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A majority of back pain, a costly condition and leading cause of disability, is mechanical in origin 

involving the intervertebral disc, facet joints, or ligamentum flavum.  Mechanical loading may be 

beneficial or detrimental to spinal tissues depending on loading mode, magnitude, frequency, and 

duration.  Ex vivo mechanobiology systems have been used to explore how axial loading 

parameters influence intervertebral disc biology, but flexion/extension (F/E) and combined 

rotations, loading modes relevant to back pain, have not been investigated.  Moreover, biological 

responses in facet cartilage (FC) and ligamentum flavum (LF) have not been studied.  A novel 

experimental platform was developed to assess simultaneous biological responses to six degrees-

of-freedom (DOF) loading of intact functional spinal units (FSUs) in annulus fibrosus (AF), 

nucleus pulposus (NP), FC and LF.  A bioreactor previously validated for assessment of axially 

compressed FSUs was attached to a robotic testing system and validated for rigid fixation and 

unrestricted movement in F/E and axial torsion (AT).  At first, neutral F/E of varying range-of-

motion and cycle number was applied.  F/E loading elicited a predominantly catabolic response 

from spinal tissues with significant up-regulation of catabolic gene expression in AF and FC.  

Range-of-motion modulated aggrecan fragmentation in AF.  AT was then added to F/E in small 

and large magnitudes to simulate mild and severe axial asymmetries treated clinically.  F/E with 

coupled AT was pro-inflammatory in all spinal tissues and was pro-catabolic in AF and LF.  In 

FC, which is gapped by torsion on one side and compressed on the other, pro-inflammatory 

changes were higher in gapped joints, and catabolic loss of matrix was higher in compressed joints.  

These findings point to a role for altered segmental mechanics in driving pro-inflammatory, 
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catabolic processes in spinal tissues that may play a role in spinal disorders involved in back pain.  

Finally, multiple regression analysis was performed to assess how well mechanical responses 

predicted changes in gene expression.  Mechanical predictors accounted for more variation in gene 

expression in FC and LF than AF and NP.  The development of this system provides spine and 

orthopaedic research with a novel experimental platform that can evaluate complex loading and 

simulated in vivo motions.   
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INTRODUCTION 

Back pain is the most common cause of pain and disability in the United States [1, 2]  with greater 

than a quarter of Americans experiencing back pain annually [3] and approximately 80% of the 

population experiencing back pain over their lifetimes [4].  Not only do individual patients 

experience dramatic reduction in quality of life, but direct and indirect costs amount to an annual 

national economic burden of nearly $100B [5].  Consensus for diagnosis, prevention, and treatment 

of back pain remains elusive as evidenced by rising costs of care that outpace increases in 

prevalence [6, 7] without associated improvements in disability.   

Identification and implementation of cost-effective prevention and treatment strategies is 

required.  For years, immobilization and bed rest have been known to be ineffective and potentially 

deleterious [8], pointing to the importance of motion preservation in treatment.  Conversely, 

overloading can exacerbate symptoms and worsen underlying causes [9].  It seems clear then that 

thresholds of loading exist, beyond which loading can be beneficial or detrimental to the health of 

spinal tissues.  Motion-based therapies and preventative strategies are among the leading candidate 

approaches for low-cost, effective solutions.  Such methods include manual therapy provided by 

physical therapists, chiropractors, and osteopathic physicians, as well as active exercise programs 

and integrative medicine training routines like yoga.  While these approaches demonstrate 

moderate effectiveness [10-13], the mechanisms by which they provide benefit are poorly 

understood [14-16].  Evidence suggests that different types of back pain patients respond 
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differently to various motion-based therapies [17, 18].  Also, certain types of mechanical loading 

appear to benefit some sub-groups of patients but not others [18, 19].  However, a lack of clinical 

evidence for tailoring motion-based therapies to appropriate sub-groups of patients and an 

incomplete understanding of the mechanisms by which motion-based therapies act limits their 

effectiveness, adoption, and integration with other treatments [20, 21].  Scientific research needs 

to elucidate the effects of different types of mechanical loading relevant to motion-based therapies 

on tissue involved in degeneration and back pain.  

Basic science studies have begun exploring regulation of cell viability, cell phenotype, 

inflammation, and matrix homeostasis in response to mechanical loading.  Primarily, researchers 

have focused on the biological response of the intervertebral disc to varying magnitudes, 

frequencies, and modes of loading [22].  Disc degeneration warrants investigation as a leading 

cause of back pain [3, 23], but degenerative changes involved in back pain commonly occur in 

other spinal tissues concomitantly or independently [24-26], and these changes are also mediated 

by mechanical factors [27-29].  Further, previous mechanobiology studies have focused almost 

exclusively on axial compression [22, 30] despite the importance of other degrees-of-freedom in 

spinal function and spinal disorders [18, 31, 32].  Translation of mechanobiology requires 

assessment of all relevant spinal tissues and additional physiologic modes of loading.    

Among the experimental platforms used for investigating loading effects on cell and tissue 

biology, ex vivo organ culture models are important because they maintain in-situ mechanical 

transduction and permit fine control of environmental conditions and mechanical loading.  A range 

of biological outcomes that measure matrix composition, matrix catabolism, matrix synthesis, 

inflammation, cell viability, and cell metabolism have been used to evaluate the effect of loading 

on cells and tissue.  Recent advances in ex vivo organ culture include validation of a human disc 
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model [33], development of high-throughput systems [34, 35], and applied loading in torsional 

and asymmetric compression [36, 37].  Despite this progress, systems are still limited by exclusion 

of posterior structures, perturbed load transmission [38-40], and lack of physiological rotational 

loading.  By improving the capability of applied loading in ex vivo systems to include rotational 

loading (flexion/extension most notably) and expanding the array of target tissues (i.e. facets and 

spinal ligaments), ex vivo mechanobiological studies will facilitate improved and expanded 

understanding of the role of mechanics and other environmental variables in regulating the health 

of spinal tissues involved in back pain and will help to improve prescription of motion-based 

therapy.  
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1.0  BACKGROUND 

1.1 BACK PAIN 

Low back pain is a common, complex, and often debilitating disorder that erodes the quality of 

life for those who suffer from it [2].  Back pain poses an enormous socioeconomic burden on the 

global population [41].  In the US, it has a prevalence of nearly 25% [3] and amounts to an annual 

cost, including direct and indirect measures, approaching $100B [5].  Identifying the primary cause 

of back pain is often difficult.  While genetic heritability accounts for a majority of the variation 

back pain [42], a number of environmental factors, principally mechanical loading, account for 

much of the remaining variability. Risk factors include degeneration [23, 43, 44], smoking [45], 

obesity [46, 47], psychological conditions [48, 49], occupational heaving loading [50], and 

sedentary lifestyle [23].  

Low back pain comprises numerous classifications or subgroups.  Initial or recurring 

episodes of back pain are characterized as acute if symptoms persist less than twelve weeks [51].  

Historical guidelines suggested that a large majority of acute back pain resolves spontaneously, 

but a recent series of studies with one-year follow-up show that the majority of patients do not 

recover [52-54] but persist in mild (18-36%) to severe (8-21%) chronic pain or transition to 

recurring or episodic pain (13-35%) [53].  Chronic back pain poses a disproportionate financial 

burden on the health system, accounting for over three-quarters of overall costs associated with 

back pain [48, 55, 56].  Those with persistent or frequently recurring back pain may also be 

categorized by their avoidance or persistence in physical activity; evidence suggests different pain 

mechanisms may underlie symptoms in “avoiders” vs. “endurers.” [57, 58].  Similarly, back pain 
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patients may be grouped by directional movement-associated provocation of pain [18, 19].  For 

example, some patients experience pain in flexion but not extension, while others have the opposite 

directional preference [18, 19].  Clearly, treating back pain as a monolithic entity is inappropriate 

in terms of elucidating underlying mechanisms of pain and degeneration.  Consideration of 

numerous factors, including chronicity of pain, engagement in activity, and movement-associated 

pain provocation, is critical to tailoring treatment strategies to patient sub-groups.   

While the risk factors for development of back pain are numerous and specific diagnosis 

for most patients remains inconclusive, a majority of back pain is mechanical in origin [3, 50, 59].  

Symptoms arise from various spinal structures including intervertebral discs and facet joints [3, 

60].  Degeneration of these tissues, marked by matrix catabolism, inflammation, and maladaptive 

remodeling [61], is associated with various spinal disorders that can lead to back pain.  Imaging 

studies of these spinal structures in back pain patients show associations of degeneration with back 

pain [23, 43, 44], although high rates of asymptomatic degeneration are also evident [62, 63].  

These structures, which provide passive mechanical support to spinal segments, are variably 

loaded in different physiologic motions.  Movement-associated provocation of pain [19] and 

altered directional kinematics in lumbar motions with back pain [64, 65] imply that injury or 

mechanical loading in these spinal structures can contribute to underlying damage, inflammation 

and degenerative changes.   

Mechanical loading plays a salient role in back pain.  Overloading or mechanical failure of 

discs, endplates, facets, and spinal ligaments can lead to the development of pain and degeneration 

[26, 28, 66, 67].  Occupational activities including repeated combined loading—torsion and 

flexion/extension—are associated with development of back pain [68, 69].  Sporting activities with 

high levels of combined loading have been associated with high rates of back pain [70, 71].  
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Chronic, aberrant loading is suspected of accelerating degenerative changes or provoking overuse 

injuries in spinal tissues [72].  Asymmetric or complex spinal loading increases the likelihood of 

structural failure [73] and is thought to promote inflammatory, degenerative changes in spinal 

tissues [74-78].  However, it is equally clear that physiologic loading is important to spinal tissue 

health from research that shows that the absence of compressive loading or induced hypomobility 

can also lead to degenerative changes in spinal tissues [9, 79].  Therefore, identifying thresholds 

of non-physiologic loading that exacerbate painful symptoms and determining thresholds of 

physiologic loading that are protective or beneficial is important to preventing and managing back 

pain [9].     

1.2 SPINAL FUNCTION 

A primary role of the spinal column is support of axial compression from the head and torso as 

well as facilitation of multi-directional movement of the head and trunk.  As elsewhere in the 

musculoskeletal system, anatomical form and tissue composition reflect physiologic function; the 

unique structure and makeup of tissues of the spinal column enable their specific functions.  The 

spinal column comprises twenty-six motion segments that are grouped in to four regions: the 

cervical (C0-7), thoracic (T1-12), lumbar (L1-5), and sacral (S1-3) spine.  Each level is composed 

of longitudinal ligaments, which run anterior and posterior to the vertebral column.  Situated 

between vertebral bodies lies an intervertebral disc made up of a central, gelatinous nucleus 

pulposus (NP) surrounded by a ringed annulus fibrosus (AF) composed of fibrous collagen lamella 

that, along with cartilage endplates (CEPs) on the bony surfaces of adjacent vertebral bodies (VB), 

encapsulate the highly hydrated NP.  Immediately posterior to the vertebral bodies runs the spinal 
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cord or cauda equina, which is surrounded by bony lamina and transverse and spinous processes 

that protect the neural tissue.  A thick, elastic ligament, the ligamentum flavum (LF) spans the gap 

between bony lamina.  Lateral to the lamina on either side of the spine are diarthrodial joints called 

facets.  Facet joints comprise two articulating surfaces of hyaline cartilage (facet cartilage, FC) 

enclosed by a joint capsule, lined with synovium, and filled with synovial fluid.  Additional 

ligaments, interspinous and supraspinous ligaments (ISL and SSL), run posteriorly between the 

spinous processes.  The passive, osteoligamentous components of each level of the spine, 

composed of vertebrae, a disc, facet joints and spinal ligaments (Figure 1), are termed a functional 

spinal unit (FSU). 
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Figure 1.  Anatomy of a functional spinal unit (FSU)  
 

 
The NP and AF mechanically interact to support compressive loading and resist motion in 

all degrees-of-freedom (DOF).  In axial compression, swelling pressure in the highly hydrated, 

proteoglycan-rich NP absorbs and dissipates compressive loading.  Swelling pressure is 

constrained by the bulging AF and cartilage end plate (CEP).  In distraction, the fibers of the AF, 

which insert in the bone and CEP of adjacent vertebral bodies, restrict axial translation.  In bending 

modes, the NP translates within the AF to accommodate rotation but continues to contribute to 

load resistance via swelling pressure opposing compression in the disc [80].  The AF supports 

compression in the disc region in the direction of bending and provides tensile resistance on the 
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contralateral side [80].  The AF also provides the predominant amount of resistance to axial torsion 

[81] through circumferential tensile resistance of collagen and elastin fibers [82].  Additionally, 

swelling pressures in the NP transiently decrease with torsion [83], offset by increased 

compressive stress in the AF [84].  Thus, the disc is a primary contributor to spinal function in all 

loading modes.   

Facet joint articulation contributes to load resistance and guides motion in axial 

compression, extension, axial rotation, and anterior shear.  Facet cartilage is engaged primarily in 

compression in each of these motions, though the magnitude and location of compression across 

the cartilage surface varies with loading mode [85].  Changes in cartilage mechanics, including the 

involvement of shear loading, with physiologic loading remain unstudied [67].  The orientation of 

facet joint faces, which varies markedly along the spinal column, dictates their ability to restrict 

motion in each physiologic plane.  In the lumbar spine, facets’ vertical orientation relative to the 

transverse plane limits their contribution to axial compression and extension, though studies show 

3-25% of axial compression [27, 39] and 16-40% of extension is borne by lumbar facets joints 

[86-88].  More importantly, the alignment of facet joints relative to the sagittal plane leads to a 

prominent role of facets in axial torsion resistance and high torsional stiffness in the lumbar spine 

[89-91].  Finally, facet joints resist up to 87% of anterior shear of lumbar FSUs [92].  Facet 

articulation strongly influences physiologic load distribution within FSUs [85, 92].  

Spinal ligaments of the posterior complex, predominantly the ligamentum flavum, are 

important in flexion, lateral bending, and axial rotation of FSUs.  Their primary role is restriction 

of flexion moments [86, 87], but they play a secondary or tertiary role in resisting lateral bending 

and axial rotation as well [93, 94].  As in other joints of the body, spinal ligaments exhibit non-

linear stiffness that depends strongly on the direction of joint rotation.  In directions of loading 
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where ligaments are recruited in tension, collagen fibers are initially lax due to fiber crimp, giving 

rise to low stiffness movements.  As joints continue to rotate, collagen fibers are stretched and 

engaged in tension, leading to high stiffness and greater restriction of motion [95].  This non-linear 

response in spinal ligaments contributes to the non-linear moment-rotation response of FSUs in 

flexion and bending [87, 94].  The LF in particular contains a large fraction of elastin in addition 

to collagen fibers [96].  Elastin fibers are present in tissues that undergo repeated cyclic loading.  

The presence of elastin in tissue matrix provides elastic recoil, enabling the restoration of shape 

and storage of mechanical energy [97].  Its unique composition renders the LF an important 

stabilizer of rotational movements, particularly flexion, throughout the non-linear motion path of 

spinal segments [87]. 

1.2.1 Mechanotransduction 

Applied mechanical loading to spinal segments is distributed among spinal tissues and transduced 

within each tissue to the cellular microenvironment.  Transduction of applied mechanical loads to 

cellular mechanical stimuli varies with magnitude, frequency, duration, and mode of loading [22, 

30].  In general, applied loading induces changes in stresses and strains within the solid matrix, 

hydrostatic pressure of the fluid phase, osmotic pressure, interstitial fluid-flow, and streaming 

potentials [98].  In a process that is mediated by interactions of the cell membrane, pericellular 

matrix (PCM), and extracellular matrix (ECM), cells can experience shape change, volumetric and 

deviatoric deformation of membranes and/or nuclei, stretch of certain membrane receptors and 

channels, altered ionic gradients, and electrokinetic effects [98].  While the way in which cellular 

mechanics effect changes in cellular signaling and processes remains understudied, it is known 

that cytoskeletal remodeling [99], focal adhesion signaling [100], and Ca2+ ion signals [101] can 
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be activated by altered mechanics in disc and chondrocyte cells.  Indirect effects may include 

generation of matrix fragments, conformational changes of the ECM, and release of embedded 

factors that may also influence cellular signaling [102-104].  The type of stimuli experienced by 

cells varies based on cellular origin, resident tissue, tissue region, age and degeneration-related 

changes to tissues and cells [30].   

In healthy, functional tissues, mechanical stimulus transduction is strongly tissue-specific. 

NP cells (NPCs), which comprise cells derived from notochordal cells and chondrocyte-like cells 

that have differentiated from notochordal cell progenitors or migrated in to the NP from the inner 

AF or adjacent CEP [105-107], are spheroidal in shape and reside at very low densities embedded 

in the highly hydrated matrix with low concentrations of un-aligned type-2 collagen [30].  NPCs 

are predicted to experience hydrostatic pressurization, modest volumetric strains with small tensile 

circumferential and compressive axial strains, and fluid shear stress [108, 109].  They express 

chondrocytic markers like aggrecan, type-2 collagen, and Sox-9 but have much higher aggrecan-

to-type-2 collagen expression ratios than chondrocytes [110].  Accordingly, they synthesize large 

amounts of proteoglycan [106].  Conversely, AF cells (AFCs) are mesenchymal cells that express 

a composite fibroblastic and chondrocytic phenotype.  They are primarily ellipsoidal, becoming 

more elongated in the outer AF and more spheroidal in the inner AF.  AFCs are aligned with 

collagen fibers in the direction of tensile loading [30, 106] or exist between lamella as a distinct 

subpopulation of cells [111].  In contrast to NPCs, they experience large amounts of volumetric 

and deviatoric strain, which match ECM strain in elongation and actually amplify radial strain, 

and lower magnitudes of transient fluid pressurization and fluid flow [112].  AFCs also express 

chondrocytic markers, but they additionally express type-1  
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collagen in higher ratios relative to type-2 collagen; ratios decrease inwardly in the radial direction 

[110], reflecting the shift in mechanical environment from tension in bulging in the outer AF to 

support of compression in the inner AF [30].   

Facet cartilage mechanics vary significantly by tissue region.  Normal facet cartilage, like 

hyaline cartilage layers in other diarthrodial joints, is composed of (1) a tangential zone with 

collagen fibers oriented parallel to the surface, (2) a transition zone in which the fibers bend toward 

the subchondral bone, (3) a deep zone composed of fibers oriented perpendicular to the surface 

and rich in proteoglycans, and (4) calcified cartilage that transitions between articular cartilage and 

subchondral bone.  Articular chondrocytes experience volumetric change, shape change, fluid 

pressurization, and fluid flows that vary with tissue depth and radial position [113].  Cells in the 

surface zone assume an ellipsoidal shape aligned with collagen fibers and undergo higher 

deformations with greater volume change compared to cells in deeper zones that, though aligned 

with matrix fibers, are largely spheroidal and primarily subjected to greater hydrostatic 

pressurization, small volumetric deformation, and greater electrokinetic effects [114].  

Chondrocytes differ from intervertebral disc cells in terms of basic phenotypic markers, the local 

microenvironment, and mechanical loading experienced [106, 108, 112, 115].  They express 

expected phenotypic markers—type-2 collagen, aggrecan, Sox-9—but native gene expression and 

mechano-responsive synthetic activity varies with zone of origin [116, 117].  The nature of 

macroscopic loading and cellular response varies not only with tissue depth but also across the 

lateral profile of the tissue [118].  In facet cartilage, where the center of pressure (a surrogate for 

regional loading) varies significantly with loading mode, compression, and degeneration [85, 92], 

the lateral variation of loading is significant.   
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LF fibroblasts exist at low densities as elongated cells, oriented within the dense elastin-

collagen matrix [119].  A small fibrocartilaginous cell population exists near the lamina [96].  In 

physiologic rotations, LF is subject to large strains [120], particularly in the posterior portion [121], 

and interstitial fluid flows [122].  LF fibroblasts express TGF-β [121, 123] and other fibroblastic 

markers like type-1 collagen, which are reinforced by mechanical stretch [124].  In summary, 

cellular mechanics are influenced by cell type, matrix and cell mechanical properties, matrix-cell 

coupling, and regional variation within and between tissues.  

1.3 DEGENERATION:  MECHANICAL CONSEQUENCES 

Degeneration of spinal tissues, which results from a combination of genetic, age-related, and 

environmental factors, is a leading cause of back pain [23, 26, 125].  Degeneration is marked by 

elevated catabolic degradation of phenotypic matrix components and by fibrotic or maladaptive 

remodeling.  Early stages of degeneration are marked by altered cellular activity, elevation of local 

inflammation, and matrix remodeling [126-128].  Later stages of degeneration are characterized 

by loss or repopulation of cells in a structurally inferior matrix [67, 129].  Normal composition 

and function of intervertebral disc, facet cartilage, and spinal ligaments are compromised by 

degradation, inflammation, and maladaptive remodeling of spinal tissues in degenerative 

disorders.   
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1.3.1 Compositional & Mechanical Changes  

Intervertebral disc degeneration is widely studied because of its role in numerous spinal disorders.  

In the disc, the earliest signs of degeneration typically occur in the NP, where proteoglycan 

breakdown and loss of hydration lead to reduced swelling pressure and decoupling of normal NP-

AF-CEP interaction.  Degradation of aggrecan, the predominant proteoglycan of disc and cartilage 

[130, 131], occurs via the catabolic action of specific enzymes that cleave the protein core and 

remove glycosaminoglycan (GAG) side-chains from the aggrecan aggregate [132-135].  Reduced 

quantity and quality of aggrecan may also be associated with changes in biosynthesis of aggrecan 

components, the foremost of which being GAGs [133, 136-138].  The resultant lowered fixed 

charge density reduces the capacity of the NP to imbibe water.  As a putative response to decreased 

fluid content, increased loading of the solid matrix, and altered cellular micromechanics, fibrotic 

remodeling occurs [139, 140].  Loss of viscoelasticity is reflected in large increases in the shear 

modulus in the NP with degeneration [141, 142].  These dramatic changes significantly 

compromise the ability of the NP to dissipate loading, and they alter load distributions within 

spinal segments, shifting loading to other structures.   

This shift in load changes tissue mechanics in spinal tissues.  Reduced swelling pressure in 

the NP increases compressive loading in the AF, manifested by an increased compressive modulus 

in the AF with degeneration [143].  Altered loading increases tissue strains and can damage the 

AF [144].  The inner AF, which bears more compression, becomes more cartilaginous with fewer 

elastic fibers and elevated proteoglycan composition [143, 145].  Degeneration may also arise from 

annular or endplate injury [81, 146, 147], both of which result in depressurization and fibrotic 

remodeling that can accelerate degenerative processes.  Altered loading causes disorganization and 

delamination of collagen sheets, altering mechanical interactions between sheets, decreasing radial 
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permeability and increasing axial permeability.  These changes result in an overall reduced 

structural integrity [144] and increased loss of proteoglycan matrix fragments previously trapped 

in the dense, impermeable matrix [148].  Degradation of matrix components, including 

proteoglycans, and fibrotic remodeling are also evident in AF [149].  Degeneration de-couples AF-

NP interactions, leading to general dysfunctional support of loading in all modes of segmental 

mechanics.   

Osteoarthritis of facet joints frequently occurs as a coupled process with disc degeneration 

[150], but has also been observed as an independent degenerative process [25, 125].  Excessive or 

abnormal (e.g. asymmetric) loading of the facets, resulting from degenerative collapse of the disc, 

appears to initiate and accelerate degenerative changes [25, 27, 75, 150, 151].  Similar to 

osteoarthritis in major musculoskeletal joints, facet cartilage is damaged through elevated 

inflammation, matrix degradation, loss of proteoglycan and altered hydration, surface damage, 

collagen matrix disorganization, and eventual erosion of cartilage [152].  The progressive 

destruction of cartilage and loss of compressive support prompts dramatic remodeling in 

subchondral bone that can include bony tropism and bone spur formation [153].  These changes 

can lead to segmental instability, altered capsular mechanics, inflammatory paracrine effects on 

neighboring tissue (e.g. facet capsules), and compression of nerve roots leading to possible pain 

generation [25].   

The LF also commonly undergoes degeneration with consequences including spinal 

stenosis [26] that can lead to neurogenic claudication and radiculopathy [154].  Degenerative 

changes in the LF manifest in elastin depletion, collagen fiber disorganization, and reduced 

cellularity [155, 156].  The hallmark of LF pathology is a thickening of the ligament within the 

spinal canal, which is mediated by elevated inflammation, increased hypertrophic processes, 
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fibrotic remodeling, altered proteoglycan content and metabolism [96, 121, 128, 155-157].  

Thickening of the LF  is also associated with disc degeneration [158] and facet joint osteoarthritis 

[75].  It is postulated that LF thickening is a response to altered loading [159] and that LF 

mechanical properties change significantly as a result.  Particularly, increased fibrosis, depletion 

of elastin fibers, and altered proteoglycan metabolism lead to morphologic changes that can impact 

neural structures and to increased tensile and compressive stiffness [155, 156] that can alter 

segmental mechanics.   

Degenerative changes in individual tissues do not occur in isolation; degeneration in a 

particular spinal structure may have direct or indirect detrimental effects on other spinal tissues.  

As evidence of this, facet joint osteoarthritis is highly associated with disc degeneration [150].  

Loss of disc height and segmental hypermobility appear to alter facet loading and lead to 

degenerative changes of the facet joints [160].  In lower lumbar levels where facet forces are 

higher, facet osteoarthritis can precede disc degeneration through putative overloading of facet 

joints and possibly lead to onset of disc degeneration through altered segmental mechanics [25, 

125].  Thickening of the ligamentum flavum (LF) is also associated with disc degeneration [158] 

and facet joint osteoarthritis [75].  Altered loading associated with loss of disc height or facet joint 

degradation may induce buckling or overloading of the LF, which leads to inflammation and 

hypertrophy [124, 161].  Thus, an inclusive analysis of mechanical loading must encompass all 

the relevant tissues of the FSU.  Research that characterizes interactions of component tissues 

within FSUs subjected to degenerative stimuli or mechanical loading is needed to support this 

broader understanding.   
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1.3.2 Cellular Changes and Mechanotransduction 

Beyond changes in load distribution within the FSU and changes in mechanical properties of 

individual spinal tissues, changes in the cellular microenvironment occur as well.  Current views 

hold that degeneration is a cell-mediated process of matrix degradation and tissue remodeling 

[162].  The type of loading and signal transduction experienced by cells changes dramatically with 

degeneration [30].  Alterations in cell population and cell phenotype coupled with derangement of 

normal mechanotransduction help to drive the degenerative cascade in these tissues.   

Cellular changes in the disc begin early in life.  The loss of notochordal cells, mediated at 

least in part by reduced nutrition and increased loading [163-165], can be viewed as the earliest 

sign of aging or degeneration [166].  In more advanced degeneration, mature chondrocyte-like 

NPCs live in an environment with a reduced fluid fraction, subjecting cells to reduced fluid 

pressurization, fluid shear stress, and higher strains [30, 109].  The consequences include cell 

death, senescence, and increased type-1 collagen synthesis with reduced or defective proteoglycan 

synthesis [30].  Cellular changes in the AF are less dramatic than in the NP but have similarly 

altered activity.  With degeneration, altered mechanical properties and tissue permeability result 

in macroscopic radial, circumferential, and axial strains that lead to altered cellular deformations, 

which vary between inner and outer AF, increased fluid flows, and altered electrokinetic effects 

[148, 167].  Changes in the local cellular environment result in increased cell death, senescence, 

and fibrotic expression [168].   

Cellular changes in facet osteoarthritis vary with location in the tissue and stage of 

degeneration.  Little is known about the cellular changes in facet joint osteoarthritis, but it is 

suspected that disruption and disorganization of the collagen matrix exposes surface chondrocytes 

to higher strains [169] resulting in inflammatory signaling or cell death [67].  Cells in the deeper 
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zones experience reduced, more transient fluid pressurization and likely experience greater 

deformations and fluid flows [115].  Cells in the subchondral bone appear to experience higher 

loading with evident bone deposition in response to increased stresses [170].   

The LF comprises predominantly fibroblasts, but, due to its vascularity and innervation, it 

also contains vascular, neural, and immune cells.  Fibroblasts are known to be involved in 

inflammation, which stimulates degenerative changes in the LF, and macrophages and resident 

vascular endothelial cells have predominantly been associated with hypertrophic remodeling 

[155].  Regions of elevated inflammation are marked by reduced elastin content and matrix 

organization as well as expression of inflammatory markers, MMPs, and transforming growth 

factors [155, 156].  Cells in these fibrotic, inflammatory regions likely serve as centers of 

hypertrophy and, possibly, eventual ossification [128, 157].  Contextual evidence suggests the 

altered micro environment, including local mechanics, drives pathologic changes in the LF [158].  

1.4 MECHANICS IN TREATMENT 

Treatment of back pain and spinal disorders is highly varied.  As described previously, the number 

and nature of subgroups within back pain patients warrant tailored approaches [18, 58].  In clinical 

settings, classification of patients in subgroups by identification of the underlying mechanisms of 

back pain—including identification of the tissues and structures involved and the origin of pain or 

dysfunction—remains elusive [3, 7].  Despite a vast amount of research in studying the etiologies 

of back pain and spinal disorders, the complexity of and variability within the disorders have to 

date prevented a unified, standardized approach to patient care.  As a result, an abundant diversity 

of treatment options exists, reflecting a range of philosophies and approaches to correct or 
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ameliorate symptoms.  Treatments span a broad spectrum, including prescription of cognitive 

behavioral therapy [171], pharmacologic [172, 173], herbal therapies [174], steroid injections 

[175], acupuncture [176], spinal manipulations [177], exercise and motion-based therapies [178-

180], and surgery [181].  Some treatments seek simply to mitigate pain, but others seek to also 

strengthen, repair, or protect damaged or degenerating tissues.  Directly or indirectly, these latter 

approaches modify mechanical loading in spinal segments as a part of treatment.   

While mechanical loading can lead to detrimental effects through overuse, asymmetry, or 

hypomobility, it can also play a protective or potentially therapeutic role.  Motion-based treatment 

paradigms that have shown efficacy in treating back pain, including physical therapy, chiropractic 

medicine, osteopathic medicine, exercise, and yoga [10, 12, 13, 180, 182], influence spinal loading 

in back pain patients.  Though strategies differ, they share the aim of restoring healthy mechanical 

loading in spinal segments through enabling or training potentially protective, symmetric, 

coordinated spinal movement patterns [15, 183-186].  Different theoretical models and practical 

approaches are employed, but a common variable in all of these therapies is application of loading, 

be it passive or active, to spinal tissues with the goal of improved spinal mechanics in functional 

movements.   

Despite the popularity and modest efficacy of these approaches, the mechanism by which 

these interventions exert an effect remains inconclusive [14-16].  Motion-based therapies like 

rehabilitative exercise regimens, general exercise, and yoga typically target trunk movement 

coordination, core strength, and core flexibility [185, 187-189].  They presume that aberrant 

movement patterns associated with back pain place damaged or degenerating spinal tissues at risk 

for recurring injury or exacerbation of symptoms [15].  Developing protective movement patterns 

through neuromuscular training, increasing core bracing in potentially irritating movements, and 
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improving mobility in hypomobile patients are common therapeutic goals.  Non-specific effects 

of motion-based therapy include reduced systemic inflammation [190] and enhanced metabolic 

exchange [191] in spinal tissues that could promote repair or improve the local tissue milieu [192].  

Whatever the systemic or neuromuscular effects, mechanical loading applied to spinal structures 

impacts mechanotransduction and resulting biological responses within each spinal tissue.   

Similarly, multiple models have been proposed to explain the mechanisms of action in 

spinal manipulation.  Early mechanical theories explained that entrapped synovial folds or 

meniscoids, hypertonic muscles, segmental dislocation, or articular or periarticular adhesions 

caused segmental asymmetries or articular dysfunction leading to (i) activation of nociceptive 

signaling in nerves of the facet capsules and posterior annulus or (ii) compression of nerve roots 

[193].  Manipulation was thought to release articular entrapments, relax muscle tonicity, disrupt 

adhesions, and unbuckle spinal segments [193].  These theories are difficult to substantiate given 

the challenges in diagnosis and specifically treating putative mechanical causes of segmental 

dysfunction [14].  Neurophysiologic effects of manipulation, which may occur in the presence or 

absence of mechanical effects, are now thought to account for much of the efficacy of manipulation 

[14, 194].  These models suggest that changes in motor neuron activity, afferent discharge, pain 

sensitivity and muscle activity observed following manipulation may result from gating of 

nociception at the spinal cord via mechanoreceptors, direct simulation of spinal reflexes, direct 

stimulation of central pain centers, or other modulatory effects of sensorimotor control [14, 194, 

195].  In all models, regardless of their accuracy, the physical effects of spinal dysfunction on 

spinal tissues in segmental motions may promote degenerative changes.  The applied mechanical 

loading of manipulation and the intended consequence of restored symmetric mechanics point to 

possible roles for mechanical signaling to mediate detrimental responses.   
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Spinal motions in manipulation, rehabilitation exercises, yoga, and activities of daily living 

(ADL) are complex, involving varying modes and amplitudes of motion.  Spinal manipulations, 

which include torsion and anterior-posterior translations with or without coupled flexion/extension 

[186, 196, 197] cause mechanical changes in all spinal structures [198].  Exercise, yoga, and ADLs, 

while more heterogeneous, involve pure and complex rotations in all physiologic planes in a wide 

range of ranges-of-motion (ROM) [199-201].  Empiric studies suggest large amplitudes in certain 

loading modes may be harmful [32, 202, 203], and basic science studies support the motion that 

large ROM is catabolic while small to moderate ROM is anti-catabolic [36, 204-206].  But, the 

effect of mode and amplitude of loading, particularly in rotational and complex loading, on 

biological processes within relevant spinal tissues remains largely unknown and unstudied.   

Motion-based treatments have shown modest clinical efficacy [207], but their general 

enhancement, customization to individual patients or conditions, and integration with medical care 

require a mechanistic knowledge of these interventions.  Basic science studies are needed to 

achieve this advancement.  If a clear understanding of how a motion-based therapy influences 

specific biological processes (e.g. inflammatory signaling) were known, therapy could be 

rationally prescribed for specific conditions and integrated with other therapies.  Model systems 

are needed to facilitate the study of how loading parameters in motion-based therapies influence 

relevant biological processes such as inflammation, catabolism, and anabolism.   

1.5 MECHANOBIOLOGY RESEARCH  

Mechanical loading plays an important role in initiating and mediating degenerative processes in 

spinal tissues.  Teasing thresholds of detrimental and beneficial loading in conjunction with 
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different inflammatory and therapeutic interventions has been the domain of disc mechanobiology 

for nearly a decade.  However, the influence of mechanical loading has been restricted primarily 

to axial mechanics in disc studies [22].  Only a few studies have looked at bending or complex 

loads [36, 37, 208, 209], and flexion/extension and combined rotational loading remain entirely 

uninvestigated, despite their importance in spinal movements in vivo [210-212].  Moreover, little 

is known about mechanobiology outside of disc tissue in general; no research has explored 

biological responses to varying doses of mechanical parameters—magnitude, frequency, and 

duration—in FC or LF [67, 124].  Summarizing the history and findings of mechanobiology in 

disc tissue provides a basis for relating biological effects of axial loading to those in complex 

loading.  A review of extensive findings in disc and limited findings in other tissues also provides 

a framework for evaluating FC and LF mechanobiology [67].  In general, mechanobiology 

investigations occur at different levels—in cell culture in vitro, in animal models in vivo, and in 

tissue explants ex vivo.   

1.5.1 In vitro Studies 

In vitro studies have identified threshold effects of mechanical parameters— magnitude, 

frequency, rate, and duration—on cellular behavior.  Loading applied to cell cultures is intended 

to approximate tissue mechanics in vivo.  NPCs, for example, are seeded in three-dimensional 

alginate or agarose constructs that are subjected to hydrostatic or axial compressive loading [30].  

Chondrocytes have not been isolated from facet cartilage for mechanobiology studies [67]; 

however, chondrocytes from other sources of articular cartilage have been studied frequently by 

similarly seeding them in hydrogels and subjecting them to hydrostatic pressure, axial 

compression, and shear flow [213, 214].  In contrast, AFCs, which exist within or between collagen 
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sheets and undergo predominantly tensile stretch as the disc bulges in all loading modes, are 

typically seeded in monolayer and subjected to tensile stretch [30].  LF fibroblast mechanobiology 

has not been extensively investigated; fibroblasts in monolayer have been subjected to tensile 

stretch [124, 215] and centrifugal force [161], but loading parameters were not varied 

experimentally.   

In vitro studies permit probing in to the effects of applied loading by identifying thresholds 

of well-controlled loading parameters and elucidating cellular mechanisms involved in biological 

responses.  Studies of NPCs confirm sensitivity to magnitudes, durations, and frequencies of 

loading [22, 205, 216].  Researchers have shown the involvement of integrin α5β1 and cytoskeletal 

filaments in transducing mechanical signaling to cells [99, 217].  In chondrocytes from major 

diarthrodial joints, researchers have shown biological sensitivity to magnitude, duration, and 

frequency of loading [218].  Chondrocytes subjected to physiologic magnitudes and frequencies 

of loading exhibited protective effects against inflammatory and catabolic stimuli signaling 

through p38 MAPK, JNK, and NFkB pathways [219, 220].  However, the absence of compression, 

high magnitudes of compression, and high amounts of fluid shear cause chondrocytes to undergo 

cell death and respond with pro-inflammatory, pro-catabolic behavior [221-227].  Responses have 

been shown to occur through ion channels, β1 integrins, and kinase cascades (associated with focal 

adhesions)  [228].  The biological effects of stretch magnitude, frequency and duration in AFCs 

were thoroughly investigated [204].  They examined gene expression of catabolic, anti-catabolic, 

and inflammatory markers and production of prostaglandin E2 (PGE2) and identified beneficial 

levels of loading.  Moderate strains at low frequencies (6% strain, 0.1 Hz) were most protective.  

Responses to applied stretch have involved integrins, cytoskeletal remodeling, F-actin dependent 

Ca2+ transients, and interleukin receptors [99-101, 229].  Finally, magnitude of stretch elongation 
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has been titrated in LF fibroblast culture examining hypertrophic and ossification markers.  

Mechanically induced elevation of transforming growth factor-β (TGF-β) was found to depend on 

Angptl-2 mediation of TFG-β/Smad signaling [215], and mechanical stretch was found to 

modulate β-catenin in LF fibroblasts in the elevation of ossification markers [230].  A growing 

body of work in vitro is exploring the effects of mechanical loading and activated signaling 

pathways in all FSU cell types.  

In vitro systems permit probing of cellular responses to specific modes of mechanical 

transduction with coupled stimulators and inhibitors.  Cellular responses are helpful in framing 

how well characterized loading patterns and tissue properties may influence cell behavior; in vitro 

systems are not well suited for characterizing the effects of complex loading where tissue-and cell-

scale mechanics remain unstudied.  Recent multi-scale models have demonstrated a dependency 

of mechanical changes on cell and PCM geometry, relative positioning, material properties, and 

spatial distribution.  Approximating in-situ cell-PCM-ECM interconnections, simulating 

appropriate ECM and PCM composition and properties, and producing appropriate ionic and 

osmotic environments remains difficult.  Thus, translating cell-culture outcomes directly to in vivo 

scenarios is not tenable.   

1.5.2 In vivo Studies 

In vivo studies in animal models demonstrate the role of altered segmental mechanics in initiating 

and mediating disc degeneration and facet osteoarthritis.  For decades, researchers have altered 

segmental mechanics through imposed bipedalism [231], static compression [232], dynamic 

compression [233, 234], instability [235, 236], endplate perforation [237], and annular puncture 

[238, 239].  Subsequent biological responses were used to simulate degenerative cascades [231] 
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and to establish models of degeneration in which therapeutic candidates could be tested [240, 241].  

To explore the effect of mechanical parameters on biological responses in discs, transcutaneous 

load applicators have been attached to rodent tails and rabbit lumbar spines to induce static bending 

[208], static compression [242], dynamic compression [233], and torsion [206].  A set of studies 

has also been conducted to study biological effects of mechanical parameters on supraspinous 

ligaments in feline spines [243], but ligamentum flavum mechanobiology remains unstudied in 

vivo.  Effects of traumatic, excessive and asymmetric loading of facet joints have also been 

explored in a few rodent studies [79, 244, 245], and animal models have also been used in a small 

number of studies to examine the interaction of degenerative processes in facet and disc tissue [79, 

246, 247], but none of these studies involving facets examined the effects of mechanical 

parameters.    

Researchers have identified different responses in disc tissue to parameters of mechanical 

loading: mode, magnitude, frequency, and duration.  Sustained compressive loading or 

immobilization leads to cell death and increased catabolic, pro-inflammatory, and anti-anabolic 

markers in AF, NP, and FC [165, 244, 248-250].  Higher levels of static compression down-

regulate structural protein expression, up-regulate catabolic protein expression [233, 248, 250], 

and increase cell death [234, 250].  Dynamic loading has proved, in general, to be healthier for the 

disc than static loading [9].  The NP appears to be more biologically responsive to frequency than 

the AF, with low to moderate frequencies (0.01-0.2 Hz) promoting structural gene expression and 

down-regulating catabolic gene expression [233].  The AF at all frequencies and the NP at the high 

frequency (1.0 Hz) exhibited reduced structural and increased catabolic expression.  Finally,  
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studies illustrate the importance of duration on biologic outcomes [251, 252]; generally, increased 

duration without rest or recovery leads to decreased structural expression and maintained or 

increased catabolic expression [251].   

Rotational loading, such as torsion or bending, have been explored in vivo, albeit to a much 

lesser extent (Table 1).  Static bending in murine tails has been shown to be detrimental to cell 

viability, anabolic matrix expression, and matrix integrity, especially in the convex side of the AF 

[208].  Dynamic torsion in rat tails has been shown to up-regulate elastin in AF and to be catabolic 

and pro-inflammatory in AF at high magnitudes [206].  The NP was not as responsive to varying 

magnitudes of applied torsion [206].  No disc studies have explored flexion/extension or complex 

loading in which loading is applied in multiple DOF. 
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Table 1.  In vivo mechanobiology of rotational loading 

Objective Mode Loading Parameters Levels Species Major Findings 
To compare 
tensile and 
compressive 
strains[208]  

Bending 

Magnitude: 42° (large) 
and 18° (slight)                        
Frequency: Static,                    
Duration: 1 wk 

c9-10 Mice 

Concave:  ↑cell death, 
↓ACAN, ↓matrix 
organization,                                  
Both sides: ↓Col-2 

To assess 
recovery 
duration after 
damaging 
bending[253] 

Bending 

Magnitude: 42°                    
Frequency: Static                   
Duration: 1 wk + 3 wk 
(short), 1 wk + 3 mo 
(long)  

c9-10 Mice Short recovery: high 
amounts of apoptosis 

To investigate 
magnitudes of 
torsion and 
compare torsion 
to compression 
[206] 

Axial 
Torsion 

Magnitude: ±5°,15°,30°   
Frequency: 1 Hz                            
Duration: 90 min  

c8-9 Rat 

All Magnitudes: 
↑Elastin (AF), ↓IL-1β 
(NP)                                  
High Magnitude: 
↑ADTAMTS-4, IL-1β, 
TNF-α (AF), ↑ACAN, 
TIMP-3 (NP)                     
30°AT vs 1MPa AC: 
↑AF all genes, ↑NP 
catabolic genes 

Limitations:  (1) Only small animal caudal discs have been used (no posterior elements).  (2) No 
investigation of flexion/extension or complex loading.  
Legend: NP-nucleus pulposus, AF-annulus fibrosus, mRNA expression:  ACAN-aggrecan, MMP-matrix metalloprotease, ADAMTS-a 
disintegrin and metalloprotease with thrombospondin motif, Col-collagen, IL-interleukin, TNF-tumor necrosis factor 

 

 
The benefit of stable physiologic conditions with preserved systemic responses makes in 

vivo systems ideal for long-term studies assessing chronic conditions, remodeling processes, 

effects of inflammation and host cells, and candidate therapeutic agents.  However, the costs and 

challenges of long-term animal research make it impractical for assessment of short-term 

biological responses, which are clinically relevant for examining loading parameters in motion-

based therapies.  Difficulties in translating popular caudal disc models, which lack posterior 

structures and have different anatomy and matrix composition than lumbar discs [254], limit their 

applicability.  It is difficult to assess the effect of isolated environmental conditions like nutrition, 

local inflammation, or pH in vivo.  Measuring the load-responsive release of local  
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breakdown fragments, matrix components, and inflammatory mediators is elusive in the absence 

of local sampling and immediate access to tissue.  Finally, it is more challenging to control loading 

modes accurately and precisely in vivo.   

1.5.3 Ex vivo Systems 

Ex vivo organ culture is an intermediate level of mechanobiological analysis that preserves in-

situ load transmission and the native cell microenvironment but permits greater mechanical and 

environmental control than in vivo research [255].  Typical ex vivo systems apply uniaxial 

loading at varying magnitudes, frequencies, and durations to disc explants within an incubator 

[256-259] with the goal of (1) elucidating biological thresholds of loading as a function of 

loading variables and (2) providing an experimental platform with which to investigate the effect 

of regenerative therapies [260-262].   

Organ culture systems are relatively recent experimental tools in disc research.  Early 

systems were developed nearly a decade ago; those systems employed simple static loading [258] 

or no mechanical loading whatsoever [255, 263, 264].  Initial loading methods applied diurnal 

static compression to disc explants with modified endplates to promote cell viability [256-258].  

Wang et al. and Ganetenbeim et al. introduced dynamic compression to simulate physiologic 

loading conditions more accurately and explore non-physiologic or injurious effects [256, 259, 

265].  Recent studies using these types of ex vivo systems have added scale and sophisticated 

diurnal loading approximation to explore dynamic compression in great scope and detail [34, 266].   

New trends in organ culture are expanding beyond compression applied to animal disc 

explants.  Notably, researchers have established methods to preserve loaded human discs for more 

than four months in culture [33].  While the advances are in the model system and not the applied 
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mechanics, the human disc organ culture system minimizes the translational gap between scientific 

ex vivo and clinical in vivo investigations and permits long-term investigations of biological and 

mechanical interventions.  Further, human disc culture can confirm findings from animal studies, 

where differences in cell populations and tissue composition may influence mechanotransduction 

[267, 268].  However, human disc studies are limited by the short supply and high variance 

between samples.   

Other researchers have developed systems that apply complex axial loads to large animal 

discs (Table 2) [37, 209].  Walter et al. used wedge loading to apply asymmetric compression, and 

Chan et al. combined torsion with compression by affixing tooth-textured platens to treated 

endplates [37, 209].  Asymmetric compression was detrimental to annular cell viability and 

aggrecan content on the concave side and to annular catabolic and inflammatory gene expression 

on the convex side [37].  In combined compression and torsion, Chan et al. observed few changes 

in gene expression in NP, but decreased cellular activity with increasing torsion.  In AF, trends of 

increasing aggrecan and MMP-13 were evident with increasing torsion [209].  Both systems 

represent advances in the field of disc mechanobiology, but like other organ culture systems, 

removal of vertebrae and posterior structures along with modification of the cartilaginous endplate 

perturbs in-situ load transmission, alters endplate biochemistry and biology—which may influence 

disc biology—and prevents assessment of resected tissues.  
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Table 2.  Ex vivo mechanobiology of rotational and complex loading 

Objective Mode Loading Parameters Levels Species Major Findings 

To compare 
wedged vs. 
pure 
compression 

Asymmetric 
AC 

Magnitude: 0°, 15° 
wedge + 0.2 MPa AC                   
Frequency: Static             
Duration:  1 wk 

c2-3, 
c3-4, 
c4-5 

Bovine 

Concave:  ↑cell death, 
↑apoptosis, ↓aggrecan                                   
Convex: ↑MMP-1, 
ADAMTS-4, IL-1β, 
IL-6; ↓aggregate 
modulus 

To investigate 
magnitudes of 
torsion with 
constant 
compression 

AT (dynamic) 
+ AC (static) 

Magnitude: ±2°,5°,10° 
+ 0.2 MPa AC                       
Frequency: 0.1 Hz       
Duration: 1h/d, 4 d  

caudal 
levels Bovine 

Increasing torsion: ↓ 
metabolic activity 
(NP), ↑ACAN, MMP-
13  (AF) 

To investigate 
combined 
loading of 
cyclic & 
dynamic 
torsion & 
compression 

AT + AC:                
CC: dynamic 
AC  (no AT)                          
CT: dynamic 
AT + static AC                          
CCT: dynamic 
AT+AC 

Magnitude: ±2° (AT) 
0.6 ±0.2 MPa (AC)                       
Frequency: Static or   
0.2 Hz                    
Duration: 8h/d, 15 d  

caudal 
levels Bovine 

CCT: ↓Cell Viability 
(NP), ↑Col-1, Col-2, 
MMP-13 (AF); 
generally higher AF 
gene expression vs. 
CC and CT                                  
AT vs AC: ↑Cell 
Activity (NP), 
↑ADAMTS-4 (NP) 

Limitations:  (1) Only caudal discs have been used (no posterior elements).  (2) No investigation of 
bending (esp. flexion/extension) or complex rotations to date.  
Legend: AT-axial torsion, AC-axial compression, NP-nucleus pulposus, AF-annulus fibrosus, mRNA expression:  ACAN-
aggrecan, MMP-matrix metalloprotease, ADAMTS-a disintegrin and metalloprotease with thrombospondin motif, Col-collagen, 
IL-interleukin, TNF-tumor necrosis factor 

 

 
All previous organ culture systems have contributed to elucidation of loading thresholds 

and have begun to be used to assess regenerative therapies, but load application has been limited 

primarily to axial compression [22], evaluation has been limited to disc tissue, and modification 

of endplates and removal of vertebrae has altered in-situ load transmission [38].  To investigate 

complex motions and in-situ load transmission in all relevant tissues, intact functional spinal 

units (FSUs) must be preserved in mechanically loaded organ culture.  Further, intact FSUs are 

necessary to study coupled biological responses to applied mechanics in multiple spinal tissues.  

A recently developed system, the subject of this dissertation, expands the scope of organ culture 
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beyond the disc to include the whole spine by culturing and loading intact FSUs.  This system 

was validated for maintaining stable environmental conditions and adequate cell viability in axial 

compression for 24 hours [269].  It was designed, however, to investigate physiologic rotational 

loading—flexion/extension, lateral bending, and axial rotation.  Retention of spinal ligaments, 

facet joints, and intact endplates enables in-situ loading; it provides physiologic transmission of 

applied loading throughout joint structures.  Further, preservation of intact FSUs enables unique 

questions to be posed and answered regarding the simultaneous response to loading (or other 

environmental experimental condition) of different spinal tissues.  The primary drawback of this 

approach is the short window of stable cell viability, a result of reduced metabolic exchange in 

disc tissues due to diffusion barriers in intact endplates and vertebral bodies.  Nevertheless, a 

timeframe of 24 hours is compatible with the immediate goal of this system:  investigation of 

simulated spinal motions during recreational, occupational, or therapeutic activities.   

The development of a system which preserves intact FSUs and subjects them to complex, 

6 DOF loading opens multiple frontiers of important research in spinal mechanobiology.  The 

ultimate goal of the robotic, FSU culture system is to help to bridge the gap between in vivo loading 

and in vitro mechano-responses.  Successful completion of this project will expand scientific 

knowledge by mechanistically elucidating the effects of amplitude in relevant motions on 

outcomes related to disc degeneration—matrix catabolism and local inflammation.  Based on this 

knowledge, clinical studies could be rationally designed and therapy could be prescribed for 

patient subgroups most likely to benefit from a particular motion-based regimen.  Ultimately, in a 

translated clinical example, if a patient has an acute flare with inflammation exacerbated in 

extension, a loading strategy that reduces inflammatory mediators in appropriate tissue targets like 

facet cartilage would be prescribed.  Alternatively, if a patient is undergoing disc collapse through 
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an imbalance in matrix homeostasis, a loading regimen that inhibits catabolism or promotes 

anabolism would be assigned.  Without mechanistic studies in relevant spinal tissues, direct effects 

of loading remain inferred from empiric data.  With mechanistic understanding of these effects, 

clinicians could coordinate motion-based therapies with other approaches to optimize treatment of 

individual patients.   

 32 



2.0  GOAL AND SPECIFIC AIMS 

The goal of this project was to complete development of a novel ex vivo functional spinal unit 

mechanobiological system.  The system had to be capable of physiologic rotational loading—

including bending and torsion—and assessment of cellular and matrix responses in multiple spinal 

tissues—AF, NP, FC, and LF.  In order to accomplish this goal, a system capable of 6 DOF loading 

of intact FSUs with biological assessment of spinal tissues had to be validated.  Retained FSU 

structures are essential to in-situ loading and evaluation of tissues involved in multiple spinal 

disorders.  Biological assessments must be sensitive and relevant to previous or parallel studies.  

Stable biologic activity of cultured FSUs is essential.  The utility of the system had to be 

demonstrated in rotational and complex loading of FSUs.  Relating mechanical responses from 

novel loading modes to biological responses was to permit insight into how mechanical parameters 

account for changes in biology.   

2.1 SYSTEM DEVELOPMENT 

Previous development and validation of the bioreactor established well-characterized mechanical 

inputs, controlled environmental parameters, and the capability of supporting an array of biological 

outcome measures that demonstrate baseline stability and responsiveness to mechanical loading 

[269].  Adapting the bioreactor from the axial testing machine (ATM) to the robot testing system 

required validation of additional factors related to rotational loading modes.  In scaling up from 
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axial compression to 6 DOF robotic testing, a number of design requirements needed to be added 

and validated.  Briefly, in bending and torsional DOF, the system had to:  

(1) integrate precisely with the robot testing system,  

(2) exhibit sufficient precision and resolution of movement,  

(3) rigidly attach FSUs, and  

(4) permit full, unrestricted FSU range-of-motion.   

Development of the bioreactor system showed successful assessment of (a) disc cell 

viability/metabolic activity, (b) disc gene expression of catabolic (e.g. MMP-1, MMP-3), 

inflammatory (e.g. COX-2), and structural (e.g. aggrecan) genes, (c) matrix fragment (CTX-II, 

CS-846) detection from conditioned media, and (d) enzymatic activity of catabolic enzymes from 

conditioned media.  Tissue-based outcomes were exclusive to disc tissue and surrounding 

conditioned media in the initial iteration of the system.  To build on previous work, the 

requirements for assessment of FSUs subjected to 6 DOF loading representative of in vivo motions 

included (1) gene expression of previous markers in NP, FC, AF, and LF, (2) left and right side-

specific gene expression of previous markers in FC, (3) sensitive assessment of aggrecan 

fragments and matrix components by Western blot in NP, FC and AF.  While conditioned media 

analyses were not used for this dissertation, preserving the capability for passive concentration of 

released proteins in dialysis membranes encapsulating FSUs was an important system requirement.  

A system attaining these design constraints represents a significant advancement in ex vivo 

experimental platforms for investigations of simulated in vivo movements (e.g. rehabilitation 

exercises, occupational tasks) on inflammation and matrix homeostasis in relevant spinal tissues.   
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2.2 SPECIFIC AIM 1 – FLEXION/EXTENSION 

The goal of the first experimental aim, as initial proof of system utility, was to test the biological 

effects of range-of-motion in flexion/extension (F/E) of FSUs.  Spine-intensive occupational, 

recreational, and rehabilitation tasks involve large F/E ROM [69, 70, 178, 203, 211, 270, 271] that 

place lumbar spinal segments in the linear, high-stiffness region of moment-rotation curves.  By 

contrast, activities of daily living and mild exercise typically involve in F/E angles of smaller ROM 

[200, 210, 272] that occur within the low-stiffness, neutral zone of spinal segments.  FSUs were 

assigned to small and large ROM groups defined by 0.17/0.05 and 0.5/0.15 Nm moment targets in 

F/E.  Moment targets were experimentally determined so that specimens assigned to small ROM 

remained within the low stiffness region and specimens assigned to large ROM entered the high 

stiffness portion of moment-rotation curves.  Kinematics were replayed for one hour.  Mechanical 

outcomes including ROM, moment relaxation, hysteresis, work, and neutral zone stiffness were 

calculated.  After loading, relative gene expression of pro-inflammatory, catabolic, and anabolic 

markers and aggrecan breakdown fragments in NP, AF, FC, and LF were assessed relative to 

tissues from unloaded control FSUs.  It is hypothesized that larger motions would increase 

catabolic and inflammatory gene expression and increase aggrecan fragmentation in all tissues, 

and smaller motions would reduce catabolic and inflammatory gene expression and not impact 

aggrecan fragments in all tissues relative to unloaded controls.   

Because time and loading rate were fixed rather than cycle number, which would differ 

between large and small ROM, a separate set of experiments was performed to examine the effect 

of cycle number.  FSUs were subjected to large ROM load targets for one hour (1h Cycle), two 

hours (2h Cycle), or one hour of cycling followed by one hour of static culture (1h Cycle_1h 

Static).  Comparing 1h Cycle to 1h Cycle_1h Static demonstrates the effect of doubling culture 
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duration, and comparing 1h Cycle_1h Static to 2h Cycle isolates the effect of doubling cycles.  The 

same set of mechanical outcomes and identical relative gene expression was measured and 

calculated.  It was hypothesized that increasing the number of cycles would elevate catabolic, 

inflammatory, and structural gene expression.   

2.3 SPECIFIC AIM 2 – COMPLEX LOADING 

Complex, asymmetrical loading, including combined torsion and bending, is associated with 

elevated risk of injury and back pain [32, 68].  Further, various treatment paradigms diagnose and 

seek to correct segmental dysfunction frequently marked by unilateral rotation within a spinal 

segment [76, 77, 79, 196].  The objective of this aim is to elucidate the inflammatory, catabolic, 

and anabolic responses to AT combined with F/E ex vivo in viable functional spinal units (FSUs).  

FSUs were grouped by amount of applied AT—0, 0.4 or 0.8Nm—which reflect neutral, mild 

(~20% of failure), and severe (~40% of failure) rotations. These moment targets are comparable 

to those used in human lumbar testing representing mid and end ROM in AT [31, 273].  FSUs 

were preconditioned with three cycles of left-sided AT followed by three cycles of F/E to 

0.5/0.15Nm at the final rotated position.  Combined kinematics (AT+F/E) were repeated for 1 h.  

Identical mechanical and biological outcomes to Specific Aim 1 were calculated, with additional 

immunoblotting for chondroadherin, a matrix component depleted by catabolic stimuli and 

elevated compression in scoliotic discs.  It was hypothesized that increasing magnitudes of AT and 

F/E would increase catabolic and inflammatory markers in all tissues compared to neutral F/E.  

We further hypothesized that FC contralateral to the rotation (right) would increase catabolic and 

inflammatory markers relative to gapped, ipsilateral FC (left).   
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2.4 REGRESSION MODELING 

In an effort to integrate the previous aims and examine how well mechanical parameters account 

for measured changes in biological responses, multiple regression analysis was used to model 

biological responses in terms of mechanical responses to applied loading.  The purpose of this 

analysis was (1) to identify the most important mechanical predictors (i.e. those most correlated 

with principal components of the predictor data set), (2) to quantify the amount of variation in 

biological responses that can be attributed to mechanical predictors of F/E loading and (3) to 

determine how the predictive capacity varied with gene, tissue, and mechanical predictors.  The 

total set of candidate predictors was reduced by autocorrelation analysis.  Principal component 

analysis (PCA) was then applied to the reduced set of mechanical predictors to identify those that 

accounted for the most variation in mechanical data.  Important predictors were identified per 

tissue and gene using hierarchical multiple regression analysis applied to all mechanical predictors 

identified by PCA.  Final regression models were formed per tissue and gene using only the 

important predictors identified in the preliminary regression analysis.  Significant models, amount 

of variation accounted for in models, generalizability of findings, and size and significance of 

model coefficients were reported.  Assumptions of multiple regression were analyzed and reported 

per model.  The objective of the study was to identity whether (1) there were differences between 

tissues in how well mechanical predictors accounted for more biological variation, (2) there were 

differences between genes in how well mechanical predictors accounted for more biological 

variation, (3) there were certain mechanical predictors that factored more heavily in regression 

models across genes and tissues, and (4) energetic or relaxation parameters, in particular, explained 

variation in biological responses.   
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3.0  SYSTEM DEVELOPMENT 

3.1 SYSTEM REQUIREMENTS 

System development began with design requirements for performance that reflect the goal of 

multi-DOF rotational movement of rabbit FSUs within a bioreactor that simulates physiologic 

conditions and enables biological assessment of tissue and media.  Previously, the following 

aspects of the bioreactor system were validated:  rigidity in axial compression, temperature control 

of media to 37° C (±0.5° C), dissolved oxygen concentration of media to 5% (± 1%), and force 

transmission via intradiscal pressure readings.  Cell viability was also confirmed using a metabolic 

activity assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphnyltetrazolium bromide), up to 24 

hours in culture [274].  Biological outcomes—relative gene expression of MMP-1,-3, COX-2, 

ACAN within disc tissue and matrix fragment (CTX-II, CS-846) detection and quantification of 

enzymatic activity (MMP-1, MMP-3) of conditioned media—were measured following four hours 

of constant compression to demonstrate system utility for evaluating disc mechanobiology [274].  

The system, however, was designed to enable 6 DOF motions and analyze other spinal tissues, and 

these capabilities were not previously validated.  In order to do so, the following design 

requirements had to be met.  The system had to: 
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1. Exhibit sufficient precision and resolution of movement 
 

a. The accuracy and precision of the robotic system in active path determination 
needs to be less than 10% of the moment/force targets and subsequent 
rotations/translations selected for non-destructive mechanical testing in that DOF.  
The 10% criterion is based on the standard of error in a system being less than an 
order of magnitude below the measured quantity [275].   

1. Force/moment accuracy 
a. Primary moment target accuracy: error <10% of moment 

magnitude (<0.03 Nm) 
b. Off-axis force minimization accuracy:  

i. <2 N in magnitude [276, 277] 
ii. >0.3 Nm/N ratio of primary moment relative to 

RMSE (Fx,Fy,Fz) [87, 276, 277] 
c. Off-axis moments: error <0.02 Nm [277, 278] 

2. Force/moment precision: error <10% maximum force/moments (2 
N/0.03 Nm) [87, 276, 277] 

b. The accuracy and precision of the robotic system in replay of stored joint angles 
(‘Replay’) needs to be less than 10% of the rotations/translations selected for non-
destructive mechanical testing in that DOF [276] 

c. The resolution of robotic movements: <10% of the maximum amplitude per DOF 
[279] 

 
2. Integrate precisely with the robot testing system 
 

a. Method for fixture alignment to robot testing system and center-of-rotation 
estimation had to be made 

 
3.  Rigidity in rotational motions 
 

a. Primary rigidity (direction of movement and stiffness):   
i. Interface motions<10% of ROM in F/E, AT, and AP (1.5°, 0.3°, 0.1 mm) 

1. Fixation error ought to be at least an order of magnitude less than 
the measured motions so that specimen movements represent FSU 
motion with error < 10% [269].   

ii. Interface stiffness<10% of FSU stiffness in that DOF 
1. Based on a model of two springs in series, fixture stiffness should 

be ten times higher than joint stiffness so that fixture laxity 
contributes less than 10% error to recorded displacements [269]. 

 

 39 



b. Compare to gold standard attachment methods 
i. Relative primary motions 

ii. Off-axis motions 
iii. Stiffness  

 
4. Permit full, unrestricted FSU ROM.   
 

a. Fluid flow through the bioreactor must occur at 1.10 mL/min, representative of 
interstitial fluid flows [257], and not be inhibited by robotic motion 

b. Dialysis membrane (inner collection membrane), latex membrane (fluid 
containment), and nitrile membrane (gas permeability barrier) must not contribute 
to moments or forces sensed by the robot testing system’s universal force sensor 
(UFS).   

3.2 KINEMATIC AND KINETIC PRECISION OF THE TESTING SYSTEM 

3.2.1 Introduction 

Integrating the novel bioreactor system with an existing robotic testing system to explore 6 DOF 

motion mandated characterization of the system used to apply mechanical loading in the context 

of requirements for rabbit FSU testing.  The rotational DOF most relevant to this dissertation are 

F/E and AT, thus system control and precision were assessed in these motions.  Also, initial testing 

plans for Specific Aim 2 involved AP translation to simulate mobilization, so this translational 

DOF was assessed as well.  Robot testing occurred in two steps.  First, a pure-moment path of 

spinal segments was determined by quasi-statically rotating segments to moment targets with an 

updating center-of-rotation and minimizing off-axis forces throughout the motion path.  Second, 

the stored path was replayed at a faster rate for a specified number of cycles. In path determination, 

attaining target moments and minimizing forces are critical; kinematics are expected to vary.  In 

replayed motions, high kinematic precision is essential.  Therefore, the first objective was to 
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quantify and assess error in controlling FSU kinetics during active path determination (‘Pathseek’) 

measured by (a) accuracy in reaching the primary moment, (b) accuracy in off-axis force and 

moment minimization, and (c) precision of forces and moments in repeated ‘Pathseek’ motion 

paths.  The second objective was to describe the kinematic precision in repeated motion paths 

(‘Replay’).  To perform the Objective 1a and 1b, the accuracy of the system in reaching 

moment/force targets under adaptive-displacement control was compared with a specimen (i.e. 

“loaded”) to scenarios without a specimen (i.e. “unloaded”).  To evaluate the kinetic performance 

of serial linkage robots in general, applied loads and system stiffness must be considered.  Thus, 

to perform the Objective 1c  and 2, the robot force/moment (N/Nm) and translation/rotation (mm/°) 

precision were assessed “loaded” and “unloaded” to add relevant stiffness to the robot based 

system.  

3.2.2 Methods 

3.2.2.1 Robot Testing System 

The robot-based spine testing system consisted of a serial-linkage robot (Staubli RX90, Staubli 

Inc., Duncan, SC), an on-board universal force sensor (0-90N /0-11 Nm detection range with 

0.27N /0.0023 Nm resolution, UFS Model 90M38A-150, JR3 Inc., Woodland, CA) and custom 

fixtures (Figure 2 – end-effector fixture coordinate system (EEFCS) and base fixture coordinate 

system (BFCS)).  The robot was controlled via a program written in MATLAB (Mathworks Inc., 

Natick, MA) and operated under (i) adaptive displacement control (‘Pathseek’) in a quasi-static 

manner as described previously [278] and (ii) under kinematic replay where stored joint angles 

were replayed.  The manufacturer lists kinematic precision at ±0.02 mm for this robot without any 

payload [280].  The robot testing system precision was assessed with and without rabbit lumbar 
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FSUs (±FSU) to compare kinematic performance with and without added relevant stiffness and to 

assess load control accuracy and precision with relevant forces/moments.  Rabbit L4-5 FSUs 

(N=3) were subjected to flexion/extension (1.0° step size) and axial rotation (0.5° step size) using 

a 0.3 Nm target and to anterior translation (0.125 mm step size) to a 20 N target.  For tests without 

FSUs (n=3), the robot was rotated or translated to paths of the same movement with the same 

robotic step size.  Ten cycles of active path determination (‘Pathseek’) were performed (after three 

cycles of preconditioning), and then the final cycle’s kinematics were replayed ten times 

(‘Replay’).   

 

 

Figure 2. FSU within robot testing system and instrumented with reflective markers. 
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Motion collection:  Kinematics of the robot testing system were measured using a five-

camera passive-reflector marker system (VICON 460, Vicon, Centennial, CO) that measures rigid 

body motion (Figure 3).   

 

 

Figure 3.  VICON Marker System and Global Reference Frame 

 

Reflective passive markers with 9.65 mm Ø (VICON) were used throughout testing.  Mean 

accuracy and precision were 155 µm, and 33 µm.  Three reflective markers were attached to the 

end-effector and base (Figure 2).  Fixtures were attached to the robot with or without the FSU.  

Prior to motion (i.e. at static positions), using a stylus with four reflective markers, a local 

coordinate system was created using three points on each fixture (Figure 2) to define the orientation 

of a “fixture” coordinate systems (end-effector fixture coordinate system (EEFCS) and base fixture 

coordinate system (BFCS), i.e. the local reference frame of the fixtures about which the robot 

rotates) (Appendix D.2.1).  The infrared camera collection sampling was set to 10 Hz, and stylus 

positions were collected for three seconds each.  During dynamic trials of robot motion, a two-

second pause was inserted at each step of movement to collect 20 frames of position data for each 

marker.  Mean marker position data at each step in each movement was used to construct a 
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measured local coordinate system (LCS) in the global reference for the end-effector and the base, 

TG,M_ee and TG,M_b.  Post-hoc processing was used to transform measured LCSs in to fixture LCSs, 

TM,F_ee and TM,F_b, using fixture-to-global transformations defined with the stylus prior to testing 

(EEFCS = TG,F_ee, BFCS = TG,F_b), 

TM,F_ee = (TG,M_ee)-1 (TG,F_ee) and 

 TM,F_b = (TG,M_b)-1 (TG,F_b) 

From the fixture reference frames, movements of the end-effector relative to the base were 

calculated at each step, 

TF_b,F_ee  = (TM,F_b)-1  TM,F_ee 

and Euler angles (Rx, Ry, Rz) and displacements (Dx, Dy, Dz) were extracted from TF_b,F_ee assuming 

an order of rotations, (Rx)(Ry)(Rz) (Appendix D.2.2).  This fixture reference frame is visualized in 

a rabbit FSU.  The fixture coordinate system was aligned closely with the anatomical reference 

frame of FSUs, as shown in Figure 4. 

 

 

Figure 4.  Fixture and FSU reference frame and anatomical motions and directions 
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‘Pathseek’ control:  Accuracy of robot control of forces/moments was evaluated in F/E.  It 

was quantified by calculating (1) error in force minimization—root mean square error (RMSE) of 

forces in each translational DOF of the universal force sensor (UFS) (Fx, Fy, Fz) across trials per 

cycle—and (2) error in moment target achievement—average difference from 0.3 Nm at maximal 

rotation across cycles.  Simply evaluating the magnitudes of error rather than using a ratio, 

acceptable control of off-axis force/moments for rabbit FSUs was average RMSE of forces < 2.0 

N [276].  Error in moment target achievement should be <10% of the moment target (<0.03 Nm 

for F/E).  These thresholds of acceptability were used to evaluate robotic force/moment accuracy 

in path determination.  Alternatively, force/moment target achievement was compared to ratios of 

moment target to off-axis force RMSE (Nm/N); these ratios range from 0.318 for rabbits [276] to 

0.60 for pigs [87] to 1.0 for humans [277].   

Force/moment precision was also measured by averaging across trials the RMSE of all 

forces and moments during each step of ‘Pathseek’ motion paths.  Precision of the UFS was 

assessed with and without FSUs (±FSUs).  Acceptable precision of off-axis force/moments for 

rabbit FSUs was RMSE of forces < 2.0 N and moments <0.02 Nm [276].  Force/moment changes 

in ‘Replay’ are a measure of load relaxation, so its precision is not relevant to system performance.  

Force/moment thresholds of acceptability were established using the criterion that RMSE< 10% 

of applied moments (i.e. RMSE<0.03Nm).   

System kinematic precision:  The robot testing system kinematic precision was assessed 

over ten cycles of F/E, AT, and AP in ‘Replay’ and ‘Pathseek’.  Kinematic precision of robotic 

movements aligned with an anatomical reference frame (based on fixture orientation and 

positioning) was quantified using the VICON 460 in F/E, AT, and AP.  The RMSE of rotation 

angles and displacements were calculated per step across ten trials in ‘Pathseek’ and ‘Replay’ to 
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quantify system precision error under both control schemes (Appendix D.2.3).  

Translation/rotation thresholds of acceptability were established using the criterion that error < 

10% of measured motions.  Applying this criterion to research studies of rabbit lumbar segments 

yields precision error thresholds in F/E <1°, AT <0.3°, and AP <0.1 mm [276, 281, 282].   

Kinematic precision is not essential to ‘Pathseek’ motions, but it was measured and 

calculated (as described below) (i) to quantify the amount of variation between loading paths in 

‘Pathseek’ and (ii) to compare ‘Pathseek’ to ‘Replay’ to illuminate differences in the control 

methods.  It was reported alongside kinematic precision in ‘Replay’.   

3.2.3 Results 

3.2.3.1 Robot Testing System 

‘Pathseek’ Control:  Robot control in ‘Pathseek’ was assessed in F/E; a representative 6 DOF 

loading of flexion is displayed in Figure 5.  The mean primary moment target achievement error 

was 0.022 (± 0.015) Nm, an error 7.2% of the moment target.  The mean off-axis force RMSE in 

Fx, Fy, Fz was 0.081 (±0.007), 0.510 (±0.196), 0.148 (±0.150) N, respectively.   
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Figure 5.  Representative ‘Pathseek’ F/E (Mx) plot of minimized off-axis forces (top) and moments (bottom)  
 
 

Precision of force/moment detection and robotic system positioning are depicted in Figure 

6.  The primary moment (Mx) precision error was 0.0109 Nm, a value well below (~1/3) the 

threshold value, 0.03 Nm.  Mean force (mean of Fx, Fy, & Fz) and moment (mean of Mx, My, & 

Mz) precision were 0.246 ± 0.076 N and 0.009 ± 0.002 Nm, respectively.  These mean values 

(individual DOF values shown in Figure 6) are below thresholds of 2 N and 0.03 Nm, respectively.  

Primary moment precision error was less than 3% of moment targets. 
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Figure 6.  Force and moment precision measurements in F/E 
 
 

System kinematic precision:  Figure 7 summarizes the kinematic precision of the robot 

testing system in all DOF with and without attached FSUs under both robotic control schemes.  

Mean kinematic translational (mean Dx, Dy, & Dz) and rotational (mean Rx, Ry, & Rz) precision 

for F/E, AT, and AP are depicted in Table 3.  Robot precision for both control schemes with and 

without FSUs in primary DOF of all motions were below established targets:  for Rx in F/E, .023-

.074° < 1°; for Ry in AT, 0.01 – 0.101° < 0.3°; and, for Dz in AP, 0.025-0.082 mm < 0.1 mm.  

Mean translational precision error (across off-axis translational DOF) for F/E, AT and AP in 

‘Replay’ was <.044 mm, and mean rotational precision error (across 3 rotational DOF) was 

<.0173°.  The presence of added stiffness with FSUs did not affect ‘Replay’ precision.   
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 Precision in ‘Pathseek’ was higher and more variable than that of ‘Replay’ for all DOF in 

each movement.  Attachment of the FSU did not reduce kinematic precision in ‘Pathseek’; in fact, 

improved mean translation precision is evident.  ‘Pathseek’ mean rotational precision is below 

thresholds (<.114°) for rotational motions (F/E and AT) with or without FSU attachment, but is 

above thresholds in AP translation (.194-.346 mm) with or without FSU attachment (Table 3).   

 

 

 
Figure 7.  Robot testing system kinematic precision depicted for translational and rotational DOF 
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Table 3.  Mean translational and rotational precision for AP, AT, and F/E in ‘Replay’ and ‘Pathseek’ 
 

  Replay Pathseek 
Motion 

DOF Mean DOF -FSU +FSU -FSU +FSU 

Anterior 
Translation 

translation (mm) 0.04 (0.001) 0.04 (0.007) 0.35 (0.21) 0.19 (0.063) 
rotation (°)  0.02 (0.002) 0.02 (0.001) 0.11 (0.04) 0.11 (0.039) 

Axial 
Torsion 

translation (mm) 0.03 (0.002) 0.04 (0.018) 0.11 (0.03) 0.08 (0.023) 
rotation (°)  0.01 (0.005) 0.02 (0.002) 0.07 (0.03) 0.04 (0.007) 

Flexion-
Extension 

translation (mm) 0.03 (0.003) 0.03 (0.005) 0.10 (0.05) 0.09 (0.051) 
rotation (°)  0.01 (0.001) 0.01 (0.001) 0.04 (0.02) 0.04 (0.024) 

 

3.2.4 Conclusions 

The robot testing system was capable of performing ‘Pathseek’ with acceptable load-

control error using rabbit FSUs.  The error in reaching the primary moment target (7.2%) was 

below the 10% moment magnitude error threshold for acceptance [275].  Resolution at prescribed 

moment/force targets was below 10% thresholds for F/E and AT but not AP (System Requirement 

1.c).  Forces were minimized during pure moment testing; RMSE of off-forces during ‘Pathseek’ 

was <0.165 N (Fz).  This is well below the 2 N threshold from comparable systems used to test 

rabbit spinal segments [276].  Researchers that have used robot spine testing systems have 

established ratios for acceptable moment target to off-axis force RMSE (Nm/N); these ratios range 

from 0.318 for rabbits [276] to 0.60 for pigs [87] to 1.0 for humans [277].  The ratio for the present 

study is 0.588, suggesting the error in robotic control for rabbit FSUs in this system, evaluated by 

variance in off-axis forces, is acceptable.  Also, mean off-axis moment RMSE values were <.015 

Nm, which is ~5% of moment targets and meets criteria (<0.02 Nm) established by other 

researchers [276, 277].  This result of adequate control and precision is  
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likely a result of the low payload and would need to be reassessed at much higher payloads.  Thus, 

kinetic control and precision of the robot testing system meet standards for adequate control 

(System Requirement 1.a). 

Kinematic precision of the robot testing system was acceptable in ‘Replay’ and ‘Pathseek’ 

for rotational motions (System Requirement 1.b).  Positional precision error was worse than that 

specified by the robot manufacturer, but that is expected.  Positional measurements were near to 

the precision of the VICON measuring system.  However, using the principle that the error of 

measurement in systems must be an order of magnitude lower than the quantities they measure, 

the robot precision error could not be fairly judged because it was closer than this disparity.  

Therefore, this study is not a definitive assessment of robot manipulator precision but does provide 

evidence that precision was below thresholds for primary rotational DOF in rabbit FSU.  The 

apparently high precision of the robot testing system reflects, at least in part, the low payload and 

small working volume needed to control rabbit FSUs.  This finding is most relevant to 

mechanobiology testing as the majority of testing involves cycling in repeated motion paths using 

‘Replay.’   

Kinematic precision results were mixed for ‘Pathseek.’  Rotational precision was 

acceptable for F/E and AT regardless of FSU attachment in ‘Pathseek’, but translational precision 

worsened beyond acceptable thresholds without FSUs.  Lack of FSU attachment likely causes 

more variable positioning because force/moment inputs are largely noise.  Precision for AP was 

generally unacceptable in ‘Pathseek’.  Because ‘Pathseek’ control involves integrating force 

feedback in position attainment and ‘Replay’ involves simply moving robot joints to stored 

positions, it is expected that ‘Replay’ would have lower error in precision than ‘Pathseek.’   
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Further, the application of the robot testing system in rabbit FSU mechanobiology spends most of 

its time in ‘Replay’, not ‘Pathseek’, which does not rely on kinematic precision, so these results 

have little impact on narrowing this system’s application.   

Kinematic precision was evaluated in the context of precision needed for amplitudes of 

motion in rabbit rotations—F/E and AR—and translation—AP.  As such, precision of calculated 

angles and displacements similar to those used in experimental testing, which depend on spatial 

transformations and an assumed rotation sequence (Appendix D), was used rather than precision 

of raw position measurements.  Kinematic analysis likely increased the error of measurements, but 

these measurements were more applicable to study outcomes.   

In conclusion, F/E and AT kinematic precision are acceptable, using the most rigorous 

assessment, in ‘Replay’ and ‘Pathseek’ with an FSU attached.  AP translation in ‘Replay’ and 

‘Pathseek’ is acceptable based on primary DOF evaluation, but consideration of precision in all 

DOF presents modest caution, especially in ‘Pathseek.’  The kinematic precision of the robot 

system is adequate to fulfill the aims of this dissertation research.   

3.2.5 Acknowledgements 

Technical expertise was provided by Kevin Bell and Yiguo Yan, and execution of experiments on 
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3.3 RIGIDITY OF THE FIXATION SYSTEM 

3.3.1 Introduction 

The rigidity of this system has been measured in axial compression [269]; however, its rigidity in 

rotational DOF has not been quantified.  The rigidity of the fixture-specimen interface must be 

tested to demonstrate (1) that displacements and rotations of the specimen relative to the fixtures 

are small relative to measured joint motion, and (2) similarly, as a corollary, that the fixture-

specimen interface has a stiffness of an order of magnitude greater than that of the joint.  The 

performance of the fixtures depends on the loading mode, so relevant motions to Specific Aims 1 

and 2 (AP was a preliminary DOF to be used in Chapter 6.0 ) were assessed:  flexion/extension 

(F/E), axial torsion (AT), and anterior/posterior translation (AP).  The critical assessment of 

rigidity was performed in the primary DOF, that is, the motions and stiffness of the interface were 

compared to primary motions and stiffness values of the FSU in that DOF.  For example, in F/E, 

the Rx (see Figure 4) of the interface was compared to Rx of the specimen, and Krx of the interface 

was compared to Krx of the FSU.  To ensure that mechanical results from this system are 

comparable to traditional biomechanical orthopaedic testing and to provide a standard for 

evaluating off-axis laxity, the novel fixation system was compared to the standard bone fixation 

technique of screw attachment to bones potted in epoxy resin.   

3.3.2 Methods 

Rationale:  The novel fixation method used in the bioreactor (Screw Only fixation) was compared 

to the existing standard in conventional orthopaedic biomechanical testing—potting of bone in 
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epoxy resin with subsequent screw attachment to cylindrical fixtures.  In the absence of clear 

standards for rigidity and few papers published reporting bone-fixture rigidity, epoxy resin potting 

was compared directly to the novel Screw Only fixation.   

Specimen Preparation:  Rabbit L4-5 FSUs were attached to fixtures by (1) epoxy resin 

potting methods or (2) novel Screw Only attachment (n=5 for each group).  Sets of three 9.65 mm 

Ø reflective markers (VICON) were attached to the vertebral bodies (Figure 4) by drilling tunnels 

through the vertebral body, placing PMMA into the tunnels, and threading 4-40 rods through the 

vertebra with adjoining washers to lock the rod position.  Following marker attachment, potted 

FSUs (“Epoxy” Group) were embedded in epoxy resin (Bondo Body Filler, 3M, Inc., Atlanta, 

GA), aligned within fixtures, and attached to fixtures using sixteen 6-32 screws that penetrated the 

cylindrical, hard epoxy.  “Screw Only” FSUs were placed directly in fixtures, similarly aligned, 

and attached to fixtures using sixteen rubber-capped 6-32 screws tightened iteratively against the 

irregular vertebral bone.  Attached FSUs for both groups were aligned and mounted to the robot 

end-effector and base with dual ¼-20” screw attachment for both superior and inferior fixtures.   
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Figure 8.  Global and local coordinate systems defined by reflective markers 
 
 

Motion Capture:  Rigidity of the fixture systems for rabbit FSU attachment was assessed 

using the passive-marker five-camera VICON 460 motion collection system (VICON) in 

conjunction with the robot testing system similar to Methods described in Section 4.2.2.  The 

serial-linkage robot (Staubli RX90) and on-board UFS (JR3) were controlled via a program written 

in MATLAB (Mathworks) to operate under (i) adaptive displacement control (‘Pathseek’) in a 

quasi-static manner as described previously [278] and (ii) kinematic replay (‘Replay’) where 

stored joint angles are replayed.  In addition to markers attached to FSUs, three reflective markers 

were attached to the end-effector and base (Figure 8) to form end-effector and base coordinate 

systems (EECS and BCS).  During a static trial prior to motion, a stylus with four reflective 

markers was used to create an anatomical reference frame for superior and inferior vertebrae 

(SVCS and IVCS, respectively), TG,A_SV and TG,A_IV, using standard anatomical landmarks for 
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vertebrae [283].  Also, as in Section 3.2.2.1, fixture “anatomic” reference frames, TG,A_ee and 

TG,A_b, were created using marks on the fixtures to better align measured robotic movements with 

specimen anatomy (Appendix D.2.1).  The infrared camera collection sampling was set to 10 Hz, 

and stylus positions were collected for three seconds each.  During dynamic trials of robot motion, 

a two-second pause was inserted at each step of movement to collect 20 frames of position data 

for each marker.  Mean marker position data at each step in each movement was used to construct 

an orthonormal, measured local coordinate system (CS) in the global reference frame for the 

superior fixture, inferior fixture, superior vertebra, and inferior vertebra, TG,M_ee, TG,M_b, TG,M_SV, 

TG,M_IV, respectively.  Post-hoc processing transformed measured LCSs in to orthonormal 

anatomical LCSs, TM,A_ee, TM,A_b, TM,A_SV, TM,A_IV, using anatomic-to-global transformations 

defined prior to testing, 

TM,A_ee = (TG,M_ee)-1 (TG,A_ee),   

TM,A_b = (TG,M_b)-1 (TG,A_b),   

TM,A_SV = (TG,M_SV)-1 (TG,A_SV),  and 

TM,A_IV = (TG,M_IV)-1 (TG,A_IV), 

From the anatomical reference frames, movements of (1) the superior vertebra relative to 

end-effector (superior fixture laxity), (2) the base relative to the inferior vertebra (inferior fixture 

laxity), and (3) the superior vertebra relative to the inferior vertebra (FSU movement) were 

calculated at each step, 

(1) TA_ee,A_SV  = (TM,A_ee)-1  TM,A_SV 

(2) TA_b,A_IV  = (TM,A_b)-1  TM,A_IV 

(3) TA_IV,A_SV  = (TM,A_IV)-1  TM,A_SV 
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Euler angles (Rx, Ry, Rz) and displacements (Dx, Dy, Dz) were extracted from each 

transformation matrix assuming an order of rotations, (Rx)(Ry)(Rz) equivalent to (F/E)(AT)(LB) 

(Appendix D.2.1).  Rotations and translations were calculated by subtracting angles and 

displacements at the starting position from extremes of motion (Appendix D.3.1).  These angles 

and displacements constitute the rotations and displacements at the (1) superior specimen-fixture 

interface, (2) inferior specimen-fixture interface, and (3) FSU joint.   

Rigidity Assessment:  Rigidity was assessed for both groups in ‘Replay’ control for three 

DOF movements: F/E, AT, and AP.  Following ten cycles of ‘Pathseek’ to 15°, 3°, and 1 mm—

representative rotation angles and translational displacements resulting from load-control with 0.3 

Nm (F/E, AR) and 20 N (AP) used previously—the final path kinematics were replayed ten times.  

Forces and moments were recorded for each DOF (Fx, Fy, Fz, Mx, My, Mz) at each step of movement 

per motion path.  Rigidity was assessed in two ways: (1) specimen-fixture interface motion and 

(2) relative stiffness of interfaces compared to FSUs.  First, 6 DOF motions at the specimen-fixture 

interfaces—differences in angles and displacements between starting and final positions from 

TA_ee,A_SV and TA_b,A_IV—quantify how much the vertebra rotated and translated with respect to the 

fixture (Appendix D.3.1).  To evaluate the novel Screw Only fixation method, motion in the 

primary DOF was compared to a threshold of 10% of overall motion (1.5°, 0.3° and 0.1 mm in 

F/E, AT, and AP) as well to the standard set by the Epoxy fixation method.  Primary motions were 

Euler angle Rx in F/E, Ry in AT, and Dz in AP.  To evaluate off-axis motions, Screw Only motions 

were compared to Epoxy motions with the goal of showing non-inferiority.  Off-axis motions 

constitute all other translations and rotations per movement.   
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Second, stiffness in the primary DOF was calculated for and compared between the FSU 

and the fixture interface.  Differences in stiffness should be an order of magnitude apart for 

minimal contribution (~10%) of fixation laxity to mechanical outcomes.  As above, primary 

motions were differences between initial and final positions in Euler angle Rx in F/E, Ry in AT, 

and Dz in AP from TA_b,A_IV for superior interface motions, TA_ee,A_SV for inferior interface motions, 

and TA_IV,A_SV for FSUs.  Corresponding primary forces/moments measured by the UFS at the final 

position of the motion path were then used to calculate stiffness.  The measured force/moment in 

the primary DOF, i, (F/Mi) was divided by this translation/rotation in the same DOF, T/Ri, to 

evaluate fixture-vertebra interface stiffness.   

Equation 1. Fixture-specimen interface stiffness 

Kinterface =
𝐹𝐹/𝑀𝑀𝑖𝑖

𝑇𝑇/𝑅𝑅𝑖𝑖
 

Specimen stiffness is simply F/Mi divided by primary motion T/Ri of the FSU given by 

relative anatomical motions.   

Equation 2. FSU stiffness 

 Kspecimen =
𝐹𝐹/𝑀𝑀𝑖𝑖

𝑇𝑇/𝑅𝑅𝑖𝑖
 

Based on the criterion stated above, a rigid system should adhere to the following criterion:  

Kspecimen

Kinterface
< 0.10 

3.3.2.1 Statistics  

All results are presented as mean ± standard deviation.  The Mann-Whitney U test was used (i) to 

determine if interface motions for each DOF were different from 0° or mm (i.e. no motions) for 

both fixation groups and (ii) to compare 6 DOF translations and rotations between fixation  
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methods.   The Mann-Whitney U test was also employed to compare fixation system stiffness 

measures between conventional and novel fixation groups in the primary DOF.  A significance 

level of p<.05 was chosen.  Matlab was used to perform statistical analysis.   

3.3.3 Results 

3.3.3.1 Interface Motion 

The relative motions for each DOF (translations (Dx, Dy, Dz) and rotations (Rx, Ry, Rz) in x, y, and 

z) at the interface between the specimen and fixture are depicted in Figure 9 for (A) F/E, (B) AT, 

and (C) AP.  Primary DOF are marked by arrows, and dashed lines represent thresholds of 

acceptable movement restriction in the primary DOF.  As the chief measure of interface rigidity, 

mean primary motions at superior and inferior fixture interfaces for Screw Only fixation were 

Rx=0.333±.196° and 0.059±.050° in F/E, Ry=0.018±0.052° and 0.021±.030° in AT, and 

Dz=0.037±.066mm and 0.002±.070mm in AP across trials; these values are well below thresholds 

for acceptable interface laxity for primary motions (dashed lines in Figure 9).  In F/E, Screw Only 

fixation is significantly increased compared to 0° in Rx, but this motion is less than 40% of the 

error threshold, and the difference relative to Epoxy fixation was not significant (p=.0952).  

Primary DOF interface movements in AT and AP were not significantly different from “no 

motion” for either group.   

Secondarily, the motions at the interface in all DOF were examined.  Rotational off-axis 

motions were below primary DOF thresholds in F/E and AT, and, likewise, translational off-axis 

motions were below the primary DOF threshold in AP.  Considering translations in F/E, Dx 

interface motion was significantly increased for both fixation methods; however, the increase in 

the Screw Only group (-0.151 ± 0.105 mm) tended to be smaller than the epoxy method (-0.406 ± 
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0.499 mm).  In AT, no interface motions for the Screw Only group were significantly increased, 

and mean values were similar to or less than primary DOF error thresholds.  For the Epoxy group, 

however, Dy and Rz motions were significantly larger than no motion.  Interestingly, in AP, while 

translational motion errors were small (<.084 mm), Rx motion was elevated in both groups for the 

superior fixture (p=.0079 for both groups) and in the Screw Only group for the inferior fixture 

(p=.0079).  This demonstrates a significant coupled sagittal rotation with AP translation.  Further, 

this coupling was larger in Screw Only fixation group than the Epoxy group (p=.0159). 
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Figure 9.  Specimen-fixture interface motions in 6 DOF for FSU movements in F/E, AT, and AP. 
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3.3.3.2 Stiffness 

Fixture stiffness in the DOF of motion was calculated for F/E, AT, and AP for both fixation 

methods (Figure 10).  Figure 10 shows mean stiffness values compared to ten times the FSU 

stiffness (10x FSU_k) values—the minimum threshold for acceptable rigidity.  Stiffness values 

are shown for the superior vertebra-end effector (SV-EE) fixture and inferior vertebra-base (IV-

B) fixture interfaces.  Across all motions, interface stiffnesses for the two fixation methods were 

not significantly different.  However, in F/E, Screw Only fixation trended toward lower fixation 

stiffness than Epoxy fixation at the superior and inferior interfaces (p=.0952 and p=.0555, 

respectively).  Nonetheless, the Screw Only interface stiffness in F/E exceeds FSU stiffness by 

22.8x and 80.7x at superior and inferior fixtures, respectively, clearly passing the minimum 

standard of 10x FSU stiffness (~2 and 4x the threshold).  The interface stiffness in AT exceeds 

FSU stiffness by 37.5x and 139.0x at the superior and inferior interfaces, respectively.  Thus, the 

Screw Only fixture system is more rigid in AT than F/E, though both are adequately rigid.  In AP, 

the Screw Only superior fixture stiffness (40.84 N/mm) clearly does not meet the standard of 10x 

FSU AP stiffness (288.3 N/mm), although Screw Only fixation is not statistically different from 

epoxy fixation (p=0.222).   

 

   

Figure 10.  Superior (SV-EE) and inferior (IV-B) fixture-specimen interface stiffness in F/E, AT, and AP 
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The same data is presented as a ratio of FSU stiffness to fixture stiffness to place the 

fixtures stiffness magnitude in the context of FSU stiffness (Table 4).  F/E and AT stiffness for 

both fixation techniques are well below the critical ratio of 0.1.  AP stiffness exceeds 0.1, albeit 

slightly, for both fixtures in epoxy fixation, and screw only fixation exceeds 0.1 by nine-fold at 

the superior interface but met expectations at the inferior interface.   

 

Table 4.  Mean (SD) ratios of FSU-to-fixture interface stiffness for both fixation methods in F/E, AT, and AP 
 

DOF Fixture Epoxy Fixation Screw Only Fixation 
F/E Superior 0.022 (0.025) 0.044 (0.022) 
  Inferior 0.008 (0.004) 0.012 (0.006) 
AR Superior 0.006 (0.003) 0.027 (0.022) 
  Inferior 0.005 (0.003) 0.007 (0.006) 
AP Superior 0.146 (0.133) 0.916 (0.410) 
  Inferior 0.141 (0.095) 0.044 (0.068) 

 

3.3.4 Conclusions 

Rigidity of the novel Screw Only fixation technique in F/E and AT was sufficient compared to 

conventional epoxy potting with screw attachment (i.e. the “gold standard”) and to FSU stiffness.  

In primary DOF of relevant loading modes—F/E, AT, and AP—the Screw Only fixation was 

below laxity thresholds for interface motion (System Requirement 3.a.i.  The stiffness of fixtures 

in F/E and AT exceeded the stiffness of FSUs by more than 20x (twice the minimum threshold of 

10x), indicating a sufficient difference between stiffness of the fixation interface and specimen to 

allow mechanical testing (System Requirement 3.a.ii).  Considering off-axis motions (non-primary 

DOF) at the interface, the Screw Only fixation technique was similar or equivalent to the gold 

standard in F/E and AT but not AP.   
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Interface stiffness was sufficiently stiff in F/E.  The novel fixation method permitted 

significant rotation in F/E in the primary DOF (Rx), which tended to be larger than the epoxy 

method.  This rotation (0.332°) is well below the 1.0° threshold, representing only 1.7–3.3% of 

maximum flexion angles.  Moreover, the superior and inferior interface stiffnesses in the Screw 

Only technique in F/E were 22.8x and 80.7x the FSU stiffness, more than doubling and 

quadrupling the minimum stiffness threshold, respectively.  While coupled translations were 

evident in Dx for the novel fixtures, these translations were smaller than those present in the “gold 

standard” Epoxy group.  Thus, the novel fixation method is sufficiently stiff for rabbit FSU F/E 

mechanics (System Requirement 3.b).   

Screw Only fixation in AT was very rigid.  Interface rotations were generally smaller 

(0.079 ± 0.399°) than the minimum threshold of 0.3° and were not significant.  Off–axis rotations 

were smaller than epoxy potted specimens, so Screw Only fixation outperformed the gold standard.  

Coupled translations in the Screw Only group were not larger than 0.1 mm and were not 

significant.  Again, Screw Only fixation outperformed Epoxy fixation in that the latter had 

significant Dy translation greater than 0.1 mm.  In terms of stiffness, Screw Only fixation (0.027 

and 0.007 for superior and inferior interfaces) was well below the 0.1 FSU-to-interface ratio.  Mean 

interface stiffness relative to FSU stiffness was highest in AT.  Taken together, these findings 

indicate that the novel fixtures had the least error in AT (System Requirement 3.b).   

AP translation presented challenges to rigid fixation for both groups, and violations of rigid 

fixation were worse for the Screw Only method.  While interface motions in translational DOF 

were insignificant and smaller than the 0.1 mm threshold, both groups had significant coupled Rx 

rotations at the superior fixture, and the Screw Only group demonstrated significant Rx rotations 

at the inferior fixture as well.  Rx rotations were significantly larger in the Screw Only group at 
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the superior fixture, suggesting unacceptable, repeatable coupling.  Further, interface stiffness in 

the Screw Only group at the superior fixture was over nine times greater than the acceptable limit 

and nearly nine times greater than the Epoxy group.  More fundamentally, the precision of the 

robot testing system in AP motions could not be tested because of their small size relative to 

VICON precision, so movement repeatability itself is in doubt in this DOF.  Thus, use of the Screw 

Only fixation technique in AP translation of rabbit FSU is not advisable (System Requirement 

3.b).  However, this has minimal impact on the dissertation because AP was not chosen as a motion 

to simulate.   

These data contribute important information to orthopaedic biomechanical testing in 

general (i) by providing a new technique for spinal segment fixation and (ii) by quantifying rigidity 

of conventional epoxy potting methods.  While the generalizability of these findings are limited 

by the relatively small applied force/moment magnitudes (<0.3 Nm/20 N), they do suggest that (1) 

small but significant coupled translations can occur in bending and torsion (<0.4 mm at 15°) and 

(2) coupled rotations can occur in translations (0.2° at 1 mm).  Most importantly, these results 

support the use of the novel Screw Only fixation method for rotational loading modes—F/E 

and AT—in rabbit FSUs.     

3.3.5 Acknowledgements 

Thanks to Kevin Bell and Yiguo Yan for helping with VICON data collection (calibration, 

anatomical reference frame collection).   
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3.4 ATTACHMENT TO ROBOT TESTING SYSTEM 

Adaptive displacement control, the algorithm employed by the robot testing system in active path 

determination (‘Pathseek’) requires an initial estimate of the joint’s center of rotation (COR) to 

begin testing.  Forces and moments sensed by the UFS are transformed to the local anatomical 

coordinate system defined by the axes of the COR [284].  Initial force/moment readings and 

displacements are made about the estimated COR.  At each step of rotation, the COR is updated 

based on a repositioning algorithm that minimizes all forces acting on the FSU [285].  As FSUs 

rotate or translate from their starting position, the COR becomes more accurate with each step.  

Nonetheless, initial estimation of rabbit FSUs needs to be accurate due to the small size of rabbit 

FSUs, which are inherently less tolerant of measurement errors than larger human FSUs.   

Estimates of rabbit COR in F/E were based on existing data in human lumbar segments.  

Human lumbar segmental overall CORs in F/E are located in the posterior third of the disc, near 

to the disc superior/inferior midline in disc cross-section in the mid-sagittal plane [286, 287].  COR 

location is also clearly dynamic, translating posteriorly in extension and anteriorly in flexion [85].  

Rabbit segmental anatomy is fairly similar to human.  Rabbit disc geometric properties (disc 

height, disc width, NP dimensions and placement), when normalized by disc width and area, are 

<26% different from human disc properties [254].  Like human lumbar facets, rabbit facets have 

a predominantly vertical alignment with comparable sagittal alignment to human facets 

(unpublished observations from our laboratory).  Nevertheless, practical COR estimation in rabbits 

had to be confirmed experimentally.  Further, because rubber membrane walls of the bioreactor 

obscure visual measurement of FSU anatomy on the robot, a protocol for repeatable attachment 

and orientation of FSUs relative to the robot end-effector were established (System Requirement 

2).  
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3.4.1 Repeatable attachment  

Before COR measurement can be determined, FSUs must be attached within the bioreactor in a 

repeatable manner so that measurements of external aspects of the fixtures precisely relate to rabbit 

FSU anatomy.  FSUs were visually centered and aligned at neutral angles in the sagittal, coronal, 

and axial planes within fixtures by tightening rubber-capped, 6-32 screws to variable depths 

against the irregular vertebrae.  Screws were tightened to a manually-determined similar torque 

magnitude.  The distance between the posterior of the fixtures and the estimated F/E COR 

(CORest), zdist in Figure 11, can be measured prior to encapsulating fixtures with opaque rubber 

membranes.  This distance is added to the distance between the posterior of the fixtures and the 

robot to ascertain the position of the COR in the anterior-posterior (z) direction relative to the UFS.  

Based on existing data in human lumbar spines and preliminary in vitro mechanical studies in 

rabbit FSUs [282], CORest was placed at the posterior third of the disc in the anterior-posterior (z) 

direction and at the disc mid-height in the superior-inferior (y) direction [85, 286].  Similarly, the 

axial torsion CORest (AT CORest in Figure 11) was oriented vertically, placed in the sagittal midline 

in the medial-lateral (x) direction [287].   
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Figure 11.  Axial view of FSU aligned in inferior fixture with COR estimates for F/E and AT 
 
 

Following encapsulation, bioreactor fixtures were mounted to a base plate and the end-effector of 

the robot spine testing system.  The placement of the bioreactor in the anterior-posterior (z) 

direction was precisely performed using markings on both the base plate and end-effector (zCOR in 

Figure 12).  Measurements were made relative to the center of the face of the load cell block 

immediately proximal to the end-effector.  Placement of the bioreactor in the medial-lateral (x) 

direction is precisely performed by screw holes in the base plate and end-effector (out-of-plane 

movement in Figure 12).  Fixtures were aligned with the UFS in the left-right center by the position 

of screw holes in the base plate, thus ensuring repeatable, central positioning of the AT COR in 

the medial-lateral (x) direction.  Vertical placement of the COR (yCOR) is set by constant inter-

fixture spacers.  Orientation of the bioreactor in the axial plane was similarly performed using 

markings on the base plate and end-effector (not pictured).  Orientation in the sagittal and coronal 

planes was vertical and neutral.  This protocol for alignment of the FSU within the  
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fixtures (Figure 11) and the fixtures relative to the robot testing system (Figure 12) enabled close 

alignment of the FSU relative to a local coordinate system about which initial robot rotations 

occurred.   

 

 

Figure 12.  COR measurements from robot to bioreactor 

3.4.2 COR position 

This process of positioning and measuring COR distances from the robot was confirmed by 

varying zCOR.  The goal of varying these distances was (1) to confirm the location of these axes in 

rabbit FSUs used in previous in vitro testing [282] and (2) to quantify the sensitivity of positioning 

error in these measurements.  In Figure 13, F/E curves are shown for an FSU in which the 

prescribed zCOR (posterior third of the disc) was 160mm.  Specimen loading started at the edge of 

the NZ near extension and rotated in to flexion with loading.  Error in the F/E moment-rotation 

curves is evident in the first 8-10° by deviant moments with a zCOR = 145mm (A), 147mm (B), and 

151mm (C).  The effect is diminished dramatically (2° only) when zCOR is brought to within 5 mm 
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(D) of the prescribed zCOR (E).  Error in the moment-rotation curve is also evident with 

overestimates of zCOR (F); in fact, error of comparable magnitude is worse with overestimating 

than underestimating (D vs. F).   

 

 

Figure 13.  Effects of COR placement in z-direction on F/E moment-rotation curves  

 

Variation of ±3mm (i.e. 157 and 163 cm) had similar, small effects on the moment-rotation 

curves in (A) and (B) in Figure 14.  These effects were smaller than those seen at ±5mm.  Variation 

of ±1mm had no discernible effect on the initial steps of the moment-rotation curves.   
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Figure 14.  Effects of COR placement in z-direction (< ±3 mm) on F/E moment-rotation curves  

3.4.3 Orientation about COR 

Similarly, the axial orientation of the bioreactor relative to the robot was varied to assess the ability 

of the robot testing system to adapt to mal-alignment.  It was hypothesized that deviations of <5° 

from proper alignment would not introduce error in the moment-rotation curve.  Thus, the 

orientation of the bioreactor was rotated by small and large angles (θ=7.5° and θ=15°) from neutral 

sagittal alignment (Figure 15), and FSUs were subjected to flexion (moving from extension, as in 

Figure 13 and Figure 14).  Deviations in the F/E moment-rotation curve from neutral alignment 

(θ<2°) curves were noted.  Visible rotation of the robot end-effector was confirmed as it minimized 

forces and determined the sagittal rotation plane of the FSU.  The results, displayed in Figure 15, 

show that adaptive displacement control quickly adjusts for deviations in axial plane orientation.   
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The initial two-to-three steps of F/E show deviation from neutral F/E moment-rotation curves, but 

deviations are small and normal stiffness readings are recovered for both angle values by the fourth 

step.  These deviations are generally smaller than those observed in varying COR.   

 

 

Figure 15.  Intentional variation in axial plane orientation: effects on F/E moment-rotation curves 

3.4.4 Conclusion 

COR placement was confirmed as feasible with achievable precision in attachment and alignment.  

This protocol for alignment of the FSU within the fixtures and the fixtures relative to the robot 

testing system enabled repeatable alignment of the FSU relative to the testing system’s local 

coordinate system.  Based on perturbing COR positions in the z-direction, placement of the F/E 

COR at the posterior third of the disc produced optimal moment-rotation curves devoid of evident 

miss-steps.  Secondly, error in the first few steps of F/E was present with overestimation and 

underestimation ≥ 5mm.  Error became very small at ±3mm and was negligible at ±1mm.  Thus, 

measurement and positioning error ≤3mm has little effect on F/E moment-rotation curves.  Given 

the protocol for specimen and bioreactor alignment and positioning, this tolerance is tenable.  

Large errors are corrected by the adaptive displacement, albeit after many steps, as  
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evidenced by comparable curves beyond 8-10°.  Errors in attachment and measurement should be 

below the 3mm threshold, with any violations ≤5mm pose little risk to the specimen or inject undue 

variation between tests.   

Errors in orientation of the chamber were even more tolerant.  Deviations of 7.5° had only 

small effects in the first 2-3° of the neutral zone in F/E.  Larger deviations (15°) affected early 

steps dramatically, but adaptive displacement control was able to recover normal moment-rotation 

curves within 3-4° of F/E as well.  Thus, for error magnitudes most likely to occur in FSU 

attachment and bioreactor assembly and positioning within the robot testing system, mechanical 

consequences are mild or negligible.  For rare events where positioning and orientation are 

dramatically erroneous, only initial steps made by the robot testing system were sensitive as 

adaptive displacement control quickly adjusts.  Thus, methods for COR estimation and bioreactor 

placement and orientation are established.   

3.5 MEMBRANE EFFECTS 

The bioreactor walls are composed of inner latex and outer nitrile membranes to facilitate 

unrestricted movement in 6 DOF.  Interior to the latex membrane, a layer of dialysis tubing 

surrounds the FSU beneath rubber-capped screws (Figure 6).  In compression, the only loading 

mode explored previously [269], resistance of membranes is not involved (no tension).  In bending, 

however, membranes have the potential to undergo tension on the convex side and thereby 

influence forces/moments sensed by the universal force sensor (UFS) in the robot testing system.   
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Figure 16.  Flexed FSU in bioreactor with inner dialysis and outer rubber membranes with tension illustrated 
 
 

The effect of membrane tension on F/E moment-rotation curves was identified and corrected by 

adding folds (additional material) in membranes.  First, the bioreactor and sample were prepared 

as described previously [269].  As Figure 17 shows, without creating slack in the dialysis 

membrane (unfolded membrane), it increased moments, contributing to the measured moments 

and obscuring the FSU non-linear moment-rotation profile.  Adding redundant material to the 

region of the dialysis membrane between the fixtures enabled normal non-linear stiffness to be 

evident (System Requirement 4.b).  This was done routinely thereafter to ensure unshielded 

loading of FSUs; redundant material contributed to modest increases (2-3 ml) in conditioned media 

in the inner volume.   
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Figure 17.  Effect of dialysis membrane with and without folds on F/E moment-rotation curves 

 

Secondly, the effect of the outer rubber membranes was assessed, and membranes were 

modified to facilitate unrestricted rotational movements.  Learning from the effects of an unfolded 

dialysis membrane on moment magnitudes and stiffness profiles, folds were added to the latex and 

nitrile membranes between the fixtures (Figure 18).  Fluid filled the bioreactor and was pumped 

through at 1.1 mL/min.  This preparation method enabled normal stiffness and moment-rotation 

profiles to develop; neither membrane tension nor fluid effects altered moment-rotation properties.  

Membrane attachment and media flow-through was done routinely thereafter without moment 

distortion, swelling membranes or pooling media (System Requirements 4.a and 4.b).   
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Figure 18.  Effect of folded, outer rubber membranes on F/E moment-rotation curves 
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4.0  MECHANICAL LOADING PROTOCOL DEVELOPMENT 

4.1 INTRODUCTION 

Mechanobiology depends on the transduction of mechanical forces to intracellular centers that 

integrate changes in the local environment that result from loading and modulate cellular activity 

[104].  Establishing mechanical and biological testing conditions that reflect in-situ loading and 

maintain physiologic conditions is paramount to achieving accurate mechanotransduction ex vivo.  

While physiologic conditions can be simulated by controlling ex vivo boundary conditions—

temperature, oxygen tension, media osmolarity, and nutrition concentrations—selecting 

mechanical testing parameters that replicate in vivo loading is more difficult.  The selection of load 

targets, loading rates, and methods for controlling load application that recapitulate in vivo 

kinematics remains an area of active research [288-290].  Not only is matching in vitro loading 

with in vivo kinematics not trivial within a species, but attempts to simulate activities relevant to 

humans in animal models adds another layer of difficulty in approximation.  Matching biological 

responses to loading between species is inherently uncertain because of the differences in cells, 

matrix, environmental factors, etc., but matching applied mechanics between species is an essential 

goal for translatable research. 

In disc explant mechanobiology, magnitudes of compressive loading in animal discs are 

related to human loading based on intradiscal pressure [268].  Beckstein et al. performed constant 

compression of frequently used animal models and human lumbar discs and showed that, for equal 

pressure loading, inter-species variation in time-dependent mechanical properties diminished by 

normalizing responses to compression by disc height and cross-sectional area.  The creep 
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properties of numerous animal model discs, including New Zealand White (NZW) rabbits, were 

comparable to humans [268].  Similarly, Showalter et al. compared torsional properties between 

human lumbar discs and numerous animal species and found that, by normalizing by disc height 

and polar moment of inertia, most animals, including NZW rabbits, had torsional properties and 

collagen content similar to humans [291].  Thus, in axial compression and torsional loading modes, 

rabbits have mechanical properties similar to those of humans.   

In physiologic rotations of spinal segments involving flexion/extension (F/E), axial torsion 

(AT), or lateral bending (LB), structural properties of animal spinal segments must first be 

evaluated as to how well they approximate human segmental properties.  The properties that 

commonly serve as a basis for comparison are range-of-motion (ROM), neutral zone (NZ) width 

(°) and stiffness (Nm/°), and elastic zone stiffness (Nm/°).  These properties describe how the 

structures of spinal segments interact to restrict and facilitate motion for a given DOF.  In rabbits, 

Grauer et al. examined the kinetic response of NZW rabbit lumbar spinal segments in comparison 

to human lumbar segments in F/E, AT, and LB [281].  Their findings show that rabbit lumbar 

segments adequately approximate human lumbar ROM and stiffness in F/E and AT, although NZ 

width in rabbit spines was significantly larger than humans.  In general, the authors noted that 

rabbit lumbar segments had greater laxity [281].   

Thus, there are apparent differences in segmental loading between rabbits and humans.  

The loading of different structures within an FSU is a function of overall kinematics, spinal 

anatomy, component interactions, and tissue composition.  Rabbit lumbar anatomy is close to 

human lumbar anatomy.  Compared to other large animal models often used to evaluate rotational 

motions, rabbit facet size and orientation in the lumbar spine is similar to humans [292].  Further, 

previous studies using rabbit facets argue for their similarity to human facets [293].  FSU extension 

 78 



and AT properties, which are governed to a large extent by facet properties, are similar to humans 

[281, 291].  Additionally, resection of facets in rabbit lumbar FSUs in Chapter 7.0 demonstrates 

comparable contribution of facets to extension moments and similar facet joint forces when 

normalized to bodyweight (Section 7.4.2). Anatomically, the  size and shape of the rabbit disc and 

the NP within the AF is similar (<26% different across listed dimensions) to human discs [254].  

The location and composition of posterior ligaments is also comparable to primates [294].  In 

particular, the salient role of the ligamentum flavum in flexion is shared in both human [278] and 

rabbit spinal segments (Table 17).  Mechanical testing in Chapter 7.0 (Figure 31) and preliminary 

studies in human spines in our lab show that the ligamentum flavum plays a role in axial torsion 

in both human and rabbit as well [278].  Understanding differences in moment-rotation curves and 

anatomy is essential to evaluating the biological response of different tissues from spinal segments 

belonging to different species.  Without a basis for anticipating similarities and differences in the 

mechanics of different tissues and structures, it would be difficult to conclude how biological 

changes in rabbit segments related to human responses to comparable mechanical loading.   

After establishing the suitability of an animal model (e.g. rabbit lumbar spine) in a 

particular loading mode (F/E and AT), the magnitudes, rates, and durations of a particular human 

motion must be approximated in the model system.  The primary purpose of this dissertation was 

to assess aspects of F/E in spinal segments that were relevant to spinal motions in rehabilitation 

and occupational and recreational activities.  Many activities of daily living (ADLs) involve small 

to moderate amounts of F/E [210, 272], while specific rehabilitation exercises and motion-based 

therapies (e.g. yoga), certain manual labor tasks, and various sports involve large amounts of F/E  
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and combined F/E with AT [19, 68, 71, 203].  Replicating these small and large F/E ROM activities 

ex vivo requires selecting moment targets that recapitulate appropriate segmental kinematics.  

Further, these targets must be translated from human to animal models.     

The objective of this project was (1) to relate in vivo human F/E kinematics to in vitro 

human kinetics from data by Adams et al. [31], (2) to subsequently relate human kinetic data to 

rabbit kinetics in order to establish mechanical testing parameters that approximate relevant 

loading in human ADLs and spine-intensive activities (e.g. rehabilitation, manual labor, 

recreational sports like tennis, golf, rowing, etc.), and (3) to determine magnitudes of AT to 

combine with F/E to reflect occupational activities and segmental dysfunction leading to 

asymmetry.   

4.2 PARAMETER DETERMINATION 

4.2.1 Loading duration 

The goal for the studies in Specific Aim 1 and 2 was simulation of a short activity like a 

rehabilitation routine or an occupational, recreational, or daily task.  The duration of such activities 

varies [295, 296], but a preconditioning session of 15-20 minutes followed by one hour of repeated 

cyclic F/E was considered adequately representative.   
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4.2.2 Flexion/extension moment magnitudes 

Identify maximum human lumbar in vivo and in vitro F/E motions  

Adams et al. quantified human lumbar segmental motions in vitro and in vivo in similarly aged 

spines (Table 5) [31].  They identified segmental F/E movements in vivo for L2-3 (10/3°), L3-4 

(12/1°) and L4-5 (13/2°).  Using standard in vitro testing parameters, comparable F/E movements 

in vitro, per level, were L2-3 (9/5.5°), L3-4 (9/4.5°), and L4-5 (12/4°).   

 

 
Table 5.  In vivo and in vitro human lumbar spine flexion/extension range-of-motion 

In vivo In vitro 

F/E ROM (°) F/E ROM (°) 

Level Flexion Extension F/E Flexion Extension F/E 

L1-2 8 5 13 8 5 13 

L2-3 10 3 13 9 5.5 14.5 

L3-4 12 1 13 9 4.5 13.5 

L4-5 13 2 15 12 4 16 

L5-S1 11 5 16 12.5 4.5 17 

L1-S 54 16 70 50.5 23.5 74 

Data from Adams et al. [31]   
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Form coefficient for relating in vivo to in vitro F/E motions 

As is evident from Table 5, in vitro testing underestimates flexion angles, overestimates extension 

angles, and slightly overestimates overall F/E rotation.  These tendencies are quantified in Table 

6 by expressing the ratio of in vitro-to-in vivo ROM.  Coefficients in Table 6 serve as a means to 

convert between in vivo and in vitro ROM values.   

 
 

Table 6.  Ratio of in vitro to in vivo flexion/extension range-of-motion 

Ratio: In vitro-to-in vivo ROM 

Level Flexion Extension F/E 

L1-2 1.00 1.00 1.00 

L2-3 0.90 1.83 1.12 

L3-4 0.75 4.50 1.04 

L4-5 0.92 2.00 1.07 

L5-S1 1.14 0.90 1.06 

Mean: 0.94 1.47 1.06 

   Data derived from Adams et al. [31]   

 

F/E angles measured in activities 

ADL:  Lee et al. measured lumbar spinal motions in activities of daily living.  Overall F/E angles 

(L1-S1) were 4.51°, 4.83°, 10.09°, and 4.68° in level walking, single stair climbing, multiple stair 

climbing, and stair descent [210].  Alternatively, merging data collected by Jegede et al. [297], 

which expressed F/E motion in ADLs as a fraction of overall F/E motion, with in vivo F/E data 

collected by Marras et al. [298], Okawa et al. [299], and Lee et al. [300] revealed F/E angles in 
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ADLs:  walking (6.08 ±3.04°), stair ascent (9.95 ±4.98°), and stair descent (7.74 ±3.86°).  These 

angle ranges are representative of motions in activities and exercises that do not require large spinal 

motions [272].  These angles represent 6.4-18% of maximum F/E ROM [31, 210, 297, 301, 302]  

Spine-intensive activities:  Spinal lumbar motions involved in motion-based therapies 

[303], occupations [304], and recreational activities [203] can involve large portions of maximum 

F/E ROM.  Yoga exercises used to treat elderly low back pain patients involved F/E angles that 

reached a mean 56.5% of maximum F/E motion [303, 305]; younger patients may engage up to 

100% of maximum F/E motion [306].  Healthcare workers spent more than 10% of their time at 

flexion angles 55.5 – 100% of maximum flexion [304].  Large flexion angles are common in other 

occupations as well [68]. 

Summary:  In general, ADLs involving walking, stair climbing, etc. involve less than 20% 

of F/E ROM while lumbar-intensive activities involve 50-100% of F/E ROM.   

In vitro equivalence of F/E angles: Humans to rabbits 

After (i) characterizing the relationship between in vitro and in vivo ROM and (ii) identifying F/E 

angles in different activities, in vivo ROM in activities can be related to in vitro moment-rotation 

profiles.  In particular, the position in the moment-rotation curve that corresponds to F/E angles in 

vivo is functionally important and practically necessary for establishing equivalent loading across 

species.  To translate human in vivo angles to human in vitro angles, Table 2 can be used directly, 

which introduces fairly small adjustments.  Direct translation of angles between humans and 

rabbits is not tenable, however, because of different non-linear relationships in moment-rotation 

curves.   
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Translation must be made based on the position of the F/E angles with respect to the neutral 

zone border, i.e. the transition between low stiffness and high stiffness loading.  Human lumbar 

F/E moment-rotation curves for individual segments have low-stiffness regions of 1.4 – 5.0°, 

representing 12.2-37.1% of the overall curve [307].  Values for L4-5 were 12.2-30.6% of overall 

motion [307].  By contrast, rabbit lumbar spinal segments have significantly larger low-stiffness 

regions of 13.8 – 16.9° that comprise 52.2 – 80.0% of the overall motion [281, 282].  It is clear 

that scaling motions to rabbit spines based only on kinematic equivalence (i.e. simply matching 

angles by %ROM) would introduce error in amount of loading imparted to tissues based on 

differences in non-linearity of moment-rotation properties between species.  Similar challenges 

would arise from scaled moment targets.   

Connecting the in vitro simulated human F/E angles from ADLs and spine-intensive 

activities with NZ borders in human mechanical tests reveals whether angles are in the low or high 

stiffness region of moment-rotation curves.  In vitro simulated ADL F/E motions are at or less than 

the edge of the low-stiffness neutral zone (Table 7).  Conversely, in vitro simulated spine-intensive 

activity F/E motions (58.8-106%) are well within the high-stiffness region of the moment-rotation 

curve.   

To achieve similar loading in rabbit FSUs, NZ width was established in this system.  

Skeletally mature L4-5 NZW rabbit spinal segments (n=6) tested in the robot testing system had 

NZ widths (found as described in Section 5.2.2) of 11.07 ±2.25°, representing 57.7% of F/E ROM 

(Table 8).  These results agree with data reported previously [281].  Moment magnitudes spanning 

the NZ were 0.21 ±0.05 Nm.  Thus, flexion/extension moment targets were set to 0.17/0.05 Nm to 

reflect F/E angles in ADLs that are within the NZ.  To represent spine-intensive activity, F/E angles  
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were chosen that repeatedly entered the linear region of rabbit FSUs, avoided damage to spinal 

tissues based on preliminary testing, and corrected for typical in vitro overestimation of in vivo 

extension [31].  F/E moment targets that met these criteria were 0.50/0.15 Nm.   

 
 

Table 7.  Human L4-5 F/E ROM in activities 

  Human L4-5 ROM (°) Relative to NZ 
Activity In vivo ROM (°) In vitro ROM (°) %ROM NZ (°) NZ (%ROM) 
Maximum active ROM 15.00 16.05 100.0 1.8 - 4.5 12.2 - 30.6 
ADL (Small ROM) - lower 1.04 1.1128 6.9 < < 
ADL (Small ROM) - upper 2.16 2.3112 14.4 ≤ ≤ 
Intense (Large ROM) - lower 8.46 9.0522 56.4 > > 
Intense (Large ROM) - upper 15.00 16.05 100.0 > > 

Maximum ROM data derived from Adams et al., 2006 [31].  Activities of Daily Living (ADL) data further derived 
from Lee et al., 2011 [210].  Intense spinal activity ROM data obtained from Goncalves et al., 2012 [303] and Le 
Corroller, et al., 2012 [306].  Neutral zone (NZ) data obtained from White and Panjabi et al., 1990 [308] and 
Yamamoto et al., 1989 [307]. 

 

 
Table 8.  Rabbit flexion/extension moment-rotation properties: Determining moment targets 

  NZ (°) NZ (%ROM) Moment (Nm) 

ADL Approximation:   
Small ROM  11.07 (2.26) 57.7 (3.0) 0.21 (.05) 

Spine-intense Approximation: Large ROM 19.26 (4.20) 57.7 (3.0) 0.66 (.11) 

 

 
Table 9.  F/E moment targets 

Approximation Selected Targets (F/E) 
Nm 

ADL:   
Small ROM  0.17 / 0.05 

Spine-intense Activity: 
Large ROM 0.5 / 0.15 
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4.2.3 Axial torsion moment magnitudes 

In Specific Aim 2, axial torsion (AT) is coupled with F/E to induce axial asymmetry during 

repeated F/E movements.  A more complete motivation and justification for this combined AT + 

F/E loading can be found in Section 6.2.2.  Briefly, the goal was to compare neutral F/E to 

asymmetric F/E with mild and severe amounts of coupled AT.  Axial asymmetries may arise from 

(1) active combined bending and twisting in demanding manual labor [68] or (2) segmental 

dysfunction mediated by connective tissue lesions (e.g. facet-mediated adhesions) [79] or 

sensorimotor control dysregulation [14, 194].  Torsional movements in the human lumbar spine 

are small; in vivo human lumbar segmental AT motions are 0.9-1.4° (excluding L5-S1) [31].  In 

in vitro mechanical testing, human L3-4 and L4-5 maximal AT motions are 2.1±1.3° and 1.4 ±1.5° 

at 10 Nm of applied torque [309].  In vitro testing studying effects of torsion on disc mechanics in 

human lumbar segments applied torques corresponding to 11-40% of failure loading [273].   

Matching rabbit torsion to appropriate amounts of torsion in human motions can be based 

directly on percent of maximum torsion because torsion is linear in moment-rotation properties for 

both humans and rabbits [281, 310].  Rabbit torsional stiffness and moment-rotation properties are 

not significantly different from humans [291].  Preliminary testing of n=3 rabbit L4-5 FSUs 

showed AT failure at 1.91±.04 Nm; a representative load-to-failure plot is shown in Figure 19.  

Mild to moderate coupled torsion was chosen at 20% of AT failure loading, 0.4 Nm in rabbit L4-

5 FSUs, to represent torsional angles within putative normal AT ROM (Small AT).  To represent 

severe, non-injurious coupled torsion that goes to the end ROM observed in vivo or simulated in 

vitro, 40% of AT failure, 0.8 Nm in rabbit L4-5 FSUs, was chosen (Large AT).   
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Table 10. AT torsion moment targets 

Coupled AT Selected Targets (AT) Nm 
Small AT 0.4 

Large AT 0.8 

 

 

 

Figure 19.  Representative load-to-failure moment-rotation profile for axial torsion 

 

4.2.4 Loading rate 

In vivo F/E motion rates are not typically reported directly [210, 311], but motion rates can be 

calculated.  In studies where lumbar motions are presented during gait cycles [210, 311], durations 

of gait cycle can be used to approximate in vivo lumbar F/E motion rates [210, 312, 313].  Using 
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this approach, F/E motion rates in ADLs involving walking range from 2.83 – 7.96 °/s.  F/E motion 

rates in spine-intensive activities like yoga involve a range of F/E motion rates.  Available data 

suggests F/E lumbar motion rates range from 0.67 – 30 °/s [199].   

Approximation of in vivo motions using in vitro systems typically occurs at slower motion 

rates than those observed in vivo because of the difficulty in safely rotating specimens at high 

speeds [277].  Determination of the pure moment motion path, which occurs during 

preconditioning in the robotic testing system employed in these studies, uses an adaptive 

displacement control (Appendix D.1.2) that operates quasi-statically with steps ≤1° in size.  

Kinematic replay of robot joint angles (Appendix D.1.3) from path determination can occur at 

higher motion rates that better approximate in vivo motion rates.  Robotic spine testing systems 

have achieved motion rates of 0.25, 0.35, 0.8, 2, and 6.67 °/s [87, 289, 314-316].  Using the robotic 

testing system in these studies, F/E motions were replayed at 0.33-0.5 °/s.  Thus, while 

underestimating in vivo motion rates, loading rates were comparable to numerous robotic systems 

used in lumbar spinal loading.   
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5.0  FLEXION/EXTENSION: RANGE-OF-MOTION & CYCLES 

5.1 INTRODUCTION 

A common trait observed in patients experiencing back pain is altered kinematics [64].  Trunk 

motion is governed by the integration of passive, osteoligamentous spinal structures with active 

musculature.  Spinal movements are often coupled, but they are typically simplified to 

flexion/extension (F/E), axial torsion (AT), and lateral bending (LB)—rotations in the sagittal, 

transverse, and coronal planes, respectively.  Motions in all planes are important in activities of 

daily life [272] but F/E, in particular, is essential to tasks associated with back injury [270, 317] 

and can provoke or be altered by back pain [64, 70, 318].  [319] 

Motion-based therapies for low back pain often focus on rehabilitation involving F/E 

movements to improve patient function and restore normal motion patterns [271, 319-321].  

Clinical practice suggests a benefit from tailored rehabilitative regimens where parameters of 

exercise movements like range of motion (ROM), number of cycles, and duration of movements 

are carefully prescribed [322].  These parameters of F/E are involved in many commonly used 

rehabilitation strategies [271, 319-321], yet little evidence exists to develop and prescribe exercise 

protocols for individual patients.  More fundamentally, the biological effect of F/E loading 

parameters on spinal tissues remains largely unknown.  The spinal column comprises functional 

spinal units (FSUs) made up of bony vertebrae that transmit load, an intervertebral disc and facet 

joints that withstand compression and enable articulation in six degrees-of-freedom (DOF), and 

numerous spinal ligaments that stabilize segmental motions.  In lumbar FSUs, flexion is 

constrained posteriorly by tension in the posterior ligamentous complex, among which the 
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ligamentum flavum (LF) factors prominently [86, 87], and anteriorly by the swelling pressure of 

the disc [87, 323, 324].  A majority of the resistance to extension is provided by discs, but a modest 

amount (16-40%) is withstood by the facet joints [86-88].  Damage to or degradation of any one 

of these structures can cause altered segmental mechanics, local instability, and coupled 

degeneration of joint components/tissues, contributing to back pain [98, 146].  Mechanical loading 

of spinal tissues can alter biological processes, exacerbating or ameliorating mechanisms 

underlying degenerative changes and painful symptoms. Therefore, improved knowledge of how 

motion parameters interact with inflammatory, degenerative, and remodeling processes has the 

potential to assist rational prescription of exercise. 

Biological effects of mechanical loading in discs have been well studied using ex vivo 

organ culture systems.  Ex vivo systems enable elucidation of the isolated role of applied mechanics 

within well-controlled environmental conditions.  To date, researchers have primarily cultured 

disc-only explants where bony endplates are removed to maximize culture duration but loading 

mode is constrained to axial compression [34, 256-259].  Recent advances have explored new 

loading modes—combined torsion [36] and asymmetric compression [37]—and loaded FSU organ 

culture [269].  Culturing and loading intact FSUs facilitates in-situ loading in physiologic rotations 

by preserving vertebra, endplates, facets, and spinal ligaments essential to replicating these loading 

patterns.  Further, subjecting preserved FSUs to multi-dimensional loading permits simultaneous 

evaluation of the biological response in all spinal tissues.   

The objective of this study was to determine the effect of spinal F/E on catabolism and 

inflammation simultaneously in all types of spinal tissue—AF, NP, FC, and LF—in viable FSUs.  

We hypothesized that larger motions would increase catabolic and inflammatory markers in all  
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tissues, and smaller motions would reduce catabolic and inflammatory markers in all tissues 

relative to unloaded controls.  We further hypothesized that increasing the number of cycles would 

elevate catabolic, inflammatory, and structural markers.   

5.2 METHODS 

5.2.1 Specimen Preparation 

Thirty-four lumbar spines were isolated from skeletally mature (>10 months old) New Zealand 

White rabbits.  FSUs were extracted from two levels—L2-3 and L4-5—within two hours of death 

and dissected to remove musculature and produce clean osteoligamentous segments.  FSUs were 

rinsed in phosphate-buffered saline and were then attached within a temperature- and oxygen-

controlled bioreactor for mechanical loading as described previously [269] or placed in static 

culture as an unloaded control.  Loaded FSUs (L4-5) were matched to unloaded control FSUs (L2-

3) from the same spine; both FSUs were placed in 10% fetal bovine serum-and 1% 

penicillin/streptomycin-supplemented Dulbecco's Modified Eagle's Medium including 4.5 g/l 

glucose with 110 mg/l sodium pyruvate at 37(±0.5) °C, 5%/5% O2/CO2.  Media was pumped 

through the bioreactor at 1.1 mL/min.   

5.2.2 Ex vivo Flexion/Extension 

The custom-built bioreactor was attached to a serial-linkage robot used previously for in vitro 

flexibility testing of rabbit FSUs [282].  Flexible, silicone and nitrile rubber walls contained media 
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and permitted free movement of the FSU in six DOF (Figure 20).  After reaching steady-state 

temperature and media flow (~30 min.), FSUs were subjected to three cycles of quasi-static F/E 

for preconditioning and determination of the segment’s pure-moment F/E path [277].  

 

Figure 20.  Bioreactor attached to robot testing system circulating media with enclosed, flexed FSU  
 

 
To test the effect of ROM, FSUs were assigned to small and large groups defined by 

0.17/0.05 and 0.5/0.15 Nm moment targets in F/E.  Targets were selected so that specimens 

assigned to small ROM remained within the low stiffness region of the moment-rotation curve  

(i.e. the neutral zone) and specimens assigned to large ROM entered the high stiffness, linear 

portion of the curve (i.e. the elastic zone) in flexion and extension (Figure 21).  The kinematics of 

the third path were then replayed for one hour at 0.33°/s.   

 

 92 



Because time and loading rate were fixed rather than cycle number, which would differ 

between large and small ROM, a separate set of experiments was performed to examine the effect 

of cycle number.  FSUs were subjected to large ROM load targets for one hour (1h Cycle), two 

hours (2h Cycle), or one hour of cycling followed by one hour of static culture (1h Cycle_1h 

Static).  Comparing 1h Cycle to 1h Cycle_1h Static demonstrates the effect of doubling culture 

duration, and comparing 1h Cycle_1h Static to 2h Cycle isolates the effect of doubling cycles.   

Mechanical analyses were performed to characterize the response of FSUs to applied 

loading.  Mean ROM and cycle number were calculated for each group.  Work applied to FSUs 

per cycle, Wcycle, was computed by integrating the primary moment at each angle, Mɵ, with respect 

to primary angle, ɵ, in flexion and extension.   

Equation 3. Work in flexion/extension per cycle 

𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝑀𝑀𝜃𝜃

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
∙  𝑑𝑑𝑑𝑑 + � 𝑀𝑀𝜃𝜃

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∙  𝑑𝑑𝑑𝑑 

Work was averaged and summed across cycles for cumulative and mean work.  Similarly, 

total and mean energy dissipation (hysteresis, Hcycle) were calculated using the difference between 

loading and unloading curves per cycle.  

Equation 4. Hysteresis in flexion/extension per cycle 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝑀𝑀𝜃𝜃

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∙  𝑑𝑑𝑑𝑑 −  � 𝑀𝑀𝜃𝜃

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

ɵ=𝑚𝑚𝑚𝑚𝑚𝑚.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
∙  𝑑𝑑𝑑𝑑 

 

Neutral zone stiffness (NZk, Nm/°) and width (NZwidth, °) were found using methods 

described by Smit et al. [325] (Figure 21) (Appendix D.4.4).  Briefly, the moment-rotation data 

were fit with a double sigmoid function to allow stiffness-based demarcation of the neutral zone 

and elastic zone (i.e. linear region): 

 93 



Equation 5. Sigmoidal function used for curve-fitting flexion/extension moment-rotation 

𝑅𝑅 =  
𝑐𝑐1

1 + 𝑒𝑒−(𝑎𝑎1+𝑏𝑏1∗𝑥𝑥) −  
𝑐𝑐2

1 + 𝑒𝑒−(𝑎𝑎2+𝑏𝑏2∗𝑥𝑥) + 𝑑𝑑 

where R is the rotation, a and d represent horizontal and vertical shift parameters, 

respectively, and b and c reflect the shape of the function.  Two functions are added to model the 

loading and unloading curve.  The inflection points—extrema of the second derivative—are used 

to define the width of the NZ based on the region of minimal stiffness [325].  NZ stiffness was 

found using a first-order linear fit of the NZ region (Appendix D.4.4).  Elastic zone (EZ) stiffness 

(EZk) was calculated in the final three positions (~10%) of the moment-rotation curve.   

Equation 6. Elastic zone stiffness 

𝐸𝐸𝐸𝐸𝑘𝑘 =  
𝑀𝑀𝑓𝑓 −𝑀𝑀𝑓𝑓=3

Ѳ𝑓𝑓 − Ѳ𝑓𝑓=3
 

 

Figure 21.  Representative F/E moment-rotations to small (x) and large (o) ROM (curve-fit).   
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Changes in mechanical measures—primary moment, work, hysteresis, and stiffness—were 

calculated by normalizing differences between the third cycle and the last cycle by the third cycle 

of replayed kinematics (Appendices D.4.3 and D.4.5).  The third cycle was chosen to allow for 

preconditioning of the moment-rotation response at the higher loading rate used for kinematic 

replay.  As the chief example, where Mf and Mx=3 were the moment values for the final and third 

cycles, primary moment relaxation, RM’, was given by: 

Equation 7. Primary moment relaxation 

𝑅𝑅𝑀𝑀′ =
𝑀𝑀𝑓𝑓 −𝑀𝑀𝑥𝑥=3

𝑀𝑀𝑥𝑥=3
 

5.2.3 Biological Assessments 

Immediately following loading, FSUs were removed from the bioreactor and incubator, and tissues 

were isolated and stored in RNAlater® (Qiagen, Venlo, ND) at -80°C.  To isolate RNA, tissues 

were minced, homogenized by bead milling (5-10 min.), and extracted using Qiazol Lysis Reagent 

(Qiagen) and 24:1 chloroform:isoamyl alcohol (Sigma-Aldrich, St. Louis, MO).  RNA was then 

purified using the RNeasy Universal Tissue Kit (Qiagen).  Real-time reverse-transcription 

polymerase chain reaction (RT-PCR) was performed using an iQ5 real-time thermal cycler 

(BioRad, Hercules, CA) with SYBR green and custom-validated rabbit primers (Table 1) for 

matrix metalloproteinase (MMP)-1, MMP-3, a disintegrin and metalloproteinase with 

thromospondin motif (ADAMTS)-5, cyclooxygenase (COX)-2, and aggrecan (ACAN).  Sample 

number varied, based on yield of RNA, by tissue and experimental aim:  n=4-5 (NP), n=4-7 (FC), 

n=5-7 (AF), and n=5-7 (LF) for ROM comparisons, and n=3-5 (all tissues) for additional Cycles 

groups.  Relative gene expression (RGE) between tissues from loaded and unloaded FSUs was 
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calculated by normalizing to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a 

housekeeping gene using the 2-ΔΔCt method [326].  The effect of culture was assessed by also 

performing RGE between unloaded and t0 tissues for MMP-3 and COX-2 (n=3-5).   

 
 

Table 11.  List of quantitative real-time reverse transcription-polymerase chain reaction primer sequences 

Gene Primer sequences (5’→3’) 
(upper, sense; lower, anti-sense) 

GeneBank 
accession number 

MMP-1 GCCTGTCACTCGCAAACC 
GACCTACGCACCCACACAC 

NM_001171139 

MMP-3 ACANCAATGGAAATGAAAACTCTTC 
CCAGTGGATAGGCTGACANAAA 

NM_001082280 

ADAMTS-5 CTGTGCCGTGATTGAAGATG 
CGATACTGGTGAGGATGGATG 

XM_002716775 

COX-2 CAGGCACCAGACCAAACACTT 
CACGCAGGTGGAGATGATCTAC 

NM_001082388 

ACAN-1 GCTACGGAGACAAGGATGAGTTC 
CGTAAAAGACCTCACCCTCCAT 

XM_002723376 

GAPDH GCTGAGATGATGACCCTTTTGG 
GATGCTGGTGCCGAGTAC 

NM_001082253 

ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; 
MMP, matrix metalloproteinase; ACAN, aggrecan; COX, cyclooxygenase; 
GAPDH, glyceraldehyde 3-phosphate dehydrogenase 
      

 

Effects of loading on matrix catabolism were assessed by examining degradation products 

of aggrecan by Western blotting (Section 1.01(a)(i)Appendix E) in each tissue (n=4 per tissue, per 

condition).  FSUs used for matrix degradation assessment were subjected to repeated F/E as 

described previously and left to remain in culture for an additional 24 hours from the onset of 

loading.  Tissues from unloaded FSUs were compared to baseline (t0) tissues to assess effects of 

culture. Briefly, proteoglycans were extracted in 4 M guanidine hydrochloride, precipitated in 

ethanol, and treated with endo-beta-galactosidase (Sigma) and then chondroitinase ABC (Sigma) 
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for de-glycosylation.  Equivalent amounts per weight of tissue were added (30 μl) in a 10% 

acrylamide gel.  Samples were separated by electrophoresis, transferred to a polyvinyl fluoride 

membrane, blocked with 5% skim milk, probed with a primary antibody for the aggrecan G1-

domain (generously provided by Dr. P. Roughley) [327] and a subsequent secondary anti-rabbit 

antibody (31460, Thermo Scientific, Waltham, MA), and imaged using the ChemiDoc MP system 

(BioRad) following chemiluminescence activation.  Densitometry quantification was performed 

using Image Lab Software 5.0 (BioRad); bands from mechanically loaded tissues were normalized 

by bands from unloaded tissues of the same animal for each tissue.  Western blotting reagents were 

obtained from Thermo/Pierce (Rockford, IL). 

5.2.4 Statistical Analysis 

One-way independent ANOVA followed by Wilcoxon rank-sum tests with Bonferroni correction 

were performed to examine the effect of group (small ROM, large ROM/ 1h Cycle, 2h Cycle, 1h 

Cycle_1h Static) on mechanical properties.  Two-way, independent ANOVA was performed for 

relative gene expression and immunoblotting densitometry to examine the effect of loading and 

group.  Changes between groups were subsequently tested using Wilcoxon rank-sum sum tests 

with Bonferroni correction.  Analyses were performed in MATLAB (The Mathworks, Inc., Natick, 

MA).  Significance was set to p < 0.05, and values were expressed as mean ± standard deviation.  

Symbol (†) designates a significant effect of loading in the ANOVA (p<.05), (#) denotes a 

significant effect of group in the ANOVA (p<.05), and (*) indicates a significant effect of loading 

in post-hoc tests (p<.0167).  

 97 



5.3 RESULTS 

5.3.1 Ex vivo Flexion/Extension- Mechanical Characterization 

Mechanical description of the loading performed in ROM and cycle number testing is summarized 

in Table 12 and Table 13.  The large ROM group underwent approximately half the number of 

cycles (31.5 ±5.7) as the small ROM group (60.9 ±7.1).  The results of the ANOVA testing 

differences in group (i.e. small ROM, large ROM/1h Cycle, 2h Cycle, and 1h Cycle_1h Static) 

showed significant effects for cumulative work, mean work, and variation in hysteresis over cycles 

(F: p<.0001, p<.0001, and p=.0298, respectively).  Post-hoc tests revealed that mean and 

cumulative work were significantly higher in the large ROM group than the small ROM group 

(p=.0001 and p=.0350, respectively).  In contrast, mean and cumulative hysteresis showed no 

effect of group.  Additionally, variability in hysteresis across cycles, a reflection of repeatable 

moment-rotation responses, was higher in the small ROM group than the large ROM group 

(p=.0035).  The effect of group also significantly influenced change in F/E moment over cycles 

(F: p=.0001), where FSUs subjected to large ROM experienced greater load relaxation (8.70 ± 

4.11%) than the small ROM group (0.52 ± 5.12%) (p=.0001).  Differences in neutral zone stiffness 

and change in stiffness across cycles between all groups were not statistically significant.   

Mechanical properties of large ROM groups with varying cycles and durations (i.e. 1h 

Cycle, 1h Cycle 1h Static, and 2h Cycle) were similar.  The 1h Cycle and 1h Cycle_1h Static 

groups underwent approximately half the number of cycles as the 2h Cycle groups.  But, as 

expected, FSUs in the 2h Cycle group experienced nearly twice the cumulative work (p=.0159) 

and dissipated more than twice the energy compared to 1h Cycle_1h Static FSUs (p=.0318).  No 

other differences in work, hysteresis, or primary moment were significant between these groups.   
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Table 12.  Energetics:  Mean (SD) work and hysteresis measures per group 

 

 
 

Table 13.  Kinetics:  Mean (SD) moment-rotation properties and neutral zone stiffness for each group 

 

 

5.3.2 Biological Assessment of Flexion/Extension: Range-of-Motion 

Results of the ANOVA assessing real-time RT-PCR of small and large ROM (Figure 22) 

demonstrated that F/E loading increased MMP-3 expression in AF (F: p=.0003).  In post-hoc tests 

for each group, MMP-3 expression in the small ROM group in AF was significantly up-regulated 

(3.32-fold, p=.0022).  In FC, COX-2 expression was also significantly up-regulated by F/E loading 

in the analysis of both groups (F: p=.0375), though post-hoc testing did not identify a significant 

elevation of expression (2.13-fold) with large ROM (p=.1269).  Results of the ANOVA 

demonstrated that F/E loading showed a strong trend toward increased MMP-3 expression in FC 

(F: p=.0576), and post-hoc tests of individual groups pointed to significantly increased MMP-3 

expression in the large ROM group (1.97-fold, p=.0026).  Similarly, F/E loading in LF increased 

MMP-3 and COX-2 with near significance (p=.0527 and p=.0724, respectively), though 

                   
Moment-Rotation Neutral Zone Stiffness

Group ROM (°) Mx (Nm) Change (Nm) Relaxation (%) Stiffness (Nm/°) Standard Dev. Relaxation (%)

Small ROM 10.82 (1.84) 0.30 (.06) 0.00 (.02) 0.516 (5.119) 0.027 (.012) 0.0004 (.0002) -0.003 (.054)

Large ROM (1h_1xCyc) 19.37 (3.48) 0.67 (.04) 0.05 (.03) 8.695 (4.107) 0.016 (.004) 0.0009 (.0005) 0.071 (.111)

Large ROM (2h_1xCyc) 22.07 (3.82) 0.68 (.05) 0.05 (.01) 7.731 (1.839) 0.017 (.009) 0.0004 (.0002) -0.007 (.016)

Large ROM (2h_2xCyc) 18.55 (2.07) 0.65 (.04) 0.07 (.03) 10.973 (4.484) 0.019 (.003) 0.0008 (.0004) 0.002 (.012)

ROM, range of motion; Mx, x-axis moment (flexion/extension); Change, change in moment; Relaxation, normalized change in parameter
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subsequent post-hoc tests of individual groups did not approach significance.  In NP, F/E loading 

did not show significant changes in MMP-3, COX-2, and ACAN gene expression (MMP-1 and 

ADAMTS-5 not measured).  MMP-3 and COX-2 expression were elevated in all tissues except for 

NP COX-2 expression in unloaded FSUs compared to baseline (t0) (Appendix A, Figure 38).   

 

 

Figure 22. Mean fold (±SEM) change in relative gene expression of NP,FC, AF, and LF with loading. 
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Immunoblotting of aggrecan degradation after F/E (Figure 23) showed that F/E ROM had 

a significant effect on the MMP-mediated fragments in AF tissue (p=.0451) with the large ROM 

group increasing with loading (1.7-fold).  In NP, MMP- and ADAMTS-fragments tended to 

increase with F/E loading, but trends were not significant (p=.2034 and p=.2059, respectively) 

and ROM had no influence.  F/E loading tended to increase ADAMTS-fragments in FC (p=.1718) 

compared to unloaded controls irrespective of ROM.  MMP-fragments in FC decreased with F/E 

loading in the small ROM group but increased in the large ROM group; ROM showed a trend of 

affecting MMP-fragment abundance in FC (p=.1340).  Aggrecan fragments were not significantly 

altered by culture compared to baseline (t0) (Appendix A, Figure 39).  No aggrecan staining was 

detected in LF.   
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Figure 23.  (A) Representative immunoblots against G1 for NP, FC, and AF.  (B) Mean (±SEM) normalized 
densitometry for MMP- and ADAMTS-cleaved G1 fragments. 

 

5.3.3 Biological Assessment of Flexion/Extension: Cycles and Duration 

Results from the ANOVA of samples subjected to varying durations and cycles (Figure 24) 

showed that F/E loading had a significant effect on MMP-3 expression in FC and AF (F: p=.0176 

and p= p<.0001, respectively).  Post-hoc testing confirmed elevation of MMP-3 expression in 1h 

Cycle in FC (p=.0022) and in both 2h Cycle (2.57-fold) and 1h Cycle_1h Static (2.34-fold) in AF 

compared to unloaded (p=.0079 and p=.0286, respectively).  Similar to ROM analysis, COX-2 
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expression was significantly elevated in FC with F/E loading (F: p=.0088).  The effect of F/E 

loading and group were significant for ACAN expression (F: p=.0032 and p=.0460, respectively), 

and post-hoc testing showed significant increases with F/E loading in 2h Cycle (1.78-fold) and 1h 

Cycle_1h Static (2.27-fold) (p=.0286 and p=.0286) and, importantly, significant increases with 

culture duration (p=.0242).  The significant increase of ACAN expression with culture duration in 

AF was the only such effect; it was mirrored by a similar trend ADAMTS-5, which also regulates 

aggrecan.  FC responded to F/E loading with significant effects on MMP-1 expression (F: 

p=.0262).  MMP-1 expression in FC was decreased in all groups (14-40%), though effects in 

individual groups were not significant.  LF showed trends of increased MMP-3 and COX-2 

expression in response to F/E loading (F: p=.0683 and p=.0619, respectively); however, no effect 

of culture duration or cycle number were evident.  Catabolic and inflammatory gene expression in 

NP showed no significant effect.   
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Figure 24.  Mean fold change (±SEM) in relative gene expression NP, FC, AF, and LF with loading. 

5.4 DISCUSSION 

The present study is the first to investigate simultaneous biological responses of disc, facet, and 

ligamentum flavum to mechanical loading.  It provides initial mechanobiological data of how these 

tissues respond to F/E loading in-situ.  ROM, an intrinsic feature of F/E relevant to occupational 

and recreational activities and motion-based therapies, was varied to assess its influence on 

inflammatory and catabolic markers.  Secondarily, to isolate the effect of ROM from another F/E  
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parameter—number of cycles—the duration and cycles of loading were varied in additional 

experiments.  The major findings of this study show a predominantly catabolic response to F/E 

loading among tissues of the FSU.   

The ex vivo system developed for this study is the first to be capable of complex, six DOF 

movements using intact FSUs.  Recent research in ex vivo disc organ mechanobiology has explored 

combined compression and torsion [36] and wedge-shaped compression [37].  These systems, 

along with others recently developed [34, 256, 328], are capable of long-term, diurnal, dynamic 

loading.  However, they are unable to recapitulate physiologic rotational loading, primarily 

because of the endplate preparation necessary for long-term culture.  Further, ligaments and facet 

joints are removed along with bone in disc explant preparation, so the interaction of FSU 

components cannot be assessed.  Thus, while the samples used in this study are limited to shorter 

experimental durations [269], this system is capable of examining complex, 6 DOF loading and 

the role of other tissues in FSUs (i.e. ligaments and facet joints) that are thought to be important 

in back pain [151, 329] and related degenerative disorders [25, 158, 330].     

In physiologic spinal motions, disc, facet joints, and spinal ligaments interact to support 

loading and restrict motion.  Degenerative disorders associated with aging and spinal pathologies 

may degrade tissue structure in one spinal tissue which in turn negatively affects mechanical 

loading in other tissues.  Facet joint osteoarthritis, for example, is highly associated with disc 

degeneration [150].  Loss of disc height and segmental hypermobility appear to alter facet loading 

and lead to degenerative changes of the facet joints [160].  Similarly, altered loading associated 

with loss of disc height or facet joint degradation may induce hypertrophic processes or buckling 

in the LF [331].  It is suspected that altered FSU mechanics provoke inflammation [128, 329, 332],  
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catabolism [249, 333, 334], or compensatory remodeling [250, 333, 335] in these spinal tissues.  

Development of this system, which preserves intact FSUs and subjects them to complex loading, 

enables examination of coupled biological responses to altered mechanics in spinal tissues.   

Responses to loading were measured after short durations of F/E to approximate exercise 

sessions or brief activities of daily living.  Changes in systemic biological markers with exercise 

and mechanical loading have been shown to occur rapidly [336-338].  Further, single, brief 

applications of compression in rat tails have been shown to modulate relative gene expression in 

discs of biological markers including MMPs, ADAMTSs, and ACAN [339].  Initial biological 

changes like those measured in the current study cannot be conclusively classified as maintenance, 

adaptation, or on/off signals without later assessments of matrix catabolism and inflammation [9].  

However, the modest magnitude of applied moments and increases in catabolic and inflammatory 

gene markers in some tissues suggests a remodeling or maintenance response to applied F/E.   

In general, F/E loading, regardless of ROM or cycle number, caused an increase in 

catabolic signaling. In the current study, MMP-3 proved to be the most responsive gene to F/E 

loading across different spinal tissues.  MMP-3 is up-regulated early in catabolic processes [340] 

and has been shown to be responsive to mechanical loading [242, 252].  A collagenase down-

stream of MMP-3, MMP-1, was not up-regulated.  Mechanically responsive pro-inflammatory 

changes have been measured by expression of COX-2 [205, 332].  Elevation of COX-2, observed 

in FC and LF but not disc tissue, was also not dependent on F/E parameter.  In extension, FC 

undergoes combined compression and shear [67].  Both of these loading modes have been shown 

to provoke increases in COX-2 expression in chondrocytes [341, 342], but shear stress is a more 

well-characterized, robust driver of COX-2 dependent inflammation in chondrocytes [226, 227].  

In the current study, COX-2 expression was elevated to similar levels in small and large ROM, and 
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compressive loading was not applied, suggesting that compression in FC was relatively low [92], 

confirmed by Chapter 7.0 , and that shear forces played a larger role in the observed up-regulation 

of COX-2 expression.  In flexion, LF is a primary resistance band supporting 21-28% and 15-25% 

of applied flexion moments at mid and end-ROM [86, 87].  Inflammation in general contributes 

strongly to LF thickening [155, 156], and COX-2 expression in particular increases with LF 

thickness [156].  In vitro loading of LF fibroblasts revealed a load-responsive increase in pro-

inflammatory cytokines via COX-2 [161].  Ex vivo F/E loading in the current study, particularly 

in groups with greater cycles of loading, showed a similar load-response increase in COX-2.  

Mechanical F/E loading did not influence aggrecan or ADAMTS-5 gene expression aside from 

longer loading durations in AF.  Aggrecan, the predominant, functional matrix component of disc 

and cartilage primarily acts to enhance compressive properties of the matrix [130, 131], and 

ADAMTS-5, the most efficient aggrecanase [343], plays a role in aggrecan breakdown and 

remodeling.  Aggrecan and aggrecanases have been shown to be regulated by mechanical 

compression in disc tissue and cartilage, increasing with magnitude and duration of loading [149, 

251, 344, 345].  In the AF, which phenotypically expresses lower amounts of aggrecan than the 

NP and FC [110], increased ACAN expression may reflect a shift toward an altered, compensatory 

remodeling to support higher levels of compressive stress [9].  Lack of regulation by F/E loading 

in pure-moment application suggests little adaptive response from spinal tissues to this loading 

mode, which may reflect the non-disruptive, physiologic nature, the low magnitudes of 

compression, or the short duration of the applied loading.    

Responses to F/E loading were also measured after 24 h of static culture following loading 

with the goal of identifying early protein-level changes and net-effects on matrix catabolism.  

Alteration of aggrecan fragments has been to shown to occur following detrimental mechanical 

 107 



loading and inflammatory stimuli [37, 149, 346].  Long-term compression of caudal discs in rats 

increased and shifted aggrecan fragment patterns to predominantly MMP-mediated fragmentation 

in NP and AF [149].  In the current study, large ROM tended to elevate the abundance of MMP-

fragments, and small ROM did not.  At the level of mRNA expression, the findings were reversed.  

Lack of synchronicity in response between mRNA and protein expression is not unexpected [347], 

particularly for a relatively short intervention where protein expression and activation may lag 

behind gene expression.  Aggrecanase-mediated fragments did not appear to be sensitive to F/E 

loading in any tissues, and this reflects the general lack of load responsiveness observed in 

ADAMTS-5 mRNA expression.  Thus, these findings are similar to previous studies of longer 

durations and detrimental interventions wherein MMP-fragments show load-responsive increases, 

especially in the AF [149].    

F/E parameters—ROM, cycle number, and culture duration—were varied with the goal of 

delineating the effect of F/E amplitude on biological markers.  However, the effects of ROM and 

cycles were not broadly significant.  Culture duration increased ACAN expression in AF, with 

similar trends mirrored in ADAMTS-5, suggesting a delayed, adaptive remodeling response [9].  In 

a series of investigations by Solomonow et al., researchers identified high loading magnitudes and 

rates and increased number of cycles of F/E as capable of inducing an inflammatory, tissue-

degrading response in supraspinous ligaments over longer time frames in vivo [243].  In the current 

study, increased number of cycles tended to elevate expression of catabolic and pro-inflammatory 

genes in LF, pointing to a similar role for cycles of F/E in inflammatory remodeling.   

While this study takes a first step toward understanding the biological role of loading 

parameters in spinal tissues, translation of results from this study is limited.  Differences in 

species—in cell populations [267], tissue composition [268], and loading magnitudes [268, 348]—
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as well as a lack of systemic factors ex vivo limit translation to humans.  The lack of adequate 

compression in this study also reduces its physiologic fidelity.  Intradiscal pressures in this 

bioreactor at the neutral position, 0.13 ±.08 MPa [269], is below normal disc pressures in 

physiologic compression in rabbits [349].  However, all comparisons were made to unloaded 

controls.  Further, while loading rates are comparable to other robotic systems [276], motion rates 

are slower than those in in vivo motions.    

To conclude, catabolic, inflammatory, and matrix changes in spinal tissues respond 

modestly to short durations of F/E loading ex vivo.  Responses to varying parameters of loading 

were different in AF, NP, FC, and LF.  Prior to using these findings to inform clinical 

investigations, future experiments need to examine degenerated specimens, introduce 

inflammatory stimuli, and extend loading durations with axial compression.  The combination of 

viable, intact FSUs attached to a robot-based testing system capable of applying 6 DOF kinematics 

opens the door for new research directions involving various complex physiologic motions and 

the coupled mechanobiological interactions of different spinal components. 
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6.0  COMPLEX LOADING: FLEXION/EXTENSION AND AXIAL TORSION 

6.1 INTRODUCTION 

A majority of back pain has been classified as being of mechanical origin arising from various 

spinal structures including intervertebral discs, facet joints, and ligamentum flava [3, 60].  Tasks 

involving repeated combined bending and torsion are associated with injury and development of 

back pain [69, 211, 270].  Additionally, high incidence of back pain is linked to exercise and 

recreational activities that involve complex loading with bending and torsion [70, 71, 350].  

Combined axial torsion (AT) and flexion/extension (F/E) has been shown in human cadaveric 

testing to increase the failure rate of lumbar spines and alter the failure mode from primarily 

annular rupture to facet joint failure [73].  Biomechanically, the addition of torsion increases 

loading of lumbar facet joints [89], elevates tensile and compressive stress in the annulus fibrosus 

(AF) [84, 314], reduces pressure of the nucleus pulposus (NP) [83], and likely increases tension in 

spinal ligaments of the contralateral side [93].  Results from Section 7.3 corroborate these changes 

in rabbit FSUs.  Repeated, high magnitudes of combined loading clearly alter segmental mechanics 

leading to increased risk of tissue injury, but it remains unknown how non-destructive combined 

loading may alter inflammatory and catabolic signaling in loaded spinal tissue.   

Chiropractors, osteopathic clinicians, physical therapists, and other practitioners of manual 

therapy frequently treat “restricted” spinal segments that appear to cause unilateral asymmetries 

in the axial plane [196, 197].  Restrictions are thought to be mediated by (1) facet adhesions or 

connective tissue lesions [194, 244] or (2) sensorimotor control dysfunction [14, 194], either of 

which may manifest radiographically in unequal facet joint spacing [351, 352].  Various manual 
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therapy techniques seek to mobilize restricted facet joints [79] or to restore normal sensorimotor 

control [14] and thereby remove aberrant segmental mechanics [353].  In animal studies, static, 

asymmetric and traumatic loading of facet joints has been shown to induce chronic pain [245] and 

incite osteoarthritic changes in facets [79, 244].  However, short-term, molecular responses to 

asymmetric loading in spinal tissues remain unknown.  Further, in vitro studies and finite element 

models have shown that asymmetric loading differentially alters the mechanics of left and right 

facets, compressing facet joints contralateral to the direction of applied torsion and gapping the 

facet joint ipsilateral to the rotation [85, 354].  Yet, the effects of side on the biological responses 

to asymmetric loading in facet cartilage have not been studied.   

Organ culture systems for spinal mechanobiology have been used extensively to study 

short-term biological responses to applied loading.  Generally, studies have focused exclusively 

on changes in the intervertebral disc with varying magnitudes, frequencies, and durations of 

compressive loading [265, 266, 332, 355].  Recently, a system has been developed to examine 

combined torsion and compression in discs [36].  However, disc organ culture removes posterior 

components, including facets and spinal ligaments, and modifies end plate thickness in order to 

maximize culture duration.  As a result, physiologic rotations of spinal segments are precluded and 

the biological effects of in-situ loading on extra-discal spinal tissues of intact FSUs remain 

unstudied.   
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The objective of this study was to determine the effect of combined AT with F/E on 

inflammation, catabolism and anabolism simultaneously in multiple spinal tissues—AF, NP, facet 

cartilage (FC), and ligamentum flavum (LF)—in viable FSUs.  It was hypothesized that increasing 

magnitudes of AT and F/E would increase catabolic and inflammatory markers in all tissues 

compared to neutral F/E.  It was further hypothesized that FC contralateral to the rotation 

(“compressed”) would increase catabolic and inflammatory markers relative to ipsilateral 

(“gapped”) FC.   

6.2 METHODS 

6.2.1 Specimen Preparation 

Thirty-six lumbar spines were isolated from skeletally mature (>10 months old) New Zealand 

White rabbits.  FSUs were extracted from two levels—L2-3 and L4-5—within two hours of death 

and dissected to remove musculature and produce clean osteoligamentous segments.  FSUs were 

rinsed in phosphate-buffered saline and were attached within a flexible-walled, temperature- and 

oxygen-controlled bioreactor for mechanical loading as described previously [269] or placed in 

static culture as an unloaded control.  Loaded FSUs (L4-5) were matched to unloaded control FSUs 

(L2-3) from the same spine, and L3-4 tissues were reserved for baseline (t0) analyses.  Both 

experimental FSUs were placed in 10% fetal bovine serum-and 1% penicillin/streptomycin-

supplemented Dulbecco's Modified Eagle's Medium including 4.5 g/l glucose with 110 mg/l 

sodium pyruvate at 37(± 0.5) °C, 5%/5% O2/CO2.  Media was pumped through the bioreactor at 

1.1 mL/min.   
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6.2.2 Ex vivo Combined Loading:  Axial Torsion + Flexion/Extension 

The custom-built bioreactor was attached to a serial-linkage robot (Staubli RX90, Staubli, Inc., 

Duncan, SC) with an in-line universal force sensor (UFS Model 90M38A-150, JR3, Inc., 

Woodland, CA) controlled in MATLAB software.  Flexible, silicone and nitrile rubber walls 

contained media and permitted free movement of FSUs in six DOF (Figure 20) [269].  FSUs were 

grouped by amount of applied AT—0 Nm (neutral AT), 0.4 Nm (small AT) or 0.8 Nm (large 

AT)—which reflect lack of, mild (~20% of failure), and severe (~40% of failure) rotations (based 

on preliminary torsional failure data collected with this system, Section 4.2.3). After reaching 

steady-state temperature and media flow (~30 min), FSUs were subjected to three cycles of left-

sided, quasi-static AT (i.e. superior vertebra rotated to the left).  All forces were minimized per 

rotational step (0.25°) to precondition FSUs and approximate a pure moment AT path [277].  At 

the final rotated position of the third AT path, FSUs underwent three cycles of F/E to 0.5F/0.15E 

Nm with force minimization (step size: 1°) to precondition FSUs in the combined AT+F/E 

orientation.  F/E targets were selected so that specimens entered the high stiffness, linear portion 

of the curve (i.e. the elastic zone) in flexion and extension.  The kinematics of the third path were 

then replayed for one hour at 0.33°/s.   

6.2.2.1 Mechanical Assessments 

Analyses were performed to characterize the mechanical response of FSUs to applied loading.  

Mean F/E ROM, F/E moment, AT ROM, AT moment, and cycle number were calculated for each 

loaded FSU per group.  Work applied to FSUs per cycle was computed by integrating the primary 

moment at each angle, Mɵ, with respect to primary angle, ɵ, in flexion and extension (Equation 3).  
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Work was averaged and summed across cycles for cumulative and mean work.  Similarly, total 

and mean energy dissipation (hysteresis) were calculated using the difference between loading and 

unloading curves per cycle (Equation 4).  Neutral zone (NZ) stiffness (Nm/°) was calculated using 

methods described by Smit et al. (Equation 5) [325].  Elastic zone (EZ) stiffness was calculated in 

the final three positions (~10%) of the moment-rotation curve in flexion and extension (Equation 

6).  Changes in mechanical measures—FE moment, AT moment, work, hysteresis, NZ stiffness, 

and EZ stiffnesses—across cycles were also calculated by normalizing values from the last cycle 

to the third cycle of replayed kinematics (Equation 7).  The third cycle was chosen to allow for 

preconditioning of the moment-rotation response at the higher loading rate used for kinematic 

replay.   

6.2.2.2 Biological Assessments 

Immediately following loading, FSUs were removed from the bioreactor and incubator, and tissues 

were dissected and stored in RNAlater® (Qiagen, Venlo, ND) at -80°C.  To isolate RNA, tissues 

were minced, homogenized by bead milling, and extracted using Qiazol Lysis Reagent (Qiagen) 

and 24:1 chloroform:isoamyl alcohol (Sigma-Aldrich, St. Louis, MO).  RNA was then purified 

using the RNeasy Universal Tissue Kit (Qiagen).  Real-time reverse-transcription polymerase 

chain reaction (RT-PCR) was performed using an iQ5 real-time thermal cycler (BioRad, Hercules, 

CA) with SYBR green and custom-validated rabbit primers (Table 11) for matrix 

metalloproteinase (MMP)-1, MMP-3, a disintegrin and metalloproteinase with thromospondin 

motif (ADAMTS)-5, cyclooxygenase (COX)-2, and aggrecan (ACAN).  Relative gene expression 

(RGE) between tissues from loaded and unloaded FSUs was calculated by normalizing to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a housekeeping gene using the 2-ΔΔCt 
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method [326].  Sample number varied, based on yield of RNA, by tissue and gene:  n=4-7 in NP 

(except for n=3-4 in ACAN), n=5-7 in FC, and n=5-8 in AF, and n=5-6 in LF.  In FC, left and right 

samples from loaded FSUs were compared to appropriate left or right-sided, unloaded controls.  

RGE in FC was expressed per side (Figure 27) and as a mean of the two sides to describe overall 

effects in FC (Figure 26).  The effect of culture was assessed by also performing RGE between 

unloaded and t0 tissues for MMP-3 and COX-2 (n=3-5).   

Western blotting was performed in each tissue (n=4 per tissue, per condition) to examine 

the effects of loading (1) on matrix catabolism by examining degradation products of aggrecan, 

which include MMP- and ADAMTS-cleaved fragments  that have been shown to increase and 

shift toward a predominance of MMP-cleaved fragments with detrimental loading  [149] and (2) 

on abundance of chondroadherin (CHAD), a leucine-rich repeat protein involved in matrix 

organization and cell metabolism that is diminished with catabolic stimuli and abnormal loading 

in disc [356, 357].   FSUs used for protein assessment were subjected to repeated combined loading 

as described previously and were left to remain in culture for an additional 24 hours from the onset 

of loading.  Tissues from unloaded FSUs were compared to baseline (t0) tissues to assess effects 

of culture.  Briefly, soluble proteins were extracted in 4 M guanidine hydrochloride, precipitated 

in ethanol, and treated with endo-beta-galactosidase (Sigma) and then chondroitinase ABC 

(Sigma) for de-glycosylation.  Equivalent amounts per weight of tissue were added (30 μl) in a 

10% acrylamide gel.  Samples were separated by electrophoresis, transferred to a polyvinyl 

fluoride membrane, blocked with 5% skim milk, probed with (a) a primary antibody for the 

aggrecan G1-domain (generously provided by Dr. P. Roughley) [327] and a subsequent secondary 

goat anti-rabbit antibody (31460, Thermo Scientific, Waltham, MA) or (b) a mouse polyclonal 

primary antibody against the C-terminus of CHAD (H00001101-A01, Novus Biologicals, 
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Littleton, CO) and a subsequent secondary goat anti-mouse antibody (314030, Pierce/Thermo 

Scientific, Rockford IL).  Immunoblots were imaged using the ChemiDoc MP system (BioRad) 

following chemiluminescence activation.  Densitometry quantification was performed using 

Image Lab Software 5.0 (BioRad); bands from mechanically loaded tissues were normalized to 

bands from unloaded tissues of the same animal for each tissue.  Western blotting reagents were 

obtained from Pierce/Thermo Scientific. 

6.2.3 Statistical Analysis 

One-way independent ANOVA followed by Wilcoxon rank-sum tests with Bonferroni correction 

were performed to examine the effect of group (Neutral F/E, Small AT+F/E, and Large AT+F/E) 

on mechanical properties.  Two-way, independent ANOVA was performed for relative gene 

expression and immunoblotting densitometry to examine (1) the effect of loading and group in all 

tissues and (2) the effect of side (i.e. left vs right) and group in loaded FC.  Significant effects were 

subsequently queried using Wilcoxon rank-sum sum tests with Bonferroni correction.  Analyses 

were performed in Matlab 2013a.  Significance was set to p < 0.05, and values were expressed as 

mean ± standard deviation unless noted otherwise.  Symbol (†) designates a significant effect of 

loading (p<.05), (#) denotes a significant effect of group (p<.05), (*) indicates a significant effect 

of loading in post-hoc tests (p<.0167), and (‡) denotes a significant effect of group in post-hoc 

tests (p<0.0167).   
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6.3 RESULTS 

6.3.1 Mechanical Response: Axial Torsion + Flexion/Extension 

Examining F/E moment-rotation properties (Table 14), results of the ANOVA confirmed that there 

was no effect of torsion on mean F/E ROM or moment magnitudes, but relaxation of F/E moments 

were significantly influenced by group (F: p=.0193).  Less relaxation of F/E moments (Moment-

Rotation Relaxation) occurred in torsion groups (3.62±3.69 % and 5.88±5.39% in small and large 

AT, respectively) compared to neutral (8.62±4.16%) (Figure 25.A); individual differences 

between Neutral F/E and Small AT+F/E and Neutral F/E and Large AT+F/E approached 

significance (p=.0303 and p=.0684, respectively).  Similarly, change in flexion stiffness across 

cycles (20.42±23.12% decrease) was significantly different across groups (F: p=.0143) with a 

greater relaxation of flexion stiffness in Neutral F/E than small or large torsion groups (Figure 

25.B) (3.46±6.73% or 6.85±5.87%, respectively).  No significant differences in stiffness and no 

relaxation in neutral zone or extension stiffness were observed.   

 

Table 14. Moment-rotation and stiffness properties for F/E 
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The AT moment-rotation response during F/E cycling was also measured (Table 15).  As 

expected, differences in mean AT ROM were significantly different across and between all groups 

at each of three positions:  maximum flexion, maximum extension, and mid-FE (p<.0001 for all 

comparisons).  Interestingly, Neutral F/E torsional moments relaxed (decreased) at all positions 

(10.07±23.15 - 22.01±22.60%), Small AT+F/E torsional moments changed little (0.34±4.76 – 

2.41±3.83%), and Large AT+F/E torsional moments actually increased (4.32±3.98 – 8.08±3.81%) 

across cycles.  Differences in AT moment relaxation between all groups were significant (p<.0001 

for all comparisons).   

 

Table 15.  AT properties at extremes and middle of F/E 

 

 

Changes in energy applied to and dissipated by FSUs are listed in Table 4.  Cumulative 

work was higher in small and large torsion groups (291.83±92.57% and 297.90±69.22%, 

respectively) than the neutral group (210.21±59.19%) (F: p=.0140) (Figure 25.C).  Post-hoc tests 

showed differences to be significant between Neutral F/E and Large AT+F/E (p=.0038) and 

approached significance between neutral and Small AT+F/E (p=.0336).  Further, group had a 

significant effect on the change in work across cycles (F: p=.0123) (Figure 25.D).  Relaxation in 

work across cycles (4.68±6.60%) was evident in Neutral F/E but not in either torsion group (-

0.35±3.33% and -1.15±4.34% for small and Large AT+F/E, respectively).  These differences in  
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work relaxation were statistically significant for neutral compared to Large AT+F/E (p=.0091) 

and nearly significant for neutral compared to Small AT+F/E (p=.0246).  The effect of group on 

hysteresis parameters was not significant.  

 

Table 16. Work and hysteresis properties for flexion/extension per and across cycles 
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Figure 25.  Mean (±SEM) mechanical responses in AT+F/E: (A) Relaxation of F/E moments, (B) Relaxation of 
F/E NZk, EZk flexion, and EZk extension, (C) Cumulative work and hysteresis, and (D) Relaxation of work 
and hysteresis. 

 

6.3.2 Biological Response:  Relative Gene Expression 

Relative gene expression showed significant effects of loading across tissues (Figure 26). Loading 

had a significant effect on COX-2 and MMP-3 expression in all tissues, ACAN in AF and FC, 

MMP-1 in AF, and ADATMS-5 in LF.  Post-hoc tests showed that Large AT+F/E increased COX-

2 mRNA expression in all spinal tissues: 1.60-fold in AF (p=.0005), 1.74-fold in NP (p=.0169), 

2.97-fold in FC (p=.0476), and 4.86-fold in LF (p=.0022).  Further, Large AT+F/E significantly 

up-regulated MMP-1 in AF (2.30-fold, p=.0002), MMP-3 in FC (2.43-fold, p=.0169), and 
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ADAMTS-5 in LF (2.32-fold, p=.0022).  Small AT+F/E loading also increased COX-2 expression 

in NP (1.77-fold, p=.0476), FC (3.42-fold, p=.0022), and LF (2.38-fold, p=.0476). Neutral F/E 

only had a significant effect of loading in FC on MMP-3 expression (1.97-fold increase, p=.0058).  

MMP-3 and COX-2 expression were generally elevated in tissues.   In contrast, NP COX-2 

expression in unloaded FSUs was not increased compared to baseline (t0) (Appendix A, Figure 

38).   
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Figure 26.  Mean fold change (±SEM) in relative gene expression NP, FC, AF, and LF with loading. 
 

Comparing the effects of loading on left (gapped) and right (compressed) FC (Figure 27) 

confirmed a significant effect of loading across groups for MMP-3 and COX-2.  Mean left FC 

expression was higher than mean right-sided expression for both MMP-3 and COX-2.  Post-hoc 

tests confirmed significant elevation of COX-2 in left FC in both torsion groups (p=.0022 and  

 122 



p=.0286 in Small AT+F/E and Large AT+F/E, respectively).  Left FC COX-2 expression was 

significantly higher than right-sided expression, and a similar trend was evident for MMP-3 (F:  

p=.1589).   

 

 

Figure 27. Mean (±SEM) fold change in relative gene expression of left and right FC with loading 
 

6.3.3 Biological Response:  Western Blotting 

In ADAMTS-cleaved fragments (~67 kDa), neither loading nor the amount of axial torsion had a 

significant effect on fragment abundance in any tissues, but torsion groups tended to have fewer 

fragments (Figure 28).  In FC, this effect of torsion showed a strong trend (F:  p=.0880).  For 

MMP-cleaved fragments (~54 kDa), loading tended to elevate fragments in NP (F: p=.0880), but 

no other effects in other tissues approached significance.  When comparing fragment abundance  
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between left and right FC (Figure 29), no difference was observed for MMP-cleaved fragments.  

Aggrecan fragments were not significantly altered by culture compared to baseline (t0) (Appendix 

A, Figure 39).   

Immunoblotting performed for CHAD (~36 kDa) showed that each tissue responded 

significantly to loading (Figure 28).  The NP manifested a significant reduction in CHAD with 

loading in both torsion groups (p=.0286 each), and, conversely, the AF showed increased CHAD 

with loading in both torsion groups (p=.0286 each).  FC tissue showed a significant effect of group, 

with both torsion groups tending to have less CHAD than neutral FC (p=.1333).  Comparing left 

and right FC tissue similarly revealed a significant effect of group on CHAD abundance (p=.0500) 

(Figure 29); the decrease in CHAD in right FC compared to neutral FC approached significance 

(p=.0571).  Differences in CHAD between sides were not present in Small AT+F/E but were 

prominent, though not significant, in Large AT+F/E.  On the left (gapped) side, CHAD was 

similarly reduced regardless of the amount of torsion, but on the right (compressed) side, CHAD 

was further reduced more in the Large AT+F/E.  CHAD expression in unloaded culture compared 

to baseline (t0) increased 4.56 ±3.11-fold in NP, 2.11 ±1.49-fold in AF, and decreased by 51.8 

±31.5% in FC (Appendix A, Figure 40).   
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Figure 28. (A) Representative immunoblots against G1 fragments and CHAD for NP, FC, and AF.  (B) Mean 
(±SEM) normalized densitometry for each protein per tissue.  
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Figure 29. (A) Representative immunoblots against G1 fragments and CHAD are shown for left (L) and right 
(R) facet cartilage (FC) with loading.  (B) Mean (±SEM) normalized densitometry for each protein per side of 
FC per group across samples.  

6.4 DISCUSSION 

This study examined biological responses of multiple spinal tissues to varying amounts of torsion 

in non-destructive, combined axial torsion and flexion/extension of functional spinal units ex vivo.  

The goal of this study was to assess how axial asymmetries alter biological and mechanical 

responses to short durations of flexion/extension movements, which are involved in a variety of 

occupational, recreational, and rehabilitative activities [70, 71, 270, 271, 319].  The major findings 

reveal a primarily pro-inflammatory response to coupled torsion in F/E across spinal tissues, with 
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catabolic increases in AF and LF.  In FC, which is differentially loaded in left-sided axial torsion, 

pro-inflammatory changes were higher in gapped, left facets than compressed, right facets.  

Mechanically, load relaxation did not occur in combined AT and F/E groups as it did in Neutral 

F/E.  The observations in this ex vivo model point to a role for altered mechanics associated with 

axial asymmetries in driving pro-inflammatory, catabolic processes in spinal tissues that may play 

a role in the onset and progression of tissue damage and degeneration associated with complex 

loading.   

Treating restricted or rotated spinal segments and restoring normal, symmetric joint 

mechanics is an important tenant of manual therapy [196, 197].  Facet adhesions may develop 

through hypomobility or abnormal loading [79, 244] and lead to mal-alignment of spinal segments, 

degenerative changes in facet joints, and development of painful symptoms [79, 244, 245].  

Alternatively, unilateral segmental restriction diagnosed clinically may result from sensorimotor 

control dysfunction, which may reflect altered, detrimental spinal mechanics [195].  Spinal 

manipulation and other forms of manual therapy frequently apply axial rotational and complex 

loading to rotated spinal segments with the intent of mobilizing restricted facet joints or disrupting 

mal-adaptive neural signaling to restore normal segmental mechanics [14, 79].  Radiological 

evidence demonstrates that manipulation preferentially “gaps” the facet on the side of contact and 

reduces facet joint spacing on the non-contact side [351, 352].  In the model used in this study, the 

right facet joint, whose inferior facet surface is rotated toward its superior surface and held in 

torsion during repeated F/E, is intended to represent a “restricted” facet during activity.  

Surprisingly, pro-inflammatory changes in the left (gapped) FC were significantly higher than 

those in right FC.  Loss of CHAD, likely reflecting a catabolic response with implications for 

altered matrix organization and metabolism [357, 358], was similarly reduced by torsion in FC of 
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both sides, but the trend showed more depletion on the right side.  Thus, both results confirm a 

more favorable response of neutral alignment in activities involving F/E.  However, pro-

inflammatory gene expression suggests that asymmetric facet joint spacing may be more damaging 

on the non-contact side, and protein changes reflecting matrix damage suggest added degenerative 

changes on the restricted, contact side.  

Mechanical changes known to occur in facet joints with combined AT and F/E coupled 

with well-characterized chondrocyte responses to loading provide a possible basis for these 

biological responses.  Combined loading elevates facet joint forces measured in compressed facet 

joints and presumably decompresses gapped facets entirely [85, 89].  Articular cartilage reacts to 

lack of compression with pro-inflammatory, matrix degrading responses that include elevation of 

inflammatory mediators and loss of matrix components [221-224].  High levels of compression 

can also provoke a similar, detrimental response [225].  Thus, a possible interpretation suggests 

that, in the gapped joint, decompression of FC [85] led to consistent, comparable high expression 

of inflammatory markers (COX-2 expression) and loss of matrix components (CHAD) in both 

torsion groups.  At the same time, in the compressed facet joint, moderately increased facet forces 

in Small AT+F/E likely led to CHAD depletion but showed no effect on COX-2 expression 

compared to Neutral F/E.  In Large AT+F/E, facet forces increase further [85], and added 

compression may have led to more severe CHAD depletion and the modest increase in 

inflammatory signaling observed relative to Neutral F/E.  These interpretations cannot be 

confirmed by our data; future studies must establish a relationship between joint level motions and 

FC mechanics (in particular, characterizing the unknown role of shear forces) and investigate how 

FC mechanics modulate local inflammation and matrix homeostasis.   
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Coupled torsion with F/E altered FSU mechanics and elevated pro-inflammatory signaling 

in all tissues.  Adding AT to F/E increased work applied to FSUs for comparable rotations, 

reflecting elevated moments and forces throughout the motion path in torsion groups.  Coupled 

torsion also prevented relaxation of F/E and AT moments, applied work, and flexion stiffness 

across cycles, demonstrating a difference in the energy imparted to FSUs and the loads sustained 

by tissues of the FSU.  Elevation of COX-2 expression in all tissues in nearly all torsion groups, 

alongside the evident lack of up-regulation of COX-2 in neutral F/E for any tissue, points to a pro-

inflammatory response of tissues to the altered mechanics of asymmetric loading.  In vitro studies 

with cell types from each tissue have shown elevation of COX-2 expression in response to high 

load magnitudes [161, 204, 205, 359], and increased COX-2 expression is associated with the 

initiation and progression of degenerative processes in each tissue [127, 156, 360].  Clinically, 

COX-2 is common target of therapeutics for back pain.  Thus, sustained higher levels of segmental 

loading and elevated COX-2 expression with coupled torsion demonstrate broadly detrimental 

effects of asymmetric loading in tissues of the FSU.   

Certain spinal tissues manifested a catabolic response to coupled torsion in F/E.  The LF, 

which acts as a primary tension bands in resisting flexile moments, increased catabolic expression 

with increasing amounts of torsion.  Increased tensile forces in LF resulting from combined flexion 

and torsion may be inferred [361].  Thus, MMP-3 expression in LF, which showed a trend of 

increasing expression with increasing coupled torsion, appears to be sensitive to magnitudes of 

loading.  This notion is strengthened by studies that show elevated MMP-3 expression in LF 

samples (Park, 2009; Oh, 2009) obtained from surgical patients with degenerative conditions 

involving altered spinal loading and in vitro experiments that applied varying magnitudes of tensile 

stretch to ligament fibroblasts [362].  Expression of MMP-1 in AF (non-significantly in LF) and 
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ADAMTS-5 in LF did not show an effect in Small AT+F/E; instead, expression increased only in 

Large AT+F/E.  Elevation of expression for MMP-1, a collagenase, in collagen-rich tissue like AF, 

alongside increased ACAN expression, suggests that increased compressive and tensile stresses in 

AF induced by large coupled torsional moments triggered tissue remodeling.  Elevation of 

ADAMTS-5, a highly efficient aggrecanase, without significant elevation of ACAN expression in 

LF suggests a dysregulation of proteoglycan metabolism similar to previous findings in diseased 

ligamentous tissue [363, 364]  

Coupled torsion and F/E altered anabolic responses differentially in NP and AF.  A trend 

of decreased ACAN expression and CHAD abundance with coupled torsion in NP may reflect 

reduced intradiscal pressure in the NP [83].  However, given increased CHAD with unloaded 

culture, reduced CHAD with loading may mark a return to baseline (t0) levels.  The opposite trends 

in ACAN expression and CHAD abundance in AF indicate an adaptive remodeling to increased 

and altered stress in the AF with combined loading [84].   

Translation of results from this study is principally limited by use of a healthy animal model 

ex vivo.  A unilateral facet restriction was simulated mechanically by asymmetric rotation in 

otherwise healthy spines, which likely differ in their mechanical and biological environment from 

spines with prolonged segmental abnormalities. Differences in cell populations [267], tissue 

composition [268], loading magnitudes [268, 348], and segmental anatomy along with lack of 

systemic factors ex vivo limit translation of rabbit FSUs to humans.  However, scaled torsional and 

compressive mechanical properties are similar between rabbit and human lumbar spines [268, 

291].  Intradiscal pressures in this bioreactor at the neutral position, 0.13 ±.08 MPa  
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[269], are below normal disc pressures in physiologic compression in rabbits [349], which may 

influence the load magnitudes and distribution among tissues of the FSU.  To account for this, all 

comparisons were made relative to unloaded controls.   

The FSU mechanobiological testing system used in this study investigates, for the first time 

ex vivo, cellular and molecular responses to in situ loading involving combined spinal rotations.  

Previous systems remove vertebral and posterior structures, including facets and spinal ligaments, 

and modify the cartilage endplate to promote metabolite exchange [258, 365].  The capability of 

the current system, in examining complex, six DOF loading and the simultaneous biological 

responses of facets and ligaments, is aimed to address questions relating to rotational movements, 

segmental alignment, and manual and physical therapy, all of which involve segmental mechanics 

and the influence posterior structures.  The pro-inflammatory response to asymmetric F/E in all 

tissues, most pronounced in FC and LF, may contribute to the onset and progression of tissue 

damage and degeneration associated with asymmetric loading. FC changes with torsion—elevated 

pro-inflammatory and catabolic gene expression and reduced chondroadherin abundance—support 

clinical paradigms that seek to restore neutral axial alignment. Surprisingly, pro-inflammatory 

changes were significantly higher in ipsilateral, gapped FC.  Future studies will explore the 

mechanisms of differential responses among FC, clarifying the mechanical environments of facet 

joints, and aim to simulate interventions in the model system as a therapeutic intervention.   
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7.0  MECHANICAL CONTRIBUTION OF FSU COMPONENTS 

7.1 INTRODUCTION 

Interpretation of biological changes in Chapters 5.0 and 6.0 relied on numerous experimental and 

computational studies that described the mechanical role of individual FSU components in 

flexion/extension (F/E) and axial torsion (AT) [86, 87, 91-93].  Experimental descriptions of 

mechanical contributions of spinal components to segmental loading typically involve a serial 

resection of joint structures with repeated intact kinematics [87, 277, 366, 367].  The changes in 

primary moment with each cut provide insight in to the contribution of individual structures to 

applied moments.  Robotic systems used in joint research can replay intact kinematic motion paths 

to determine the role of spinal components in 6 DOF loading [285].  Gillespie and Dickey utilized 

a robotic system to characterize the percent contribution of spinal components to F/E moments 

[87], but only one study has been performed using human lumbar segments, and it did not involve 

replayed kinematics, only repeated displacement control [86].  No such testing of any kind has 

been performed in rabbit spinal segments to permit full interpretation of the current findings in 

Chapter 5.0 .  Further, characterization of the contribution of forces/moments in spinal structures 

in complex loading remains unstudied experimentally in lumbar spines in general, preventing full 

characterization of the current findings in Chapter 6.0. 

 The experimental approach to determine the percent contribution of each structure to 

physiologic rotations relies on the principle of linear superposition, namely, that the percent 

moment contributions of components sum linearly [284, 285].  Thus, the percent contribution of 
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each structure to primary moment resistance is defined by the change in primary moment with 

each cut, i, normalized by the intact moment, Mintact, 

Equation 8.  Percent moment contribution 

% 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝑀𝑀𝑖𝑖−𝑀𝑀𝑖𝑖−1

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

Applying serial resection in the context of assumed linear superposition permits experimental 

determination of how spinal structures are loaded in-situ.   

The objective of this study was to illuminate biological findings in Chapters 5.0 and 6.0 by 

determining how F/E moments and forces were distributed in spinal components of rabbit lumbar 

FSUs in (i) neutral F/E and (ii) coupled AT with F/E.  The goal of this analysis was (1) to quantify 

the role of key structures (LF, facet joints (FJ), and intervertebral disc) in F/E moment resistance 

and (2) to quantify the effects of AT on the role of key structures in F/E.  To achieve this goal, a 

serial reaction of spinal structures in replayed intact kinematics of neutral and axially rotated F/E 

was performed in rabbit lumbar FSUs.   

7.2 METHODS 

Specimen preparation:  Lumbar L4-5 NZW rabbit (Female, age 10-12 mo.) FSUs were attached 

within novel fixtures as previously described in Section 3.2.2.  Bioreactor fixtures were used 

without intervening rubber membranes to permit access to spinal structures.  Specimens were kept 

moist throughout testing by frequent spraying of 0.9% NaCl.  FSUs attached to fixtures were 

mounted within the robot spine testing system as described previously (Section 3.2.2.1). 
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Protocol:  Fresh/frozen FSUs (n=4) were subjected to F/E moment targets of 0.5/0.15 Nm 

in neutral axial positions (neutral F/E) or with coupled axial rotations (AT+F/E) using AT targets 

of 0.8 Nm (the same as Large AT+F/E from 6.2.2).  Experimental methods for applying coupled 

AT are described in greater detail in Section 6.2.2 and Appendix D.1.  FSUs were cycled three 

times to moment targets using adaptive displacement control (‘Pathseek’) for preconditioning 

(Section 6.2.2).  The third motion path was saved as the intact path to be replayed.  These methods 

were consistent with previous testing for biological outcomes (Section 6.2.2).   

After replay of the intact motion path, FSUs were serially resected in a posterior-to-anterior 

manner.  Experimental interventions were performed as follows: the (1) supraspinous and 

interspinous ligaments (SSL/ISL) were resected, (2) ligamentum flava were resected, (3) facet 

capsules and facets cartilage were removed, and (4) discs were punctured antero-laterally with a 

16G needle in to the NP [368].  Needle puncture depressurizes discs [369]; however, the relative 

size of the 16G needle to disc height in rabbit lumbar discs indicates that sufficient annular damage 

occurred with puncture to influence annular properties as well [370].  Nonetheless, 

depressurization of the NP is predicted to be the primary change as a result of this injury [369].  

For each replayed state, after waiting five minutes, the robot system replayed intact kinematics 

three times.  Neutral F/E was followed five minutes later by AT+F/E.  The use of three ‘Replay’ 

paths and the delay between states and conditions allowed for reduction of viscoelastic effects. 

Analysis:  Percent contribution of each resected structure to primary moments was 

calculated using Equation 8 (p. 133)Equation 8.  Percent moment contribution.  Mean normalized 

moments and contributions to moment resistance were calculated.  Additionally, mean changes in 

forces with resection were presented as a secondary outcome.  Forces and moments were measured 

at and about the origin of the local anatomical coordinate system based on center-of-rotation 
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measurements (Section 3.4.2).  In rabbit FSUs, forces and moments were measured at the mid-

disc height, centered, posterior third of the disc.  Measured forces (and moments) are those that 

act on (or about) that position in the local anatomical coordinate system, so changes in force reflect 

changes in in-situ loading in the disc that can be attributed to the resected tissue.  It also follows 

that structures that cause pure moment loading about the COR have minimal effect on measured 

forces.   

7.3 RESULTS 

Contribution to F/E Moments:  A representative F/E moment-rotation plot (SSL/ISL not pictured) 

is shown in Figure 30 illustrating the change in F/E curves with resection of each structure.   
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Figure 30. Representative F/E moment-rotation curve with serial resection of FSU components 

 

Normalized flexion moments per structure in Neutral F/E and AT+F/E are presented in 

Figure 31.  The percent contribution to F/E moments per structure are presented in Table 17.  

Flexion moments clearly declined with increasing resection of structures, and differences between 

Neutral F/E and AT+F/E in terms of how flexion moment changed with resection were small.  The 

LF was the predominant contributor to flexion moment resistance (Table 17).  FSUs subjected to 

AT+F showed an increased role of the disc in flexion compared to those in neutral flexion.  In 

neutral extension, changes in moment with LF resection were negative (not included  
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in Figure 31).  Facets contributed to 10.9±3.44% of the extension moment.  The addition of AT 

generally increased the role of resected structures to extension resistance; the role of facets 

(39.72±12.86 %) increased 3.65-fold over Neutral F/E (Table 17).   

 

  

Figure 31. Percent flexion (left) and extension (right) moment resistance per structure in Neutral and AT+F/E 

 

Table 17. Percent contribution to F/E moments by resected structures in Neutral F/E and AT+F/E 

    SSL/ISL LF FJ 
Disc 

(Puncture) 
Disc 

(Remainder) 

Direction 
Alignmen
t 

Mea
n SD Mean SD 

Mea
n SD Mean SD Mean SD 

Flexion Neutral 12.27 
0.9
8 45.45 9.01 30.71 

25.2
0 2.85 3.29 8.73 9.62 

AT + F 7.90 
0.4
7 44.94 5.99 21.40 3.80 4.24 1.00 21.52 10.11 

Extensio
n 

Neutral 1.55 
0.0
4 

-
16.24 

-
1.81 10.93 3.44 26.11 15.24 77.64 4.23 

AT + E 3.74 
1.8
7 -8.79 

-
4.50 39.72 

12.8
6 26.50 20.81 38.82 7.76 
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Finally, the percent moment resistance in flexion per structure in rabbit FSUs is compared 

to other species—human lumbar (Human-L) and porcine lumbar (Porcine-L) [86, 87]—and spinal 

regions—human cervical (Human-C) [371].  The role of the LF is larger in rabbit lumbar spines 

than other lumbar spines; its role is more similar to that in the human cervical spine.  Also, the role 

of the disc in rabbit lumbar neutral flexion is lower than all other models.  The addition of torsion 

makes the role of the disc equivalent to other lumbar models.   

 

 

Figure 32. Distribution of FSU component loading (percent contribution) in flexion in different species 

 

Changes in resultant force magnitudes:  Figure 33 illustrates that spinal ligaments in neutral 

F/E caused little to no change in forces experienced in the disc.  As Table 17 shows, the LF played 

an important role in flexion moment resistance but does not influence forces in the disc.  The 

addition of AT caused an increase in force (~13.1% body weight (BW)) with LF resection.  This 

reflects the lack of pure moment loading with AT and suggests higher overall loading in LF with 
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torsion.  Most notably, resection of facets led to increases in force magnitudes in extension 

(4.77±4.84 and 11.98±3.83 in Neutral F/E and Large AT+F/E, respectively).  These changes in 

force indicate that facets restricted forces in extension.  This change in force was >2.5-fold higher 

with coupled AT.  The orientation of the force vector is described below (Figure 34).   

 

 

Figure 33.  Changes in resultant force magnitudes in neutral F/E and AT+F/E with serial resection 

 

Change in Component Forces:  Changes in magnitude of component forces with resection 

of spinal structures are shown in Figure 34 and Figure 35.  Examining changes in force components 

permits visualization of the orientation of the force vectors (Fz,Medial-Lateral, Fy,Superior-Inferior, Fz,Anteior-

Posteiror) in flexion (F) and extension (E)) acting on the LCS origin.  In general, changes in 

component forces are larger in Large AT+F/E (Figure 35) than Neutral F/E (Figure 34).  In Large 

AT+F/E, Fx changes with facet resection show a medial-lateral force (5.93±1.44 N) toward the 

right, the direction of facet compression with combined AT.  This suggests that rotation to the right 

caused compression in the right facet joint, and this compression was present in both flexion and 
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extension.  A small amount of compressive force (Fy_E) is also evident in extension, and this 

compressive force is apparently larger in Large AT+F/E (-3.56±2.10 N) than Neutral F/E (-

1.08±2.14 N).  The small amount of compressive forces generated in extension likely reflects lack 

of applied compression; pure moment testing has relatively small facet forces in extension [67, 

89].  Most notably, changes in Fz, observed in flexion and extension, are the largest among 

component forces.  Anterior shear forces were ~50% higher in extension than flexion, and two 

times higher in Large AT+F/E (6.62±5.03 N and 12.90±3.84 N in flexion and extension) than 

Neutral F/E (9.10±4.78 N and 4.00±3.12 N in flexion and extension).  They demonstrate that facets 

resist a large anterior (“shear”) force because facet removal exposes the disc COR origin to high 

amounts of anterior force.   

Changes with SSL/ISL and disc forces are generally small in size with a large amount of 

error.  The trend of decreased force components for all directions with disc puncture suggests that 

disc depressurization reduces all forces in FSUs.  The trend toward uniform slight negative changes 

in component forces reinforces that conception that needle puncture depressurized discs.  
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Figure 34.  Change in component forces with serial resection of FSU structures in Neutral F/E 

 
 

 

Figure 35. Change in component forces with serial resection of FSU structures in Large AT+F/E 
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7.4 DISCUSSION 

This study quantified the mechanical role of important spinal structures in rabbit lumbar FSUs in 

neutral and axially rotated F/E.  It identified the predominant role of the LF in flexion moment 

resistance and the disc in extension moment resistance.  The addition of torsion to F/E increased 

the role of facets in extension moment resistance and increased the forces associated with facet 

joints in extension (Figure 35).  These findings shed light on mechanobiological studies in 

Chapters 5.0 and 6.0 assessing biological changes in spinal tissues subjected to neutral and 

combined F/E by (1) clarifying the role individual tissues play in F/E moment resistance and (2) 

describing how this role changes with combined AT. 

7.4.1 Neutral F/E 

This study identified the role spinal structures play in F/E moment resistance under in vitro loading.  

Other studies of human and large animal lumbar spines have also identified the prominence of the 

LF in flexion moment resistance [86, 87, 366]; however, in this rabbit study, the contribution of 

the LF in flexion was higher than in other species.  In addition to its importance in various spinal 

pathologies [156, 372], the distinction of the LF in terms of its large mechanical role in flexion 

supports selection of LF for mechanobiological analysis over other components of the posterior 

ligamentous complex.  The LF was the only structure that showed any sensitivity to cycles of F/E 

(increased catabolic and pro-inflammatory gene expression), and its large role in flexion may 

contribute to its load-responsive changes.   
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In neutral extension, results were distorted by a violation of the principle of superposition 

in that moments increased after LF resection.  The negative response in this study of the LF in 

extension obscures and may distort the role of facets and disc as determined using Equation 8.  As 

calculated, facets played a small role in moment resistance.  This proportion of moment resistance 

in extension falls low but within the published in vitro range (3-41% contribution) [27, 67, 88].  It 

has been shown that increased compression increases facet joint forces and pressure [88, 92], so 

lack of applied compression likely underlies this low contribution to extension loading.  

Additionally, changes in force due to facet resection (~13.1% BW) compare to BW-normalized 

human facet joint forces (2.0-16.8% BW).  Modest increases in MMP-3 and COX-2 gene 

expression in neutral F/E (Figure 22 and Figure 24) reflect the putative small-to-modest 

mechanical role of facets in extension.  Thus, the degree of facet contribution to extension supports 

examination of biological responses in facet cartilage under neutral extension, even in the absence 

of applied compression.   

At the same time, the contribution of the disc to flexion resistance is smaller in rabbits than 

other species, and the contribution of the disc to extension resistance is larger in rabbits [87, 373].  

This difference in the role of the disc may reflect lack of compression in rabbit FSUs.  Compression 

would presumably increase the role of the facets in extension [67], thereby decreasing the role of 

the disc in flexion [80], thus reducing the role of posterior spinal ligaments (especially the LF).  

The small role of the disc in flexion may contribute to the relatively small biological changes 

observed in the disc, particularly the NP in repeated F/E (Section 5.3.2).  In flexion, as well as in 

extension, the small negative force change with disc puncture reflects depressurization.  Using the 

change in force components following needle puncture as a measure  
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of pressurization, flexion did not pressurize discs more than in extension.  This small change might 

be more evident if axial compression had been applied to discs, increasing the amount of NP 

pressurization during F/E [374] 

As indicated previously, the result in extension raises questions about the contribution of 

the LF to extension. It is also possible that removal of the LF tension band dramatically shifted the 

preferred COR anteriorly or somehow increased specimen stiffness.  Such a shift could increase 

the extension moment and exaggerate the role of the disc.  It is more likely, however, that results 

in extension reflect incomplete loading in extension.  The extension moments in three of four FSUs 

did not go substantially beyond the transition point from low stiffness to high stiffness.  This 

incomplete loading, which leaves FSUs in the neutral zone, likely explains the increase in 

extension moment with LF resection because loading in the neutral zone is more variable than that 

in the linear elastic zone and could increase after resection.  The current characterization reflects 

loading used in this dissertation research.  Moreover, the mechanical differences between neutral 

F/E and AT + F/E remain relevant to how the mechanical environment changed between the two 

types of loading and contributed to different biological responses.  Thus, some caution is required 

in interpreting the role of the disc and facets in extension.   

7.4.2 Combined loading: AT+F/E 

Combined loading (AT+F/E) had a notable effect on the distribution of moment resistance 

among FSU structures.  Combined loading had the largest effect on facets in extension.  The nearly 

four-fold increase in contribution to extension resistance by facets indicates that facet involvement 

in AT+F/E represents a high level of physiologic loading.  Moreover, the change in forces with 

facet resection in AT+F/E increased to nearly 24.5% BW.  This value is higher than human lumbar 
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facet forces measured in extension or axial torsion (<20% BW) [89, 91, 375], but less than facet 

forces predicted in sustained anterior shear or compression, which reached as high as 100% BW 

[92].  Force vector data showed anterior, right-lateral, compressive orientation in keeping with 

rotational loading and support of an anterior shear force predicted by recent computational models 

of facet forces [67, 92].  Thus, the facet involvement in AT+F/E likely represents a high level of 

physiologic loading but does not exceed limits of facet loading likely to cause injury.  

Understanding this high degree of facet loading in extension helps to explain how axial torsion 

elicited a strong pro-inflammatory and pro-catabolic response in facet cartilage after a relatively 

short duration of loading (Section 6.3.2).  Inflammatory and catabolic gene expression matched 

the higher level of loading with coupled AT.   

Coupled torsion in F/E also affected the mechanical response in LF.  In flexion, Large 

AT+F/E caused a change in force with LF resection to increase from near zero N in Neutral F/E 

to 5.19±0.93 N (~11% BW).  This modest change in force suggests increased loading with 

AT+F/E.  The role of the LF in combined AT+F/E had not been described in any model system, 

so this provides important mechanical data for interpreting biological results.  It is possible that 

the elevated force associated with the LF in coupled torsion contributes to the higher pro-

inflammatory and pro-catabolic responses with AT+F/E (Section 6.3.2) compared to neutral F/E 

(Section 5.3.2).   

The large increase in the role of facets in extension moment resistance was matched by a 

reduced contribution of the disc to extension resistance compared to neutral F/E (~63% decrease).  

It is reasonable that increased facet engagement, evidenced by higher in-situ forces (almost 3-fold 

increase), reduced loading in the disc at extremes of F/E.  Reduced NP pressurization has been 

reported with applied AT [83], so it is possible that extension with added axial torsion also results 
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in lower intradiscal pressure, which influences both AF and NP mechanics [83, 84, 376].  This 

altered load distribution relative to neutral F/E could underlie different biological responses 

observed in disc tissue, particularly the AF, with combined loading.   

7.4.3 Limitations 

Connecting these results with biological changes in Chapter 5.0 and Chapter 6.0 neglects 

differences in testing: ambient temperature, lack of a fluid-filled environment, and fresh/frozen 

storage.  These differences could have small influence on mechanical properties in spinal segments 

[377].  Because facet resection was performed bilaterally, the separate mechanical roles of left and 

right sides in AT+F/E were not elucidated.  Instead, the net effect of AT on F/E mechanics was 

characterized.  The change in resultant force vector with bilateral facet joint resection indicated an 

anterior, lateral, compressive force that reflects the strong engagement of the right facet.  The disc 

puncture in this study does not adequately isolate NP depressurization from AF injury because of 

the large needle diameter used.  Disc puncture in this context represents a disc injury that combines 

depressurization and annular injury, and while depressurization is certainly the larger influence 

[369, 378], rigorous distinct assessment of NP and AF are not appropriate.  It is also important to 

appreciate that moments and forces measured by the UFS are based on a prescribed local 

anatomical (or joint) coordinate systems and point of action [284, 285].  Thus, error in alignment 

and positioning of the specimen or COR estimate could influence values of moments and forces.  

However, the adaptive nature of the robotic control and error tolerance shown in Section 3.4.2 

mitigate these concerns.  It is also critical that the testing system and fixture stiffness be high 

enough to remain unaffected by reduced specimen stiffness with resection.  It is possible that the 

elevation of extension moments and large drop in flexion moments following LF resection in 
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neutral F/E is an artifact of inadequate system stiffness.  This seems unlikely, however, because of 

the small moments applied and relatively low stiffness of rabbit FSUs in F/E.  The analysis of 

percent contribution of each structure to primary moment resistance relies on the principle of linear 

superposition.  It has been pointed out that this principle does not hold perfectly in spinal segments 

[87, 373], and interactions between structures and viscoelastic effects can cause coupling.  While 

apparent interaction of spinal structures casts doubt on the application of this assumption in spinal 

segments, this limitation has generally small effects and is accepted in the literature [288, 373, 

379].  The results of LF resection in incomplete extension reflect a violation of this assumption 

that may result from viscous effects in the disc within the neutral zone.   

7.4.4 Conclusions 

In summary, this study addressed the question of how spinal structures were loaded in rabbit FSUs 

in neutral F/E and combined AT + F/E.  The salience of the LF in flexion resistance was confirmed, 

and coupled torsion elevated in-situ loads in flexion.  The addition of torsion to F/E greatly 

increased the amount of facet loading and its contribution to extension resistance.  The disc played 

a relatively small role in flexion and a relatively large role in extension resistance.  Torsion reduced 

the contribution of the disc to extension and increased its role in flexion.  These findings support 

mechanobiological analysis of each of these spinal tissues because of their  

mechanical importance in F/E and their differential mechanical response to coupled torsion.  The 

degree of biological responsiveness matched well with the mechanical role of tissues in moment 

resistance.   
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8.0  REGRESSION ANALYSIS: CORRELATING MECHANICAL AND 

BIOLOGICAL RESPONSES 

8.1 INTRODUCTION 

A primary purpose of mechanobiology is to characterize the response of cells to stimuli that arise 

or change due to mechanical factors.  In numerous fields, researchers have presented theories that 

attempt to understand cellular responses in their relation to applied loading, macroscopic 

mechanical properties, cellular mechanical properties, and models of mechanotransduction [380, 

381].  In cartilaginous tissues of the spine, unifying theories for explaining cellular behavior in 

terms of mechanics are less developed [9, 30].  It is clear that cells in these tissues respond to 

changes in their mechanical environment, and these responses mediate degenerative processes [30, 

98].  Multi-scale modeling has sought to connect cellular responses to changes in the micro-

environment with applied macroscopic loading [108, 109, 112, 382], but applying these findings 

to complex loading scenarios seen in vivo and accounting for the enormous variation in cells and 

their surrounding matrix across species, age, and degree of degeneration is daunting.  Instead, 

relating macroscopic mechanical responses of spinal segments to biological changes in spinal 

tissues provides a simpler, more measurable, more readily translatable approach to connecting 

biology and mechanics.   

In spine research, few attempts have been made to link mechanical or structural properties, 

particularly at the macroscopic scale, with cellular responses [383-385].  Studies have focused 

exclusively on relating material properties of isolated spinal tissue to biochemical composition 

with the goal of relating tissue mechanics and composition.  In contrast, a recent exploratory study 
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sought to understand cellular responses to mechanical loading by correlating mechanical 

parameters of axially compressed spinal segments with changes in relative gene expression [386].  

The authors found that late-stage creep parameters significantly and highly (R>0.7) correlated with 

MMP-3 expression in AF.  Because of the importance of other loading modes in spinal motions, it 

is of interest to understand similar relationships between segmental mechanics and biological 

responses in complex, rotational loading.   

To account for variation in cellular responses across different loading modes seen in vivo 

(e.g. flexion, rotation, and compression), unifying mechanical factors that scale across loading 

modes must be established.  These can include measured properties like compressive 

pressurization [387], predicted responses such as fluid flows and stress magnitudes [108, 112, 388, 

389] , or calculated energetic properties like applied energy (work) or dissipated energy 

(hysteresis) [390, 391].  Work reflects a summation of loading over a movement; it integrates the 

amount of applied load with the amount of movement.  Thus, it can be applied in any degree-of-

freedom (DOF) or mode of loading.  Because movement and loading are readily measured or 

approximated, work serves as a translatable metric to in vivo scenarios [392]. In fact, rehabilitation 

science utilizes work to characterize loading in human movements at other joints [393, 394].  When 

applied to tissues of the spine, the deformation of each structure and proportion of load sustained 

by each structure during the movement must be considered.  Like work, hysteresis measures a 

change in energy and can be applied in any loading mode.  Unlike work, however, hysteresis 

characterizes the non-elastic response of a spinal segment.  In FSUs, the segment as a whole and 

each structure, though principally the NP [395], behave in a viscoelastic manner exhibiting energy  
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dissipation.  Energetic properties can be calculated in spinal segments as candidate mechanical 

parameters that may enable comparisons between types of loading for assessment of mechanical 

and biological responses.   

Biological responses to rotational loading were explored using a novel ex vivo 

mechanobiology testing system (Chapters 5.0 and 6.0).  Flexion/extension (F/E) with and without 

axial torsion (AT) was applied to FSUs over short durations (< 2 hours).  These loading modes are 

involved in daily activities, rehabilitation exercises, and occupational tasks [68].  Segmental 

mechanical response parameters like range-of-motion (ROM), stiffness, and load relaxation, 

which have been characterized thoroughly in cadaveric spine testing and may be estimated during 

in vivo activities [210, 297, 396-400], have good utility as candidate mechanical predictors of 

biological responses.  Alongside segmental mechanics, relative gene expression was calculated for 

inflammatory (COX-2), catabolic (MMP-1, -3, ADAMTS-5), and anabolic (ACAN) gene markers 

in annulus fibrosus (AF), nucleus pulposus (NP), facet cartilage (FC), and ligamentum flavum 

(LF).  Specifically, the mechanical responses (as calculated in Section 5.2.2) included the amount 

of rotational deformation in F/E and AT, given by range-of-motion in flexion (ROMf), extension 

(ROMe), and axial rotation (aROM).  Neutral zone stiffness (NZk) provides insight in to the 

amount of tissue laxity (Equation 5) and may reflect the extent of age-related or degenerative 

changes in the tissues of the FSU [401, 402].  Cumulative and mean work and hysteresis were 

calculated for FSUs (Equation 3 and Equation 4).  Changes in mechanical  

properties across cycles of loading were calculated (Equation 7); these describe how FSUs adjust 

to loading, and these changes may also reflect age-related or degenerative changes in tissue [403, 

404]. 
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It would be clinically beneficial to understand relationships between mechanical factors 

and predicted biological responses to those factors.  In such a paradigm, measurable mechanical 

factors like flexion and axial ROM or total work in exercise might be monitored and used to predict 

changes in catabolism and anabolism.  Characterizing the relationship between mechanical factors 

of spinal segments with biological changes provides clinical utility to design of motion-based 

therapies and prediction of injurious modes of loading.   

The objective of this analysis is to perform multiple regression analysis on F/E 

mechanobiology data from spinal segments.  The goals are (1) to identify the most important 

mechanical variables (i.e. those that account for the most variation), (2) to seek to quantify their 

association with biological responses (relative gene expression) in each of the spinal tissues 

analyzed, and (3) to look for differences in modeling results between tissues and genes.  The basic 

premise is to determine the amount of variation in biological responses that can be attributed to 

mechanical factors.   

8.2 METHODS 

Linear multiple regression was employed to relate mechanical factors as input variables (i.e. 

predictors) to dependent biological variables (i.e. outputs).  Relative gene expression, calculated 

using the 2-∆∆Ct method comparing loaded to unloaded tissues, of pro-inflammatory (COX-2), 

catabolic (MMP-1, -3, and ADAMTS-5) and anabolic (ACAN) genes was used as the regression 

model output.  Relative gene expression was chosen as the biological output because it provides 

direct insight in to various cellular responses, its range is theoretically large, and its sample size in 

the present data set was largest.  All available genes measured in each tissue for each specimen 
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were used by pooling all experimental groups from previous aims.  The mean of left and right FC 

gene expression was used for samples subjected to combined torsion and flexion/extension.  

Mechanical factors were calculated for each of N=45 tests.  A total of N=37 mechanical factors 

(see Table 16) were entered in to the analysis.   
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Table 18. List of predictors and outcomes for multiple regression 
 

Classification Predictors Mean SD Outcomes Mean SD 
Energetic 
Properties Work Cumulative (J) 240.68 85.37 Relative AF_MMP-1 1.45 0.94 
  Work Mean (J) 6.23 2.52 Gene AF_MMP-3 2.11 1.35 
  Work Change (J) 0.08 0.32 Expression AF_ADAMTS-5 1.23 0.57 
  Work Relaxation (%) 0.01 0.07  AF_COX-2 1.27 0.70 

  
Hysteresis Cumulative 
(J) 30.31 21.84  AF_ACAN 1.46 0.73 

  Hysteresis Mean (J) 0.74 0.41  FC_MMP-1 0.73 0.34 

  
Hysteresis 

Change (J) 0.07 0.14  FC_MMP-3 2.20 1.64 

  
Hysteresis Relaxation 
(%) 0.03 0.33  FC_ADAMTS-5 0.92 0.34 

FE Moment-
Rotation ROMf (°) 14.42 3.77  FC_COX-2 2.46 1.65 
  ROMe (°) -3.43 2.47  FC_ACAN 0.84 0.45 
  Mxf (Nm) 0.46 0.12  NP_MMP-3 2.32 3.53 
  Mxe (Nm) 0.14 0.08  NP_COX-2 1.61 1.21 
  Mxf Change (Nm) 0.03 0.03  NP_ACAN 1.17 0.76 
  Mxe Change (Nm) 0.01 0.02  LF_MMP-1 1.40 1.23 
  Mxf Relaxation (%) 5.92 5.46  LF_MMP-3 2.33 2.17 
  Mxe Relaxation  (%) -4.38 62.03  LF_ADAMTS-5 1.61 1.29 
  NZk (Nm/°) 0.02 0.01  LF_COX-2 2.86 2.37 
  NZk Change (Nm/°) 0.01 0.01  LF_ACAN 1.40 1.01 
  NZk Relaxation (%) 0.01 0.03       
AT Moment-
Rotation aROMf (°) -1.02 1.51       
  aROMe  (°) -0.92 1.41       
  aROMmidfe  (°) -0.97 1.46       
  Myf  (Nm) -0.21 0.25       
  Mye (Nm) -0.27 0.33       
  Mymidfe  (Nm) -0.25 0.29       
  Myf Change (Nm) -0.01 0.07       
  Mye Change  (Nm) -0.02 0.07       
  Mymid Change  (Nm) -0.01 0.07       
  Myf Relaxation (%) 53.91 877.70       
  Mye Relaxation  (%) -449.45 2781.0       
  Mymid Relaxation (%) -62.69 341.97       
Covariates Cycles (n) 42.66 15.34       
  Age (mo.) 14.22 5.77         
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8.2.1 Mechanical Factor Reduction   

All redundant factors were consolidated to avoid correlation between predictors.  Consolidation 

included choosing one variable to represent change in that parameter across cycles (i.e. choosing 

normalized changes over changes in actual magnitude).  Also, to permit possible insights in to 

differences in flexion and extension, which load tissues differently, flexion and extension variables 

were considered separately, and overall measures of F/E (ROMfe, Mxfe) were excluded.  Because 

of the presence of multicollinearity in a dataset of applied, measured, and calculated mechanical 

factors, autocorrelation analysis was performed to identify correlated factors and remove unwanted 

redundancy that increases error in regression model coefficients.  Briefly, an autocorrelation 

matrix was created from R-values from simple Pearson’s correlation between each factor and all 

other factors.  Variables were considered to be highly correlated if R >0.75.  Using a rule to retain 

as many mechanical factors in the data set as possible, correlated variables were removed.  That 

is, if correlated pairs of variables included x-y and x-z, then x was removed and y and z were 

retained.   

8.2.2 Principal Component Analysis  

To identify the variables that accounted for the most variation in the mechanical response and enter 

only these mechanical factors as predictors in the multiple regression analysis, principal 

component analysis (PCA) was performed on the remaining factors.  Single-value decomposition 

was performed using Matlab (R2013) on standardized variables (to account for magnitude 

differences among variables) to identify the principal components.  Varimax rotation was applied 

to maximize the unique contribution of original variables to each principal component and enable 
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interpretation of the first principle component [405].  Eigenvalues associated with each principal 

component and the amount of variation in the data set accounted for by each principal component 

were calculated.  Principal components with eigenvalues greater than 1 were selected (Kaiser rule).  

Original variables were then correlated with the coefficients of the principal components using 

Pearson correlation.  For this study, factors that (1) had correlations R> 0.6, (2) were among the 

two factors mostly highly correlated with that principal component, and (3) were not correlated 

with the other factors within that principal component (R>0.6) were chosen. 

8.2.3 Multiple Regression-Part I:  Hierarchical Entry Rationale 

Linear multiple regression was performed using a hierarchical approach with ordered groups of 

predictors formed a priori.  Final predictor variables were clustered in to four groups representing 

different aspects of FSU mechanical responses: (a) Energetics properties, (b) F/E moment-rotation 

properties, (c) AT properties, and (d) Relaxation of parameters.  The ordering of predictors was 

based on an order of presumed importance of mechanical predictors to each tissue within the FSU.  

Previous research and mechanical theory point to different mechanical roles and responses of each 

tissue in F/E and combined AT and F/E loading, so the order of entry of groups was based on a 

rationale specific to each tissue (see Table 19).   

 

Table 19. Tissue-specific order of predictor groups 

Tissue Predictor Group Order             
AF 1) AT Moment-rotation > 2) Energetic properties > 3) F/E Moment-rotation > 4) Relaxation 
FC 1) AT Moment-rotation > 2) F/E Moment-rotation > 3) Energetic properties> 4) Relaxation  
NP 1) Energetic properties > 2) Relaxation > 3) F/E Moment-rotation > 4) AT Moment-rotation 
LF 1) F/E Moment-rotation > 2) Energetic properties > 3) AT Moment-rotation > 4) Relaxation 
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AF:  The order of entry was chosen to be (1) AT properties, (2) energetic properties, (3) 

F/E moment-rotation properties, and (4) relaxation of parameters.  The primary role of AF across 

loading modes is torsional resistance [81], so AT properties were entered in to the regression model 

first.  Because the AF supports compression in flexion [40, 406] and resists extension moments 

through tension on the posterior side [367] (thus always resisting loading in the direction of 

movement), energetic properties, which integrate loading with movement, were considered 

second.  By the same rationale, F/E ROM and NZ stiffness similarly influence AF, but these 

properties are thought to be regulated by the interaction of many tissues [87, 367, 379], and the 

serial resection study in rabbit FSUs showed that the disc was a small contributor to flexion 

resistance, so F/E property variance is less likely to be reflected specifically in biological changes 

in AF.  Finally, relaxation of parameters was placed last because moment relaxation is governed 

largely by other joint structures [87]. 

FC: The following entry order was used:  (1) AT properties, (2) F/E moment-rotation 

properties, (3) Energetic properties, and (4) Relaxation of parameters.  The results of the serial 

resection study (Section 7.3) combined with previous research make it clear that lumbar facet 

loading increases dramatically with axial rotation [85, 89], supporting the choice of AT properties 

as a reasonable first group.  Secondarily, facets contribute largely to resistance of extension 

moments [67, 93, 407], so F/E moment properties are entered next.  Both energetics and relaxation, 

particularly as they relate to extension, have been considered to be important in describing facet 

mechanics [85, 89, 408, 409], but it is unclear which is more so.  To be consistent with the order 

of entry of predictors in AF and LF models, energetic parameters were entered earlier and 

relaxation parameters were entered afterward.   
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NP:  The order of predictor variable entry for NP was the following:  (1) Energetic 

properties, (2) Relaxation of parameters, (3) F/E moment-rotation properties, and (4) AT 

properties.  Because the NP is a viscous structure that plays a central role in the absorption and 

dissipation of forces in FSUs, energetic properties were entered in to the model first [92, 410].    

For similar reasons, the NP influences time-dependent changes of FSU mechanics [404], so the 

relaxation of parameters was entered in to the model second.  This relative ordering of energetic 

and relaxation parameters is also consistent with the other tissues.  In pure moment testing where 

compression is not applied to FSUs, the NP plays a small role in F/E moment-rotation properties 

[411].  The serial resection study supports this diminished role of the NP in F/E in this dissertation 

as NP depressurization had only a small effect on F/E moment resistance.  Finally, while some 

evidence suggests NP may be depressurized by AT [83], without applied compression, the effect 

of AT on NP pressurization is expected to be minimal.   

LF: The order was (1) F/E moment-rotation, (2) Energetic properties, (3) AT properties, 

and (4) Relaxation of parameters.  Numerous studies, including the serial resection study in 

Chapter 7.0 , confirm that the LF primarily resists flexion moments and may influence NZ stiffness 

[86, 87].  Spinal ligaments have been shown to be responsive to cycles and rates of loading [243], 

so energetics properties like cumulative work are expected to influence LF mechanobiology.  

While the LF is not generally thought to play a measurable role in AT resistance [412], combined 

loading may recruit LF fibers on the contralateral side and consequently alter LF mechanics [93].  

Resection of the LF in Chapter 7.0 in AT+F/E showed a small increase in force with added AT 

that may reflect increased tension in LF.  Finally, while the LF influences flexion relaxation, it 

does not generally influence extension moments or  
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extension relaxation.  Because relaxation of extension moments exclusively constituted this 

category after PCA, this category was placed last as it is unlikely for this relaxation property to 

influence LF biology.   

8.2.4 Multiple Regression-Part II:  Final Regression 

Hierarchical linear multiple regression analysis was performed using SPSS® Statistics 22.0 (IBM 

Corporation, Armonk, NY).  A sequential regression method was performed in two steps [413].  

In the first step, all of the mechanical factors were entered in to the model as groups in the order 

described per tissue for all genes (Table 19).  The effect size and significance of each predictor 

variable were assessed, and predictors that were important to the model were retained for a second, 

final regression (individual coefficient weights β>0.3 with significance values p<.20) analysis that 

focused on the most relevant predictors [413].  Liberal cutoff values of β>0.3, a small-to-moderate 

model weight [413], and p<.20, twice that of typical low significance thresholds [413], was used 

at this intermediate stage to include variables that could contribute to the final model (final 

significance was set to p<.05), but whose partial correlation may have been diminished from the 

influence of many predictors (n=8).  Predictors were then entered in the final model by the order 

of their importance to the initial model (β-size and associated p-value), and the resulting regression 

analysis was assessed.  Significance of the model was determined using an F-statistic, the ratio of 

variability accounted for by the linear model divided by random variability about the mean of the 

data.  The number of predictors and sample size, which influence the significance of regression 

results, are accounted for in the F-statistic.  The overall size of the relationship (or effect size) 

between the model and outcomes was given by R (<0.2 being negligible, 0.2-0.4 being small, 0.4-

0.6 being moderate, and >0.6 being large effects), the amount of variance accounted for by the 
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model was given by R2, and generalizability of findings to a broader population was given by 

Adjusted R2.  Adjusted R2, which is less than or equal to R2, indicates a predicted reduction in 

explained variation when the model is applied to the population as a whole.  If Adjusted R2 values 

are close to R2 values, then findings are considered generalizable.   

Each model was also analyzed for contribution of individual predictors.  The coefficients, 

standard errors of coefficients, standardized coefficients, significance of coefficients, and simple 

linear correlations (Pearson) were calculated per predictor in the model.  Simple linear correlations 

show the relationship between a predictor and outcome without the influence of any other predictor 

variable.  Model coefficients (B) describe the effect of individual predictors while holding other 

predictors constant.  Standardized coefficient values, β, describe the magnitude of the relationship 

between individual predictors and model effects on biological outcomes in standard deviation 

units.  Thus, they relate the change in a given predictor normalized by its variability to the effect 

on a standardized outcome, i.e. how many standard deviations the outcome will change for a given 

change of one standard deviation in the predictor.  Predictors with significant coefficients were 

reported and discussed per model.   

Assumptions of multiple regression were assessed by (1) ensuring lack of multicollinearity 

by autocorrelation of predictors (Pearson’s R < 0.75) and checking that mean variable inflation 

factors (VIFs) were close to 1, (2) checking for independence of errors by confirming that 

standardized residuals were normally distributed, and (3) inspecting the assumptions of linearity 

and homoscedasticity by assessing spread and shape in plots of standardized predicted values vs. 

standardized residuals.  Initial regression analysis showed assumptions of homoscedasticity, 

linearity, and independence of errors were not met in all tissues for all genes, so relative gene 

expression was transformed using a log function.  A log transform of outcome data enabled 
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assumptions of multiple regression to be met.  To permit more facile interpretation of model 

weights, which explain the weighted relationship of a predictor to a change in the outcome, model 

coefficients were reverse-transformed.  Expressing coefficients’ effects on gene expression data 

in a linear scale makes comparison with previous experimental data easier.  Finally, sensitivity of 

model outcomes to order-of-entry was also checked by using a hierarchical scheme across all 

tissues that entered variables in to the model based on their order in principal component analysis.   

8.3 RESULTS 

8.3.1 Data Reduction:  Autocorrelation 

The overall reduction process for predictors is depicted in Figure 36.  Eliminating known 

redundancies and performing autocorrelation reduced the number of predictor candidates from 

n=37 to n=15.  The autocorrelation matrix is displayed in Appendix C.1.  Mean work was highly 

correlated with flexion ROM and moments (R= 0.797, R=0.792, respectively), and relaxation in 

work across cycles was also highly correlated with change in flexion moments across cycles 

(R=0.794).  Also, cumulative hysteresis was highly correlated with mean hysteresis (R=0.823) 

while cumulative work and mean work did not show as high of a degree of correlation (R=0.660).  

All AT ROM and moment factors were highly correlated (R=0.841-0.994), and AT moment 

relaxation factors were also highly correlated (R=0.831-0.986).  The retained variables are listed 

in Table 20 and Figure 36.   
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Table 20. Mechanical factors not correlated or redundant to other factors 

Autocorrelation Results:  Non-correlated Factors 
Work Cumulative ROMf aROMmidfe Cycles 
Hysteresis Mean ROMe Mymidfe Relax. Age 
Hysteresis Relax. MxF   

 MxE   
 Mxf Relax.   
 Mxe Relax.   
 NZk   
 NZk Relax.   

 

 

Figure 36.  Overview of data reduction and sequential multiple regression 
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8.3.2 Principal Component Analysis 

Results of the PCA analysis are displayed in Figure 37 and Table 21.  A total of n=5 principal 

components (PCs) exceeded the minimum threshold (Kaiser rule):  eigenvalues > 1.0 [413].  The 

first PC (PC1) had large correlations (>0.6) with flexion properties and energetic properties:  

flexion moments (R=.901), flexion ROM (R=.806), cumulative work (R=.752), and hysteresis 

relaxation (R=.627).  The second PC (PC2) was highly associated with other portions of the F/E 

moment-rotation curves: extension moments (R=.835), extension ROM (R=.814), NZ stiffness 

(R=.715), and Cycles (R=.699).  The third PC (PC3) was associated with change in parameters 

across cycles; relaxation of extension moments (R=.764) and relaxation of NZ stiffness (R=.904) 

were correlated with PC3.  The fourth PC (PC4) was associated with AT properties; AT ROM 

(R=667) and AT moment relaxation (R=.614) were correlated with PC4.  Finally, the fifth PC 

(PC5) correlated highly with only one original variable, mean hysteresis (R=.818).  By selecting 

the two most highly correlated variables with each PC and applying a strict autocorrelation rule of 

R>0.6 among variables within a PC, a total of n=8 variables were ultimately selected (see Table 

21).  Final predictors included F/E Moment Rotation properties—ROMf, ROMe, and NZk, AT 

moment-rotation properties—aROM and MyRelaxation, Energetic properties—Cumulative 

Work, Mean Hysteresis, and Relaxation in parameters, MxeRelaxation (also includes 

MyRelaxation, but it was grouped with AT moment-rotation properties to avoid double-entry in 

to the model).   
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Figure 37. Principal component eigenvalues and percent variance explained per principal component. 

 

Table 21. Uncorrelated (R<.6) mechanical factors correlated with PCs (R >0.6) with highest R values  
 

 Mechanical Factor Grouping 

Principal 
Component Energetics FE Properties AT Properties Relaxation 

1 Work Cumulative ROMf    
2  ROMe, NZk    
3    Mxe Relax. 
4   aROM, My Relax. 
5 Hysteresis Mean     

 

8.3.3 Multiple Regression—Part I: Important Predictors Identified 

Table 22 summarizes the important predictors and their coefficient p-values that were identified 

by the preliminary multiple regression across all tissues and genes.  The factors that contributed  
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importantly (β>0.3, p<0.2) to preliminary multiple regression are listed alongside their model 

coefficient significance.  All tissue and gene combinations except for FC MMPs yielded important 

predictors.   

 

Table 22.  Predictors identified in preliminary regression (β>0.3, p<0.2) with p-values 
 

Tissue MMP-1 MMP-3 ADAMTS-5 COX-2 ACAN 

  Predictor p Predictor p Predictor p Predictor p Predictor p 

AF Work 
Cumulative 0.16 aROM 0.059 NZk 0.133 ROMf 0.087 Hysteresis 

Mean 0.064 

      MyRelax 0.153 MxeRelax 0.134 MyRelax 0.161 

          Work 
Cumulative 0.133 

          ROMf 0.132 

FC no important  
predictors 

no important 
predictors NZk 0.073 Work 

Cumulative *0.007 aROM *0.024 

      aROM 0.152 MyRelax *0.013 Work 
Cumulative 0.126 

        aROM 0.107 MyRelax 0.188 

NP no RGE available ROMe 0.159 no RGE available Hysteresis 
Mean 0.126 MxeRelax. 0.118 

        ROMe 0.164 NZk 0.131 

          ROmf 0.142 

LF Work 
Cumulative 0.069 ROMf 0.104 NZk 0.061 aROM *0.014 NZk 0.054 

  NZk *0.023   ROMf 0.178 ROMf 0.073    
  ROMf 0.071   MyRelax 0.119 NZk *0.046    
        MyRelax. 0.056    

†-p<.10, *p<.05, **p<.01;  NS-Non-significant or trending (p>.10) coefficients;  x-no relative gene expression data available. Bold-p<.05 

 

8.3.4 Multiple Regression—Part II:  Summary in All Tissues 

Reduced sets of important predictors were examined in subsequent, final regressions.  Of the 

possible 18 biological outcomes (four tissues and five genes per tissue with no MMP-1 and 
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ADAMTS-5 data collected for NP), nine had significant regression models (F, p<.05) and one had 

a model that showed a strong trend (F, p=.096) (Table 23).  In general, the magnitude of the 

correlation of mechanical predictors with biological outcomes was moderate in size with R values 

in significant models ranging from 0.368-0.710 (Table 6).  Overall model significance was most 

frequent in AF with all genes except COX-2 showing significant or nearly significant regression 

models.  However, the amount of variance predicted by models was only modest—13.5–32.3% of 

the variation in AF biological responses was accounted for by mechanical predictors.  By 

comparison, 31.9-50.4% of variation in biological outcomes was accounted for by significant 

regression models in FC and LF.  Also, FC and LF models were both significant for three of the 

five genes (ADAMTS-5, COX-2, and ACAN in FC and MMP-1, ADAMTS-5, and COX-2 in LF).  

No regression models were significant in the NP.   

 

Table 23.  R-values and significance of final regression models 

Tissue MMP-1 MMP-3 ADAMTS-5 COX-2 ACAN 
AF *0.445 *0.368 †0.393 0.229 *0.569 
FC . . *0.653 *0.624 *0.629 
NP x 0.116 x 0.206 0.478 
LF *0.609 0.175 *0.564 *0.710 0.284 

*-Significant model, F, p<.05 †-Trending model, F,  p<.10 
x-no relative gene expression data available  
.-no important predictors identified in Part I  

 
 

Significant individual predictor coefficients are summarized in Table 24.  Across models 

for all tissues and genes, five mechanical predictors were significant:  Work Cumulative, NZk, 

aROM, MyRelaxation, and ROMf.  Predictors that showed trends toward significance include 

Hysteresis Mean and MxeRelax.  Thus, only ROMe, among the final set of predictors, showed no 

correlation with outcomes.  Standardized coefficients ranged between β = 0.643–5.083 for all 
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significant predictors.  Standardized coefficients were consistently large (>1.0) for NZk in LF 

across biological responses (β=1.961-5.083) with the largest value for NZk in COX-2 expression.  

Other significant predictors with large weights were Work Cumulative and aROM in AF, aROM 

in FC, and ROMf and My Relaxation in LF (see Table 24 for β-values).    

 

Table 24.  Summary of significant predictors and their standardized coefficients (β)  
 

Tissue MMP-1 MMP-3 ADAMTS-5 COX-2 ACAN 

  Predictor β Predictor β Predictor β Predictor β Predictor β 

AF 

        ROMf †1.03 

Work 
Cumulativ

e 

*1.7
8 aROM -*1.33 MyRelax †-

.54 NS . MyRelax *-.65 

    NZk †-
.52   Hysteresis 

Mean †-.52 

        Work 
Cumulative †-.53 

FC 

      Work 
Cumulative *-.77 aROM *-2.29 

NS . NS . NZk *-
.69 MyRelax *-.73 MyRelax. †1.909 

      aROM *.59 Work 
Cumulative †1.907 

NP NS . NS . NS . NS . MxeRelax †5.95 

LF 

      NZk *5.0
8   

NZk *1.9
6 NS . NZk *1.99 ROMf *2.6

0 NS . 

Work 
Cumulativ

e 

†1.1
7   ROMf †.51 MyRelax *1.5

3   

      aROM *.64   

*-Significant coefficients p<.05, †-Coefficient trends p<.10, NS-Non-significant or trending (p>.10) coefficients 

x-no relative gene expression data available 
 

 
The effect of varying hierarchical order-of-entry did not change significant results.  In the 

alternative hierarchical approach where predictors were entered based on their relevance in 

principal component analysis, no changes in significant models or significant predictors occurred 

(data not shown). The assumption of lack of multicollinearity was upheld very well within the 
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reduced, transformed data set.  Autocorrelation among predictors was low (R<.75), individual VIF 

values did not approach 10, and mean VIF values per regression were generally very close to 1.  

The assumption of independent errors, verified by assessing normality of standardized residuals, 

was generally upheld.  Assumptions of linearity were generally upheld; standardized predicted 

value vs. standardized residuals showed little evidence of underlying curves or shapes.  

Assumptions of homoscedasticity were valid in in all tissues (Appendices C.2.1 and C.6).   

8.3.5 Tissue-Specific Regression Analysis 

Results of individual multiple regressions are organized by tissue and listed in tables in the sections 

below.  Significant models are reported and explained in each section.  The constant (vertical 

offset) in each regression model is included in equations.   

8.3.6 Annulus Fibrosus (AF) 

Regression models were significant (or nearly so) in four of five biological outcomes in AF (Table 

25).  Only COX-2 expression was not well predicted by regression analysis.  Small to moderate 

effects were evident with R=0.368-0.569, indicating 13.5–32.3% of the biological variation 

explained by models.  AT moment-rotation properties (aROM, MyRelaxation) and Work 

Cumulative were significant predictors (Table 26).  Of these, aROM and Work Cumulative were 

large (β>1).  Individual models are discussed below.  
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Table 25.  Description of regression models for AF 
 

AF 
Gene F N Predictors R R2 Adjusted R2 
MMP-1 *5.942 26 1 0.445 .198 .165 

MMP-3 *5.649 38 1 0.368 .136 .112 

ADAMTS-5 †2.556 31 2 0.393 .154 .094 

COX-2 .910 36 2 0.229 .052 -.005 

ACAN *3.470 34 4 0.569 .324 .230 

*-Significant coefficients p<.05; †-Coefficient trends p<.10 
 

 
 

Table 26.  Description of model predictors for AF 
 

AF 
Gene Predictor B SE(B) β Sig. R 

MMP-1 Work Cumulative .001 .001 *1.789 .023 *0.445 

MMP-3 aROM -.115 .047 *-1.335 .023 *-0.368 

ADAMTS-5 NZk -.995 19.549 †-.520 .091 -0.216 

  MyRelax. .000 .000 †-.548 .069 †-.249 

COX-2 ROMf -.015 .015 -.337 .301 -0.188 

  MxeRelax -.001 .002 -.259 .448 -0.143 

ACAN Hysteresis Mean -.203 .122 †-.521 .058 *-.364 

  Work Cumulative -.001 .001 †-.534 .093 -0.158 

  ROMf .023 .013 †1.036 .079 0.136 

  MyRelax -.000 .000 *-.657 .013 †-.244 

*-Significant coefficients p<.05, †-Coefficient trends p<.10,  
B-coefficient weight, SE(B)-standard error of B, β-standardized coefficient, Sig.-p-value 
of t-test, R-univariate correlation 
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8.3.6.1 MMP-1 

Results:  Preliminary regression analysis identified Work Cumulative as the only important 

predictor of MMP-1 expression in AF (β=1.623, p=.142).  As is seen in Table 26, using Pearson’s 

correlation, Work Cumulative is significantly, positively correlated with MMP-1 expression 

(R=0.445).  Regression analysis (single variable) confirmed this significant relationship, R2 

=0.198, F (1, 26) =5.942 (p=.023) (Table 25).  Adjusted R2 was 0.033 less than R2, indicating a 

predicted 3.3% reduction in explained variation in the population as a whole.  Thus, these findings 

are considered generalizable.  The significant standardized coefficient, β=1.789, p=.023, indicates 

a large, positive effect of Work Cumulative on MMP-1 expression.   

𝑀𝑀𝑀𝑀𝑀𝑀1𝐴𝐴𝐴𝐴 = 1.5𝑥𝑥10−3 ∗ (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶. 𝐽𝐽) + 0.622 

Interpretations:  Cumulative work presumably describes the summation of repeated 

compression in flexion and tension in extension that AF undergoes in cyclic F/E.  MMP-1 

expression in AF has shown sensitivity to repeated tensile stretch and to abnormal compression 

[37, 204].  Thus, it is reasonable to suppose that cumulative work, which aggregates induced tensile 

and compressive stresses in the AF, is positively related to MMP-1 expression.  In the model, 

cumulative work has a moderate effect on predicted changes in MMP-1 expression.  A change of 

one standard deviation in Work Cumulative (85 J) elicits an increase in MMP-1 of 1.789 standard 

deviations (1.68-fold increase).  This represents a sizable change in work over 1 hour and a modest-

to-large change in MMP-1 expression in the data set which itself showed a small range.  Thus, by 

itself, Work Cumulative accounts for a small amount of variability in MMP-1 expression.  

However, the sequential regression analysis does identify a mechanical  
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factor, among many considered, that relates significantly to MMP-1 expression.  Given that only 

one mechanical factor comprises the model, it is not surprising that more than 80% of the MMP-1 

response remains unexplained.  

8.3.6.2 MMP-3 

Results:  Preliminary regression analysis showed aROM to be the only salient predictor of the 

MMP-3 response in AF (β=-1.117, p=.072).  Simple Pearson’s correlation (Table 26) showed 

aROM to be significantly negatively correlated with MMP-3 expression (R=-.368).  Regression 

analysis (single variable) confirmed this significant relationship, R2 =0.136, F (1, 38) =5.649 

(p=.023) (Table 25).  These findings are generalizable; Adjusted R2 was 0.024 less than R2, 

indicating a predicted 2.4% reduction in explained variation in the population as a whole.  A 

significant, large β=-1.335 (Table 26) denotes that an increase in aROM leads to a sizable decrease 

in MMP-3.   

𝑀𝑀𝑀𝑀𝑀𝑀3𝐴𝐴𝐴𝐴 = 2.197 − 0.115 ∗ (𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀 °) 

Interpretations:  This model identifies the only significant effect of a mechanical predictor 

on MMP-3 expression in this study.  In real terms, a decrease of 1.45° AT in repeated F/E leads to 

a predicted 1.80-fold increase in MMP-3 expression.  This is a fairly large amount of AT for a less 

than 2-fold increase in MMP-3 expression.  MMP-3 expression in FSUs subjected to Large 

AT+F/E manifested 70% lower MMP-3 expression levels than neutral F/E for a nearly 3° 

difference in AT angle.  The model does not account for this accurately, but the regression only 

accounts for 13.6% of the overall variability in MMP-3 expression.  Axial torsion elevates 

circumferential stress in AF [81, 369, 378] and may increase compressive stress as well [83, 84].  

Previous studies have shown that tensile stretch and compression can up-regulate MMP-3 

expression in AF cells, and tensile stretch can both increase or decrease expression based 
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magnitude of stretch [204, 242].  In disc-only models, axial torsion is associated with increased 

MMP-3 expression [36, 209].  In this model, increased aROM was associated with a moderate 

decrease in MMP-3 expression (β=-1.335), which is opposite from what was expected.  A possible 

explanation is that the range of axial torsion magnitudes coupled with F/E moments applied to 

FSUs in this study did not cause AF stresses to reach the threshold for MMP-3 activation seen in 

previous studies.  It is also likely that there are regional differences in the AF response based on 

torsion, but gene expression is a global average insensitive to regional variation. 

8.3.6.3 ADAMTS-5 

Results:  Multiple regression showed a trend toward predicting ADAMTS-5 expression (F, p=.096) 

with NZk and MyRelaxation.  Both variables had small, negative simple correlations with 

ADAMTS-5 expression (R=-216, -.249, respectively), though the correlation with NZk was not 

significant, and the correlation with MyRelaxation showed only a trend (p=.089).  In multiple 

regression, after adjusting for the influence of the other predictor, each predictor maintained a 

small-to-moderate negative weight on ADAMTS-5 expression reflected in β=-.520 (p=.091) and 

β=-.548 (p=.069) for NZk and My Relaxation, respectively (Table 26).  The model explained 

15.4% of ADAMTS-5 expression variability, R2 =0.154, F(2, 31) = 2.556, p=.096.   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴5𝐴𝐴𝐴𝐴 = 1.385 − 0.995 ∗ �𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁

°
� − 1.9𝑥𝑥10−4 ∗ (𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. %) 

Interpretations:  The regression model showed trends of increasing neutral zone stiffness 

and moment relaxation with decreased ADAMTS-5 expression.  Changes of 55% of the mean NZk 

or 545% of the mean MyRelaxation predict modest decreases of 29.5% and 31.1%, respectively, 

in ADAMTS-5 expression.  This suggests that a decrease in stress in the AF across repeated F/E 

may be associated with reduced ADAMTS-5 expression.  Previous studies provide little insight in 
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to the role of mechanics in regulating ADAMTS-5 in AF [66, 414, 415], but findings with 

ADAMTS-4 point to a positive relationship between aggrecanase gene expression and stress 

magnitudes [36, 416] which support the findings of the model.  Increased NZ stiffness is also 

associated with reduced ADAMTS-5 expression, but it is unclear how NZ stiffness relates to AF 

mechanics.  Previous studies explain how AF mechanics influence NZ width and elastic zone 

stiffness, but the AF’s role in NZ stiffness is considered negligible [417].  Increased NZ stiffness 

may reflect degenerative changes in other structures like the NP or LF, which are known regulators 

of NZ stiffness and stiffen with degeneration [87, 121, 141, 331, 418].  The consequence of a 

stiffer NZ, regardless of the cause, cause altered load distribution in the FSU and reduced stress in 

the AF.  This reduced stress in the AF could reasonably relate to lower ADAMTS-5 expression.  In 

any case, the model explains only a small amount of the variation in ADAMTS-5 expression in AF, 

and effects of individual predictors on the outcome were quite modest.   

8.3.6.4 ACAN 

Results:  Four predictors entered the final regression model for ACAN expression in AF (Table 

26).  MyRelaxation, Work Cumulative, Hysteresis Mean, and ROMf were all important predictors 

(β, p<.20) in preliminary regression analysis, with the most importance for Hysteresis Mean (β=-

.610, p=.064) and the least importance for MyRelaxation (β=.509, p=.161).  In simple regressions 

(Table 26), Hysteresis Mean was significantly, negatively correlated with ACAN expression (R=-

.364, p=.017), and MyRelaxation showed a trend of negative correlation with ACAN expression 

(R=-.244, p=.083). Work Cumulative was also negatively correlated with the outcome, but its 

effect was small (R=-.158) and insignificant (p=.187).  ROMf was positively correlated with 

ACAN expression, although it too was not significant (p=.222).  Combining these variables in 

multiple regression yielded a significant model that explained the largest variance in biological 
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outputs for AF, R2=.324, F(4, 34) =3.470, p=.020.  A decrease of 0.093 in the Adjusted R2 suggests 

a small mitigation of the generalizability of the model.  The coefficients of the model matched the 

sign of their simple relationships with ACAN expression:  Hysteresis Mean (β=-.521, p=.058), 

Work Cumulative (β=-.534, p=.093), and My Relaxation (β=-.657, p=.013) were negatively 

related to ACAN expression, and ROMf (β=1.036, p=.079) was positively related with the 

outcome.   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1.507− .203 ∗ (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐽𝐽) − 1.1𝑥𝑥10−3 ∗ (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶. 𝐽𝐽) + .022 ∗ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 °)

− 3.5𝑥𝑥10−4 ∗ (𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. %) 

Interpretations:  This model explains more than 30% of the variability in ACAN expression, 

and even though it uses four predictors, generalizability (based on Adjusted R2) is good.  While it 

is difficult to relate each of these mechanical predictors to AF mechanics, the results do not seem 

to adhere to the notion that increased ACAN expression in AF tissue is an adaptive response to 

elevated compression [9, 248].  My Relaxation increased, which denotes decreased torsional 

loading across cycles and putative lower AF compressive stresses [84], with increasing ACAN 

expression.  Energetic predictors also showed associations of decreased energy applied 

(cumulative work) and energy dissipated (hysteresis) with increased ACAN expression.  It is 

expected that sustained torsional moments, which presumably elevate compressive stress [84] in 

the AF, would increase ACAN expression [36, 206, 344].  Similarly, it is assumed that increased 

applied and dissipated energy relate, at least partially, to elevated compressive loading and fluid 

pressurization.  ACAN expression in AF is not like NP or FC because of lower aggrecan amounts.  

It is expected that ACAN expression would increase in AF in response to compressive stimuli, but 

the model does not agree with these expectations, nor, in fact, do simple regressions of each of 

these factors with ACAN expression.  On the other hand, ROMf is positively associated with ACAN 
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expression.  If increased ROMf adds to compression in AF, then elevated ACAN expression with 

increased ROMf is reasonable.  Nonetheless, given the assumption that tensile loading regulates 

collagen expression and compressive loading regulates proteoglycan expression, the expectation 

for increased proteoglycan expression based on how these predictors relate to compressive loading 

is not met.   

8.3.7 Facet Cartilage (FC) 

Regression models were significant in ADAMTS-5, COX-2, and ACAN expression in FC (Table 

27).  Gene expression is an average of left and right FC.  A uniform, large amount of variation was 

accounted for in these biological responses to loading (R=0.624-0.653); specifically, 38.9-42.6% 

of the variation in biological responses is explained by these models.  Significant predictors 

included aROM, My Relaxation, NZk, and Work Cumulative (Table 28).  The strongest individual 

predictor of a biological response was aROM in ACAN expression (β=-2.290), and this predictor 

factored in to each significant model in FC.  In addition to aROM, My Relaxation and Work 

Cumulative were both involved in significant COX-2 and ACAN models.  NZ stiffness (β=-.699) 

was important in explaining variation in ADAMTS-5 expression.  No predictors emerged from 

preliminary regression analysis as being important (p<.20) in explaining variation in MMP-1 and 

MMP-3 expression.  Significant models are discussed below.   
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Table 27.  Description of regression models for FC 
 

FC 
Gene F N Predictors R R2 Adjusted R2 

MMP-1 no important (p<.20) predictors    

MMP-3 no important (p<.20) predictors    
ADAMTS-5 *5.578 18 2 .653 .427 .350 

COX-2 **5.088 28 3 0.624 .389 .312 

ACAN *3.715 21 3 0.629 .396 .289 

 
 
 

Table 28.  Description of model predictors for FC 
 

FC 
Gene Predictor B SE(B) β Sig. R 

MMP-1 no important (p<.20) predictors 
MMP-3 no important (p<.20) predictors 

ADAMTS-5 aROM .180 .129 .525 .123 *0.401 

  NZk -1.000 811.444 *-.699 .019 **-.570 

COX-2 Work Cumulative -.004 .001 *-.777 .002 *-.335 

  MyRelax -.001 .000 *-.733 .005 -.231 

  aROM .112 .055 *.597 .036 .096 

ACAN aROM -.111 .033 *-2.29 .005 *-.454 

  Work Cumulative .001 .001 †1.907 .063 .056 

 My Relax. .024 .011 †1.909 .056 .132 

*-Significant coefficients p<.05, **-p<.01; †-Coefficient trends p<.1 
B-coefficient weight, SE(B)-standard error of B, β-standardized coefficient, Sig.-p-
value of t-test, R-univariate correlation  

 
 

8.3.7.1 ADAMTS-5 

Results:  Preliminary regression analysis identified aROM (β=-1.495, p=.163) and NZk (β=-1.967, 

p=.073) as important predictors of ADAMTS-5 expression in FC.  Table 28 shows that, in simple 

regression, aROM is significantly positively correlated (R=.401, p=050) and NZk is significantly 
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negatively correlated (R=-.570, p=.007) with ADAMTS-5 expression.  When entered in to the final 

regression model, a significant, large amount of variation is explained:  R2 =0.427, F (2, 18) =5.578 

(p=.015) (Table 27).  Adjusted R2 was 0.076 less than R2, indicating a predicted 7.6% reduction 

in explained variation in the population as a whole.  NZk had a significant, moderate negative 

weight in the model (β=-.699, p=.019), indicating that specimens exhibiting higher neutral zone 

stiffness were linked to decreased ADAMTS-5 expression in FC.  aROM did not factor significantly 

in to the regression model.   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴5𝐹𝐹𝐹𝐹 = 1.572 −  .180 ∗ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 °) − 1.00 ∗ (𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁/°) 

Interpretations: This model predicts a large amount of the variation (42.7%) in ADAMTS-

5 expression.  ADAMTS-5 expression decreased or did not change in FC in the sample data set:  

0.60-1.01-fold change in relative expression.  An increase of 55% of the mean NZk leads to an 

expected 22.6% decrease in ADAMTS-5 expression, which represents over half of its range from 

the experimental data.  The model indicates that increased stiffness of the NZ is correlated with 

reduced gene expression.  It is possible that FSUs with higher NZ stiffness, whatever the cause, 

have less engagement of facet joints in extension because other, stiffer tissues take up more of the 

moment resistance [92, 419].  Reduced FC compression could plausibly lead to reduced ADAMTS-

5 expression [420, 421].  Another possible explanation for this relationship posits that age-related 

or degeneration-mediated changes in FSUs with stiffer neutral zones cause a diminished ADAMTS-

5 response [401, 422].   

8.3.7.2 COX-2  

Results:  Three predictors entered the final regression model for COX-2 expression in FC (Table 

28).  Work Cumulative, MyRelaxation, and aROM were all important predictors (β, p<.20) in 

preliminary regression analysis.  The most important predictor, based on preliminary regression 
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coefficient significance, was Work Cumulative (β=-.146, p=.007) followed by MyRelaxation (β=-

.460, p=.013) and aROM (β=.504, p=.107).  In simple regressions (Table 28), Work Cumulative 

(R2= -.335, p=.041) and MyRelaxation (R2=-.231, p=.119) are negatively, moderately correlated 

with COX-2 expression but aROM is weakly, positively correlated with the outcome (R2=.096, 

p=.313). Combining these variables in multiple regression yielded a significant model that 

explained a large amount of variance in COX-2 expression in FC, R2 = .389, F(3, 28) =5.088, 

p=.007.  The results of the model were considered to be generalizable based on an Adjusted R2 

that was 0.076 less than R2.  All coefficients in the model were significant, positive, of similar 

weights (β=.597-.777), and matched the sign of their simple relationships with COX-2 expression.   

𝐶𝐶𝐶𝐶𝐶𝐶2𝐹𝐹𝐹𝐹 = 5.145 + .112 ∗ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 °) − 7.4𝑥𝑥10−4 ∗ (𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. %) − .004 ∗ (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶. 𝐽𝐽) 

Interpretations:  In FC, cumulative work, AT moment relaxation, and axial ROM were 

significantly associated with COX-2 expression (averaged between right and left FC).  Increases 

in axial ROM were associated with increases in COX-2 expression, suggesting more asymmetric 

rotation of the FSU in F/E is linked to higher COX-2 expression.  Decompression and supra-normal 

compression of cartilage, reflecting changes in gapped and compressed facets with torsion, can 

both lead to pro-inflammatory changes in cartilage [342, 423].  In this model, an increase of 1.45° 

leads to a 98% increase in COX-2 expression, which reflects a modest relationship between the 

predictor and output.  Additionally, more AT moment relaxation was associated with elevated 

COX-2 expression, indicating that FSUs which decreased more from their initial AT moment 

tended to have higher pro-inflammatory gene expression.  Specifically, the model projects that 

FSUs which experienced 100% more relaxation would have 35.4% less COX-2 expression; this 

effect is relatively small given the required magnitude of relaxation to see the effect.  Also, 

specimens with less cumulative work tended to have higher COX-2 expression.  Holding other 
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predictors constant, an increase of 85 J (35% of mean Work Cumulative) is expected to reduce 

expression by 127.9%.  The effect of aROM on the model agrees with theoretical expectations of 

increased compression and decompression causing COX-2 up-regulation [342], but My Relaxation 

and Work Cumulative act on pro-inflammatory gene expression in a manner not anticipated.   

8.3.7.3 ACAN 

Results:  Preliminary regression analysis yielded aROM, Work Cumulative, and My Relaxation as 

important predictors (β= -.639, p=.024;β= .502, p=.126, and β= .373, p=.188, respectively).  

Predictors aROM had a significant, moderate negative correlations with ACAN expression (R=-

.454, p=.019), and Work Cumulative and My Relaxation had very small positive correlations with 

ACAN (R=.056, p=.405 and R=.132, p=.285, respectively).  In multiple regression, the model 

explained nearly 40% of the variation in ACAN expression in FC (Table 27), R2=.629, F(3,21) 

=3.715, p=.032.  There was a modest loss of generalizability in this model described by a 0.107 

decrease between R2 and Adjusted R2.  All predictors had large effects on ACAN expression 

(β=1.907-3.796).  After adjusting for the influence of Work Cumulative and My Relaxation, 

aROM factored significantly and largely in influencing model predictions of ACAN expression; 

increases of one standard deviation in aROM would reduce ACAN expression by 3.796 standard 

deviations (p=.005).  The partial correlation effects of My Relaxation and Work Cumulative were 

not significant but were nearly so (p=.056 and p=.063, respectively).   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹 = 0.585 − .111 ∗ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 °) + 2.56𝑥𝑥10−4 ∗ (𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. %) + 1.1𝑥𝑥10−3

∗ (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶.  𝐽𝐽) 

Interpretations:  The relationship that emerges from this model is a large, negative effect 

of axial torsion rotation angle on ACAN expression in FC.  Fixing other factors, for a given increase 

in aROM of 0.73°, ACAN expression is expected to decrease by 49.8%.  This model accounts for 
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39.6% of the variation in ACAN expression, and axial torsion properties have large weights in the 

model.  Dramatic reduction of anabolic expression in FC (mean expression of both facets) with 

torsion suggests that altered FC mechanics in torsion dampen anabolic expression.  In left-sided 

axial torsion, FC on the left side is gapped, and FC on the right side is compressed [85, 354].  The 

gapped FC experiences depressurization (i.e. loss of compression), the compressed side 

experiences increased compression [85], and both sides have altered shear loading during F/E [67].  

De-compression, excessive compression, and elevated shear loading in chondrocytes can reduce 

anabolic expression [423, 424], confirming the relationship described by the regression model.  In 

contrast, holding other factors constant, increased cumulative work or moment relaxation predicted 

increased ACAN expression.  The large effect of cumulative work leading to increased 

compression agrees with expectations below damaging loading magnitudes or durations [9].   

8.3.8 Nucleus Pulposus (NP) 

No regression models were significant in relating mechanical factors to gene expression responses 

in NP (Table 29).  Mechanical factors describing extension were important predictors from the 

preliminary regression analysis for MMP-3, COX-2, and ACAN.  NP is the only tissue where 

extension properties emerged as important from the preliminary regression analysis while no 

models were significant in the final analysis.  ACAN expression showed a trend of an  

individual predictor, MxeRelaxation (p=.100), significantly influencing a model (Table 30).  This 

was the only incidence of extension moment relaxation (or an extension property at all) 

contributing to prediction of biological responses, albeit insignificant.   
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Table 29.  Description of regression models for NP 
 

NP 
Gene F N Predictor R R2 Adjusted R2 

MMP-1 no gene expression available     
MMP-3 .353 28 1 .116a .013 -.025 

ADAMTS-5 no gene expression available     
COX-2 .442 23 2 0.206 .042 -.053 

ACAN 1.085 15 3 0.478 .228 .018 

*-Significant coefficients p<.05 †-Coefficient trends p<.10 
 

 
Table 30.  Description of model predictors for NP. 

 
NP 

Gene Predictor B SE(B) β Sig. R2 

MMP-1 no RGE available           
MMP-3 ROMe .027 .046 .305 .558 .116 

ADAMTS-5 no RGE available           
COX-2 Hysteresis Mean .193 .255 .489 .446 .188 

  ROMe .013 .035 .217 .706  .116 
ACAN MxeRelax .007 .004 †5.958 .100 .292 

  NZk 4.634E+22 8.263E+15 6.173 .182 -.048 
  ROMf .054 .045 2.346 .258  .044 
*-Significant coefficients p<.05; †-Coefficient trends p<.10 
B-coefficient weight, SE(B)-standard error of B, β-standardized coefficient, Sig.-p-
value of t-test, R-univariate correlation 

 
 

8.3.8.1 ACAN 

Results:  MxeRelaxation, NZk, and ROMf were important predictors in the preliminary regression 

analysis with coefficient significance of p=.118, p=.131, and p=.142, respectively.  

MxeRelaxation showed a positive, weak but insignificant correlation with ACAN expression, 

while NZk and ROMf did not weakly or significantly correlate with ACAN expression (Table 30).  

In multiple regression, MxeRelaxation had a strong positive effect on predicted ACAN expression 

(β=5.958, p=.100).  The other factors did not significantly impact the model.  The model itself 
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predicted 47.8% of the variability in ACAN expression (Table 29), but it was not significant and 

not generalizable (Adjusted R2 = .018).   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁 = −.665 + 6.95𝑥𝑥10−3 ∗ (𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. %) + 4.6𝑥𝑥10−22 ∗ �𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁

°
� + .054

∗ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 °) 

Interpretations:  Because the model is not significant or generalizable, its impact is limited.  

A decrease in MxeRelaxation of 10.4% (less relaxation) leads to a 75.7% increase in ACAN 

expression.  Given the size of relaxation and range of ACAN modulation in FSU loading, this is a 

large effect.  The trend of reduced extension moment relaxation (or sustained extension moments 

across cycles of loading) with increased ACAN expression is a reasonable result.  Extension 

moments are born to a large extent by NP [87, 88, 92]; sustained extension moments indicate 

higher average loading (less load dissipation) and less load dissipation, a process in which the NP 

plays a prominent role [418].  Higher pressurization in NP cells, within a window of physiologic 

pressure magnitudes, elicits increases in ACAN expression [98, 425].  So, increased ACAN 

expression with reduced load dissipation could represent an adaptive, anabolic response.   
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8.3.9 Ligamentum Flavum (LF) 

Regression models were significant in MMP-1, ADAMTS-5 and COX-2 expression in LF 

(Table 31).  In these models, a large amount of variation, R=0.537-0.710, reflecting 31.9-50.4% 

of the variation in biological responses, was explained by mechanical predictors.  Significant 

predictors included NZk, ROMf, aROM, and MyRelaxation.  NZk was a large, significant 

predictor in each significant model.  LF was the only tissue in which ROMf was a significant 

predictor.  Significant models are discussed below.  MMP-3 and ACAN expression in LF were not 

predicted by regression model factors.   

 

Table 31.  Description of regression models for LF 
 

LF 
Gene F N Predictors R R2 Adjusted R2 

MMP-1 **4.900 29 3 0.609 .370 .295 

MMP-3 .856 29 1 .175a .031 -.005 

ADAMTS-5 *4.052 30 3 .564 .319 .240 

COX-2 **5.848 28 4 0.71 .504 .418 

ACAN 2.377 29 1 0.284 .081 .047 
*-Significant coefficients p<.05 †-Coefficient trends p<.10 
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Table 32. Description of model predictors for LF 

LF 
Gene Predictor B SE(B) β Sig. R 

MMP-1 NZk 2.20E+06 754.256 *1.961 .037 †.296 

 Work Cumulative .002 .001 †1.171 .074 **.497 

 ROMf .041 .025 1.273 .123 .178 

MMP-3 ROMf .026 .028 .497 .363 .175 

ADAMTS-5 NZk 6.57E+10 1671.209 *4.024 .011 *.357 

 ROMf .000 .000 1.763 .038 .149 

 MyRelax .058 .026 .972 .190 .056 

COX-2 aROM -.186 .072 *-.643 .007 **.458 

 NZk 3.89E+14 1.389E+4 *5.083 .002 .142 

 MyRelax .001 .000 *1.532 .035 .112 

 ROMf .090 .030 *2.605 .008 †.256 

ACAN NZk -1.00 282.674 -.481 .135 †-.284 

Significant coefficients p<.05 †-Coefficient trends p<.10 
B-coefficient weight, SE(B)-standard error of B, β-standardized coefficient, Sig.-p-value of t-test, R-univariate 
correlation 
 
 

8.3.9.1 MMP-1 

Results:  Preliminary regression analysis identified NZk (β=.967, p=.023), Work 

Cumulative (β=.390, p=.069), and ROMf (β=.473, p=.071) as important predictors of MMP-1 

expression in LF.  Table 32 shows that Work Cumulative is significantly, largely, and positively 

correlated with MMP-1 (R=.497, p=.003).  NZk and ROMf are moderately positively correlated 

(R=-.296, p=.060 and R=.178, p=.178, respectively).  In multiple regression, only NZk was 

significant as a predictor of MMP-1 (β=.471, p=.037), but Work Cumulative was close to 

significance (β=.337, p=.074).  Both predictors had positive weights in the model, indicating that 

increases in neutral zone stiffness and cumulative work related to expected increases in MMP-1 
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expression.  The size of the weights was modest, but the model was able to account for 37.0% of 

the variation in MMP-1 expression in LF, R2 =.370, F (3, 29) =4.900, p=.008.  Adjusted R2 was 

0.076 less than R2, indicating good generalizability to the population as a whole.   

𝑀𝑀𝑀𝑀𝑀𝑀1𝐿𝐿𝐿𝐿 = −0.409 + 2.2𝑥𝑥106 ∗ �𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁

°
� + 1.8𝑥𝑥10−3 ∗ (𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶.  𝐽𝐽) + .041

∗ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 °) 

Interpretations:  As NZk increases in LF, MMP-1 expression increases moderately 

(β=0.471).  A 55% increase in NZk elicits from the model a 44.2% increase in MMP-1 expression.  

Given the small responses in MMP-1 in LF to F/E and the small variation in NZk, this effect is 

modest.  The influence of Work Cumulative is even smaller, but it also has a positive weight in 

the model.  Within these small changes, NZk, and to a lesser extent, Work Cumulative, explain 

over a third of the variability in MMP-1 expression.  This model suggest that additional tensile 

loading—reflected in energy imparted to the LF in flexion or in higher tensile forces in stiffer 

FSUs—leads to projected higher expression of MMP-1 in these tissues.  Studies examining 

ligament fibroblasts have identified variable sensitivity of MMP-1 to tensile loading [426, 427], 

but MMP-1 mediated remodeling in response to tensile loading has been observed in ligaments in 

vivo [428].  In the context of these previous findings, the relationship of Work Cumulative and 

NZk to MMP-1 expression in LF is tenable and enlightening.   

8.3.9.2 ADAMTS-5 

Results:  NZk (β=.695, p=.061), ROMf (β=.335, p=.178), and My Relaxation (β=.310, 

p=.119) were important predictors following preliminary regression analysis (Table 32).  Each 

predictor was weakly to moderately positively correlated to ADAMTS-5 expression in simple 

correlation, though only NZk showed a significant correlation (p=.027).  In multiple regression, 
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NZk was a strong, significant predictor of ADAMTS-5 expression (β=4.024, p=.002), and ROMf 

was less so but also significant (β=1.763, p=.038).  My Relaxation was not significant (β=.972, 

p=.093).  Both significant predictors had positive weights in the model, indicating that increases 

in neutral zone stiffness and flexion angle led to expected increases in ADAMTS-5 expression in 

LF.  The size of the weights was moderate and the model was able to account for 31.9% of the 

variation in ADAMTS-5 expression in LF, R2 =.319, F (3, 30) =4.502, p=.017 (Table 31).  

Adjusted R2 was 0.079 less than R2, indicating a predicted 7.9% reduction in explained variation 

in the population as a whole.  This suggests a small loss in generalizability in this model.   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿 = −.380 + 6.5𝑥𝑥1010 ∗ �𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁

°
� + 3.5𝑥𝑥10−3 ∗ (𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. %) + 0.058

∗ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 °) 

Interpretations: This model significantly relates NZk and ROMf to changes in ADAMTS-

5 expression, and in so doing accounts for a modest amount of variation in ADAMTS-5 changes 

with F/E.  Increases of NZk by ~55% of the mean or increases of ROMf angle by 3.77° lead to 

61.4 or 40.4% increases in ADAMTS-5 expression, respectively.  A strong, positive relationship 

between NZk and ADAMTS-5 expression was evident, which is expected.  Higher magnitudes of 

loading in LF have been shown to provoke inflammation [161] and proteoglycan metabolism 

dysregulation in ligamentous tissue [363].  The LF, which plays a prominent mechanical role 

throughout the NZ and in flexile moment resistance [86, 87], could be stiffer in stiffer FSUs.  In 

this case, LF tissues would likely experience higher forces in stiffer FSUs and in those with greater 

amounts of flexion.  So, an association between stiffer NZk and greater ROMf with higher 

ADAMTS-5 expression is reasonable.  Alternatively, if other tissues like the NP are  
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responsible for stiffer NZk, then it is likely that LF tissue would be stress-shielded and experience 

reduced loading.  Reduced loading could provoke catabolic expression as a part of adaptive, 

structural remodeling [9].   

8.3.9.3 COX-2 

Results:  Four predictors entered the final regression model for COX-2 expression in LF 

(Table 32); MyRelaxation, aROM, NZk, and ROMf were all important predictors (β>0.3, p<.20) 

in preliminary regression analysis, with the most importance for aROM (p=.014) and the least 

importance for MyRelaxation (p=.073).  In simple regressions (Table 32), all variables had 

positive correlations with COX-2 expression, but only aROM had a large, significant correlation 

(R=.458, p=.007).  Combining these variables in multiple regression yielded a significant model 

that explained the largest variance in biological outputs for LF, R2 = .504, F(4, 28) =5.848, p=.002 

(Table 31).  Adjusted R2 was 0.086 less than R2, indicating a predicted 8.6% reduction in explained 

variation in the population as a whole.  This suggests a small loss in generalizability in this model, 

probably reflected in a relatively high predictor-to-sample size ratio.  NZk had the largest weight 

in the model, and MyRelaxation had the least influence on the outcome.   

𝐶𝐶𝐶𝐶𝐶𝐶2𝐿𝐿𝐿𝐿 = −.592 + .186 ∗ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 °) + 3.9𝑥𝑥1014 ∗ �𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁

°
� + 1.0𝑥𝑥10−3 ∗ (𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.  %)

+ 0.089 ∗ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 °) 

Interpretations:  The individual contribution of each predictor was small to moderate; 

modest changes in predictors separately effected 104.2 – 185.7% increases in COX-2.  Added 

together, however, they accounted for a majority of COX-2 expression changes in LF.  This is the 

only model in all tissues and genes to account for a majority of the biological variation in a gene.  

Results of Section 7.3 corroborate this expectation in rabbit lumbar FSUs.  Increases in each of 
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these parameters point to elevated tensile loading in LF.  Increased axial ROM putatively increases 

tensile loading in the contralateral portion of the LF during asymmetric motions [93] although 

regional assessment of gene expression was not performed.  Increased NZ stiffness suggests 

greater tensile loading of LFs during each cycle of loading [87].  Higher flexion ROM is indicative 

of greater LF involvement in moment resistance [86, 87].  Less relaxation of AT moments suggests 

a maintaining of higher loading in the LF [93].  As each of these parameters putatively increased 

loading in LF, COX-2 expression increased.   

8.3.10 Comparisons Across Tissues 

As noted, significant LF and FC models had higher R values (0.564-0.710) than AF models (0.368-

0.569).  In particular, the COX-2 response in LF was best predicted by mechanical factors; just 

over half of its variability (50.4%) can be attributed to mechanical factors.  MMP-1 in LF, COX-2 

in FC, ACAN in FC, and ADAMTS-5 in FC were also well described by regression models; 37.1%, 

39.0%, 39.6%, and 42.6% of the variation in responses, respectively, was accounted for in these 

analyses.  NP did not have significant regression models, and this agrees with mechanical studies 

showing small changes in NP pressurization with bending and torsion [411].  This also likely 

reflects the absence of axial compression applied to rabbit FSUs.   

The ability of mechanics to predict changes in expression of particular genes also varied 

across tissues.  ADAMTS-5 expression was consistently well-described in regression models across 

tissues (3 of a possible 3 tissues had models p<.10).  Variation in MMP-1 (2 of 3), COX-2 (2 of 

4), and ACAN (2 of 4) was significantly accounted for models in two tissues each.  Models 

explaining MMP-3 expression were only significant in one tissue (1 of 4), and its effect (R<.368) 

was considerably smaller than other genes.  Intriguingly, variability in ADAMTS-5 expression, 
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which was relatively small, was consistently accounted for by mechanical factors in all tissues, but 

variability in MMP-3 expression, which was much larger, was poorly accounted for by mechanical 

factors across tissues.  The other genes demonstrated a moderate amount of tissue-specificity in 

their relation to mechanical predictors.   

Mechanical predictors also showed noteworthy patterns across tissues.  In LF, NZk and 

ROMf were important predictors in the preliminary regression analysis in 4 of 5 and 3 of 5 genes, 

respectively (see Table 22).  In final regression analysis, NZk was a significant predictor for each 

significant model in LF (3 of 3) and ROMf was significant in 2 of 3 models (Table 24).  In FC, 

aROM emerged from preliminary analysis as an important predictor in 3 of 5 genes (Table 22), 

and it remained salient as a significant predictor in significant models in FC (2 of 3) (Table 24).  

Interestingly, NZk was also a significant factor in all ADAMTS-5 models across tissues (Table 24).  

NZk demonstrated specificity as a significant predictor in AF and FC for ADAMTS-5 only.  Work 

Cumulative was a significant predictor in both significant models for MMP-1 expression, and AT 

moment-rotation predictors were significant in both significant models for COX-2 expression and 

multiple models in AF and FC.  Predictors in ACAN across tissues were consistently related to 

relaxation properties.   

8.4 DISCUSSION 

Linear multiple regression showed that mechanical predictors accounted for moderate to large 

amounts of variation (R=0.4-0.6 being moderate, R>0.6 being large) in relative gene expression 

for pro-inflammatory, catabolic, and anabolic markers in viable spinal segments loaded ex vivo in 

flexion/extension (F/E) and combined F/E with axial torsion (AT).  Models explained up to 50.4% 

 189 



of the variability in outcomes, which, given the wide age range in rabbits used in this study, the 

inclusion of males and females, and the short duration and mild nature of the mechanical 

intervention, is quite remarkable.  The first goal of the study was to identify the most important 

mechanical parameters and use them to drive regression analysis.  The second aim was to develop 

models that explain variation in gene expression with mechanical predictors and compare the 

ability of mechanical parameters to predict biological responses across tissues and genes.  A 

corollary of the second aim was to identify those predictors that best describe biological responses 

to obtain insight in to what mechanical factors truly associate with biological changes.  The major 

findings of the analysis highlighted that mechanical predictors had a greater influence on biological 

response in FC and LF than AF and NP.  Regression also uncovered important mechanical 

predictors—F/E NZk, AT properties, and cumulative work—as important variables in predicting 

biological responses across tissues.   

Identifying differences between tissues based on the ability of mechanical predictors to 

account for variation in biological responses describes differential mechanosensitivity among FSU 

tissues subjected to the same applied loading.  In pure moment F/E and AT + F/E, FC and LF show 

greater effects of mechanical loading on biological responses than AF and NP.  This finding 

underscores the importance of examining spinal tissues beyond the disc, particularly in rotational 

loading.  Considering the demonstrated mechanosensitivity of disc tissues to compression 

parameters [22], the observed differential mechanosensitivity in F/E and AT+F/E points to (i) how 

spinal movements in different DOF differentially load tissues in spinal segments (seen in Chapter 

7.0 ) and (ii) how biological responses depend on the DOF of loading.  Comparing the 

mechanosensitivity of disc tissues in this study shows that the AF is more responsive to rotational 

loading than the NP.  This result agrees with previous studies that have shown the AF to experience 

 190 



large changes in stress in F/E and AT, particularly in the posterior region [80, 429, 430].  

Compressive stress or intradiscal pressure in the NP can change dramatically in flexion [431] as 

well, and to lesser extent in extension and AT [83, 432], but disc puncture (which included AF 

damage in addition to NP depressurization), showed only small effects of NP pressurization in 

F/E.  Changes in stress in the AF may be larger [430] and, more importantly, lack of applied axial 

compression reduces NP pressure [374], which likely alters NP mechanosensitivity and limits 

translation of these results.   

Different genes exhibit different amounts sensitivity to mechanical loading.  While 

mechanical loading can modulate cell metabolism and regulate genes non-specifically, ample 

evidence points to gene, tissue, and loading parameter specificity in mechanoregulation [22, 30].  

In this analysis, sensitivity of specific gene expression to mechanical predictors, measured by 

model significance (Table 23), was not specific to gene categories:  pro-inflammatory, catabolic, 

and anabolic.  However, considering only significant regression models, COX-2 expression 

demonstrated the highest dependence on mechanical predictors.  Mechanics has proven to 

influence COX-2 expression specifically in chondrocytes and LF fibroblasts [161, 433].  The 

largest differences in genes were between ADAMTS-5, explained by regression models in 3-of-3 

tissues, and MMP-3, explained by regression models in only one tissue.  This finding sheds new 

light on the role of ADAMTS-5 in spinal tissues, which is largely under-studied in mechanobiology 

[30].  It also suggests an on/off regulation of MMP-3, which was up-regulated by loading in all 

tissues but not, apparently, modulated by mechanical variation.  This kind of response in MMP-3 

is not evident in disc compression studies [204, 257].  On the whole, mechanical regulation of gene 

expression was specific to combinations of individual genes and tissues.   

 191 



This study identified the most important mechanical parameters among the set of candidate 

predictors and assessed their contribution to significant models of gene expression.  The primary 

results of PCA cleanly reflect theoretical expectations.  PCA identified ROMf and ROMe as 

parameters correlated with the first two principal components; this intuitive result confirms the 

simple expectation that, in tissues subject to applied, repeated flexion/extension, mechanical 

parameters describing flexion and extension should matter most.  Cumulative work reflects both 

F/E moments and movements, so its eminence in the data set is also reasonable if less obvious.  

Interestingly, biological responses were not consistently or strongly related to flexion or extension 

ROM in multiple regression but were consistently and strongly related to cumulative work, 

particularly in MMP-1 expression.  It appears then that applied energy better accounts for 

biological changes in response to loading than changes in response to motion amplitudes.  PCA 

also uncovered the importance of neutral zone stiffness among mechanical factors.  Neutral zone 

stiffness influences the amount of loads experienced in tissues throughout the majority of motion 

paths.  Stiff tissues increase loads experienced in that tissue and alter loads experienced in other 

tissues of the FSU.  It is possible that this variation in loads experienced by tissues throughout the 

bulk of cyclic loading underlies the reason for the consistent importance of NZk in significant 

regression models.  PCA revealed the secondary importance of relaxation of parameters and axial 

torsion properties in the data set.  While less important to variation in the mechanical predictors 

than flexion and extension ROM, axial torsion responses much more consistently related to 

biological outcomes.  Small amounts of axial rotation, which reflect asymmetries, have a strong 

influence on biological outcomes.  This result echoes findings from Specific Aim 2.  Thus, 

movements in flexion and extension account  
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for large amounts of variation in mechanical data, but these amplitudes of movement are not strong 

predictors of biological change.  Rather, cumulative work, neutral zone stiffness, and axial rotation 

account for much of the biological variation.   

Translating these mechanical predictors to other loading modes requires mechanical 

parameters that are insensitive to DOF.  A goal of this regression model was to identify mechanical 

response parameters that could be generalized to other loading modes and serve as a basis for 

comparison across these modes.  Energetic properties—work and hysteresis—represent energy 

applied to or dissipated from spinal segments, which does not depend on DOF.  In this study, 

cumulative work and mean hysteresis per cycle emerged from preliminary analysis as important 

predictors, but their influence in biological outcomes was limited.  Cumulative work was more 

important than mean hysteresis as a model predictor (mean hysteresis was not a significant 

predictor in any model), though it was not broadly significant across tissues or genes.  Thus, an 

attempt to broadly explain biological variation in response to applied loading through energetic 

properties is not supported by these data.  Instead, cumulative work proves to be instructive in 

explaining biological responses in MMP-1 expression in AF and LF where positive relationships 

between Work Cumulative and gene expression is illuminating [204, 427, 428].   

Similarly, it was hypothesized that change in mechanical parameters (e.g. moments) across 

cycles would vary with samples and serve as predictors that could translate across DOF.  This 

phenomenon of load relaxation reflects a certain adaptation to loading by FSUs wherein, by means 

of tissue composition and interaction of multiple tissues, constantly applied movements are 

supported by reduced tissue loading.  This adaptation is generally thought to be advantageous, 

potentially lowering risk of injury [403, 434] and attenuating mechanical stimuli [112, 382, 435]. 

Relaxation parameters influenced aggrecan metabolism (ADAMTS-5 and/or ACAN expression) in 
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disc tissue and pro-inflammatory signaling in FC and LF; relaxation parameters were significant 

in 2 of 5 AF (ADAMTS-5, ACAN), 2 of 5 FC (COX-2, ACAN), 1 of 3 NP (ACAN), and 1 of 5 LF 

(COX-2) models.  Load dissipation is governed principally by NP hydration and NP-AF 

interactions [410, 411].  Thus, it is reasonable that in these tissues moment relaxation relates to 

aggrecan metabolism, which directly influences tissue hydration and time-dependent changes in 

tissue pressurization [436].  The influence of time-dependent changes in loading in FC and LF on 

pro-inflammatory changes is more obscure; however, a possible interpretation is that the ability to 

adapt to repeated loading could mollify or exacerbate pro-inflammatory changes in these tissues 

[403, 434].  In general, relaxation parameters were consistently but not strongly associated with 

biological changes, limiting their utility.   

Translating these results to clinical application is appealing, but additional testing and an 

expanded framework are required prior to doing so.  The limitations of species, simplified loading 

modes, lack of physiologic compression, and lack of systemic factors certainly prevent immediate 

translation to humans.  Even acknowledging those limitations, much of the variation in gene 

expression remains unexplained, so model predictions are fairly inaccurate.  Furthermore, relative 

gene expression describes initial molecular responses within cells; numerous levels of regulation 

occur between transcription and functional protein activity that can modify the ultimate biological 

response.  The scope of testing must also be expanded and more complex models introduced to 

discover and describe the likely non-linear relationship between most mechanical parameters and 

biological responses [437].  Clinically, routine measurement of the most useful mechanical 

predictors, like neutral zone stiffness and axial torsion, is impractical if not impossible.  

Nevertheless, the relationships identified between mechanical predictors and  
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biological responses takes an initial step toward quantifying the effects of multi-dimensional 

loading on spinal tissues to quantitatively assist recommendations for injury prevention and 

rehabilitation exercises.   

Multiple regression is subject to a number of limitations.  The order of predictor entry will 

always influence regression results in datasets where multicollinearity exists to any extent.  

However, evidence for a strong effect of order does not exist.  The type of predictors that were 

significant for each tissue did not reflect the assumed order in the hierarchical entry.  Multiple 

regression is also not used to test hypotheses or identify causal relationships; instead, it predicts 

associations between multiple variables that can be used to understand variations within data, 

cautiously extrapolate to larger populations, and motivate experimental testing.   

8.4.1 Conclusions 

The primary motivation for performing multiple regression was to investigate whether mechanical 

responses can predict biological responses and how this predictive capacity varied across tissues 

and genes.  In a general sense, as in Specific Aims 1 and 2, experiments are designed based on 

applied mechanics.  Samples are grouped based on applied mechanics, and changes in biological 

responses are assessed based on these groups.  Different samples may have different mechanical 

properties, related to tissue damage, age-related changes, or inadvertent pre-loading, and so 

respond differently to the same applied mechanics.  Understanding the link between mechanical 

responses and biological responses provides insight in to how tissue responses (related to function 

or properties instead of group), affects cellular and molecular behavior.  While a majority of the 

variation in biological responses remains unexplained by mechanical predictors, multiple 

regression did uncover a number of important relationships:  (1) neutral zone stiffness (NZk) and 
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LF catabolism and inflammation, (2) neutral zone stiffness and aggrecan metabolism (ADAMTS-

5) in all spinal tissues, (3) axial torsion and anabolism in FC, and (4) cumulative work and MMP-

1 expression in LF and AF.  Given (i) the small amount of variability (<30%) in disc degeneration 

that mechanics is thought to account for in vivo [438] and (ii) the use of macroscopic mechanical 

parameters rather than cellular level parameters to describe cell-based biological changes, the 

amount of variation explained by mechanical factors is remarkable if not surprising.   

 196 



9.0  DISCUSSION 

9.1 SUMMARY 

This work has provided the field of spine and orthopaedic research with a novel experimental 

platform for simultaneous biological assessment of multiple spinal tissues in intact spinal segments 

subjected to 6 DOF loading.  Previous systems have examined axial compression and axial torsion 

only, so the investigation of pure flexion/extension and combined rotations—flexion/extension 

with axial torsion—represents an important advancement in mechanobiology of the disc and spine.  

Moreover, the preservation of osteoligamentous FSUs with intact endplates and posterior 

structures ensures in-situ load transmission in the disc that has not been achieved previously.  Most 

importantly, retention of facet joints and posterior ligaments enables simultaneous biological 

assessment of facet cartilage and ligamentum flavum, tissues that are implicated in degenerative 

spinal disorders, along with intervertebral disc.  Mechanical loading of intact FSUs in 6 DOF 

accompanied by evaluation of mechanical and biological responses in multiple tissues opens 

frontiers in studying tissue interactions and novel simulations of physiologic and injurious loading.  

This study demonstrated the feasibility of attaching the bioreactor system previously 

developed for axial testing to a robotic testing system capable of 6 DOF loading.  The control and 

precision of the robotic testing system were sufficient in the context of the loads and displacements 

involved in rotational loading of rabbit FSUs.  Rigid fixation of FSUs in the bioreactor fixtures 

was demonstrated in flexion/extension and axial torsion.  Because epoxy fixation, the conventional 

fixation means used for orthopaedic joint mechanics, is exothermic and inhibits metabolic 

exchange between media and tissue, it could not be used.  Consequently, an alternative fixation 
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method that relied on 16 rubber-capped screws for fixation was implemented, which limited 

damage to spinal tissues during mechanical testing.  Rotational movements in these DOF were 

also unrestricted by bioreactor components.  Methods were developed for fixture attachment to the 

robot and measurement and placement of the center-of-rotation (COR).  Enclosing FSUs in media-

filled dialysis membranes, which passively concentrates proteins (>2 kDa) in small volumes of 

conditioned media, did not prevent rigid fixation or contribute to measured moments.  Integration 

of the bioreactor system with the robot testing system permitted repeatable mechanical testing of 

rabbit FSUs in rotational DOF.   

Load-based testing protocols were developed for flexion/extension in rabbit spines to 

reasonably approximate in vivo segmental motions relevant to human spinal motions.  While 

rabbits and humans are anatomically quite similar in the lumbar spine, the non-linear stiffness of 

moment-rotation responses in flexion/extension showed notable differences.  Because motion in 

activities of daily living and spine-intensive activities in humans apparently occur in low and high 

stiffness regions of spinal loading, respectively, moment targets in rabbits were chosen relative to 

the transition from low-stiffness to high-stiffness regions.  Moment targets at or below the 

transition point represented human spinal motions in many daily activities, and moment targets in 

the high-stiffness region represented occupational, recreational, or rehabilitative activities with 

large spinal motions.  Selecting torsion magnitudes in rabbits to simulate coupled axial torsion in 

humans was simpler because moment-rotation curves are linear for both species.  Moment targets 

were based on the same percentage of failure moments.  A loading rate of 0.33°/s was applied 

during cycling, similar to other robotic systems [87, 276], and a one hour duration of loading was 

chosen to be representative of a rehabilitation exercise routine or an occupation task [295, 296].   
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Biological changes in neutral flexion/extension were generally catabolic and relatively 

modest.  Significant changes in catabolic and pro-inflammatory gene expression with loading were 

between 2 and 3.5-fold increases.  Only AF (MMP-3 and ACAN) and FC (MMP-1, -3, and COX-

2) showed significant effects of loading, although catabolic and pro-inflammatory gene expression 

in LF evidenced trends of up-regulation with loading.  Immunoblotting for aggrecan fragment 

yielded variable results, but comparing means showed generally higher fragment abundance in 

loaded tissue.  Because gene expression was not uniformly up-regulated, it is unlikely that changes 

are due to a general uptick in metabolic activity; instead, these changes may be part of an adaptive 

remodeling response to loading [9].  Differences in individual groups or resulting from loading 

parameters—ROM or cycle number—were few.  ROM had a significant effect only on MMP-

cleaved aggrecan fragments in AF, and cycle number showed a trend toward elevated MMP-3 and 

COX-2 gene expression in LF.  Based on the biological outcomes measured in this study, variations 

of ROM magnitude and cycle number within physiologic bounds for short durations at low loading 

rates showed negligible to small effects.  Thus, small and large ROM, simulations of ADLs and 

spine-intensive activities, did not show expected differences.  It may be that healthy spines respond 

similarly to a range of amplitudes within a broad envelope of physiologic motion.  Injured or 

degenerating spines might show greater sensitivity to ROM.  It is also likely that longer durations, 

higher magnitudes of loading  

or loading rate, or more sensitive biological outcomes are required to observe significant effects 

of F/E parameters in healthy spines.  In any case, F/E loading compared to unloaded static 

conditions tended to modestly up-regulate catabolic expression.  Coupling torsion to 

flexion/extension simulated (i) segmental axial asymmetries treated clinically by manual and 

motion-based therapies or (ii) combined loading associated with potentially damaging activities.  
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In this model of asymmetric loading, FSUs with small and large magnitudes of coupled torsion 

showed elevated pro-inflammatory responses to loading in all spinal tissues.  Pro-catabolic 

changes were also evident in AF and LF with the large magnitude of torsion.  Previous studies 

indicated that coupled torsion with F/E elevates facet forces in the compressed facet [91] 

(supported by mechanical data in Section 7.3), alters regional loading in the compressed facet [91], 

and removes compression in cartilage in the gapped facet [91, 354].  Intriguingly, while pro-

inflammatory and pro-catabolic expression was elevated in both facets, pro-inflammatory changes 

were higher in gapped facets and did not show sensitivity to magnitude of torsion.  In contrast, 

chondroadherin was depleted in compressed facets and decreased with increased magnitudes of 

torsion.  These results demonstrate the detrimental effect of asymmetric movements in all spinal 

tissues.  Clinically, they suggest that segmental asymmetries, whatever their origin, and 

occupational tasks involving sustained twisting with bending, negatively influence both ipsi- and 

contralateral facets.  In general, these findings point to a strong role for altered mechanics 

associated with axial asymmetries in driving pro-inflammatory, catabolic processes in spinal 

tissues that may contribute to the onset and progression of tissue damage and degeneration 

associated with complex loading.   

Serial resection of FSU structures combined with (i) replayed intact kinematics and (ii) 

measured changes in primary moments with each cut addressed the question of how spinal 

structures in rabbit FSUs contributed to neutral F/E and combined AT + F/E moment resistance.  

In neutral F/E, the salience of the LF in flexion resistance was confirmed.  In extension, rabbit 

lumbar facets were found to play a minor role in extension moment resistance, similar to human 

lumbar facets.  The disc played a relatively small role in flexion and a relatively large role in 

extension resistance.  The addition of torsion to F/E greatly increased the contribution of facets to 
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extension resistance and increased the changes in forces associated with facets (mean of both 

sides).  Coupled torsion reduced the contribution of the disc to extension and increased its 

contribution in flexion.  It also modestly elevated forces associated with the LF in flexion.  These 

findings furnish initial direct evidence of the effect of combined loading on force/moment 

distribution in lumbar FSUs.  The prominence of each of the structures in supporting F/E moments 

supports biological analysis of each of these spinal tissues.  Structures that contributed most in 

flexion and extension, the LF and FC (particularly in AT+F/E), respectively, were most 

biologically responsive.  While it is tempting to generalize that the tissues most mechanically 

loaded in a particular loading mode are most biologically responsive, different tissues may have 

different thresholds for various biological responses.  Nonetheless, because tissues with a larger 

contribution to loading correlated with higher mechanosensitivity in this study, the results of this 

dissertation suggest that greater mechanical involvement in a particular DOF elicits a greater 

response.  These results reinforce the need to quantify mechanical contributions of tissues in 

musculoskeletal systems in conjunction with biological assessments.  They also confirm the 

importance of evaluating biological responses in non-disc tissues that play primary roles in 

mechanical support of F/E and AT.   

 Multiple regression analysis uncovered relationships between mechanical predictors and 

biological responses that varied based on tissue and gene.  Mechanical predictors accounted for 

more variation in gene expression in FC and LF than AF and NP, highlighting the overall 

importance of non-disc tissue—FC and LF—in rotational loading.  Lack of significant mechanical 

models in NP likely results from lack of axial compression in these studies.  Regression models 

most consistently and significantly predicted ADAMTS-5 expression across tissues and most 

infrequently and poorly predicted MMP-3 expression.  It is clear that the same applied loading to 
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FSUs regulated biological processes in separate spinal tissues differently, and that the biological 

markers measured in this study were more sensitive to flexion/extension loading in non-disc tissue.  

Principal component analysis confirmed the primary importance of flexion and extension ROM 

and revealed the importance of cumulative work, neutral zone stiffness, moment relaxation, and 

axial torsion properties in accounting for most of the variation in mechanical responses.  Some 

patterns emerged between individual predictors and tissues or genes:  neutral zone stiffness was a 

significant predictor of ADAMTS-5 (across tissues) and LF gene expression (across genes); axial 

torsion properties were significant in COX-2 (across tissues) and FC and AF gene expression 

(across genes); cumulative work was significant for MMP-1 expression, and flexion ROM was 

significant in LF gene expression.  Interestingly, among the mechanical predictors that accounted 

for the most variation in mechanical responses, including flexion and extension ROM and 

cumulative work, neutral zone stiffness most consistently accounted for variation in biological 

responses.  Variation in neutral zone stiffness, which was not correlated with age, may reflect 

altered distribution of loading in FSUs and within  

specific spinal tissues, like the LF, that underlies its predictive capacity.  In general, mechanical 

predictors accounted for a moderate-to-large amount of variation in biological responses 

confirming the importance of mechanical regulation of biological responses.   

9.2 LIMITATIONS 

The testing and experimentation performed in this project has a number of limitations.  First, the 

motion rates of kinematic replay, while dynamic, are slower than in vivo motions, and loading rate 

may influence biological responses in spinal tissues [265, 439].  This limitation could be overcome 

 202 



by altered robotic control methods that allow for continuous dynamic movements [440].  Second, 

lack of axial compression in flexion/extension and axial torsion, while permitting mechanistic 

insight in to the isolated role of these rotations, fails to recapitulate in vivo loading.  Lack of 

compression likely influences mechanobiology in NP primarily [410] and FC secondarily [67].  

This limitation could be addressed by adding axial compression to the bioreactor using the current 

robotic control scheme.  In that case, control FSUs would require axial compression as well.   

Other limitations are more difficult to overcome without significant development.  The 

current fixation system for securing FSUs within the bioreactor was not rigid in AP translation.  

This lack of rigidity was magnified by a small ROM with poor resolution in that DOF, which made 

experimental testing unachievable with this system.  Overcoming these limitations would require 

a more rigid fixation scheme and a different robotic testing system capable of higher precision and 

resolution.  Additionally, the duration of studies involving intact FSUs is limited by decrease in 

viability in disc tissue after 24 hours [441].  While the insertion of tunnels through vertebral bodies 

to promote metabolic exchange in disc tissue seems to be reasonable prima facie, preliminary 

testing did not show improvement in NP cell viability [441].  Thus, in the current model with short 

durations (<24 hours) of loading, only acute biological responses to mechanical loading can be 

detected.  This prevents the assessment of spinal tissues exposed to prolonged loading or 

evaluation of most regenerative therapies, but it does provide a wide range of valuable biological 

data about the response to initial bouts of simulated activity, exercise, or injury in the form of 

mRNA expression, protein translocation, matrix fragmentation, cell metabolism, and cell viability.  

Longer experimental durations may likely be achieved (i) by pre-mortem heparinization of animals 

or, in a less likely solution, (ii) by increased removal of cancellous bone with careful endplate 

thinning achieved through vertebral bodies.   
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As is the case in every biological study, the outcomes chosen represent only a small portion 

of the broad gamut of potential biological markers.  Additional outcomes could broaden the 

understanding of how in-situ loading influences spinal tissue.  In particular, studying the effects 

of loading on cell metabolism, fate, and viability would be instructive [66, 165, 250].   The 

outcomes selected in this study were relevant to features of degenerative disorders but were not 

chosen based on common cell signaling pathways.  Cell signaling pathways including ERK, Akt 

[442], MAPK [228] and NFkB (unpublished data from our lab) have been implicated in 

mechanical loading and could be assessed in spinal tissues to provide more mechanistic insights 

in to the effects of loading on biological responses.   

Aggrecan fragment analysis showed a high degree of variability that rendered it somewhat 

insensitive to the mechanical loading applied in this study.  Initial evidence for aggrecan fragment 

changes with mechanical loading occurred following long-term (8 week) compression.  One week 

of asymmetric compression in organ culture altered aggrecan fragments in the annulus fibrosus 

[37].  This study is the first to measure aggrecan fragments after mechanical loading in timeframes 

less than several days. Moreover, the G1 primary antibody was raised in rabbits and applied to 

rabbit tissue, generated significant background signal.  MMP-cleaved bands were generally 

distinct from background and consistent between samples, but ADAMTS-cleaved bands were less 

distinguishable and more variable between samples.  No differences with loading or between 

groups were evident in ADAMTS-cleaved bands, though they did show trends of decreased 

abundance in FSUs subjected to coupled torsion.  MMP-cleaved fragments were significantly 

different in AF between small and large ROM, but changes with loading were generally small.  

Longer durations of culture, more severe forms of loading, or alternative animal models are likely 

required to detect consistent differences in aggrecan fragments. 
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The serial resection study showed unexpected results in extension that likely reflect 

incomplete loading in extension.  The extension moments in three of four FSUs did not go beyond 

the transition point from low stiffness to high stiffness.  This incomplete loading which leaves 

FSUs in the neutral zone likely explains the increase in extension moment with LF resection.  

Loading in the neutral zone is more variable than that in the linear elastic zone.  The consequence 

is inaccurate characterization of the role of structures at full amplitudes of neutral extension.  The 

addition of axial torsion caused the same FSUs to enter the linear region, and so changes in 

extension moments were consistent and agreed with theoretical expectations.  However, this 

characterization reflects loading used in this dissertation research.  Moreover, the mechanical 

differences between neutral F/E and AT+F/E remain relevant to how the mechanical environment 

changed between the two types of loading and contributed to different biological responses.   

Regression models uncovered patterns and relationships in biological and mechanical 

variables, but their predictive capacity is limited and untested.  Despite the prevalence of 

significant models explaining biological variation based on mechanical predictors, large amounts 

of variation in biological responses remain unexplained.  This limits the accuracy of the model.  

Additional testing samples were not performed at intermediate amounts of mechanical loading to 

confirm predictive models, although this could be done in the future.  Finally, for some regression 

models, the relatively small number of samples used to generate the models relative to the number 

of predictors limited its generalizability as reflected in the Adjusted R2 value.    

 205 



9.3 BROADER IMPACTS & FUTURE DIRECTIONS 

The novel experimental system developed and tested in this dissertation has the potential to impact 

basic and applied research in spine and orthopaedic studies.  Immediate extensions of this work 

include investigations of additional spinal tissues and analysis of conditioned media.  The cartilage 

endplate (CEP) plays an important role in compressive loading of the disc, and CEP defects and 

degenerative changes have been associated with disc degeneration and symptoms of back pain 

[146, 147].  Isolation of CEP from rabbit FSUs has been demonstrated by the author [443], and 

CEP from all FSUs in loaded in Specific Aims 1 and 2 have been collected and stored at -80°C.  

The role of other ligamentous structures could also be investigated.  The facet capsule is a richly 

innervated structure with mechanoreceptors and nociceptive neurons [67] that plays an important 

role in restricting flexion in rabbit FSUs (~30%, Table 17) and contributes to bending and torsion 

as well [87, 373].  While its degenerative pathology is distinct from the other spinal tissues and 

would require alternative outcomes for assessment [67], its response to ex vivo mechanical loading 

in intact FSUs is relevant in short-term loading [67, 444, 445] and remains unstudied.  Finally, 

supraspinous ligaments, though not mechanically important under the applied loading in this 

dissertation (Table 17), were subjected to repeated flexion/extension in vivo in feline models and 

showed acute inflammatory responses to loading with increased numbers of cycles and faster 

loading rates [243].  Examining the inflammatory and catabolic response of supraspinous 

ligaments to flexion/extension in intact FSUs to confirm previous findings and place them in the 

context of changes in other spinal tissues would add to spine mechanobiology research by probing 

the relationship between mechanical prominence of a structure in a given loading mode and the 

resulting biological response.   
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 Analysis of conditioned media from organ culture can serve as a screening stage in the 

search for specific, sensitive biomarkers related to spinal disorders in vivo.  Because of the high 

degree of non-specificity of MRI for most symptomatic spinal disorders [446], the variability in 

patient response to treatments of back pain [53], and the numerous but ill-defined sub-groups 

within back pain patients [58], serum or urine-based biomarkers that could improve diagnosis and 

prognosis are desired [447].  To have utility, biomarkers must be specific to spinal disorders and 

have sufficient sensitivity for detection and range for longitudinal measurement throughout 

treatment.  Because of the similarities of disc degeneration, facet osteoarthritis, and ligamentum 

flavum hypertrophy with other inflammatory and degenerative conditions of the musculoskeletal 

system [448, 449], identifying systemic biomarkers specific to spinal tissues or spinal disorders 

has been difficult.  Comparing conditioned media from healthy and degenerated FSUs subjected 

to neutral flexion/extension and axial torsion with flexion/extension (Specific Aim 2), which 

showed detrimental effects of mechanical loading in spinal tissues, could identify proteins 

uniquely or significantly elevated in conditioned media from loaded samples.  This type of ex vivo 

analysis excludes systemic factors and focuses on proteins (>2 kDa) that are released from spinal 

tissues.  As a result, it can also be used to vet candidate biomarkers thought to arise from spinal 

tissues; if proteins are not detectable in small volumes of conditioned media immediately 

surrounding spinal tissues, it is unlikely that they will be measurable in serum in vivo.  Conditioned 

media from within the inner dialysis membrane that encloses FSUs was collected from Specific 

Aims 1 and 2 and can be used for such future analyses. 

 Future studies using FSUs could explore a number of permutations with relevance to basic 

science and clinical research.  Most simply, different forms of spinal injuries could be simulated, 

and their effects on acute mechanical and biological changes could be assessed.  These injuries 
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could include needle punctures or rim lesions to simulate small annular tears, annular defects to 

induce nucleus pulposus herniation, or ligament transection in the posterior ligamentous complex 

to simulate ligament rupture or injury.  The mechanical consequences of injury could be assessed 

simultaneously with biological changes within damaged structures as well as in neighboring 

tissues and the surrounding media.  Integrating this data could improve understanding of the initial 

response to spinal injury in directly and indirectly impacted tissues, provide a platform for 

evaluating the effect of injury severity on biological markers, and assist in identification of 

candidate biomarkers specific to certain injuries [81].  Furthermore, FSUs from rabbit models of 

disc degeneration could be studied and compared to non-degenerated FSUs to test how 

degeneration affects biological responses to flexion/extension and complex loading.  Finally, 

inflammatory mediators could be introduced to media within the dialysis membrane to simulate 

an inflammatory milieu and test how parameters of mechanical loading interact with inflammation 

in intact FSUs.   

 While lack of long-term culture and removal of systemic influences (e.g. the immune 

system) ex vivo prevents complete assessment of therapeutic interventions like tissue engineered 

constructs, stem cell therapy, or gene therapy, early effects of some interventions may be assessed.  

Small molecules (e.g. glucosamine, LinkN), which can diffuse in to spinal tissues [262, 450], and 

their interaction with different forms of mechanical loading could be assessed with and without 

degeneration or injury to FSUs.  Alternatively, different forms of manual therapy could be applied 

to FSUs in culture.  Although their analgesic effect is thought to largely occur through 

neurophysiologic signaling that involves intact peripheral and central nervous systems [194],  
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direct mechanosensitive, analgesic effects of manual therapy in spinal tissues may occur [193, 451, 

452].  Coupling inflammatory conditions or detrimental loading with simulated manual therapy, 

which could be parameterized based on amplitudes, rates, and durations of movements, could 

explore if and how direct effects in spinal tissues occur.   

 The full potential of this system to influence orthopaedic rehabilitation would be realized 

by improved robotic control and extension to other musculoskeletal joints.  In the current iteration 

of this system, relatively simple motions were applied using adaptive displacement control 

combined with kinematic replay.  However, control of robotic systems has improved to the point 

where continuous, dynamic control of musculoskeletal joints at in vivo motion rates is possible 

[440].  Using new control methods and new robotic systems, the ex vivo mechanobiology system 

could be used to simulate spinal motions in exercise regimes or a series of occupational tasks with 

greater fidelity.  Experiments could be constructed (i) to evaluate biological responses to different 

types of exercise routines or occupational tasks or (ii) to assess biological responses to the same 

set of motions given differing amounts of degeneration, injury, or mal-alignment.   

Moreover, the bioreactor developed for this study is not limited to rabbits or to spinal 

segments; it could be readily modified to test other animal models and other musculoskeletal joints.  

Ex vivo mechanical loading and biological assessment of viable, intact knees, hips, and other 

diarthrodial joints has not been performed.  Assessment of simultaneous, early biological 

responses to varying loading parameters ex vivo in tissues of diarthrodial joints could potentially 

open a new area of investigation in the basic science of joint physiology.  Understanding the 

relationship between how synovium, synovial fluid, menisci, cartilage, and ligamentous tissue 

respond to applied loading in the context of normal physiology and injury, asymmetry, or arthritis 

could elucidate protective and detrimental effects of loading.  Specifically, this system could also 
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address aspects of current questions such as how meniscal tears influence the mechanical and 

biological response to loading of surrounding structures.  Also, simulations of different forms and 

parameters of exercise and activities (e.g. walking, running, squatting, etc.) could be studied in 

diarthrodial joints like the knee and hip.  These extensions of the mechanobiological testing system 

could introduce a system that scales to multiple musculoskeletal joints, improves understanding of 

the physiologic response and interactions among tissues to applied loading, and provides 

orthopaedic rehabilitation with a tool to evaluate early biological responses to motion simulations 

ex vivo.   

The system developed in this dissertation fulfills an important role in translational research 

from benchtop-to-bedside.  In vitro cellular studies supply information for outcomes to assay the 

ex vivo system, which in turn provides loading conditions and interactions to be examined 

mechanistically at the cellular level.  Similarly, biological changes in and interactions between 

spinal tissues, identified candidate serum biomarkers and screened therapeutics tested ex vivo can 

be introduced to in vivo animal models to improve outcome targets.  Similarly, effects of loading 

parameters and tissue interactions, along with outcomes from animal studies, can inform trials (e.g. 

specific vs. non-specific exercise in back pain patients) in human studies.  The ultimate goal of 

this translational process is to improve clinical practice by clarifying the role of mechanics in 

disease and treatment to permit rationally prescribed manual and motion-based therapies and 

improve integration of these therapies in orthopaedic care.   
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APPENDIX A 

UNLOADED CULTURE VS. BASELINE 

A.1 INTRODUCTION 

Throughout this dissertation, all biological responses—relative gene expression and protein 

densitometry from Western blots—compare loaded tissues to time-matched, cultured unloaded 

tissues from adjacent spinal segments.  This method of normalization controls for variation 

between animals and with time in culture.  What remains unclear using this method alone is the 

effect of culture conditions on biological outcomes compared to baseline (t0).  So, tissues from 

unloaded cultured FSUs were normalized to tissues isolated at baseline (t0) to address how 

unloaded culture influences baseline expression values and to assess whether loading expression 

levels show the same trend or return toward baseline values.   
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A.2 METHODS 

Methods are described in detail 5.2.3 and 6.2.2.2.  First, for relative gene expression, MMP-3 and 

COX-2 expression between tissues (NP n=5, FC n=5, and AF n=2-3) from unloaded and t0 spinal 

segments were calculated using 2-ΔΔCt
 referencing GAPDH as a housekeeping gene.  The time in 

unloaded organ culture for transcriptional outcomes was ~2 hours.  Second, protein amount of 

MMP- and ADAMTS-cleaved aggrecan fragments and of CHAD in unloaded tissues (n=3-5 of 

NP, FC, and AF) were normalized to protein amounts at baseline (t0).  The time in unloaded culture 

for protein outcomes was ~24 hours.   

A.3 RESULTS 

The effect of organ culture on inflammatory and catabolic relative gene expression in NP, FC and 

AF is shown in Figure 38.  Neutral F/E (Large ROM) and Large AT+F/E relative to baseline are 

included for comparison.  Unloaded culture shows a trend toward up-regulation of MMP-3 

expression in all tissues and COX-2 in FC and AF.  Mean MMP-3 expression changes the most in 

NP (4.00-fold increase) and the least in AF (1.44-fold increase).  COX-2 expression in NP is 

unaffected by organ culture (12% decrease).  Changes in COX-2 expression in FC with culture 

(4.31-fold increase) show trends toward elevated expression; changes in AF betray high 

variability.   
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Figure 38. Relative gene expression in NP, FC, and AF of MMP-3 and COX-2 normalized to t0  
 
 

The effect of unloaded culture on aggrecan fragments in spinal tissues is depicted in Figure 

39.  Neutral F/E (Large ROM) and Large AT+F/E relative to baseline are included for comparison.  

MMP-fragments in AF show variable differences in cultured FSUs relative to baseline (t0) with a 

mean decrease of 18±35% in unloaded, cultured samples.  ADAMTS-fragments in AF are 

similarly quite variable.  Aggrecan fragments show a trend of increasing with culture relative to 

intact in FC; MMP- and ADAMTS-fragments increase 35±51% and 28±37%, respectively.  In 

contrast to FC, aggrecan fragments decrease in NP tissue in unloaded culture.  MMP- and 

ADAMTS-fragments decrease, quite similarly and consistently, by 15 ±19% and 25 ±16%, 

respectively.   
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Figure 39. MMP-cleaved (left, ~54kDa) and ADAMTS-cleaved (right, ~67kDa) aggrecan fragments in cultured 
tissues normalized to baseline.   

 

 
Changes in CHAD expression with unloaded organ culture are shown in Figure 40.  Neutral 

F/E (Large ROM) and Large AT+F/E relative to baseline are included for comparison.  Changes 

in expression with culture were larger than those seen with aggrecan fragments.  In NP, expression 

increased 4.56±3.11-fold, and in the AF, it increased 2.11±1.49-fold.  In contrast, CHAD 

expression decreased in FC with culture by 51±32%.   
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Figure 40.  CHAD expression (~36kDa) in spinal tissues in normalized to t0   
 

A.4 DISCUSSION 

The effect of organ culture showed how the passage of time in culture influenced relative 

gene expression and protein expression relative to baseline values.  The short term culture (~2 

hours) used for transcriptional analysis showed modest increases in catabolic and pro-

inflammatory gene expression in all tissues except for COX-2 expression in NP.  Other studies 

comparing inflammatory and catabolic gene expression in unloaded tissues compared to baseline 

have observed increased expression [220, 453, 454].  Longer culture durations (~24 hours) used 

to describe protein level responses to mechanical loading showed more variability in the effect of 

culture.  Aggrecan fragment abundance in all tissues changed little (<35%) with culture but CHAD 

abundance increased by as much as 456% in NP.  Changes in aggrecan fragment  
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abundance with long-term dynamic compression were only modest [149], so it is expected that 

short-term changes compared to baseline would be small.  CHAD expression increases have not 

been observed in spinal studies previously [356, 357]. 

The chief utility of characterizing the effect of organ culture on baseline gene and protein 

expression is to classify responses to mechanical loading in culture (i.e. the differences between 

loaded culture and unloaded culture) as similar to or different from changes relative to baseline 

(i.e. the differences between loaded culture and baseline (t0)).  MMP-3 and COX-2 gene expression 

increased in all loaded tissues compared to unloaded tissues in culture.  Because the effect of 

unloaded culture broadly elevated expression compared to baseline levels, the effect of mechanical 

loading further elevated expression away from baseline levels.  The only exception was in NP 

COX-2 expression where the trend of up-regulation was mitigated by comparison to baseline.   

Trends in protein outcomes were maintained or mitigated when normalized to baseline in 

aggrecan fragments but not in CHAD.  The mechanical responses in MMP- and ADAMTS-cleaved 

aggrecan fragments in F/E loading generally remained the same whether comparisons were made 

to baseline or unloaded tissues.  In contrast, trends for CHAD in NP and FC were reversed and 

altered when compared to baseline.  While CHAD in loaded NP was reduced relative to the high 

amount of CHAD expressed in unloaded NP samples, CHAD in loaded NP is higher than baseline 

levels (~2.5-2.75 fold increase).  In FC, comparisons of loaded relative to unloaded FC showed 

that torsion reduced CHAD compared to neutral F/E, but CHAD levels in torsion groups were still 

higher than unloaded FC.  Comparisons with baseline CHAD levels show that torsion group levels 

are similar to baseline (control).  This suggests that FSUs subjected to torsion are more similar to 

baseline than those subjected to pure moment F/E.  Previous trends in the AF are maintained 

compared to baseline.  In contrast to NP and FC, load-responsive increases in CHAD in AF are in 
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addition to increases in CHAD with unloaded culture.  Thus, unloading appears to have profound 

effects on CHAD in NP and FC tissue.  A paucity of research on CHAD makes interpretation of 

increased expression seen in AF difficult as only CHAD depletion has been observed [356, 357], 

but it is possible that increased CHAD represents anabolic or protective remodeling.   

To conclude, transcriptional changes with loading observed in Specific Aims 1 and 2 

represent perturbations away from expression levels at t0.  In contrast, load-responsive protein 

expression changes in many tissues were mitigated by comparison to baseline.  Loading trends are 

reversed for CHAD in NP when compared to baseline and amplified in AF.  These results help to 

interpret changes with loading reported in Specific Aims 1 and 2.   
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APPENDIX B 

EFFECT OF AGE ON BIOLOGICAL OUTCOMES 

B.1 INTRODUCTION 

Spines from rabbits with a wide range of ages (8-33 m.o. / 13.8±5.8 m.o.) were included in this 

research project.  To promote consistency of results, skeletally immature rabbits were excluded 

(<8 m.o.) [455].  Nonetheless, because of the variability introduced by a broad age range, the effect 

of age was analyzed to see if it influenced (i) biological responses to loading and (ii) biological 

outcomes in unloaded samples. 

B.2 METHODS 

The primary motivation of this study was to determine to what extent age affected the biological 

responses to applied loads in spinal tissues.  To address this concern, simple Pearson correlation 

was performed per gene for each tissue (1) between relative gene expression (loaded vs. unloaded) 

and age and (2) between normalized protein levels (loaded densitometry normalized to unloaded 

densitometry) and age.  A secondary goal of this analysis was to query whether age influenced 

aggrecan and CHAD expression in spinal tissues apart from the effect of loading.  This question 

was addressed by similarly using simple Pearson correlation between raw densitometry values of  
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unloaded tissues and age.  For both aims, Pearson’s rho and associated p-values are reported.  

Correlations with R>0.3 and p<0.2 were considered very weakly correlated.  Significant 

correlations were defined by p<.05.     

B.3 RESULTS 

Correlations between age and load-responsive changes in relative gene expression are summarized 

in Table 33.  Only two correlations, MMP-1 expression in AF and COX-2 expression in LF (Figure 

41), have R>0.3 and p<0.2, and neither is statistically significant.  Therefore, correlations of age 

with relative gene expression for load effects are, at most, weak and insignificant.   

 

Table 33.  Simple correlation (Pearson’s R) of age with relative gene expression for the effect of loading 

    Gene 
Tissue Correlation MMP-1 MMP-3 ADAMTS-5 COX-2 ACAN 
AF R 0.317 -0.100 -0.140 0.203 -0.213 
  p 0.107 0.545 0.445 0.229 0.220 
NP R . -0.222 . -0.072 0.276 
  p . 0.247 . 0.738 0.339 
FC R . 0.159 . 0.017 -0.119 
  p . 0.391 . 0.931 0.606 
LF R 0.106 -0.052 -0.007 0.319† -0.004 
  p 0.578 0.784 0.969 0.097 0.982 
p < 0.2 are shaded, †-p<0.1  
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Figure 41.  Age vs. Relative Gene Expression: The two strongest correlations between age and load responsive 
changes in gene expression 

 

 
Correlations of age with (1) the raw densitometry for protein expression of outcomes in 

unloaded tissues only and (2) the load response in protein outcomes are shown in Table 34.  No 

load response correlations were significant (p>0.249 for all tissues and proteins).  Raw 

densitometry of protein outcomes were correlated with age in NP for each outcome (p<0.2); these 

correlations are illustrated in Figure 42, Figure 43, and Figure 44.  Both types of aggrecan 

fragments increase with age, and CHAD decreases with age.  Correlations of ADAMTS-cleaved 

fragments were significant (p=.042), and correlations of MMP-cleaved fragments approached 

significance (p=.082).   
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Table 34.  Correlations of age with protein outcomes (1) raw densitometry of unloaded (only) and (2) load 
response (normalized to unloaded) 

 
      Tissue 

Protein  Correlation NP FC AF 

G1: 
MMP-
cleaved 
fragment 

Raw Dens. R 0.448† 0.110 0.313 
  p 0.082 0.686 0.271 
Loaded vs. R -0.095 0.306 0.046 
 Unloaded p 0.726 0.249 0.864 

G1:  
ADAMTS-
cleaved 
fragment 

Raw Dens. R 0.528* 0.133 0.147 
  p 0.042 0.628 0.615 
Loaded vs. R -0.287 -0.216 -0.013 
 Unloaded p 0.300 0.422 0.961 

CHAD 

Raw Dens. R -0.447 -0.233 -0.138 
  p 0.168 0.517 0.668 
Loaded vs. R -0.128 -0.254 0.213 
 Unloaded p 0.707 0.451 0.507 

p < 0.2 are shaded, †-p<0.1, *-p<0.05 
 

 

 

Figure 42. Correlation of age with MMP-cleaved aggrecan raw densitometry values in NP 
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Figure 43. Correlation of age with ADAMTS-cleaved aggrecan raw densitometry values in NP 

 
 

 

Figure 44. Correlation of age with CHAD raw densitometry values in NP 
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B.4 DISCUSSION 

Age in skeletally mature NZW rabbits does not have a significant effect on biological responses 

to mechanical loading applied in Specific Aims 1 and 2.  No correlations between load-responsive 

relative gene expression or protein expression were significant, and all effect sizes were small or 

negligible (R<0.319).  Correlations between age and protein abundance in unloaded tissue did 

show significant results that describe the effect of aging on spinal tissues in healthy skeletally 

mature rabbits.  Generally, the NP is the first spinal tissue (and one of the first tissues in the body) 

to demonstrate degenerative effects of age in humans and other mammals [147, 166, 246, 456].  

These results reflect that paradigm in that the NP showed significant (or nearly significant) 

increases in aggrecan fragmentation and decreases in CHAD abundance, but AF and FC showed 

no changes approaching significance.  Further, aggrecan breakdown is a hallmark of early 

degeneration [327, 456], and the elevated levels of fragments in older tissues suggest that early 

degenerative changes had begun in older rabbits.  CHAD depletion has been observed with 

degeneration and abnormal loading in spinal asymmetries [356, 457], so loss of CHAD with age 

in rabbits further supports the idea that early degeneration of the NP occurs in rabbits with aging.   
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APPENDIX C 

LINEAR MULTIPLE REGRESSION 

More detailed results from the second step of the sequential regression are shown here.  Output 

from SPSS tabulating the Model Summary, ANOVA results and Coefficients are presented in 

tables per tissue and per gene.  The Model Summary shows how the variability accounted for by 

the model improves (R, Change in R2) with each added variable from the results of the first step of 

the regression analysis (Table 22).  The variables added in each model are presented in the first 

column of the Coefficients Table, and their weight (B), standard error (SE), standardized weight 

(β), t-value from a Student’s t-test (t), p-value from the test (significance), partial correlation 

values, and collinearity statistics are shown.  Finally, ANOVA tables illustrate model significance 

with each variable added. For each of these tables, the effect of each added variable with each step 

is evident.  Additionally, results from tests of the assumptions of multiple regression are shown in 

(1) histograms of standardized residuals and (2) standardized residuals vs. standardized predicted 

value plots (generated in SPSS).  These show tests of the assumptions of independent error 

(residuals should be normally distributed), linearity and homoscedasticity (data should be 

randomly and evenly dispersed or spread without underlying shapes or clustering).   
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C.1 AUTOCORRELATION MATRIX 
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C.2 PRINCIPAL COMPONENT ANALYSIS 

Table 35. Principal Component Analysis: Eigenvalues and variance explained 

PC Eigenvalue Variance Explained 
1 4.169164739 27.7944316 
2 2.300206818 15.33471212 
3 1.76361428 11.75742853 
4 1.463758883 9.758392553 
5 1.136885904 7.579239358 
6 0.961958094 6.413053958 
7 0.812048881 5.413659206 
8 0.67770067 4.518004468 
9 0.58576343 3.905089533 

10 0.389920388 2.59946925 
11 0.323447388 2.156315922 
12 0.155979158 1.039861056 
13 0.127544417 0.850296112 
14 0.077399203 0.515994684 
15 0.054607748 0.364051654 

 

Table 36.  Simple correlation of original predictors with principal components 

 Principal Component (Absolute Value) 
Orgin. Predictors PC 1 PC 2 PC 3 PC 4 PC 5 
WorkCum 0.752064 0.220132 0.351424 0.0076866 0.0314571 
HysteresisMean 0.33725 0.260302 0.014535 0.0141195 0.8176816 
HysteresisRelax 0.626612 0.151782 0.202264 0.0505621 0.1443871 
ROMfMean 0.80602 0.435965 0.037301 0.3608294 0.0099175 
ROMeMean 0.315328 0.814065 0.307256 0.1489292 0.1592257 
MxfMean 0.901174 0.349848 0.374472 0.2934666 0.0839054 
MxeMean 0.185241 0.835618 0.224021 0.0065823 0.1422405 
MxfRelaxRelax 0.0373 0.321556 0.002609 0.5461371 0.0112159 
MxeRelaxRelax 0.266049 0.384245 0.764435 0.0497733 0.2477114 
AROMmidMean 0.391522 0.135522 0.308668 0.6665297 0.1696801 
MymidRelax 0.043324 0.366447 0.307761 0.6141728 0.0829438 
NZMean 0.368351 0.714779 0.213467 0.2210544 0.4645159 
NZRelax 0.232293 0.242156 0.903626 0.1611218 0.1360785 
Cycles 0.504658 0.699162 0.006657 0.4867177 0.3206097 
Age 0.360869 0.077043 0.109792 0.4843183 0.5367919 
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C.2.1 Matlab Code for PCA 

%Rob Hartman - 05/17/14 
%PCA for multiple regression across all groups (SA1 & 2)  
  
%save location 
fileLocation = 'Z:\Ortho Research 3\FergusonLab\Students\Hartman, 
Robert\Biological Outcomes\RNA\PCR\Summary\Stats\'; 
% fileLocation = 'C:\Users\Rob\Documents\MATLAB\Statistics\RGE_summary\'; 
  
%Contains RGE data ('RGE_all' is raw, 'RGE' is analyzed) 
load([fileLocation, 'rFSU_RGESABoth_NumerOrder_051214b.mat']);  %wo-with 
outliers; no-no outliers 
clear RGE 
  
tissueStr = {'AF','FC','NP','LF'}; 
geneStr = {'MMP1','MMP3','ADAMTS5','COX2','AGC'}; 
  
regressStr = {'PCA','PCA_Std'}; 
  
% p = 8; %predictor matrix column; 1 := cycles, end:= age 
  
%Difference b/w RGE per gene & Per comparison & keep track of N 
%RGE_all structure AF(2:6), FC(7:11), NP(12:16), LF(17:21); genes: 
MMP1>MMP3>ADAMTS5>COX2>AGC 
  
%read in mechanical predictor data  
analysisDate = '_051714'; %Bivariate correlation down sizing: chose %change 
(i.e. relax.) and flex & ext but not f/e 
fileLocation = 'Z:\Ortho Research 3\FergusonLab\Students\Hartman, 
Robert\Biological Outcomes\RNA\PCR\Summary\Stats\'; 
% fileID = [fileLocation,'mechanicalPredictors',analysisDate,'.xlsx']; 
% workSheetStr = 
{'Work_Hysteresis','MomentRotation_FE','AxialRotation','NZEZ','Covariates'}; 
workSheetStr = {'PostAutoCorrData'}; %variables that remain after examining 
and accounting for autocorrelation 
  
%read in Predictor variables from Excel file 
for i=1:size(workSheetStr,2) 
    mechanicalPredictors.(workSheetStr{i}) = 
xlsread([fileLocation,'MechPredictorsAll',analysisDate,'.xlsx'],workSheetStr{
i}); 
end 
  
%form groups 
for j = 1:size(RGE_all,1) %for the number of rows in RGE_all, i.e. number of 
samples 
        RGE.(regressStr{1}).Values(j,:) = RGE_all(j,1:(size(RGE_all,2)-1)); 
%date and 3 genes per tissue  
end 
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%%%%%can modify 'MechPredictors' to be 'mechanicalPredictors.x'%%%%% 
            %from xlsx file 
%             RGE.(regressStr{1}).Predictors(j,:) = MechPredictors(j,2:end); 
%---grouping by type of predictor----             
%             RGE.(regressStr{1}).Predictors(j,:) = 
mechanicalPredictors.workSheetStr{1}; %energetics 
%             RGE.(regressStr{1}).Predictors(j,:) = 
mechanicalPredictors.workSheetStr{2}; %moment/rotation 
%             RGE.(regressStr{1}).Predictors(j,:) = 
mechanicalPredictors.workSheetStr{3}; %NZk 
%             RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{1} 
mechanicalPredictors.Age]; %energetics + cycle + age 
%             RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{2} 
mechanicalPredictors.Age]; %moment/rotation  + cycle + age 
%             RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{3} 
mechanicalPredictors.Age]; %NZk + cycle + age    
%---reduced number of predictors----- 
        %w/o 'cycles' and 'age' 
%             cols = [2 6 7 11]; RGE.(regressStr{1}).Predictors(j,:) = 
mechanicalPredictors.workSheetStr{1}(:,cols); %energetics 
%             cols = [4 7 10 13]; RGE.(regressStr{1}).Predictors(j,:) = 
mechanicalPredictors.workSheetStr{2}(:,cols); %moment/rotation 
%             cols = [2 5]; RGE.(regressStr{1}).Predictors(j,:) = 
mechanicalPredictors.workSheetStr{3}(:,cols); %NZk 
        %w/ 'cycles' and 'age' 
%             cols = [2 6 7 11]; RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{1}(:,cols) 
mechanicalPredictors.Age]; %energetics + cycle + age 
%             cols = [4 7 10 13]; RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{2}(:,cols) 
mechanicalPredictors.Age]; %moment/rotation  + cycle + age 
%             cols = [2 5]; RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{3}(:,cols) 
mechanicalPredictors.Age]; %NZk + cycle + age    
%----alternative groupings---------- 
%             %change in mechanics: work (mag:%), hyst (mag:%), 
moment(Nm)(f:e:fe), moment(%) (f:e:fe), NZ(mag:%) 
%             RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.workSheetStr{1}(:,5:6) 
mechanicalPredictors.workSheetStr{1}(:,10:11)... %change in energetics, mag:%  
%                 mechanicalPredictors.workSheetStr{2}(:,8:13) 
mechanicalPredictors.workSheetStr{3}(:,4:5)];  
%             %redcued to avoid collinearity (%'s, FE combined) 
%             RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.workSheetStr{1}(:,6) 
mechanicalPredictors.workSheetStr{1}(:,11)... %change in energetics, mag:%  
%                 mechanicalPredictors.workSheetStr{2}(:,10) 
mechanicalPredictors.workSheetStr{2}(:,12) 
mechanicalPredictors.workSheetStr{3}(:,5)];         
%             %magnitudes (not change across cycles) 
%              RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.workSheetStr{1}(:,2:4) 
mechanicalPredictors.workSheetStr{1}(:,7:9)... %change in energetics, mag:%  
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%                 mechanicalPredictors.workSheetStr{2}(:,2:7) 
mechanicalPredictors.workSheetStr{3}(:,2:3)];  
% %----all variables---------- 
            %if using all worksheets, all variables 
%             RGE.(regressStr{1}).Predictors.mechanicalPredictors(:,:) = 
[mechanicalPredictors.(workSheetStr{1})(:,2:end) 
mechanicalPredictors.(workSheetStr{2})(:,2:end) ... 
%                 mechanicalPredictors.(workSheetStr{3})(:,2:end) 
mechanicalPredictors.(workSheetStr{4})(:,2:5) 
mechanicalPredictors.(workSheetStr{5})(:,2:end)];   %2:5 omits the EZ zone   
            %if using only post-autocorrelation variables 
            RGE.(regressStr{1}).Predictors.mechanicalPredictors(:,:) = 
mechanicalPredictors.(workSheetStr{1})(:,2:end);      
  
% %----hiearchical - user defined/selected, from 'all variables' in section 
above----- 
%             RGE.(regressStr{1}).Predictors(j,:) = 
[mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{1} 
mechanicalPredictors.Cycles mechanicalPredictors.workSheetStr{2}... 
%                 mechanicalPredictors.Cycles 
mechanicalPredictors.workSheetStr{3} mechanicalPredictors.Age];    
%     end 
% end 
  
%-----Auto-correlation analysis------- 
% % % % % % %---correlations: bivariate correlations of all predictors 
variables; ignore tissue/gene groupings of predictors 
% % % % % % for ii = 
1:size(RGE.(regressStr{1}).Predictors.mechanicalPredictors,2) 
% % % % % %     for jj = 
1:size(RGE.(regressStr{1}).Predictors.mechanicalPredictors,2) 
% % % % % %         %form an nxn matrix where n is number of predictors that 
calculates correlations between every permutation of predictor variables 
% % % % % %         [RGE.(regressStr{1}).Predictors.rho(ii,jj), 
RGE.(regressStr{1}).Predictors.rhoP(ii,jj)] = 
corr(RGE.(regressStr{1}).Predictors.mechanicalPredictors(:,ii),RGE.(regressSt
r{1}).Predictors.mechanicalPredictors(:,jj),'type','Pearson'); 
% % % % % %     end 
% % % % % % end 
%-------------------------------------- 
  
  
% % % % % % %---univariate correlations of each predictor with each 
tissue/gene 
% % % % % % tissueGeneCtr = 1; 
% % % % % % for i = 1:size(tissueStr,2) %samples 
% % % % % %     for j = 1:size(geneStr,2) %genes per tissue 
% % % % % %          
% % % % % %         tissueGeneStr = [tissueStr{i},geneStr{j}]; 
% % % % % %         tissueGeneCtr = tissueGeneCtr + 1; %first iteration-it's 
2 
% % % % % %          
% % % % % %         dummyRGE = RGE.(regressStr{1}).Values(:,tissueGeneCtr); 
% % % % % %         dummyRGE(isnan(dummyRGE)) = 0; %convert NaNs to 0's 
% % % % % %         %---consolidate matrix, remove 0's rows - dates not in 
group 
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% % % % % %         indexAll = find(dummyRGE ~= 0); 
% % % % % %         dummyRGE = dummyRGE(indexAll,:); 
% % % % % %         %performing univariate correlations w/ consolidated 
mechanical predictors 
% % % % % %         for ii = 
1:size(RGE.(regressStr{1}).Predictors.mechanicalPredictors,2) 
% % % % % %             
[RGE.('UniCorr').(tissueStr{i}).(geneStr{j}).rho(ii),RGE.('UniCorr').(tissueS
tr{i}).(geneStr{j}).p(ii)] = 
corr(dummyRGE,RGE.(regressStr{1}).Predictors.mechanicalPredictors(indexAll,ii
)); 
% % % % % %         end 
% % % % % %         clear dummyRGE indexAll 
% % % % % %     end 
% % % % % % end 
% % % % % %  
% % % % % % tissueGeneCtr = 0; 
% % % % % % for i = 1:size(tissueStr,2) %samples 
% % % % % %     for j = 1:size(geneStr,2) %genes per tissue 
% % % % % %         tissueGeneCtr = tissueGeneCtr + 1; 
% % % % % %         for ii = 
1:size(RGE.(regressStr{1}).Predictors.mechanicalPredictors,2) 
% % % % % % %             if 
RGE.('UniCorr').(tissueStr{i}).(geneStr{j}).p(ii) < 0.1 
% % % % % %                 RGE.('UniCorr').P(tissueGeneCtr,ii) = 
RGE.('UniCorr').(tissueStr{i}).(geneStr{j}).p(ii); 
% % % % % %                 RGE.('UniCorr').Rho(tissueGeneCtr,ii) = 
RGE.('UniCorr').(tissueStr{i}).(geneStr{j}).rho(ii); 
% % % % % %  
% % % % % % %             end 
% % % % % %         end 
% % % % % %     end 
% % % % % % end 
% % % % % % %---------------------------------------------------------------- 
  
%---perform PCA of predictor variables on a gene/tissue basis?--- 
%PCA on raw data 
%centering subtracts the mean so that PC's point in the direction of maximal 
variance w/o undue influence of the mean 
[RGE.(regressStr{1}).Predictors.(regressStr{1}).coeff,RGE.(regressStr{1}).Pre
dictors.(regressStr{1}).score,RGE.(regressStr{1}).Predictors.(regressStr{1}).
latent,... 
    
RGE.(regressStr{1}).Predictors.(regressStr{1}).tsquared,RGE.(regressStr{1}).P
redictors.(regressStr{1}).explained,RGE.(regressStr{1}).Predictors.(regressSt
r{1}).mu]... 
    = 
pca(RGE.(regressStr{1}).Predictors.mechanicalPredictors,'algorithm','svd','ce
ntered','on'); %exclude the date variable in the first column 
RGE.(regressStr{1}).Predictors.(regressStr{1}).nPC = 9; %number of PC 
determined above cutoff 
  
%PCA on standardized X - based on autocorrelation: sum of eigenvalues is 
number of variables 
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[RGE.(regressStr{1}).Predictors.(regressStr{2}).coeff,RGE.(regressStr{1}).Pre
dictors.(regressStr{2}).score,RGE.(regressStr{1}).Predictors.(regressStr{2}).
latent,... 
    
RGE.(regressStr{1}).Predictors.(regressStr{2}).tsquared,RGE.(regressStr{1}).P
redictors.(regressStr{2}).explained,RGE.(regressStr{1}).Predictors.(regressSt
r{2}).mu]... 
    = 
pca(zscore(RGE.(regressStr{1}).Predictors.mechanicalPredictors),'algorithm','
svd','centered','on'); %exclude the date variable in the first column 
RGE.(regressStr{1}).Predictors.(regressStr{2}).nPC = 5; %number of PC 
determined above cutoff 
  
%score:= data in the princ. comp. space (row-observation; col-PC)  
%returns rotated coefficients to maxmize unique contribution of original 
variables to each prinicipal component and the transformation matrix,T, by 
%which one should be able to align 'scores' (and other 'pca' matrices) 
[RGE.(regressStr{1}).Predictors.(regressStr{2}).coeffVR, 
RGE.(regressStr{1}).Predictors.(regressStr{2}).Tvr] = 
rotatefactors(RGE.(regressStr{1}).Predictors.(regressStr{2}).coeff(:,1:RGE.(r
egressStr{1}).Predictors.(regressStr{2}).nPC),'Method','varimax'); 
RGE.(regressStr{1}).Predictors.(regressStr{2}).score_Tvr = 
RGE.(regressStr{1}).Predictors.(regressStr{2}).score(:,1:RGE.(regressStr{1}).
Predictors.(regressStr{2}).nPC) * 
RGE.(regressStr{1}).Predictors.(regressStr{2}).Tvr; 
  
%interpret principle components by correlating with original predictor 
variables 
for ii = 1:size(RGE.(regressStr{1}).Predictors.mechanicalPredictors,2) 
%number of PC determined above cutoff 
    for jj = 1:RGE.(regressStr{1}).Predictors.(regressStr{2}).nPC 
        
RGE.(regressStr{1}).Predictors.(regressStr{2}).Data_PC_correlation.rho(ii,jj) 
= 
corr(RGE.(regressStr{1}).Predictors.mechanicalPredictors(:,ii),RGE.(regressSt
r{1}).Predictors.(regressStr{2}).score(:,jj)); 
        
RGE.(regressStr{1}).Predictors.(regressStr{2}).Data_PCvr_correlation.rho(ii,j
j) = 
corr(RGE.(regressStr{1}).Predictors.mechanicalPredictors(:,ii),RGE.(regressSt
r{1}).Predictors.(regressStr{2}).score_Tvr(:,jj)); 
    end 
end 
  
%output of PCA copied to mechanicalPredictors_BCDS_031914\PCA_standardized 
%result of PCA and interpretation and downsizing permitted by bivariate 
%correlation of all predictors - avoiding collinearity 
% indxBivC_PCA = [1 5 9 10 13 14 15 17]; %WorkCum HystCum Mxf Mxe dMxf dMxe 
NZk dNzk 
predVarStr = {'WorkCum','Hyst',’ROMf','ROMe','dMxe','NZk', 'aROM', 'dMy'}; 
%can I reat this in from MechPredictorAll*.xls ??? 
indxBivC_PCA = 
1:1:size(RGE.(regressStr{1}).Predictors.mechanicalPredictors,2); %+ dHyst Age 
% predVarStr = {'WorkCum','HystCum','Cycles','Age'}; 
% indxBivC_PCA = [1 5 18 19]; %+ dHyst Age 
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RGE.(regressStr{1}).Predictors.(regressStr{2}).finalPredictors = 
RGE.(regressStr{1}).Predictors.mechanicalPredictors(:,indxBivC_PCA); 
PredictorVar = 
RGE.(regressStr{1}).Predictors.(regressStr{2}).finalPredictors; 
  
%-----multiple regression in Matlab----------------------- 
% % % % %replace NaN's with 0's 
% % % % % for i = 1:size(regressStr,2)-1 %number of groups 
% % % %     RGE.(regressStr{1}).Values(isnan(RGE.(regressStr{i}).Values)) = 
0; 
% % % % %     
RGE.(regressStr{i}).Predictors(isnan(RGE.(regressStr{i}).Values)) = 0; 
% % % % % end 
% % % %  
% % % % %consolidate matrix, remove 0's rows - dates not in group 
% % % % % for i = 1:size(regressStr,2)-1 %number of groups 
% % % %     RGE.(regressStr{1}).IndexAll = 
find(RGE.(regressStr{i}).Values(:,1) ~= 0); 
% % % %     RGE.(regressStr{1}).Values = 
RGE.(regressStr{i}).Values(RGE.(regressStr{i}).IndexAll,:); 
% % % %     
RGE.(regressStr{1}).Predictors.mechanicalPredictors(RGE.(regressStr{1}).Index
All,:) =  
RGE.(regressStr{i}).Predictors.mechanicalPredictors(RGE.(regressStr{i}).Index
All,:); 
% % % % % end 
% % % %  
% % % %  
% % % % %count N per gene per group (non-NaNs per column) 
% % % % %form Values in by tissue and by gene (under group) 
% % % % % for i = 1:size(regressStr,2)  %groups 
% % % % % predictors are not separated by tissue and gene (apply across 
tissue & 
% % % % % gene combinations) 
% % % %     colIndx = 1; 
% % % %     for j = 1:size(tissueStr,2) %samples 
% % % %         for k = 1:size(geneStr,2) %genes per tissue 
% % % %             colIndx = colIndx+1; %columns 2 thru 10 
% % % %             RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values = 
RGE.(regressStr{i}).Values(:,colIndx); 
% % % %             
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Predictors.mechanicalPredicto
rs = RGE.(regressStr{i}).Predictors.mechanicalPredictors; %copy Predictor to 
each tissue/gene combination 
% % % %         end 
% % % %     end 
% % % % % end 
% % % %           
% % % % %remove 0 values per tissue per gene, get N per ...        
% % % % for i = 1:size(regressStr,2)  %groups 
% % % %     for j = 1:size(tissueStr,2) %samples 
% % % %         for k = 1:size(geneStr,2) %genes per tissue 
% % % %             ctr = 1; 
% % % %             for ii = 
1:size(RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values,1) %find 
indices of predictor rows that don't have corresponding RGE values 
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% % % %                 if  
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values(ii) == 0 %row where 
RGE value is missing 
% % % %                     
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).predictorDeleteIndx(ctr) = 
ii; %indices (rows) to delete 
% % % %                     ctr = ctr+1; 
% % % %                 end 
% % % %             end 
% % % %             %remove rows w/ zero RGE values 
% % % %             
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).PredictorVar = 
removerows(RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Predictors.mechani
calPredictors,'ind',RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).predictor
DeleteIndx); 
% % % %             %contract RGE values vector to remove non-zero values 
% % % %             
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values((RGE.(regressStr{i}).(
tissueStr{j}).(geneStr{k}).Values)==0) = []; 
% % % %             %store size per tissue per gene 
% % % %             RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).N = 
size(RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values,1); %get N per 
group 
% % % %              
% % % %         end 
% % % %     end 
% % % % end 
% % % %  
% % % % %---correlations: bivariate correlations of each predictor w/ RGE--- 
% % % % for i = 1:size(regressStr,2)  %groups 
% % % %     for j = 1:size(tissueStr,2) %samples 
% % % %         for k = 1:size(geneStr,2) %genes per tissue 
% % % %             for ii = 
1:size(RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).PredictorVar,2) 
% % % %                 %perform linear correlation of each predictor with 
each tissue/gene RGE 
% % % %                 %correlation rho is 1xn vector w/ values for each 
predictor (how does each predictor correlate w/ that RGE) 
% % % %                 
[RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).rho(ii), 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).rhoP(ii)] = 
corr(RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).PredictorVar(:,ii),RGE.(
regressStr{i}).(tissueStr{j}).(geneStr{k}).Values,'type','Pearson'); 
% % % %             end 
% % % %         end 
% % % %     end 
% % % % end 
% % % %  
% % % %  
% % % %  
% % % % %make linear regression data structure 
% % % % for i = 1:size(regressStr,2) 
% % % %     for j = 1:size(tissueStr,2) %samples 
% % % %         for k = 1:size(geneStr,2) %genes per tissue 
% % % % %                 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.tbl = 
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[RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).PredictorVar 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values]; %variable to write 
% % % %                 tissueGeneStr = [tissueStr{j},geneStr{k}]; %sheet 
name 
% % % %                 cellLabelStr = 
{tissueGeneStr,'Cycles','Work_Cum','Hysteresis_Cum','Net_Energy','fROM','eROM
','ROM','Age'}; 
% % % %                  
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl = 
fitlm(RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).PredictorVar, 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values); 
%,'VarNames',{tissueGeneStr,'Cycles','Work_Cum','Hysteresis_Cum','Net_Energy'
,'fROM','eROM','ROM','Age'}); 
% % % %                 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.anova = 
anova(RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl); % 
get F-stat & F_pVal 
% % % %                 %this anova gives p-values identical to t-stat p-
values (though F-stat is different from t-stat); it delivers p-values per 
predictor rather than for the whole model...not what I was hoping for 
% % % %         end 
% % % %     end 
% % % % end 
% % % %  
% % % %  
% % % % %make r-squared matrix 
% % % % for j = 1:size(tissueStr,2) %samples 
% % % %     for k = 1:size(geneStr,2) %genes per tissue 
% % % %         RGE.(regressStr{1}).Rsquared(j,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl.Rsquared.Ord
inary; 
% % % %         RGE.(regressStr{1}).RsquaredAdj(j,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl.Rsquared.Adj
usted; 
% % % %         RGE.(regressStr{1}).(tissueStr{j}).Coeff(:,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl.Coefficients
(:,1); 
% % % %         RGE.(regressStr{1}).(tissueStr{j}).coeffSE(:,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl.Coefficients
(:,2); 
% % % %         RGE.(regressStr{1}).(tissueStr{j}).tStat(:,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl.Coefficients
(:,3); 
% % % %         RGE.(regressStr{1}).(tissueStr{j}).pValue(:,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.mdl.Coefficients
(:,4); 
% % % %         %F-stat (on the model as a whole) 
% % % % %         RGE.(regressStr{1}).F_stat(j,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.anova(2); 
% % % % %         %p-value for F-stat (again, on model in general) 
% % % % %         RGE.(regressStr{1}).F_pVal(j,k) = 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.anova(2); 
% % % %     end 
% % % % end 
  
% % % %% Export Data 
% % % %%%creat Excel worksheet with all the data 
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% % % analysisDate = '051214'; 
% % % fileLocation = 'Z:\Ortho Research 3\FergusonLab\Students\Hartman, 
Robert\Biological Outcomes\RNA\PCR\Summary\Stats\'; 
% % %  
% % % cellPredictorStr = {'allMechanics'}; %add age, others 
% % % % cellAnovaMx = {'B2'}; 
% % %  
% % % for i = 1:size(regressStr,2) 
% % %     for j = 1:size(tissueStr,2) %samples 
% % %         for k = 1:size(geneStr,2) %genes per tissue 
% % % %             if 
RGE.(compareStr{1}).(tissueStr{j}).(geneStr{k}).anovaMatrix ~= 0  
% % %                 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.tbl = 
[RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).Values 
RGE.(regressStr{i}).(tissueStr{j}).(geneStr{k}).PredictorVar]; %variable to 
write 
% % %                 tissueGeneStr = [tissueStr{j},geneStr{k}]; %sheet name 
% % %                 cellLabelStr = 
{tissueGeneStr,'Cycles','Work_Cum','Hysteresis_Cum','Net_Energy','fROM','eROM
','ROM','Age'}; 
% % %                 
xlswrite([fileLocation,'RGE_multiRegress',analysisDate,'.xlsx'],cellLabelStr,
tissueGeneStr,'A1:I1'); 
% % %                 
xlswrite([fileLocation,'RGE_multiRegress',analysisDate,'.xlsx'],RGE.(regressS
tr{i}).(tissueStr{j}).(geneStr{k}).multiRegress.tbl,tissueGeneStr,'A2'); 
% % % %             end 
% % %         end 
% % %     end 
% % % end 
%----------------------------------------------------------------------- 
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C.3 REGRESSION RESULTS:  ANNULUS FIBROSUS 

C.3.1 MMP-1 

Model Summaryb 

Model R 
R 

Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .445
a .198 .165 .11588 .198 5.943 1 2

4 .023 

a. Predictors: (Constant), WorkCum 

b. Dependent Variable: logMMP1_AF 
 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .080 1 .080 5.943 .023

b 
Residual .322 2

4 .013     

Total .402 2
5       

a. Dependent Variable: logMMP1_AF 

b. Predictors: (Constant), WorkCum 
 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant

) .210 .069   3.05
4 

.00
5     

WorkCum .001 .000 .445 2.43
8 

.02
3 1.000 1.000 

a. Dependent Variable: logMMP1_AF 

 236 



 

 

 237 



C.3.2 MMP-3 

Model Summaryb 

Mod
el R 

R 
Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .36
8a .136 .112 .18362 .136 5.649 1 3

6 .023 

a. Predictors: (Constant), AROMmidMean 

b. Dependent Variable: logMMP3_AF 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .190 1 .190 5.649 .023b 

Residual 1.214 36 .034     
Total 1.404 37       

a. Dependent Variable: logMMP3_AF 

b. Predictors: (Constant), AROMmidMean 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .505 .037   13.515 .000     

AROMmidMean .047 .020 .368 2.377 .023 1.000 1.000 
a. Dependent Variable: logMMP3_AF 
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C.3.3 ADAMTS-5 

Model Summaryc 

Mod
el R 

R 
Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .21
6a .046 .014 .09506 .046 1.413 1 2

9 .244 

2 .39
3b .154 .094 .09111 .108 3.574 1 2

8 .069 

a. Predictors: (Constant), NZMean 

b. Predictors: (Constant), NZMean, MymidRelax 

c. Dependent Variable: logADAMTS5_AF 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .013 1 .013 1.413 .244b 

Residual .262 29 .009     
Total .275 30       

2 Regression .042 2 .021 2.556 .096c 
Residual .232 28 .008     
Total .275 30       

a. Dependent Variable: logADAMTS5_AF 

b. Predictors: (Constant), NZMean 

c. Predictors: (Constant), NZMean, MymidRelax 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B 
Std. 
Error Beta Tolerance VIF 

1 (Constant) .368 .032   11.655 .000     
NZMean -1.553 1.306 -.216 -1.189 .244 1.000 1.000 

2 (Constant) .378 .031   12.307 .000     
NZMean -2.299 1.313 -.319 -1.751 .091 .910 1.099 
MymidRela
x . .000 -.344 -1.890 .069 .910 1.099 

a. Dependent Variable: logADAMTS5_AF 
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C.3.4 COX-2 

Model Summaryc 

Model R 

R 
Squar

e 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .188
a .035 .007 .13470 .035 1.245 1 3

4 .272 

2 .229
b .052 -.005 .13552 .017 .589 1 3

3 .448 

a. Predictors: (Constant), ROMfMean 

b. Predictors: (Constant), ROMfMean, MxeRelax 

c. Dependent Variable: logCOX2_AF 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .023 1 .023 1.245 .272b 

Residual .617 34 .018     
Total .639 35       

2 Regression .033 2 .017 .910 .413c 
Residual .606 33 .018     
Total .639 35       

a. Dependent Variable: logCOX2_AF 

b. Predictors: (Constant), ROMfMean 

c. Predictors: (Constant), ROMfMean, MxeRelax 

 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .443 .098   4.525 .00

0     

ROMfMea
n -.007 .006 -.188 -1.116 .27

2 1.000 1.000 

2 (Constant) .440 .099   4.464 .00
0     

ROMfMea
n -.007 .006 -.178 -1.050 .30

1 .995 1.005 

MxeRelax -.001 .001 -.130 -.767 .44
8 .995 1.005 

a. Dependent Variable: logCOX2_AF 
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C.3.5 ACAN 

Model Summarye 

Model R 
R 

Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .364a .133 .106 .10997 .133 4.900 1 3
2 .034 

2 .367b .135 .079 .11160 .002 .070 1 3
1 .793 

3 .400c .160 .076 .11180 .025 .890 1 3
0 .353 

4 .569d .324 .230 .10201 .164 7.033 1 2
9 .013 

a. Predictors: (Constant), HysteresisMean 

b. Predictors: (Constant), HysteresisMean, WorkCum 

c. Predictors: (Constant), HysteresisMean, WorkCum, ROMfMean 

d. Predictors: (Constant), HysteresisMean, WorkCum, ROMfMean, MymidRelax 

e. Dependent Variable: logACAN_AF 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .059 1 .059 4.900 .034b 

Residual .387 32 .012     
Total .446 33       

2 Regression .060 2 .030 2.414 .106c 
Residual .386 31 .012     
Total .446 33       

3 Regression .071 3 .024 1.900 .151d 
Residual .375 30 .012     
Total .446 33       

4 Regression .144 4 .036 3.470 .020e 
Residual .302 29 .010     
Total .446 33       

a. Dependent Variable: logACAN_AF 

b. Predictors: (Constant), HysteresisMean 

c. Predictors: (Constant), HysteresisMean, WorkCum 

d. Predictors: (Constant), HysteresisMean, WorkCum, ROMfMean 

e. Predictors: (Constant), HysteresisMean, WorkCum, ROMfMean, MymidRelax 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta 
Toleranc

e VIF 
1 (Constant) .457 .041   11.03

7 
.00

0     

HysteresisMe
an -.112 .051 -.364 -

2.214 
.03

4 1.000 1.000 

2 (Constant) .470 .065   7.228 .00
0     

HysteresisMe
an -.108 .054 -.350 -

1.985 
.05

6 .899 1.112 

WorkCum ######## .000 -.047 -.265 .79
3 .899 1.112 

3 (Constant) .405 .095   4.281 .00
0     

HysteresisMe
an -.103 .055 -.333 -

1.875 
.07

1 .890 1.124 

WorkCum .000 .000 -.101 -.545 .59
0 .812 1.231 

ROMfMean .005 .006 .166 .943 .35
3 .903 1.107 

4 (Constant) .399 .086   4.619 .00
0     

HysteresisMe
an -.098 .050 -.319 -

1.972 
.05

8 .889 1.125 

WorkCum .000 .000 -.331 -
1.740 

.09
3 .644 1.554 

ROMfMean .010 .005 .309 1.823 .07
9 .812 1.231 

MymidRelax .000 .000 -.465 -
2.652 

.01
3 .759 1.318 

a. Dependent Variable: logACAN_AF 
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C.4 REGRESSION RESULTS:  FACET CARTILAGE 

C.4.1 ADAMTS-5 

Model Summaryc 

Model R 

R 
Squar

e 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .401a .161 .108 .07282 .161 3.067 1 1
6 .099 

2 .653b .427 .350 .06217 .266 6.949 1 1
5 .019 

a. Predictors: (Constant), AROMmidMean 

b. Predictors: (Constant), AROMmidMean, NZMean 

c. Dependent Variable: logADAMTS5_FC 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .016 1 .016 3.067 .099b 

Residual .085 16 .005     
Total .101 17       

2 Regression .043 2 .022 5.578 .015c 
Residual .058 15 .004     
Total .101 17       

a. Dependent Variable: logADAMTS5_FC 

b. Predictors: (Constant), AROMmidMean 

c. Predictors: (Constant), AROMmidMean, NZMean 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .265 .018   14.424 .000     

AROMmidMean -.107 .061 -.401 -1.751 .099 1.000 1.000 
2 (Constant) .410 .057   7.148 .000     

AROMmidMean -.086 .053 -.323 -1.634 .123 .978 1.023 
NZMean -7.670 2.910 -.521 -2.636 .019 .978 1.023 
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a. Dependent Variable: logADAMTS5_FC 
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C.4.2 COX-2 

Model Summaryd 

Model R 

R 
Squar

e 
Adjusted 
R Square 

Std. Error of the 
Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .335a .112 .078 .20177 .112 3.294 1 2
6 .081 

2 .512b .263 .204 .18755 .150 5.092 1 2
5 .033 

3 .624c .389 .312 .17428 .126 4.952 1 2
4 .036 

a. Predictors: (Constant), WorkCum 

b. Predictors: (Constant), WorkCum, MymidRelax 

c. Predictors: (Constant), WorkCum, MymidRelax, AROMmidMean 

d. Dependent Variable: logCOX2_FC 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .134 1 .134 3.294 .081b 

Residual 1.059 26 .041     
Total 1.193 27       

2 Regression .313 2 .157 4.452 .022c 
Residual .879 25 .035     
Total 1.193 27       

3 Regression .464 3 .155 5.088 .007d 
Residual .729 24 .030     
Total 1.193 27       

a. Dependent Variable: logCOX2_FC 

b. Predictors: (Constant), WorkCum 

c. Predictors: (Constant), WorkCum, MymidRelax 

d. Predictors: (Constant), WorkCum, MymidRelax, AROMmidMean 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .695 .119   5.861 .000     

WorkCum -.001 .000 -.335 -1.815 .081 1.000 1.000 
2 (Constant) .768 .115   6.685 .000     

WorkCum -.001 .000 -.495 -2.665 .013 .855 1.170 
MymidRelax .000 .000 -.419 -2.257 .033 .855 1.170 

3 (Constant) .789 .107   7.360 .000     
WorkCum -.002 .000 -.652 -3.496 .002 .733 1.364 

MymidRelax .000 .000 -.573 -3.082 .005 .736 1.358 
AROMmidMean -.052 .023 -.395 -2.225 .036 .808 1.237 

a. Dependent Variable: logCOX2_FC 
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C.4.3 ACAN 

Model Summaryd 

Model R 

R 
Squar

e 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .454a .206 .164 .09373 .206 4.925 1 1
9 .039 

2 .496b .247 .163 .09380 .041 .971 1 1
8 .337 

3 .629c .396 .289 .08642 .149 4.206 1 1
7 .056 

a. Predictors: (Constant), AROMmidMean 

b. Predictors: (Constant), AROMmidMean, WorkCum 

c. Predictors: (Constant), AROMmidMean, WorkCum, MymidRelax 

d. Dependent Variable: logACAN_FC 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .043 1 .043 4.925 .039b 

Residual .167 19 .009     
Total .210 20       

2 Regression .052 2 .026 2.944 .078c 
Residual .158 18 .009     
Total .210 20       

3 Regression .083 3 .028 3.715 .032d 
Residual .127 17 .007     
Total .210 20       

a. Dependent Variable: logACAN_FC 

b. Predictors: (Constant), AROMmidMean 

c. Predictors: (Constant), AROMmidMean, WorkCum 

d. Predictors: (Constant), AROMmidMean, WorkCum, MymidRelax 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .288 .023   12.296 .000     

AROMmidMea
n .030 .014 .454 2.219 .039 1.000 1.000 

2 (Constant) .239 .055   4.328 .000     
AROMmidMea
n .035 .014 .517 2.411 .027 .910 1.099 

WorkCum .000 .000 .211 .985 .337 .910 1.099 
3 (Constant) .200 .054   3.693 .002     

AROMmidMea
n .046 .014 .681 3.195 .005 .782 1.278 

WorkCum .000 .000 .463 1.991 .063 .656 1.524 
MymidRelax .000 .000 .464 2.051 .056 .695 1.439 

a. Dependent Variable: logACAN_FC 

 

C.5 REGRESSION RESULTS:  NUCLEUS PULPOSUS 

C.5.1 MMP-3 

Model Summaryb 

Model R 

R 
Squar

e 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .116a .013 -.025 .27039 .013 .353 1 2
6 .558 

a. Predictors: (Constant), ROMeMean 

b. Dependent Variable: logMMP3_NP 
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ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .026 1 .026 .353 .558b 

Residual 1.901 26 .073     
Total 1.927 27       

a. Dependent Variable: logMMP3_NP 

b. Predictors: (Constant), ROMeMean 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .456 .084   5.423 .00

0     

ROMeMea
n .012 .019 .116 .594 .55

8 1.000 1.000 

a. Dependent Variable: logMMP3_NP 
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C.5.2 COX-2 

Model Summaryc 

Model R 

R 
Squar

e 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .188a .035 -.011 .17603 .035 .769 1 2
1 .391 

2 .206b .042 -.053 .17972 .007 .147 1 2
0 .706 

a. Predictors: (Constant), HysteresisMean 

b. Predictors: (Constant), HysteresisMean, ROMeMean 

c. Dependent Variable: logCOX2_NP 
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ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .024 1 .024 .769 .391b 

Residual .651 21 .031     
Total .675 22       

2 Regression .029 2 .014 .442 .649c 
Residual .646 20 .032     
Total .675 22       

a. Dependent Variable: logCOX2_NP 

b. Predictors: (Constant), HysteresisMean 

c. Predictors: (Constant), HysteresisMean, ROMeMean 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .316 .082   3.856 .001     

HysteresisMean .083 .095 .188 .877 .391 1.000 1.000 
2 (Constant) .340 .104   3.252 .004     

HysteresisMean .077 .099 .173 .777 .446 .968 1.033 
ROMeMean .006 .015 .085 .383 .706 .968 1.033 

a. Dependent Variable: logCOX2_NP 

 

 

 

 256 
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C.5.3 ACAN 

Model Summaryd 

Model R 
R 

Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .292
a .086 .015 .14581 .086 1.216 1 1

3 .290 

2 .359
b .129 -.017 .14814 .043 .595 1 1

2 .456 

3 .478
c .228 .018 .14561 .100 1.421 1 1

1 .258 

a. Predictors: (Constant), MxeRelax 

b. Predictors: (Constant), MxeRelax, NZMean 

c. Predictors: (Constant), MxeRelax, NZMean, ROMfMean 

d. Dependent Variable: logACAN_NP 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .026 1 .026 1.216 .290b 

Residual .276 13 .021     
Total .302 14       

2 Regression .039 2 .019 .886 .438c 
Residual .263 12 .022     
Total .302 14       

3 Regression .069 3 .023 1.085 .396d 
Residual .233 11 .021     
Total .302 14       

a. Dependent Variable: logACAN_NP 

b. Predictors: (Constant), MxeRelax 

c. Predictors: (Constant), MxeRelax, NZMean 

d. Predictors: (Constant), MxeRelax, NZMean, ROMfMean 
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Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .296 .038   7.860 .000     

MxeRelax .001 .001 .292 1.103 .290 1.000 1.000 
2 (Constant) .161 .179   .899 .387     

MxeRelax .002 .001 .487 1.319 .212 .534 1.873 
NZMean 7.532 9.769 .284 .771 .456 .534 1.873 

3 (Constant) -.475 .562   -.846 .416     

MxeRelax .003 .002 .842 1.794 .100 .318 3.144 
NZMean 22.666 15.917 .856 1.424 .182 .194 5.148 
ROMfMean .023 .019 .525 1.192 .258 .362 2.760 

a. Dependent Variable: logACAN_NP 
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C.6 REGRESSION RESULTS:  LIGAMENTUM FLAVUM 

C.6.1 MMP-1 

Model Summaryd 

Model R 

R 
Squar

e 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .296a .088 .054 .18201 .088 2.591 1 2
7 .119 

2 .553b .306 .253 .16175 .219 8.188 1 2
6 .008 

3 .609c .370 .295 .15713 .064 2.550 1 2
5 .123 

a. Predictors: (Constant), NZMean 

b. Predictors: (Constant), NZMean, WorkCum 

c. Predictors: (Constant), NZMean, WorkCum, ROMfMean 

d. Dependent Variable: logMMP1_LF 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .086 1 .086 2.591 .119

b 
Residual .894 2

7 .033     

Total .980 2
8       

2 Regression .300 2 .150 5.734 .009c 
Residual .680 2

6 .026     

Total .980 2
8       

3 Regression .363 3 .121 4.901 .008
d 

Residual .617 2
5 .025     

Total .980 2
8       

a. Dependent Variable: logMMP1_LF 

b. Predictors: (Constant), NZMean 

c. Predictors: (Constant), NZMean, WorkCum 

d. Predictors: (Constant), NZMean, WorkCum, ROMfMean 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .253 .063   4.038 .000     

NZMean 3.980 2.473 .296 1.610 .119 1.000 1.000 
2 (Constant) .010 .102   .094 .926     

NZMean 3.282 2.211 .244 1.485 .150 .988 1.012 
WorkCum .001 .000 .470 2.861 .008 .988 1.012 

3 (Constant) -.228 .179   -1.278 .213     

NZMean 6.342 2.878 .471 2.203 .037 .550 1.817 
WorkCum .001 .000 .337 1.867 .074 .775 1.291 
ROMfMea
n .017 .011 .357 1.597 .123 .505 1.979 

a. Dependent Variable: logMMP1_LF 
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C.6.2 MMP-3 

Model Summaryb 

Mod
el R 

R 
Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .17
5a .031 -.005 .24579 .031 .856 1 2

7 .363 

a. Predictors: (Constant), ROMfMean 

b. Dependent Variable: logMMP3_LF 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .052 1 .052 .856 .363b 

Residual 1.631 27 .060     
Total 1.683 28       

a. Dependent Variable: logMMP3_LF 

b. Predictors: (Constant), ROMfMean 
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Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .293 .177   1.654 .110     

ROMfMean .011 .012 .175 .925 .363 1.000 1.000 
a. Dependent Variable: logMMP3_LF 
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C.6.3 ADAMTS-5 

Model Summaryd 

Model R 

R 
Squar

e 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .357a .127 .096 .20048 .127 4.080 1 2
8 .053 

2 .440b .194 .134 .19624 .066 2.223 1 2
7 .148 

3 .564c .319 .240 .18383 .125 4.769 1 2
6 .038 

a. Predictors: (Constant), NZMean 

b. Predictors: (Constant), NZMean, MymidRelax 

c. Predictors: (Constant), NZMean, MymidRelax, ROMfMean 

d. Dependent Variable: logADAMTS5_LF 
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ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .164 1 .164 4.080 .053b 

Residual 1.125 28 .040     
Total 1.289 29       

2 Regression .250 2 .125 3.241 .055c 
Residual 1.040 27 .039     
Total 1.289 29       

3 Regression .411 3 .137 4.052 .017d 
Residual .879 26 .034     
Total 1.289 29       

a. Dependent Variable: logADAMTS5_LF 

b. Predictors: (Constant), NZMean 

c. Predictors: (Constant), NZMean, MymidRelax 

d. Predictors: (Constant), NZMean, MymidRelax, ROMfMean 

 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .240 .068   3.514 .00

2     

NZMean 5.499 2.722 .357 2.020 .05
3 1.000 1.000 

2 (Constant) .229 .067   3.398 .00
2     

NZMean 6.641 2.773 .431 2.395 .02
4 .924 1.083 

MymidRela
x .000 .000 .268 1.491 .14

8 .924 1.083 

3 (Constant) -.207 .210   -.990 .33
1     

NZMean 10.810 3.223 .701 3.354 .00
2 .600 1.667 

MymidRela
x .000 .000 .295 1.747 .09

3 .919 1.088 

ROMfMean .024 .011 .441 2.184 .03
8 .642 1.558 

a. Dependent Variable: logADAMTS5_LF 
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C.6.4 COX-2 

Model Summarye 

Mod
el R 

R 
Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .45
8a .210 .179 .23859 .210 6.897 1 2

6 .014 

2 .51
4b .264 .206 .23473 .055 1.863 1 2

5 .184 

3 .56
6c .320 .235 .23037 .055 1.956 1 2

4 .175 

4 .71
0d .504 .418 .20091 .184 8.552 1 2

3 .008 

a. Predictors: (Constant), AROMmidMean 

b. Predictors: (Constant), AROMmidMean, NZMean 

c. Predictors: (Constant), AROMmidMean, NZMean, MymidRelax 

d. Predictors: (Constant), AROMmidMean, NZMean, MymidRelax, ROMfMean 

e. Dependent Variable: logCOX2_LF 

 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .393 1 .393 6.897 .014b 

Residual 1.480 26 .057     
Total 1.873 27       

2 Regression .495 2 .248 4.494 .022c 
Residual 1.377 25 .055     
Total 1.873 27       

3 Regression .599 3 .200 3.763 .024d 
Residual 1.274 24 .053     
Total 1.873 27       

4 Regression .944 4 .236 5.848 .002e 
Residual .928 23 .040     
Total 1.873 27       

a. Dependent Variable: logCOX2_LF 

b. Predictors: (Constant), AROMmidMean 

c. Predictors: (Constant), AROMmidMean, NZMean 

d. Predictors: (Constant), AROMmidMean, NZMean, MymidRelax 

e. Predictors: (Constant), AROMmidMean, NZMean, MymidRelax, ROMfMean 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .442 .055   8.020 .000     

AROMmidMean -.091 .035 -.458 -2.626 .014 1.000 1.000 
2 (Constant) .339 .093   3.638 .001     

AROMmidMean -.100 .035 -.503 -2.881 .008 .964 1.038 
NZMean 4.438 3.251 .238 1.365 .184 .964 1.038 

3 (Constant) .285 .099   2.886 .008     
AROMmidMean -.101 .034 -.507 -2.957 .007 .963 1.038 
NZMean 7.333 3.804 .394 1.928 .066 .678 1.475 
MymidRelax .000 .000 .282 1.398 .175 .698 1.433 

4 (Constant) -.389 .246   -1.580 .128     
AROMmidMean -.089 .030 -.448 -2.965 .007 .946 1.057 
NZMean 14.590 4.143 .784 3.522 .002 .435 2.300 
MymidRelax .000 .000 .404 2.234 .035 .661 1.513 
ROMfMean .037 .013 .557 2.924 .008 .594 1.682 

a. Dependent Variable: logCOX2_LF 
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C.6.5 ACAN 

Model Summaryb 

Mod
el R 

R 
Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 
df
1 

df
2 

Sig. F 
Change 

1 .28
4a .081 .047 .18053 .081 2.377 1 2

7 .135 

a. Predictors: (Constant), NZMean 

b. Dependent Variable: logACAN_LF 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
1 Regression .077 1 .077 2.377 .135b 

Residual .880 27 .033     
Total .957 28       

a. Dependent Variable: logACAN_LF 

b. Predictors: (Constant), NZMean 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 
1 (Constant) .415 .062   6.683 .000     

NZMean -3.782 2.453 -.284 -1.542 .135 1.000 1.000 
a. Dependent Variable: logACAN_LF 
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APPENDIX D 

MATLAB CODE - MECHANICS 

The overview of Matlab code is summarized in Figure 45.  Each component of the robotic control, 

kinematic tracking, and post-hoc analysis is described in the following sections.   

 

Figure 45.  Overview of Matlab Code 
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D.1 ROBOT TESTING SYSTEM CONTROL 

D.1.1 Tare Bioreactor Force/Moments  

Because the bioreactor was assembled in sterile conditions and attached to the robot as a unit, the 

weight and contribution of the superior fixture had to be determined a priori and loaded in to the 

robot control program ahead of testing.  The script, ‘boltup_Spine.m’ (below) was used to 

determine the influence of the superior fixture, and variables, ‘w_mg', 'avg', 'x0', 'y0', 

'z0','final_tare' were loaded in to the workspace. 

Boltup_Spine.m 

% boltup_accuracy 
%controller moves robot into #pp1-6 
%function to read forces/moments at each #pp 
pause on; 
final_tare = [0,0,0,0,0,0]; 
  
% Disable buttons on GUI until boltup_Spine.m is done running 
buttons_Spine(guihandles, 'off'); 
  
pp(1,1:6) = [0,-45.001,135.001,0,-.001,-180.001]; 
pp(2,1:6) = [0,-45.001,135.001,0,-.001,-.001]; 
pp(3,1:6) = [0,-45.001,135.001,0,-.001,90.001]; 
pp(4,1:6) = [0,-45.001,135.001,0,-.001,-90.001]; 
pp(5,1:6) = [0,-45.001,135.001,0,-90.001,-90.001]; 
pp(6,1:6) = [0,-45.001,135.001,0,90.001,-90.001]; 
  
% % set transformation for COR from UFS face (remember that the UFS has a 
left-hand rule, so positive z axis points toward the robot) 
% trans_ufst = [1,round(x1*1000/0.0254), 2,round(y1*1000/0.0254), 3,round(-
(z1-0.045)*1000/0.0254), 4,round(rx1*32768/180), 5,round(ry1*32768/180), 
6,round(rz1*32768/180),0]; 
% b = matjr3pci('set_transforms', 0, 'trans_ufst', 13, 0); 
%  
% % use transformation 
% b = matjr3pci('use_transforms', 0, 0); 
%  
% % only use pause if updating COR 
% pause(1); 
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for p = 1:6 
     
    ok = 0; 
    flag = 6.1; 
    fprintf(port1,'%f\n', [ok, flag]); 
    fprintf(port1,'%f\n', pp(p,1:6)); 
  
    done_moving = fscanf(port1); 
    done_moving2 = sscanf(done_moving, '%f'); 
     
    pause(1); 
     
    get_loads; 
    pp_fin(1:3,p)=fm_ufs(1:3)'; 
    pp_min(1:3,p)=fm_ufs(4:6)'; 
    cg_fin(1:3,p)=fm_ufs(1:3)'; 
    cg_min(1:3,p)=fm_ufs(4:6)'; 
    
         
end 
  
ok = 0; 
flag = 6.1; 
fprintf(port1,'%f\n', [ok, flag]); 
fprintf(port1,'%f\n', pp(3,1:6)); 
  
done_moving = fscanf(port1); 
done_moving = sscanf(done_moving, '%f'); 
  
% FSU forces/moments=UFS forces/moments[]-avg[]-fixture wt[] 
favgx = (pp_fin(1,3)+pp_fin(1,4)+pp_fin(1,5)+pp_fin(1,6))/4; 
favgy = (pp_fin(2,1)+pp_fin(2,2)+pp_fin(2,5)+pp_fin(2,6))/4; 
favgz = (pp_fin(3,1)+pp_fin(3,2)+pp_fin(3,3)+pp_fin(3,4))/4; 
mavgx = (pp_min(1,1)+pp_min(1,2))/2; 
mavgy = (pp_min(2,3)+pp_min(2,4)+pp_min(2,5)+pp_min(2,6))/4; 
mavgz = (pp_min(3,3)+pp_min(3,4)+pp_min(3,5)+pp_min(3,6))/4; 
  
avg = -[favgx favgy favgz mavgx mavgy mavgz]; 
avg_dig(2) = avg(2)*16384/20/4.44; 
avg_dig(3) = avg(3)*16384/50/4.44; 
  
% FSU forces/moments=UFS forces/moments[]-avg[]-fixture wt[] 
cg_favgx = (cg_fin(1,3)+cg_fin(1,4)+cg_fin(1,5)+cg_fin(1,6))/4; 
cg_favgy = (cg_fin(2,1)+cg_fin(2,2)+cg_fin(2,5)+cg_fin(2,6))/4; 
cg_favgz = (cg_fin(3,1)+cg_fin(3,2)+cg_fin(3,3)+cg_fin(3,4))/4; 
cg_mavgx = (cg_min(1,1)+cg_min(1,2))/2; 
cg_mavgy = (cg_min(2,3)+cg_min(2,4)+cg_min(2,5)+cg_min(2,6))/4; 
cg_mavgz = (cg_min(3,3)+cg_min(3,4)+cg_min(3,5)+cg_min(3,6))/4; 
  
% Calculate the center of gravity and mass of top fixture. 
  
% 3 and 4 : d = z 
% 3 : dz = -mx/fy 
% 4 : dz = -mx/fy 
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fy_cg3 = -cg_fin(2,3) + cg_favgy; 
fy_cg4 = -cg_fin(2,4) + cg_favgy; 
mx_cg3 = -cg_min(1,3) + cg_mavgx; 
mx_cg4 = -cg_min(1,4) + cg_mavgx; 
momarm_z1 = -(mx_cg3/fy_cg3)*1000; 
momarm_z2 = -(mx_cg4/fy_cg4)*1000; 
momarm_z = (momarm_z1 + momarm_z2)/2; 
z0 = momarm_z/1000; 
  
% 1 and 2 : d = y 
% 1 : dy = -mz/fx 
% 2 : dy = -mz/fxfy_cg3 = cg_fin(2,3); 
fx_cg1 = -cg_fin(1,1) + cg_favgx; 
fx_cg2 = -cg_fin(1,2) + cg_favgx; 
mz_cg1 = -cg_min(3,1) + cg_mavgz; 
mz_cg2 = -cg_min(3,2) + cg_mavgz; 
momarm_y1 = -(mz_cg1/fx_cg1)*1000; 
momarm_y2 = -(mz_cg2/fx_cg2)*1000; 
momarm_y = (momarm_y1 + momarm_y2)/2; 
y0 = momarm_y/1000; 
  
% 5 and 6 : d = x 
% 5 : dx = -my/fz 
% 6 : dx = -my/fzfy_cg3 = cg_fin(2,3); 
fz_cg5 = -cg_fin(3,5) + cg_favgz; 
fz_cg6 = -cg_fin(3,6) + cg_favgz; 
my_cg5 = -cg_min(2,5) + cg_mavgy; 
my_cg6 = -cg_min(2,6) + cg_mavgy; 
momarm_x1 = -(my_cg5/fz_cg5*1000); 
momarm_x2 = -(my_cg6/fz_cg6*1000); 
momarm_x = (momarm_x1 + momarm_x2)/2; 
x0 = momarm_x/1000; 
  
% mass = 3(-fy), 4(fy), 1(-fx), 2(fx), 5(-fz), 6(fz) 
mass_calc = ((-fy_cg3) + (fy_cg4) + (-fx_cg1) + (fx_cg2) + (-fz_cg5) + 
(fz_cg6))/6; 
mass_calc = -mass_calc; 
w_mg = [0 0 mass_calc]'; 
  
get_loads; 
fm_tare6; 
final_tare = fm_tcs; 
  
filename = ['c:\Robot Current\temp\temp ', date]; 
save(filename, 'w_mg', 'avg', 'x0', 'y0', 'z0','final_tare'); 
  
if abs(w_mg(3)) < 10 | abs(w_mg(3)) > 35 
    error('Error: Load cell is not recordeing properly - rerun boltup or 
testei.exe'); 
else 
    msgbox('The Load Cell is ready for use!') 
end 
  
% Disable buttons on GUI until boltup_Spine.m is done running 
buttons_Spine(guihandles, 'on'); 
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D.1.2 Active path determination (‘Pathseek’)  

The control interface, active path determination (‘Pathseek’), and force/moment minimization 

code are published by Dr. Kevin Bell in his doctoral dissertation (Appendix A.1 – A.2) [458].  All 

code was written initially by Dr. Bell for humans; modifications made for this dissertation for 

rabbit testing are marked by ‘RAH’ (author’s initials).  A version of the script that controls robot 

motions when moment targets are reached, ‘Max_moment_spine.m,’ is presented here.  This 

verison was modified for loop path determination of unequal moment targets in positive and 

negative directions, with variable step-sizes permitted.   

Motion control scheme when moment targets are reached: Max_moment_Spine.m:   

% max_moment_Spine.m 
% max moment loop 
% Kevin Bell 
% 3/18/2005 – modified by RAH (7/12) 
  
% Determines whether & how to modify robot motion based on (1) max load 
  
%asymmetric load targets - added by RAH 7/6/12 
%'max_mom' is from GUI 
% max_mom_pos = max_mom; %used default max load target for start pos 
% max_mom_neg = .1; %!!!this value will over-ride GUI 'start neg' max load 
target; need to modify max load taget for start neg 
% %comment out line 11 & 61 
  
% Max moment 
if loctarget_value == 0 
    if posloop == 1  %going in positive direction (based on start pos/neg 
radio button in GUI) 
        % Loop to determine if max_mom or max_force is appropriate 
        for i = 1:6 
            if motion(i) == 1 %motion is 0 for all non-primary DOF; this 
selects only primary DOF 
                if i < 4 
                    max_load = max_force;  %set max_load to max force 
                    step_down_load = max_load - (max_load*.1);  %calculate 
load at which smaller steps will be taken 
                else 
                    max_load = max_mom; 
                    step_down_load = max_load - (max_load*.1); 
                end 
            end 
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        end 
         
        %if on final leg of loop path, enter first part where 
        %step_down_load is around 0 rather than around target (max_mom) 
        if pathsequence == 1 && path_counter == sequencenum && final_loop == 
1 
            %for final leg of loop paths leave load target ('max_mom') 
unchanged but begin smaller step 
            %sizes close to 0Nm to ensure that you land on 0 deg 
            %             display('final loop') 
            step_down_load = (max_load*.1); %close to 0 Nm 
            if (fm_tcs(1))*motion(1) > (max_load) | (fm_tcs(2))*motion(2) > 
(max_load) | (fm_tcs(3))*motion(3) > (max_load) | (fm_tcs(4))*motion(4) > 
(max_load) | (fm_tcs(5))*motion(5) > (max_load) | (fm_tcs(6))*motion(6) > 
(max_load) 
                dir_flag = 1; 
                disp('********** CHANGING DIRECTION **********') 
                continue % change direction 
            elseif (abs(fm_tcs(1)))*motion(1) < (step_down_load) || 
(abs(fm_tcs(2)))*motion(2) < (step_down_load) || (abs(fm_tcs(3)))*motion(3) < 
(step_down_load) || (abs(fm_tcs(4)))*motion(4) < (step_down_load) || 
(abs(fm_tcs(5)))*motion(5) < (step_down_load) || (abs(fm_tcs(6)))*motion(6) < 
(step_down_load) 
                temp_inc = inc; 
                inc = inc_end; %could modify step-down load step-size HERE 
                sd_flag = 1; 
                disp('********** Smaller step size has been implemented 
**********') 
            elseif (abs(fm_tcs(1)) > z_stop(1)) | (abs(fm_tcs(2)) > 
z_stop(2)) | (abs(fm_tcs(3)) > z_stop(3)) | (abs(fm_tcs(4)) > z_stop(4)) | 
(abs(fm_tcs(5)) > z_stop(5)) | (abs(fm_tcs(6)) > z_stop(6)) 
                % if f/m are > max allowable, change direction 
                disp('Forces/moments are too high.') 
                disp('********** CHANGING DIRECTION **********') 
                dir_flag = 1; 
                continue % change direction 
            end 
            %default, normal control of all single, tail, and non-final loop 
paths 
        else 
            % Positive motion results in negative loads 
            % fm_tcs - forces/moments in the tool coordinate system 
            % 'motion' is 0 for all non-primary DOF 
            if (fm_tcs(1))*motion(1) < -(max_load) | (fm_tcs(2))*motion(2) < 
-(max_load) | (fm_tcs(3))*motion(3) < -(max_load) | (fm_tcs(4))*motion(4) < -
(max_load) | (fm_tcs(5))*motion(5) < -(max_load) | (fm_tcs(6))*motion(6) < -
(max_load) 
                disp('posloop=1') 
                dir_flag = 1; 
                disp('********** CHANGING DIRECTION **********') 
                continue % change direction 
            elseif (fm_tcs(1))*motion(1) < -(step_down_load) | 
(fm_tcs(2))*motion(2) < -(step_down_load) | (fm_tcs(3))*motion(3) < -
(step_down_load) | (fm_tcs(4))*motion(4) < -(step_down_load) | 
(fm_tcs(5))*motion(5) < -(step_down_load) | (fm_tcs(6))*motion(6) < -
(step_down_load) 

 278 



                temp_inc = inc; %//rah-not sure if Rotate_HAM uses 'temp_inc' 
or 'inc'!!! 
                inc = inc_end; %could modify step-down load step-size HERE 
                sd_flag = 1; 
                disp('********** Smaller step size has been implemented 
**********') 
            elseif (abs(fm_tcs(1)) > z_stop(1)) | (abs(fm_tcs(2)) > 
z_stop(2)) | (abs(fm_tcs(3)) > z_stop(3)) | (abs(fm_tcs(4)) > z_stop(4)) | 
(abs(fm_tcs(5)) > z_stop(5)) | (abs(fm_tcs(6)) > z_stop(6)) 
                % if f/m are > max allowable by robot (120N, 9Nm), change 
direction 
                disp('Forces/moments are too high.') 
                disp('********** CHANGING DIRECTION **********') 
                dir_flag = 1; 
                continue % change direction 
            end 
        end 
    end 
     
    if posloop == 0  %going in negative direction 
        % Loop to determine if max_mom or max_force is appropriate 
        for i = 1:6 
            if motion(i) == 1 
                if i < 4 
                    max_load = max_force; 
                    step_down_load = max_load - (max_load*.1); 
                else 
                    max_load = max_mom; 
                    step_down_load = max_load - (max_load*.1); 
                end 
            end 
        end 
         
        %if on final leg of loop path, enter first part where 
        %step_down_load is around 0 rather than around target (max_mom) 
        if pathsequence == 1 && path_counter == sequencenum && final_loop == 
1 
            %for final leg of loop paths leave load target ('max_mom') 
unchanged but begin smaller step 
            %sizes close to 0Nm to ensure that you land on 0 deg 
            display('final loop') 
            %             max_load 
            step_down_load = (max_load*.4); %close to 0 Nm 
            step_down_loc = 2; % 0.8 * 
(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_
str).(pathsequence_str)(1).loop_0_pos.rot_angle_end_pts(end)) 
            now 
            if (fm_tcs(1))*motion(1) > (max_load) | (fm_tcs(2))*motion(2) > 
(max_load) | (fm_tcs(3))*motion(3) > (max_load) | (fm_tcs(4))*motion(4) > 
(max_load) | (fm_tcs(5))*motion(5) > (max_load) | (fm_tcs(6))*motion(6) > 
(max_load) && fm_tcs(pathtype) > (max_load) %'&&' added by RAH for FSU 
testing 
                dir_flag = 1; 
                disp('********** CHANGING DIRECTION **********') 
                continue % change direction 
            elseif now < step_down_loc 
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                %                 (abs(fm_tcs(pathtype))) < (step_down_load) 
                display('pos_0 path') 
                temp_inc = inc; 
                inc = inc_end; %could modify step-down load step-size HERE 
                sd_flag = 1; 
                disp('********** Smaller step size has been implemented 
**********') 
            elseif (abs(fm_tcs(1)) > z_stop(1)) | (abs(fm_tcs(2)) > 
z_stop(2)) | (abs(fm_tcs(3)) > z_stop(3)) | (abs(fm_tcs(4)) > z_stop(4)) | 
(abs(fm_tcs(5)) > z_stop(5)) | (abs(fm_tcs(6)) > z_stop(6)) 
                % if f/m are > max allowable, change direction 
                disp('Forces/moments are too high.') 
                disp('********** CHANGING DIRECTION **********') 
                dir_flag = 1; 
                continue % change direction 
            end 
            %         %default, normal control of all single, tail, and non-
final loop paths 
        else 
            % Negative motion results in positive loads 
            if (fm_tcs(1))*motion(1) > (max_load) | (fm_tcs(2))*motion(2) > 
(max_load) | (fm_tcs(3))*motion(3) > (max_load) | (fm_tcs(4))*motion(4) > 
(max_load) | (fm_tcs(5))*motion(5) > (max_load) | (fm_tcs(6))*motion(6) > 
(max_load) && fm_tcs(pathtype) > (max_load) %'&&' added by RAH for FSU 
testing 
                %                 fm_tcs * motion 
                disp('posloop=0') 
                dir_flag = 1; 
                disp('********** CHANGING DIRECTION **********') 
                continue % change direction 
            elseif (fm_tcs(1))*motion(1) > (step_down_load) | 
(fm_tcs(2))*motion(2) > (step_down_load) | (fm_tcs(3))*motion(3) > 
(step_down_load) | (fm_tcs(4))*motion(4) > (step_down_load) | 
(fm_tcs(5))*motion(5) > (step_down_load) | (fm_tcs(6))*motion(6) > 
(step_down_load) && fm_tcs(pathtype) > (step_down_load) %'&&' added by RAH 
for FSU testing 
                display('all other paths') 
                temp_inc = inc; 
                %-----rah 8/30/12 > hard coding change to 'inc_end'; changes 
'inc'; not sure where 'inc' gets used/reset/modified //may need to "reset" 
'inc' 
                inc = inc_end; 
                %             inc_end_neg = inc_end/2; %rFSU FE: F-
inc_end=0.5; E-inc_end=0.25 
                %                 inc = inc_end_neg; %could modify step-down 
load step-size HERE 
                sd_flag = 1; 
                disp('********** Smaller step size has been implemented 
**********') 
            elseif (abs(fm_tcs(1)) > z_stop(1)) | (abs(fm_tcs(2)) > 
z_stop(2)) | (abs(fm_tcs(3)) > z_stop(3)) | (abs(fm_tcs(4)) > z_stop(4)) | 
(abs(fm_tcs(5)) > z_stop(5)) | (abs(fm_tcs(6)) > z_stop(6)) 
                % if f/m are > max allowable, change direction 
                disp('Forces/moments are too high.') 
                disp('********** CHANGING DIRECTION **********') 
                dir_flag = 1; 
                continue % change direction 
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            end 
        end 
         
    end 
     
    if path_counter == sequencenum 
        if final_loop == 1 
            display('final loop - at zero pos?') 
            for i = 1:6 
                if motion(i) == 1 
                    motion_num = i; 
                end 
            end 
             
            if (now*motion(motion_num) == 0) %basically, if the current angle 
hits zero, end the test 
                dir_flag = 1; 
                disp('********** PATHSEEK IS COMPLETED **********') 
                continue % change direction 
            end 
        end 
    end 
     
end 
  
% Max location rather than max moment 
if loctarget_value == 1 %i.e. if location target radio button is selected 
    if posloop == 1 
        display('posloop = 1') 
        pause(0.01);  %changed rah - 8/29/12 - from pause(2); 
        if (now*motion(1) >= (postarget) | now*motion(2) >= (postarget) | 
now*motion(3) >= (postarget) | now*motion(4) >= (postarget) | now*motion(5) 
>= (postarget) | now*motion(6) >= (postarget))  %'postarget' := "max 
location" 
            dir_flag = 1; 
            disp('********** CHANGING DIRECTION **********') 
            continue % change direction 
        elseif (abs(fm_tcs(1)) > z_stop(1)) | (abs(fm_tcs(2)) > z_stop(2)) | 
(abs(fm_tcs(3)) > z_stop(3)) | (abs(fm_tcs(4)) > z_stop(4)) | (abs(fm_tcs(5)) 
> z_stop(5)) | (abs(fm_tcs(6)) > z_stop(6)) 
            % if f/m are > max allowable, change direction 
            disp('Forces/moments are too high.') 
            disp('********** CHANGING DIRECTION **********') 
            dir_flag = 1; 
            continue % change direction 
        end 
    end 
     
    if posloop == 0 
        display('posloop = 0') 
        %-----rah 8/29/12 > hard coding option to make asymmetric location 
targets in tail or loop paths----- 
        negtarget = -postarget; %rah add/change - 8/29/12; line below used to 
be "now*motion(i) <= -(postarget); this assumed equal targets in pos & neg 
directions 
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        %must have above -OR- below but NOT both (double negative might cause 
rotation in the wrong direction 
         
        %       negtarget = -postarget/2; %redefines negtarget to user-
defined value 
        %---------------------------------- 
        if now*motion(1) <= (negtarget) | now*motion(2) <= (negtarget) | 
now*motion(3) <= (negtarget) | now*motion(4) <= (negtarget) | now*motion(5) 
<= (negtarget) | now*motion(6) <= (negtarget) 
            dir_flag = 1; 
            disp('********** CHANGING DIRECTION **********') 
            continue % change direction 
        elseif (abs(fm_tcs(1)) > z_stop(1)) | (abs(fm_tcs(2)) > z_stop(2)) | 
(abs(fm_tcs(3)) > z_stop(3)) | (abs(fm_tcs(4)) > z_stop(4)) | (abs(fm_tcs(5)) 
> z_stop(5)) | (abs(fm_tcs(6)) > z_stop(6)) 
            % if f/m are > max allowable, change direction 
            disp('Forces/moments are too high.') 
            disp('********** CHANGING DIRECTION **********') 
            dir_flag = 1; 
            continue % change direction 
        end 
    end 
     
    if path_counter == sequencenum 
        if final_loop == 1 
            display('posloop = 1') 
            for i = 1:6 
                if motion(i) == 1 
                    motion_num = i; 
                end 
            end 
             
            if (now*motion(motion_num) == 0) 
                dir_flag = 1; 
                disp('********** PATHSEEK IS COMPLETED **********') 
                continue % change direction 
            end 
        end 
    end 
     
end 
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D.1.3  Replay Stored Kinematics (‘Replay’) 

The code for replaying stored joint angles was written exclusively by Dr. Bell and Dr. Yiguo Yang; 

it is included here because of its prominence in this work.   

Replay stored joint angles: replay_Spine.m 

% replay_Spine 
% Kevin Bell 
% 03/18/2005 
  
pause on 
  
% error('TEST ERROR - Robot Current') 
  
% Disable buttons on GUI until Pathseek_Spine.m is done running 
buttons_Spine(guihandles, 'off'); 
  
tracking = 0; %ON = 1, OFF = 0; 
samba_num = 0; %OFF = 0, one sensor = 1, etc. 
vicon = 0; %ON = 1, OFF = 0; 
vicon_pause = 0; 
pauselength = 0.001; 
timer1 = 0; 
timer_period = .19999; 
  
if timer1 == 1 
    Timer_counter = 0; 
    T_VICON = timer('TimerFcn', 
'Timer_VICON','ExecutionMode','FixedRate','Period',timer_period); 
end 
  
clear ljHandle 
%Labjack must be working 
if exist('ljHandle') == 0 
    Labjack_Test_U3;   %assigns in & defines ljHandle, LJ_ioGET_AIN 
end 
  
% if tracking == 1 
%     if exist('port2') == 1 
%         if strcmpi(port2.status, 'open') == 1 
%             %start optical tracking 
%             startTracking(port2); 
%             tracking = 1; 
%         end 
%     end 
% end 
  
% Setup naming for structures 
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date_ID = [dated '_' ID]; 
if LAT_ang < 0 
    strLAT_ang = ['_' num2str(abs(LAT_ang))]; 
else 
    strLAT_ang = num2str(LAT_ang); 
end 
if FE_ang < 0 
    strFE_ang = ['_' num2str(abs(FE_ang))]; 
else 
    strFE_ang = num2str(FE_ang); 
end 
if AXIAL_ang < 0 
    strAXIAL_ang = ['_' num2str(abs(AXIAL_ang))]; 
else 
    strAXIAL_ang = num2str(AXIAL_ang); 
end 
  
current_angles = (['LAT' strLAT_ang '_FE' strFE_ang '_AXIAL' strAXIAL_ang]); 
  
% % Disable buttons on GUI until spine3h_pathseek4b.m is done running 
% buttons_Spine(guihandles, 'off'); 
  
% Input dialog box to get the filename for data storage 
default_path = ['c:\Spine Testing\Data\' date_ID]; 
prompt = {'Enter Filename'}; 
title = 'Filename'; 
lines = 1; 
def = {default_path}; 
answer = inputdlg(prompt,title,lines,def); 
if isequal(answer,{}) == 1 
    % Enable buttons on GUI 
    buttons(guihandles, 'on'); 
else 
    filename = answer{1}; 
end 
  
% Clear variables created for inputdlg 
clear prompt title lines def answer; 
  
% setup figure to graphically monitor loads 
[fx, fy, fz, mx, my, mz, handles, fh] = replay_display_Spine1; 
[handlesLD, fhLD] = pathseek_LDdisplay_Spine1(pathtype); 
  
% send x1, y1, z1, rx1, ry1, rz1 to V+ to make tool transformation 
ok = 0; 
flag = 0.1; 
fprintf(port1,'%f\n', [ok, flag]); 
fprintf(port1,'%f\n', [(x1*1000)+.001, (y1*1000)+.001, (z1*1000)+.001, 
rx1+.001, ry1+.001, rz1+.001]); 
  
done_moving = fscanf(port1); 
% ================================ 
timeout_Spine; 
% ================================ 
done_moving = sscanf(done_moving, '%f'); 
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%-------------------------------------------------------------------------- 
  
if vicon == 1 
    VICON_U3_OpenLabJack 
    % Start VICON 
    VICON_U3_Start 
    if timer1 == 1 
        start(T_VICON); 
        timertic=tic; 
    end 
    if vicon_pause ==1 
        pause(.1) 
        VICON_U3_Pause 
    end 
end 
  
%-------------------------------------------------------------------------- 
  
for replay_cycle = 1:num_replays 
     
    if pathsequence == 1  %1 - loop path 
         
        if replay_cycle == 1 | replay_cycle == num_replays; %replaying 
multiple paths 
            sequencenum = 3 
            if replay_cycle == num_replays 
                final_loop = 1; 
            end 
        end 
        if replay_cycle == 1 & replay_cycle == num_replays; %only replaying 
one path 
            sequencenum = 4 
            if replay_cycle == num_replays 
                final_loop = 1; 
            end 
        end 
        if replay_cycle ~= 1 & replay_cycle ~= num_replays; %not first or 
last replay 
            sequencenum = 2 
        end 
         
        %         sequencenum = 4; 
    elseif pathsequence == 2 
        sequencenum = 2; 
    elseif pathsequence == 3 
        sequencenum = 1; 
    end 
     
    %     if tracking == 1 
    %         % Establish initial matrix (home) 
    %         [T_Gmo,T_GmoP] = ndiTrack(port2); 
    %         P_glob_0 = T_Gmo(:,:,5) * cor_TrMx(1:4,4); 
    %         T_Gmo(:,:,5) = [T_Gmo(1:4,1:3,5), P_glob_0]; 
    %     end 
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    for path_counter = 1:sequencenum 
         
        % Function to setup replay naming 
        increment_function_replay_Spine 
         
        %if path_counter == 1 
        for p = 
1:size(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial)
.(HAM_str).(pathsequence_str)(cycle).(path_name).replay_global_pos,2) 
             
            % move specimen in incremental movements 
            ok = 0; 
            flag = 5.1; 
            fprintf(port1,'%f\n', [ok, flag]); 
            
fprintf(port1,'%f\n',Spine.(date_ID).(state).(current_angles).(pathtypestr).p
athseek(trial).(HAM_str).(pathsequence_str)(cycle).(path_name).replay_global_
pos(1:6,p)); 
             
            done_moving = fscanf(port1); 
            % ================================ 
            timeout_Spine; 
            % ================================ 
            done_moving = sscanf(done_moving, '%f'); 
             
            if vicon == 1 
                if vicon_pause == 1 
                    VICON_U3_Resume 
                    pause(pauselength) 
                    VICON_U3_Pause 
                else 
                    pause(pauselength) 
                end 
            end 
             
            % Get IDP measurements from Samba 202 
            if samba_num > 0 
                getSamba 
                % Build array of ((path_name)) IDP1 
                
Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_s
tr).(pathsequence_str)(cycle).(path_name).IDP1(endpt_index) = IDP1; 
                if samba_num == 2 
                    % Build array of ((path_name)) IDP2 
                    
Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_s
tr).(pathsequence_str)(cycle).(path_name).IDP2(endpt_index) = IDP2; 
                end 
            end 
             
            %//RH: does this pause need to be 1 sec? what is it's purpose// 
            pause(1); 
             
            robot_return = 0; %robot is going "out" toward eROM 
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            ok = 0; 
            flag = 1.1; 
            fprintf(port1,'%f\n', [ok, flag]); 
            gt_jt_angles = fscanf(port1); 
            gt_jt_angles = sscanf(gt_jt_angles, '%f'); 
             
            %=========================================== 
            get_loads;  % measure: forces and moments 
            %=========================================== 
             
            %=========================================== 
            fm_tare6;  % tare out bolt-up and fixture wt 
            %=========================================== 
             
            pathseek_LDdisplay_Spine2(fm_tcs, handlesLD, 
Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_s
tr).(pathsequence_str)(cycle).(path_name).rot_angle_end_pts(p), pathtype, 1, 
robot_return, fhLD, replay_cycle); 
             
             
            
Spine.(date_ID).(state).(current_angles).(pathtypestr).replay(trial).(state_r
eplay).(HAM_str).(pathsequence_str)(replay_cycle).(path_name).load(:,p) = 
fm_tcs'; 
            
Spine.(date_ID).(state).(current_angles).(pathtypestr).replay(trial).(state_r
eplay).(HAM_str).(pathsequence_str)(replay_cycle).(path_name).position(:,p) = 
gt_jt_angles(1:6); 
             
Spine.(date_ID).(state).(current_angles).(pathtypestr).replay(trial).(state_r
eplay).(HAM_str).(pathsequence_str)(replay_cycle).(path_name).momt(:,:,p) = 
momt; 
                
Spine.(date_ID).(state).(current_angles).(pathtypestr).replay(trial).(state_r
eplay).(HAM_str).(pathsequence_str)(replay_cycle).(path_name).T_GM(:,:,:,p) = 
T_GM; 
                
Spine.(date_ID).(state).(current_angles).(pathtypestr).replay(trial).(state_r
eplay).(HAM_str).(pathsequence_str)(replay_cycle).(path_name).ndiTAnatomical(
:,:,p) = ndiTAnatomical; 
            end 
             
            % display f/m after taring out bolt-up and fixture wt 
            replay_display_Spine2(fh, [fm_tcs, fx, fy, fz], [mx, my, mz], 
handles, 
Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_s
tr).(pathsequence_str)(cycle).(path_name).rot_angle_end_pts(p)); 
        end 
         
        % Step back through replay to starting position 
        dialog = 0; 
        % Set = to one to correct robot return problem 
        robot_return = 1; %robot is returning to starting pos 
        zero = 0; 
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        if pathsequence == 2 || pathsequence == 3 
  
             
            if robot_return == 1 
                load_return_ctr = 1; %RH - 8/21/12 
                for ii = 
size(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(
HAM_str).(pathsequence_str)(cycle).(path_name).replay_global_pos,2):-1:1 
                    ok = 0; 
                    flag = 5.1; 
                    fprintf(port1,'%f\n', [ok, flag]); 
                    reverse = 
Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_s
tr).(pathsequence_str)(cycle).(path_name).replay_global_pos(1:6,ii); 
                    fprintf(port1,'%f\n',  reverse); 
                    done_moving = fscanf(port1); 
                    % ================================ 
                    timeout_Spine; 
                    % ================================ 
                    done_moving = sscanf(done_moving, '%f'); 
                     
                    %--collect loads on return--RH - 8/21/12--- 
                    %=========================================== 
                    get_loads;  % measure: forces and moments 
                    %=========================================== 
                     
                    %=========================================== 
                    fm_tare6;  % tare out bolt-up and fixture wt 
                    %=========================================== 
                     
                    
Spine.(date_ID).(state).(current_angles).(pathtypestr).replay(trial).(state_r
eplay).(HAM_str).(pathsequence_str)(replay_cycle).(path_name).load_return(:,l
oad_return_ctr) = fm_tcs'; 
                    %                     
Spine.(date_ID).(state).(current_angles).(pathtypestr).replay(trial).(state_r
eplay).(HAM_str).(pathsequence_str)(replay_cycle).(path_name).position_return
(:,load_return_ctr) = gt_jt_angles(1:6); 
                     
                    pathseek_LDdisplay_Spine2(fm_tcs, handlesLD, 
(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_
str).(pathsequence_str)(cycle).(path_name).rot_angle_end_pts(ii)), pathtype, 
1, robot_return, fhLD, replay_cycle) 
                     
                    load_return_ctr = load_return_ctr + 1; 
                    %---------end: RH - 8/21-12------ 
                     
                    if vicon == 1 
                        if vicon_pause == 1 
                            VICON_U3_Resume 
                            pause(pauselength) 
                            VICON_U3_Pause 
                        else 
                            pause(pauselength) 
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                        end 
                    end 
                end 
            end 
             
        end 
    end 
end 
  
delete(fh); 
  
save(filename); 
display('data has been saved') 
  
if tracking == 1 
    %stop optical tracking 
    stopTracking(port2); 
end 
  
if vicon == 1 
    VICON_U3_Stop 
    if timer1 == 1 
        stop(T_VICON); 
    end 
end 
  
% %=========================================== 
% data_display_replay_Spine; % display data 
% %=========================================== 
  
pause off; 
  
% Ending sounds alarm 
load gong.mat 
sound(y,Fs) 
  
% Enable buttons on GUI when spine3h_pathseek4b.m is done running 
buttons_Spine(guihandles, 'on'); 
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D.1.4 Rotate to torsion angle (‘AT+F/E’) 

To achieve coupled torsion with flexion/extension in Specific Aim 2, the script, ‘desired_Angle.m’ 

(written by Dr. Bell), was used to move the robot end-effector to a stored position (previously 

determined by axial rotation paths) and perform flexion/extension loading at that rotated position.   

desired_angle_Spine.m 

% desired_angle_Spine.m 
% move to desired angle 
% Kevin Bell 
% 3/18/2005 
  
% DA - entered 
  
clear current_angles compiled_angles compiled_positions 
clear angle_move angle_stored compiled_motion 
  
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% send x1, y1, z1, rx1, ry1, rz1 to V+ to make tool transformation 
ok = 0; 
flag = 0.1; 
fprintf(port1,'%f\n', [ok, flag]); 
fprintf(port1,'%f\n', [(x1*1000)+.001, (y1*1000)+.001, (z1*1000)+.001, 
rx1+.001, ry1+.001, rz1+.001]); 
  
done_moving = fscanf(port1); 
% ================================ 
timeout_Spine; 
% ================================ 
done_moving = sscanf(done_moving, '%f'); 
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% stored_angle - taken from and reported to GUI 
if pathtype == 1 
    stored_angle = str2num(get(guihandles.ML_DA_edit,'String')); 
elseif pathtype == 2 
    stored_angle = str2num(get(guihandles.SI_DA_edit,'String')); 
elseif pathtype == 3 
    stored_angle = str2num(get(guihandles.AP_DA_edit,'String')); 
elseif pathtype == 4 
    stored_angle = str2num(get(guihandles.FE_ang_edit,'String')); 
elseif pathtype == 5 
    stored_angle = str2num(get(guihandles.AXIAL_ang_edit,'String')); 
elseif pathtype == 6 
    stored_angle = str2num(get(guihandles.LAT_ang_edit,'String')); 
end 
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DA_flag = 0; 
  
% Disable buttons on GUI until desired_angle_Spine.m is done running 
buttons_Spine(guihandles, 'off'); 
  
% Setup naming for structures 
date_ID = [dated '_' ID]; 
  
if pathtype > 3 
    current_angles = (['LAT' num2str(0) '_FE' num2str(0) '_AXIAL' 
num2str(0)]); 
else 
    stored_FE_angle = str2num(get(guihandles.FE_ang_edit,'String')); 
    stored_AXIAL_angle = str2num(get(guihandles.AXIAL_ang_edit,'String')); 
    stored_LAT_angle = str2num(get(guihandles.LAT_ang_edit,'String')); 
     
    current_angles = (['LAT' num2str(stored_LAT_angle) '_FE' 
num2str(stored_FE_angle) '_AXIAL' num2str(stored_AXIAL_angle)]); 
end 
  
% FOR FLEX/EX 30 
% current_angles = 'LAT0_FE0_AXIAL6'; 
  
if DA ~= stored_angle 
     
    % Desired Angle for tail sequence  
    if pathsequence == 1 
        cycle = num_paths; 
        compiled_angles = 
[Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_
str).(pathsequence_str)(cycle).loop_neg_pos.rot_angle_end_pts]; 
        compiled_positions = 
[Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_
str).(pathsequence_str)(cycle).loop_neg_pos.replay_global_pos];         
    elseif pathsequence == 2 
        cycle = num_paths; 
        compiled_angles = 
[flipdim(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(tria
l).(HAM_str).(pathsequence_str)(cycle).tail_0_neg.rot_angle_end_pts,2) 
Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_s
tr).(pathsequence_str)(cycle).tail_0_pos.rot_angle_end_pts(2:end)]; 
        compiled_positions = 
[flipdim(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(tria
l).(HAM_str).(pathsequence_str)(cycle).tail_0_neg.replay_global_pos,2) 
Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_s
tr).(pathsequence_str)(cycle).tail_0_pos.replay_global_pos(1:6,2:end)]; 
    elseif pathsequence == 3 
        cycle = num_paths; 
        if startpos_value == 1 
            str_start_DA = num2str(w_start); 
            path_name_DA = ['single_' str_start_DA '_pos']; 
            compiled_angles = 
[flipdim(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(tria
l).(HAM_str).(pathsequence_str)(cycle).(path_name_DA).rot_angle_end_pts,2)]; 
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            compiled_positions = 
[flipdim(Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(tria
l).(HAM_str).(pathsequence_str)(cycle).(path_name_DA).replay_global_pos,2)];         
        elseif startpos_value == 0 
            str_start_DA = num2str(w_start); 
            path_name_DA = ['single_' str_start_DA '_neg']; 
            compiled_angles = 
[Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_
str).(pathsequence_str)(cycle).(path_name_DA).rot_angle_end_pts]; 
            compiled_positions = 
[Spine.(date_ID).(state).(current_angles).(pathtypestr).pathseek(trial).(HAM_
str).(pathsequence_str)(cycle).(path_name_DA).replay_global_pos];         
        end 
    else 
        error('Not a defined sequence') 
    end 
     
    for i = 1:size(compiled_angles,2); 
        if compiled_angles(i) == DA; 
            DA_flag = i; 
            angle_move = compiled_positions(1:6,DA_flag); 
        end 
        if compiled_angles(i) == stored_angle; 
            stored_flag = i; 
            angle_stored = compiled_positions(1:6,stored_flag); 
        end 
    end 
  
    if DA_flag ~= 0 
  
        if DA_flag < stored_flag 
            compiled_motion = 
flipdim(compiled_positions(1:6,DA_flag:stored_flag),2); 
        elseif DA_flag > stored_flag 
            compiled_motion = (compiled_positions(1:6,stored_flag:DA_flag)); 
        end 
  
        for i = 1:size(compiled_motion,2) 
%             display(num2str(compiled_motion(1:6,i))); 
            ok = 0; 
            flag = 5.1; 
            fprintf(port1,'%f\n', [ok, flag]); 
            fprintf(port1,'%f\n', compiled_motion(1:6,i)); 
  
            done_moving = fscanf(port1); 
            % ================================ 
            timeout_Spine; 
            % ================================ 
            done_moving = sscanf(done_moving, '%f'); 
        end 
  
        if pathtype == 1 
            ML_DA = DA; 
            set(guihandles.ML_DA_edit,'String',ML_DA) 
        elseif pathtype == 2 
            SI_DA = DA; 
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            set(guihandles.SI_DA_edit,'String',SI_DA) 
        elseif pathtype == 3 
            AP_DA = DA; 
            set(guihandles.AP_DA_edit,'String',AP_DA) 
        elseif pathtype == 4 
            FE_ang = DA; 
            set(guihandles.FE_ang_edit,'String',FE_ang) 
        elseif pathtype == 5 
            AXIAL_ang = DA; 
            set(guihandles.AXIAL_ang_edit,'String',AXIAL_ang) 
        elseif pathtype == 6 
            LAT_ang = DA; 
            set(guihandles.LAT_ang_edit,'String',LAT_ang) 
        end 
  
    else 
        display('Number entered is not valid') 
    end 
  
else 
    display('Motion was not valid') 
end 
  
  
% Enable buttons on GUI when desired_angle_Spine.m is done running 
buttons_Spine(guihandles, 'on'); 

D.2 ROBOT TESTING SYSTEM ASSESSMENT 

D.2.1 Motion Collection 

The Matlab code used to acquire VICON kinematic data are detailed in Appendix A.3 of Dr. Bell’s 

dissertation [458].   

Digitization – define anatomical coordinate systems (a priori) 

The digitization of anatomical or fixture landmarks is described in Appendix A.3.1 

(‘Digitize_filter.m’), and transformation of anatomical to measured coordinate systems is laid out 

in Appendix A.3.2 (‘Digitize_link.m’) [458].   
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Motion capture 

Collection of motion is defined in Appendix A.3.3 [458].   

D.2.2 Kinematic Analysis 

Post-processing includes extracts rotations and translations of all local coordinate systems in 

anatomical or fixture reference frames (A.4.1) [458].  These rotations and translations assume a 

Euler sequence of Rx, Ry, Rz (F/E, AT,LB).   

Filter data: Digitize_filter.m 

Data smoothing from individual reflectors was performed interactively in VICON software.  This 

code handles missing data points. (Appendix A.4.1) [458].    

Apply anatomical transformations: Digitize_link.m  

Anatomical transformations were applied to captured motion data (Appendix A.4.1) [458].  This 

code was modified for rabbit FSU testing.   

function VICON = Digitize_link(VICON) 
  
%%Rob Hartman, 11/30/11 
%prepare analysis by introducing necessary naming variables 
  
C3Dname = VICON.Options.C3Dname; 
ttotal = [0 0 0 0 0 0]; 
tarray = [0 0 0 0 0 0]; 
Digtotal = [0 0 0 0 0 0]; 
Digarray = [0 0 0 0 0 0]; 
Digtotal2 = [0 0 0 0 0 0]; 
Digarray2 = [0 0 0 0 0 0]; 
% tname_cell = {'_t1','_t2','_t3','_t4','_t5','_t6'} 
% tname_cell1 = {'t1','t2','t3','t4','t5','t6'} 
% tname_cell = {'_s1','_s2','_s3','_s4'} 
tname_cell = {'S1','S2','S3','S4','S5','S6'}; 
Dig_mark_cell={'T1','T2','T3','T4','T5','T6'}; 
T_cell={'T'}; 
Dig_abcd_cell={'Pa','Pb','Pc','Pd'}; 
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frames = VICON.(C3Dname).frames; 
markers = VICON.(C3Dname).markers; 
  
temp_mnames = sort(VICON.(C3Dname).mnames); 
VICON.(C3Dname).mnames = temp_mnames; 
  
%% anatomical w/r/t global CS (T_G_A) 
%transformation calculated in <Digitizer_filter.m> 
%transformation stored in VICON.C3Dname.DigT; stored per segment/VB with 3 
%separate [T]'s - one for each anatomical point (A,B,C) 
  
%need to form anatomical CS for each VB -LOOP- 
for toolnum = 1:size(VICON.(C3Dname).Dignames2,3) %# of segments/VBs 
(Digitized) 
  
    %form anatomical CS (T_G_A) from (A,B,C) 
    pointA = VICON.(C3Dname).DigT.(tname_cell{toolnum})(1:3,4,1); 
    pointB = VICON.(C3Dname).DigT.(tname_cell{toolnum})(1:3,4,2); 
    pointC = VICON.(C3Dname).DigT.(tname_cell{toolnum})(1:3,4,3); 
  
    %function that forms anatomical RF from 3 points 
    VICON.(C3Dname).AnatomicalT.(tname_cell{toolnum})(:,:) = 
Anatomical(pointA,pointB,pointC); 
  
end  
  
%% measured/tool w/r/t global CS (T_G_M) 
%tool markers are not transformed in Digitizer functions 
%---this code is derived from <VICON_Rotation.m>--- 
  
%---FIX any remaining NAN prior to calculating rotations--- 
    for toolnum = 1:size(VICON.(C3Dname).tnames,2) %# of tools (2-6) 
         for markernum = 1:size(VICON.(C3Dname).tnames,1) %# of markers per 
tool (usually 3) 
%             clear temp              
%           
VICON.(C3Dname).(char(VICON.(C3Dname).tnames{markernum,toolnum}))(any(isnan(V
ICON.(C3Dname).(char(VICON.(C3Dname).tnames{markernum,toolnum}))),2),:) = []; 
            temp = 
VICON.(C3Dname).(char(VICON.(C3Dname).tnames{markernum,toolnum})); 
            temp(any(isnan(temp),2),:) = []; 
            VICON.(C3Dname) = rmfield(VICON.(C3Dname), 
char(VICON.(C3Dname).tnames{markernum,toolnum}));    
            VICON.(C3Dname).(char(VICON.(C3Dname).tnames{markernum,toolnum})) 
= temp; 
%             clear temp; 
         end 
    end   
     
    %to do: update the frames variable based on NaN's removed 
     
%----finish NaN fixing------------------------------- 
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%----collect marker position data for each segment---- 
    %calculate average position of each marker on each tool over the static 
trial 
    for toolnum = 1:size(VICON.(C3Dname).tnames,2) %loop through all tools 
  
        for markernum = 1:size(VICON.(C3Dname).tnames,1) %loop through each 
marker on each tool 
             
%             disp(toolnum); 
%             disp(markernum); 
             
            
VICON.(C3Dname).AveragePosition.(VICON.(C3Dname).tnames{markernum,toolnum})(1
) = mean(VICON.(C3Dname).(VICON.(C3Dname).tnames{markernum,toolnum})(:,1)); 
            
VICON.(C3Dname).AveragePosition.(VICON.(C3Dname).tnames{markernum,toolnum})(2
) = mean(VICON.(C3Dname).(VICON.(C3Dname).tnames{markernum,toolnum})(:,2)); 
            
VICON.(C3Dname).AveragePosition.(VICON.(C3Dname).tnames{markernum,toolnum})(3
) = mean(VICON.(C3Dname).(VICON.(C3Dname).tnames{markernum,toolnum})(:,3)); 
  
        end 
    end 
%------------------------------------------------------ 
  
%---calculate transformation for each tool of tool w/r/t global (T_G_M)(M:= 
measured)--- 
    for toolnum = 1:size(VICON.(C3Dname).Dignames2,3) 
  
        %markers per tool (set of markers) - each mki is (x,y,z) 
        mk1 = 
VICON.(C3Dname).AveragePosition.(VICON.(C3Dname).tnames{1,toolnum}); 
        mk2 = 
VICON.(C3Dname).AveragePosition.(VICON.(C3Dname).tnames{2,toolnum}); 
        mk3 = 
VICON.(C3Dname).AveragePosition.(VICON.(C3Dname).tnames{3,toolnum}); 
  
        % Calculating location of origin 
        O = mean([mk1;mk2]); 
        X = (mk2-O); 
        X = X/norm(X); %toward controller; robot tool x 
  
        % can add (-) or inverse cross if markers are missing. 
        OZ = (mk3-O)/norm(mk3-O); 
        Y = cross(OZ,X); Y = Y/norm(Y); %robot tool y 
        Z=cross(X,Y); Z=Z/norm(Z); %robot tool z 
  
        %test orthogonality 
        testxy = dot(X,Y); 
        testyz = dot(Y,Z); 
        testxz = dot(X,Z); 
  
        %T_G_M: each measured (tool) CS w/r/t Global CS 
        T_G_M(1:3,1)=X; T_G_M(1:3,2)=Y; T_G_M(1:3,3)=Z; 
        T_G_M(1:3,4)=O; 
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        T_G_M(4,1:4)=[0 0 0 1]; 
  
        %transformation b/w markers and global reference frame 
        VICON.(C3Dname).ToolT.(tname_cell{toolnum})(:,:) = T_G_M; 
  
        %translations & rotations in the global RF 
        ypr = rad2deg(tr2ypr(T_G_M)); 
        yprtr = [T_G_M(1,4) T_G_M(2,4) T_G_M(3,4) ypr(1) ypr(2) ypr(3)]; 
        VICON.(C3Dname).Tooltr.(tname_cell{toolnum}) = yprtr; 
  
   end 
%---saved transformation & ypr of measured (tool) w/r/t global--- 
     
  
%% anatomical w/r/t measured CS (T_M_A) 
%for each segment/VB, calculate the transformation of the anatomical w/r/t 
measured (tool) 
%!!!does the correct segment line up w/ the correct level!!! 
for toolnum = 1:size(VICON.(C3Dname).Dignames2,3) %this should correspond to 
# of segments/VBs 
     
%     %typicvally not necessary (1:4, not 2:5) for digitized points 
%     toolnum_ana = toolnum-1; 
     
    %T_M_A = inv(T_G_M) * T_G_A 
    T_M_A = inv(VICON.(C3Dname).ToolT.(tname_cell{toolnum})) * 
VICON.(C3Dname).AnatomicalT.(tname_cell{toolnum}); 
     
    %transformation saved in ToolAnatomicT 
    VICON.(C3Dname).ToolAnatomicT.(tname_cell{toolnum}) = T_M_A; 
     
    %translations & rotations in the global RF 
    ypr = rad2deg(tr2ypr((T_M_A(:,:)))); 
    yprtr = [T_M_A(1,4) T_M_A(2,4) T_M_A(3,4) ypr(1) ypr(2) ypr(3)]; 
    VICON.(C3Dname).ToolAnatomictr.(tname_cell{toolnum}) = yprtr; 
  
end 
  
%the "link" is made with the T_M_A calculation 
%this can be used to post-process dynamic trial data which is inherently in 
%T_G_M form.  The post-procesing will form: 
%   (1) T_G_A = T_G_M * T_M_A  > for each tool/segment 
        %this can be performed at each timepoint 
%   (2) T_Ai_Aj = inv(T_G_Ai) * T_G_Aj; 
        %this can be performed b/w two levels (i, j) 
%***NEED TO CHECK*** : this transformation places Aj w/r/t Ai!?! 
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Calculate anatomical rotations/translations: VICON_Rotation.m 

Relative transformations between rigid bodies (or segments) were measured at each position. Euler 

angles and translations were extracted (Appendix A.4.1).    

D.2.3 Kinematic Precision 

Kinematic precision was preformed after motion data collection.  The root mean square error of 

local coordinate system rotations and translation calculated in post-processing of collected motion 

for each step in the path are calculated in ‘VICON_rotationRMS.m.’  This code can be modified 

to collect precision of local coordinate system origins to express precision in terms of positions (x, 

y, z).   

Kinematic Precision: VICON_rotationRMS.m 

function VICON = VICON_rotationRMS(VICON) 
  
%RAH 6/14 - this code was used to measure RMSE of positions across 
%rotational movements 
  
%bell, may 2011; modified by RAH -  
%analyzes data collected from robot-vicon repetability trials (pre-052411) 
  
%repeatability assessment: 
%markers in yiguo yan configuration (late may) 
% clear 
  
%purpose: assess Euler angles and translation repeatability of vicon data 
%bring in data > calculate RMS of error across 20 (flexible) steps 
  
%bring in data from vicon analysis (raw marker data, lcss in global, lcs 
w/r/t itself at t0) 
%each marker (n steps x 3 coordinates) 
tname_cell = {'s1','s2','s3','s4','s5','s6'}; 
  
binum = 2; 
cyclecount = 0; 
  
C3Dname = VICON.Options.C3Dname; 
posneg = VICON.Options.posneg; 
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pathsequence = VICON.Options.pathsequence; 
  
binum = 1; %1-"out", 2-"back" 
pnTrans = VICON.(C3Dname).pnTrans; %1-single, 2-tails 
  
if strcmp(posneg,'pos')==1 
    pos1 = 1; %starts pos. dir 
else 
    pos1 = 0; %starts neg. dir 
end 
  
for pnnum = 1:pnTrans %1-single, 2-tails 
     
    [path_name] = VICON_path_name(pathsequence,pos1,pnnum); 
     
    for bidirect = 1:binum 
         
        cyclecount = cyclecount + 1; %cylce counter; init. 0 
         
        for toolnum = 1:size(VICON.(C3Dname).tnames,1) 
             
            for stepnum = 1:1:size(VICON.(C3Dname).(path_name).CycleIndex,2) 
                 
                for paramnum = 1:6 %~DOF 
                     
                    for cyclenum = 
1:size(VICON.(C3Dname).(path_name).CycleIndex,1) 
                         
                        %form mean position for each cycle at each step (for 
each DOF both "there & back") 
                        %pre-1/20/12 - needs to update structure reference 
based on changes to % VICON_Rotation > Transform.anatomical.yprtr_21_02N 
%>>!!!Hard coded segment choice for rotation analysis!!!<< 
                        %temp_mean(cyclenum) = 
VICON.(C3Dname).(path_name).Transform(cyclenum).global.yprtr_G.(char(tname_ce
ll{toolnum}))(stepnum,paramnum,bidirect); 
                        if 
length(fieldnames(VICON.(C3Dname).(path_name).ROM.anatomical.ALL)) == 2 
                            fsu = 0; %no fsu if true 
                            temp_mean(cyclenum) = 
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.yprtr_21_02N(stepn
um,paramnum,bidirect);  %RAH - 1/20 for repeatability 
                        elseif 
length(fieldnames(VICON.(C3Dname).(path_name).ROM.anatomical.ALL)) == 4 
                            fsu = 1; %fsu is attached 
                            temp_meanEe(cyclenum) = 
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.yprtr_41_02N(stepn
um,paramnum,bidirect);  %RAH - 1/20 for repeatability 
                            temp_meanJt(cyclenum) = 
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.yprtr_32_02N(stepn
um,paramnum,bidirect); 
                        end 
                         
                    end 
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                    %mean position across cycles for each step, DOF, "there & 
back" 
                    if fsu == 0 
                        
VICON.(C3Dname).(path_name).RMS.step_mean_CS.allsteps.(char(tname_cell{toolnu
m}))(stepnum,paramnum,bidirect)= mean(temp_mean); 
                    elseif fsu == 1 
                        
VICON.(C3Dname).(path_name).RMS.step_mean_CSeE.allsteps.(char(tname_cell{tool
num}))(stepnum,paramnum,bidirect)= mean(temp_meanEe); 
                        
VICON.(C3Dname).(path_name).RMS.step_mean_CSjT.allsteps.(char(tname_cell{tool
num}))(stepnum,paramnum,bidirect)= mean(temp_meanJt); 
                    end 
                     
                    for cyclenum = 
1:size(VICON.(C3Dname).(path_name).CycleIndex,1) 
                         
                        %error = mean across cycles at each step - position 
at each step 
%>>!!!Hard coded segment choice for rotation analysis!!!<< 
                        if fsu == 0 
                            
VICON.(C3Dname).(path_name).RMS.step_Error_CS(cyclenum).allsteps.(char(tname_
cell{toolnum}))(stepnum,paramnum,bidirect) = 
VICON.(C3Dname).(path_name).RMS.step_mean_CS.allsteps.(char(tname_cell{toolnu
m}))(stepnum,paramnum) - 
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.yprtr_21_02N(stepn
um,paramnum,bidirect); 
                        elseif fsu == 1 
                            
VICON.(C3Dname).(path_name).RMS.step_Error_CSeE(cyclenum).allsteps.(char(tnam
e_cell{toolnum}))(stepnum,paramnum,bidirect) = 
VICON.(C3Dname).(path_name).RMS.step_mean_CSeE.allsteps.(char(tname_cell{tool
num}))(stepnum,paramnum) - 
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.yprtr_41_02N(stepn
um,paramnum,bidirect); 
                            
VICON.(C3Dname).(path_name).RMS.step_Error_CSjT(cyclenum).allsteps.(char(tnam
e_cell{toolnum}))(stepnum,paramnum,bidirect) = 
VICON.(C3Dname).(path_name).RMS.step_mean_CSjT.allsteps.(char(tname_cell{tool
num}))(stepnum,paramnum) - 
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.yprtr_32_02N(stepn
um,paramnum,bidirect);                     
                        end 
                         
                    end 
                     
                    for cyclenum = 
1:size(VICON.(C3Dname).(path_name).CycleIndex,1) 
                         
                        %NOT "rms"; actually, error matrix across cycles for 
each position, DOF, "there & back" 
                        if fsu == 0 
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                            temp_rms(cyclenum) = 
VICON.(C3Dname).(path_name).RMS.step_Error_CS(cyclenum).allsteps.(char(tname_
cell{toolnum}))(stepnum,paramnum,bidirect); 
                        elseif fsu == 1 
                            temp_rmsEe(cyclenum) = 
VICON.(C3Dname).(path_name).RMS.step_Error_CSeE(cyclenum).allsteps.(char(tnam
e_cell{toolnum}))(stepnum,paramnum,bidirect); 
                            temp_rmsJt(cyclenum) = 
VICON.(C3Dname).(path_name).RMS.step_Error_CSjT(cyclenum).allsteps.(char(tnam
e_cell{toolnum}))(stepnum,paramnum,bidirect);                             
                        end 
                         
                    end 
                     
                    %RMS of error  
                    if fsu == 0 
                        
VICON.(C3Dname).(path_name).RMS.step_RMS_CS.allsteps.(char(tname_cell{toolnum
}))(stepnum,paramnum,bidirect) = rms(temp_rms); 
                    elseif fsu == 1 
                        
VICON.(C3Dname).(path_name).RMS.step_RMS_CSeE.allsteps.(char(tname_cell{tooln
um}))(stepnum,paramnum,bidirect) = rms(temp_rmsEe); 
                        
VICON.(C3Dname).(path_name).RMS.step_RMS_CSjT.allsteps.(char(tname_cell{tooln
um}))(stepnum,paramnum,bidirect) = rms(temp_rmsJt);                         
                    end 
  
%                     
VICON.(C3Dname).(path_name).STD.step_STD_CS.allsteps.(char(tname_cell{toolnum
}))(stepnum,paramnum,bidirect) = std(temp_rms); 
                     
                end 
                 
            end 
             
        end 
         
    end 
     
end 
  
%not modified by RAH b/c pnTrans > 1 
for pnnum = 1:pnTrans %1-single, 2-tails 
     
    [path_name] = VICON_path_name(pathsequence,pos1,pnnum); 
     
    if binum == 2 
         
        % Loop to combine out and back for overall RMS 
        for toolnum = 1:size(VICON.(C3Dname).tnames,1) 
             
            for cyclenum = 1:size(VICON.(C3Dname).(path_name).CycleIndex,1) 
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                step_ErrorCS_Combined = 
VICON.(C3Dname).(path_name).RMS.step_Error_CS(cyclenum).allsteps.(char(tname_
cell{toolnum}))(:,:,1); 
                 
                % when constructing combined Error need to flip back to align 
steps 
                
step_ErrorCS_Combined(size(VICON.(C3Dname).(path_name).CycleIndex,2)+1:2*size
(VICON.(C3Dname).(path_name).CycleIndex,2),:) = 
flipdim(VICON.(C3Dname).(path_name).RMS.step_Error_CS(cyclenum).allsteps.(cha
r(tname_cell{toolnum}))(:,:,2),1); 
                 
                
VICON.(C3Dname).combined.RMS.step_Error_CS(cyclenum).allsteps.(char(tname_cel
l{toolnum})) = step_ErrorCS_Combined; 
                 
            end 
             
            for stepnum = 1:1:size(VICON.(C3Dname).(path_name).CycleIndex,2) 
                 
                for paramnum = 1:6 
                     
                    for cyclenum = 
1:(size(VICON.(C3Dname).(path_name).CycleIndex,1)-1) 
                        temp_rms(stepnum,paramnum,cyclenum) = 
VICON.(C3Dname).combined.RMS.step_Error_CS(cyclenum).allsteps.(char(tname_cel
l{toolnum}))(stepnum,paramnum); 
                    end 
                     
                    
VICON.(C3Dname).combined.RMS.step_RMS_CS.allsteps.(char(tname_cell{toolnum}))
(stepnum,paramnum) = rms(temp_rms(stepnum,paramnum,:)); 
                     
                end 
            end 
        end 
         
    end 
end 
  
  
if pnTrans == 2 
    pnTrans = 3; 
end 
      
end 
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D.3 FIXTURE RIGIDITY 

D.3.1 Rigidity Analysis 

The code ‘VICON_Rotation.m’ measured the rotations and translations between each rigid body: 

end-effector/superior fixture and superior verterba, superior vertebra and inferior vertebr, and 

inferior vertebra and inferior fixture/base using the motion collection process referenced 

previously (Appendix D.2.1).  This code calculates the kinematic differences for relative motion 

at the fixation interfaces and spinal segment between starting and extereme positions in motion 

paths.  Stiffness assessments were made by integrating primary moments with interface and FSU 

motion data (Equation 1and Equation 2) 

Interface/FSU Movement: VICON_Rigid.m 

function VICON = VICON_Rigid(VICON) 
  
%Rigidity Analysis - 1/30/12 
  
%Rob Hartman - Assess Rigidity of Rabbit FSU  
  
%Digitization required for anatomical RF analysis (intuitive axes). 
%DEFINE ANATOMICAL RFs: <Digitize_filter.m> takes anatomical points collected 
using stylus and 
%forms anatomical RFs per body/level.  
%CALCULATE T_M_A: <Digitize_link.m> calculates the 
%transformation between anatomical and measured RFs (calc. at rest). 
%MEASURE/CALC. T_G_M: Measured RFs are defined from marker position (x,y,z)  
%from tools attached to bodies and robot fixtures (during test). Positions 
are     
%measured continuously during testing.  <VICON_filter.m> is used to divide 
%marker data into cycles, steps, and directions.   
%CALCULATE T_G_A & T_Ai_Aj: <VICON_Rotation.m> takes the measured, segmented 
T_G_M data 
%and uses the T_M_A's from <Digitize_link.m> to calculate T_G_A and T_Ai_Aj 
%at each step, cycle, etc. T_Ao_An presents the motion of a segment with 
respect to  
%itself.  *.(cycle).Transform.Anatomical.T_ij_02N illustrates transformation 
b/w segments 
%in the anatomical RF.  The code also plots overal ROM (primary axis) 
alongside each 
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%intersegmental ROM to illustrate primary motion distribution. 
  
%THIS CODE | <VICON_rigidity.m> examines anatomical RF rigidity. The position 
and rotation data 
%from the transformation b/w end-effector and superior segment (1 vs 2) and 
%base and inferior segment (3 vs 4) at each step along the path will be 
%displayed.  The difference b/w initial and final relative position & 
%rotation will be calculated.  
  
%   To be run after <VICON_Rotation.m> 
  
%Purpose of this function? 
  
C3Dname = VICON.Options.C3Dname; 
posneg = VICON.Options.posneg; 
pathsequence = VICON.Options.pathsequence; 
  
%RAH additions to accomodate broken VICON_display.m 
path_name = 'single_0_pos'; 
  
binum = 2; 
pnTrans = VICON.(C3Dname).pnTrans; 
  
if strcmp(posneg,'pos')==1 
    pos1 = 1; 
else 
    pos1 = 0; 
end 
  
  
EE_Correct = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]; 
tname_cell = {'S1','S2','S3','S4','S5','S6'}; 
tname_cell1 = {'s1','s2','s3','s4','s5','s6'}; 
frames = VICON.(C3Dname).frames; 
markers = VICON.(C3Dname).markers; 
  
%--- 
%NaNs are not likely to be present at this point 
%--- 
  
%initialize figure 
rotnum = 4; %primary motion 
figure 
cycles = size(VICON.(C3Dname).(path_name).CycleIndex,1); 
% basic ROM bar plot 
subplot((cycles-1),1,1); 
hold on 
  
numtools = size(VICON.(C3Dname).tnames,1); 
%loop through tools; not an efficient way to do this 
for toolnum = 1:numtools 
     
    %analyze differences b/w first & second and last & second-to-last segment 
    %other segments/tools are skipped (not efficient) 
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    if toolnum == 1 || toolnum == (size(VICON.(C3Dname).tnames,1)-1) 
         
        Tseg = ['T_' num2str(numtools) num2str(toolnum)]; 
        % Tsegcell = w/r/t base (T_51, T_52, etc) 
        Tsegcell{toolnum} = Tseg; 
        T02N = [Tsegcell{toolnum} '_02N']; 
        ypr02N = ['ypr_' num2str(toolnum+1) num2str(toolnum) '_02N']; 
        yprtr02N = ['yprtr_' num2str(toolnum+1) num2str(toolnum) '_02N']; 
  
        %for 'out'(1) & 'back'(2) 
        for bidirect = 1:binum 
  
            %for each cycle 
            for cyclenum = 1:size(VICON.(C3Dname).(path_name).CycleIndex,1)-1 
                 
                %number of steps 
%                 n = 5;  
                n = size(VICON.(C3Dname).(path_name).CycleIndex,2); 
  
                %difference of b/w first (always 0,0,0,0,0,0) and last step 
per cycle  
                %i.e. 6 DOF motions at last step of motion (most extreme) 
                
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_02N.(yprtr02
N) = ...  
                    
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.(yprtr02N)(n,:,bid
irect) - ... 
                        
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.(yprtr02N)(1,:,bid
irect);  
                 
                %set up subplot     
                subplot(cycles,1,cyclenum); 
                 
                %for each step 
                for stepnum = 
1:size(VICON.(C3Dname).(path_name).CycleIndex,2) 
                     
                    %mean across steps for each cycle 
                    
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_mean_tr.(ypr
tr02N) = ... 
                        
mean(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.(yprtr02N)(st
epnum,1:3,bidirect)); 
                                         
                    %stdev across steps for each cycle 
                    
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_std_tr.(yprt
r02N) = ... 
                        
std(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.(yprtr02N)(ste
pnum,1:3,bidirect)); 
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                    %mean across steps for each cycle 
                    
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_mean_ypr.(yp
rtr02N) = ... 
                        
mean(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.(yprtr02N)(st
epnum,4:6,bidirect)); 
                     
                     %stdev across steps for each cycle 
                    
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_std_ypr.(ypr
tr02N) = ... 
                        
std(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.(yprtr02N)(ste
pnum,4:6,bidirect)); 
                     
                    %for x, y, z, rx, ry, rz 
                    for dof = 1:6 
                         
                        %color coding DOF 
                        if dof == 1; dofColor = 'bx'; elseif dof == 2; 
dofColor = 'rx'; elseif dof == 3; dofColor = 'gx'; elseif dof == 4; dofColor 
= 'b.'; elseif dof == 5; dofColor = 'r.'; elseif dof == 6; dofColor = 'g.'; 
end;         
                        %plotting w/i subplot 
                        
plot(stepnum,VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.(yprt
r02N)(stepnum,dof,bidirect),dofColor) 
                        hold on 
                                                   
                    end 
                     
                end 
            end 
        end 
    end 
         
                         
    %above code defines rigidity per cycle; now need to average ridigity 
outcomes across cycles 
    %for each cycle 
    for cyclenum = 1:size(VICON.(C3Dname).(path_name).CycleIndex,1)-1 
         
        %mean final angles & translations 
        
VICON.(C3Dname).(path_name).Rigidity.anatomical.meanF_yprtr.(yprtr02N) = 
VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_02N.(yprtr02
N); 
        %mean translational rigidity 
        VICON.(C3Dname).(path_name).Rigidity.anatomical.mean_tr.(yprtr02N) = 
mean(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_mean_tr
.(yprtr02N)); 
        %mean rotational rigidity 
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        VICON.(C3Dname).(path_name).Rigidity.anatomical.mean_ypr.(yprtr02N) = 
mean(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_mean_yp
r.(yprtr02N)); 
        %std translational rigidity 
        VICON.(C3Dname).(path_name).Rigidity.anatomical.mean_tr.(yprtr02N) = 
mean(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_std_tr.
(yprtr02N)); 
        %std rotational rigidity 
        VICON.(C3Dname).(path_name).Rigidity.anatomical.mean_ypr.(yprtr02N) = 
mean(VICON.(C3Dname).(path_name).Transform(cyclenum).anatomical.Rigid_std_ypr
.(yprtr02N)); 
         
    end 
  
end 

D.4 MECHANICAL OUTCOMES ANALYSIS 

D.4.1 Organize Kinetic Data 

Load Data: rFSU_dataLoad.m 

%Rob Hartman - 4/10/13 
  
%creates master structure of all data of a particular variable across 
%multiple (.mat) files 
  
%pre-requisite:  need to have all .mat files in the same directory w/ no 
%other files 
  
%data location 
location = ('Z:\Ortho Research 3\FergusonLab\Students\Hartman, 
Robert\RabbitRobot\SA1 - Testing\feRawData\'); 
  
%create string array w/ all file names  
fileInfo = dir(location); %gets all info of files & directories at location 
for i = 1:size(fileInfo,1) %(first two "names" are . and ..) 
    fileNameExt{i} = cellstr(fileInfo(i).name);  %creates cell array w/ 
filename+extension per cell 
    [fileNameDummy fileExtDummy] = strtok(fileNameExt{i},'.'); %separates 
filename from extension (i.e. .mat) 
    fileName{i} = fileNameDummy;  %store the filename only 
    clear fileNameDummy fileExtDummy  %delete the dummy variables 
end 
fileName = fileName(3:end)';  %remove the . and ..  
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%cell structure to access correct loop data based on cycle 
path_name_p1 = {'loop_0_pos'; 'loop_pos_neg'; 'loop_neg_pos'}; 
path_name_p2 = {'loop_pos_neg'; 'loop_neg_pos'; 'loop_pos_0'}; 
  
% tool_path 
  
for i = 1:size(fileName,1) 
%     i 
  
    %create name of .mat file to open 
    nameDateID = fileName{i}; %accesses the cell  
    nameDateID = nameDateID{1}; %nameDateID is now a string w/ .mat filename 
    %unpacks the cell array into a string //for some reason, 
'RH_ALL.(nameDate{i})...' was not working 
        
    %load .mat file per testing ID/day 
    load([location,nameDateID],'Spine'); 
     
    %common structure fieldnames 
    position = 'LAT0_FE0_AXIAL0'; 
    pathtypestr = 'FE'; 
    state = 'Intact'; 
    motion = 'replay'; 
    pathsequence_str = 'loop'; 
    HAM_str = 'HAM'; 
    rotnum = 4; 
    repnum = 5; 
      
    %unique structure fieldnames - unique to each testing ID/day 
    clear fn_S fn_RS replay_str cycleNumberTotal trial %cycle_max %clear with 
each iteration  
    fn_S = fieldnames(Spine);  %name of specimen/date  
%     fn_SA_st = fieldnames(Spine.(fn_S{i}));  %state names 
%     state = fn_SA_st{1}; 
    trial = 
size(Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion),2); %assumes 
the last trial contains the replay of chosen_i loop path 
%     trial = 2; 
    fn_RS = 
fieldnames(Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial)); 
%obtains fieldname of replay string (:=replay_str) 
     
    if i == 31 % Nov 07 2012 data 
        replay_str = fn_RS{3}; 
    else 
        replay_str = fn_RS{1}; 
    end 
     
    cycleNumberTotal = 
size(Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay
_str).(HAM_str).(pathsequence_str),2); 
    cycle_max(i) = cycleNumberTotal-1; 
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    tool_start = 
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,1).(path_name_p1{1}).position(:,1); 
     
    if i == 9 || i == 10 ||i == 12  %Dec smROM trials that had pre-moment 
(zero the extension moments--not perfectly accurate but closer to truth) 
        load_start = 
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,1).(path_name_p1{2}).load(:,end); 
    else  %subtract off starting position moments 
        load_start = 
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,1).(path_name_p1{1}).load(:,1); 
    end 
     
    clear feLD*  
    for pnc = 1:cycle_max(i) %makes 'feData' 
            
        for pn = 1:2 %both pos-neg & neg-pos  
             
            if pnc == 1 %i think this ends up being the same thing...  
                path_name = path_name_p1{pn+1}; 
            else 
                path_name = path_name_p2[459]; 
            end 
             
            % Calculate "NEW" Tool Path - redefining F/E based on initial 
starting position. 
%             display([num2str(pn) num2str(pnc)]) 
            tool_n = 
size(Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay
_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name).position(:,:),2); 
                        
            for ti = 1:tool_n %substract starting position from each step to 
set to 0 
                tool_path(:,ti) = 
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,pnc).(path_name).position(:,ti) - tool_start; 
                load_path(:,ti) = 
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,pnc).(path_name).load(:,ti) - load_start; 
            end 
                         
            tool_end = tool_path(:,end); 
            load_end = load_path(:,end); 
            [zero_val, zero_loc] = min(abs(tool_path(repnum,:))); 
             
            %save data - per cycle 
            
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,pnc).(path_name).tool_zero = [zero_val, 
zero_loc]; 
            
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
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.(HAM_str).(pathsequence_str)(1,pnc).(path_name).tool_path_new(:,:) = 
tool_path; 
            
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,pnc).(path_name).load_path_new(:,:) = 
load_path; 
                      
            clear tool_path load_path 
             
            if pn == 1 %pos_neg    
                feLDpn(:,:,pnc) = 
[Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str
).(HAM_str).(pathsequence_str)(1,pnc).(path_name).tool_path_new(:,:);... 
                        
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,pnc).(path_name).load_path_new(:,:)]; 
                feData.feDegMomPN = feLDpn; 
            elseif pn == 2 %neg_pos 
                feLDnp(:,:,pnc) = 
[Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str
).(HAM_str).(pathsequence_str)(1,pnc).(path_name).tool_path_new(:,:);... 
                        
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,pnc).(path_name).load_path_new(:,:)]; 
                feData.feDegMomNP = feLDnp; 
            end 
             
       end 
             
%         feData(pnc) = 
Spine.(fn_S{1}).(state).(position).(pathtypestr).(motion)(trial).(replay_str)
.(HAM_str).(pathsequence_str)(1,pnc).(path_name_p1{1}); %contains position, 
tool_path_new, load (and tool_zero) 
    end 
     
    %saves into master structure variable, feReplay_ALL, which contains 
    %6-axis position (normalized to starting position & aligned to specimen) 
and load data 
    feReplayALL.(nameDateID).fePN = feData.feDegMomPN; 
    feReplayALL.(nameDateID).feNP = feData.feDegMomNP; 
%  
end 
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D.4.2 Moments and Range-of-Motion  

Moments and range-of-motion (ROM) for flexion/extension (F/E) are shown in 

‘rFSU_feROM.m.’  By changing ‘rotnum’ and ‘loadnum’ to 4 and 11, respectively, the same code 

can be used to calculate axial torsion (AT) moments and rotations.   

Find F/E Moments and ROM in ‘Replay’: rFSU_feROM.m 

%find average F/E ROM for replay paths 
  
%must run <rFSU_LoopPlottingReplay.m> first to create 'tool_path_new' for 
%each 'pn' and 'np' per cycle 
  
%data parameters 
fn_fRA = fieldnames(feReplayALL);  %fieldnames of all files 
rotnum = 5; 
loadnum = 10; 
  
if isfield(feReplayALL,'LR') == 1 
    n = size(fn_fRA,1) - 4; %other scripts may have added fields to structure 
that aren't test IDs 
else 
    n = size(fn_fRA,1); %if no other fields are added, all fieldnames 
correspond to IDs 
end 
  
% MxStart = 
Spine.(date).(state).(position).(path).(motion)(trial).(replay_str).HAM.(path
type)(1).(path_name_p1{1}).load(loadnum,1); 
% load_start replaces MxStart, though load_start is [6,1] 
  
for i = 1:size(fileName,1) 
  
 %for SA1, tpp/lep is flexion & tpn/len is extension by convention 
cycle_maxS = size(feReplayALL.(fn_fRA{i}).fePN(:,:,:),3); %number of cycles 
per test/specimen     
  
    clear max* 
    for pnc = 1:cycle_maxS %across cycles 
  
%         pnc 
        %pos-neg paths: extremes of path flexion & extension ROM (:=max*ROM) 
        %and moment (:=max*Mx) 
        %unloading flexion, loading extension > UNLOADING (1) 
        maxfROM(pnc,1) = feReplayALL.(fn_fRA{i}).fePN(rotnum,1,pnc); 
        maxeROM(pnc,2) = feReplayALL.(fn_fRA{i}).fePN(rotnum,end,pnc); 
        maxfMx(pnc,1) = -feReplayALL.(fn_fRA{i}).fePN(loadnum,1,pnc); 
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        maxeMx(pnc,2) = feReplayALL.(fn_fRA{i}).fePN(loadnum,end,pnc); 
  
        %neg-pos paths 
        %loading flexion, unloading extension > LOADING (2) 
        maxfROM(pnc,2) = feReplayALL.(fn_fRA{i}).feNP(rotnum,end,pnc); 
        maxeROM(pnc,1) = feReplayALL.(fn_fRA{i}).feNP(rotnum,1,pnc); 
        maxfMx(pnc,2) = -feReplayALL.(fn_fRA{i}).feNP(loadnum,end,pnc); 
        maxeMx(pnc,1) = feReplayALL.(fn_fRA{i}).feNP(loadnum,1,pnc); 
         
        %combined F/E 
        maxCfeROM(pnc,1) = abs(maxfROM(pnc,1)) + abs(maxeROM(pnc,1)); %pn: 
add flexion to extension values 
        maxCfeROM(pnc,2) = abs(maxfROM(pnc,2)) + abs(maxeROM(pnc,2)); %np: 
add flexion to extension values         
        maxCfeMx(pnc,1) = abs(maxfMx(pnc,2)) + abs(maxeMx(pnc,2)); %loading 
moments: add flexion to extension values 
        maxCfeMx(pnc,2) = abs(maxfMx(pnc,1)) + abs(maxeMx(pnc,1)); %unloading 
moments: add flexion to extension values         
         
    end 
  
    %save moment data 
    feReplayALL.(fn_fRA{i}).maxFlexMx = maxfMx; %flexion moments 
    feReplayALL.(fn_fRA{i}).maxExtMx = maxeMx; %extension moments 
    feReplayALL.(fn_fRA{i}).maxFEMx = maxCfeMx; %overal f/e moments 
     
     
%% ROM & Moment parameters across pncs (w/ std's) - to be imported to 
mechOutcomesSummary.xls 
%find max ROM & moment for flexion & extension in unloading & loading & mean 
U&L curves 
  
%----ROM (Rx: deg)----------------------------------- 
%unloading curves (pn for flexion) 
ROMfMax(1,1) = mean(maxfROM(:,1)); 
ROMfMax(2,1) = std(maxfROM(:,1)); %variation across pncs 
%loading curves (np for flexion) 
ROMfMax(1,2) = mean(maxfROM(:,2)); 
ROMfMax(2,2) = std(maxfROM(:,2)); 
%average of loading & unloading ROM & Mx values 
ROMfMax(1,3) = mean(mean(maxfROM)); 
ROMfMax(2,3) = std(mean(maxfROM)); %"variation" between unloading & loading  
  
%unloading curves (np for extension) 
ROMeMax(1,1) = mean(maxeROM(:,2)); 
ROMeMax(2,1) = std(maxeROM(:,2)); 
%loading curves (pn for flexion) 
ROMeMax(1,2) = mean(maxeROM(:,1)); 
ROMeMax(2,2) = std(maxeROM(:,1));  
%average of loading & unloading ROM & Mx values 
ROMeMax(1,3) = mean(mean(maxeROM)); 
ROMeMax(2,3) = std(mean(maxeROM)); 
  
%combined F/E 
ROMcfeMax(1,1) = mean(maxCfeROM(:,1)); %pos-neg 
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ROMcfeMax(2,1) = std(maxCfeROM(:,1));  
  
ROMcfeMax(1,2) = mean(maxCfeROM(:,2)); %neg-pos 
ROMcfeMax(2,2) = std(maxCfeROM(:,2));  
  
ROMcfeMax(1,3) = mean(mean(maxCfeROM)); %mean pn w/ np 
ROMcfeMax(2,3) = std(mean(maxCfeROM));  
  
%differences in ROM across cycles: flexion  
%extremes (max - min) 
ROMfDiffExtreme(1) = max(maxfROM(:,1)) - min(maxfROM(:,1)); %unloading path 
ROMfDiffExtreme(2) = max(maxfROM(:,2)) - min(maxfROM(:,2)); %loading path 
ROMfDiffExtreme(3) = max(mean(maxfROM)) - min(mean(maxfROM)); %average 
unloading & loading paths 
% ordinal (i.e. initial - final based on 1st cycle... 
ROMfDiffOrdin_1(1) = maxfROM(end,1) - maxfROM(1,1); %unloading path 
ROMfDiffOrdin_1(2) = maxfROM(end,2) - maxfROM(1,2); %loading path 
ROMfDiffOrdin_1(3) = mean(maxfROM(end,:)) - (mean(maxfROM(1,:))); %average 
unloading & loading paths 
% and 3rd cycle) 
ROMfDiffOrdin_3(1) = maxfROM(end,1) - maxfROM(3,1); %unloading path 
ROMfDiffOrdin_3(2) = maxfROM(end,2) - maxfROM(3,2); %loading path 
ROMfDiffOrdin_3(3) = mean(maxfROM(end,:)) - (mean(maxfROM(3,:))); %average 
unloading & loading paths 
  
%differences in ROM across cycles: extension  
%extremes (max - min) 
ROMeDiffExtreme(1) = max(maxeROM(:,2)) - min(maxeROM(:,2)); %unloading path 
ROMeDiffExtreme(2) = max(maxeROM(:,1)) - min(maxeROM(:,1)); %loading path 
ROMeDiffExtreme(3) = max(mean(maxeROM)) - min(mean(maxeROM)); %average 
unloading & loading paths 
% ordinal (i.e. initial - final based on 1st cycle... 
ROMeDiffOrdin_1(1) = maxeROM(end,1) - maxeROM(1,1); %unloading path 
ROMeDiffOrdin_1(2) = maxeROM(end,2) - maxeROM(1,2); %loading path 
ROMeDiffOrdin_1(3) = mean(maxeROM(end,:)) - (mean(maxeROM(1,:))); %average 
unloading & loading paths 
% and 3rd cycle) 
ROMeDiffOrdin_3(1) = maxeROM(end,1) - maxeROM(3,1); %unloading path 
ROMeDiffOrdin_3(2) = maxeROM(end,2) - maxeROM(3,2); %loading path 
ROMeDiffOrdin_3(3) = mean(maxeROM(end,:)) - (mean(maxeROM(3,:))); %average 
unloading & loading paths 
  
%---moment (Mx: Nm)------------------------------------------- 
%unloading curves (pn for flexion) 
MxfMax(1,1) = mean(maxfMx(:,1)); 
MxfMax(2,1) = std(maxfMx(:,1)); 
%loading curves (np for flexion) 
MxfMax(1,2) = mean(maxfMx(:,2)); 
MxfMax(2,2) = std(maxfMx(:,2)); 
%average of loading & unloading Mx & Mx values 
MxfMax(1,3) = mean(mean(maxfMx)); 
MxfMax(2,3) = std(mean(maxfMx)); 
  
%unloading curves (np for extension) 
MxeMax(1,1) = mean(maxeMx(:,2)); 
MxeMax(2,1) = std(maxeMx(:,2)); 
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%loading curves (pn for flexion) 
MxeMax(1,2) = mean(maxeMx(:,1)); 
MxeMax(2,2) = std(maxeMx(:,1)); 
%average of loading & unloading Mx & Mx values 
MxeMax(1,3) = mean(mean(maxeMx)); 
MxeMax(2,3) = std(mean(maxeMx)); 
  
%combined F/E 
% maxCfeMx = maxfMx + abs(maxeMx); %add flexion to extension values 
  
MxcfeMax(1,1) = mean(maxCfeMx(:,1)); %loading (in both flexion & ext) 
MxcfeMax(2,1) = std(maxCfeMx(:,1));  
  
MxcfeMax(1,2) = mean(maxCfeMx(:,2)); %unloading (" " " ) 
MxcfeMax(2,2) = std(maxCfeMx(:,2));  
  
MxcfeMax(1,3) = mean(mean(maxCfeMx)); %mean loading & unloading 
MxcfeMax(2,3) = std(mean(maxCfeMx));  
  
%differences in Mx across cycles: flexion  
%extremes (max - min) 
MxfDiffExtreme(1) = max(maxfMx(:,1)) - min(maxfMx(:,1)); %unloading path 
MxfDiffExtreme(2) = max(maxfMx(:,2)) - min(maxfMx(:,2)); %loading path 
MxfDiffExtreme(3) = max(mean(maxfMx)) - min(mean(maxfMx)); %average unloading 
& loading paths 
% ordinal (i.e. initial - final based on 1st cycle... 
MxfDiffOrdin_1(1) = maxfMx(1,1) - maxfMx(end,1); %unloading path 
MxfDiffOrdin_1(2) = maxfMx(1,2) - maxfMx(end,2); %loading path 
MxfDiffOrdin_1(3) = mean(maxfMx(1,:)) - (mean(maxfMx(end,:))); %average 
unloading & loading paths 
% and 3rd cycle) 
MxfDiffOrdin_3(1) = maxfMx(3,1) - maxfMx(end,1); %unloading path 
MxfDiffOrdin_3(2) = maxfMx(3,2) - maxfMx(end,2); %loading path 
MxfDiffOrdin_3(3) = mean(maxfMx(3,:)) - (mean(maxfMx(end,:))); %average 
unloading & loading paths 
  
%differences in Mx across cycles: extension  
% extremes (max - min) 
MxeDiffExtreme(1) = max(maxeMx(:,2)) - min(maxeMx(:,2)); %unloading path 
MxeDiffExtreme(2) = max(maxeMx(:,1)) - min(maxeMx(:,1)); %loading path 
MxeDiffExtreme(3) = max(mean(maxeMx)) - min(mean(maxeMx)); %average unloading 
& loading paths 
% ordinal (i.e. initial - final based on 1st cycle... 
MxeDiffOrdin_1(1) = maxeMx(1,1) - maxeMx(end,1); %unloading path 
MxeDiffOrdin_1(2) = maxeMx(1,2) - maxeMx(end,2); %loading path 
MxeDiffOrdin_1(3) = mean(maxeMx(1,:)) - (mean(maxeMx(end,:))); %average 
unloading & loading paths 
% and 3rd cycle) 
MxeDiffOrdin_3(1) = maxeMx(3,1) - maxeMx(end,1); %unloading path 
MxeDiffOrdin_3(2) = maxeMx(3,2) - maxeMx(end,2); %loading path 
MxeDiffOrdin_3(3) = mean(maxeMx(3,:)) - (mean(maxeMx(end,:))); %average 
unloading & loading paths 
  
%differences in Mx across cycles: flexion/extension  
% extremes (max - min) 
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MxcfeDiffExtreme(1) = max(maxCfeMx(:,2)) - min(maxCfeMx(:,2)); %unloading 
path 
MxcfeDiffExtreme(2) = max(maxCfeMx(:,1)) - min(maxCfeMx(:,1)); %loading path 
MxcfeDiffExtreme(3) = max(mean(maxCfeMx)) - min(mean(maxCfeMx)); %average 
unloading & loading paths 
% ordinal (i.e. initial - final based on 1st cycle... 
MxcfeDiffOrdin_1(1) = maxCfeMx(1,1) - maxCfeMx(end,1); %unloading path 
MxcfeDiffOrdin_1(2) = maxCfeMx(1,2) - maxCfeMx(end,2); %loading path 
MxcfeDiffOrdin_1(3) = mean(maxCfeMx(1,:)) - (mean(maxCfeMx(end,:))); %average 
unloading & loading paths 
% and 3rd cycle) 
MxcfeDiffOrdin_3(1) = maxCfeMx(3,1) - maxCfeMx(end,1); %unloading path 
MxcfeDiffOrdin_3(2) = maxCfeMx(3,2) - maxCfeMx(end,2); %loading path 
MxcfeDiffOrdin_3(3) = mean(maxCfeMx(3,:)) - (mean(maxCfeMx(end,:))); %average 
unloading & loading paths 
%------------------------------------------------------ 
 
%--------save data--------- 
feReplayALL.(fn_fRA{i}).ROM.FlexROM = ROMfMax; 
feReplayALL.(fn_fRA{i}).ROM.ExtROM = ROMeMax; 
feReplayALL.(fn_fRA{i}).ROM.cfeROM = ROMcfeMax; 
feReplayALL.(fn_fRA{i}).ROM.fDiffExtreme = ROMfDiffExtreme; 
feReplayALL.(fn_fRA{i}).ROM.eDiffExtreme = ROMeDiffExtreme; 
% feReplayALL.(fn_fRA{i}).ROM.cfeDiffExtreme = ROMcfeDiffExtreme; 
feReplayALL.(fn_fRA{i}).ROM.fDiffOrdin_1 = ROMfDiffOrdin_1; 
feReplayALL.(fn_fRA{i}).ROM.eDiffOrdin_1 = ROMeDiffOrdin_1; 
% feReplayALL.(fn_fRA{i}).ROM.cfeDiffOrdin_1 = ROMcfeDiffOrdin_1; 
feReplayALL.(fn_fRA{i}).ROM.fDiffOrdin_3 = ROMfDiffOrdin_3; 
feReplayALL.(fn_fRA{i}).ROM.eDiffOrdin_3 = ROMeDiffOrdin_3; 
% feReplayALL.(fn_fRA{i}).ROM.cfeDiffOrdin_3 = ROMcfeDiffOrdin_3; 
feReplayALL.(fn_fRA{i}).Mx.FlexMx = MxfMax; 
feReplayALL.(fn_fRA{i}).Mx.ExtMx = MxeMax; 
feReplayALL.(fn_fRA{i}).Mx.cfeMx = MxcfeMax; 
feReplayALL.(fn_fRA{i}).Mx.fDiffExtreme = MxfDiffExtreme; 
feReplayALL.(fn_fRA{i}).Mx.eDiffExtreme = MxeDiffExtreme; 
feReplayALL.(fn_fRA{i}).Mx.cfeDiffExtreme = MxcfeDiffExtreme; 
feReplayALL.(fn_fRA{i}).Mx.fDiffOrdin_1 = MxfDiffOrdin_1; 
feReplayALL.(fn_fRA{i}).Mx.eDiffOrdin_1 = MxeDiffOrdin_1; 
feReplayALL.(fn_fRA{i}).Mx.cfeDiffOrdin_1 = MxcfeDiffOrdin_1; 
feReplayALL.(fn_fRA{i}).Mx.fDiffOrdin_3 = MxfDiffOrdin_3; 
feReplayALL.(fn_fRA{i}).Mx.eDiffOrdin_3 = MxeDiffOrdin_3; 
feReplayALL.(fn_fRA{i}).Mx.cfeDiffOrdin_3 = MxcfeDiffOrdin_3; 
  
end 
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D.4.3 Load Relaxation 

Moment relaxation for flexion/extension (F/E) is shown in ‘rFSU_loadRelaxation.m.’  By 

changing ‘rotnum’ and ‘loadnum’ to 4 and 11, respectively, the same code can be used to calculate 

axial torsion (AT) moment relaxation.  Relaxation of other parameters can also be calculated. 

Relaxation in F/E Moments: rFSU_loadRelaxation.m 

%rFSU load relaxation code 
%RAH - Aug 2012 
%working off superSpine.mat (Spine_ALL*) 
  
%data parameters 
clear tp* le* 
  
% based on <rFSU_feROM.m>...consolidated variables 
% specifically, based on maxfMx, maxeM (moments at endpts of each cycle) 
  
%data parameters 
fn_fRA = fieldnames(feReplayALL);   
  
%F/E 
rotnum = 5; 
loadnum = 10; 
  
% MxStart = 
Spine.(date).(state).(position).(path).(motion)(trial).(replay_str).HAM.(path
type)(1).(path_name_p1{1}).load(loadnum,1); 
% % MxStart = 0.0437879178306911; 
% load_start replaces MxStart, though load_start is [6,1] 
  
for i = 1:size(fileName,1) 
  
    i; 
     
    date = fn_fRA{i}; 
     
    clear maxf* maxe* maxC* Relax* 
    %for SA1, tpp/lep is flexion & tpn/len is extension by convention 
    cycle_maxS = size(feReplayALL.(fn_fRA{i}).fePN(:,:,:),3); %number of 
cycles per test/specimen 
  
    maxfMx = feReplayALL.(fn_fRA{i}).maxFlexMx; 
    maxeMx = feReplayALL.(fn_fRA{i}).maxExtMx; 
    maxCfeMx = feReplayALL.(fn_fRA{i}).maxFEMx; 
     
    clear Mxf* Mxe* MxC* 
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    %for SA1, tpp/lep is flexion & tpn/len is extension by convention 
    for pnc = 1:cycle_maxS 
%         pnc        
         
    %-------percent relaxation (change/original * 100%)-------------- 
        %unloading - based on 3rd pnc  
        %percent change - neg is dec; normalized by 3rd cycle moment value 
        MxfRelax(pnc,1) = (100) * (maxfMx(pnc,1) - maxfMx(3,1)) / 
maxfMx(3,1); %flexion relaxation 
        MxeRelax(pnc,1) = (100) * (maxeMx(pnc,1) - maxeMx(3,1)) / 
maxeMx(3,1); %extension relaxation 
        MxcfeRelax(pnc,1) = (100) * (maxCfeMx(pnc,1) - maxCfeMx(3,1)) / 
maxCfeMx(3,1); %extension relaxation 
         
        %loading - based on 3rd pnc 
        MxfRelax(pnc,2) = (100) * (maxfMx(pnc,2) - maxfMx(3,2)) / 
maxfMx(3,2); %flexion relaxation 
        MxeRelax(pnc,2) = (100) * (maxeMx(pnc,2) - maxeMx(3,2)) / 
maxeMx(3,2); %extension relaxation 
        MxCfeRelax(pnc,2) = (100) * (maxCfeMx(pnc,2) - maxCfeMx(3,2)) / 
maxCfeMx(3,2); %extension relaxation 
  
        %mean unloading/loading - based on 3rd pnc 
        MxfRelax(pnc,3) = (100) * ((mean(maxfMx(pnc,:)) - mean(maxfMx(3,:))) 
/ mean(maxfMx(3,:))); %flexion relaxation 
        MxeRelax(pnc,3) = (100) * ((mean(maxeMx(pnc,:)) - mean(maxeMx(3,:))) 
/ mean(maxeMx(3,:))); %extension relaxation 
        MxCfeRelax(pnc,3) = (100) * ((mean(maxCfeMx(pnc,:)) - 
mean(maxCfeMx(3,:))) / mean(maxCfeMx(3,:))); %extension relaxation 
  
        if pnc == 3 
            MxfRelax(pnc,:) = [1,1,1]; 
            MxeRelax(pnc,:) = [1,1,1]; 
            MxCfeRelax(pnc,:) = [1,1,1]; 
        end 
         
    end  
  
% %------end relaxation----------------------------------------- 
%  
    %flexion & extension relaxation (expressed as % of intact) 
    %increase is positive; decrease is negative 
    RelaxnFlexion = [MxfRelax(:,1), MxfRelax(:,2), MxfRelax(:,3), 
abs(MxfRelax(:,1)-MxfRelax(:,2))]; 
    RelaxnExtension = [MxeRelax(:,1), MxeRelax(:,2), MxeRelax(:,3), 
abs(MxeRelax(:,1)-MxeRelax(:,2))]; 
    RelaxnCFE = [MxCfeRelax(:,1), MxCfeRelax(:,2), MxCfeRelax(:,3), 
abs(MxCfeRelax(:,1)-MxCfeRelax(:,2))]; %combined flexion extension 
%  
    %change over cycles 
    %flexion 
    %extremes (max - min) 
    MxRelaxfDiffExtreme(1) = max(MxfRelax(:,1)) - min(MxfRelax(:,1)); 
%unloading path 
    MxRelaxfDiffExtreme(2) = max(MxfRelax(:,2)) - min(MxfRelax(:,2)); 
%loading path 
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    MxRelaxfDiffExtreme(3) = max(MxfRelax(:,3)) - min(MxfRelax(:,3)); 
%average unloading & loading paths 
    % ordinal (i.e. initial - final based on 1st pnc... 
    MxRelaxfDiffOrdin_1(1) = MxfRelax(1,1) - MxfRelax(end,1); %unloading path 
    MxRelaxfDiffOrdin_1(2) = MxfRelax(1,2) - MxfRelax(end,2); %loading path 
    MxRelaxfDiffOrdin_1(3) = MxfRelax(1,3) - MxfRelax(end,3); %average 
unloading & loading paths 
    % and 3rd pnc) 
    MxRelaxfDiffOrdin_3(1) = MxfRelax(3,1) - MxfRelax(end,1); %unloading path 
    MxRelaxfDiffOrdin_3(2) = MxfRelax(3,2) - MxfRelax(end,2); %loading path 
    MxRelaxfDiffOrdin_3(3) = MxfRelax(3,3) - MxfRelax(end,3); %average 
unloading & loading paths 
  
    %extension 
    % extremes (max - min) 
    MxRelaxeDiffExtreme(1) = max(MxeRelax(:,1)) - min(MxeRelax(:,1)); 
%unloading path 
    MxRelaxeDiffExtreme(2) = max(MxeRelax(:,2)) - min(MxeRelax(:,2)); 
%loading path 
    MxRelaxeDiffExtreme(3) = max(MxeRelax(:,3)) - min(MxeRelax(:,3)); 
%average unloading & loading paths 
    % ordinal (i.e. initial - final based on 1st pnc... 
    MxRelaxeDiffOrdin_1(1)= MxeRelax(1,1) - MxeRelax(end,1); %unloading path 
    MxRelaxeDiffOrdin_1(2) = MxeRelax(1,2) - MxeRelax(end,2); %loading path 
    MxRelaxeDiffOrdin_1(3) = MxeRelax(1,3) - MxeRelax(end,3); %average 
unloading & loading paths 
    % and 3rd pnc) 
    MxRelaxeDiffOrdin_3(1) = MxeRelax(3,1) - MxeRelax(end,1); %unloading path 
    MxRelaxeDiffOrdin_3(2) = MxeRelax(3,2) - MxeRelax(end,2); %loading path 
    MxRelaxeDiffOrdin_3(3) = MxeRelax(3,3) - MxeRelax(end,3); %average 
unloading & loading paths 
  
    %combined flexion-extension 
    % extremes (max - min) 
    MxRelaxcfeDiffExtreme(1) = max(RelaxnCFE(:,1)) - min(RelaxnCFE(:,1)); 
%unloading path 
    MxRelaxcfeDiffExtreme(2) = max(RelaxnCFE(:,2)) - min(RelaxnCFE(:,2)); 
%loading path 
    MxRelaxcfeDiffExtreme(3) = max(RelaxnCFE(:,3)) - min(RelaxnCFE(:,3)); 
%average unloading & loading paths 
    % ordinal (i.e. initial - final based on 1st pnc... 
    MxRelaxcfeDiffOrdin_1(1) = RelaxnCFE(1,1) - RelaxnCFE(end,1); %unloading 
path 
    MxRelaxcfeDiffOrdin_1(2) = RelaxnCFE(1,2) - RelaxnCFE(end,2); %loading 
path 
    MxRelaxcfeDiffOrdin_1(3) = RelaxnCFE(1,3) - RelaxnCFE(end,3); %average 
unloading & loading paths 
    % and 3rd pnc) 
    MxRelaxcfeDiffOrdin_3(1) = RelaxnCFE(3,1) - RelaxnCFE(end,1); %unloading 
path 
    MxRelaxcfeDiffOrdin_3(2) = RelaxnCFE(3,2) - RelaxnCFE(end,2); %loading 
path 
    MxRelaxcfeDiffOrdin_3(3) = RelaxnCFE(3,3) - RelaxnCFE(end,3); %average 
unloading & loading paths 
  
    %-------save data--------- 
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    feReplayALL.(fn_fRA{i}).Relaxation.RelaxFlex = RelaxnFlexion; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxExt = RelaxnExtension; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxnCFE = RelaxnCFE; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxFlexDiffExtreme = 
MxRelaxfDiffExtreme; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxFlexDiffOrdin1 = 
MxRelaxfDiffOrdin_1; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxFlexDiffOrdin3 = 
MxRelaxfDiffOrdin_3; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxExtDiffExtreme = 
MxRelaxeDiffExtreme; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxExtDiffOrdin1 = 
MxRelaxeDiffOrdin_1; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxExtDiffOrdin3 = 
MxRelaxeDiffOrdin_3; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxCFEDiffExtreme = 
MxRelaxcfeDiffExtreme; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxCFEDiffOrdin1 = 
MxRelaxcfeDiffOrdin_1; 
    feReplayALL.(fn_fRA{i}).Relaxation.RelaxCFEDiffOrdin3 = 
MxRelaxcfeDiffOrdin_3; 
    %-------------------------- 
end 
 

D.4.4 Neutral Zone and Elastic Zone Stiffness 

Flexion/extension moment-rotation curve fitting: rFSUreplay_DS_*date.m 

function [Spine] = rFSUreplay_DS_*date(Spine) 
%CREATEFIT    Create plot of datasets and fits 
  
% Data from dataset "tp1 vs. le1": 
%    X = le1: 
%    Y = tp1: 
%    Unweighted 
  
% This function was automatically generated on 09-Apr-2012 11:00:48 
  
%fits loop paths - REPLAYs 
  
%test-specific labels/data 
position = 'LAT0_FE0_AXIAL0'; 
HAM_str = 'HAM'; 
motion = 'replay'; 
replay_str = 'replay45x'; 
pathsequence_str = 'loop'; 
trial = 1; 
% Only Plotting 2nd cycle currently 
cycle_max = 34; % 
cycle_start = 1; 
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color_str1 = {'bo', 'ro', 'ko', 'go', 'mo'}; 
color_str2 = {'b+', 'r+', 'k+', 'g+', 'm+'}; 
  
pathtypestr = 'FE'; 
  
pos = 1; % 1 = pos, 0 = neg (first) 
  
path_name_p1 = {'loop_0_pos'; 'loop_pos_neg'; 'loop_neg_pos'}; 
path_name_p2 = {'loop_pos_neg'; 'loop_neg_pos'; 'loop_pos_0'}; 
path_name_n1 = {'loop_0_neg'; 'loop_neg_pos'; 'loop_pos_neg'}; 
path_name_n2 = {'loop_neg_pos'; 'loop_pos_neg'; 'loop_neg_0'}; 
  
clear fn_SA 
%Spine is a structure 
fn_SA = fieldnames(Spine); 
  
rotnum = 4; %loads - FE 
repnum = 5; %position / tool_path - FE 
  
%define number of conditions & states (set defaults if no input spec'd) 
SPnum = 1; 
Statenum = 1; 
  
% disp('here') 
  
for i = SPnum:SPnum 
     
    %fn_SA_st = fieldnames(Spine.(fn_SA{i})); 
    fn_SA_st = {'Intact'}; 
    fn_SA_st2 = strrep(fn_SA_st,'_',' '); 
     
    % State Names (FL0_AL0_noHAM, ...) 
    for j = Statenum:Statenum 
         
        for pnc = cycle_start:cycle_max 
            pnc 
             
            if pnc == 36 
                 
                CF = NaN; 
                 
                
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).CF = NaN; 
                
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).NZ_ALL(Statenum
,:) = NaN; 
                
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).EZ_ALL(Statenum
,:) = NaN; 
                 
                %NZ average per cycle & "higher-in-the-structre" storage 
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                Spine.(fn_SA{i}).(fn_SA_st{j}).NZ_ALL(pnc,1:5) = NaN; 
%(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(re
play_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).NZ_ALL(Staten
um,:) + 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).NZ_ALL(Statenum
,:)) ./ 2; 
                Spine.(fn_SA{i}).(fn_SA_st{j}).NZ_ALL(pnc,6:10) = NaN; 
%abs(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).
(replay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).NZ_ALL(Sta
tenum,:) - 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).NZ_ALL(Statenum
,:)); 
                 
                %EZ average per cycle & "higher-in-the-structre" storage (1-
mean of pn,np in flexion, 2-mean of pn,np in extension ; 3-range b/w pn & np 
in flexion, 4-range b/w pn & np in flexion) 
                Spine.(fn_SA{i}).(fn_SA_st{j}).EZ_ALL(pnc,1:2) = NaN; 
%(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(re
play_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).EZ_ALL(Staten
um,:) + 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).EZ_ALL(Statenum
,:)) ./ 2; 
                Spine.(fn_SA{i}).(fn_SA_st{j}).EZ_ALL(pnc,3:4) = NaN; 
%abs(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).
(replay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).EZ_ALL(Sta
tenum,:) - 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).EZ_ALL(Statenum
,:)); 
                 
                disp('hello') 
            else 
                 
                for k = 1:2 
                     
                    tool_path_new = 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{k}).tool_path_new(:
,:); 
                    load_end_pts = -
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{k}).load(:,:); 
                     
                    %---------------perform curve-fitting HERE (within 'pn' & 
'np' looping)----- 
                     
                    le1 = load_end_pts(rotnum,:)'; 
                    tp1 = tool_path_new(repnum,:)'; 
                     
                    %used for EZ in case le1 data set is trimmed for NZ 
analysis 
                    le1_all = le1; 
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                    if k == 2 %np 
                        %modify curve smoothness or size per cycle 
                        if pnc==35 % any cycle 
                            trim_IndxL = find(le1 < -0.2)'; 
                            trim_IndxH = find(le1 > 0.6)'; 
                            trim_Indx = [trim_IndxL trim_IndxH]; 
                            tp1(trim_Indx) = []; 
                            le1(trim_Indx) = []; 
                            tp1_sm = smooth(le1,tp1,1,'moving',0); 
                             
                        else 
                            tp1_sm = smooth(le1,tp1,3,'moving',0); %default 
smoothing 
                        end 
                    else %pn 
                        %modify curve smoothness or size per cycle 
                        if pnc==35 % any cycle 
                            trim_IndxL = find(le1 < -0.2)'; 
                            trim_IndxH = find(le1 > 0.6)'; 
                            trim_Indx = [trim_IndxL trim_IndxH]; 
                            tp1(trim_Indx) = []; 
                            le1(trim_Indx) = []; 
                            tp1_sm = smooth(le1,tp1,1,'moving',0); 
                        else 
                            tp1_sm = smooth(le1,tp1,3,'moving',0); %default 
smoothing 
                        end 
                    end 
                     
                    % --- Create fit "DS 1" 
                    ok_ = isfinite(le1) & isfinite(tp1_sm); 
                    if ~all( ok_ ) 
                        warning( 'GenerateMFile:IgnoringNansAndInfs', ... 
                            'Ignoring NaNs and Infs in data' ); 
                    end 
                    st_ = [0.61133931403521835 0.17929230991254663 
0.96904174210803418 0.16997270530500563 0.92473756802850282 
0.56529983403084139 0.2759304694680681 ]; 
                    ft_ = fittype('(1/(1+exp(-(a1+b1*L))))*c1+(1/(1+exp(-
(a2+b2*L))))*c2+d',... 
                        'dependent',{'D'},'independent',{'L'},... 
                        'coefficients',{'a1', 'a2', 'b1', 'b2', 'c1', 'c2', 
'd'}); 
                     
                    % Fit this model using new data 
                    [cf_,cf_gof] = 
fit(le1(ok_),tp1_sm(ok_),ft_,'Startpoint',st_); 
                     
                    % Or use coefficients from the original fit: 
                    if 0 
                        cv_ = { -0.37423720811936279, -4.1494845972262491, 
405.3980878527874, -362.83832628109684, -17.490716086896914}; 
                        [cf_,cf_gof] = cfit(ft_,cv_{:}); 
                    end 

 322 



                     
                    CF.cf = cf_; 
                    CF.cf_gof = cf_gof; 
                     
                    CF.le1 = le1; 
                    CF.tp1 = tp1_sm; 
                    CF.ROM = tp1_sm(1) - tp1_sm(end); 
                    CF.yfit = cf_(le1); 
                     
                    %Analysis 
                     
                    CF.coeffnames = coeffnames(CF.cf); 
                    CF.coeffvalues = coeffvalues(CF.cf); 
                     
                    [CF.dydx, CF.d2ydx2] = differentiate(CF.cf, CF.le1); 
                     
                    [CF.max_dydx(1),CF.max_dydx(2)]= max(CF.dydx); 
                    [CF.min_dydx(1),CF.min_dydx(2)]= min(CF.dydx); 
                     
                    [CF.max_d2ydx2(1),CF.max_d2ydx2(2)]= max(CF.d2ydx2); 
                    [CF.min_d2ydx2(1),CF.min_d2ydx2(2)]= min(CF.d2ydx2); 
                     
                    % Plot fit and 1st / 2nd derivative 
                    fh = figure; 
                    subplot(2,2,1), plot(CF.le1,cf_(CF.le1),'r'); 
                    hold on 
                    plot(le1,tp1_sm,'x'); 
                    title([fn_SA_st2(Statenum) ' Double Sigmoid Fit']); 
                    subplot(2,2,2), plot(CF.le1(1:end),CF.dydx); 
                    title([fn_SA_st2(Statenum) ' First Derivative']); 
                    subplot(2,2,3), plot(CF.le1(1:end),CF.d2ydx2); 
                    title([fn_SA_st2(Statenum) ' Second Derivative']); 
                     
                    %Neutral Zone 
                    if k == 1  %max -> min of inverted loads 
                        CF.le_nz = le1(CF.min_d2ydx2(2):CF.max_d2ydx2(2)); 
                        CF.tp_nz = tp1_sm(CF.min_d2ydx2(2):CF.max_d2ydx2(2)); 
                    else  %min -> max of inverted loads 
                        CF.le_nz = le1(CF.max_d2ydx2(2):CF.min_d2ydx2(2)); 
                        CF.tp_nz = tp1_sm(CF.max_d2ydx2(2):CF.min_d2ydx2(2)); 
                    end 
                     
                    % --- Create fit "NZ" 
                    ok_ = isfinite(CF.le_nz) & isfinite(CF.tp_nz); 
                    if ~all( ok_ ) 
                        warning( 'GenerateMFile:IgnoringNansAndInfs', ... 
                            'Ignoring NaNs and Infs in data' ); 
                    end 
                    ft_ = fittype('poly1'); 
                     
                    % Fit this model using new data 
                    % trim load & position inputs 
                    if size(ok_,1) > 7 
                        NZload = CF.le_nz(ok_); 
                        NZpos = CF.tp_nz(ok_); 
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                        CF.le_nz = NZload(2:end-1); 
                        CF.tp_nz = NZpos(2:end-1); 
                    else 
                        CF.le_nz = CF.le_nz(ok_); 
                        CF.tp_nz = CF.tp_nz(ok_); 
                    end 
                     
                    [nz_,nz_gof] = fit(CF.le_nz,CF.tp_nz,ft_); 
                     
                    % Or use coefficients from the original fit: 
                    if 0 
                        cv_ = { -13.676878594897982, -4.1640363853494824}; 
                        [nz_,nz_gof] = cfit(ft_,cv_{:}); 
                    end 
                     
                    CF.NZ = nz_; 
                    CF.NZ_gof = nz_gof; 
                     
                    % Plot this fit 
                    subplot(2,2,4),plot(CF.le_nz,CF.NZ(CF.le_nz),'r'); 
                    hold on 
                    plot(CF.le_nz,CF.tp_nz ,'x'); 
                    title([fn_SA_st2(Statenum) ' Neutral Zone - Linear 
Fit']); 
                     
                    NZ_negLoadEdge = le1(CF.max_d2ydx2(2)); 
                    NZ_posLoadEdge = le1(CF.min_d2ydx2(2)); 
                    NZ_negPosEdge = tp1_sm(CF.max_d2ydx2(2)); 
                    NZ_posPosEdge = tp1_sm(CF.min_d2ydx2(2)); 
                     
                    CF.NZ_coeffnames = coeffnames(CF.NZ); 
                    CF.NZ_coeffvales = coeffvalues(CF.NZ); 
                    CF.NZ_stiffness = 1/CF.NZ_coeffvales(1); 
                     
                    CF.NZ_le_width = le1(CF.max_d2ydx2(2)) - 
le1(CF.min_d2ydx2(2)); 
                    CF.NZ_tp_width = tp1_sm(CF.max_d2ydx2(2)) - 
tp1_sm(CF.min_d2ydx2(2)); 
                     
                    CF.NZ_ALL = 
[CF.NZ_stiffness,CF.NZ_le_width,CF.NZ_tp_width, CF.ROM, CF.cf_gof.rsquare]; 
                     
                    %---------Elastic Zone------------------ 
                    % le1(CF.max_d2ydx2(2):CF.min_d2ydx2(2)) 
                    % tp1(CF.max_d2ydx2(2):CF.min_d2ydx2(2)) 
                     
                    %these are based on actual data - trimmed data 
                    CF.le1_pos = le1(CF.min_d2ydx2(2):length(le1)); %pos load 
portion of EZ 
                    CF.tp1_sm_pos = tp1_sm(CF.min_d2ydx2(2):length(tp1)); 
%pos position portion of EZ 
                    CF.le1_neg = fliplr(le1(1:CF.max_d2ydx2(2))); %neg load 
portion of EZ 
                    CF.tp1_sm_neg = fliplr(tp1_sm(1:CF.max_d2ydx2(2))); %neg 
position portion of EZ 
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                    CF.le1_all = le1_all; 
                    CF.tp1_all = tp1_sm; 
                     
                    %NOT trimmed data 
                    max_load_pos = le1_all(length(le1_all)); %max load pos. 
path 
                    max_load_neg = le1_all(1);  %max load neg. path 
                                    
                    %load indices for TRIMMED DATA 
                    load_80t_pos = [size(le1,1)-2, size(le1,1)-1, 
size(le1,1)]'; 
                    load_80t_neg = [1 2 3]'; %3 points for EZ fitting 
                     
                    %angles/rom for TRIMMED DATA 
                    disp_80t_pos = tp1(load_80t_pos); 
                    disp_80t_neg = tp1(load_80t_neg); 
                     
                    %store size of pos & neg 
                    CF.le_ez_pos = load_80t_pos; %pos load portion of EZ 
                    CF.le_ez_neg = load_80t_neg; %neg load portion of EZ 
                    CF.tp_ez_pos = disp_80t_pos; %neg position portion of EZ 
                    CF.tp_ez_neg = disp_80t_neg; %neg position portion of EZ 
                     
                    ft_ = fittype('poly1'); 
                     
                    % Fit this model using new data 
                    ez_pos = fit(CF.le_ez_pos,CF.tp_ez_pos,ft_); 
                    ez_neg = fit(CF.le_ez_neg,CF.tp_ez_neg,ft_); 
                     
                    %using fit function domain & output 
                    % ez_ff = fit(CF.le_ez_ff',CF.tp_ez_ff,ft_); 
                     
                    % Or use coefficients from the original fit: 
                    if 0 
                        cv_ = { -13.676878594897982, -4.1640363853494824}; 
                        ez_ = cfit(ft_,cv_{:}); 
                    end 
                     
                    CF.ez_pos = ez_pos; 
                    CF.ez_neg = ez_neg; 
                    % CF.ez_ff = ez_ff; 
  
                    %store stiffness & fit info 
                    CF.ez_coeffnames_pos = coeffnames(CF.ez_pos); 
                    CF.ez_coeffvales_pos = coeffvalues(CF.ez_pos); 
                    CF.ez_stiffness_pos = 1/CF.ez_coeffvales_pos(1); 
                    CF.ez_stiffness_pos2 = 
(le1_all(load_80t_pos(length(load_80t_pos))) - le1_all(load_80t_pos(1))) / 
((disp_80t_pos(length(disp_80t_pos))) - disp_80t_pos(1)); 
                     
                    CF.ez_coeffnames_neg = coeffnames(CF.ez_neg); 
                    CF.ez_coeffvalues_neg = coeffvalues(CF.ez_neg); 
                    CF.ez_stiffness_neg = 1/CF.ez_coeffvalues_neg(1); 
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                    CF.ez_stiffness_neg2 = ((le1_all(load_80t_neg(1))) - 
(le1_all(load_80t_neg(length(load_80t_neg))))) / ((disp_80t_neg(1)) - 
disp_80t_neg(length(disp_80t_neg))); 
                     
                    CF.EZ_ALL = [CF.ez_stiffness_pos2 CF.ez_stiffness_neg2]; 
                     
                    
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{k}).CF = CF; 
                    
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{k}).NZ_ALL(Statenum
,:) = CF.NZ_ALL; 
                    
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{k}).EZ_ALL(Statenum
,:) = CF.EZ_ALL; 
                     
clear le1 tp1* CF cf_* ok_ ez_* disp_80* load_80* 
                     
                end 
 
                %NZ average per cycle & "higher-in-the-structre" storage 
                Spine.(fn_SA{i}).(fn_SA_st{j}).NZ_ALL(pnc,1:5) = 
(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(rep
lay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).NZ_ALL(Statenu
m,:) + 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).NZ_ALL(Statenum
,:)) ./ 2; 
                Spine.(fn_SA{i}).(fn_SA_st{j}).NZ_ALL(pnc,6:10) = 
abs(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(
replay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).NZ_ALL(Stat
enum,:) - 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).NZ_ALL(Statenum
,:)); 
                 
                %EZ average per cycle & "higher-in-the-structre" storage (1-
mean of pn,np in flexion, 2-mean of pn,np in extension ; 3-range b/w pn & np 
in flexion, 4-range b/w pn & np in flexion) 
                Spine.(fn_SA{i}).(fn_SA_st{j}).EZ_ALL(pnc,1:2) = 
(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(rep
lay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).EZ_ALL(Statenu
m,:) + 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).EZ_ALL(Statenum
,:)) ./ 2; 
                Spine.(fn_SA{i}).(fn_SA_st{j}).EZ_ALL(pnc,3:4) = 
abs(Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(
replay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{1}).EZ_ALL(Stat
enum,:) - 
Spine.(fn_SA{i}).(fn_SA_st{j}).(position).(pathtypestr).(motion)(trial).(repl
ay_str).(HAM_str).(pathsequence_str)(1,pnc).(path_name_p2{2}).EZ_ALL(Statenum
,:)); 
            end 
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        end 
    end 
     
end 
 
end 
 

D.4.5 Energetics:  Work and Hysteresis 

Work and Hysteresis: rFSU_feEnergy.m 

%rFSU load relaxation code 
%RAH - Aug 2012 
  
%data parameters 
clear tp* le* Hysteresis* Work* Energy* zeros 
  
fn_fRA = fieldnames(feReplayALL);  %fieldnames of all files 
fn_PN = {'fePN','feNP'};  %fieldnames for pos_neg or neg_pos  
  
color_str1 = {'bo', 'ro', 'ko', 'go', 'mo'}; 
color_str2 = {'b+', 'r+', 'k+', 'g+', 'm+'}; 
  
rotnum = 5; %4-at 
loadnum = 10; %11-at 
  
for i = 1:size(fileName,1) 
 
%     fh1=figure('Position',[150 100 700 600],'Color','w'); 
    cycle_maxS = size(feReplayALL.(fn_fRA{i}).(fn_PN{1})(:,:,:),3); %number 
of cycles per test/specimen     
  
    for pnc = 1:cycle_maxS 
     
        for pn = 1:2 %neg_pos and pos_neg 
     
            %get mom & deg dfea - chooses pos_neg or neg_pos 
            tool_path_new = 
feReplayALL.(fn_fRA{i}).(fn_PN[459])(rotnum,:,pnc); 
            load_end_pts = -
feReplayALL.(fn_fRA{i}).(fn_PN[459])(loadnum,:,pnc); 
           
            %takes abs value of loads and positions 
            absLEP = abs(load_end_pts); 
            absTPN = abs(tool_path_new); 
  
            %stores numerical integral of direction-included (Dir) and abs 
value (Pos - allows for position in +/-) 
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            EnergyDir(pnc,pn) = trapz(load_end_pts);  %energy/work w/ neg. 
for neg. moments/motion  
            EnergyPos(pnc,pn) = trapz(absLEP);  %positive energy/work for pos 
& neg moments/motion                    
  
%           normalized energy - to give loading vs unloading info 
            if pnc > 2 
                %normalized work relative to third trial - selected b/c it is 
relatively stable 
                EnergyNorm(pnc,pn) = EnergyPos(pnc,pn)/EnergyPos(3,pn); 
            else 
                EnergyNorm(pnc,pn) = 1; 
            end 
              
        end 
  
                clear pn_* np* area* 
             
                %HYSTERESIS:  calculate area between curves (loop paths) 
                %scalar quantity where sign does not matter 
                 
                %hysteresis per cycle is difatRence in integral 
approximations 
                Hysteresis(pnc) = abs(EnergyPos(pnc,2) - EnergyPos(pnc,1)); 
%difatRence between energy/work associated w/ each curve 
                                 
                %normalized hysteresis 
                if pnc > 2 
                    %normalized hysteresis relative to third trial - selected 
b/c it is relatively stable 
                    HysteresisNorm(pnc) = Hysteresis(pnc)/Hysteresis(3); 
                else 
                    HysteresisNorm(pnc) = 1; 
                end 
                 
                %WORK: sum of energy in loading & unloading curves 
                %scalar quantity where sign does not matter 
                 
                %work per cycle is difatRence in integral approximations 
                Work(pnc) = EnergyPos(pnc,2) + EnergyPos(pnc,1); %difatRence 
between energy/work associated w/ each curve 
                                 
                %normalized work 
                if pnc > 2 
                    %normalized work relative to third trial - selected b/c 
it is relatively stable 
                    WorkNorm(pnc) = Work(pnc)/Work(3); 
                else 
                    WorkNorm(pnc) = 1; 
                end 
                 
                %-Save hysteresis & work data 'per cycle'-% 
                feReplayALL.(fn_fRA{i}).hysteresis(pnc) = Hysteresis(pnc); 
                feReplayALL.(fn_fRA{i}).work(pnc) = Work(pnc); 
                feReplayALL.(fn_fRA{i}).energy(pnc,:) = EnergyPos(pnc,:); 
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                feReplayALL.(fn_fRA{i}).hysteresisNormalized(pnc) = 
HysteresisNorm(pnc); 
                feReplayALL.(fn_fRA{i}).workNormalized(pnc) = WorkNorm(pnc); 
                feReplayALL.(fn_fRA{i}).energyNormalized(pnc,:) = 
EnergyNorm(pnc,:); 
  
        
        clear tool_path 
         
    end 
end 
  
%% Create 'EnergyALL' matrix: rows:=# of cycles. columns:=pos. energy(1,2), 
%%work(3)/sum of cols 1 & 2/, hysteresis(4) / difatRence of 1 & 2 
for i =  1:size(fileName,1) %- date/ID 
  
    i 
    clear cycle_maxS Work* Hysteresis* 
    cycle_maxS = size(feReplayALL.(fn_fRA{i}).(fn_PN{1})(:,:,:),3); %number 
of cycles per test/specimen     
    
    for pnc = 1:cycle_maxS 
  
        feReplayALL.(fn_fRA{i}).EnergyALL(pnc,1:2) = 
feReplayALL.(fn_fRA{i}).energy(pnc,:); 
        feReplayALL.(fn_fRA{i}).EnergyALL(pnc,3) = 
feReplayALL.(fn_fRA{i}).work(pnc); 
        feReplayALL.(fn_fRA{i}).EnergyALL(pnc,4) = 
feReplayALL.(fn_fRA{i}).hysteresis(pnc);               
  
        feReplayALL.(fn_fRA{i}).EnergyNormALL(pnc,1:2) = 
feReplayALL.(fn_fRA{i}).energyNormalized(pnc); 
        feReplayALL.(fn_fRA{i}).EnergyNormALL(pnc,3) = 
feReplayALL.(fn_fRA{i}).workNormalized(pnc); 
        feReplayALL.(fn_fRA{i}).EnergyNormALL(pnc,4) = 
feReplayALL.(fn_fRA{i}).hysteresisNormalized(pnc);               
  
    end 
         
    %% Perform analysis  
    %crefee matrix that's easier to work w/ than a structure 
    clear EnergyALL EnergyNormALL 
    EnergyALL = feReplayALL.(fn_fRA{i}).EnergyALL(:,:); 
    EnergyNormALL = feReplayALL.(fn_fRA{i}).EnergyNormALL(:,:); 
  
    %fit linear function to cycle values for work and hysteresis to quantify 
rate of change with cycles.   
    workCoef = polyfit(1:1:size(EnergyALL,1),EnergyALL(:,3)',1); %finds m, x 
(a1, a0) 
    hysteresisCoef = polyfit(1:1:size(EnergyALL,1),EnergyALL(:,4)',1); 
    dummyX = 1:0.1:size(EnergyALL,1); %create dummy domain with higher 
resolution 
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    fWork = polyval(workCoef,dummyX); %evaluate linear polynomical 
coefficients on domain 
    fHysteresis = polyval(hysteresisCoef,dummyX); 
  
    %Find cumulative amount of work - sum of work per cycle across all cycles 
    clear zeros WorkCumCtr HysteresisCumCtr 
    WorkCumCtr = zeros(1,cycle_maxS); 
    WorkCumCtr(1) = EnergyALL(1,3); 
    HysteresisCumCtr = zeros(1,cycle_maxS); 
    HysteresisCumCtr(1) = EnergyALL(1,4); 
  
    for cycCtr = 2:cycle_maxS 
        WorkCumCtr(cycCtr) = WorkCumCtr(cycCtr-1) + EnergyALL(cycCtr,3); 
        HysteresisCumCtr(cycCtr) = HysteresisCumCtr(cycCtr-1) + 
EnergyALL(cycCtr,4); 
    end 
  
    %WORK 
    WorkCum = sum(EnergyALL(:,3)); %sum of work column of all cycles 
    WorkMean = mean(EnergyALL(:,3)); %mean work per cycle 
    WorkStd = std(EnergyALL(:,3)); %std across cycles 
    WorkDiffExtreme = max(EnergyALL(:,3)) - min(EnergyALL(:,3)); %maximum 
difatRence between any pair of cycles 
    WorkDiffOrdin_1 = EnergyALL(1,3) - EnergyALL(end,3); %difatRence between 
first & last cycle 
    WorkDiffOrdin_3 = EnergyALL(3,3) - EnergyALL(end,3); %difatRence between 
3rd & last cycle 
  
    %normalized work (% changes) normalized to 3rd cycle 
    WorkNormMean = mean(EnergyNormALL(:,3)); %mean work per cycle normalized 
to 3rd cycle 
    WorkNormStd = std(EnergyNormALL(:,3)); %std across cycles normalized to 
3rd cycle 
    WorkNormDiffExtreme = max(EnergyNormALL(:,3)) - min(EnergyNormALL(:,3)); 
%maximum %-difatRence between any pair of cycles 
    WorkNormDiffOrdin = EnergyNormALL(3,3) - EnergyNormALL(end,3); % %-
difatRence between 3rd & last cycle 
  
    %Data Storage - WORK 
    feReplayALL.(fn_fRA{i}).Work.WorkCum(:,:) = WorkCum; 
    feReplayALL.(fn_fRA{i}).Work.WorkMean(:,:) = WorkMean; 
    feReplayALL.(fn_fRA{i}).Work.WorkStd(:,:) = WorkStd; 
    feReplayALL.(fn_fRA{i}).Work.WorkDiffExtreme(:,:) = WorkDiffExtreme; 
    feReplayALL.(fn_fRA{i}).Work.WorkDiffOrdin_1(:,:) = WorkDiffOrdin_1; 
    feReplayALL.(fn_fRA{i}).Work.WorkDiffOrdin_3(:,:) = WorkDiffOrdin_3; 
    feReplayALL.(fn_fRA{i}).Work.WorkNormMean(:,:) = WorkNormMean; 
    feReplayALL.(fn_fRA{i}).Work.WorkNormStd(:,:) = WorkNormStd; 
    feReplayALL.(fn_fRA{i}).Work.WorkNormDiffExtreme(:,:) = 
WorkNormDiffExtreme; 
    feReplayALL.(fn_fRA{i}).Work.WorkNormDiffOrdin(:,:) = WorkNormDiffOrdin; 
    
    %HYSTERESIS 
    HysteresisCum = sum(EnergyALL(:,4)); %sum of lost energy column of all 
cycles - unsure of interpretation?? 
    HysteresisMean = mean(EnergyALL(:,4)); %mean energy lost per cycle 
    HysteresisStd = std(EnergyALL(:,4)); %std loss across cycles 
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    HysteresisDiffExtreme = max(EnergyALL(:,4)) - min(EnergyALL(:,4)); 
%maximum difatRence between any pair of cycles 
    HysteresisDiffOrdin_1 = EnergyALL(1,4) - EnergyALL(end,4); %difatRence 
between first & last cycle 
    HysteresisDiffOrdin_3 = EnergyALL(3,4) - EnergyALL(end,4); %difatRence 
between 3rd & last cycle 
  
    %normalized hysteresis (% changes) normalized to 3rd cycle 
    HysteresisNormMean = mean(EnergyNormALL(:,4)); %mean work per cycle 
normalized to 3rd cycle 
    HysteresisNormStd = std(EnergyNormALL(:,4)); %std across cycles 
normalized to 3rd cycle 
    HysteresisNormDiffExtreme = max(EnergyNormALL(:,4)) - 
min(EnergyNormALL(:,4)); %maximum %-difatRence between any pair of cycles 
    HysteresisNormDiffOrdin = EnergyNormALL(3,4) - EnergyNormALL(end,4); % %-
difatRence between 3rd & last cycle 
  
    %Data Storage - Hysteresis 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisCum(:,:) = HysteresisCum; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisMean(:,:) = HysteresisMean; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisStd(:,:) = HysteresisStd; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisDiffExtreme(:,:) = 
HysteresisDiffExtreme; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisDiffOrdin_1(:,:) = 
HysteresisDiffOrdin_1; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisDiffOrdin_3(:,:) = 
HysteresisDiffOrdin_3; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisNormMean(:,:) = 
HysteresisNormMean; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisNormStd(:,:) = 
HysteresisNormStd; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisNormDiffExtreme(:,:) = 
HysteresisNormDiffExtreme; 
    feReplayALL.(fn_fRA{i}).Hysteresis.HysteresisNormDiffOrdin(:,:) = 
HysteresisNormDiffOrdin; 
  
%     % % %--plot as mean of pn, np w/ error bars reflecting range 
%     fh1=figure('Position',[150 100 700 600],'Color','w'); 
%     figure(fh1); 
%  
%     %hysteresis vs cycle 
%     plot(1:cycle_maxS,EnergyALL(:,4),'bo',dummyX,fHysteresis,'r-') 
%,'XLim',cycle_max) 
%     xlim([1 cycle_maxS]); 
%     ylabel('Hysteresis (Nm-deg)'); 
%     xlabel('Cycle') 
%     title(['Hysteresis per F/E Cycle: ',fn_fRA{i}]); 
%  
%     %normalized hysteresis vs cycle 
%     fh2=figure('Position',[150 100 700 600],'Color','w'); 
%     figure(fh2); 
%     plot(1:cycle_maxS,EnergyNormALL(:,4),'bx','MarkerSize',8) 
%     xlim([1 cycle_maxS]); 
%     ylabel('Hysteresis Normalized to 3rd Cycle (Nm-deg)'); 
%     xlabel('Cycle') 
%     title([fn_fRA{i},'Hysteresis Drop Over F/E Cycles: ',fn_fRA{i}]); 
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%  
%     %work vs cycle 
%     fh3=figure('Position',[150 100 700 600],'Color','w'); 
%     figure(fh3); 
%     plot(1:cycle_maxS,EnergyALL(:,3),'bo',dummyX,fWork,'r-') 
%     xlim([1 cycle_maxS]);  
%     ylabel('Work (Nm-deg)'); 
%     xlabel('Cycle') 
%     title(['Work per F/E Cycle: ',fn_fRA{i}]); 
%  
%     %normalized work vs cycle 
%     fh4=figure('Position',[150 100 700 600],'Color','w'); 
%     figure(fh4); 
%     plot(1:cycle_maxS,EnergyNormALL(:,3),'bx','MarkerSize',8) 
%     xlim([1 cycle_maxS]); 
%     ylabel('Work Normalized to 3rd Cycle (Nm-deg)'); 
%     xlabel('Cycle') 
%     title(['Work: Changes Over F/E Cycles: ',fn_fRA{i}]); 
%  
%     %cumulative work & energy lost (hysteresis) 
%     fh5=figure('Position',[150 100 700 600],'Color','w'); 
%     figure(fh5); 
%     plot(1:cycle_maxS,WorkCumCtr,'b.-',1:cycle_maxS,HysteresisCumCtr,'r.-') 
%     xlim([1 cycle_maxS]); 
%     ylabel('Work and Hysteresis: Summation (J)'); 
%     xlabel('Cycle') 
%     title(['Energy: Addition and Loss: ',fn_fRA{i}]); 
%     legend('Work Accumulation','Energy Loss','Location','NorthWest') 
%  
%     savestr1 = [fn_fRA{i} '_Hysteresis' ]; 
%     savestr2 = [fn_fRA{i} '_HysteresisNormalized' ]; 
%     savestr3 = [fn_fRA{i} '_Work']; 
%     savestr4 = [fn_fRA{i} '_WorkNormalized' ]; 
%     savestr5 = [fn_fRA{i} '_EnergyCumulative' ]; 
%     saveas(fh1,['Z:\Ortho Research 3\atRgusonLab\Students\Hartman, 
Robert\RabbitRobot\SA1 - Testing\EnergyPlots\' savestr1]); 
%     saveas(fh2,['Z:\Ortho Research 3\atRgusonLab\Students\Hartman, 
Robert\RabbitRobot\SA1 - Testing\EnergyPlots\' savestr2]); 
%     saveas(fh3,['Z:\Ortho Research 3\atRgusonLab\Students\Hartman, 
Robert\RabbitRobot\SA1 - Testing\EnergyPlots\' savestr3]); 
%     saveas(fh4,['Z:\Ortho Research 3\atRgusonLab\Students\Hartman, 
Robert\RabbitRobot\SA1 - Testing\EnergyPlots\' savestr4]); 
%     saveas(fh5,['Z:\Ortho Research 3\atRgusonLab\Students\Hartman, 
Robert\RabbitRobot\SA1 - Testing\EnergyPlots\' savestr5]); 
  
end 
  

 332 



APPENDIX E 

AGGRECAN FRAGMENT WESTERN BLOT PROTOCOL 

The protocol for protein extraction and Western blotting G1 and CHAD protein was developed for 

this dissertation project.  Protocols were modified from those used by Dr. Peter Rouhgley and 

communicated by Dr. Nam Vo.   

E.1 PROTEIN EXTRACTION & ISOLATION 

All tissues were flash-frozen in liquid nitrogen immediately after dissection and stored at -80 °C.  

Tissue samples were partially thawed, minced finely (0.5-1 mm3
 sections), and transferred to pre-

weighed tubes to enable weighting of tissue samples.  NP samples weighed ~20-30 mg, and FC 

samples (single sides, two pieces of FC) weighed ~3-6 mg.  Intact AF samples weighed >50 mg, 

so only portions (~50%) of AF were used for protein extraction.  Based on conservative estimates 

of proteoglycan (PG) constituting 1/50 of overall tissue mass in disc and cartilage samples 

(Roughley), a starting amount of PG was estimated.  A 20x volume of 4M guanidine hydrochloride 

(4M GHCl, 100 mM Na-acetate, pH 6.0, 1mM EDTA) with 0.5% protease inhibitor (Roche 

Diagnostics) was added to sample tubes.  Tubes were taped to a rocking platform or vibrator and 

perturbed at high speeds for 5-6 days at 4C to extract soluble proteins (including proteoglyancs) 

from the collagen network with minimal contamination or degradation.   
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After extraction, guanidine extract (Gex) was measured and pipetted in to a fresh tube.  A 

maximum volume of 200 μl Gex was added to a 2 ml tube where samples were mixed with 9x 

volume of cold 100% ethanol.  Samples were manually mixed and stored at -20 °C for a minimum 

of 30 minutes.  Samples were then centrifuged for at 4 °C for 10 minutes to pellet the soluble 

protein.  Samples were subsequently washed again with 2x volumes of ice cold 100% ethanol.  

Care was taken to remove all ethanol; this typically involved a second brief spin to remove all 

ethanol.  Pellets were then air-dryed in inverted tubes for 15-30 minutes (until a clear halo formed 

around the edges of the pellet indicating initiated but not complete evaporation).   

Pellets were then dissolved in endo-β-galactosidase (EB) (Sigma, G6920) solution buffer 

(50 mM sodium phosphate, ph 5.8) using volumes ≥ 60 ul (sufficient for dissolving) with final 

concentrations of PG >0.5 μg/μl.  Pellets were dissolved by pipetting, flicking, shaking, and time 

at 4 °C.  A volume of 60μl was treated with EB enzyme (0.1 mU per 10 μg of PG) and left to react 

overnight at 37 °C with very slow shaking.  Chondroitinase ABC (10 mU/ml) (C3367, Sigma) in 

10x buffer was added at 1/10 the overall volume, yielding enzyme concentrations of 1 mU per 10 

μg.  Samples were placed at 37 °C for a minimum of 4 hours and placed at -20 °C overnight.   
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Table 37.  Sample calculations for protein extraction process 

 

07.31.13 20
Sample ID Tissue Tube Mass (g) Tube + Disc (g) Disc Mass (mg) Aprx PG (ug) Vol GHCl (ul)

RH NP_L23 NP 0.9904 1.0114 21 420 420
rFSU NP_L45 NP 0.9857 1.0133 27.6 552 552

FC_L23 FC 0.991 0.9972 6.2 124 124
FC_L45 FC 0.9874 0.9938 6.4 128 128
AF_L23 AF 0.9896 1.0224 32.8 656 656
AF_L45 AF 0.9931 1.0435 50.4 1008 1008

2888
3465.6

10% loss (used)
Apprx PG Vol Gex Gex Used PG used Vol EtOH (ul) EB Buffer (ul)  Ebbuf C (ug/ul) EB Buf Used (ul)

378 355 200 212.9577465 1800 60 2.842960289 60
496.8 475 200 209.1789474 1800 60 2.802409802 60
111.6 102 102 111.6 918 60 1.64572642 60
115.2 100 100 115.2 900 60 1.692524683 60
590.4 515 200 229.2815534 1800 60 3.014890618 60
907.2 780 200 232.6153846 1800 60 3.049370765 60

0.1 mU per 10 ug PG 1 mU per 10 ug
mU EB enzy EB enzy (ul) Vol to treat (ul) Ebbuf Vol PG Amt (ug)  en   B  ChABC Buf (ul)ChABC enzy (ul) ChABC All
2.129577465 14.90704225 60 74.90704225 170.5776173 8.323004695 0.832300469 9.155305164
2.091789474 14.64252632 60 74.64252632 168.1445881 8.293614035 0.829361404 9.122975439

1.116 7.812 60 67.812 98.74358521 7.534666667 0.753466667 8.288133333
1.152 8.064 60 68.064 101.551481 7.562666667 0.756266667 8.318933333

2.292815534 16.04970874 60 76.04970874 180.8934371 8.449967638 0.844996764 9.294964401
2.326153846 16.28307692 60 76.28307692 182.9622459 8.475897436 0.847589744 9.323487179

77.75835423 60 48.63981714 4.863981714 53.50379885

15 45 47
Treated Vol (ul) PG Conc (ug/ul) Vol (ul) / well Blank vol Load buff vol

84.06234742 2.0291798 7.392149281 26.35785072 11.25
83.76550175 2.007325027 7.472631385 26.27736861 11.25
76.10013333 1.297548124 11.56026488 24.18973512 11.25
76.38293333 1.329504858 11.28239578 24.46760422 11.25
85.34467314 2.119563301 7.076929476 26.67307052 11.25
85.6065641 2.137245523 7.018379422 26.73162058 11.25
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E.2 WESTERN BLOT 

A constant weight-based amount of soluble protein was added per lane of 10-well 10 or 12% 

HEPES gels (0025202, Pierce/Thermo).  A target between 10-15 μg of PG were selected and added 

per well with a total well volume of 40 μl.  Electrophoresis was run at 40-60 mA for 90-120 min. 

at 4 °C, until bands of molecular weight 10-15 kDa were run off the gel.  Gels were then placed in 

10% MeOH transfer buffer for 20-30 min while PVDF membrane also soaked in transfer buffer.  

Proteins were transferred to membranes using stepwise increased amperages from 200 – 400 mA 

over 3 hours at 4 °C.  After transfer, samples were soaked in MeOH for 1 minute, rinsed in TBS-

T wash buffer, and blocked in 5% skim milk in TBS-T overnight at 4°C with gentle agitation.   

After warming to room temperature for ~30 minutes, membranes were washed once in 

TBS-T.  Primary antibody dissolved at 1:1000 in antibody solution (KP31812, Calbiochem) or 5% 

milk in TBS-T was added at 2 ml in 50 ml tubes or 10 ml in cassette boxes.  Membranes were 

cultured in primary antibody overnight at 4 °C with gentle agitation.  Afterward, membranes were 

brought to room temperature and washed 3-4x in TBS-T (5-7 min per wash).  Secondary goat-anti-

rabbit antibody (31460, Thermo Scientific, Waltham, MA) was added at 1:75,000 in secondary 

antibody solution (KP31855, Calbiochem) or 5% milk in TBS-T for 1 hour at room temperature.  

This step was followed by 5-6x washes in TBS-T.   

Membranes were then placed in a clean dish, and enhanced chemiluminesence (ECL) 

substrate (34095, SuperSignal West Femto Chemluminescent Substrate, Sigma) was added (600-

700 μl total volume) to the membrane surface.  Membranes were gently, manually rocked to cover 

the whole surface with ECL substrate for 1-3 min.  Using Bio-Rad’s ChemiDoc 5.1 image  
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detection system, black and white images were taken (0.5 s exposure) first, followed by increased 

exposure times using ‘Hi-resolution’ settings for protein detection.  Densitometry was quantified 

using BioRad Image 5.0 software by band-detection methods.   
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GLOSSARY OF TERMS 

Chapter 1.0  
AC – axial compression 
ACAN – aggrecan gene 
ADAMTS – a disintegrin and metalloproteinase with thrombospondin motif 
ADL – activity of daily living 
AF – annulus fibrosus 
AFC – annulus fibrosus cell 
AP – anterior-posterior 
AT – axial torsion 
CEP – cartilage endplate 
COX – cyclooxygenase 
DOF – degree-of-freedom 
ECM – extracellular matrix 
FC – facet cartilage 
F/E – flexion/extension 
FJ – facet joint 
FSU – functional spinal unit 
G1 – globular domain 1 of aggrecan 
GAG – glycosaminoglycan 
ISL –interspinous ligament 
LB – lateral bending 
LF – ligamentum flavum 
ML – medial-lateral  
MMP – matrix metalloproteinase 
NP – nucleus pulposus 
NPC – nucleus pulposus cell 
PCM – pericellular matrix 
ROM – range-of-motion 
SI – superior-inferior 
SSL – supraspinous ligament 
VB – vertebral body 
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Chapter 8.0  
ROMf – flexion range-of-motion (°) 
ROMe – extension range-of-motion (°) 
Mxf – flexion moment (Nm) 
Mxe – extension moment (Nm) 
Mxf Change– change in flexion moment across cycles (3rd cycle – final cycle) (Nm) 
Mxe Change– change in extension moment across cycles (3rd cycle – final cycle) (Nm) 
Mxf Relaxation–change in flexion moment across cycles normalized to 3rd cycle (%) 
Mxe Relaxation –change in extension moment across cycles normalized to 3rd cycle (%) 
NZk – neutral zone stiffness (Nm/°) 
NZk Change – change in neutral zone stiffness across cycles (3rd cycle – final cycle) (Nm/°) 
NZk Relaxation –change in neutral zone stiffness normalized to 3rd cycle (Nm/°) 
aROMf – axial range-of-motion at full flexion (°) 
aROMe – axial range-of-motion at full extension (°) 
aROMmidfe (aROM) – axial range-of-motion midway between flexion and extension (°) 
Myf – axial torsion moment in full flexion (Nm) 
Mye – axial torsion moment in full extension (Nm) 
Mymidfe – axial torsion moment midway between flexion and extension (Nm) 
Myf Change– change in torsional moment in full flexion across cycles (Nm) 
Mye Change– change in torsional moment in full extension across cycles (Nm) 
Mymidfe Change– change in torsion midway between flexion and extension across cycles (Nm) 
Myf Relaxation– change in torsion in flexion across cycles normalized to 3rd cycle (%) 
Mye Relaxation– change in torsion in extension across cycles normalized to 3rd cycle (%) 
Mymidfe Relaxation (My Relaxation)– change in torsion midway between flexion and extension 

across cycles normalized to 3rd cycle (%) 
Work Cumulative – summation of work across cycles (J) 
Work Mean – mean work across cycles (J) 
Work Change – change in work across cycles (3rd cycle work – final cycle work) (J) 
Work Relaxation – change in work across cycle normalized to 3rd cycle work (%) 
Hysteresis Cumulative – summation of hysteresis across cycles (J) 
Hysteresis Mean – mean hysteresis across cycles (J) 
Hysteresis Change –change in hysteresis across cycles (3rd cycle hysteresis – final cycle hysteresis) 

(J) 
Hysteresis Relaxation– change in hysteresis across cycle normalized to 3rd cycle hysteresis (%) 
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