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 ABSTRACT 

Dengue is a re-emerging global public health threat that over one-third of the world’s 

current population stands at risk of developing.  Persistent upticks in climate warming, 

population growth and global transportation have the potential to spread the four dengue virus 

(DENV) serotypes to new geographical areas, thereby increasing the number of at-risk 

individuals. Annually 50 to 100 million dengue cases develop worldwide; approximately five 

hundred thousand of these cases degenerate into severe disease.  In some instances, regions 

lacking the means to provide supportive therapy have experienced 40 percent case-fatality rates. 

The economic and global impacts of dengue remains unchallenged due to inadequate control 

measures and the absence of licensed vaccines.  A more thorough understanding of DENV 

pathogenesis would open the door to designing the effective vaccine and antiviral drug 

candidates essential to the global health community’s efforts to control dengue. This thesis 

focuses on understanding a recently observed characteristic of DENV pathogenesis: four to 

seven days after disease onset, peripheral plasmablasts undergo a massive expansion.  Relative to 

other heavily studied cell types, very little is known about the role plasmablasts play in the 

overall model of DENV pathogenesis.  At the start of this project, it was unknown if this robust 

plasmablast response to DENV originated from the DENV specific memory B-cell subset or if it 

was driven by naïve B-cells.  To facilitate investigation of the events relating to DENV-induced 

B-cell activation, peripheral blood mononuclear cells (PBMCs) were collected from healthy 

individuals with previous DENV exposures.  Using an in vitro model, I showed that DENV was 
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able to drive differentiation of DENV specific memory B-cells into DENV specific IgG secreting 

plasmablasts.  After observing that DENV could drive a plasmablast response, I also 

demonstrated that monocytes, the primary target cells, played an important role in this 

plasmablast development. This work leads to the important conclusion that DENV is able to 

drive the differentiation of DENV specific memory B-cells into IgG secreting plasmablasts with 

the help of monocytes.  However, it is unlikely that the secondary response mounted by this 

memory subset will be sufficient to produce the high percentage of plasmablasts seen in acute 

patients. These research findings are important in the ongoing effort to identify the early events 

essential for driving the robust plasmablast response observed during DENV infections. 



vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................ X 

ABBREVIATIONS ..................................................................................................................... XI 

1.0 INTRODUCTION................................................................................................................ 1 

1.1 GLOBAL IMPACT OF DENGUE ............................................................................ 2 

1.1.1 Disease Burden ................................................................................................. 2 

1.1.2 Emergence ......................................................................................................... 2 

1.2 DENGUE VIRUS ......................................................................................................... 3 

1.2.1 Genome/Structure ............................................................................................ 3 

1.2.2 Transmission and Life Cycle ........................................................................... 4 

1.3 CLINICAL CLASSIFICATIONS AND MANIFESTATIONS .............................. 5 

1.3.1 Changes in Clinical Classifications ................................................................. 5 

1.3.2 Clinical Manifestations .................................................................................... 6 

1.4 PRINCIPAL RISK FACTOR: SECONDARY INFECTIONS ............................... 7 

1.5 CAUSATION OF SEVERE DENV INFECTIONS ................................................. 8 

1.5.1 Antibody Dependent Enhancement ................................................................ 8 

1.5.2 Other cellular factors ....................................................................................... 9 

1.6 HUMORAL IMMUNITY ......................................................................................... 10 

1.6.1 B-cells .............................................................................................................. 10 



 vii 

1.6.1.1 Development of Memory B-cells, Plasmablasts and Plasma Cells . 11 

1.6.2 Role of T-cells and Monocytes in Plasmablast Development ..................... 13 

1.6.3 Humoral Immunity and DENV Infections .................................................. 14 

2.0 PROJECT AIMS ............................................................................................................... 17 

3.0 MATERIALS AND METHODS ...................................................................................... 19 

4.0 RESULTS ........................................................................................................................... 24 

4.1 SPECIFIC AIM 1 RESULTS ................................................................................... 24 

4.1.1 Patient and sample characteristics ............................................................... 24 

4.1.2 Examining the phenotype and kinetics of the plasmablasts produced after 

DENV exposures ........................................................................................................ 27 

4.1.3 Generation of plasmablasts by DENV-induced stimulation ...................... 30 

4.1.4 Specificity of plasmablasts in DENV patients ............................................. 33 

4.1.5 Frequency of long-lived DENV specific memory B-cells ............................ 34 

4.1.6 Specificity of plasmablasts generation after stimulating with DENV-2 .... 37 

4.2 SPECIFIC AIM 2 RESULTS ................................................................................... 39 

4.2.1 Gating Strategy to define CD14
+
 Monocytes ............................................... 39 

4.2.2 Detection of DENV infected monocytes using intracellular 2H2 antibodies  

  .......................................................................................................................... 40 

4.2.3 Plasmablast generation after CD14
+
 depletion of DENV stimulated 

PBMCs ........................................................................................................................ 41 

5.0 DISCUSSION ..................................................................................................................... 45 

BIBLIOGRAPHY ....................................................................................................................... 53 



viii 

 LIST OF TABLES 

Table 1. Demographic and serological characteristics of the donors. .......................................... 26 



ix 

LIST OF FIGURES 

Figure 1. Detection of cross-reactive anti-DENV IgG antibodies in donor serum samples. ........ 26 

Figure 2. Gating strategy to define plasmablasts. ......................................................................... 27 

Figure 3. Kinetics curve for plasmablast differentiation in culture. ............................................. 29 

Figure 4. Generation of plasmablasts in culture. .......................................................................... 32 

Figure 5 Highly DENV specific plasmablast response in patient 570.......................................... 33 

Figure 6. Frequency of DENV specific memory B-cells. ............................................................. 36 

Figure 7.  Specificity of the plasmablasts produced after stimulation with DENV-2. ................. 38 

Figure 8. Gating strategy to define CD14
+
 monocytes. ................................................................ 39 

Figure 9. Detection of DENV infected monocytes by intracellular 2H2 antibodies .................... 41 

Figure 10. Generation of plasmablasts in the absence of CD14
+
 cells. ........................................ 43 

Figure 11. Viability of PBMCs/B-cells after 7 days in culture..................................................... 44 



x 

ACKNOWLEDGEMENTS 

To my advisor: 

Dr. Simon Barratt-Boyes. Thank you for your patience and support throughout the 

completion of this project and degree. 

To my committee members: 

Dr. Ernesto Marques and Dr. Kelly Stephano Cole.  Thank you for your guidance and helpful 

discussions through-out the preparation of this thesis.  Special thanks to Kelly Cole for stepping in 

during the final stages of this project and providing excellent guidance. 

To my lab members: 

For sharing their space, time and knowledge as well as the joys and worries of lab work. 

To Eduardo Nascimento and Amanda Smith: 

For never being too busy to both ask and answer questions, and for sharing their knowledge 

in almost every category imaginable.  The time, energy and dedication they invested in me 

throughout this program were indispensable to my development as a scientist. 

To Tatiana Garcia-Bates: 

For being an awesome mentor during my first year as a master student. 

To my family and friends: 

For the love and support they have given me through-out this program.  Without each one of 

them, the completion of this program would not have been possible. 



xi 

ABBREVIATIONS 

ADE Antibody Dependent Enhancement 

APRIL A Proliferating-Inducing Ligand 

ASCs Antibody Secreting Cells 

BAFF B-cell Activating Factor 

BCR B-cell Receptor 

C Capsid Protein 

CFSE Carboxyfluorescein succinimidyl ester 

CDC Center for Disease Control and Prevention 

DC-SIGN Dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3) grabbing 

non-integrins 

DENV  Dengue Virus 

DF Dengue Fever 

DHF Dengue Hemorrhagic Fever 

DSS Dengue Shock Syndrome 

E Envelope Protein 

ELISA Enzyme-linked immunosorbent assay 

ELISPOT Enzyme-Linked ImmunoSpot 

ER Endoplasmic Reticulum 



xii 

GC Germinal Center 

IL-2 Interleukin-2 

IL-6 Interleukin-6 

IL-10 Interleukin-10 

IFN- Interferon-gamma 

M Membrane Protein 

MIP-1 Macrophage inflammatory protein-1beta 

NS1 Non-structure protein 1 

NS2A Non-structure protein 2A 

NS2B Non-structure protein 2B 

NS3 Non-structure protein 3 

NS4A Non-structure protein 4A 

NS4B Non-structure protein 3 

NS5 Non-structure protein 5 

prM Pre-membrane protein 

PWM Pokeweed Mitogen 

SAC Staphylococcus Aureus Cowan 

TNF Tumor necrosis factor 

TNF- Tumor necrosis factor-alpha 

VV Vaccinia Virus 

WHO World Health Organization 



1 

1.0 INTRODUCTION 

Dengue is the most important mosquito-borne viral infection occurring in tropical and 

sub-tropical regions.  This disease has emerged as an alarming public health threat, especially in 

developing countries.  An estimated 50 to 100 million dengue virus (DENV) infections occur 

annually [1], with over one hundred countries endemic with at least one DENV serotype.  The 

number of individuals at risk for contracting DENV infections may increase in upcoming 

decades as the habitat range of its vector, the Aedes species mosquito, continues to spread 

geographically [2, 3]. 

There are currently four genetically distinct DENV serotypes (1-4) scattered around the 

world.  During the past few decades, many countries that were once endemic with a single 

DENV serotype now have multiple circulating serotypes.  Overall, the reported incidence of 

severe dengue has increased over 500-fold since the 1950s [4, 5].  It is suspected that this higher 

prevalence of severe infections is linked to the increase in heterotypic DENV infections in a 

given region, but this remains an outstanding question [6-9]. 

Other than supportive treatments, there are currently no licensed vaccines, anti-virals or 

therapeutics available to prevent or treat severe infections.  Despite the decades devoted to 

unraveling the factors which drive the immunopathogenesis of DENV infections, the dynamic 

host and viral factors that contribute to the development of severe disease have yet to be fully 

elucidated [10].  Therefore, the pathogenesis of DENV infections requires further research. 
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1.1 GLOBAL IMPACT OF DENGUE 

1.1.1 Disease Burden 

Dengue threatens an estimated 2.5 billion people -or about one-third of the world’s 

population- with significant medical, social and economic burden.  In 2010, the World Health 

Organization (WHO) reported the overall severe disease burden to be approximately five 

hundred thousand cases annually with a 1-5 percent case-fatality rate.  In the absence of 

supportive therapy, this case-fatality rate rose up to 40 percent in some regions [9, 11]. 

However, many experts believe that these disease burden estimates are highly conservative.  A 

recent mapping exercise conducted by the Spatial Ecology and Epidemiology Group at Oxford 

suggests that the actual burden of dengue is about three times higher than current WHO 

estimates [12]. 

1.1.2 Emergence 

Dengue has accompanied human society throughout history.  The earliest records of 

dengue-like symptoms were documented during the Chin Dynasty, 265-420 A.D [13]. 

Throughout the 18
th

 and 19
th

 centuries, dengue was primarily observed in parts of Asia and the

Americas with a major epidemic in Philadelphia in the 1780s [14]. However, these localized 

dengue outbreaks differed from the global disease present today because expansion of mosquito 

vectors and infected human hosts occurred at a much slower rate. During World War II, 

movement of viremic troops and refugees across the globe facilitated the spread of dengue to 

new areas [15].  Combined with post war population growth, rapid urbanization and poor vector 
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control, this heightened trans-continental travel led to the establishment of dengue hyper-

endemic areas in Asia and the Pacific [16].   Dengue’s reach continues to expand dramatically.  

Many countries in Asia, Africa and the Americas now show all four dengue serotypes in 

circulation when during World War II and up to twenty years ago they evidenced only one or 

two serotypes [17].  

1.2 DENGUE VIRUS 

1.2.1 Genome/Structure 

DENV is part of the genus flavivirus from the family Flaviviridae.   The Flaviviridae 

family includes other relevant, serologically related viruses such as West Nile virus, yellow fever 

virus, and Japanese encephalitis virus.  The genome is an ~11 kb single stranded positive sense 

RNA genome that has one open reading frame which is translated into a single polyprotein. This 

genome encodes three structural proteins: the nucleocapsid (C), the membrane associated protein 

(M), and the E protein.  It also encodes seven non-structure proteins that are essential for viral 

replication: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [18-20].  Electron micrographs 

show the virion to measure 50 nm as an immature particle and 60 nm as a mature particle [21]. 

Inside the virion, viral C proteins encasing the viral genome form the nueclocapsid which is 

surrounded  by a host-derived lipid bilayer with an icosahedral scaffold consisting of 180 copies 

of E protein monomers.  The E protein plays an essential role in facilitating the virion’s 

attachment and fusion with susceptible cells.  All four serotypes share similar epitopes on the E 

protein that lead to extensive cross-reactivity [19, 22-24]. 
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1.2.2 Transmission and Life Cycle 

The Aedes aegypti mosquito is the principal DENV vector; Aedes albopictus is the 

secondary vector.  The Aedes mosquito species are found in urban areas.  They prefer to lay their 

eggs in standing water near or under houses.  Once a mosquito feeds on an infected host and 

contracts DENV, it is infected for life [21]. DENV is transmitted to the human host when an 

infected mosquito inserts its proboscis into the upper dermis layers while searching for the 

capillaries to take a blood meal. The virus enters the human host through the mosquito saliva that 

is injected during feeding [21, 25, 26].  Disease onset occurs typically four to six days after the 

virus is introduced into the skin [27]. 

Once the transmitted virus makes contact with susceptible cells, it enters the cells through 

receptor-mediated endocytosis using receptors such as dendritic-specific intercellular adhesion 

molecule 3(ICAM-3)-grabbing nonintegrin (DC-SIGN) [19].  In vitro, it has been observed that 

the virus primarily targets monocytes/macrophages for DENV infection, as well as Langerhan 

cells and dermal dendritic cells.  However, the precise in vivo targets are still not known [28]. 

After entering the cell, acidification of the endosome triggers a conformational change which 

causes the projection of fusion peptides located on the E protein to facilitate the fusion of the 

virus membrane with the host membrane [24].  This opens the viral particle, releasing the viral 

genome into the cytoplasm.  In the cytoplasm, the viral RNA dissociates from the nucleocapsid 

and associates with endoplasmic reticulum (ER) derived-membranes.  Replication of the viral 

genome and assembly of the virion is initiated in the ER.  Translation of the genome involves the 

production of a single polyprotein that is cleaved at specific sites by both host proteases and the 

viral NS3/NS2B protease. The immature particles travel through the Golgi and are released from 
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the cell by exocytosis. Mature particles are produced when the endoprotease furin cleaves the 

pre-membrane protein (prM) to produce virus associated M, an infectious particle [19, 29, 30]. 

1.3 CLINICAL CLASSIFICATIONS AND MANIFESTATIONS 

1.3.1 Changes in Clinical Classifications 

Over the past decades, it became apparent that the previous system for classifying DENV 

infections was no longer suitable for standardizing treatment and clinical practice. This system, 

based on the original 1975 guidelines, proved too complicated for medical professionals to use in 

the proper treatment and classification of dengue patients.  In an effort to ease the triage process, 

the WHO revised this classification system in 2009 to account for the variable disease 

manifestations recorded across multiple geographical regions [31-33]. 

In the past, dengue outcomes were categorized as dengue fever (DF), and dengue 

hemorrhagic fever (DHF) grades I-IV with IV representing dengue shock syndrome (DSS). The 

2009 system removes this grading system and only considers three different categories of 

disease: dengue, dengue with warning signs and severe dengue [33].  This new system is hoped 

to ease management of clinical patients and allow for greater sensitivity to a severe dengue 

diagnoses [31, 32, 34, 35]. However, some researchers opine that categorizing dengue as a 

spectrum of disease outcomes will impede the study of DENV pathogenesis. They argue that 

understanding dengue as a distinct set of disease outcomes is essential to elucidating the factors 

driving severe disease development as different immune mechanisms may be involved in 

different clinical outcomes [32, 33].  Advocates of the new system cite the lack of progress in 
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understanding DENV pathogenesis under the old system as justification that the classification 

changes will not have any negative effects on research [32]. 

1.3.2 Clinical Manifestations 

The disease outcomes of DENV infections range from asymptomatic infections to severe, 

life-threatening infections. Based on the WHO/SEARO 2011 Comprehensive Guidelines for 

Prevention and Control of Dengue and DHF, which use the older classification system, cases can 

be categorized as undifferentiated febrile illness (UF), DF, DHF, and DSS.  UF is commonly 

seen in primary dengue.  Confirmation of DENV infections in UF cases relies on serological 

testing, as healthcare professionals cannot diagnose these patients based on clinical observation 

alone. DF, an acute febrile illness also called break-bone fever, is associated with severe 

headaches, joint pain, and occasionally haemorrhaging. DHF manifests similar symptoms to DF 

during the febrile phrase.  The development of significant plasma leakage and abnormal 

haemostasis distinguishes DHF from DF.  Warning signs such as persistent vomiting, abdominal 

pain, lethargy or restlessness can precede severe disease outcomes. DSS occurs when the plasma 

leakage observed during DHF becomes so severe that it causes the patient to go into shock [27, 

36, 37]. 

Implementation of the new classification system is hoped to allow for the distinct 

classification of patients. The category of dengue is assigned to patients who recover after 

defervesecence. Patients classified as dengue with warning signs suffer from symptoms such as 

persistent vomiting, abdominal pain, lethargy, etc. Severe dengue indicates patients who develop 

severe plasma leakage or severe bleeding. This new system has yet to be practically shown as a 

relevant alternative to the previous system. To optimize this dengue classification system, 
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researchers may need to implement further modifications as well as incorporate elements from 

the previous naming system [34]. 

1.4 PRINCIPAL RISK FACTOR: SECONDARY INFECTIONS 

In the late 1970s Scott Halstead proposed the “sequential infection hypothesis”. This 

hypothesis was the first to suggest that pre-existing immunity to any DENV serotype may be 

linked to the development of severe disease [6]. To investigate his theory, Halstead studied a 

group of patients admitted to the Children’s Hospital in Bangkok, Thailand. Forty percent of the 

523 children hospitalized with DHF had symptoms of shock. When analyzing the serum of these 

children, Halstead found a correlation between antibodies to a secondary DENV serotype and the 

development of shock and [38].  In the 1980s, Donald Burke and several others conducted a 

follow-up study in Bangkok, Thailand.  They also found evidence indicating that an infection 

with a second DENV serotype was a principal risk factor for developing severe disease. Fifty 

percent of the children recruited into the study had already become infected with at least one 

serotype. When they actively surveyed these children for seven months, 69 percent of the 

children who developed secondary symptomatic infections were described as DHF. In this study, 

they observed a higher prevalence of DHF infections in children with pre-existing immunity 

compared to children without said immunity [6].  This study was the first comprehensive study 

to link the presence of pre-existing immunity to DENV with the severity of disease manifestation 

observed [6, 8, 38, 39].  

Another important study occurred in Cuba during the 1970s and 1980s. For the first time, 

investigators were able to directly study the effects of a second DENV serotype entering into an 
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already exposed population [40, 41]. Between 1977 and 1979, 50 percent of the Cuban 

population was infected with DENV-1. Two years later, DENV-2 was introduced into the 

population, producing the first major DHF/DSS epidemic in Cuban history [41]. DHF/DSS was 

observed in the adult population for the first time, and 98 percent of the DHF/DSS adult cases 

were found to have pre-existing immunity to the previously endemic DENV serotype. Among 

the 124 child cases of DHF, 122 of these children with DHF/DSS had pre-existing immunity to 

DENV. There were no hospital cases or fatalities in children who were born after the DENV-1 

epidemic. The observations made in this study were consistent with other studies of DHF in 

children with secondary exposures and with Halstead’s hypothesis of sequential infection [42]. 

1.5 CAUSATION OF SEVERE DENV INFECTIONS 

1.5.1 Antibody Dependent Enhancement 

The current central dogma explaining the causation of severe disease development is 

antibody dependent enhancement (ADE) [38, 43, 44].  ADE is based on the hypothesis that in an 

environment of sub-neutralizing antibodies, enhanced infection of monocytes and other 

susceptible cells with Fc receptors is promoted through the uptake of sub-neutralized virus-

antibody complexes. This mechanism of enhanced infection due to ADE has been previously 

observed in vitro with other viruses [45-47]. It is proposed that when an individual with pre-

existing immunity to DENV is infected with a different serotype the antibody response produced 

is sub-neutralizing and specific for the original infecting serotype. These sub-neutralizing 

antibodies are presumed to bind to the heterotypic DENV due to cross-reactivity and enhance the 
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infection of monocytes and macrophages. These increased levels of infected monocytes leads to 

higher levels of viremia, which is linked to the development of severe disease outcomes [48]. 

However, despite multiple clinical studies, direct evidence in support of ADE and its role 

in human infections has yet to be confirmed [43, 46]. Mice models provide the main in vivo 

model to study ADE. These studies have shown that antibodies can either neutralize or enhance 

DENV infections depending on their concentrations [43]. In humans, evidence in support of 

ADE come from epidemiological studies that report a high incidence of severe infections among 

infants, aged six to nine months, with waning passive maternal immunity received from dengue 

immune mothers [38, 49]. In addition, a study conducted in Thailand observing the ADE 

qualities of serum collected pre-infection with a second dengue serotype yielded evidence that 

suggested in vitro ADE activity was a good predictor for severe disease outcome [50].  Despite 

in vitro and clinical observations, the evidence in support of ADE remains circumstantial. Severe 

dengue infections are also observed in individuals with primary infections, so researchers have 

concluded that other factors must play a role in driving severe disease development. [46]. 

1.5.2 Other cellular factors 

The role of cellular immunity during severe dengue infections has been closely studied, 

especially since increases in soluble factors such as interleukin-2 (IL-2), interferon- , 

tumor necrosis factor-alpha (TNF-, macrophage inflammatory protein-1beta (MIP-1, and 

soluble CD8 in patient serum is linked to severe disease outcomes [51]. When monocytes 

become infected, they secrete TNF-, interleukin-6 (IL-6), and IFN- that lead to the 

reactivation of DENV specific CD4
+
 memory T-cells.  This T-cell activation also leads to

increased cytokine expression [52]. Some groups predict that the reactivation of memory T-cells 
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specific for the original infecting serotypes results in a skewed memory response consisting of 

low avidity cross-reactive T-cells, also known as original antigenic sin. This skewed response, 

based on in vitro studies, is proposed to alter the kinetics and the profile of cytokine secretion 

leading to an increase in IFN-, TNF- and MIP-1 [51]. 

Until recently, most pathogenesis studies focused on factors related to humoral or cellular 

immunity such as the antibody profiles present during infection, or the skewed T-cells responses 

driving the cytokine storms, but few studies focused on the roles which other cell types might 

play. Outside of the dynamic cross-reactive antibody profiles produced by the B-cells, few 

studies have delved into the other possible roles of this cell type. Current observations suggest 

that researching B-cells may shed further light on the factors driving dengue disease progression. 

1.6 HUMORAL IMMUNITY 

1.6.1 B-cells 

B-cells, historically called bone-marrow derived lymphocytes, are the lymphocyte 

population responsible for secreting antibodies against specific antigen epitopes leading to 

neutralization and clearance. They are primarily identified by the expression of CD19, as all B-

cell lineage cells express this surface molecule [53]. CD20 is also a surface marker for 

identifying mature B-cells. However, this marker is down regulated once committed to 

developing into plasmablasts, a professional antibody secreting cell described in later sections 

[53, 54]. B-cells are essential for long-term humoral memory and protection as antibody titers 

after natural or vaccination-induced immunity is considered a biomarker for a ‘correlate of 
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protection’ [55, 56]. Intimate knowledge of this cell type constitutes an important step towards 

unraveling the role they may play in immunopathogenesis as well as providing specific long-

term protection against pathogens [57]. 

Ever since their discovery and characterization in the mid-1960s, B-cells have been 

divided into multiple subsets based on their unique combinations of surface markers and the 

different roles each distinct phenotype plays [53]. 

1.6.1.1 Development of Memory B-cells, Plasmablasts and Plasma Cells 

The activation of naïve circulating B-cells after antigen challenge, which leads to their 

differentiation into acute plasmablasts or antibody secreting cells (ASCs), is relatively well-

defined [57]. Upon recognizing the challenging antigen, activated naïve B-cells migrate to the 

secondary lymph node organs and home to the T-cell-B-cell border where they interact with 

follicular T-cells and their cognate T-helper cell [58]. This interaction pushes the naïve B-cell to 

differentiate into first responder low-affinity acute IgM ASCs or to become founder cells for 

germinal centers (GC) [56, 59]. Somatic hypermutation (SHM) and class switching occurs in the 

GC to select the B-cell clones with the highest affinity to the invading antigen [56]. After 

founder B-cells form a GC and undergo SHM, they begin the process of either differentiating 

into acute plasmablasts, memory B-cells or long-lived plasma cells. 

Plasmablasts are an intermediate subset between an activated B-cell and a plasma cell. 

Plasmablasts and plasma cells are similar in that they both are professional antibody secreting 

cells that down-regulate CD20 and up-regulate CD38 and CD27.  These two subsets differ in that 

plasmablasts still undergo cell cycling and proliferation and have not started to express CD138, 

while plasma cells express CD138, have extremely low CD19 expression and are terminally 
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differentiated [54, 60]. If the plasmablasts do not directly differentiate into plasma cells and 

survive in the lymph node, they will exit into circulation and survive only a short time during the 

infection to secrete high amounts of antigen specific antibodies [60]. It is still not clear if these 

acute plasmablasts are able to home to survival niches such as the bone marrow and differentiate 

into long-lived plasma cells [54, 60]. 

Memory B cells represent the immunological memory branch of the immune system 

because they are the main mediators of the secondary responses to infection. This subset is 

distinguishable from naive B-cell subsets based on their expression phenotype 

CD19
+
CD27

+
CD38

-
, their longevity and their ability to produce high affinity antibodies [54, 61].

Memory B-cells have high affinity B-cell receptors (BCR) that are extremely sensitive to their 

cognate pathogen. After sensing their antigen, memory B-cells will rapidly differentiate into IgG 

secreting plasmablasts because their signal and cytokine requirement is much lower compared to 

a naïve B-cell [57, 62, 63]. However, the particular signals necessary to drive the secondary 

response facilitated by re-activated memory B-cells remain poorly understood. Some studies 

identify cell populations such as T-cells or monocytes as important while others suggest that 

activation through the BCR by the antigen alone is sufficient to drive the classic anamnestic 

response [62, 64]. After the antigen is cleared, the memory B-cells remain quiescent in the 

periphery; how this subset is maintained for decades in the absence of antigen remains unknown. 

Throughout an individual’s lifetime, the memory B-cells generated by primary and secondary 

exposures persist for life-providing protective immunity against reinfection [56, 57].  One caveat 

is that any defect or alteration in the signals required for regulating this process can promote 

pathogenic outcomes, either through a lack or overabundance of antibodies due to an unregulated 

immune response. 
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1.6.2 Role of T-cells and Monocytes in Plasmablast Development 

The particular microenvironment where the activated and developing B-cell resides 

regulates their phenotypic outcome. The cytokine profile is particularly important in modulating 

the transcription factors that influence the up or down regulation of certain surface molecules.  In 

the 80s and 90s, a myriad of cytokines such as IL-6, interleukin-10 (IL-10), a proliferating-

inducing ligand (APRIL) and B-cell activating factor (BAFF) were discovered and found to 

promote survival, proliferation, isotype switching and differentiation of B-cells [59, 60]. The 

particular combinations of these cytokines and others are responsible for regulating the 

development of the different subtypes; however, researchers still have not pinpointed the exact 

signals required to drive the differentiation of a memory B cell versus a plasmablast [59]. 

It is known through in vitro studies that T-cells are important for this process as IL-2 

enhances proliferation upon CD40L interactions, which is provided by direct T-cell interactions 

[59]. However, the role of T-cell help in the formation of plasmablasts is still not clear especially 

in secondary verses primary infections [54]. IFN- has also been identified as an important 

cytokine to push the differentiation of B-cells into plasmablasts in an IL-6 environment. IL-6 is 

predominantly secreted by monocytes [59].  Previous publications provide evidence that the 

microenvironment where plasmablasts mature are rich in IL-6 and APRIL, which are secreted by 

monocytes/macrophages and dendritic cells [58, 60]. 

As mentioned above, plasmablasts enter the peripheral blood after their formation in the 

GC, retaining their ability to both proliferate and secrete high amounts of antigen specific 

antibodies. Multiple studies have noted that the plasmablast’s kinetics are fairly consistent. 

Regardless of vaccine or antigen based activation, plasmablasts peak in the periphery 6-7 days 

post primary contact with the antigen [54, 65, 66]. This response lasts as long as viral antigen is 
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present in the system, but afterwards the number of plasmablasts rapidly drop off as the infection 

clears [54].   

1.6.3 Humoral Immunity and DENV Infections 

In the context of DENV infections, very little is known about the role plasmablasts play 

because most studies merely focus on the cross-reactive or the neutralizing profile of the 

antibodies produced. Recent studies delving into the role these cells may play have found that 

individuals infected with DENV have a very robust plasmablast response that peaks four to 

seven days after the onset of symptoms [54, 67-69]. One study completed in Thailand using a 

cohort of adults and children hospitalized with dengue observed that six to seven days post onset 

of symptoms there was a massive plasmablast response. The kinetics of this response occurred 

within the expected timeframe, but the extremely high presence of plasmablasts observed was 

distinctive. On average, the peak plasmablast response was 47 percent of all peripheral CD19
+
 B-

cells with some individuals reaching 80 percent [68]. During other acute infections or 

vaccination boosters, the peak in plasmablasts usually occurs six to seven days post exposure, 

but only around 5 to 20 percent of the total CD19 population develop the plasmablast phenotype 

[66]. In subjects receiving the primary yellow fever virus vaccine or the influenza vaccine, only 

2 to 3 percent of their CD19
+
 cells were identified as plasmablasts [68]. In addition to this, at

least 70 percent of the plasmablasts produced were dengue specific IgG secreting cells indicating 

this is a targeted rather than a massive non-specific response [68]. There was no observable 

difference between the plasmablast responses mounted in individuals infected with different 

dengue serotypes. 



15 

Our lab has recently published data observing a similar pattern using a cohort of 

individuals from Brazil. We found that among the individuals who were suffering from severe 

dengue infections, there was a massive plasmablast response peaking four to seven days after the 

onset of symptoms that averaged 47 percent and rose as high as 87 percent of the peripheral 

CD19
+
 B-cell population. Unlike the previous study, there were enough individuals with primary

infections to compare the plasmablast responses between severe secondary and primary DENV 

infections. We found that there was a significant difference in the number of plasmablasts 

between severe primary and secondary infections. In this study, we also found that over 70 

percent of these plasmablasts were specific for DENV. The antibodies produced by these 

plasmablasts were three times greater in their reactivity against the current infecting DENV 

serotype, not the previous infecting serotype [67].  

It is not clear how this very potent DENV specific plasmablast response fits into the 

current model of DENV pathogenesis, but it is believed that this response plays an important 

role. Some speculate that the reactivation of DENV specific memory B-cells early in infection 

facilitates the production of antibodies which lower virema.  In turn, this lowers the overall viral 

load to decrease the chances of severe disease progression [69]. However, no studies have 

conclusively investigated the profiles of these antibodies produced during secondary infections. 

It is also possible that a large reactivation of memory B-cells specific to the previous infecting 

serotypes may drive ADE, causing a high viral load and severe infection. The founding 

population of the plasmablasts that drive this robust plasmablast response remains unknown. It is 

possible that a skewed memory B-cell response could drive this potent response and influence 

the overall humoral response to the heterotypic DENV infection. 
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Identifying the origins of this plasmablast response and its impact on the disease may 

provide new opportunities to design more targeted vaccine candidates. When developing an 

effective vaccine, especially for DENV, it is essential that the vaccine protectively targets and 

‘teaches’ the immune system how to properly respond to the infection when re-challenged. 

Therefore, more research is required to elucidate whether or not this potent plasmablast response 

is the result of an immune response skewed towards protection or pathogenesis. 
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2.0 PROJECT AIMS 

Before moving towards future studies to link this potent plasmablast response to disease 

outcomes, I first wanted to investigate the possible origins of this plasmablast response. To 

understand if these plasmablasts originated from a skewed memory B cell response or a robust 

activated naïve B-cell response, I first decided to focus on the reactivation potential of DENV 

specific memory B-cells. For this study, my primary goal was to examine the in vitro 

requirements for re-activating DENV specific memory B cells and driving them to differentiate 

into IgG secreting DENV specific plasmablasts. 

AIM 1: Investigate the ability of DENV to stimulate the differentiation of DENV specific 

memory B-cells into plasmablasts. Hypothesis: DENV is able to directly stimulate DENV 

specific memory B-cells and drive them to differentiate into DENV specific plasmablasts. 

Approach: I will stimulate PBMCs from individuals who had previous DENV infections with 

DENV before culturing for seven days. Then I will assess the phenotype of the ASCs by flow 

cytometry and their specificity by ELISPOT to evaluate the ability of DENV to drive the 

differentiation of plasmablasts in culture.  

AIM 2: Determine the role of monocytes in promoting the in vitro expansion of 

plasmablasts in response to DENV stimulation. Hypothesis:  Other cell populations such as 
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monocytes may play a role in assisting the differentiation of DENV specific memory B-cells into 

plasmablasts. Approach: Using magnetic beads, CD14
+
 monocytes will be depleted from the

PBMC samples before stimulating with DENV and culturing for seven days. Flow cytometry 

analysis will be used to observe if this causes a decrease in the frequency of plasmablasts 

produced in culture. After forty-eight hours, I will look for the presence of infected monocytes 

by utilizing fluorescently labeled 2H2 antibodies to probe for the presence of intracellular virus. 



3.0  MATERIALS AND METHODS 

Isolation of PBMCs from blood donors  

The University of Pittsburgh IRB approved blood collection from healthy donors with 

and without pre-immunity for dengue, and these donors gave their informed consent.  Three of 

the six donors used in this study had been exposed to dengue >10 years prior to the blood draw.  

ELISA confirmed the presence of dengue specific antibodies in their serum. The three remaining 

donors self-reported that they had had no known exposure to the dengue virus or history of 

potential dengue-like disease. ELISA showed a lack of dengue specific antibodies and 

Confirmed their dengue naïve status. Venous blood was collected using heparin or acid citrate 

dextrose tubes once or multiple times during a 9 month period depending on the donor. PBMCs 

were isolated using gradient centrifugation over Ficoll-Hypaque. Any contaminating red blood 

cells were lysed by ACK treatment for 10 minutes RT. The PBMCs were then washed twice in 

MACs Buffer (PBS, 0.1 EDTA, 5% BSA, HEPES) and re-suspended in 10% dimethylsulfoxide 

(DMSO)/fetal bovine serum for cryopreservation at a concentration of 1x107 cells/ mL per vial.  

Virus-capture ELISA 

Determination of the presence of DENV specific antibodies in the serum samples 

collected from the donors was performed by virus-capture ELISA. The ELISA plates were 

coated using 1ug/well of 4G2 antibody (a pan DENV envelop antibody, produced and kindly 

gifted by Eduardo N, Center for Vaccine Research, University of Pittsburgh PA USA) in sodium 
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bicarbonate carbon buffer pH 7.4. 50 uL/well of this mixture was then incubated overnight at 

4oC. The 4G2 was washed off with wash buffer (PBS, 0.1% Tween-20) then incubated at 37oC 

for an hour in blocking buffer (5% milk in PBS). Afterwards, the plate was washed 3x with wash 

buffer before the addition of an equalized DV-2 and DV-3 virus supernatants in C6/36 growing 

media (DMEM, 2% FBS, 1% phosphate broth) (gifted by Eduardo N.). The plate was incubated 

for 2 hours at 37oC and then washed 5 times with wash buffer. Serum samples from each donor 

were diluted at 1:100 in 1% milk PBS before being added to each well and incubated overnight 

at 4oC. The plate was then washed 2x before the addition of 1:10000 anti-IgG antibody (Jackson) 

in 1% milk PBS and incubated at 37oC for 1 hour. The plate was washed 3x in wash buffer and 

1:10000 of anti-IgG HRP in 1% milk (Jackson) was added to the plate. After the plate was 

incubated for an hour at 37oC, the plate was washed 3x with wash buffer, and 50 uL/well of 

TMB was added for 20 minutes. After 20 minutes the reaction was stopped by adding 25 uL/well 

of 2N HCl. The OD was read and then analyzed using Graphpad Prism 6.  

Stimulation of cryopreserved PBMCs with virus 

The cryopreserved PBMCs were quick thawed in a 37oC warm water bath and washed in 

R-10 (RPMI-1640, 10% FBS, 1% Pen/Strep, 1% L-glut, 1% Non-essential amino acids, 1% 

sodium pyruvate, 1% HEPES) culture medium. They were rested in 10 mL of medium for 2 

hours prior to stimulation with DENV in 5% CO2 at 37oC. The cells were stimulated in 15 mL 

conicals using virus re-suspension medium alone (20nm HEPES, 3% FBS, DMEM) or with an 

MOI 3 of DENV 2 or 3, influenza virus (H7N9
 a gift from the Ted Ross, previously Center for 

Vaccine Research, University of Pittsburgh, PA USA) or 240 nm of SIV251 capsid protein (a gift 

from Jeff Listone). After re-suspending 5x105 cells/275 uL in a mixture of virus and virus re-

suspension media or virus re-suspension media alone, the cells were incubated in 5% CO2 at 
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37oC for two hours. Then the virus was washed off the cells by filling the 15 mL conicals with 

R-10 medium and spinning the cells down. The cells were re-suspended in R-10 medium at a 

concentration of 100, 000 cells/100 uL. As a positive control some of the cells not stimulated 

with virus were stimulated with a mixture of Phytolacca Americana pokeweed mitogen 

(1/100,000 dilution), Staphylococcus Aureus Cowan (SAC) (Sigma) (1/10,000 dilution) and 

6ug/mL of CpG 2006 (Invitrogen). They were cultured ~171, 000 cells/well in a 96 round-well 

culture plate in 5% CO2 for 7 days. 

Detection of plasmablast by flow cytometry 

After the PBMCs were either thawed or cultured for 7 days, they were incubated at 

various concentrations in the master mix of different combinations of the fluorochrome-labeled 

Ab from BD science. The main antibody panel used was CD19 (clone HIB19 PE-Cy7), CD20 

(2H7 APC-H7), CD27 (M-T271 V450), CD3 (PE-Cy5), CD38 (AT-1; Stem Technologies). 

Some experiments used CD95 (DX-2 APC) or CD21 (B-ly4 PE-Cy5) (all from BD Science 

except CD38). Before the cells were stained for extracellular targets, they were incubated with 

LIVE/DEAD (Invitrogen), which is an amine-reactive fluorescent dye that stains dead and dying 

cells positive. All samples were run on an LSRII flow cytometer (BD Biosciences) and the data 

was analyzed using Flowjo software (Tree Star).  

Detection of infected monocytes 48 hrs post stimulation by cytometry 

The detection of infected monocytes occurred after the PBMCs were exposed as 

described above to DENV-2 or DENV-3 before culturing for 48 hours. The cells were collected 

and MACs Buffer was added to the wells. Each well was washed vigorously until all adherent 

cells were removed from the plate. Then the cells were incubated with LIVE/DEAD (Invitrogen) 

as described above; the Ab panel from BD Science used was CD19 (PE-Cy7), CD14 (PB), CD3 
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(PE-Cy5), HLA-DR (FITC) and CD11c (PE). Intracellular staining for virus followed the surface 

staining of the cells. The cells were fixed and permeabilized using Cytofix/Cytoperm kit (BD 

Biosciences), followed by staining with a Alex647 conjugated 2H2 antibody. The 2H2 is an 

IgG2a isotype antibody produced in lab using a hybridoma from a mouse immunized against all 4 

dengue serotypes. Therefore, this is a pan-dengue antibody that recognized the prM protein. An 

Alexa674 anti-mouse IgG2a (Invitrogen) was used to label this antibody following the 

manufacturer’s protocol. Following the intracellular staining, the samples were run on an LSRII 

flow cytometer and analyzed using Flowjo as previously described.  

Growth/ultracentrifugation of DENV prototypes 16681 DENV-2 and H87 DENV-3 

The DENV prototypes used in this study were DENV-2 (16681) and DENV-3 (H87). 

They were propagated on C6/36 cells. At day zero 1x106 cells were infected with an MOI 0.01 of 

virus for 2 hours before the virus was washed off. Then the cells were cultured for 15 days in 

DMEM, 2% FBS, 1% Pen/Strep and 1% phosphotase Broth. Supernatants were collected and 

stored at -80oC at days 5, 7, 9, and 15 dependent on the amount of CPE observed. Then the 

supernatants were pooled and concentrated by centrifugation at 100,000 x g for 4 hours over a 

20% glycerol cushion.  

DENV specific ELISPOT Assay 

The ELISPOT assay used was previously published [67]. To give a brief summary, 96 

well ELISPOT plates were coated with goat anti-human IgG (10 ug/mL; Bethyl Laboratories), 

UV-inactivated DENV-2 (16681) or DENV-3 (H87) that were grown on C6/36 cells and 

concentrated as described above to detect IgG secreting plasmablasts or DENV specific 

plasmablasts, respectively. The concentration of virus used per well was 1x105 PFU/mL and the 

control used was a 2% BSA and IgG coated well with a media only culture. The plates were 
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coated overnight at 4oC. Before adding the stimulated cells- either CpG cocktail or DENV which 

had been stimulated for 7 days- the plates were blocked with RPMI 1640 with 10% FBS for 2 

hours. The desired concentration of cells was then added to each well. After an18-20 hour 

incubation at 37oC, the cells were discarded and washed before a 1 hr incubation with 

biotinylated goat anti-human IgG-Fc (Bethyl Laboratories) at room temperature. Then 

Streptavidin-conjugate alkaline phosphatase (Bio-Rad) was added and the plates were developed 

using an alkaline phosphatase conjugate kit (Bio Rad). CTL ImmunoSpot reader and counting 

software was used to count the spots produced (Cellular Technologies).  

Depletion of CD14+ monocytes 

Depletion of CD14+ cells was achieved by using the MACs cell sorting kit (Miltenyi 

Biotech). This kit positively labels CD14+ cells; the depletion was carried out following the 

manufacturer’s protocol and using a LS depletion column.  

CFSE cell Proliferation Kit 

 In order to follow the proliferation of CD19+ in culture for seven days, the Cell TraceTM 

CFSE Cell Proliferation Kit, for flow cytometry by Invitrogen was used. The protocol issued 

with the kit was followed. Briefly, 1 uL of the Cell TraceTM stock solution was used per 1 mL of 

protein-free buffer. 5 uL of Cell TraceTM was used per 5 mL of 0.1% BSA (BSA and PBS) and 

5x106 million PBMCs. The cells were re-suspended in the dye solution and left in the 37oC hot 

water bath for 30 minutes. Then the cells were washed thoroughly and re-suspended in complete 

R-10 media and left in the hot water bath at 37oC for another 10 minutes. After staining the 

PBMCs, they were stimulated with the CpG cocktail, as described above, or cultured in media 

only for 7 days. At day 7, the PBMCs were collected and stained as described above to look at 

CD19+ population.  
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4.0 RESULTS 

4.1 SPECIFIC AIM 1 RESULTS 

AIM 1: Investigate the ability of DENV to stimulate the differentiation of DENV specific 

memory B-cells into plasmablasts. 

4.1.1 Patient and sample characteristics 

For this study, healthy donors were recruited from the local community. From this group 

of local donors, six reported previous infections with DENV and eight had no history of travel to 

dengue endemic areas. To confirm the immune status of these donors, their serum was tested by 

an in-house anti-DENV IgG ELISA. I confirmed that the serum for all six donors with previous 

exposure to DENV was positive for antibodies that could bind to DENV.  Five of the presumed 

naïve donors did not have DENV binding antibodies in their serum. The remaining three donors 

were dropped from the study due to borderline negative results. Of these remaining donors I 

chose three of the confirmed naïve and three of the confirmed immune to include in the study. 

Figure 1 shows the anti-DENV IgG virus-capture ELISA results for these six donors. The 

demographics and clinical histories for each of the donors are described in Table 1. Additionally, 

plaque reduction neutralization assays were performed using the serum samples to confirm the 

DENV serotypes to which the donors reported being previously exposed. The neutralizing 
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antibodies detected were DENV-3, donors P002 and P004, and DENV-1 and DENV-2, donor 

P026 (Table 1). 
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PRNT data kindly provided by Priscila Castanha, MS from Ernesto Marques lab. 

DONOR ID P002 P004 P026 P040 P044 P046 

Age 30s 30s 30s 30s 20s 20s 

Gender M F F F F F 

Type Infection DF Asymptomatic DHF Naïve Naive Naive 

Neutralizing 

Antibodies 

DENV-3 DENV-3 DENV-1 

DENV-2 

- - - 

Year Infected 2003 2003 - - - - 

The dotted line represents the cut-off OD where all readings below the line are negative and all the readings 

above are positive serum samples for DENV antibodies  

Figure 1. Detection of cross-reactive anti-DENV IgG antibodies in donor serum samples. 

Table 1. Demographic and serological characteristics of the donors. 
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4.1.2 Examining the phenotype and kinetics of the plasmablasts produced after DENV 

exposures 

For this study, I defined plasmablasts as the CD19
+
CD20

-
CD38

++
CD27

++
 population

based on previously published classifications [54]. The gating strategy depicted in Figure 2 was 

used throughout the entire study to classify this cell population. 

A kinetics curve was performed to observe when B-cells start differentiating and up-

regulating CD27
++

CD38
++

, as well as down regulating CD20, which is the classic phenotype of

plasmablasts. Vaccine, clinical and in vitro studies observed that this response takes place 

Representative gating strategy for how plasmablasts were defined from DENV immune individual post 

DENV stimulation and pre-stimulation. G-1 gates on the total cells that have the appropriate Forward and 

Side Scatter to indicate they are neither dead cells or debris. G-2 gates on single cells. G-3 gates on live 

cells. G-4 gates on the CD19
+
CD20

-/low
 B-cell population. G-5 gates on the CD38

++
CD27

++
 plasmablast 

population. 

Figure 2. Gating strategy to define plasmablasts. 
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between five to ten days post exposure and peaks at six to seven days [65, 67, 70, 71]. Therefore 

I took samples from day three until day nine, two days before the presumed beginning stages of 

the plasmablast development and two days after the estimated peak, respectively.  PBMCs from 

P026, a DENV immune donor, were used to define this curve, as it was expected that DENV 

would drive a defined plasmablast population (Figure 3A). P040 was used as the negative control 

for a response to DENV without any specific B-cells (Figure 3B). Since memory B-cells have 

high affinity BCR against their specific antigen, they are more sensitive and require less 

activation signals compared to a naïve B-cell; therefore, they rapidly differentiate into 

plasmablasts after antigen exposure in vivo [54]. To ensure that donors with DENV specific 

memory B-cells did not produce a peak plasmablast response before donors without DENV 

specific memory B-cells, I tested donors from both groups. Due to naïve B-cells requiring strong 

activation signals, I speculated that non-specifically activated cells may peak after the reactivated 

memory B-cells population. The amount of plasmablasts in both donors increased gradually each 

day during the nine day kinetics study. This suggests that after DENV stimulation in vitro, the 

plasmablast response uniformly developed in each donor regardless of immune status; however, 

as expected, the overall frequency of the plasmablasts was greater when the donor had DENV 

specific memory B-cells. Based on this curve, day seven was chosen as the time point to look for 

the plasmablasts in the subsequent studies (Figure 3A). Despite the higher percentage of 

plasmablasts at day nine, day seven was chosen because of the difficulty of culturing fragile 

primary B-cells for long periods. 
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(A) Kinetics curve for P026 a DENV immune donor. (B) Kinetics curve for P040 a DENV naïve donor 

Figure 3. Kinetics curve for plasmablast differentiation in culture. 
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4.1.3 Generation of plasmablasts by DENV-induced stimulation 

After establishing that day seven was the optimal day to look for plasmablasts, I 

compared how selected DENV immune and naïve donors responded in culture. Our hypothesis 

was that donors with DENV immunity would produce a strong plasmablast response in culture as 

seen in influenza vaccine studies or clinical dengue infections. As a positive control virus for 

antigen derived plasmablasts in culture, influenza virus was chosen. In the United States (US), 

the Centers for Disease Control of Prevention (CDC) estimates that 38.8 percent of adults 

received the influenza vaccine 2011-2012 [72], so many US adults have a well-maintained 

population of influenza virus specific memory B-cells. The six donors chosen for this set of 

experiments all mounted a high frequency plasmablast response after in vitro stimulation. A 

carboxyfluorescein succinimidyl ester (CFSE) study was also completed to show that B-cells 

could be driven to proliferate in culture. Figure 4A shows the CD19
+
 cells seven days after being

cultured in media only or a strong CpG mitogen cocktail. As shown by the large number of cells 

that had a distinct reduction in florescence, the majority of the CD19
+
 were induced to

proliferate. In contrast, the media only control population mainly stayed a uniformed high 

florescent population indicating they did not undergo proliferation during the seven days. 

It was expected that both DENV naïve and DENV immune donors would have strong 

plasmablast responses in culture to influenza while only the DENV immune donors would 

produce a distinct plasmablast response to DENV (Figure 4B). However, based on multiple 

experiments, only one DENV immune donor produced a defined, but varied, plasmablast 

response in culture.  The three naïve donors produced a low-level plasmablast response.  The two 

remaining DENV immune donors produced a very low plasmablast response in culture. Figure 

4C shows the range of plasmablast responses observed in each donor throughout the study. The 
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specificity of these plasmablasts produced as a result of DENV stimulation could not be detected 

by flow cytometry. Based on the low levels of plasmablasts observed in the naïve donor samples, 

DENV is likely able to cause some level of non-specific activation. Another experimental 

approach was taken to determine the specificity of these plasmablasts, as well as whether or not 

this suggests DENV can drive reactivation and proliferation in the DENV specific memory B-

cell population. 
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(A) CFSE study. Both dot-plots represent the CD19
+
 population of the total PBMCs cultured. The left dot-

plot represents the media only control showing very little proliferation while the right dot-plot shows high 

levels of proliferation in the CpG cocktail treated PBMCs. (B) Representative dot-plots of the plasmablast 

response hypothesized to be observe. (C) Range of plasmablast responses observed in each donor 

throughout the study 

Figure 4. Generation of plasmablasts in culture. 
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4.1.4 Specificity of plasmablasts in DENV patients 

The flow cytometry method used in the previous experiments could only measure the 

overall frequency of the plasmablasts produced by the different donors in culture. A system to 

detect the specificity of these plasmablasts by flow cytometry was not available. Therefore an in- 

house ELISPOT assay was used to determine the specificity of the DENV activated 

plasmablasts. A previous study showed that ~70 percent of IgG
+
 secreting plasmablasts obtained

from a dengue patient were specific for DENV-3 [67]. Since this patient was already 

characterized, I used them as a positive control for the assay. Figure 5 shows that the assay was 

working accurately since ~70 percent of the total IgG secreting plasmablasts were specific for 

DENV-3. 

10,000 PBMCs were plated per well. Patient 570 was a previous characterized patient sample with >70% of their 

plasmablasts specific for DENV-3 

Figure 5 Highly DENV specific plasmablast response in patient 570.  
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4.1.5 Frequency of long-lived DENV specific memory B-cells 

Before looking for DENV specific IgG
+
 plasmablasts after stimulating PBMCs from

immune individuals with DENV, tests were designed using a strong mitogen cocktail to make 

sure there was a detectable population of DENV specific IgG
+
 memory B cells in the peripheral

blood. Most investigators searching for class switched memory B cells use a strong mitogen 

when measuring their frequency. The class switch population has been reported to be 250 to 300 

cells/1x10
6
 PBMCs with the percentage of antigen specific B-cells reported to be ~0.01 to 0.1

percent of this class switched population depending on the study and antigen [65, 66, 73]. In 

order to characterize the frequency of DENV specific memory B cells in each DENV immune 

donor, I stimulated PBMCs for seven days using a strong B-cell mitogen cocktail (see methods) 

to drive CD27
+
 memory B-cells to differentiate into antibody secreting cells. I then transferred

the cells in an ELISPOT plate pre-coated with DENV and incubated for twenty hours to capture 

any IgG or DENV specific antibodies (Figure 6A). All 3 DENV immune donors had quite a 

large DENV specific IgG
+
 memory B-cell population relative to the observations referenced

above. Over 0.7 percent of the circulating IgG
+
 memory B-cells in the immune donors were

DENV specific. Two of these donors had over 2 percent of their circulating memory B-cells 

specific for one or two dengue serotypes (Figure 6B).  A donor with no pre-exiting immunity to 

DENV was also stimulated with the same strong mitogen cocktail for seven days and, as 

expected, no DENV IgG
+
 secreting plasmablasts were detected (Figure 6A). These results

suggest that the DENV immune donors have a large DENV specific IgG
+
 long-term memory B-

cell population in their peripheral blood that could be detected by ELISPOT. Since antigen 

stimulation is much weaker compared to a strong mitogen cocktail, if DENV specific antibodies 
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are undetectable by ELISPOT after seven days, this is not related to an absence of DENV 

specific memory B-cells.  
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(A) Representative ELISPOT wells of DENV immune and naïve donors after stimulation with DENV for 7 

days and remaining un-stimulated in culture. This assay detected the plasmablasts secreting Ab reactive 

against IgG, DENV-2, DENV-3 and BSA. (B) Pie charts representing the frequency of DENV specific IgG 

plasmablasts per total IgG plasmablasts.  

Figure 6. Frequency of DENV specific memory B-cells. 
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4.1.6 Specificity of plasmablasts generation after stimulating with DENV-2 

Testing was conducted to determine if DENV alone is a strong enough stimulus to 

specifically reactivate the circulating DENV specific IgG
+
 memory B cells to proliferate and

differentiate into DENV specific IgG secreting plasmablasts. After stimulating the PBMCs with 

DENV-2, I plated a range of cells, 1x10
5 

 to 32,500 cells, in each ELISPOT well and incubated

for twenty hours to capture any DENV specific antibodies secreted by the ASCs. The DENV 

naïve donor used as a negative control produced a low level IgG
+
 response, supporting the initial

observation that the plasmablasts produced in culture were non-specific. In the media only 

controls, there was also a low level of IgG
+
 plasmablasts after seven days (Figure 7A). As shown

in Figure 7B, in two of the donors with a known history of DENV infection, only 2 to 5 percent 

of their ASCs were specific for DENV. The third donor with DENV immunity had undetectable 

levels of DENV specific IgG secreting cells. It is possible their response was so low because I 

needed to plate a higher number of cells per well. These results show that the plasmablast 

population observed by flow cytometry after seven days in culture does not represent a dominant 

DENV specific population as was expected. Even though the percentages of DENV specific IgG 

secreting cells are lower than expected, they still show that DENV can drive DENV specific 

memory B cells to differentiate. These results suggest that the re-activation of DENV specific 

memory B-cells and the plasmablasts they differentiate into do not predominantly make up the 

potent plasmablast response observed in acute patients. 
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(A) Representative ELISPOT wells of DENV immune and naïve donors after stimulation with DENV for 7 

days and remaining un-stimulated in culture. This assay detected the plasmablasts secreting Ab reactive 

against IgG, DENV-2, DENV-3 and BSA. (B) Pie charts presenting the frequency of DENV specific IgG 

secreting cells per total IgG secreting cells 

Figure 7.  Specificity of the plasmablasts produced after stimulation with DENV-2. 
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4.2 SPECIFIC AIM 2 RESULTS 

AIM 2: Determine the role of monocytes in promoting the in vitro expansion of 

plasmablasts in response to DENV stimulation. 

4.2.1 Gating Strategy to define CD14
+
 Monocytes

The target monocyte population is defined as CD3
-
CD19

-
CD14

+
.
 
The gating strategy shown in

Figure 8 was used to look for DENV infected monocytes and to confirm that CD14
+ 

monocytes

were depleted from the PBMC samples during the preceding experiments. 

Representative gating for identifying monocytes using an un-stimulated PBMC sample. G-1 gates on the 

total cells that have the appropriate Forward and Side Scatter which show they are neither dead cells nor 

debris. G-2 gates on the single cells. G-3 gates on the live cells. G-4 CD3
-
CD19

-
 population. G-5 gates on 

the CD3
-
CD19

-
CD14

+
 monocyte population. Q2 where the 2H2

+
 CD14

+
 monocytes are found with the 

gating based on a control un-infected PBMC sample.  

Figure 8. Gating strategy to define CD14
+
 monocytes. 
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4.2.2 Detection of DENV infected monocytes using intracellular 2H2 antibodies 

After exposing PBMCs from selected donors to DENV and culturing for forty-eight hours, a 

fluorescently labeled 2H2 pan-dengue antibody against for the prM protein was used to probe for 

the presence of intracellular virus. I detected a distinct population of monocytes, CD3
-
CD19

-

CD14
+
, that were positive for 2H2 (Figure 9A). No other cell types, CD3

+
 or CD19

+
, were

positive for 2H2 after forty-eight hours (data not shown) confirming previously published data 

which states that monocytes are the primary target cells for DENV infection [74, 75]. When 

PBMCs were stimulated with completely UV inactivated DENV, I did not detect a 2H2 positive 

monocyte population above background after 48 hours suggesting that this uptake of DENV is 

related to infection (data not shown). This is in-line with previous literature stating that 

monocytes and not T-cells or B-cells are the targets for infection [76]. 

 After testing all three of our DENV immune donors and one DENV naïve donor for 

2H2
+
 monocytes at forty-eight hours, we found that all donors had similar levels of 2H2

+
CD3

-

CD19
-
CD14

+
 monocytes (Figure 9B).  The frequency of this monocyte population is not a

unique characteristic to DENV immune individuals which suggests that their monocytes are not 

uniquely susceptible to DENV infection. There was also no observable link between the 

frequency of the 2H2
+
 monocytes and the ability of the matched donors to produce a defined

plasmablast response in culture. 



41 

4.2.3 Plasmablast generation after CD14
+
 depletion of DENV stimulated PBMCs

To directly measure the role monocytes play in the in vitro differentiation of 

plasmablasts, the CD14
+
 cell population was depleted using magnetic beads before DENV

stimulation. Figure 10A shows that the depletion of the CD3
-
CD19

-
CD14

+ 
monocyte population

from PBMCs was >95 percent efficient. After seven days, there was a 50 percent reduction in the 

CD19
+
CD20

-
CD38

++
CD27

++
 plasmablast population in the CD14

-
 PBMC sample compared to

the PBMC sample (Figure 10B). This suggests that monocytes are not the only cell population 

important for the expansion of plasmablasts in culture, as the production of plasmablast in 

culture was not completely abolished. It is possible other cell types such as T-cells play an 

important role. However, this is difficult to confirm without further supporting evidence as the 

general plasmablast response in culture was very low. 

Previous experimental data using a CD19
+
 purified cell population exposed to DENV did

not produce a robust plasmablast response in culture (data not shown). An attempt to look at the 

(A) Representative dot plots of the un-infected PBMC control sample and the matched donor PBMC sample 48 

hours post exposure to DENV-2. (B) Bar graph showing the percent of monocytes infected after 48 hours using 

PBMCs from 3 DENV immune donors and 1 DENV naïve donor 

Figure 9. Detection of DENV infected monocytes by intracellular 2H2 antibodies 
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role of T-cells by depleting the CD3
+
 population before stimulating with DENV was

inconclusive; however, it was observed that the removal of CD3
+ 

cells dramatically affected the

overall cell viability at day seven (Figure 11). It is known that isolated B-cells have poor 

viability in culture and the viability data suggests that CD3
+
 cells may play an important role in

the long-term survival of CD19
+
 cells, as well as other cell types. Even though the frequency of

infected monocytes does not seem to have a significant role in driving plasmablast production, 

the presence of CD14
+
 cells does play a role in the distinctness of the population. Most likely,

the monocyte population plays an important role in the survival, proliferation and differentiation 

of the B-cell population due to the secretion of cytokines such as IL-6 and IL-10 [77]. 
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(A) Efficiency of depleting the CD14
+
 cells from PBMCs using CD14 magnetic beads. (B) Top row shows 

the plasmablast response after stimulating PBMCs with DENV. The bottom row shows the plasmablast 

response after simulating PBMCs depleted of CD14
+
 cells after DENV stimulation. (C) The percent 

reduction of plasmablasts between the whole PBMC and CD14
+
 depleted PBMC samples.  

Figure 10. Generation of plasmablasts in the absence of CD14
+
 cells. 
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As expected, the CD19
+
 population has poor viability while the whole PBMCs have over 80% viability 

after 7 days in culture. When CD3 is depleted from the PBMCs with viability although better than purified 

B-cells is still poor compared to CD14 depleted and whole PBMCs. 

 

Figure 11. Viability of PBMCs/B-cells after 7 days in culture.  
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5.0  DISCUSSION 

As outlined in the introduction, despite decades of research devoted to unraveling the 

pathogenesis of dengue, the immunological events driving DENV infections are still poorly 

understood. Relative to other intensely studied cell types, very little is known about the role 

plasmablasts play in the overall model of DENV pathogenesis. At the start of this project, it was 

unknown if this robust plasmablast response to DENV originated from the DENV specific 

memory B-cell subset or if it originated from a robust response driven by naïve B-cells. The 

overall goal was to tackle a part of this question by investigating the ability of DENV to drive 

memory B-cells from a previous DENV infection into IgG secreting plasmablasts in vitro, and to 

determine if this process occurs independently of other soluble or cellular factors.  

Differentiation of plasmablasts after DENV stimulation in vitro 

In this study, I first aimed to identify if DENV can drive a general production of 

plasmablasts in healthy donors that reached the robust levels observed in PBMCs isolated from 

acute patients. For this purpose, I isolated PBMCs from donors with pre-existing immunity to 

DENV and examined the neutralizing and binding ability of their serum antibodies to develop a 

profile of their spontaneous DENV specific ASCs. The purpose for this was to indirectly identify 

the potential cross-reactivity and specificity of the resting memory B-cell population present in 

PBMCs. I found that regardless of their neutralizing antibody profile, all donors produced an 

average plasmablast response that was stronger or equivalent when stimulated with DENV-2 
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versus DENV-3 in vitro.  This suggests, for reasons unknown, that DENV-2 is a stronger 

stimulator in vitro, but this could be related to the epidemiological observations which suggest 

that DENV-2 is the more virulent serotype [46, 78]; hence, it is linked to more severe disease 

outcomes. It was interesting to note that donors with neutralizing antibodies to only DENV-3 

produced a similar plasmablast response in vitro when exposed to DENV-2. This indicated that 

in vitro their general plasmablast recall response against the original infecting serotype was no 

better than against a heterotypic serotype.  

When examining the overall potency of the plasmablast response in culture, the responses 

only made up ~1 to ~12 percent of the CD19
+
 peripheral B-cell population, which is very low 

compared to the average 47 percent observed during clinical studies [67, 68]. However, this in 

vitro plasmablast response reached the low levels observed during vaccine studies with influenza 

virus or yellow fever virus vaccine [68]. Although in vitro DENV was not able to recapitulate the 

robust response observed during acute infection, DENV was able to drive a general plasmablast 

response that reached comparable levels seen in other viral infections in some donors. Therefore, 

this data suggests that overall the robust plasmablast response seen in acute patients may not 

completely depend on the reactivation of DENV specific memory B-cells, but may also rely on 

the plasmablast subset produced by the GCs formed in response to the ongoing infection. This 

hypothesis is also supported by the observation that when identifying the specificity of the 

plasmablasts during infection at their peak, they predominately secrete IgG against the current 

infecting serotype [67, 68].  

I also examined the effects DENV had on donors without a DENV specific memory B-

cell subset. According to these results, DENV could stimulate a plasmablast response in these 

donors comparable or greater than the individuals with pre-existing immunity. For reasons that I 
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did not further investigate, I could not decrease the level of this non-specific response to reach 

background or very low levels. However, I did establish that this response was not DENV 

specific. This response had evidence of a slight IgG ASCs response, but I did not test the IgM 

ASC population, which would have indicated if DENV was simply non-specifically activating 

the naïve B-cell population in these donors.   

Stimulation of the quiescent DENV specific memory B-cells 

There have not been many studies looking at DENV-induced activation of long-term 

memory B-cells and how this may drive them to differentiate into plasmablasts. Most 

investigators studying this population examine the Ig secreting cells during acute infections or 

isolate a few DENV specific memory B-cells from previously exposed donors to look at 

individual clones [69, 79, 80]. All these studies concentrate on the cross-reactivity of the 

antibodies secreted by these cells rather than how this circulating population may represent the 

long-term memory B-cell population present during the early stages of infection. It is important 

to work towards identifying the founding subset that drives the eventual potent plasmablast 

response seen four to seven days after infection. The specificity of the peak plasmablast response 

to the infecting serotype suggests that a primary response by naïve B-cells may play a role, but is 

it a skewed or strong cross-reactive memory B-cell population that drives the manifestation of 

this response. 

To look at the frequency and the specificity of the DENV specific memory B-cells 

present in the PBMCs drawn directly from the donors, I first used a strong mitogen to reactivate 

B-cells in general. Then using an ELISPOT assay to detect the presence of ASCs that are DENV 

specific, I identified that all 3 DENV immune donors had higher than expected frequencies of 

DENV-specific memory B-cells, 0.72 to 3.70 percent of the IgG ASCs. A previous study using 
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the exact same mitogen cocktail looked into the frequency of long-lived memory B-cells specific 

for vaccinia virus (VV)WR in individuals who were vaccinated for small pox up to fifty years 

before the study. This study found that ~0.1 percent of the IgG secreting cells were VV-specific 

[73]. In a separate study, another group also identified the same frequency of tetanus-specific 

classed switched, memory B-cells using a different detection system [66]. The donors with 

previous clinical histories of DENV-3 infections produced, not surprisingly, a dominant 

frequency of DENV-3 specific IgG secreting cells. This data suggests that for reasons not yet 

fully investigated, DENV specific memory B-cells in individuals who have not been re-

challenged with DENV for over a decade can maintain higher than average frequencies in 

circulation. In addition to this, the frequency of this population, although cross-reactive in nature, 

is still dominantly specific for the previous infecting serotype. If these individuals were re-

infected with DENV and the heterotypic virus was able to reactivate even a small portion of the 

circulating memory B-cells, then the starting overall percent of re-activated DENV specific B-

cells would be higher compared to the average recall response to another viral infection.  

In order to further examine this population, I took this ELISPOT assay one step forward 

and looked for the frequency of the DENV specific IgG secreting cells after stimulating the same 

DENV immune donors with DENV. This aim was to detect if -as in acute patient samples- >70 

percent of the IgG secreting plasmablasts produced in vitro were also DENV specific. The 

outcome observed was that when these donors were stimulated with DENV-2, only 0 to 5 

percent of the plasmablasts produced in culture were specific for any DENV serotype. Not 

surprisingly, the donor with neutralizing antibodies against DENV-2 -hence previous exposure to 

DENV-2- was able to produce the highest frequency of DENV specific IgG ASCs. 

Unexpectedly, when looking at the frequency of DENV specific IgG ASCs in donors with 
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previous exposures to DENV-3, after their PBMCs were re-exposed to DENV-3, they still failed 

to produce any ASCs that were specific for DENV-3 (data not shown). Their overall DENV-2 

response was also weaker, supporting the previous observation that in culture DENV-3 is the 

weaker stimulator of the two tested serotypes.   

In conclusion, although DENV specific memory B-cells were reactivated by DENV to 

become DENV specific IgG secreting plasmablasts, this interaction alone is not sufficient to 

drive the robust plasmablast response observed in culture. Therefore, future study is needed.  

Such a study would look more closely at whether or not these plasmablasts have a skewed 

cytokine profile that may downstream influence how the naïve B-cells mount a plasmablast 

response in reaction to the infection serotype. This investigation would require a mixture of cell 

culture and animal model work. In cell culture, the phenotype of the plasmablasts produced after 

the memory B-cells differentiations can be examined while the dynamics between the cross-

reactive recall response and the primary response to the heterotypic serotype should be examined 

with animals.  

Monocytes are important in driving the differentiation of plasmablasts 

As described in the introduction, monocytes are the primary targets of DENV infections 

both in vivo and in vitro. As the central cell believed responsible for driving severe disease 

manifestations [81], it is necessary to establish a possible link between the monocyte population 

and the differentiation of plasmablasts. To study this role, I first determined that after exposing 

PBMCs to DENV, monocytes become infected and the monocytes with previous DENV 

exposures were not more susceptible. Regardless of immune status, all donors tested had a 

similar frequency of infected monocytes forty-eight hours post stimulation. Using matched 

experiments, this frequency of infection did not seem to correlate to the ability of these 
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individuals to mount an above or below average plasmablast response. These results suggest that 

the efficiency of infection is not a sufficient factor, which is surprising since the ADE is based on 

the hypothesis that higher viremia, thus, more severe disease, is linked to a higher frequency of 

infected monocytes [48]. Using another approach to test the direct role of monocytes, CD14
+
 

cells were depleted from PBMCs before simulating with DENV. The population without CD14
+
 

had a 50 percent reduction in the amount of plasmablast produced compared to the whole PBMC 

control condition. These results suggest monocytes do play a role in the differentiation of 

plasmablasts in culture, but their removal isn’t sufficient to eliminate the development of 

plasmablasts.  

Recent studies have also found that monocytes are important in the development of 

plasmablasts in vitro. In this study, I only looked for monocytes in general, identifying them by 

CD14
+
, but two groups have produced publications stating that monocytes infected with dengue 

favor a CD14
+
CD16

+
 inflammatory monocyte phenotype [77, 80]. This particular monocyte 

subset in culture secretes important cytokines such as IL-6, BAFF/APRIL and IL-10 which are 

cytokines known to promote activation, survival and proliferation in B-cells [77, 81]. In vitro, 

IL-6 is important for promoting survival. IL-10 is required for B-cells to proliferate; this 

cytokine also enhances the proliferation abilities of B-cells when their BCR is engaged [59]. 

BAFF and APRIL are the classic B-cell survival and differentiation factors [82, 83]. The study 

reference above showed that co-culturing DENV infection monocytes (CD14
+
CD16

+
) with 

purified B-cells drove the proliferation and differentiation of resting B-cells, particularly with the 

help of IL-10 and BAFF [77]. Therefore, in the absence of monocytes, particularly the infected 

monocyte population, these cytokines would not be readily available in culture assisting and 

driving the proliferation of B-cells upon reactivation. Hence the plasmablast population would be 
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lower, yet not abolished, as activation due to antigen-BCR engagements could be strong enough 

to drive differentiation yet not proliferation.  

After observing that monocytes are not the only cell type important for driving the 

differentiation of plasmablasts after DENV stimulation, I ran a small study depleting CD3
+
 cells. 

Although the experiment did not conclusively determine the role CD3
+
 cells play, it is suspected 

that they play an important role in survival and help push the activated memory B-cells to 

differentiate. A review by Nature regarding immunological memory states that both naïve and 

memory B-cells both require cognate T-cell help, but the requirements are lower for a memory 

B-cell [62]. Therefore, it is likely T-cells are required for the regulation of initiating secondary 

responses. In addition, when comparing the overall viability of the cells with and without T-cells, 

it was evident that when CD3 cells were depleted the overall survival rate decreased drastically. 

Activated T-cells are primary producers of IL-2, which is an important survival cytokine for B-

cells, as well as other cell types [84]. IL-2 was also added to the co-culture system described 

above suggesting that T-cell help is important. More testing needs to be completed to definitively 

establish the precise roles of each cell type, but previous research, as well as our own, indicates 

that the CD14 and CD3 cells are required for the production of DENV specific plasmablasts 

[77].   

Overall Conclusions 

 As a whole these observations suggest that the DENV specific memory B-cell population 

is not solely responsible for the robust plasmablast response during acute infections. Most likely, 

the cross-reactive DENV specific memory B-cells reactivated during the early events of infection 

play their role either by the antibodies or cytokines they produce. At the worst, the antibodies 

produced early on during the infection could help drive ADE; at the best, they could provide 
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some protection until the primary response against the heterotypic infection kicks in. Future 

studies need to investigate if there is a link between first response plasmablasts originating from 

the original DENV specific memory B-cell subset and the primary responding B-cells. The 

resulting peak plasmablast response at day four to seven most likely consists of plasmablasts 

from both the secondary and primary immune responses. In addition to this, future studies need 

to investigate more definitively how monocytes influence plasmablasts during infections. In vitro 

studies suggest that the cytokines secreted by these cells during infection play an important role 

[77, 81].  

To further examine these possibilities, the ability to draw blood samples long-term after 

recovery -early in a known secondary infection and at the critical points of peak plasmablast 

production- may help build a more complete profile.  Such a profile could help determine if there 

is a connection between the DENV specific memory B-cell population before infection and the 

resulting plasmablast response. Unfortunately, this proves difficult because most patients do not 

present themselves to hospitals for treatment until the manifestation of symptoms, at which time 

the early events of interest have already taken place. The next best model is an animal model 

where there is a known history, known time of infection and known timeframe of responses. In 

vitro studies can be used in a closed system to parse out the factors that influence the phenotypes 

and the characteristics of the generated plasmablasts. Reconstruction of an environment that 

favors a high percent of DENV specific plasmablasts where either DENV specific memory B-

cells or naïve B-cells with the potential to recognize the virus are exposed to DENV may provide 

clues as to how these cells fit into the overall pathogenesis model of DENV.  
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