the tangential G band and disorder-induced D band are 

characteristic for graphitic carbon materials,252 thus their intensities can reflect the abundance of 

graphitic material present in degraded samples. The Raman samples were prepared by drop-

casting and drying the residual suspension on quartz slide in ambient (Appendix A2, Figure A2-

8). All Raman spectra were baseline-corrected in order to compare the D and G band changes. 

For o-MWCNT (5hr) and o-MWCNT (8hr) samples, the intensities of both D and G bands were 

seen to decrease progressively, suggesting a gradual diminishing of graphitic material so that 

only a small portion was left in the sample after 60 days of degradation. For p-MWCNT samples, 

however, the G band intensity remained the same at Day 30 to Day 60, while D band intensity 

continued to decrease as the enzymatic degradation progressed. The decrease in D to G band 

intensity ratio (ID/IG) was also observed in o-MWCNT (5hr) and o-MWCNT (8hr) samples 

(Figure 3-5). It should be reminded here that in the case of SWCNT enzymatic degradation,208 
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the D to G band ratio increased monotonically until both bands were completely suppressed, 

indicating an increasing defective site abundance created during degradation. However, for p-

MWCNT and o-MWCNT (5hr) samples, it was seen that the D to G band ratio increases during 

the first 30 days of incubation, but decreases in the next 30 days. Such an observation alludes to 

a more complex degradation mechanism for MWCNTs (Scheme 3-1). 

 

 

Scheme 3-1. Proposed mechanism of MWCNT enzymatic degradation. Different carboxylation 

times result in different amounts of surface defects, which proportionally influence the rate of 

enzymatic degradation. The degradation on the outer layers brings more defects on to the 

nanotubes; while as the outer layers are exfoliated, the more pristine inner cores are gradually 

exposed and resistant to HRP degradation. 

 

Unlike SWCNTs, MWCNTs have multiple graphitic layers. During the carboxylation 

process, the oxidative acid can create defects within the first several layers of sidewalls136 and 

also to both ends.50 These defects (oxygen functionalities) presumably provide preferable 

binding sites for the enzyme,168 thus the degradation will start from both ends as well as the 

defective sites on the outer layers of sidewalls. When the outer layers undergo enzymatic 
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degradation, the graphitic structures are further oxidized and thus the D to G band ratio 

increases. However, following this further oxidation, the graphitic lattice becomes more distorted 

and is exfoliated from the nanotubes, forming carbonaceous residues which presumably do not 

have characteristic Raman bands. Thus, as the outer layers are peeled off, further Raman spectra 

were essentially collected on exposed inner layers. It may be that oxidative acids cannot 

effectively oxidize the inner layers, which would result in their more pristine structure compared 

to outer layers. Therefore, the D to G band ratio would decrease when the outer graphitic layers 

were degraded and the inner layers were exposed. In this sense, the degradation rate of all three 

samples would greatly slow as pristine inner layers are more resistant to enzymatic degradation. 

Comparing the D to G band ratios for all three samples at Day 60, we found that p-MWCNTs 

were the most pristine (with little influence from inner wall oxidation). This may be why the 

pretreated sample had the slowest degradation kinetics. Conversely, the degradation rate of o-

MWCNT (8hr) was comparatively accelerated, showing an effect that degradation may have 

penetrated through additional walls, as the D to G band ratios progressively decreased during 60 

days.  
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Figure 3-6. Comparison of the diameter distributions of MWCNTs before and after 60 days of 

incubation with HRP and H2O2. For each sample 100 measurements of nanotube diameters were 

obtained via TEM imaging. The numbers above each histogram are the corresponding average 

values. 

 

While the enzymatic degradation from both ends of MWCNTs would shorten the 

nanotube length, as clearly shown in TEM images, the degradation from the sidewalls would 

cause decrease in the nanotube diameters. To verify the degradation mechanism, the diameter 

distributions of MWCNT samples were measured from low-resolution TEM images. For each 

sample before and after 60 days of degradation, 100 measurements of nanotube diameters were 

obtained and shown in Figure 3-6, with the corresponding average values listed above. 

Nanotube diameters from all three samples significantly decreased after 60 days of incubation 

from approximately 14 nm to 8 – 11 nm. This diameter decline can only be attributed to the fact 
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that the outer layers of MWCNTs were etched away by the enzyme. Since the interlayer spacing 

of MWCNTs was reported to approach 0.344 nm when the diameters are over 7 nm,17 the 

statistical data can roughly tell the number of layers that have been oxidized. Based on the 

assumption of 0.688 nm in diameter reduction per layer oxidized, on average, there were 

approximately 3 layers degraded for the p-MWCNT samples, and 7 to 8 layers for o-MWCNT 

(5hr) and o-MWCNT (8hr) samples.  

To better reveal structural morphology, high-resolution TEM imaging was performed on 

o-MWCNT (8hr) samples before and after 60 days of degradation (Figure 3-7a, b). The initial 

MWCNTs were observed with diameters around 16 nm and 13 – 14 graphitic walls; while the 

diameters of degraded MWCNTs reduced to around 8 nm with 5 – 6 graphitic walls. The high-

resolution TEM (Appendix A2, Figure A2-9) also shows that there are defective sites on o-

MWCNT (8hr) samples where the lattice structures within 5 – 8 outer graphitic layers were 

broken by the effect of oxidative acids. 

 

 

Figure 3-7. High-resolution TEM images taken on o-MWCNT (8hr) samples. All scale bars 

correspond to 5 nm. (a) o-MWCNTs (8hr) before enzymatic degradation. (b) o-MWCNTs (8hr) 

after 60 days of enzymatic degradation.  
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3.4.3 Enzymatic degradation of nitrogen-doped MWCNTs 

The post-synthesis functionalization methods such as carboxylation with strong oxidizing agents 

can introduce defective sites only in outer walls, which retain the pristine inner layers that are 

resistant to enzymatic degradation. However, MWCNTs can also be intrinsically functionalized 

by doping with nitrogen atoms during the synthesis process. By introduction of nitrogen source 

(MeCN) into the liquid precursor, the CVD synthesis produces a tubular structure 

compartmented by stacked cup-shaped sections as a result of nitrogen doping. Previous 

research108, 142 showed that the graphitic walls between two adjacent cups are not connected but 

extend outward unparallel to the tubular axis. As nitrogen has one more electron than carbon, the 

doped nitrogen atoms are not compatible to the graphitic structure and energetically prefer to 

stay at the open edge of the discontinuous graphitic walls forming dangling bonds.147 In this 

case, there are nitrogen-functionalized defective sites throughout all graphitic walls in n-

MWCNTs.  

Figure 3-8a shows an n-MWCNT after purification process. Unlike MWCNTs with 

continuous and hollow tubular structures, the nitrogen doping causes compartmentalization in the 

nanotube forming small stacked cups about 40 nm in length. For enzymatic degradation, the n-

MWCNT samples were incubated under the same HRP conditions as o-MWCNTs with daily 

addition of 800 μM H2O2. TEM images tracked the morphological changes of n-MWCNTs. On 

Day 15 (Figure 3-8b), the distinctive edge of the nanotubes became unidentified; the tubular 

structure started to be distorted, and there appeared to be carbonaceous sheets surrounding each 

nanotube. These results were consistent to the observations of o-MWCNTs at the initial stage of 

degradation. After 50 days (Figure 3-8c), these carbonaceous sheets were observed to spread all 

over the sample, with holes appearing on top of them, which indicated further degradation of the 
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carbonaceous sheets. However, the tubular structure was hardly observed at this stage, and they 

appeared to be merging into the sheets. Eventually, at Day 80, there were no tubular structures 

observed, and the only materials left over were some amorphous flakes. The absence of tubular 

structures showed a complete degradation behavior of n-MWCNTs by HRP/H2O2. Photograph 

images (Figure 3-8e) taken before and after 90 days of degradation process showed a significant 

disappearance of the grey color in the solution. This complete degradation of n-MWCNTs was 

confirmed by Raman spectroscopy (Figure 3-8f), which shows almost complete absence of D 

and G bands after enzymatic degradation.  

 

 

Figure 3-8. TEM images of nitrogen-doped MWCNT (n-MWCNT) samples during enzymatic 

degradation: (a) As synthesized and purified n-MWCNT at Day 0. The inset shows the schematic 

illustration of its stacked-cup structure. (b) Day 15, (c) Day 50, and (d) Day 80. (e) Photographs 

comparing n-MWCNT samples before (left) and after (right) enzymatic degradation. (f) Raman 

spectra for n-MWCNT samples before (black) and after (red) enzymatic degradation. 
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This observation showed a significant contrast to the incomplete enzymatic degradation 

of o-MWCNTs, further supporting the “layer-by-layer” degradation mechanism proposed above. 

In essence, the nitrogen doping introduces much more defects into the graphitic structure, which 

can be reflected from the Raman spectra (Figure 3-8f) because the D/G band ratio of n-

MWCNTs are much higher than that of o-MWCNTs. Since nitrogen was doped in situ during the 

synthesis process, these defective sites not only exist in the outer graphitic layers, but are present 

in all graphitic walls. These nitrogen functionalized defects are then assumed to provide binding 

sites for HRP enzyme throughout the whole process leading to complete degradation. 

It should be noted here that the as-synthesized n-MWCNTs were subject to a purification 

process with HCl and H2O2 in order to reduce the content of iron impurities. Thermogravimetric 

analysis (TGA) taken on the samples before and after purification showed that there was a 

considerable decrease in the iron content after purification, although the left-over iron content 

was still significant (Appendix A2, Figure A2-10). It is possible that the residual iron impurities 

may cause a Fenton catalytic oxidation168 of n-MWCNTs and influence the result of enzymatic 

degradation. In a control experiment, we replaced the HRP by 1×10−4 M FeCl3 aqueous solution 

with daily addition of the same amount of H2O2, in order to observe the Fenton oxidation effect 

on n-MWCNTs. However, after 80 days of incubation, there were still a considerable amount of 

nanotubes present from TEM images (Appendix A2, Figure A2-10b), which showed that the 

Fenton oxidation may have much slower degradation kinetics on n-MWCNTs than HRP. Thus, 

the effect of iron impurities on HRP/H2O2 enzymatic degradation was minor. 
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3.5 CONCLUSIONS 

In this study, the enzymatic degradation of carboxylated MWCNTs and nitrogen-doped 

MWCNTs was investigated in the presence of HRP and H2O2. Different degrees of carboxylation 

were achieved by controlling the time of oxidative acid treatment, and the resultant degradation 

rate was associated with the degree of carboxylation on MWCNTs, which further supported the 

fact that it is the hydrophilic interaction between HRP’s heme active site and the oxygen-

containing defective sites on nanotubes that causes the nanotubes to be oxidized and degraded, as 

we investigated in our previous work.168 The degradation is confirmed by monitoring the 

evolution of CO2 gas as a final oxidation product by GC-MS. Furthermore, because of their 

multi-layer graphitic structures, the MWCNTs are more resistant to HRP degradation and it takes 

a significantly longer time to degrade MWCNTs than SWCNTs in the same experimental 

conditions. The fact that MWCNTs with reduced diameters and lengths remained over 80 days 

of degradation leads to a layer-by-layer mechanism of degradation revealed by TEM and Raman 

spectroscopy. The degradation of MWCNTs is taking place on the defective sites of outer 

graphitic walls which are exfoliated layer-by-layer leaving the pristine inner walls more resistant 

to HRP oxidation. In contrast to carboxylated MWCNTs, nitrogen-doped MWCNTs, having 

intrinsic nitrogen-functionalized defective sites in all graphitic walls, showed complete 

enzymatic degradation within 80 days, which well supported the proposed mechanism.  
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4.0  NANO-GOLD CORKING AND ENZYMATIC UNCORKING OF CARBON 

NANOTUBE CUPS 

4.1 CHAPTER PREFACE 

The previous chapter provided fundamental understanding of the degradative behavior of 

MWCNTs in the presence of HRP and H2O2.  In this chapter, we extended our degradation study 

to a more practical and physiological-relevant situation by monitoring the degradation of GNP-

corked NCNCs under a more potent mammal peroxidase – human myeloperoxidase (hMPO).  

Derived from nitrogen-doped carbon nanotubes, the unique stacked cup-shaped hollow 

compartments, termed as nitrogen-doped carbon nanotube cups (NCNCs), have promising 

potential as nanoscale containers.  In this work, individual NCNCs are effectively isolated out 

from their as-synthesized stacked structure by a combination of acid oxidation and probe-tip 

sonication.  Based on the intrinsic localized nitrogen functionalities, we managed to effectively 

cork the NCNCs with gold nanoparticles (GNPs) grown in situ by sodium citrate reduction of 

chloroauric acid, which formed a graphitic nanocapsule confined with GNP “stoppers”.  

Mechanistically, the growth of the GNP corks starts from the nucleation and welding of gold 

seeds on the open rims of NCNCs enriched with nitrogen functional groups.  Quantitatively, this 

mechanism is in good agreement with density functional theory (DFT) calculations.  A potent 

oxidizing enzyme of neutrophils, myeloperoxidase, effectively opened the corked NCNCs 

though GNP detachment, with subsequent complete enzymatic degradation of the graphitic 
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shells.  This controlled opening and degradation was further carried out in vitro with human 

neutrophils, which alludes to new strategies in drug delivery applications based on GNPs-corked 

NCNCs.  

The material in this section contains a manuscript submitted for publication.  

 

List of Authors: Yong Zhao, Yifan Tang, Dan C. Sorescu, Alexander A. Kapralov, Valerian E. 

Kagan, and Alexander Star 

 

Author Contributions: YZ and AS conceived and designed the experiments; YZ carried out the 

experiments; YZ and YT performed the characterization; DS led the theoretical study; AK and 

VK performed the cellular study; YZ and AS analyzed the data and wrote the manuscript. 

 

4.2 INTRODUCTION 

Because of their enhanced permeability and retention effect in tumor cells,253-254 the emerging 

use of nanocarriers such as liposomes, nanoparticles and macromolecules has exhibited 

compelling promises in drug delivery applications,255-257 providing fundamental advantages such 

as longer circulation time, lower immunogenicity, better biocompatibility, and selective 

targeting.258-260  In particular, given their nanoscale dimensions and versatile reactivities, carbon 

nanomaterials such as carbon nanotubes (CNTs) and graphenes have received increasing 

research attention for drug delivery.48, 50-51 Drugs loaded on the outer surface of CNTs via 

covalent9 or noncovalent77 functionalization risks unnecessary exposure causing side-effects or 

http://pubs.acs.org/action/doSearch?action=search&author=Sorescu%2C+D+C&qsSearchArea=author
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early drug degradation.261 Comparatively, filling the drugs in the hollow interior of nanotubes is 

more desirable in terms of protecting drugs before reaching the target.53, 262-263 Accordingly, 

nitrogen-doped carbon nanotube cups (NCNCs), a cup-shaped carbon nanostructure derived 

from nitrogen-doped CNTs, may serve as ideal drug delivery carriers:  Their small sizes ranging 

from 50 – 200 nm may exhibit a delayed rate of bloodstream clearance by the mononuclear 

phagocytic system (MRS),182, 223 and their unique morphology allows easy access to both inner 

and outer surfaces for diverse functionalization.105, 165, 167  

Being well recognized for their oxygen-reduction catalytic activity,113, 150-151 as-

synthesized NCNCs consist of cup-shaped compartments stacked up via van der Waals 

interactions,160 which can be readily separated into individual nanocups via various methods.105, 

161-162, 167 Recently, we found that a combination of pre-oxidation and high-intensity probe-tip 

sonication greatly improved the efficiency of separation which yielded mostly individual 

hydrophilic nanocups.140  Due to the intrinsic nitrogen functionalities localized at the cup 

opening, the separated NCNCs show strong affinity to gold nanoparticles (GNPs) in aqueous 

solution, which preferentially “cork” the opening of nanocups, forming self-confined 

nanocapsules. The hydrophilic surfaces of NCNCs after oxidation impede adsorption of opsonin 

proteins, which may inhibit early phagocytotic removal and ensure prolonged blood circulation 

for NCNCs,264 leading to promising drug delivery applications.  

Despite the preferred confined morphology for drug delivery, strategies need to be sought 

to trigger the opening of the nanocapsules for potential release of their cargo, typically under 

stimuli involving chemicals, pH, or light.76, 217, 265 On the other hand, the nanocarriers should be 

subject to clearance after delivery to mitigate their potential in vivo toxicity, especially for 

carbon nanomaterials,169, 173 although the nitrogen-doped CNTs were found to be more 
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biocompatible than undoped single- or multi-walled CNTs.154, 220  Naturally existing peroxidases, 

such as horseradish peroxidase (HRP) and myeloperoxidase (MPO) in combination with 

hydrogen peroxide (H2O2), can act as strong oxidation agents to enzymatically degrade carbon 

nanomaterials such as single- and multi-walled CNTs and graphenes in vitro or in vivo.167-168, 205-

206, 208  In this work, human MPO (hMPO) was applied to degrade the GNP-corked NCNCs in 

the presence of H2O2 and NaCl, which built a stronger enzymatic oxidation system via both 

peroxidase cycle.169, 208 Interestingly, we found that at the initial stage of degradation, the 

enzyme triggered the release of GNP corks from the nanocups, which actively opened the cups, 

followed by a complete degradation of NCNC shells within a course of 20 days.  Such triggered 

opening of corked nanocups was also observed in presence of human neutrophils, a type of 

leukocytes capable to release MPO upon activation during the inflammatory response.210 These 

findings may lead to an innovative drug release scheme carried out by the innate immune system, 

which may find potential applications for treating acute/chronic inflammation, where antibiotics 

and/or protection agents can be delivered upon the enzymatic release triggered by activated 

immune cells.266  

4.3 EXPERIMENTAL SECTION 

4.3.1 Synthesis of separated NCNCs 

The stacked NCNCs were synthesized using chemical vapor deposition (CVD) methods from a 

liquid precursor consisting of 10.0 wt % of acetonitrile, 0.75 wt % of ferrocene and 89.25 wt % 

of xylenes.105  To perform NCNC separation, 10 mg of the as-synthesized material was dispersed 
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into 40 mL of 3:1 (v/v) H2SO4/HNO3 in a round bottle flask.  The mixture was sonicated in a 

water bath sonicator for 4 h at room temperature, then diluted with water and washed repeatedly 

with 0.01 M NaOH, 0.01 M HCl, and water.  The oxidized NCNCs in water were then sonicated 

for 8 h at a probe-tip ultrasonicator (Qsonica Q500) equipped with a ½” probe.  The solution was 

centrifuged at 4000 – 8000 rpm for 15 min, and the supernatant was collected and filtered 

through 200-nm-pore PTFE membrane. The filtrate containing short separated NCNCs were 

obtained. 

4.3.2 Corking of NCNCs with GNPs 

250 µL of HAuCl4 aqueous solution (1 mg/mL) was added into 5 mL of ~0.01 mg/mL separated 

NCNC aqueous solution when stirring on a hot plate at 70 °C.  After 20 min of incubation, 150 

µL of 1 wt % trisodium citrate solution was added dropwise and the reaction was stirred for 

another 2 h.  GNP/NCNC conjugates were precipitated from free GNPs by centrifugation at 3400 

rpm for 15 min. 

4.3.3 Enzyme-triggered opening and degradation of GNP-corked NCNCs 

The separated NCNCs with or without GNPs were dispersed at a concentration of 0.015 mg/mL 

into 0.01 M phosphate buffer solution in a total volume of 1000 µL.  The enzymatic degradation 

was conducted following published procedure.208 To the NCNC sample, NaCl at a concentration 

of 1 µM is added on the initial day; Lyophilized purified native human MPO (Athens Research 

and Technology, Inc.) is added daily at a concentration of 8.35 µg/mL; 1 µL of 100 mM H2O2 is 

added every 2 h, four times per day.  For the NaClO control experiment, 1 µL of 100 mM NaClO 



 111 

was added every 2h, four times per day in absence of hMPO and H2O2. For the H2O2 control 

experiment, 1 µL of 100 mM H2O2 was added every 2 h, four times per day in absence of hMPO, 

NaCl, and NaClO.  The hMPO/H2O2 control was the same as the active sample but without 

NaCl.  All samples were incubated at 37 °C for 20 days, with daily agitation by vortex shaker for 

better dispersion. 

4.3.4 Neutrophils isolation and incubation with nanocups 

Human neutrophils were isolated by a procedure utilizing Histopaque (Sigma, St. Louis, MO, 

USA). Briefly, human buffy coat (Central blood bank, Greentree, PA, USA) was mixed with 6% 

Dextran T-500 in phosphate-buffered saline (PBS) in ratio 5:1 and allowed to sediment for 30 

min at room temperature. The leukocyte-rich plasma (top layer) was aspirated, diluted two times 

with PBS, layered over Histopaque solution with density 1.077 g/ml (Sigma, St. Louis, MO, 

USA) and subjected to centrifugation (700 g for 45 min at room temperature without brake). The 

pellet containing neutrophils was collected and contaminated erythrocytes were removed by 

hypotonic lysis with ice-cold water. Neutrophils were washed twice with calcium and 

magnesium free PBS; and suspended in RPMI-1640 without phenol red, containing 10% fetal 

bovine serum in concentration 10×106 cells/ml. 50 µg of nanocups incubated with purified 

human IgG (Invitrogen, Carlsbad, USA) in 1:1 ratio (w/w) for 18 hrs at 37 °C were incubated 

with neutrophils (25×106) for 16 hrs and the extent of biodegradation was assessed. 
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4.3.5 hMPO contents in cells and its release 

Levels of hMPO in cells were determined by ELISA kit (Alpco Diagnostics, NH, USA) after 30 

min incubation with samples. Neutrophils were centrifuged at 1000 g for 10 min. The 

supernatant and pellet were obtained and used separately for hMPO measurements according to 

the manufacturer’s manual. The amounts of hMPO were expressed as mg/mL. 

4.3.6 Characterization 

TEM at lower resolution was performed with FEI Morgagni microscope at an accelerating 

voltage of 80 kV.  High-resolution TEM was on JEOL 2100F microscope with 200 kV 

accelerating voltage. Samples were dropcasted on a lacey carbon TEM grid. The cell samples 

were first subjected to a protease k digest. Raman spectra were taken on Renishaw inVia Raman 

microscope with an excitation wavelength of 633 nm and 10 second exposure time. XPS was 

performed on a Thermo Scientific K-Alpha using monochromated Al Ka x-rays as the source.  

UV-Vis spectroscopy was carried out on a Perkin-Elmer Lambda 900 spectrometer. EDX 

spectroscopy was performed on a Phillips XL30 FEG microscope equipped with an EDAX 

assembly. DLS was performed using a quasi-elastic light scattering spectrometer (Brookhaven 

90 Plus Particle Size Analyzer). 
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4.4 RESULTS AND DISCUSSION 

The stacked NCNCs were synthesized following a modified chemical vapor deposition (CVD) 

method from a mixture of acetonitrile, ferrocene, and xylenes,105 which were then effectively 

separated through acid oxidation and subsequent probe-tip sonication (Figure 4-1a).140  The 

separated NCNCs consist of mostly individual and short stacks of nanocups between 80 – 200 

nm in length as revealed by transmission electron microscopy (TEM) imaging (Figure 4-1b) and 

dynamic light scattering (DLS) measurements (Appendix A3, Table A3-1).  A typical individual 

NCNC has a cup-shaped morphology with an open interior of ~30 nm in diameter. The oxidation 

and sonication left the separated NCNCs with higher levels of graphitic defects as reflected by 

Raman spectroscopy (Appendix A3, Figure A3-1), which lead to their hydrophilic nature.  

The intrinsic nitrogen functionalities are preferentially located at the open rim of the 

separated nanocups, preventing them from further growth during CVD synthesis145 and 

providing reactive sites for further functionalization.105 The separated NCNCs form stable water 

dispersion for months, allowing the growth of GNPs directly on the nanocups by sodium citrate 

reduction.  Briefly, chloroauric acid was first mixed with NCNCs aqueous suspension for 20 

min, and sodium citrate was then added to the reaction mixture at 70 °C.  Upon removal of free 

GNPs by centrifugation, elemental analysis from energy-dispersive X-ray (EDX) spectroscopy 

confirmed the existence of Au on NCNCs (Appendix A3, Table A3-2).  TEM images show that 

almost every nanocup was evenly decorated with 1–2 GNPs of about 30 nm in diameter. A large 

proportion of the GNPs was found bound to the open end of the nanocups, which effectively 

form stoppers corking the cups (Figure 4-1c).  Once bound to the rim of the cups, the GNPs 

appear to adapt the shape of the opening seamlessly and completely seal their interior space, as 

shown by high-resolution TEM image (Figure 4-1d). High-resolution TEM images reveal the 
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polycrystalline nature of the GNP cork with lattice distance of 0.23 nm corresponding to gold 

(111) surfaces, which suggest that the GNP corks are resulted from the welding of many fcc gold 

nanocrystals (Appendix A3, Figure A3-2a).267-268 

The UV-Vis absorption spectra of separated NCNCs show a characteristic peak located at 

260 nm (Figure 4-2a), corresponding to the π electron plasmon band in conjugated systems.93  

After GNP growth, the reaction mixture turned from brown to red and the NCNC/GNP 

conjugates were collected by centrifugation. There is a distinct color difference between the red 

supernatant and the purple precipitate suspensions, which is confirmed by the red-shift of the 

gold surface plasmon resonance (SPR) band from 526 nm to 537 nm (Figure 4-2a).  This red-

shift may be due to both the size difference (Appendix A3, Figure A3-3) and the direct 

electronic interaction between the GNPs and the NCNC substrate.105 The presence of GNPs on 

NCNCs causes strong surface-enhanced Raman scattering (SERS) effect, allowing sensitive 

detection of this hybrid material by Raman spectroscopy in biological samples.  Figure 4-2b 

shows the Raman spectra of NCNCs decorated with GNPs compared with unfunctionalized 

NCNCs. Enhancements of about 15 and 18 fold were noticed for the intensities of D (~1350 cm-

1) and G (~1582 cm-1) bands, respectively. We speculate that the SERS effect is mainly 

originated from the charge transfer between GNPs and NCNCs,103 due to the electronic 

interaction between GNPs and NCNCs. By mixing NCNCs with commercial citrate-coated 

GNPs, in which GNPs are physically adsorbed on NCNCs without direct contact (Appendix A3, 

Figure A3-4), the SERS effect was not observed (Figure 4-2b).  On the other hand, the 

functionalization of GNPs is more favorable on nitrogen-doped graphitic structure. Undoped 

multiwalled CNTs treated by the same procedure did not bind effectively to GNPs (Appendix 

A3, Figure A3-5). 
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Figure 4-1. (a) Separation and corking of NCNCs with gold nanoparticles (GNPs) by (i) acid 

oxidation with H2SO4/HNO3, (ii) probe-tip sonication, (iii) incubation with HAuCl4 and (iv) 

sodium citrate reduction. (b) Transmission electron microscopy (TEM) images of separated 

NCNCs. The upper right inset shows a magnified TEM image of an individual nanocup, the 

lower left inset shows the length distribution of the separated cups. (c) TEM images of separated 

NCNCs functionalized with GNP corks. The inset shows the TEM image of an individual 

nanocup corked by a GNP on the opening. (d) High-resolution TEM image of the corked 

GNP/NCNC structure. 
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Figure 4-2. (a) UV-Vis absorption spectra and photograph of aqueous suspensions of separated 

NCNCs (1), supernatant (2) and precipitate (3) of NCNC/GNP conjugates after centrifugation. 

(b) Raman spectra of separated NCNCs (black), NCNCs mixed with commercial GNPs (blue), 

and NCNCs corked with GNPs by in situ reduction process (red). The dotted line indicates the 

baseline. 
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4.4.1 Growth mechanism of GNP corks on NCNCs 

In order to understand the mechanism of the GNP cork formation, the chemical structure of 

nitrogen present in separated NCNCs was characterized by X-ray photoelectron spectroscopy 

(XPS) (Appendix A3, Figure A3-6). Nitrogen was detected at about 1 – 2 at.% on the surface of 

NCNCs.  The high-resolution profiles of nitrogen peak were fitted into different components 

with a Gaussian/Lorentzian ratio of 80:20. The N1s profile indicates the existence of 

functionalities such as pyridinic, pyrrolic, amine, and oxidized nitrogen. Before GNP 

functionalization, the nitrogen 1s profile can be deconvoluted to 5 peaks, 4 of which can be 

assigned as pyridinic (398.6 eV), pyrrolic (399.8 eV), amine (400.8 eV), and oxidized nitrogen 

(405.8 eV), according to existing literature.105, 229, 269-270 The origin of peak N4 at 402.1 eV is 

debated.  We assign this peak to protonated amine groups (–NH3
+),269 because amine groups may 

be partially protonated after the acid treatment process. After GNP functionalization, the peak at 

402.1 eV disappeared, along with the appearance of the graphitic nitrogen peak at 401.2 eV,233, 

271 and the outshooting of the amine peak.  We suspect that the amine groups were deprotonated 

during the GNP reduction, likely due to the interaction with gold salt and citrate.  There is a 

slight decrease in the binding energy of nitrogen species after GNP function, indicating potential 

electronic interaction between gold and nitrogen functionalities. The change of amine groups 

alludes to the initial binding sites of GNPs on NCNCs.  We speculate that the growth of the GNP 

corks begins with a nucleation step on the open rims enriched with amine groups, followed by 

subsequent growth under citrate reduction. Presumably, during the initial incubation, the gold 

precursor AuCl4
‾ was first electrostatically bound to the –NH3

+ groups, and then reduced by the 

graphitic network, leading to further oxidation of carbon (Appendix A3, Figure A3-6) and 

deprotonation of amines.  
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The growing process of the GNP corks was examined by TEM of the reaction mixture 

sampled at different reaction times (Figure 4-3a–d). The initial gold nucleation on the open rim 

and the subsequent welding of adjacent GNP seeds are observed during the first 20 min of 

reaction. After addition of sodium citrate to the reaction mixture, the formation of GNPs was 

further accelerated. After 50 min, the agglomeration of GNP seeds on the opening of nanocups 

has occupied the entire rim, which eventually leads to the formation of molded GNP corks after 

80 min of reaction.  The corresponding UV spectra during the reaction show the appearance of 

the gold SPR band after 50 min, with a gradual red-shift indicating the increasing size of GNPs 

(Appendix A3, Figure A3-7). 

The observed nucleation of GNP seeds on the NCNC openings and subsequent growth 

into GNP corks was further supported by first principles calculations (Appendix A3, 

Computational Methods). We simulated the initial stage of the nucleation process for the case 

of a Au20 cluster adsorbed initially either at the center or at the edge of a 7×11 graphene flake 

functionalized with different nitrogen functional groups (Appendix A3, Figure A3-8). By 

comparing the adsorption energy at the most stable binding configurations, we found that the 

graphene edge functionalized with an aliphatic primary amine (–CH2NH2) incurred the strongest 

binding with Au20.  In this case, the –CH2NH2 group is extruding out of the graphene plane such 

that the lone electron pair from N is unconjugated and forms a covalent bond with the Au20 

cluster (Figure 4-3e).  Since the existence of aliphatic amine groups on separated NCNCs is 

confirmed by both XPS and Kaiser test,105, 140 the anchoring effect of amine groups explains the 

nucleation mechanism during GNP growth. The energy plot in Figure 4-3e shows the minimum 

energy reaction pathways of the Au20 cluster migrating from the central region of the graphene 

flake toward the edge where it gets bonded with a –CH2NH2 group. The reaction profile 
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demonstrates that anchoring of Au20 cluster mediated by this group is highly favorable and the 

barriers involved are very small (< 0.5 kcal/mol).  In addition, when a given Au20 cluster is 

already bonded with the –CH2NH2 group, another Au cluster can easily diffuse toward it and 

becomes bonded with formation of a larger cluster through a nanowelding process (Figure 4-

3f).267 This cumulative effect eventually leads to formation of large GNPs preferentially on the 

opening of the NCNCs, where the graphitic edges are enriched with amine groups.   

 

Figure 4-3. (a) – (d), TEM images of the growth process of GNPs on individual NCNCs 

sampled at (a) 5 min, (b) 20 min, (c) 50 min, and (d) 80 min after the addition of HAuCl4. 

Sodium citrate was added at 20 min right after sampling. The arrows in (a) show the nucleation 

of gold seeds. (e), (f), Minimum energy reaction pathways for diffusion of Au20 cluster from the 

central region of the (7×11) graphene flake surface toward the zigzag edge (e) decorated with a 

CH2NH2 group and (f) when a second Au20 cluster is anchored to the -CH2NH2 group at the 

graphene edge. For both sets of pathways the initial and final configurations are represented in 

the inset panels. Legend of atoms: C, green; N, blue; H, white; O, red; and Au, orange. 
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4.4.2 Enzyme-triggered uncorking and degradation of GNP/NCNCs 

While the confinement of interior with GNP corks endows the nanocups with potential as drug 

delivery carriers, the enzymatic degradation ensures the subsequent optimized release of the 

payloads and clearance of the nanocup shells for improved biocompatibility. The stacked 

nitrogen-doped CNTs were previously shown to undergo a slow degradation by plant HRP/H2O2 

initiated at the defect sites on graphitic surface over the period of 90 days.206  Using a 

biomedically more relevant oxidative enzyme hMPO, we hereby examined the degradation of 

separated NCNCs.  The separated NCNCs were dispersed in phosphate buffer solution 

containing 1 mM NaCl, which is necessary for producing NaClO in the halogenation cycle.  

With daily supplement of MPO and H2O2, the separated NCNCs were seen gradually degraded 

within 20 days, as evidenced by the morphological deformation from TEM images, and the 

suppression of their UV-Vis and Raman characteristic peaks (Appendix A3, Figure A3-9). On 

the other hand, with only NaClO as oxidant, incomplete degradation was observed during the 20-

day timeframe (Appendix A3, Figure A3-10), which indicates that the synergetic effect of 

peroxidase cycle and halogenation cycle is important to expedite the degradation of NCNCs.208 

As the control, without hMPO or NaClO as oxidants, only H2O2 did not incur any significant 

degradation of NCNCs (Appendix A3, Figure A3-11). 

Interestingly, when the NCNCs were corked with GNPs, we found that the hMPO not 

only degraded the graphitic shell, but also triggered the opening of nanocups by releasing the 

GNP corks at the early stage of incubation. The initial GNP/NCNC sample was centrifuged 

several times to ensure the removal of free GNPs.  With daily additions of hMPO and H2O2 to 

the sample in the presence of NaCl, TEM images show that most of the GNPs were detached 

from NCNCs within the first 5 days of degradation (Figure 4-4a).  Subsequently, the NCNCs 
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underwent significant degradation after releasing the GNP corks and eventually vanished after 20 

days (Figure 4-4b,c), leaving only agglomerations of GNPs.  UV-Vis spectra in Figure 4b show 

the similar trend of disappearing π electron band within 15 days of degradation (Figure 4-4d).  

Notably, the SPR band from GNPs was observed to gradually red-shift from initial 538 nm to 

561 nm.  We infer that this red-shift is due to the agglomeration of free GNPs detached from 

NCNCs, because the GNP corks are not entirely coated with citrate leaving bare active surfaces 

that can easily weld with each other.267  Once detached, the GNPs failed to induce surface-

enhanced Raman effect on NCNCs.  The Raman spectra of the degradation sample show a 

drastic decrease of D and G band intensities within the first 2 days of degradation, followed by a 

slower decrease afterward until a complete suppression (Figure 4-4e). However, when the 

degradation was carried out in the NaClO-only sample, the GNP corks largely remained attached 

on the nanocups without apparent agglomeration, till most nanocups were degraded (Appendix 

A3, Figure A3-12).  The attachment of GNPs on the NCNCs was evidenced by the absence of 

red-shift in their SPR bands, as well as a strong lasting SERS effect within the first 5 days of 

degradation. When the GNP/NCNCs were incubated with only H2O2, no significant detachment 

of GNPs or degradation of NCNCs was observed (Appendix A3, Figure A3-13).   

The different behaviors of the GNP/NCNC conjugates under different degradation 

conditions were monitored by the intensity plot of the G band from Raman spectra (Figure 4-4f). 

Each data point was averaged from five Raman spectra at different spots and normalized to the 

initial intensity.  Two decreasing stages are distinguished in the hMPO/H2O2/NaCl sample: The 

first fast-decaying stage corresponds to the detachment of GNPs from NCNCs when they mostly 

aggregated and lost the direct interaction with NCNCs. The second stage reflects the actual 

degradation of nanocups, which shows a slower but complete decay within 20 days.  In contrast, 
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the intensity plot in the NaClO sample shows a slower and more constant decreasing slope 

throughout the 20 days, largely due to the loss of graphitic structure instead of GNP detachment. 

The plot in the H2O2 control remains stable during the experiment, indicating that the 

GNP/NCNC conjugate is stable under physiological conditions. The Raman plots confirm that 

the interaction with hMPO uniquely triggers the dissociation of GNPs from NCNCs, which is not 

due to simple oxidation of the graphitic shell. We speculate that the detachment of GNPs is 

caused by the strong binding of hMPO toward the defective sites of NCNCs during the 

peroxidase cycle and the interaction with negatively-charged GNPs,208 with corresponding 

weakening of the interaction between GNPs and nanocups. On the other hand, the ClO‾ produced 

in the halogenation cycle is a strong oxidant that oxidizes the whole graphitic framework with no 

preferential binding sites272 and has limited effect on GNPs.  To prove the uncorking effect from 

the peroxidase cycle, we incubated the GNP/NCNCs in the presence of hMPO and H2O2 and in 

the absence of NaCl. It turned out that the GNPs were readily detached from NCNCs during the 

first 5 days, inducing a red-shift of the SPR band and a sudden drop of Raman intensity, while 

the NCNCs were not significantly degraded throughout the 20 days (Appendix A3, Figure A3-

14).   

The hMPO-triggered uncorking and degradation of GNP/NCNCs was further studied in 

vitro with human neutrophils, a type of immune cells primarily involved in inflammatory 

responses and MPO generation.169 Using ELISA kit, we found that neutrophils contained 1.8 mg 

hMPO per 106 neutrophils. Upon neutrophil activation, 75% of the total hMPO remained inside 

the cells and only 25% of the amount of enzyme was released into extracellular environment. 

The neutrophils were administered with 50 µg GNP-corked NCNCs opsonized with IgG. The 

cells were then dissolved with sodium dodecyl sulfate (SDS) for analysis. After 18 h of 
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incubation at 37 °C, TEM image shows that most GNPs were detached from NCNCs and 

aggregated with each other (Figure 4-5a). Hints of degradation were observed on NCNCs as the 

graphitic surfaces started to be deformed. Comparatively, when the GNP-NCNCs were mixed 

with neutrophils which were directly collected without incubation, no signs of either GNP 

detachment or NCNC degradation were shown (Appendix A3, Figure A3-15a). Among ~100 

NCNCs observed from different TEM images, the percentage of NCNCs decorated with GNPs is 

significantly reduced after the 18 h incubation (Figure 4-5b), suggesting that human neutrophils 

can effectively uncork the cups in vitro. Raman spectra (Appendix A3, Figure A3-15b) and the 

Raman intensity mapping (Figure 4-5c,d) on the G-bands further confirmed the detachment of 

GNPs. The cell residues without incubation show strong signals of the nanocups due to the 

enhancement from the GNPs, appearing as bright yellow spots in the optical image (Figure 4-

5c); while in the sample after 18 h incubation, the signals from nanocups are greatly suppressed. 

These data indicate that the reactive MPO intermediates generated by neutrophils during the 

cellular inflammatory response may trigger the release of drug cargo in the potential nanocup 

drug delivery system. 
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Figure 4-4. (a) – (c), TEM images of the degradation process of NCNCs corked with GNPs 

under hMPO/H2O2/NaCl at (a) Day 5, (b) Day 10, and (c) Day 20 after incubation. (d) UV-Vis 

absorption spectra and (e) Raman spectra of the sample during the degradation process. The inset 

in (d) shows the red-shift of the GNP surface plasmon resonance (SPR) band. (f), Intensity plots 

of the Raman G bands from the sample (black), the NaCl control (red), and the H2O2 control 

(blue). The intensity was averaged and normalized to the initial value and the error bars 

correspond to the standard errors of the mean. 
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Figure 4-5. (a) TEM image of the GNP/NCNC sample treated with human neutrophils after 18 h 

of incubation. (b) Percentages of the NCNCs decorated with GNPs in ~100 NCNCs treated with 

neutrophils, before and after 18 h of incubation. The error bars correspond to the standard errors 

of the mean. (c), (d) Optical images of the cell fragments from the GNP/NCNC sample treated 

with neutrophils: (c) before and (d) after 18 h of incubation, under Raman microscope. The 

insets in panels c and d show the Raman intensity mapping of the G-band corresponding to the 

areas inside the dashed boxes. 
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4.5 CONCLUSIONS 

We developed a novel cup-shaped graphitic structure using nitrogen-doped carbon nanotube 

cups (NCNCs), which can be efficiently isolated out from the stacked nitrogen-doped CNTs 

fibers through a combination of acid oxidation and high-intensity ultrasonication.  Through a 

sodium citrate reduction, the separated nanocups can be effectively corked with GNPs on their 

open rims due to the preferential distribution of nitrogen functionalities on the edge. A 

pronounced SERS effect on these GNP-corked NCNCs was observed, indicating direct 

electronic interaction between GNPs and NCNCs.  Based on both experimental and theoretical 

analysis, we identified the growth mechanism of the GNP corks, initiated by the nucleation of 

small GNP seeds toward the nitrogen functionalities, especially aliphatic amines on the opening 

of the cups.  In addition, we demonstrated that the GNP-corked NCNCs can be effectively 

“opened” by hMPOs, followed by a complete degradation of the graphitic cup shells.  The 

uncorking effect was further observed in the presence of MPO-containing human neutrophils, 

indicating the potential of the GNP-corked NCNCs in drug delivery applications, particularly in 

the treatment of acute/chronic inflammations.  
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5.0  RECENT STUDIES AND FUTURE DIRECTIONS 

5.1 CHAPTER PREFACE 

Currently, there are several completed or ongoing projects related to nitrogen-doped CNTs in the 

Star’s research group, including but not limited to: (1) the effect of metal residues on the 

electrocatalytic activity of N-doped CNTs; (2) unzipping of N-doped CNTs to form graphene 

nanostructures; (3) encapsulation of molecular cargo in GNP-corked NCNCs; (4) surface-

enhanced Raman spectroscopy study using GNP-functionalized graphene flakes as a substrate. 

This chapter provides a brief introduction to these recent studies that I have participated in, and 

discusses the future directions of research concerning the electrochemical and biomedical 

applications of N-doped CNTs and derivative nanomaterials. 

The material in Section 5.2 was recently published in The Journal of Physical Chemistry 

C, and reproduced with permission from J. Phys. Chem. C 2013, 117, 25213-25221, Copyright 

2013 American Chemical Society, with full citation listed in Ref. 150.  The material in Section 

5.3 is summarized from a manuscript submitted for publication. 
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5.2 THE EFFECT OF METAL CATALYST ON THE ELECTROCATALYTIC 

ACTIVITY OF NITROGEN-DOPED CARBON NANOTUBES 

5.2.1 Preface 

This material was recently published in The Journal of Physical Chemistry C, and reproduced 

with permission from J. Phys. Chem. C 2013, 117, 25213-25221, Copyright 2013 American 

Chemical Society, with full citation listed in Ref. 150. 

 

List of Authors: Yifan Tang, Seth C. Burkert, Yong Zhao, Wissam A. Saidi, and Alexander Star  

 

Author Contributions: All authors contributed to the design of experiments and writing of 

paper. YT, SCB, YZ synthesized the materials using CVD. YT and SCB performed the TEM 

characterization and electrochemical analysis, YT and YZ conducted the SEM and EDX 

characterization.  YZ characterized the materials using Raman spectroscopy. 

5.2.2 Introduction and brief results  

Nitrogen-doped carbon nanomaterials have been shown to be great candidates for substituting 

expensive Pt-based catalysts in fuel cells for oxygen reduction reaction (ORR).113, 151, 229 Some 

metal catalyst-based synthetic techniques, such as chemical vapor deposition (CVD) and 

thermal-solution pyrolysis108, 114-119 of N-doped carbon nanomaterials unavoidably introduce 

transition metal nanoparticles into the as-synthesized carbon nanomaterials, which which have 

well-known catalytic activity on their own273 and may affect the electrochemical catalytic 

http://pubs.acs.org/action/doSearch?action=search&author=Sorescu%2C+D+C&qsSearchArea=author


 130 

activity at above middle parts per million (ppm) range.274 The debated effects of residual metal 

on the electrocatalytic activity of carbon nanomaterials have prompted the development of new 

metal-free electrocatalysts, which confirmed the necessity of nitrogen doping for improved ORR 

catalytic activity in the absence of transition metals.275 However, the effects of different metals 

on the ORR mechanism that occurs at the active site have not previously been determined.  

In this work, nitrogen-doped CNTs were synthesized using ferrocene, nickelocene or 

cobaltocene as catalysts via CVD method. All three resulted N-doped CNTs showed similar 

stacked-cup morphology (termed as nitrogen-doped carbon nanotube cups, or NCNCs) as in our 

previous study,105 denoted as NCNC[Fe], NCNC[Ni], and NCNC[Co], respectively. 

Accordingly, their non-doped counter parts were also synthesized in the absence of nitrogen 

sources, denoted as MWCNT[Fe], MWCNT[Ni], and MWCNT[Co] respectively. The 

Electrochemical testing results demonstrated that NCNCs synthesized from ferrocene had 

improved ORR activity over un-doped MWCNTs synthesized from ferrocene, and NCNCs 

synthesized from nickelocene or cobaltocene, in terms of the reduction half-wave potential and 

the current. On the other hand, NCNC[Ni] and NCNC[Co] only showed some improved catalytic 

activity compared to MWCNT[Ni] and MWCNT[Co]. The detailed ORR mechanisms for the 

abovementioned materials were also different: NCNC[Ni] and MWCNT[Ni] demonstrated 

almost a four-electron reduction ORR pathway, while NCNC[Fe], MWCNT[Fe], NCNC[Co], 

and MWCNT[Co] showed a combination of two-electron and four-electron mechanisms. The 

detailed results from electrochemical test are summarized in Table 5-1. The observed difference 

in their performance supports the hypothesis that the ORR mechanism can be controlled through 

changing the metal catalyst utilized during material synthesis. Such understanding is of great 
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importance to the future design of non-precious-metal catalysts for low-cost fuel cells and other 

electrocatalytic applications. 

Table 5-1. Nanomaterials catalytic activity toward oxygen reduction reaction (ORR). 

Material na Half-wave potential/Vb 

NCNC[Fe] 2.6 ± 0.1 −0.297 ± 0.006 

NCNC[Ni] 3.9 ± 0.1 −0.334 ± 0.003 

NCNC[Co] 3.1 ± 0.2 −0.316 ± 0.008 

MWCNT[Fe] 2.6 ± 0.1 −0.358 ± 0.026 

MWCNT[Ni] 3.8 ± 0.1 −0.351 ± 0.002 

MWCNT[Co] 2.7 ± 0.1 −0.343 ± 0.004 

Pt 4.0 ± 0.1 −0.174 ± 0.006 

 

a) Transferred electron number (n) per oxygen molecule was calculated, from RRDE at −0.5 

V; b) half-wave potential was calculated based on the ORR current at –0.5V during RRDE 

versus a 1.0 M Ag/AgCl reference electrode (+0.235 versus the Standard Hydrogen Electrode). 

All trials were done in triplicate with the mean and standard deviation reported in the table.  

5.2.3 Future directions 

The current study provides critical information toward the next step in the ORR catalyst 

development.  The lower onset potential of NCNC[Fe] and the higher electron transfer number 

of NCNC[Ni] provide potential strategies to actively control the electrochemical performance of 

NCNCs during their synthesis process. However, the underlying mechanism, especially the 

reason of such a high electron transfer number for Ni catalyzed NCNCs, is still to be 
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investigated.  The future direction of this project is to develop NCNC[Ni] with higher nitrogen 

content in order to provide enough active sites to increase the ORR peak potential closer to that 

of commercial Pt catalysts. On the other hand, potential improvement may be achieved by using 

a mixture of Fe and Ni catalyst during the CVD process. With a certain catalytic metal ratio, we 

may optimize both the yield and the electrochemical performance of the resulted NCNC 

materials.  

5.3 OXIDATIVE UNZIPPING OF STACKED-CUP NITROGEN-DOPED CARBON 

NANOTUBES 

5.3.1 Preface  

The material below is summarized from a manuscript submitted for publication. 

 

List of Authors: Haifeng Dong, Yong Zhao, Yifan Tang, Seth C. Burkert, and Alexander Star 

 

Author Contributions: AS conceived the project and designed the experiment; HD and YZ 

synthesized the material; HD, YZ and YT performed the microscopic and spectroscopic study; 

HD, YT, and SB performed the electrochemistry experiments, HD, YZ, and SB analyzed the 

data and wrote the manuscript. HD and YZ have contributed equally to the work being 

described.  
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5.3.2 Introduction and brief results 

Since the first successful isolation of graphene sheets in 2004 by Geim and coworkers,276 this 

novel two-dimensional one-atomic-thick nanomaterial has gathered enormous research attention 

for its outstanding electronic and mechanical properties.277-280 In addition to other common 

preparation methods for graphenes such as mechanical peeling,276, 281 CVD synthesis,282-283 and 

oxidative exfoliation,284-285 the Tour’s group developed a facile permanganate oxidation method 

that longitudinally unzipped MWCNTs to yield graphene nanoribbons with defined morphology 

and semiconducting properties.286 Nitrogen-doped carbon nanomaterials have attracted 

significant research interest because of their excellent electrocatalytic properties.  Although 

varieties of nitrogen-doped carbon nanostructures with different dimensions have been 

developed for eletrocatalysis, their optimized morphology has not been well established.  In this 

project, we prepared nitrogen-doped graphene structures from unzipping nitrogen-doped CNTs 

and investigated their electrocatalytic activity toward oxygen reduction reaction (ORR). We 

found that nitrogen-doping greatly altered the unzipping behavior of MWCNTs resulting 

structures with improved ORR activity. The ORR electrocatalytic activity is considered to be 

enhanced by increasing exposure of chemically active graphitic edges.287  However, systematic 

investigations of the morphological influence on the electrochemical properties of the nitrogen-

doped nanomaterials remain unexplored. Recently, Li et al. developed a GNR-nanotube complex 

by exfoliating the outer graphene layer from double-walled CNTs,121 which showed good ORR 

activity due to the combination of the ORR-active GNRs with conductive CNT cores.  This 

finding indicates hybrid nitrogen-doped structure as the optimized morphology for ORR 

electrocatalysis.  
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In this project, we demonstrated a facile and robust technique to produce nitrogen-doped 

nanostructures by unzipping of nitrogen-doped CNTs, comprised of many stacked cup-shaped 

segments termed as NCNCs. The oxidative unzipping method was employing a mixture of 

sulfuric acid (H2SO4) and potassium permanganate (KMnO4), as described previously.286 

Different from the tubular un-doped CNTs, long-stacked NCNCs are more resistant to the 

unzipping process, resulting in a unique partially unzipped hybrid carbon nanostructure with 

nitrogen-doped GNRs connected through center tubular “cores”. We found that the extent of 

unzipping highly depends on the number of stacked cups in NCNCs: Upon ultrasonic separation 

of the stacked structure,105, 140 the obtained short-stacked and individual nanocups can be 

completely unzipped into graphene nanosheets (GNSs) and graphene quantum dots (GQDs) 

exhibiting a strong fluorescence. Our approach provides an facile synthetic route to N-doped 

GQDs by direct unzipping of nitrogen-doped nanotubes. Moreover, the partially unzipped 

NCNCs exhibit excellent ORR electrocatalytic activity superior to as-synthesized NCNCs and 

their other derivatives, which provides a strong support for the GNR-carbon nanotube hybrid 

structure as the optimal morphology for electrocatalysis. Such enhancement results from the 

alternation of both nitrogen functionality and morphology of NCNCs by H2SO4/KMnO4 

oxidation. The nitrogen-doped GNRs formed on the unzipped part of the outer wall of the 

nanotubes make an excellent and efficient ORR electrocatalyst, whereas the intact inner walls 

facilitate charge transport during electrocatalysis due to their retained electrical conductivity. 

5.3.3 Future directions 

Although the partially unzipped N-doped CNT/GNR hybrid structures shows improved ORR 

catalytic performance compared our other N-doped CNT materials, they are still outperformed 
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by some existing studies based on the similar system.  In addition, the mechanism is still needed 

that explicitly explains the structure – performance correlation of the unzipped materials with 

different morphologies. As for the future directions, multiple characterization techniques such as 

XPS, TEM and electrochemical analysis will be involved and re-examined to better support the 

current results, and different unzipping conditions will be tested to create GNRs with more 

exposed active edges.  

5.4 CORKING OF NANOTUBE CUPS AND MOLECULAR ENCAPSULATION 

5.4.1 Introduction and brief results 

We have found that a pre-oxidation process can greatly improve the efficiency of the subsequent 

sonication separation of N-doped CNT cups (NCNCs), which yielded mostly to formation of 

individual nanocups. And by functionalization of the NCNCs with GNPs, we were able to 

specifically cork the opening of the nanocups by GNP corks.105, 140 To this end, however, we are 

still unable to directly show the encapsulation molecular cargo in the hollow cavity of the corked 

nanocups. As the acid oxidation procedure is carried out on the stacked NCNC structure, we 

assumed that the inner sidewalls of NCNCs are not affected by oxidation, so that after the 

physical ultrasonic separation, the graphitic sidewalls in the opened cavities should be more 

pristine than the outside walls, leading better π-π interaction with aromatic species   

In this work, we tried to load Rhodamine 123 (Rh123) into the nanocups and seal them 

with GNP corks. Rhodamine derivatives have been frequently used as fluorescent tags and 

Raman probes for demonstrating high-sensitivity analysis such as SERS.288 The Rh123 was first 
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mixed with NCNCs in aqueous solution, followed by GNP corking following the method 

described in Ref. 140. As a control the NCNCs were first corked with GNPs, then mixed with 

Rh123. Both samples are then repeatedly washed to remove any unencapsulated Rh123. The 

small molecules are not observable under TEM, however the close proximity of encapsulated 

Rh123 toward the GNP corks may incur the surface-enhanced Raman signal of Rh123 

molecules. In order to indirectly verify the existence of Rh123, we took Raman spectra on both 

the repeatedly-washed samples. Before centrifugation, SERS signals of Rh123 can be detected 

on both the sample and the control. After repeated centrifugal wash, the active sample still shows 

a fairly high surface-enhanced spectrum of Rh123 peaks between 300 cm-1 and 1700 cm-1, but 

the control did not show any Rh123 signals other than the D and G bands from NCNCs. It is 

inferred that the repeated wash is able to remove any free Rh123 molecules outside the cups, 

while the remaining of Raman signals in the active sample after wash may be incurred from the 

trapped Rh123 adsorbed on the inner surface of the GNP corks, but the Rh123 was completely 

washed off in the control. Such observation provided indirect evidence that the corked NCNCs 

have the capability of encapsulating small molecule cargo.  

5.4.2 Future directions 

Current cargo loading experiment lack direct evidence as it is only based on the SERS signals 

from Rh123, which are not reliable enough because SERS signals are not stable and greatly 

differ from samples to samples. The future directions of this project are to load larger cargo such 

as fullerenes, macromolecules, or nanoparticles into the nanocups, which can be directly 

observed by TEM. As a simple molecule, C60 is large enough to be imaged under TEM and has 

been frequently utilized to form “peapod” structure inside SWCNTs.289  While typical 
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encapsulation of C60 into SWCNTs require high-temperature evaporation,290 the loading of C60 

was also reported to be achieved via “nano-extraction” or “nano-condensation” in liquid phase 

under room temperature.291 Therefore, the attempts of loading C60 in to NCNCs and corking with 

GNPs will be tried. The direct observation of C60 under TEM images will provide the proof-of-

concept evidence of the drug loading capacity of NCNCs.  

5.5 GRAPHENE NANOSHEETS AND QUANTUM DOTS BY UNZIPPING 

NITROGEN-DOPED CARBON NANOTUBE CUPS 

5.5.1 Introduction and brief results 

In Section 5.3 we described a novel route to synthesis graphene nanostructures with different 

morphology by permanganate oxidative unzipping of NCNCs with different initial lengths.  The 

partially unzipped NCNC/GNR structure showed good electrochemical catalytic performance 

toward ORR.  Whereas the graphene nanosheets (GNSs) and graphene quantum dots (GQDs) 

from unzipping of separated short NCNCs also exhibited appealing properties such bright blue 

fluorescence from GQDs. The nitrogen-doping in the GQDs is believed to play an essential role 

in tuning the fluorescence properties of the QDs.123 

Furthermore, the localized nitrogen reactive sites in the N-doped GNS were employed to 

be functionalized with gold nanoparticles (GNP) to form GNS/GNP hybrid composite, which 

exhibits efficient surface enhanced Raman spectrum and potential promising application in 

biosensing. The functionalization follows the same route of the sodium citrate reduction of 

HAuCl4 as describe previously.140 TEM images showed that the GNPs were densely decorating 
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on the GNSs especially on the edge.  The GNP-decorated GNSs were then used as a SERS 

substrate for detection of Rhodamine 6G (R6G) and Rhodamine 123 (Rh123) molecules. It was 

found that SERS signals were detected over 100 times of the regular Raman for R6G and Rh123 

at the concentrations even as low as 10-5 M. At the same time, the signals from the graphene 

were also significantly enhanced.  The GNP-decorated GNSs can thus be potentially used as 

either Raman substrates for molecular sensing, or in vivo probes for SERS bioimaging.  

5.5.2 Future directions 

For the subsequent investigation, two directions are of importance. First, the SERS mechanism is 

always a debated issue between electromagnetic or chemical charge-transfer mechanisms. The 

GNP-decorated GNSs may serve as a promising system for mechanistic study. With different 

electron donating or withdrawing substances on the Raman substrate, it is interesting to observe 

the potential influence of charge-transfer on the change of Raman behaviors.  On the other hand, 

cellular experiments will be performed for the GNP-decorated GNSs as potential Raman 

bioimaging probes. With initial information on SERS performance and cytotoxicity, in vivo 

experiments can be further carried out.   
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6.0  CONCLUDING REMARKS 

This dissertation covers the two major projects (i.e., nitrogen-doped carbon nanomaterials and 

enzymatic degradation of CNTs) that I have carried out during past the six years of my PhD 

studies at the University of Pittsburgh, under supervision of Professor Alexander Star. The 

research projects that I have completed and published are described in Chapter 2, Chapter 3, and 

Chapter 4 of this dissertation, with my humble hope to contribute to the development of 

nanoscience research.  

As stated in the title of the dissertation, my research interests are focused on nitrogen-

doped carbon nanomaterials, especially individual nitrogen-doped carbon nanotube cups 

(NCNCs), which possess intriguing cup-shaped morphology and rich chemical properties with 

promising potential for drug delivery applications. Based on the previous work from our research 

group,108 I improved the synthetic method of the CVD growth of NCNCs, by changing 

experimental conditions. I introduced the probe-tip ultrasonic method to separate the stacked 

NCNCs, which greatly improved the separation efficiency compared to hand-grinding.  The 

resulted separated NCNCs were carefully examined for their graphitic structures and nitrogen 

functionalities. I demonstrated that the nitrogen preferentially exist on the open rims of the 

nanocups in the form of amine groups, to which GNPs can be functionalized, forming nano-

corks on the opening of the cups. This work is published in ACS Nano, as Ref. 105. In the 

following study, I improved the efficiency of both cup separation and GNP-cork 
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functionalization, by introducing a pre-oxidation step before probe-tip sonication, and by sodium 

citrate reduction of HAuCl4, respectively. The work is published in the form of a video in 

Journal of Visualized Experiments, as Ref. 140. 

Another aspect of my research was on the enzymatic degradation of carbon 

nanomaterials. I first extended the HRP degradation phenomenon to MWCNTs, and demostrated 

the different degradation behavior of MWCNTs compared to SWCNTs. The MWCNTs are not 

completely degraded by HRP/H2O2, with a diminishing degradation rate during the course of 80 

days; depending on the extent of surface oxidation; oxidized MWCNTs showed different 

degradation rate. The incomplete degradation of MWCNTs, together with a decrease of defective 

level on the surface, suggested a layer-by-layer degradation fashion, which ceased the 

degradation as the pristine inner tubes are exposed to HRP. This work was published in The 

Journal of Physical Chemistry, as Ref. 206. 

The following project of enzymatic opening/degradation of GNP-corked NCNCs by 

hMPO combined the previous two projects together and applied the knowledge to create a 

practical drug releasing scheme for the potential GNP/NCNC delivery vehicle. Through both 

experimental and theoretical analysis, we clarified the growth mechanism of GNP corks on 

NCNCs stemming from the gold nucleation on the basal amine groups.  Upon exposure to the 

oxidative environment with hMPO/H2O2/NaCl, the interactions between GNPs and amine groups 

were disrupted within several hours, which released the GNPs corks and opened the 

nanocarriers. Following the ensuing degradation, the opened NCNC shells were readily 

deformed and disappeared within 20 days of treatment. The degradative opening of the GNP-

corked NCNCs provides a promising route for potential drug releasing models.  
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 2, 3 AND 4 

A1.   CORKING CARBON NANOTUBE CUPS WITH GOLD NANOPARTICLES 

Supplemental Experimental Procedures and Calculations: 

1. Functionalization on NCNCs and quantification of amine groups via Kaiser Test. 

Functionalization with glycine was performed on 1 mg of either as-synthesized or separated 

NCNCs suspended in 4 mL of DMF.  To each of the suspensions, 20 mg N-(tert-

Butoxycarbonyl)glycine (Boc-Gly-OH), were added through EDC/DMAP coupling reaction.  

The mixture was stirred under nitrogen at room temperature overnight. The product was then 

washed and stirred at room temperature in 4 mL of 2:1 v/v dioxane/HCl for 2 hr to remove the 

Boc protecting groups. The resulting material was washed repeatedly with EtOH to remove any 

residual glycine.  Di-tert-butyl dicarbonate (Boc2O) was used to protect the inherent amine 

groups on NCNCs.  22 mg of Boc2O and 20 mg of NaHCO3 were added to 1 mg separated 

NCNCs in 4 mL tetrahydrofuran (THF). The reaction mixture was stirred overnight at room 

temperature under N2.  
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The Kaiser test was conducted on both as-synthesized and separated NCNCs with or 

without chemical treatment.  Briefly, the Reagent A for the Kaiser test was prepared by mixing 1 

g of phenol and 250 μL of EtOH in 2.5 mL of pyridine, to which 50 μL of 0.01 M hydrindantin 

in H2O were added.  For the Reagent B, 50 mg ninhydrin was dissolved in 1 mL of EtOH.  For 

each test, the sample was first weighed on a microbalance and then dispersed in 1 mL of 60% 

EtOH, to which 100 μL of Reagent A and 25 μL of Reagent B were added.  The mixture was 

heated at 100 °C oil bath for 10 min and filtered to remove solid particles.  A blank sample was 

made in the same process without adding nanotubes.  Visible spectroscopy (Lambda 900 

spectrometer, Perkin-Elmer) was taken on the filtrate for colorimetric analysis.  A positive result 

of Kaiser test shows an absorption peak centered at 570 nm. 

 

2. Characterization of NCNCs. 

Transmission electron microscopy (TEM) images with lower resolution were obtained with FEI 

Morgagni microscope at an accelerating voltage of 80 kV.  High-resolution TEM images were 

taken at JEOL 2100F microscope with 200 kV accelerating voltage.  Samples were first 

dispersed in EtOH or DMF then dropcasted on a lacey carbon TEM grid (Pacific Grid-Tech) for 

low-resolution TEM imaging or on C-FLAT holey TEM grid (Electron Microscopy Sciences) for 

high-resolution TEM imaging, respectively.  Electron energy loss spectroscopy (EELS) and 

energy-filtered TEM (EFTEM) were performed on the JEOL 2100F TEM microscope.   

Raman spectra were taken on Renishaw inVia Raman microscope with an excitation 

wavelength of 633 nm.  NCNC samples after different duration of probe-tip sonication were 

dropcasted on a quartz slide and dried.  Spectra were scanned from 1000 to 2000 cm-1 at 10% 

laser intensity with 15 s exposure time.  
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Fourier transform infrared spectroscopy (FTIR) was performed on a Shimadzu 

IRprestige-21 spectrometer in a transmission mode.  Both as-synthesized and separated samples 

were ground with dry KBr powder and pressed into pellets.  The pellets were baked in vacuum 

oven at 120 °C for 2 h prior to characterization. 

AFM imaging was performed in a contact mode configuration on a Multimode scanning 

probe microscope (Veeco). 10 μL of sample solution (aq) was spin-coated on freshly cleaved 

mica and dried in ambient.  

Dynamic light scattering (DLS) was performed using a quasi-elastic light scattering 

spectrometer (Brookhaven 90 Plus Particle Size Analyzer) under laser irradiation with 678 nm 

wavelength. The elemental analysis was performed on a CE 440 CHN Analyzer (Exeter 

Analytical).  

X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Scientific K-Alpha 

using monochromated Al Kα x-rays (1486.6 eV) as the source, with a spot size of 400 μm and 

pass energy of 50eV. XPS samples were prepared by briefly sonicating the NCNCs in ethanol 

and dropcasting them onto an aluminum substrate heated to 100 ºC. XPS binding energies were 

corrected using the C1s peak at 285 eV as an internal standard. The spectra were fitted after 

background subtraction of a Shirley type baseline. Peak shapes were optimized by using a 

Gaussian:Lorentzian ratio of 80:20.  

 

3. Statistics on the quantities of functionalized NCNCs and GNPs and calculations. 

The percentages of NCNCs with open sides corked by GNPs were calculated by statistically 

analyzing 100 TEM images from the samples of thiolated NCNCs incubated with 40 nm GNPs.  

Only short NCNCs with length less than 400 nm were counted.  In total of 656 short NCNCs, 
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356 of them were observed to be functionalized with GNPs, in which 150 NCNCs were corked 

by GNPs at their open rims, giving a percentage of ~23% corked NCNCs overall.  There were 

totally 928 GNPs found attached on the NCNCs, 339 of which were attached to the open sides of 

NCNCs (150 of them exactly corking), taking up about 37%.    

The area ratio between the sidewalls and the basal planes was calculated by considering a 

cylindrical model of NCNC with the average length of 380 nm and the diameter in the basal 

plane of 40 nm.  In this case, the areas of the side and the bottom of the cylinder are 23876 nm2 

and 1257 nm2, respectively, with a ratio of 19:1.  Therefore, it would be much less possible for 

the GNPs to bind to the open sides if the binding was not energetically favored.  
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Figure A1-1. (a) TEM image at an intermediate magnification showing an overview of separated 

NCNCs after 15 hr of probe-tip sonication.  Individual and short-stacked nanotube cups less than 

400 nm in length exist with large abundance of over 70%.  Stacked cups longer than 400 nm are 

also observed, but few of them exceed 1 μm.  The amorphous materials surrounding the NCNCs 

may be due to unevaporated solvent residues. (b – g) More TEM images of isolated individual 

and short-stacked cups.  They all have common cup-like shapes with one end sealed and the 

other open. 
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Figure A1-2. (a) Average lengths of NCNCs as-synthesized and after 2, 4, 10 and 15 hr of probe-

tip sonication.  Over 300 NCNCs in each sample were measured from TEM images.  The error 

bars represent the standard deviations of the length distribution. (b) Upper panel: histograms of 

length distribution of as-synthesized NCNCs (red bars) and separated NCNCs (blue lines) and 

lower panel: magnified histograms of length distribution of separated NCNCs (blue bars), 

obtained from TEM images.  
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Figure A1-3. High-resolution TEM images showing damaged graphitic lattices on the sidewall 

(a) and the tip (b) of NCNCs after probe-tip sonication. 

 

 

Figure A1-4. (a) Raman spectra of undoped MWCNTs (1) and as-synthesized NCNCs with 

acetonitrile fractions of 7 wt% (2), 10 wt% (3), and 15 wt% (4) in the precursor, respectively. 

The spectra were normalized to the G band. (b) D/G band ratios in the Raman of the 

corresponding four samples. 
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Figure A1-5. (a) TEM image of a short stack of four individual NCNCs. (b) Energy filtered 

TEM image at N K edge of 401 eV showing the distribution of nitrogen (colored blue) on the 

NCNCs. Both scale bars represent 50 nm.  

 

 

Figure A1-6. FTIR spectra of undoped MWCNTs (blue), as-synthesized NCNCs (black), and 

separated NCNCs (red). 
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Figure A1-7. Visible spectra of the control Kaiser tests performed on glycine (red, 10 times 

diluted) and 8-aminoquinoline (black).  The glycine shows a strong absorption peak at 570 nm 

indicating the existence of primary amines, while no peak at 570 nm is detectable for 8-

aminoquinoline, indicating that the aromatic amine and pyridinic nitrogen do not give positive 

results in the Kaiser test.  
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Figure A1-8. (a, b) High-resolution TEM images showing that amorphous carbon residues were 

frequently observed inside the open cavity of NCNCs after the separation process. (c) High-

resolution TEM image showing that one smaller cup was trapped inside the opening of a larger 

NCNC. All scale bars represent 5 nm. 
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Figure A1-9. (a – d) Other examples of TEM images of individual thiolated NCNCs corked by 

40 nm GNPs. (e) TEM image at a lower magnification showing that several NCNCs were corked 

by GNPs at their open rims, indicating a preferential interaction between GNPs and the open 

sides of NCNCs. 
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Figure A1-10. TEM images of GNPs attached on the sidewalls of NCNCs and on the open rims 

of NCNCs but not exactly corking the cups. 

 

 

Figure A1-11. (a) TEM image of a thiolated individual NCNC capped by a silver nanoparticle 

with diameter of ~40 nm. (b) TEM image of an unfunctionalized individual NCNC capped by 

aldehyde-functionalized polystyrene latex nanoparticles with diameters of ~40 nm.  The polymer 

nanoparticle fitting on the opening of the NCNC was shown to be stretched toward the inner 

cavity, presumably due to the capillary effect. 
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Scheme A1-1. Boc2O protection of amine groups on NCNCs to yield NH-Boc groups which 

prevented the amines from being detected by Kaiser test. Upon removal of the Boc groups, the 

amines gave a positive Kaiser test result again. 

 

 

A2.  ENZYMATIC DEGRADATION OF MULTI-WALLED CARBON NANOTUBES 

Supplemental experimental procedures: 

 

Methods for Boehm’s Titration: Boehm’s Titration is an acid–base titration method for 

determination of functional groups on the surface of carbon materials. Approximately, 5 mg of 

p-MWNT, o-MWNT (5hr), and o-MWNT (8hr) samples were respectively immersed in sample 

vials with 5 mL of 10 mM NaOH aqueous solution. Then each vial was sonicated under vacuum 

for 2.5 min in order to disperse the sample and degas CO2 from the solution. All three vials were 

then sealed with septum stoppers and parafilm and placed on a rotary shaker with continuous 

shaking (220 rpm) at room temperature for 72 hr. After the incubation process, the sample 

solution was filtered through a 0.22 µm Teflon membrane, and 1 mL of filtrate was taken and 

added with 2 drops of 0.1% Bromocresol Green and Methyl Red mixture (indicator, v/v = 3:2). 
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The filtrate was titrated with approximately 1 mM HCl aqueous solution using a 10 mL buret. 

Three parallel titrations were performed on each sample to obtain reproducible results, and a 

reference sample with 5 mL of 10 mM NaOH was analysed the same way to give the accurate 

concentration of NaOH. The surface acidic group loading (mM / gram of MWNTs) was 

estimated by the following equation: 

MWNT

ref

m

Lcc
Loading

3105)( 
   

where: 

cref :        Concentration of NaOH solution (mM); 

c:            Concentration of the NaOH fitrate after incubation with MWNTs (mM); 

mMWNT:  Weight of each MWNT sample. 

Atomic Force Microscopy (AFM): AFM imaging and height analysis was performed on a 

Multimode scanning probe microscope (Veeco). Sample was prepared on freshly cleaved mica 

substrate spin-coated with 20 μL of 0.1% (w/w) poly-L-lysine (aq) at 1400 rpm. 10 μL of 

sample solution (aq) was then spin-coated on the substrate and dried in ambient. AFM imaging 

was performed using a “Supersharp” Si tip (AppNano) in tapping mode, with a drive frequency 

of 193.023 Hz, an amplitude set point of 0.6066 V, and a drive amplitude of 261 mV. The cross-

sectional height of samples was quantified using sectional analysis.  

Thermogravimetric Analysis (TGA): Three samples of p-MWNTs, o-MWNTs (5hr) and o-

MWNTs (8hr) before enzymatic degradation were dried in oven overnight. From each sample 

about 4 mg of materials were transferred into a platinum boat on which TGA were performed 

(TA instrument, Q50). The temperature ramping was set from room temperature to 850°C at 5°C 

per min at N2 atmosphere. Other samples were analyzed in air atmosphere with the temperature 

ramping to 800°C at 5°C per min. 
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Amplex Red assay for monitoring HRP activity: HRP activity throughout the degradation 

process was monitored by Amplex Red reagent. A 10 mM stock solution was prepared by 

dissolving 5 mg of lyophilized Amplex Red in 1.94 mL dimethyl sulfoxide (DMSO) and kept in 

the dark at −20 °C. To test the enzymatic activity, 250 μL of sample suspensions before and 

during degradation were taken out and diluted with 235 μL double-distilled water, followed by 

adding 1 μL Amplex Red stock solution and 15 μL of 800 μM H2O2. The mixture was then 

analyzed using visible spectroscopy on a Lambda 900 spectrometer (Perkin-Elmer) with double-

distilled water as the background. 

The Amplex Red is often associated with HRP which is activated by H2O2. The Amplex 

Red is assumed to experience a one-electron transfer to active HRP and form phenoxy radicals 

which undergo a dismutation reaction forming resorufin, a colored compound with distinct 

absorption band at 570 nm. The reaction is quantitative with 1:1 ratio of Amplex Red to H2O2 

and the presence of active HRP enzyme. Therefore a colorimetric assay can be performed for 

either testing the HRP activity or measuring the H2O2 concentration.  

Fourier transform infrared spectroscopy (FTIR): Samples of p-MWNTs, o-MWNTs (5hr) 

and o-MWNTs (8hr) were synthesized and dried in oven overnight. FTIR spectra were taken 

using a Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) accessory with 

dry SiC powder as matrix. 
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Figure A2-1. (a) TGA curve of p-MWNTs in air. There was almost no material left after 

burning in air above 600°C. (b) Energy-dispersive X-ray spectroscopy (EDS) elemental analysis 

of p-MWNTs. No iron peaks (6 – 8 keV) were observed.  
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Figure A2-2. Histograph showing increasing acidic group loadings on the surface of MWNTs 

along with 0, 5 and 8 hr carboxylation determined by Boehm’s Titration. 
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Figure A2-3. TGA curves for p-MWNTs, o-MWNTs (5hr) and o-MWNTs (8hr) in N2 

atmosphere. The TGA curves showed a progressively increasing weight loss along with the 

increasing carboxylation time, indicating more functional groups grafted on the nanotubes. 
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Figure A2-4. FTIR spectra for p-MWNTs, o-MWNTs (5hr) and o-MWNTs (8hr) before 

enzymatic degradation. The spectra show different vibrational modes in each sample including 

C=O stretching (1640 cm-1), C–O stretching (1100 cm-1), C–H stretching (2980 cm-1), O–H 

stretching (3440 cm-1) and so on, which indicate the existence of oxygen-containing defects such 

as carboxylic groups on MWNTs.  
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Figure A2-5. TEM images for (a) p-MWNT, (b) o-MWNT (5hr), and (c) o-MWNT (8hr) 

samples incubated with HRP under daily H2O2 additions for 80 days. The morphology of 

nanotubes remained similar to samples observed at Day 60, however, the carbonaceous “flakes” 

were seen to be continuously degraded into even smaller pieces. All scale bars are 200 nm. 
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Figure A2-6. (a) TEM image of magnified carbonaceous flakes for o-MWNT (8hr) 

enzymatically degraded with constant H2O2 addition at Day 2. The black dots with diameters 

around 5 nm adsorbed on the flakes are presumably HRP particles. (b) AFM image for the 

sample at Day 4. Large amounts of carbonaceous flakes were seen with thickness of about 0.65 

nm.  
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Figure A2-7. Visible absorption spectra of HRP activity tested by Amplex Red and H2O2 for p-

MWNT, o-MWNT (5hr), o-MWNT (8hr) and n-MWNT samples before (dash lines) and after 

(solid lines) 80 days of degradation process. 
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Figure A2-8. Images from the optical microscope on the Raman sample stage. (a) Image of o-

MWNTs (8hr) before enzymatic degradation, and (b) after enzymatic degradation. The sample 

before enzymatic degradation tended to aggregate into discrete spots after dried on a sample 

glass slide, while the sample after degradation formed an even, continuous film. Both samples 

appeared to be homogeneous as visually observed. 5 spectra were collected and averaged from 

different spots for both samples.  

 

 

 

 

 

 

 

 



 164 

 

Figure A2-9. High-resolution TEM images for o-MWNTs (8hr) (a), and p-MWNTs (b) before 

enzymatic degradation. All scale bars are 5 nm. The defective sites are shown on the surface of 

o-MWNT samples as arrowed, in which about 5 – 8 graphitic walls were broken, while the p-

MWNTs remain high graphitic integrity with well-defined walls. 
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Figure A2-10. (a) TGA curves for n-MWNTs before (black) and after (red) purification process 

in air. (b) TEM image of purified n-MWNT samples after 80 days of incubation in Fenton 

oxidation environment. The extent of degradation was limited. 
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A3.  NANO-GOLD CORKING AND ENZYMATIC UNCORKING OF CARBON 

NANOTUBE CUPS 

Computational methods 

Plane-wave DFT calculations using density functional theory and 3D supercell models were 

performed using Vienna ab initio simulation package (VASP) code. The electron-ion interaction 

was described by the projector augmented wave (PAW) method of Blöchl and the Perdew, Burke 

and Ernzerhof (PBE) functional has been used for description of the exchange and correlation. 

The PBE functional was corrected to include long-range dispersion interactions using the 

Tkatchenko and Scheffler method as implemented in the VASP code. Calculations were spin-

polarized and used a cutoff energy of 400 eV.  The graphene flake surface with a zigzag 

termination running along the Ox axis has been represented using a supercell with Nx=7 and 

Ny=11 periodic units separating the opposite edges of the graphene flake. These edges were 

terminated with H atoms or with other functional groups as described in the paper.  In order to 

reduce the lateral interactions for the adsorbed Au20 clusters on graphene surface, the graphene 

sheet was separated by vacuum layers up to 13.6 Å and 20.4 Å along Oy and Oz directions, 

respectively. Given the large dimensions of the supercells used, the sampling of the Brillouin 

zone was done only at the  point.  The adsorption energy of the Au20 cluster on graphene 

surface was calculated based on equation Eads=(E(A)+E(S)-E(A+S)) where E(A) is the energy of the 

isolated Au20 cluster, E(S) is the total energy of the graphene surface and E(A+S) is the energy of 

the combined adsorbate-surface system in the optimized configuration. In the sign convention 

introduced above, positive adsorption energies correspond to stable adsorption configurations. 

The minimum energy reaction pathways for diffusion of the Au20 cluster on graphene surface 

was calculated using the climbing-image nudged elastic band (CI-NEB) method. 
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Table A3-1. Length distribution of as-synthesized nitrogen-doped CNT fibers, oxidized NCNCs, 

and separated NCNCs obtained from TEM images and DLS analysis. 

 

 
TEM

a

 DLS
b

 

As-synthesized fiber 4890 ± 2584 nm 

5601 ± 3475 

nm 

 Oxidized NCNC 782 ± 585 nm 188 ± 86 nm 

Separated NCNC 216 ± 88 nm 148 ± 82 nm 

a Based on ~300 measurements from TEM images.  

b DLS analysis of the hydrodynamic volume of nanoparticles based on the assumption of 

a spherical shape of nanoparticles.  The indicated values may not reflect the real lengths  

 

Table A3-2. Elemental composition of as-synthesized nitrogen-doped CNTs, separated NCNCs 

and NCNCs functionalized with GNPs based on energy-dispersive X-ray (EDX) spectroscopy. 

 

Element 

(Shell) 

As-

synthesized fiber 

Separated 

NCNC 

NCNC+

GNP 

At % At % At % 

C (K) 97.94 93.34 82.14 

O (K) 0.77 6.43 6.07 

Fe (K) 1.29 0.23 — 

Au (M) — — 11.79 
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Figure A3-1. Raman spectra of as-synthesized stacked NCNCs (blue), oxidized NCNCs (red) 

and separated NCNCs (black). The corresponding D to G band ratios are shown in the 

parentheses. 
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Figure A3-2.  Magnified high-resolution TEM images of the corked NCNC in Figure 1d, 

focused on (a) the GNP, and (b) the nanocup. A citrate coating layer was typically observed on 

the outer surface of GNPs, but not on the inner surface in the cups, suggesting a direct interaction 

between GNPs and NCNCs.  Small gold nanocrystals were also found sparsely bound on the 

graphitic sidewalls of the nanocups, however, they failed to grow into large nanoparticles, 

possibly due to the scarcity of functional groups on the sidewalls. 

 

 

 

 



 170 

 

Figure A3-3. TEM image of the supernatant solution of the GNP reduction reaction.  Free GNPs 

are somewhat smaller than the GNPs bound to the NCNCs, because of the strong binding of 

GNPs toward NCNCs, GNPs tend to aggregate on the surface of NCNCs. 

 

 

Figure A3-4. (a) TEM images of NCNC mixed with commercial 30 nm GNPs. (b) UV-Vis 

spectra of NCNC mixed with commercial 30 nm GNPs (black) and free commercial GNPs (red). 

The TEM image shows that the commercial citrate-coated GNPs are not directly attached on the 

NCNCs, but leaving a gap in between, possibly due to the citrate coating layer.  The SPR band of 

the GNPs did not shift after mixing with NCNCs, indicating the absence of electronic interaction 

between GNPs and NCNCs. 
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Figure A3-5. TEM images of the supernatant (a) and the precipitate (b) of treated MWCNTs 

decorated with GNPs by reduction. (c) UV-Vis spectra of the supernatant and precipitate of 

MWCNT+GNP. (d) Raman spectra of MWCNTs decorated with GNPs (red) compared to 

MWCNTs only. 

    Undoped MWCNTs were treated following the same procedure as the one used to 

separate NCNCs: 4 h acid oxidation by 3:1 v/v H2SO4/HNO3 and 8 h of probe-tip sonication. 

The MWCNTs do not tend to be shortened by the separation procedures.  After the GNP 

formation reaction and the subsequent centrifugation, most of the GNPs were free in the 

supernatant, only a few GNPs were physically attached on the MWCNTs, causing no red-shift of 

their SPR bands. The weak physical adsorption of GNPs on MWCNTs did not incur significant 

SERS effect.   

 



 172 

 

Figure A3-6. X-ray photoelectron spectra (XPS) of N1s peak of NCNCs before (a) and after (b) 

corking with GNPs, and C1s peak of NCNCs before (c) and after (d) functionalization of GNPs.  

The carbon 1s profile is shown in (c,d).  The peaks at 284.9 eV and 285.5 eV were assigned to 

graphitic sp2 carbon and C – N structures, respectively.  After the GNP functionalization, the 

peaks corresponding to C – O and C = O structures at 286.7 eV and ~289 eV significantly 

increased, indicating the oxidation of carbon atoms by chloroauric acid. 
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Figure A3-7. UV-Vis spectra of NCNCs with GNPs sampled at different reaction times.  The 

sodium citrate was added 20 min after the incubation of NCNCs with HAuCl4. 
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Figure A3-8. Pictorial views of the atomic configurations corresponding to adsorption of a Au20 

cluster: (a) on a (7×11) graphene flake in the central region of the flake; (b) on the graphene 

flake near the hydrogen terminated zigzag graphene edge; (c) above a graphene defect 

functionalized with three pyridinic N atoms; (d) above a substitutional N (graphitic N) on the 

graphene surface; (e) above a pyridinic N on the graphene edge, (f) above an aromatic amine 

group on the graphene edge; (g) above a graphitic N on the graphene edge; (h) above a CH2NH2 

group on the graphene edge; (i) near the edge of a graphene sheet functionalized with a 

carboxylic group; (j) attached to the edge of a bare graphene sheet; (k) attached to the amine 

group on the edge of a graphene sheet; (l) attached to the pyridinic N on the edge of graphene 

sheet. Insets: top view of the bare graphene sheet with the corresponding bare or functionalized 

graphene flake. For each configuration the corresponding adsorption energy (in kcal/mol) of the 

Au20 cluster is also provided. Legend of atoms: green; N, blue; H, white; O, red; and Au, orange. 

 

a 53.0 b 51.6 d 53.4c 52.1

f 51.2 h 62.9g 56.5e 50.9

i 53.5 j 25.0 k 26.3 l 28.6



 175 

    Because individual NCNCs have multi-walled structure with diameters of several tens 

of nanometers, their surface has relatively small curvatures and thus can locally be represented 

by flat graphene sheets. The Au20 cluster was placed either at the center or close to the edge of 

the flake and interactions with different functional groups were probed by evaluation of the 

corresponding adsorption energies (kcal/mol). Without nitrogen-doping, only the long-range 

dispersion interactions between the aromatic carbon rings and Au atoms are responsible for the 

adsorption. As a result there is a slight drop in adsorption energy of Au20 from the center to the 

edge of the graphene sheet (a, b). However, when either pyridinic or graphitic nitrogen replaced 

the carbon atoms in the center, no remarkable difference in adsorption energy was observed (c, 

d).   When Au20 was adsorbed at the edge of graphene, the adsorption energy varies depending 

on the edge functional groups.  Compared with undoped graphene, the graphene edge 

functionalized with pyridinic N or aromatic amine does not seem to increase the adsorption 

energy (e, f).  There is a small increase when Au20 is close to graphitic N on the edge when the 

apex atom of Au cluster binds with a neighboring C of the graphitic N (g). However, when the 

graphene edge is functionalized with an aliphatic primary amine (-CH2NH2), a more significant 

increase in adsorption energy by over 10 kcal/mol is observed (h). In this case the -CH2NH2 

group is extruding out of the graphene plane such that the electron pair from N is unconjugated 

and forms a covalent bond with Au20.  By comparison, the carboxylic groups that might exist on 

the surface from the oxidation process increase only sligthly the adsorption energy, even though 

the oxygen atoms are also located out of graphene plane (i).  Besides the binding configuration 

of Au20 on the graphitic surface, nitrogen functional groups at the edge can also provide initial or 

intermediate binding states for the Au20 cluster. Compared with the bare graphene edge 

terminated with hydrogen (j), the side interaction of Au20 can be remarkably enhanced by amine 
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and pyridinic N groups, with covalent bonds formed between an apex Au atom and N (k,l). 

Although this side interaction is much weaker than the on-surface interaction due to smaller 

contributions of Au-C dispersion interactions, the observed enhancement effect from the edge 

nitrogen groups can be cumulative in the case of the multi-layer graphitic edges at the open rims 

of NCNCs. 
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Figure A3-9.  Degradation of separated NCNCs with hMPO in the presence of H2O2 and NaCl. 

(a – c) TEM images at (a) Day 5, (b) Day 10 and (c) Day 20. (d) Photograph of (1) the active 

sample of NCNCs treated with hMPO in the presence of H2O2 and NaCl for 20 days, and (2) the 

control sample of NCNCs treated only with H2O2 after 20 days; (2) the control sample of 

NCNCs treated with H2O2 only for 20 days. (e) UV-Vis spectra and (f) Raman spectra of the 

activated sample during degradation. 

TEM images reveal early degradative deformation of tubular structure. At Day 5, 

amorphous carbonaceous materials were seen surrounding the remaining nanocups.  At Day 10, 

almost all nanocups were deformed, leaving mostly amorphous flakes that roughly retained the 

shape of original cups.  The carbonaceous flakes continued to shrink in their sizes until almost 

completely degraded after 20 days.  Compared to the H2O2 control (at the same initial NCNC 

concentration incubated without MPO, the brown color of the NCNCs suspension has largely 

faded, corresponding to the gradual diminishing of the π electron band at 260 nm from UV-Vis 

spectra. The degradation was confirmed by Raman spectra which showed a complete 

suppression of D and G bands after 20 days. 
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Figure A3-10.  Degradation of separated NCNCs in the NaClO control, with only NaClO as 

oxidant. (a – c) TEM images at (a) Day 5, (b) Day 10 and (c) Day 15. (d) UV-Vis spectra and (f) 

Raman spectra of the sample during degradation. Incomplete degradation was observed on the 

sample treated with NaClO, the peak at 290 nm indicates the presence of NaClO.  
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Figure A3-11. Separated NCNCs treated only with H2O2. (a) TEM image at Day 20; (b) UV-Vis 

spectra and (c) Raman spectra of the sample during treatment.  No significant degradation was 

observed on the NCNC sample treated only with H2O2.  
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Figure A3-12.  Degradation of GNP-corked NCNCs with NaClO as oxidant. (a – c) TEM 

images at (a) Day 5, (b) Day 10 and (c) Day 15. (d) UV-Vis spectra and (f) Raman spectra of the 

sample during degradation. NaClO only partially degrades the NCNCs by oxidizing the graphitic 

shells but does not release the GNPs from the nanocups, which is reflected by unchanged SPR 

bands and a monotonic decrease of D and G Raman bands. 

    TEM images show that the GNPs were still corking on the remaining NCNCs after 5 

and 10 days.  Till most of the NCNCs were degraded after 20 days, the GNPs remained isolated 

without apparent agglomeration, which is also evidenced by UV-Vis spectra showing no red-

shift of their SPR bands.  The robust binding of GNPs on nanocups induced a lasting surface-

enhanced Raman effect that decayed slowly due to only NCNC degradation.   
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Figure A3-13.  GNP-corked NCNCs treated with H2O2 as a control. (a) TEM image at Day 20. 

The GNPs are still bound to NCNCs showing no apparent degradation. (b) UV-Vis spectra and 

(c) Raman spectra of the sample during the period of 20 days.  
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Figure A3-14.  GNP-corked NCNCs treated with hMPO and H2O2. (a,b) TEM image at (a) Day 

5 and (b) Day 20. The GNPs were detached from NCNCs forming large agglomerates, but 

NCNCs were not significantly degraded. (c) UV-Vis spectra and (d) Raman spectra of the 

sample during the degradation process. The detachment and agglomeration of GNPs are reflected 

by the red-shift and disappearance of GNPs’ surface plasmon resonance (SPR) bands and the 

loss of the surface-enhanced Raman scattering (SERS) effect.  
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Figure A3-15. (a) TEM images showing that most of the GNPs were still attached to NCNCs in 

the sample treated with neutrophils without incubation. (b) Raman spectra of the NCNC sample 

treated with neutrophils before incubation (red) and after 18 h incubation (black). 

 

 

100 nm 100 nm 100 nm

a

b

1000 1200 1400 1600 1800

0

10000

20000

30000

40000

50000

In
te

n
s
it
y
 (

a
.u

.)

Raman shift (cm
-1
)

 Before incubation

 18 h incubation



 184 

 

APPENDIX B 

PUBLICATIONS AND POSTER PRESENTATIONS 

B1.   PUBLICATIONS 

(1) Zhao, Y.; Allen, B. L.; Star, A., Enzymatic degradation of multiwalled carbon nanotubes. J. 

Phys. Chem. A 2011, 115, 9536-9544. 

(2) Zhao, Y.; Tang, Y.; Chen, Y.; Star, A., Corking carbon nanotube cups with gold 

nanoparticles. ACS Nano 2012, 6, 6912-6921. 

(3) Zhao, Y.; Tang, Y.; Star, A., Synthesis and Functionalization of Nitrogen-doped Carbon 

Nanotube Cups with Gold Nanoparticles as Cork Stoppers. J. Vis. Exp. 2013, e50383. 

(4) Kotchey, G. P.; Zhao, Y.; Kagan, V. E.; Star, A., Peroxidase-mediated biodegradation of 

carbon nanotubes in vitro and in vivo. Adv. Drug Deliv. Rev. 2013, 65, 1921-1932. 

(5) Chiu, C. F.; Barth, B. A.; Kotchey, G. P.; Zhao, Y.; Gogick, K. A.; Saidi, W. A.; Petoud, S.; 

Star, A., Enzyme-Catalyzed Oxidation Facilitates the Return of Fluorescence for Single-

Walled Carbon Nanotubes. J. Am. Chem. Soc. 2013, 135, 13356-13364. 
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(6) Tang, Y.; Burkert, S. C.; Zhao, Y.; Saidi, W. A.; Star, A., The Effect of Metal Catalyst on 

the Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotubes. J. Phys. Chem. C 2013, 

117, 25213-25221. 

(7) Chen, Y.; Michael, Z. P.; Kotchey, G. P.; Zhao, Y.; Star, A., Electronic Detection of 

Bacteria Using Holey Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2014, 6, 

3805-3810. 

B2.  POSTER PRESENTATIONS 

(1) 245th ACS National Meeting & Exposition – New Orleans, LA, 04/2013 

― Nitrogen-doped carbon nanotube cups corked with gold nanoparticles. 

(2) 8th Annual Conference on Foundation of Nanoscience – Snowbird, UT, 04/2011 

― Exploring the chemical reactivity of nitrogen-doped carbon nanotube cups. 
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