
 

CALCINEURIN-MEDIATED SIGNALING IN ISCHEMIC PRECONDITIONING AND 
NEURONAL CELL DEATH 

 
 
 
 
 
 
 
 

by 

Niyati Hegde Shah 

B.S. Biological Sciences, Carnegie Mellon University, 2008 

 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of  

School of Medicine in partial fulfillment  

of the requirements for the degree of  

Doctor of Philosophy 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2014 

 



 ii 

UNIVERSITY OF PITTSBURGH 
 
 

SCHOOL OF MEDICINE 
 
 
 
 
 

 
 
 

This dissertation was presented 
 
 

by 
 

 
 

Niyati Hegde Shah 
 
 
 

It was defended on 
 
 

July 11, 2014 
 
 

and approved by 
 
 

Donald B. DeFranco, Ph.D., Committee Chair 
 

Kathryn M. Albers, Ph.D. 
 

Sarah E. Ross, Ph.D. 
 

Dandan Sun, M.D., Ph.D. 
 

Zachary P. Wills, Ph.D. 
 

Durga P. Mohapatra, Ph.D., Outside Examiner 
 

Dissertation Advisor: Elias Aizenman, Ph.D. 
 
 
 



 iii 

Copyright © by Niyati Hegde Shah 

2014 



 iv 

 

Stroke is a leading cause of morbidity and mortality in the United States and worldwide. 

However, few effective therapeutic interventions exist to treat this devastating disease. A 

detailed understanding of endogenous cell-adaptive mechanisms in ischemia, as well as signaling 

pathways leading to ischemic neurodegeneration, will critically aid in developing better 

treatments for stroke. In this dissertation, I investigated calcineurin-mediated signaling pathways 

in ischemic preconditioning and neuronal cell death. Calcineurin is a calcium/calmodulin-

dependent phosphatase that regulates important neuronal functions. An ischemic preconditioning 

stimulus triggers calcineurin-dependent changes in the localization, phosphorylation status, and 

voltage-gated activation of Kv2.1 channels, which are involved in promoting neuronal tolerance 

in the context of otherwise lethal excitotoxic injury. Recent studies suggest that the signaling 

pathways mediating Kv2.1 channel regulation are complex, and may not be calcineurin activity-

dependent in all cases. Additionally, how these processes contribute to neuroprotection is not 

well defined. In this thesis, I tested the hypothesis that Kv2.1 channel declustering may be 

sufficient to promote neuronal tolerance. I discovered that preconditioning leads to calcineurin-

dependent increases in cyclin E1 protein levels in cortical neurons, which induces Kv2.1 

dephosphorylation and dispersal of channel clusters without a concomitant shift in voltage-gated 

activation. Importantly, cyclin E1 over-expression reduces excitotoxic cell death in neurons. 

Although calcineurin is required for normal neuronal function, dysregulated calcineurin 
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activation may be neurotoxic. In the second part of my studies, I explored the isoform-specific 

effects of over-expressing Regulator of calcineurin 1 (RCAN1) in neurons. I found that RCAN1 

mediates isoform-dependent, distinct neuroprotective and neurotoxic cell signaling pathways 

through calcineurin-dependent and independent mechanisms. Thus, the studies in this 

dissertation provide insight into calcineurin-mediated neuronal cell survival and neurotoxic 

signaling pathways that may be important in the pathology of stroke and other neurodegenerative 

disorders. 

 

 



 vi 

TABLE OF CONTENTS 

PREFACE ................................................................................................................................. XIV 

1.0 GENERAL INTRODUCTION ................................................................................... 1 

1.1 KV CHANNELS AT THE CROSSROADS OF NEURONAL FUNCTION, 

ISCHEMIC TOLERANCE, AND NEURODEGENERATION ...................................... 1 

1.2 STRUCTURE AND FUNCTION OF KV CHANNELS ................................... 2 

1.3 NEUROTOXICITY OF KV CHANNELS ......................................................... 3 

1.3.1 K+ efflux is a requisite component of apoptotic cell death ........................ 3 

1.3.2 Kv currents enable neuronal apoptosis....................................................... 9 

1.3.2.1 Kv2.1-mediated neuronal apoptosis .................................................. 11 

1.3.2.2 Other Kv channels involved in neuronal damage and cell death ... 23 

1.4 NEUROPROTECTIVE AND NEUROREGULATORY ROLES FOR KV 

CHANNELS ........................................................................................................................ 25 

1.4.1 Kv channels in ischemic neuroprotection ................................................. 25 

1.4.2 Loss of Kv1 or Kv7 channel function mediates neuronal 

hyperexcitability disorders ........................................................................................ 34 

1.4.2.1 Kv1 channels and EA-1 ...................................................................... 35 

1.4.2.2 Kv1 channels and epilepsy ................................................................. 37 



 vii 

1.4.2.3 A success story: Kv7 channel activators in the therapeutic 

management of epilepsy .................................................................................... 40 

1.4.3 A role for Kv channels in neuro-cardiac regulation ................................ 43 

1.5 SUMMARY ........................................................................................................ 44 

1.6 THESIS GOALS ................................................................................................ 46 

2.0 CYCLIN E1 REGULATES KV2.1 CHANNEL PHOSPHORYLATION AND 

LOCALIZATION IN NEURONAL ISCHEMIA .................................................................... 48 

2.1 ABSTRACT........................................................................................................ 48 

2.2 INTRODUCTION ............................................................................................. 49 

2.3 MATERIALS AND METHODS ...................................................................... 50 

2.4 RESULTS ........................................................................................................... 53 

2.4.1 Cyclin E1 inhibits Cdk5-mediated phosphorylation and clustering of 

Kv2.1 channels ............................................................................................................ 53 

2.4.2 Neuronal ischemic preconditioning in vitro induces calcineurin-

dependent up-regulation of cyclin E1 expression .................................................... 57 

2.4.3 p35 over-expression blocks ischemic preconditioning-mediated Kv2.1 

channel declustering .................................................................................................. 61 

2.4.4 Cyclin E1 over-expression reduces excitotoxic cell death ....................... 64 

2.4.5 The Kv2.2 C-terminus declusters Kv2.1 channels and reduces 

excitotoxicity ............................................................................................................... 66 

2.5 DISCUSSION ..................................................................................................... 69 

3.0 ISOFORM-SPECIFIC DIVERGENT ROLES FOR RCAN1.1 AND RCAN1.4 IN 

REGULATING NEURONAL VIABILITY ............................................................................. 72 



 viii 

3.1 ABSTRACT........................................................................................................ 72 

3.2 INTRODUCTION ............................................................................................. 73 

3.3 MATERIALS AND METHODS ...................................................................... 75 

3.4 RESULTS ........................................................................................................... 77 

3.4.1 Neuronal ischemic preconditioning in vitro induces a change in the ratio 

of RCAN1.4 to RCAN1.1 protein.............................................................................. 77 

3.4.2 RCAN1.4 over-expression reduces neuronal ischemic injury ................ 78 

3.4.3 Over-expressing RCAN1.1 is neurotoxic via a calcineurin- and Zn2+-

dependent cell death mechanism .............................................................................. 82 

3.5 DISCUSSION ..................................................................................................... 86 

4.0 GENERAL DISCUSSION ........................................................................................ 89 

4.1 CALCINEURIN REGULATES PHYSIOLOGICAL FUNCTIONS IN 

NEURONS ........................................................................................................................... 90 

4.1.1 Neuronal structure ...................................................................................... 90 

4.1.2 Neuro-transmission and synaptic plasticity.............................................. 90 

4.1.3 Neuronal system development ................................................................... 92 

4.2 CALCINEURIN SIGNALING IN ISCHEMIC NEUROPROTECTION ... 93 

4.3 CALCINEURIN DYSREGULATION AND NEUROTOXICITY ............. 100 

4.3.1 Calcineurin dysregulation is a potential therapeutic target in stroke . 100 

4.3.2 Critical caveats to the therapeutic potential of calcineurin inhibition in 

stroke .................................................................................................................. 104 

4.3.3 Calcineurin dysregulation contributes to Alzheimer’s disease-associated 

neurotoxicity ............................................................................................................. 107 



 ix 

4.3.4 Additional mechanisms of RCAN1.1-mediated neuronal damage ....... 110 

4.4 CONCLUDING REMARKS .......................................................................... 111 

BIBLIOGRAPHY ..................................................................................................................... 112 



 x 

 LIST OF TABLES 

 

Table 1 – Kv channels implicated in neuronal pathology and neurological disease .................... 45 



 xi 

LIST OF FIGURES 

 

Figure 1 – Distinct mechanisms of Kv2.1 channel regulation following apoptotic stimuli or 

ischemic preconditioning .............................................................................................................. 19 

Figure 2 – Kv2.1 channel-mediated pathways of neuronal apoptosis and neuronal tolerance ..... 21 

Figure 3 – Cyclin E1 over-expression blocks Cdk5/p35-mediated Kv2.1 phosphorylation, and 

induces channel declustering ........................................................................................................ 55 

Figure 4 – Chemical ischemia induces calcineurin activity-dependent transient increase in 

neuronal cyclin E1 expression ...................................................................................................... 60 

Figure 5 – Over-expression of Cdk5 co-activator p35 blocks KCN-induced Kv2.1 channel 

declustering in cortical neurons .................................................................................................... 62 

Figure 6 – Cyclin E1 over-expression decreases NMDA receptor-mediated excitotoxicity ........ 65 

Figure 7 – The C-terminus of Kv2.2 declusters Kv2.1 channels and is neuroprotective ............. 67 

Figure 8 – RCAN1.4 is up-regulated relative to RCAN1.1 in preconditioned neurons, and 

reduces NMDA excitotoxicity and activated microglial toxicity ................................................. 80 

Figure 9 – RCAN1.1 toxicity is partially dependent on calcineurin and zinc signaling .............. 84 



 xii 

ABBREVIATIONS 

 

 

Aβ: amyloid-β 

AMPA-R: post-synaptic AMPA receptors 

ASK-1: apoptosis signal-regulating kinase 1 

Ca2+: calcium ion  

CaMKII: Ca2+-activated Ca2+/calmodulin-dependent protein kinase II 

cAMP: cyclic adenosine monophosphate 

Cdk5: cyclin-dependent kinase 5 

CGN: cerebellar granule neuron 

Cl-: chloride ion 

CREB: cAMP response element-binding protein 

CsA: cyclosporine A 

Cyt-PTPε: cytoplasmic protein tyrosine phosphatase ε 

DTDP: 2,2’-dithiodipyridine 

EA-1: episodic ataxia type 1 

GSK-3β: glycogen synthase kinase-3β 

IA: rapidly inactivating, A-type Kv channel-mediated K+ currents 

K+: potassium ion 

KCl: potassium chloride 

KCN: potassium cyanide 

Kv channels: voltage-gated potassium channels 



 xiii 

Kv2.2-CT: Kv2.2 C-terminus 

MLK: mixed-lineage kinase  

NFAT: nuclear factor of activated T cells 

NGF: nerve growth factor 

NMDA: N-methyl-D-aspartate 

NS5A: Hepatitis C virus nonstructural protein 5A 

OGD: oxygen-glucose deprivation 

PKA: protein kinase A  

RCAN1: Regulator of calcineurin 1 

SDF-1α: stromal cell-derived factor-1α 

SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor  

SNOC: S-nitrocysteine 

SUDEP: sudden unexplained death in epilepsy 

TEA: tetraethylammonium 

TPEN: tetrakis-(2-pyridylmethyl)ethylenediamine 

Zn2+: zinc ion 

4-AP: 4-aminopyridine  

6-OHDA: 6-hydroxydopamine 

 



 xiv 

PREFACE 

There are several important people that I would like to thank for making this dissertation 

possible. First and foremost, I want to thank my thesis advisor Elias Aizenman. Elias 

demonstrated that rare and perfect balance as a mentor, giving me the freedom to explore my 

ideas and learn from my mistakes, while guiding me when I really needed direction. Elias’ 

steadfast support and encouragement have been invaluable throughout my graduate training. I 

am continually inspired by his unique scientific insights, his enthusiastic and meticulous 

approach to both the day-to-day and the ‘big picture’ aspects of research, his unfailing work 

ethic, and his genuine and energetic commitment towards mentoring young scientists - qualities I 

hope to emulate as I move forward in my career. I am very proud and humbled to be graduating 

from the Aizenman lab.  

 

I have been incredibly fortunate to also have had the guidance of excellent mentors early 

in my research career, who I would like to thank: Ramanujan (Manu) Hegde, for two wonderful 

summers of research, and for inspiring me to pursue an M.D.-Ph.D. career; Adam Linstedt, for 

the opportunity to explore the fascinating world of protein trafficking during my time at CMU; 

Tina Lee, for her encouragement and confidence in my future as a scientist; and Debrup 

Sengupta, for spending many hours with me, teaching me how to actually do research.  



 xv 

I am very grateful to the members of my thesis committee, who have provided extremely 

helpful perspectives on my research: Don DeFranco, Kathy Albers, Sarah Ross, Dandan Sun, 

and Zak Wills. I especially want to thank Don, who has been very supportive of my academic 

endeavors, from accepting me into his lab for a rotation to serving as my thesis committee chair. 

Dandan, thank you for giving me the opportunity to put together my first publication! I also want 

to thank Zak for being a wonderful collaborator and an endless source of optimism and new 

ideas. I want to extend a special thanks to DP Mohapatra, for serving as my outside examiner - it 

has been great to get to know you this past year, especially at Winter Brain, and I have really 

appreciated your insights on my project. I am also grateful to Dr. Beverly Rothermel for all her 

help with my project. I would like to thank everyone in the Aizenman lab, especially Karen 

Hartnett, who has been so helpful and supportive during my years in the lab. I also want to 

acknowledge the undergraduates I worked with: Tali, Tony, Tom, and Katerina – I greatly 

enjoyed the teaching experience and I learned so much from working with each of you.  

 

I’d like to thank Richard Steinman, who was instrumental in helping me decide to come 

to Pitt, and to join the Aizenman lab. I am grateful to the Pitt MSTP and CNUP for providing me 

with a wonderful academic and social environment for my graduate school studies, and for the 

excellent clinical and research mentors that have helped me over the years. Thanks also to my 

CNUP and MSTP friends and colleagues who have made graduate school such an enjoyable 

experience. 

 

My deepest gratitude is for my family – my parents, my brother, Krishna, my sister, 

Nayna, and my husband, Vivan – for their endless love. My father was really my earliest 



 xvi 

inspiration for pursuing an academic career, before I even knew what I wanted to do. He instilled 

in me a love for literature that has changed my life in countless ways, in academic pursuits and 

otherwise. My mother is and always will be a pillar of support and strength in my toughest times. 

My brother and sister are my strongest advocates and build my confidence every day.  

 

Through the ups and downs of graduate school, I have been fortunate beyond words to 

have my husband, Vivan, by my side. His unwavering support, wonderful sense of humor, 

infallible insight on problems small and large, and his beautiful, optimistic outlook on life, 

inspire me every day. He is, quite simply, the best person in the world. 

 

Finally, I would like to dedicate this thesis to my Ajji (my grandmother), a brilliant and 

tough woman who I think of every day. Not having had the opportunity for formal education 

herself, she understood the pursuit of knowledge to be noble, and strived tirelessly for her family 

to achieve great things. 

 

 



 1 

1.0  GENERAL INTRODUCTION 

1.1 KV CHANNELS AT THE CROSSROADS OF NEURONAL FUNCTION, 

ISCHEMIC TOLERANCE, AND NEURODEGENERATION 

Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral 

nervous system, and are crucial mediators of neuronal excitability. Importantly, these channels 

also actively participate in cellular and molecular signaling pathways that regulate the life and 

death of neurons. Injury-mediated increased K+ efflux through Kv2.1 channels promotes 

neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such 

as Alzheimer’s disease and stroke. In contrast, some forms of neuronal activity can dramatically 

alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are 

normally accompanied by modifications in channel voltage-dependence, which may be 

neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to 

neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical 

disorders such as episodic ataxia and epilepsy. This introduction summarizes the neurotoxic, 

neuroprotective, and neuroregulatory roles of Kv channels, and highlights the consequences of 

Kv channel dysfunction on neuronal physiology. The studies described in this chapter thus 

underscore the importance of normal Kv channel function in neurons, and emphasize the 
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therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological 

diseases.  

1.2 STRUCTURE AND FUNCTION OF KV CHANNELS 

Voltage-gated potassium (Kv) channels are the largest gene family of potassium (K+) channels, 

and are key regulators of neuronal excitability (Yellen 2002, Guan et al. 2007a, Guan et al. 

2013). In humans, they are encoded by forty different genes and categorized into twelve sub-

families, Kv1 through Kv12 (Gutman et al. 2005, Johnston et al. 2010). Mammalian Kv channels 

are tetramers, composed of four α-subunits that surround an ion conduction pore. Each α-subunit 

contains six α-helical transmembrane domains (S1-S6), a membrane-reentering P loop between 

S5 and S6, and intracellular N- and C-termini. Four S5-P-S6 segments line the ion conduction 

pore, while the S1-S4 sequences are critical for channel voltage-sensing and gating. 

 

Kv channels mediate outward K+ currents that contribute to membrane repolarization and 

hyperpolarization, thus generally serving to limit neuronal excitability. Characterizing the precise 

molecular correlates of Kv-mediated K+ currents in different cell types has been difficult, owing 

to the assortment of channels generated from α-subunit heteromerization within Kv families. 

This diverse channel subunit composition produces a wide spectrum of Kv channels with 

differing biophysical and pharmacologic profiles. Furthermore, Kv α-subunits can bind to 

regulatory Kv β-subunits, as well as with other Kv channel-interacting proteins, which can 

strongly modify channel properties (Imbrici et al. 2006, Schulte et al. 2006, McKeown et al. 

2008). Moreover, post-translational modifications such as phosphorylation, dephosphorylation, 
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glycosylation, and SUMOylation all have been shown to alter Kv channel properties 

significantly (Murakoshi et al. 1997, Park et al. 2006, Benson et al. 2007, Watanabe et al. 2007). 

Despite these challenges, through electrophysiological studies utilizing pharmacologic agents 

and Kv channel subunit-specific genetic manipulation, the general functions of Kv channel sub-

families in neurons have been relatively well characterized. As such, low-voltage-activated 

channels such as Kv1 channels regulate the threshold potential for firing, and limit the number of 

action potentials generated in response to depolarization (Brew et al. 2003). In contrast, high-

voltage-activated, slowly inactivating Kv2 channels play an important role in influencing action 

potential duration during periods of high frequency firing (Du et al. 2000, Malin and Nerbonne 

2002, Misonou et al. 2005, Mohapatra et al. 2009). In addition to strongly shaping neuronal 

excitability, Kv channels also critically contribute to cell death and cell survival signaling 

pathways. In this introduction, the diverse neurotoxic, neuroprotective, and neuroregulatory roles 

of Kv channels will be discussed. Additionally, the implications of Kv channel dysfunction, 

particularly in the context of human neurological diseases, will also be addressed.  

1.3 NEUROTOXICITY OF KV CHANNELS 

1.3.1 K+ efflux is a requisite component of apoptotic cell death  

Apoptotic cell death contributes significantly to the neuronal loss observed in a number of 

neurological disorders, including Alzheimer’s disease and stroke (Linnik et al. 1993, Thompson 

1995, Choi 1996, Ferrer et al. 2003, Lobysheva et al. 2009). Therefore, understanding the 

mechanisms of apoptotic signaling pathways is of paramount importance in order to successfully 
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develop therapeutic strategies for preventing or reducing neuronal damage. Apoptosis was first 

described as “shrinkage necrosis,” due to the morphological features of shrunken cell size and 

fragmentation of nuclei, which distinguished apoptotic cells from the swollen appearance of 

necrotic cells (Kerr 1971). The key biochemical features of apoptosis have since been 

characterized, and include DNA fragmentation, mitochondrial damage, and caspase activation. 

Several critical components of apoptotic cascades occur only in the presence of a reduction in 

cell volume (termed apoptotic volume decrease), and decreased intracellular ionic strength, both 

of which are observed regardless of apoptotic stimulus and cell type (Kerr 1971, Beauvais et al. 

1995, Benson et al. 1996, Bortner and Cidlowski 1996, Bortner et al. 1997, McCarthy and Cotter 

1997, Bortner and Cidlowski 1998, Maeno et al. 2000, Yu and Choi 2000, Hernández-Enríquez 

et al. 2011). Because the net electrochemical gradient of the cell favors the exit of K+, K+ 

channel-mediated K+ efflux was an early contender for promoting the apoptotic volume decrease 

and thus facilitating apoptotic signaling cascades. This idea is supported by several key findings:  

 

(1) Physiological concentrations of K+ inhibit, while lowered K+ levels activate, apoptotic 

enzymes: In 1997, Cidlowski and colleagues identified a critical relationship between potassium 

concentrations and apoptotic enzyme activity. They incubated thymocyte nuclei with calcium 

(Ca2+) and magnesium to activate autodigestion, a process that recapitulates apoptotic DNA 

degradation in vitro. Potassium chloride (KCl) inhibited DNA fragmentation in a dose-dependent 

fashion, indicating blockade of pro-apoptotic nuclease activity. Importantly, normal 

physiological levels of intracellular K+ effected near-complete inhibition of nuclease activity 

(Hughes et al. 1997). Using cytoplasmic extracts from rats treated with dexamethasone to induce 

apoptosis, they also showed that caspase-3 activation was reduced with increasing concentrations 
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of KCl. In other in vitro systems of apoptosis, physiologic K+ concentrations have been shown to 

mitigate DNA fragmentation and chromatin condensation (Dallaporta et al. 1998), as well as 

apoptosome formation (Cain et al. 2001). In neurons exposed to serum deprivation, low 

intracellular K+ concentrations enhance the DNA binding activity of pro-apoptotic transcription 

factors and the mRNA expression of their target genes, while depressing the DNA binding 

activity of anti-apoptotic factors and mRNA expression of their target genes (Yang et al. 2006). 

This evidence strongly indicates that reduced intracellular K+ concentrations provide a 

permissive environment for apoptotic signaling cascades.  

 

(2) Apoptotic stimuli cause K+ loss: Reduced K+ concentrations are observed in cortical 

neurons following serum deprivation (Yu et al. 1997), and in other cell types following an 

assortment of apoptotic insults (Barbiero et al. 1995, Bortner et al. 1997, Hughes et al. 1997, 

McCarthy and Cotter 1997, Dallaporta et al. 1998). Important early flow cytometry studies in 

thymocytes demonstrated that K+ loss after exposure to an apoptotic stimulus is restricted to cells 

exhibiting apoptotic features such as cell volume reduction, DNA fragmentation, and loss of 

mitochondrial membrane potential (Hughes et al. 1997, Dallaporta et al. 1998).    

 

(3) K+ efflux promotes apoptosis: K+ efflux promotes apoptotic signaling and cell death in a 

range of cell types (Ojcius et al. 1991, Deckers et al. 1993, Perregaux and Gabel 1994, Walev et 

al. 1995, Yu et al. 1997, Nadeau et al. 2000, Abdalah et al. 2006). Ionophores that induce K+ 

efflux, including nigericin and valinomycin, and the Na+/K+ ATPase inhibitor ouabain, activate 

LPS-stimulated, caspase-1-mediated maturation of interleukin-1β in phagocytes (Perregaux and 

Gabel 1994, Walev et al. 1995). Cortical neurons exposed to valinomycin undergo cell death, 

displaying the typical morphological and biochemical features of apoptosis (Yu et al. 1997).  
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High extracellular K+ concentrations, by decreasing the K+ gradient and thus blocking K+ 

efflux, oppose apoptotic signaling and promote cell survival. This observation has been well 

characterized particularly in cerebellar granule neurons (CGNs) (Gallo et al. 1987, D'Mello et al. 

1993, Yan et al. 1994, Galli et al. 1995, de Luca et al. 1996, Schulz et al. 1996, Jiao et al. 2007, 

Hernández-Enríquez et al. 2011). Neurons grown in 5 mM KCl exhibit indications of apoptotic 

cell death, as compared to neurons grown in 25 mM KCl, which are protected from DNA 

fragmentation and are resistant to TGF-β-induced apoptosis (Galli et al. 1995, de Luca et al. 

1996, Jiao et al. 2007). Accordingly, switching mature CGNs from 25 mM KCl to 5 mM KCl 

induces vacuole formation, condensing of nuclei, cellular and neurite shrinkage, and apoptotic 

cell death (D'Mello et al. 1993). Cholesterol enhances apoptosis in CGNs cultured in low K+ 

medium through a cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP 

response element-binding protein (CREB) signaling pathway, but does not influence cell survival 

in CGNs incubated in high K+ medium (Zhou et al. 2012). Similar results have been 

demonstrated in: (i) ciliary and dorsal root ganglion neurons, which display increased survival 

and differentiation in high extracellular K+ media (Chalazonitis and Fischbach 1980, Collins et 

al. 1991); (ii) cortical neurons, which are protected by high extracellular K+ from apoptosis 

induced by oxidants, staurosporine, glutamate, ceramide, neurotoxic amyloid-β (Aβ) peptides, 

and serum deprivation (Koh et al. 1995, Yu et al. 1997, Yu et al. 1998, Yu et al. 1999a, 

Aizenman et al. 2000); (iii) septal cholinergic cells, which in high K+ media are resistant to Aβ-

induced cell death (Colom et al. 1998); (iv) thymocytes, where high K+ media limits pro-

apoptotic caspase activation and DNA fragmentation (Hughes et al. 1997); and (v) human 

monocytes and mouse macrophages, where high K+ growth media prevents interleukin-1β 

processing by caspase-1 (Perregaux and Gabel 1994, Walev et al. 1995). In agreement with these 
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findings, K+ channel blockers attenuate apoptotic signaling cascades and cell death in numerous 

neuronal (Furukawa et al. 1996, Yu et al. 1997, Yu et al. 1998, Yu et al. 1999a, Yu et al. 1999b, 

Wang et al. 2000, Liu et al. 2003, Mei et al. 2004, Chen et al. 2005b, Hu et al. 2006, Yu et al. 

2006, Shen et al. 2009, Chen et al. 2011) and non-neuronal systems (Beauvais et al. 1995, Wang 

et al. 1999b, Lu et al. 2003, Singleton et al. 2009).  

 

Some studies have suggested that elevated extracellular K+ mitigates apoptotic cell death 

by increasing Ca2+ entry through voltage-gated Ca2+ channels, rather than by eliminating pro-

apoptotic K+ efflux (Gallo et al. 1987, Koike et al. 1989, Franklin and Johnson Jr 1992, Johnson 

Jr et al. 1992, Enokido and Hatanaka 1993, Barbiero et al. 1995, Franklin et al. 1995, Galli et al. 

1995, Koh et al. 1995, Lampe et al. 1995). In rat embryonic sympathetic neurons, withdrawal of 

Ca2+ from the media or treatment with Ca2+ channel blockers precludes high extracellular K+-

induced rescue from nerve growth factor (NGF) deprivation in some cases (Koike et al. 1989, 

Franklin et al. 1995, Lampe et al. 1995), while thapsigargin-induced Ca2+ influx restricts NGF 

deprivation-induced apoptosis (Lampe et al. 1995). Similarly, Ca2+ channel antagonists impede 

high K+-mediated cell survival in CGNs (Gallo et al. 1987, Galli et al. 1995), and prevent rescue 

by increased extracellular K+ of high oxygen-stimulated apoptotic toxicity in hippocampal 

neurons, and of staurosporine-mediated cell death in cortical neurons (Enokido and Hatanaka 

1993, Koh et al. 1995). However, as noted by Yu and colleagues in a landmark paper (Yu et al. 

1997), these studies do not rule out the possibility that reducing K+ efflux inhibits apoptosis and 

promotes neuronal survival. In fact, increases in intracellular Ca2+ can promote neuronal 

apoptosis (Gwag et al. 1999, Song et al. 2013), and heightened Ca2+ levels are not always 

required for high extracellular K+-facilitated survival of NGF-deprived sympathetic neurons 
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(Murrell and Tolkovsky 1993). Importantly, in cortical neurons, Ca2+ channel blockers do not 

eliminate neuroprotection by high extracellular K+ or tetraethylammonium (TEA, a blocker of 

delayed rectifying Kv channels) in response to serum deprivation, N-methyl-D-aspartate 

(NMDA), Aβ peptide, or ceramide (Yu et al. 1997, Yu et al. 1998, Yu et al. 1999a, Yu et al. 

1999b). Additionally, TEA analogs that ablate staurosporine-induced K+ efflux, cell volume loss, 

caspase cleavage and activation, and neuronal apoptosis, also inhibit high threshold voltage-

activated Ca2+ channels, supporting the idea that neuroprotection via K+ channel inhibition does 

not occur by activation of Ca2+ channels (Wang et al. 2000). The specificity for K+ efflux, rather 

than inhibition of Ca2+ influx, in the promotion of apoptotic signaling cascades has also been 

demonstrated in monocytes (Walev et al. 1995), leukocytes (Wang et al. 1999b), Chinese 

hamster ovary cells (Abdalah et al. 2006), and corneal epithelial cells (Lu et al. 2003, Singleton 

et al. 2009).  

 

Chloride ion (Cl-) efflux may accompany pro-apoptotic K+ exit in order to maintain 

electroneutrality in the cell. In fact, Cl- channel activation and Cl- efflux are observed following 

an apoptotic stimulus in several cell types (Nilius et al. 1995, Szabò et al. 1998, Dupere-Minier 

et al. 2004, Shimizu et al. 2004, Okada et al. 2006). Furthermore, Cl- channel blockers attenuate 

some features of apoptotic signaling and cell death in neurons and other cell types, although 

these blockers are not invariably as effective as K+ channel inhibitors (Szabò et al. 1998, Rasola 

et al. 1999, Wei et al. 2004, Inoue et al. 2007). Cl- exit, while insufficient to facilitate the 

completion of apoptotic programs, may promote pro-apoptotic K+ efflux and thus contribute to 

cell death. Although beyond the scope of this discussion, Cl- efflux in apoptosis merits further 

investigation for possible therapeutic intervention.  
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Finally, while K+ efflux is a requisite event for many forms of apoptosis, it is not, in and 

of itself, completely sufficient to stimulate apoptotic cell death in all injurious contexts. In 

Chinese hamster ovary cells, which do not express endogenous Kv channels and are resistant to 

apoptosis induced by hypoxia or serum deprivation, treatment with the K+ ionophore 

valinomycin stimulates massive cell death characterized by mitochondrial damage and caspase 

activation (Abdalah et al. 2006). In contrast, lymphocytes cultured under hypotonic conditions 

undergo a 50% drop in K+ concentrations via a volume regulatory response, but this reduction 

alone is not sufficient to induce apoptosis (Bortner et al. 1997). Similarly, serum deprivation 

along with decreased extracellular K+ is required to stimulate apoptosis in CGNs, while in 

cortical neurons, caspase activity inhibition blocks oxidant-induced apoptotic cell death, despite 

the presence of prominent increased outward K+ currents (Gallo et al. 1987, D'Mello et al. 1993, 

Yan et al. 1994, Galli et al. 1995, Schulz et al. 1996, Gerhardt et al. 2001, Castel et al. 2006, Hu 

et al. 2006, Jiao et al. 2007).  

1.3.2 Kv currents enable neuronal apoptosis  

Delayed rectifier Kv channels are thought to be the principal conduits for the exit of K+ in 

neuronal apoptosis (Yu et al. 1997, Yu et al. 1998, Yu et al. 1999a, Yu et al. 1999b, Aizenman et 

al. 2000, Wang et al. 2000, Huang et al. 2001, McLaughlin et al. 2001, Pal et al. 2003, Wei et al. 

2003, Bossy-Wetzel et al. 2004, Aras and Aizenman 2005, Chen et al. 2005b, Redman et al. 

2006, Yu et al. 2006, Jiao et al. 2007, Redman et al. 2007, Knoch et al. 2008, Shen et al. 2009, 

Yao et al. 2009), although other K+ channels, including A-type K+ channels (Beauvais et al. 

1995, Walev et al. 1995, Wang et al. 1999b, Lu et al. 2003, Hu et al. 2005, Hu et al. 2006, 

Singleton et al. 2009, Chen et al. 2011), Ca2+-activated K+ channels (Furukawa et al. 1996, 
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Jalonen et al. 1997, McCarthy and Cotter 1997, Chen et al. 2013), KATP channels (Liu et al. 

2003), and TASK leak K+ channels (Lauritzen et al. 2003), may also play an important role in 

this context. Yu and coworkers have shown that cortical neurons deprived of serum, or exposed 

to staurosporine, neurotoxic Aβ peptide, or ceramide, manifest a TEA-sensitive increase in 

delayed rectifying Kv currents, without exhibiting an increase in other major K+ currents, 

including inwardly rectifying, A-type (with the exception of serum deprivation, which increases 

these currents slightly), M type, or BK currents (Yu et al. 1997, Yu et al. 1998, Yu et al. 1999b). 

TEA or TEA analogs render neurons resistant to the above-mentioned apoptotic insults, while 4-

aminopyridine (4-AP), a Kv1 channel inhibitor that opposes apoptosis in some neuronal and non-

neuronal systems (Beauvais et al. 1995, Walev et al. 1995, Wang et al. 1999b, Hu et al. 2006), 

does not attenuate the rise in K+ currents or confer neuroprotection against apoptotic stimuli in 

these studies (Yu et al. 1997, Yu et al. 1998, Yu et al. 1999b, Wei et al. 2004, Chen et al. 2005b). 

A study in septal cholinergic cells has similarly demonstrated Aβ-induced K+ current increase 

and apoptotic cell death, both of which are blocked by TEA. In a dopaminergic cell line that does 

not manifest Aβ-induced increased K+ currents, TEA is not protective, while septal cholinergic 

cells that exhibit minimal basal K+ currents are not susceptible to Aβ-mediated toxicity, 

consistent with the requirement for increased K+ currents in the completion of apoptotic 

signaling (Colom et al. 1998). In neurons, amplified apoptotic Kv channel currents that can be 

tempered by TEA, high extracellular K+, Kv siRNA-mediated knockdown, and/or a dominant 

negative form of the Kv channel, have also been shown in response to peroxynitrite (Bossy-

Wetzel et al. 2004), the apoptosis inducer thiol oxidant 2,2’-dithiodipyridine (DTDP) 

(McLaughlin et al. 2001, Pal et al. 2003, Aras and Aizenman 2005, Pal et al. 2006, Redman et al. 

2007, Redman et al. 2009, Dallas et al. 2011), the nitric oxide donor S-nitrocysteine (SNOC) 
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(Bossy-Wetzel et al. 2004), low K+/serum-free media (Hu et al. 2005, Jiao et al. 2007, Yao et al. 

2009), 6-hydroxydopamine (Redman et al. 2006), glutamate (Zhao et al. 2006), and increased 

intracellular cholesterol (Zhou et al. 2012). These studies will be discussed in further detail in the 

next section.  

 

K+ efflux and changes in K+ current behavior have also been observed following 

ischemic injury in vitro and in vivo (Hansen and Zeuthen 1981, Leblond and Krnjevic 1989, 

Jiang and Haddad 1991, Jiang and Haddad 1993, Jiang and Haddad 1994a, Jiang and Haddad 

1994b, Jiang et al. 1994, Gido et al. 1997, Chi and Xu 2001, Yushmanov et al. 2013). For 

instance, delayed rectifying K+ currents are increased in CA1 pyramidal neurons after transient 

forebrain ischemia (Chi and Xu 2000, Xuan Chi and Xu 2000). Moreover, two Kv channel 

antagonists, TEA and clofilium, are neuroprotective against cerebral ischemia in mice (Wei et al. 

2003). In another study, TEA administered to rats post-forebrain ischemia significantly rescues 

neuronal density, shrunken cells, and nuclei condensation, while treatment with 4-AP does not 

prevent the apoptotic phenotype (Huang et al. 2001).  

1.3.2.1 Kv2.1-mediated neuronal apoptosis 

 

Kv2.1, the predominant mediator of delayed rectifying K+ currents in neurons (Trimmer 1991, 

Murakoshi and Trimmer 1999, Malin and Nerbonne 2002), has been identified as the channel 

responsible for the pro-apoptotic K+ current increase in cortical, hippocampal, and cerebellar 

granule neurons. Importantly, the increase in K+ current amplitude occurs without changes in the 

voltage-gated activation or inactivation kinetics of the Kv2.1 channels (Yu et al. 1997, Pal et al. 
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2003, Aras and Aizenman 2005, Pal et al. 2006, Redman et al. 2006, Redman et al. 2007, Knoch 

et al. 2008, Yao et al. 2009, Dallas et al. 2011, Zhou et al. 2012).  

 

A Kv2.1-mediated neuronal apoptotic pathway stimulated by oxidant treatment has been 

well characterized (Figure 1a and Figure 2, right). Oxidants, such as DTDP, induce an 

intracellular release of zinc (Zn2+) from metal-binding proteins, which is required to activate two 

kinase signaling pathways that converge upon increased phosphorylation of Kv2.1 channels, 

enhanced plasma membrane delivery of Kv2.1 channels, and amplified Kv2.1 K+ currents, 

producing an intracellular environment that enables DNA fragmentation, caspase activation, and 

apoptosis (McLaughlin et al. 2001, Pal et al. 2003, Bossy-Wetzel et al. 2004, Aras and Aizenman 

2005, Pal et al. 2006, Redman et al. 2007, Redman et al. 2009, Sensi et al. 2011). In cortical 

neurons and Chinese hamster ovary cells, the increased Kv2.1-mediated K+ currents are observed 

approximately three hours following a brief exposure to the apoptogenic stimulus.  

 

Apoptotic enhancement of K+ currents via Kv2.1 channels occurs upstream of caspase 

activation and requires coordinate channel phosphorylation at two amino acid residues, C-

terminal Ser800 and N-terminal Tyr124, by p38 kinase and Src kinase, respectively (McLaughlin 

et al. 2001, Redman et al. 2009). The oxidant-stimulated Zn2+ release is a necessary early event 

for p38 kinase activation, via either apoptosis signal-regulating kinase 1 (ASK-1) (Aras and 

Aizenman 2005) or mixed-lineage kinase (MLK) (Amako et al. 2013), and for consequent, p38 

kinase-mediated Ser800 phosphorylation (Aras and Aizenman 2005, Redman et al. 2007, 

Redman et al. 2009). Inhibiting p38 kinase activity blocks oxidant-induced Ser800 

phosphorylation, increased Kv2.1 currents, caspase activation, and toxicity (McLaughlin et al. 
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2001). Zn2+ also permits the second, Src kinase-mediated phosphorylation step by inhibiting the 

activity of cytoplasmic protein tyrosine phosphatase ε (Cyt-PTPε), which is normally responsible 

for dephosphorylating Kv2.1 channels at the Src kinase-phosphorylated site Tyr124 (Sobko et al. 

1998, Tiran et al. 2003, Redman et al. 2009). In fact, over-expression of Cyt-PTPε blocks the 

increase in K+ currents and is neuroprotective, while Src kinase activity inhibition blocks the 

apoptotic K+ current surge (Redman et al. 2009). The coordinate, oxidant-induced 

phosphorylation of Kv2.1 channels at the Ser800 and Tyr124 residues permits Kv2.1 channels to 

interact with soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 

proteins via a proximal C-terminal region of the channel (Leung et al. 2003, Tiran et al. 2003, 

Pal et al. 2006). This SNARE-Kv2.1 channel interaction, which requires Ca2+-activated 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation, facilitates Kv2.1 channel 

delivery to the cell surface, enabling pro-apoptotic K+ currents through Kv2.1 channels (McCord 

and Aizenman 2013). Accordingly, oxidant-stimulated Kv2.1 trafficking to the plasma 

membrane is blocked by co-expression of botulinum toxin fragments, expression of a Kv2.1 

Ser800Ala mutant, or treatment with p38 kinase inhibitor (Pal et al. 2006, Redman et al. 2007). 

In summary, interfering with any one of multiple steps of this apoptotic pathway, including 

reactive oxygen species production, intracellular Zn2+ release, CAMKII activation, Src- and p38-

mediated Kv2.1 phosphorylation, or SNARE-dependent membrane insertion of new Kv2.1 

channels, precludes the pro-apoptotic K+ current rise and rescues neurons from oxidant-mediated 

toxicity. This injurious pathway has also been validated in neurons exposed to activated 

microglia, which generate peroxynitrite, a well-established Zn2+-liberating agent (Zhang et al. 

2004, Knoch et al. 2008).  
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Neuronal cell death facilitated by a range of other apoptotic stimuli share several features 

of DTDP-mediated neurotoxicity, particularly the Kv2.1-mediated current increase, providing a 

compelling argument for the convergence of apoptotic signaling pathways on a requisite, Kv2.1-

facilitated rise in K+ currents in neurons. In CGNs, increased K+ currents and apoptosis follow 

incubation in low K+, serum-free media, while silencing Kv2.1 gene expression via siRNA 

knockdown reduces K+ current amplitudes and increases cell viability (Jiao et al. 2007). 

Increased intracellular cholesterol potentiates the low K+/serum deprivation-stimulated Kv2.1 

current rise, DNA fragmentation, and consequent apoptosis in CGNs, all of which are blocked by 

TEA or MβCD, a cholesterol-binding agent (Zhou et al. 2012). The elevated K+ currents are 

attenuated by inhibition of endoplasmic reticulum/Golgi transport (Zhou et al. 2012), indicating a 

role for de novo Kv channel plasma membrane insertion in propagating pro-apoptotic K+ efflux, 

similar to that seen in DTDP-treated neurons (Pal et al. 2006). Treatment of cerebrocortical 

neurons with the nitric oxide donor SNOC facilitates apoptosis characterized by K+ efflux, cell 

shrinkage, and activation of TEA-sensitive K+ channels. In agreement with the cell death 

pathway observed in DTDP-treated cortical neurons, this process involves nitric oxide-mediated 

Zn2+ release, leading to further oxidative injury, mitochondrial function impairment, and p38 

kinase activation-mediated enhanced Kv currents, all of which are required for neurotoxicity 

(Bossy-Wetzel et al. 2004). p38 kinase activation and Kv2.1 K+ current-mediated apoptosis are 

also observed in hippocampal neurons following sustained treatment with the chemokine stromal 

cell-derived factor-1α (SDF-1α) or exposure to HIV-1 glycoprotein gp120 (Shepherd et al. 

2012), in 6-hydroxydopamine (6-OHDA)-treated dopaminergic neurons, and in dopamine 

transporter-expressing non-dopaminergic neurons after incubation with 6-OHDA (Redman et al. 

2006). In another report, serum deprivation in cortical neurons was shown to provoke Kv2.1 K+ 
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current surge-mediated apoptosis that is dependent on SNARE-facilitated channel membrane 

insertion: the apoptotic stimulus enhances interaction of Kv2.1 and SNARE protein SNAP-25, 

while blocking this interaction with botulinum toxin completely blocks the serum deprivation-

associated enhancement of K+ currents (Yao et al. 2009).  

 

Additionally, most features of this Kv2.1-facilitated apoptotic pathway have been 

recapitulated in heterologous expression systems, strongly implicating Kv2.1 channels in an 

apoptogen-stimulated, requisite K+ current surge that is sufficient for caspase activation and 

completion of apoptosis (McLaughlin et al. 2001, Pal et al. 2003, Aras and Aizenman 2005, Pal 

et al. 2006, Redman et al. 2007, Redman et al. 2009, Yuan et al. 2011, Al-Owais et al. 2012, 

Shepherd et al. 2012). Transfection of Kv2.1 in Chinese hamster ovary or HEK293 cells, for 

example, renders them newly susceptible to apoptosis induced by DTDP or oxygen-glucose 

deprivation, respectively (Pal et al. 2003, Yuan et al. 2011). Further, these studies have 

confirmed the involvement of pro-apoptotic p38- and Src-mediated Kv2.1 phosphorylation, as 

well as de novo Kv2.1 channel membrane insertion (Pal et al. 2006, Shepherd et al. 2012).  

 

Other signaling components that may participate in Kv2.1-mediated neuronal apoptosis 

have been identified, but have not yet been thoroughly investigated. For example, the 

cAMP/PKA/CREB pathway has been implicated in K+ channel-mediated apoptosis. In CGNs, 

cAMP-promoting agents reduce Kv channel-facilitated apoptosis induced by low extracellular 

K+ or ethanol treatment (D'Mello et al. 1993, Galli et al. 1995, Mei et al. 2004, Castel et al. 2006, 

Jiao et al. 2007). In contrast, cAMP/PKA/CREB activation promotes the Kv2.1-mediated rise in 

K+ currents and subsequent cell death in cholesterol-enhanced, low K+-mediated apoptosis (Zhou 
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et al. 2012). Kv2.1-facilitated K+ efflux and consequent neuronal apoptosis following exposure 

to SDF-1α or HIV-1 glycoprotein gp120 depend on calcineurin signaling, and are accompanied 

by a shift in Kv2.1 voltage-gated kinetics that is not normally observed in oxidant-mediated 

neurotoxicity (Shepherd et al. 2012).  

 

An alternate mechanism of Kv2.1-mediated neuronal apoptosis has been proposed. In this 

model, oxidant-mediated oligomerization of Kv2.1 channels leads to a rapid decrease, rather than 

an increase, of Kv2.1 K+ currents that is absent in cells expressing an oxidation-resistant Kv2.1 

cysteine mutant. Neurons expressing the mutant are protected from neurotoxic Aβ peptide-

stimulated apoptosis, and, interestingly, increased oxidation of Kv2.1 channels is observed in 

Alzheimer’s disease mouse model brain (Cotella et al. 2012). Oxidant-induced toxicity is 

postulated to proceed via defective Kv2.1 internalization and consequent Kv2.1 oligomer 

formation, leading to activation of the Src/JNK signaling pathway, although the data does not 

unequivocally place Kv2.1 oligomerization upstream of Src/JNK activation (Wu et al. 2013). 

Further, while decreased K+ currents are observed acutely following DTDP treatment in this 

study, the previously described, pro-apoptotic, Kv2.1 K+ current increase is detected 

approximately three hours after oxidant treatment (Aizenman et al. 2000, McLaughlin et al. 

2001, Pal et al. 2003, Aras and Aizenman 2005, Redman et al. 2007, Redman et al. 2009). The 

results from these studies, therefore, are not irreconcilable; in fact, there may be oxidation of 

Kv2.1 channels and reduction of currents immediately following oxidative insult (Cotella et al. 

2012, Wu et al. 2013), followed by SNARE-dependent trafficking of Kv2.1 channels to the 

plasma membrane, resulting in K+ current enhancement, caspase activation, and apoptotic cell 

death (Aizenman et al. 2000, McLaughlin et al. 2001, Pal et al. 2003, Bossy-Wetzel et al. 2004, 
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Pal et al. 2006, Redman et al. 2006, Zhao et al. 2006, Redman et al. 2007, Knoch et al. 2008, 

Redman et al. 2009, Yao et al. 2009, Zhou et al. 2012).  

 

Evidence collected thus far from numerous studies certainly points to the existence of 

disparate cell death signaling events in neurons, potentially depending on the nature of apoptotic 

stimulus and neuronal cell type. However, the fact that several early (e.g. Zn2+ release) and late 

pro-apoptotic processes are elicited by such a diverse range of toxic stimuli, converging on 

Kv2.1-mediated K+ current enhancement, strongly suggests that this step represents a key 

mechanism in neuronal apoptosis that could be therapeutically targeted. In this regard, the 

hepatitis C virus nonstructural protein 5A (NS5A) was recently discovered to attenuate pro-

apoptotic Kv2.1 K+ current enhancement in hepatocytes and cortical neurons (Mankouri et al. 

2009, Norris et al. 2012, Amako et al. 2013). This K+ current blockade has been suggested to 

occur through NS5A-mediated inhibition of MLK3, a MAP kinase kinase kinase which promotes 

the activation of p38 kinase (Amako et al. 2013). As described above, p38 kinase is required for 

Kv2.1 Ser800 phosphorylation, enabling the pro-apoptotic K+ current increase. However, in 

another study, NS5A was shown to block Src kinase-facilitated phosphorylation of the Tyr124 

residue, without affecting channel phosphorylation of Ser800 by p38 kinase. In fact, pseudo-

phosphorylation of Kv2.1 channels at Ser800, through expression of a Kv2.1 Ser800E mutant, 

does not eliminate NS5A-induced inhibition of K+ currents, whereas Kv2.1 channels expressing 

a phospho-mimetic substitution at Tyr124Phe are no longer susceptible to K+ current attenuation 

by NS5A, strongly indicating that NS5A exerts its inhibition of Kv2.1 currents and 

neuroprotective effects through preventing Src kinase-mediated Tyr124 phosphorylation rather 

than by blocking p38 kinase-induced Ser800 phosphorylation (Norris et al. 2012). This 
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mechanism warrants further exploration, as NS5A could serve as a model for new 

neuroprotective agents specifically targeting pro-apoptotic Kv2.1-mediated K+ currents. 
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Figure 1 – Distinct mechanisms of Kv2.1 channel regulation following apoptotic stimuli or ischemic 

preconditioning 
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Figure 1. A, Oxidant exposure in neurons liberates Zn2+ from intracellular metal binding 

proteins (as detected by an increase in fluorescence using a Zn2+-sensitive indicator such as 

FluoZin-3), which produces a proapoptotic enhancement of Kv2.1 K+ currents. Reprinted with 

permission and adapted from Sensi et al. 2011. B, In contrast, neuronal activity or sublethal 

ischemia stimulates Kv2.1 channel dephosphorylation-dependent declustering, which, along with 

hyperpolarizing voltage-gated activation, induces neuronal tolerance to ischemic or epileptic 

challenge. Shown are confocal micrographs of rat cortical neurons transfected with plasmid 

vectors encoding GFP-labeled Kv2.1 channels. Below are fluorescence surface intensity maps 

used to quantify the number of clusters present in neurons. 
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Figure 2 – Kv2.1-mediated pathways of neuronal apoptosis and neuronal tolerance 
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Figure 2. Right, An oxidant stimulus induces the release of Zn2+ from mitochondrial stores and 

metal-binding proteins, such as metallothionein (MT). Zn2+ activates ASK-1, leading to the 

phosphorylation and activation of p38 kinase. Zn2+ also inhibits PTPε and activates Src kinase. 

The combined action of both kinase systems results in increased phosphorylation of Kv2.1 

channel residues Ser800 (by p38 kinase activation) and Tyr124 (by Src kinase activation and 

PTPε inhibition). Oxidant injury additionally stimulates release of Ca2+ from endoplasmic 

reticulum (ER) stores, which activates CaMKII. Coordinate phosphorylation of Kv2.1 channels 

at Ser800 and Tyr124 and the interaction of CaMKII with syntaxin facilitate Kv2.1 channel-

syntaxin binding and subsequent channel delivery to the plasma membrane. Increased K+ 

currents through these newly inserted Kv2.1 channels permit the completion of the apoptotic 

signaling pathway by mediating cytoplasmic K+ loss. Left, Neuronal activity or sublethal 

ischemia induces Ca2+ influx through glutamate receptors or intracellular Ca2+ release from the 

ER and release of free Zn2+ from metal-binding proteins. Ca2+ increases calcineurin activity, 

leading to dephosphorylation and declustering of Kv2.1 channels. These changes are 

accompanied by a hyperpolarizing shift in the channel's voltage-gated activation profile. Zn2+ is 

required for channel declustering and the voltage-gated activation shift, but not for Kv2.1 

channel dephosphorylation. These changes in Kv2.1 channels reduce neuronal excitability in the 

context of an ischemic or epileptic insult, and render neurons resistant to excitotoxic or other 

forms of injury. 
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1.3.2.2 Other Kv channels involved in neuronal damage and cell death 

 

In addition to Kv2.1 channels, Kv1.5 channels, which also mediate delayed rectifying K+ 

currents, have been implicated in playing a role in neuronal cell death, particularly in the context 

of ischemia. Cell viability following ischemia is increased in rat cortical neurons lacking Kv1.5 

and the auxiliary β-subunit Kvβ2 (Stapels et al. 2010). Ischemic preconditioning in vivo, which 

limits infarct size following lethal ischemia, produces a decrease in Kv1.5 and Kvβ2 mRNA and 

protein expression in rat cortex, while preconditioning in rat cortical neurons reduces delayed 

rectifying K+ currents, suggesting that inhibition of Kv1.5 channel-mediated K+ currents is 

neuroprotective, and may be a viable therapeutic strategy for reducing neuronal damage and cell 

death in ischemic stroke (Stenzel-Poore et al. 2003).  

 

 Apoptotic stimuli that enhance delayed rectifier Kv currents have also been shown to 

increase rapidly inactivating, A-type Kv channel-mediated K+ currents (IA), implicating these 

currents in promoting apoptosis, although the molecular mechanisms underlying these processes 

have not yet been thoroughly characterized (Beauvais et al. 1995, Walev et al. 1995, Wang et al. 

1999b, Jiao et al. 2004, Hu et al. 2005, Ogita et al. 2005, Pannaccione et al. 2005, Hu et al. 2006, 

Pannaccione et al. 2007, Hu et al. 2010, Pieri et al. 2010). Activated macrophages and 

conditioned media from these inflammatory cells induce an increase in IA and in apoptotic cell 

death in hippocampal neurons (Hu et al. 2010). Similarly, the HIV-1 glycoprotein gp120 causes 

a rise in IA and protein kinase C-mediated apoptotic cell death (Chen et al. 2011). In both studies, 

the IA increase and toxicity are attenuated by 4-AP. 4-AP also reduces low K+/serum deprivation-

mediated IA current increase and augments viability in CGNs (Jiao et al. 2004, Hu et al. 2005, Hu 
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et al. 2006), and in UV-treated epithelial cells (Lu et al. 2003, Singleton et al. 2009). However, 

4-AP inhibits a relatively broad spectrum of Kv channels that mediate currents which include but 

are not limited to rapidly inactivating, A-type K+ currents (Gutman et al. 2005), underscoring the 

need for further exploration of the role of A-type Kv currents in apoptotic cell death pathways. 

 

A-type Kv currents may be particularly relevant in Alzheimer’s disease (AD) as 

neurotoxic Aβ peptides have been shown to provoke an increase in IA (Pannaccione et al. 2005, 

Pannaccione et al. 2007, Pieri et al. 2010). A specific inhibitor of Kv3.4 channels, which mediate 

IA, reduces Aβ peptide-stimulated IA enhancement and apoptotic nuclear morphology in 

hippocampal neurons (Pannaccione et al. 2007). Kv3.4 co-localizes with Aβ plaques, and its 

mRNA and protein expression is increased in AD mouse model brain, neurotoxic Aβ-treated PC-

12 cells and rat hippocampal neurons, and in post-mortem frontal cortex tissue from patients 

with early and late AD (Angulo et al. 2004, Pannaccione et al. 2005, Pannaccione et al. 2007). 

mRNA and protein expression of Kv4.2, another channel responsible for A-type K+ currents, is 

also enhanced in the cortex of rats whose spatial memory is compromised due to an 

intracerebroventricular injection of Aβ peptide (Pan et al. 2004). Of note, increased Kv1.4 and 

Kv2.1 channel expression is also observed in the hippocampus of these Aβ-injected animals, and 

in CGNs, the neuroprotective peptide substance P blocks Aβ-induced increases in both delayed 

rectifier and rapidly inactivating K+ currents, suggesting that both types of K+ currents may be 

involved in Aβ-mediated neurotoxicity (Yu et al. 1998, Yu et al. 2006, Pieri et al. 2010). In 

contrast to these observations, several groups have suggested a normal physiological role for Aβ 

in modulating Kv currents in a neuronal cell type-specific manner. One study has shown that 

aggregated, neurotoxic Aβ peptide has no effect on K+ currents in cortical neurons or CGNs. 
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Non-toxic, unaggregated Aβ peptide, however, increases Kv4.2 protein expression, and A-type 

and Ca2+-activated delayed rectifier K+ currents in CGNs, while inhibition of endogenous Aβ 

production decreases Kv4.2 expression and inhibits K+ currents (Ramsden et al. 2001, Plant et al. 

2006). 

 

Kv1.1 channels have also been implicated in IA-mediated neuronal apoptosis (Hu et al. 

2008, Koeberle et al. 2009, Koeberle and Schlichter 2010). siRNA knockdown of Kv1.1 blocks 

IA in CGNs, and prevents rises in IA and rescues cell viability in low K+/serum-deprived CGNs 

(Hu et al. 2008). This apoptotic pathway is promoted by protein kinase C signaling, which is 

sufficient to activate IA and apoptosis, effects that are mitigated by decreasing Kv1.1 expression. 

Further, Kv1-specific blockers reduce retinal ganglion cell degeneration after axotomy, while 

siRNA knockdown of Kv1.1 or Kv1.3 channels augments cell survival (Koeberle et al. 2009, 

Koeberle and Schlichter 2010). 

1.4 NEUROPROTECTIVE AND NEUROREGULATORY ROLES FOR KV 

CHANNELS 

1.4.1 Kv channels in ischemic neuroprotection 

As described above, Kv2.1 channels critically contribute to oxidant injury-induced neuronal 

apoptosis. As the major mediators of delayed rectifying, outward K+ currents in neurons, Kv2.1 

channels also play a key role in maintaining intrinsic neuronal excitability, primarily by 

promoting slow after-hyperpolarization and by regulating action potential repolarization during 



 26 

high frequency stimulation (Trimmer 1991, Baranauskas et al. 1999, Murakoshi and Trimmer 

1999, Bekkers 2000, Du et al. 2000, Kang et al. 2000, Korngreen and Sakmann 2000, Malin and 

Nerbonne 2002, Pal et al. 2003, Baranauskas 2007, Guan et al. 2007b, Guan et al. 2013). 

Excitatory stimuli, such as glutamate treatment, exposure to convulsants, or ischemia, trigger 

dramatic changes in Kv2.1 voltage-gated activation, in addition to affecting cellular localization 

of the channel (Figure 1b). Emerging evidence indicates that these modifications aid in reducing 

neuronal excitotoxicity in the context of an injurious stimulus (Figure 2, left). 

 

Trimmer and coworkers first showed that Kv2.1 channels are maintained in highly 

phosphorylated, somatodendritic clusters in neurons (Trimmer 1991, Trimmer 1993, Shi et al. 

1994, Murakoshi et al. 1997). An excitatory stimulus induces bulk Kv2.1 dephosphorylation in 

vivo, in rats subjected to kainate-induced seizures or CO2 exposure, for example, and in vitro, in 

cultured hippocampal or cortical neurons treated with glutamate, NMDA, or chemical ischemia. 

This dephosphorylation is thought to be critical in promoting two concomitant changes in the 

channels: dispersal of Kv2.1 channel clusters, and a hyperpolarizing shift in voltage-gated 

activation of the channel (Perozo and Bezanilla 1990, Murakoshi et al. 1997, Misonou et al. 

2004, Misonou et al. 2005, Misonou et al. 2006, Mohapatra and Trimmer 2006, Park et al. 2006, 

Misonou et al. 2008, Aras et al. 2009b, Mohapatra et al. 2009, Shepherd et al. 2012). Several 

lines of evidence support this concept. Phosphorylation of Kv channels promotes depolarizing 

shifts in voltage dependence, possibly due to an increase in the density of negative surface 

charges near the voltage sensor, explaining why dephosphorylation may induce a 

hyperpolarizing shift in the activation voltage (Perozo and Bezanilla 1990). Phospho-mimetic 

substitutions of seven, normally phosphorylated serine residues on the cytosolic Kv2.1 C-
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terminus reduce the hyperpolarizing effects of excitatory stimuli, while serine-to-alanine 

mutations, which render the residues non-phosphorylatable, result in hyperpolarized voltage-

gated activation. Similarly, blocking phosphorylation or inducing dephosphorylation of Kv2.1 

channels results in declustering as well as hyperpolarizing voltage-gated activation (Park et al. 

2006, Cerda and Trimmer 2011).  

 

What signaling mechanisms govern these neuronal activity-induced changes in Kv2.1 

channels? Several studies have demonstrated an early requirement for intracellular Zn2+ release 

and the Ca2+/calmodulin-dependent phosphatase calcineurin. Chelating Zn2+ blocks the 

hyperpolarizing shift and cluster dispersal, but not the channel dephosphorylation in cortical 

neurons (Aras et al. 2009b). Ca2+ influx via a Ca2+ ionophore is sufficient to induce Kv2.1 

dephosphorylation, declustering, and the hyperpolarizing activation shift, while inhibiting either 

Ca2+ influx or calcineurin activity blocks these changes in Kv2.1 in response to an excitatory 

stimulus in hippocampal and cortical neurons (Misonou et al. 2004, Misonou et al. 2005, 

Misonou et al. 2006, Mohapatra and Trimmer 2006, Park et al. 2006, Aras et al. 2009b). One C-

terminal serine residue in particular, Ser603, is highly sensitive to excitatory stimuli-induced, 

calcineurin-mediated dephosphorylation (Misonou et al. 2006). Recently, cyclin-dependent 

kinase 5 (Cdk5) was shown to phosphorylate this residue. Pharmacologic inhibition of Cdk5 

kinase activity blocks Kv2.1 Ser603 phosphorylation and stimulates dispersal of channel clusters 

(Cerda and Trimmer 2011). Further, neuronal activity blockade promotes precipitous increases in 

Ser603 phosphorylation, whereas activity-inducing stimuli trigger its dephosphorylation. As the 

phosphorylation status of Ser603 critically regulates voltage-dependent gating of the channel 

(Park et al. 2006), this residue may serve as a bidirectional sensor of neuronal activity, mediating 
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changes in Kv2.1 channel gating kinetics, and thus regulating neuronal excitability in response to 

excitatory or inhibitory stimuli.  

 

As described above, calcineurin signaling is thought to regulate Kv2.1 channel 

localization and function in ischemic preconditioning. Calcineurin also plays an important role in 

normal neuronal function. However, calcineurin over-activation may promote neuronal cell death 

in stroke and in other neurodegenerative disorders (Wang et al. 1999, Terada et al. 2003, Shioda 

et al. 2006). Therefore, it is important to understand both physiological and pathological 

regulation of calcineurin activity. In Chapter 3, I investigated mechanisms of neuroprotection 

and neuronal cell death mediated by the two brain isoforms of RCAN1, an endogenous regulator 

of calcineurin (Fuentes et al. 1995). 

 

Although RCAN1 was originally identified as an endogenous inhibitor of calcineurin, 

RCAN1 may in fact regulate calcineurin through inhibitory or facilitative mechanisms depending 

on cell type, cytoplasmic environment, protein levels and phosphorylation status of RCAN1, and, 

particularly relevant to this thesis, the RCAN1 isoform under study. In vitro studies have clearly 

demonstrated that RCAN1 binds to and inhibits calcineurin, and over-expression of RCAN1 in 

mammalian cell lines impedes calcineurin/nuclear factor of activated T cells (NFAT) signaling 

(Görlach et al. 2000, Kingsbury and Cunningham 2000, Rothermel et al. 2000, Martínez-

Martínez et al. 2009). However, differing findings indicate that RCAN1 may facilitate 

calcineurin phosphatase activity in certain circumstances. Loss of RCAN1 expression in yeast 

and mouse fibroblasts, for example, diminishes calcineurin signaling (Kingsbury and 

Cunningham 2000, Sanna et al. 2006). Shin et al provided evidence that at low levels, RCAN1 
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may function as a calcineurin inhibitor, but at high levels of expression it acts as a facilitator of 

calcineurin signaling (Shin et al. 2011). Additionally, phosphorylation of RCAN1 may be 

required for induction of calcineurin activity. However, whether this facilitation occurs through 

direct activation of calcineurin, or through release of calcineurin inhibition by binding to other 

proteins or degradation of phosphorylated RCAN1, is unresolved (Vega et al. 2002, Hilioti et al. 

2004, Abbasi et al. 2006, Kishi et al. 2007, Liu et al. 2009). 

 

Alternate promoter usage and splicing of RCAN1 mRNA produce two distinct brain 

isoforms, RCAN1.1 and RCAN1.4. The proteins differ only in the N-terminus: RCAN1.1 

contains the protein sequence encoded by exons 1, 5, 6, 7, while RCAN1.4 is encoded by exons 

4, 5, 6, and 7 (Fuentes et al. 1997). Protein expression levels of RCAN1.1 and RCAN1.4 have 

been shown to be regulated differently based on distinct response elements in the sequences 

upstream of exons 1 and 4 respectively. In neurons and non-neuronal cells, RCAN1.1 protein 

expression is increased in response to glucocorticoid exposure (Hirakawa et al. 2009, Sun et al. 

2011), while RCAN1.4 levels are up-regulated by Ca2+/calcineurin signaling (Yang et al. 2000, 

Mitchell et al. 2007).  

 

RCAN1.1 and RCAN1.4 share a high degree of similarity in their protein sequences. In 

fact, most of the calcineurin-binding domains are contained in the sequence encoded by exons 5, 

6, and 7 (Vega et al. 2002, Mehta et al. 2009), and are therefore identical between RCAN1.1 and 

RCAN1.4. Despite these similarities, the two isoforms have been reported to activate distinct 

cell-signaling mechanisms, including those relevant to cell survival and cell death. For example, 

whereas RCAN1.4 may be cytotoxic under certain conditions, this isoform is up-regulated in 
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astrocytes and may decrease infarct volume following ischemic injury in mice through a 

calcineurin inhibition-dependent mechanism (Sobrado et al. 2012). RCAN1.4 also may reduce 

Zn2+ neurotoxicity (Lee et al. 2007). Chronically elevated RCAN1.1 levels are implicated in 

promoting Alzheimer’s disease and Down syndrome-related neurodegeneration (Ermak et al. 

2001, Sun et al. 2011), but a contrasting study reported that increased RCAN1.1 protein levels 

may reduce neuronal ischemic damage (Brait et al. 2012).  

 

Additionally, RCAN1 may promote cell-signaling pathways independently of calcineurin 

regulation (Strippoli et al. 2000, Chang and Min 2005, Keating et al. 2008, Martin et al. 2012). 

Although these mechanisms have not been elucidated in detail, a few studies suggest that they 

may be relevant in RCAN1 regulation of neuronal function and cell viability (Keating et al. 

2008, Brait et al. 2012, Martin et al. 2012). Finally, our understanding of RCAN1-regulated cell 

signaling pathways is further complicated by unclear or incorrect isoform identification in 

several previously published reports. Thus, many unanswered questions remain as to the 

isoform-specific functions of RCAN1 in regulating neuronal viability. We have begun to address 

these questions in Chapter 3 by investigating the effects of RCAN1.1 and RCAN1.4 over-

expression on cell viability and toxicity in primary cortical neurons.  

 

In addition to calcineurin signaling, ischemia-induced changes in Kv2.1 channel 

properties may be dependent on specific neuronal-glial interactions. In the rat cerebral cortex, 

Kv2.1 channel clusters are located in the extra-synaptic zone, adjacent to astrocytic processes 

that contain a high concentration of glutamate transporters (Du et al. 1998, Misonou et al. 2008). 

During ischemia, excessive glutamate accumulation in the extracellular space due to 
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compromised glutamate uptake in damaged astrocytes may be responsible for promoting Kv2.1 

channel dephosphorylation, cluster dispersal, and hyperpolarizing shifts in voltage-gated 

activation following NMDA receptor activation (Misonou et al. 2008, Mulholland et al. 2008, 

Mohapatra et al. 2009, Mulholland et al. 2009). Indeed, NMDA exposure or selective inhibition 

of astrocytic glutamate uptake in cortical or hippocampal slices is sufficient to promote neuronal 

Kv2.1 dephosphorylation. Accordingly, NMDA receptor antagonists block the 

dephosphorylation and hyperpolarizing gating shift activated by exogenous glutamate treatment 

or inhibition of astrocytic glutamate uptake (Misonou et al. 2008, Mulholland et al. 2008, 

Mohapatra et al. 2009, Mulholland et al. 2009).  

 

The hyperpolarizing shift in Kv2.1 channel voltage-gated activation is thought to reduce 

excitability and, consequently, excitotoxicity in neurons facing an ischemic or epileptic 

challenge. Sub-lethal chemical ischemia, which renders rat cortical neurons resistant to 

subsequent NMDA receptor-mediated excitotoxicity (McLaughlin et al. 2003, Aras et al. 2009a), 

induces Kv2.1 channel dephosphorylation and declustering, and produces a hyperpolarized shift 

in voltage-gated activation, implicating these channel modifications in promoting 

neuroprotection (Aras et al. 2009b). In hippocampal neurons, ischemia or glutamate treatment 

reduces spontaneous Ca2+ transients, and spontaneous and current-evoked firing. Combining 

Kv2.1 channel block with either of these treatments promotes an increase in Ca2+ overload and in 

firing frequency, suggesting the involvement of Kv2.1 channel-mediated K+ currents in reducing 

neuronal hyperexcitability within the context of ischemia (Du et al. 2000, Misonou et al. 2005, 

Mohapatra et al. 2009).  
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As described above, the changes in Kv2.1 localization, phosphorylation status, and 

voltage gating have been observed in response to a range of excitatory stimuli in vitro and in 

vivo. Further, the dephosphorylation and hyperpolarization of voltage-gated activation have been 

linked to reduction of intrinsic excitability and neuronal tolerance to otherwise-lethal injury. 

However, little is known about the mechanism and significance of Kv2.1 channel clustering, and 

the specific contribution of Kv2.1 declustering towards mediating neuronal hyperactivity. Four 

C-terminal residues, Ser583, Ser586, Phe587, and Ser589, are critical for Kv2.1 channel 

clustering. A C-terminal portion of Kv2.1 channels possessing all four of these residues confers 

Kv2.1-like clustered localization on other Kv channels subtypes, such as Kv2.2 and Kv1.5 

(Scannevin et al. 1996, Lim et al. 2000, Mohapatra and Trimmer 2006). Additionally, a 

cytoplasmic N-terminal/C-terminal interaction is required for proper channel surface expression 

and phosphorylation-driven modulation of activation kinetics (Mohapatra et al. 2008). As 

mentioned above, it has been postulated that channels in clusters located at extra-synaptic 

locations and adjacent to astrocytic processes may be important in sensing ischemia-induced 

glial dysfunction through glutamate signaling, while the channel declustering following 

calcineurin activity-dependent dephosphorylation would remove the Kv2.1 channels from the 

site of Ca2+ release, initiating recovery and precluding a potentially detrimental, prolonged 

response. This cluster dispersal may occur through excess glutamatergic stimulation of 

extrasynaptic rather than synaptic NMDA receptors, prompting relocation of Kv2.1 channels to 

synaptic zones (Misonou et al. 2008, Mulholland et al. 2008, Mulholland et al. 2009). However, 

the cellular and molecular mechanisms involved in these processes require further exploration. 
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Tamkun and colleagues have proposed a somewhat different role for Kv2.1 channel 

clusters. They have reported that clustered Kv2.1 channels are non-conducting, but retain gating 

currents that display a hyperpolarized activation profile when compared to that of Kv2.1 ionic 

currents (O'Connell et al. 2010). Because the channels would detect membrane depolarization at 

a lower threshold, these studies suggest that Kv2.1 channels clusters may serve as voltage 

sensors of neuronal activity that convey changes in membrane potential to cytosolic signaling 

pathways. Supporting this hypothesis is the demonstration that Kv2.1 channel clusters are 

insertion platforms for trafficking of Kv2.1 and other channels to the plasma membrane, 

indicating that clustered Kv2.1 channels could be sites of depolarization-driven vesicle 

trafficking and neurotransmitter release (O'Connell and Tamkun 2005, O'Connell et al. 2006, 

Deutsch et al. 2012). In fact, Lotan and co-workers have shown that in neuroendocrine cells, 

Kv2.1 channels play an important role in depolarization-induced exocytosis that is independent 

of their ion conducting properties (Singer-Lahat et al. 2008, Feinshreiber et al. 2009). However, 

these investigations have been conducted in recombinant cell expression systems and future 

studies examining these properties in neurons are necessary. Importantly, it was demonstrated 

recently that the majority of Kv2.1 channels in hippocampal neurons are non-conducting, lending 

further credence to the theory that Kv2.1 channel clusters may regulate key neuronal functions 

unrelated to their ion conducting properties (Fox et al. 2013).  

 

Other Kv channels may be involved in reducing neuronal excitability and cell death in the 

context of ischemic injury. Following ischemia, Kv1-mediated delayed rectifying K+ currents 

increase in large aspiny neurons, which are highly resistant to anoxic cell death (Deng et al. 

2005). Ischemic injury shortens spike duration in these neurons, which could limit Ca2+ influx 
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and thus mitigate excitotoxicity. Importantly, blocking Kv1 channel function restores action 

potentials to normal duration in anoxia-treated cells, suggesting a role for Kv1-facilitated K+ 

currents in regulating neuronal excitability in ischemia. Further, increased Kv1.2 subunit 

expression is observed in rat brain following transient focal ischemia (Chung et al. 2001). An 

ischemic injury-promoted rise in A-type K+ currents may also be responsible for decreasing 

excitability and thus limiting excitotoxic cell death in large aspiny neurons (Deng et al. 2011). 

Medium spiny neurons, which are more vulnerable to ischemic neuronal damage, do not 

manifest an increase in IA following ischemic injury. Importantly, over-expression of IA-

mediating Kv1.4 or Kv4.2 channels in medium spiny neurons reduces oxygen-glucose 

deprivation-induced toxicity, while neurons lacking Kv1.4 or Kv4.2 channel expression are more 

sensitive to ischemic cell death (Deng et al. 2011). Increased IA is also observed in CA1 

hippocampal neurons after transient forebrain ischemia (Chi and Xu 2000). 

1.4.2 Loss of Kv1 or Kv7 channel function mediates neuronal hyperexcitability disorders  

Kv1 and Kv7 encode K+ channels that are also important contributors to neuronal excitability, 

with functions including maintenance of resting membrane potential, action potential 

repolarization and after-hyperpolarization, and regulation of neurotransmitter release (Southan 

and Robertson 1998, Geiger and Jonas 2000, Jentsch 2000, Bekkers and Delaney 2001, Lambe 

and Aghajanian 2001, Brew et al. 2003, Dodson et al. 2003, Dodson and Forsythe 2004, Peters et 

al. 2004, Gu et al. 2005, Vervaeke et al. 2006, Guan et al. 2007a, Kole et al. 2007, Shu et al. 

2007, Goldberg et al. 2008, Tzingounis and Nicoll 2008, Brown and Passmore 2009, Heeroma et 

al. 2009, Hsiao et al. 2009, Tzingounis et al. 2010, Foust et al. 2011, Higgs and Spain 2011). 
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Accordingly, loss of proper function of these channels is generally associated with 

hyperexcitability phenotypes such as episodic ataxia type 1 (EA-1) and epilepsy. 

1.4.2.1 Kv1 channels and EA-1 

 

EA-1 is a rare, autosomal dominant disorder characterized by generalized ataxia attacks and 

spontaneous muscle quivering (Gancher and Nutt 1986). In 1994, Browne and colleagues 

discovered four mutations in Kv1.1 in each of four families that had multiple members affected 

by EA-1 (Browne et al. 1994). Since then, more than a dozen Kv1.1 mutations have been 

identified in EA-1 patients with variable symptomatic presentations (Browne et al. 1994, Browne 

et al. 1995, Çomu et al. 1996, D'Adamo et al. 1998, Scheffer et al. 1998, Zerr et al. 1998b, Zerr 

et al. 1998a, Spauschus et al. 1999, Zuberi et al. 1999, Herson et al. 2003, Klein et al. 2004, Lee 

et al. 2004, Poujois et al. 2006, Rajakulendran et al. 2007, Shook et al. 2008, Tomlinson et al. 

2010, Zhu et al. 2012). Most of these are point mutations in highly conserved channel residues 

that generate Kv1.1 loss-of-function phenotypes of varying degrees. For several EA-1 Kv1.1 

mutations, the extent of disease in patients correlates to the magnitude of altered channel 

properties in Xenopus oocyte expression experiments, strongly implicating Kv1.1 channel 

dysfunction in the pathogenesis of EA-1 (Spauschus et al. 1999, Zuberi et al. 1999, Eunson et al. 

2000, Rea et al. 2002).  

 

When expressed in oocytes or mammalian cells, the majority of EA-1 Kv1.1 channel 

mutants exhibit undetectable or reduced K+ currents, compared to expression of wild-type Kv1.1 

channels (D'Adamo et al. 1998, Scheffer et al. 1998, Zerr et al. 1998b, Zerr et al. 1998a, 

Spauschus et al. 1999, Zuberi et al. 1999, Zhu et al. 2012). Dysfunctional post-translational 
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modifications and improper plasma membrane trafficking may mediate the reduced currents 

(Bretschneider et al. 1999, Eunson et al. 2000, Manganas et al. 2001, Rea et al. 2002, Zhu et al. 

2012). Arg417stop Kv1.1 channels, for example, lack a C terminal targeting determinant, and 

undergo inefficient phosphorylation and N-glycosylation, forming large intracellular 

membranous aggregates in COS cells and mammalian neurons (Manganas et al. 2001).  

 

Other modifications that are observed in several EA-1 Kv1.1 mutant channels expressed 

in oocytes, such as slowed activation kinetics and a depolarizing shift in voltage-gated activation, 

implicate gating defects as the source of Kv1.1 dysfunction (Adelman et al. 1995, D'Adamo et al. 

1998, Zerr et al. 1998b, Zerr et al. 1998a, Spauschus et al. 1999, Eunson et al. 2000, Maylie et al. 

2002, Imbrici et al. 2003, Imbrici et al. 2006, Peters et al. 2011). Given the importance of Kv1 

channels in limiting neuronal excitability, these alterations in Kv1.1 channel kinetics would be 

expected to increase neuronal activity, providing a possible explanation for the hyperexcitable 

EA-1 phenotype. Indeed, expressing Kv1.1 Arg417stop or Thr226Arg mutant channels in 

hippocampal neurons elicits a lower current threshold for action potential firing, and increased 

neurotransmitter release compared to expression of wild-type Kv1.1 channels (Heeroma et al. 

2009). Another EA-1 Kv1.1 mutation, Val408Ala, confers a range of channel gating defects in 

heterologous expression systems (Browne et al. 1994, Adelman et al. 1995, D'Adamo et al. 1998, 

Zerr et al. 1998b, Bretschneider et al. 1999, Maylie et al. 2002, Imbrici et al. 2006, Peters et al. 

2011). Val408Ala heterozygous mice show increased frequency and amplitude of cerebellar 

Purkinje cell inhibitory post-synaptic currents, spontaneous neuromuscular activity, and 

importantly, stress-induced motor deficits, similar to EA-1 patients (Herson et al. 2003, Brunetti 

et al. 2012). Two other Kv1.1 mutant mouse models that demonstrate variable EA-1 phenotypes 
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have also been reported (Petersson et al. 2003, Ishida et al. 2012). However, as most EA-1 Kv1.1 

mutational analysis has been conducted in oocyte expression systems, a thorough investigation 

into the biophysical properties of neurons expressing EA-1 Kv1.1 channel mutations is 

warranted, given the key role Kv1.1 dysfunction likely plays in this disorder.  

1.4.2.2 Kv1 channels and epilepsy 

 

A subset of patients with familial EA-1 is affected with epileptic seizures, suggesting that Kv1 

channel dysfunction may play a role in the pathophysiology of epilepsy (Spauschus et al. 1999, 

Zuberi et al. 1999, Eunson et al. 2000). Several reports have also identified patients who are 

heterozygous for Kv1.1 mutations, and suffer epileptic seizures concomitant with other 

neurologic abnormalities such as cognitive delay (Liguori et al. 2001, Demos et al. 2009). 

Injection of dendrotoxin, a Kv1 channel antagonist, into rat hippocampus induces neuronal 

hyperexcitability, seizures, and cell death (Bagetta et al. 1992, Lalic et al. 2011). Importantly, 

Kv1.1-null mice exhibit an epileptic phenotype, undergoing spontaneous behavioral seizures 

once or twice every hour, which are consistently accompanied by ictal electroencephalographic 

(EEG) patterns. The threshold for seizure initiation is determined by Kv1.1 gene dosage. 

Homozygous Kv1.1-null mice are more rapidly susceptible to convulsant-induced seizures than 

heterozygous Kv1.1-null mice, which are in turn more sensitive than their wild-type littermates 

(Smart et al. 1998, Rho et al. 2011). On the cellular level, loss of Kv1.1 channel function in 

Kv1.1-null mice produces a neuronal hyperexcitability phenotype that is commonly observed in 

epilepsy models, in the hippocampus, a brain region highly susceptible to epileptogenic activity 

(Smart et al. 1998, Zhou et al. 1998, Zhang et al. 1999, Zhou et al. 1999, Brew et al. 2003, Kopp-

Scheinpflug et al. 2003, Lopantsev et al. 2003, Baraban et al. 2009, Heeroma et al. 2009, Wykes 
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et al. 2012, Simeone et al. 2013). Neuronal hyperexcitability in Kv1.1-null mice has also been 

observed in myelinated nerves (Zhou et al. 1998, Zhou et al. 1999), cerebellar basket neurons 

(Zhang et al. 1999, Chen et al. 2005a), and medial nucleus of the trapezoid body neurons in the 

brainstem (Brew et al. 2003, Kopp-Scheinpflug et al. 2003). Decreasing network excitability by 

impairing P/Q-type Ca2+ channel function, or providing inhibitory synaptic input by grafting 

medial ganglionic GABAergic neuron precursors into the cortex of Kv1.1-null mice, lowers the 

duration and frequency of spontaneous seizures (Glasscock et al. 2007, Baraban et al. 2009). In 

agreement with these findings, lentiviral-mediated delivery of Kv1.1 channels to motor cortex 

pyramidal neurons attenuates neuronal hyperexcitability and prevents EEG-measured epileptic 

activity in a rodent model of tetanus toxin-induced neocortical epilepsy (Wykes et al. 2012).  

 

Kv1.2 channel dysfunction in neuronal hyperexcitability has also been reported. Early 

studies revealed that Kv1.1 α-subunits co-localize and likely form heteromers with Kv1.2 

channel subunits in most parts of the brain where both channels are expressed (Wang et al. 1993, 

Wang et al. 1994, Rhodes et al. 1997, Southan and Robertson 1998, Southan and Robertson 

2000, Monaghan et al. 2001). When co-expressed in fibroblast cells, EA-1 Arg417stop Kv1.1 

mutant channel and wild-type Kv1.2 channel trafficking is impaired, implying heteromerization 

and suggesting that loss of Kv1.2 channel function, as a result of Kv1.1 mutations, may play a 

role in familial EA-1 (Manganas et al. 2001). Further, most pharmacologic agents that block 

Kv1.1 channels and induce neuronal hyperexcitability, inhibit Kv1.2 channels as well (Bagetta et 

al. 1992, Bekkers and Delaney 2001, Shu et al. 2007). Several studies indicate that loss of Kv1.2 

channel function alone is sufficient to promote neuronal hyperexcitability, and may mediate 

epileptic pathology. For example, Kv1.2-specific inhibitors instigate hyperexcitability in 
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cerebellar and brainstem neurons (Southan and Robertson 1998, Dodson et al. 2003). 

Additionally, decreased Kv1.2 protein expression, which can be rescued by anti-convulsant 

agents, is detected in the hippocampus of seizure-prone or convulsant-treated mice (Tsaur et al. 

1992, Petersson et al. 2003). Although no Kv1.2 mutations have been detected in patients with 

epilepsy, Kv1.2-null mice display increased susceptibility to seizures and decreased life span 

(Brew et al. 2007). In contrast to studies demonstrating impairment of Kv1.2 channel function 

due to Kv1.1 dysfunction in EA-1 (Manganas et al. 2001), some investigators have suggested 

that Kv1.2 subunits may play a compensatory role in neurons when Kv1.1 function is 

compromised (Brew et al. 2003).  

 

As described above, neuronal hyperexcitability due to Kv1 channel loss-of-function is 

associated with pathogenesis of some forms of epilepsy. However, epilepsy is a complex 

disorder that encompasses network excitability abnormalities arising from dysfunction of a wide 

range of molecular components in various cell types and in different brain regions. The effects of 

reduced Kv1 K+ currents on epileptic pathology, therefore, may be varied depending on the 

location of the epileptogenic focus, and the affected neuronal cell type. Kv1.1 channel loss-of-

function is associated with promotion of epileptic activity in the hippocampus, whereas in an 

animal model of absence epilepsy associated with defects in thalamocortical circuitry, 

eliminating Kv1.1 channel function rescues the seizure phenotype (Glasscock et al. 2007). 

Moreover, decreased intrinsic excitability in cortical, fast-spiking inhibitory neurons, via up-

regulation of Kv1.1 channel activity, may promote seizure susceptibility (Lau et al. 2000, Li et 

al. 2011).  
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Spinal cord injury and multiple sclerosis are additional examples of clinical disorders in 

which increased neuronal signaling via blockade of Kv1 channel activity may be beneficial. In 

these diseases, outward K+ currents through exposed Kv1 channels along damaged, 

demyelinated axons may impair action potential propagation. In fact, fampridine, a slow-release 

formulation of the Kv channel blocker 4-AP, was recently approved by the Food and Drug 

Administration (FDA) to improve walking in patients with multiple sclerosis (Preiningerova et 

al. 2013). 

1.4.2.3 A success story: Kv7 channel activators in the therapeutic management of epilepsy 

 

Heteromeric Kv7.2/Kv7.3 channels mediate the slowly activating, non-inactivating M currents in 

central and peripheral neurons (Wang et al. 1998, Shah et al. 2002, Brown and Passmore 2009). 

These channels critically contribute to the after-hyperpolarizing potential, aid in maintaining 

resting membrane potential and firing thresholds, and importantly, reduce intrinsic burst firing 

and repetitive action potential firing in response to excitatory stimuli (Wang et al. 1998, Cooper 

et al. 2000, Jentsch 2000, Cooper et al. 2001, Gu et al. 2005, Shah et al. 2008, Tzingounis and 

Nicoll 2008, Brown and Passmore 2009, Tzingounis et al. 2010, Sun and Kapur 2012, Miranda 

et al. 2013). Increasing Kv7 channel function decreases excitability, while suppressing Kv7 

channel K+ currents enhances excitability in hippocampal pyramidal, and superior cervical and 

dorsal root ganglionic neurons, and promotes epileptiform activity in hippocampal neurons (Otto 

et al. 2004, Peters et al. 2004, Otto et al. 2006, Peña and Alavez‐Pérez 2006, Otto et al. 2009, 

Andreasen and Nedergaard 2012, Sun and Kapur 2012, Maslarova et al. 2013, Miranda et al. 

2013). Mice expressing dominant negative mutant Kv7.2 channels display spontaneous seizures, 
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behavioral hyperactivity, and increased neuronal excitability as well as cell death in the 

hippocampus (Peters et al. 2004). 

 

Mutations in Kv7.2 and Kv7.3 channels are associated with sporadic neonatal seizures 

and benign familial neonatal convulsions (BFNC), an autosomal dominant disease of frequent 

generalized epileptic seizures beginning in the first week of life and generally disappearing 

within a few months (Biervert et al. 1998, Charlier et al. 1998, Singh et al. 1998, Hirose et al. 

2000, Singh et al. 2003, Sadewa et al. 2008, Ishii et al. 2009, Miceli et al. 2011). However, 

several neonatal seizure-associated Kv7.2 mutations are linked to more severe abnormalities in 

patients, such as increased risk of seizures and therapy-refractory epilepsy later in life, epileptic 

encephalopathy, myokymia, and slowed psychomotor development (Dedek et al. 2001, Dedek et 

al. 2003, Borgatti et al. 2004, Schmitt et al. 2005, Zhou et al. 2006, Steinlein et al. 2007, Wuttke 

et al. 2007, Weckhuysen et al. 2012). These studies further confirm the involvement of Kv7 

channel dysfunction in some forms of epilepsy, and implicate central and peripheral neuronal 

Kv7 channel dysfunction in diverse clinical phenotypes generally correlating with neuronal 

hyperexcitability.  

 

Most Kv7.2 and Kv7.3 mutations associated with BFNC and more severe disorders occur 

in the cytosolic C-terminus, voltage-sensing domain, or pore-forming region. Expression of 

mutant channels in oocytes or hippocampal neurons reveals a range of channel defects. Several 

mutations, particularly those in the voltage-sensing domain of the channel, confer slower 

activation kinetics and depolarizing shifts in voltage-gated activation (Dedek et al. 2001, 

Castaldo et al. 2002, Singh et al. 2003, Wuttke et al. 2007, Uehara et al. 2008, Volkers et al. 
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2009), while C-terminal frameshift, insertion, or truncation mutant Kv7 channels exhibit reduced 

current amplitudes due to intracellular trafficking defects, inefficient membrane targeting, or 

increased degradation (Lerche et al. 1999, Schwake et al. 2000, Singh et al. 2003, Chung et al. 

2006, Volkers et al. 2009, Su et al. 2011). Two transgenic BFNC mouse models, expressing 

Kv7.2 Ala306Thr or Kv7.3 Gly311Val channels, present with generalized seizures likely of 

hippocampal origin, but display minimal synaptic reorganization or permanent neuronal damage 

in the hippocampus, recapitulating the major features of human BFNC. Additionally, Kv7 

current density in homozygous mutant hippocampal slices is decreased, while deactivation 

kinetics are accelerated (Singh et al. 2008, Otto et al. 2009). Heterozygous adult mice show 

reduced threshold to electroconvulsant-induced seizures and similar, albeit less severe, Kv7 

current alterations to homozygous mice.  

 

Retigabine, also known as ezogabine, is a Kv7 channel activator that was approved by the 

FDA in 2011 for adjuvant treatment of partial-onset seizures in adults (Blackburn‐Munro et al. 

2005, Miceli et al. 2011, Weisenberg and Wong 2011, Orhan et al. 2012, Amabile and 

Vasudevan 2013), following demonstration of seizure reduction in animal models of epilepsy 

(Rostock et al. 1996, Tober et al. 1996) and in human clinical trials (Porter et al. 2007, Brodie et 

al. 2010, French et al. 2011). Retigabine enhances Kv7 channel activation by inducing a 

hyperpolarizing effect on voltage-gated channel activation. This mechanism of action limits 

neuronal excitability, as evidenced by the reduction of depolarization-induced action potential 

firing in neurons treated with retigabine (Tatulian et al. 2001, Wuttke et al. 2005). Since the 

discovery of retigabine’s anticonvulsant properties, numerous novel Kv7 activators are being 

explored for their therapeutic potential in treating epilepsy (Roeloffs et al. 2008, Wulff et al. 
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2009, Miceli et al. 2011, Qi et al. 2011, Dalby-Brown et al. 2013, Kasteleijn-Nolst Trenité et al. 

2013). Notably, in addition to epilepsy, Kv7 channel activators may also be effective in treating 

other diseases in which neuronal hyperexcitability represents a primary pathological component, 

including inflammatory or neuropathic pain (Hirano et al. 2007, Munro and Dalby-Brown 2007, 

Bi et al. 2011), tinnitus (Li et al. 2013), as well as neuropsychiatric disorders (Redrobe and 

Nielsen 2009, Sotty et al. 2009). 

1.4.3 A role for Kv channels in neuro-cardiac regulation 

Recently, Kv channels have been associated with sudden unexplained death in epilepsy 

(SUDEP), an event which occurs in two to eighteen percent of chronic, idiopathic epileptic 

patients, and is thought to arise from neurologically-driven cardiac dysfunction (Stöllberger and 

Finsterer 2004, Nashef et al. 2007, Tomson et al. 2008, Goldman et al. 2009). Kv1.1-null mice 

display a range of cardiac abnormalities, some of which are ameliorated by inhibiting 

parasympathetic innervation from the vagus nerve (where Kv1.1 is normally expressed) to the 

heart (Glasscock et al. 2010). Additionally, about half of Kv1.1-null mice die suddenly between 

the third and fourth week of life, with several of these mice exhibiting severe generalized 

seizures prior to death (Smart et al. 1998, Rho et al. 2011), suggesting that they may be 

experiencing SUDEP. In another study, mice carrying a human long QT syndrome mutation in 

Kv7.1 channels exhibit cardiac arrhythmias and epileptiform activity, with a mouse in this report 

experiencing seizures that developed into status epilepticus accompanied by severe cardiac 

abnormalities, culminating in cardiac arrest (Goldman et al. 2009). These studies implicate Kv 

channels in the pathophysiology of a disastrous complication of epilepsy, highlighting the 

importance of Kv channels in neurological regulation of cardiac function.  
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1.5 SUMMARY 

The Kv channel family is a diverse group of channels mediating outward K+ currents that play 

important roles in normal and pathological processes in neurons. Increased efflux of currents 

through Kv2.1 channels promotes apoptotic signaling (Figure 1a and Figure 2, right), while 

neuronal activity-regulated alterations in channel localization, phosphorylation, and voltage-

gated activation reduce neuronal excitability, suggesting a role for these modifications in 

neuroprotection against ischemic or epileptic injury (Figure 1b and Figure 2, left). Loss of Kv1 

or Kv7 promotes neuronal hyperexcitability, which manifests pathological consequences in 

disorders such as epilepsy or EA-1. Further, Kv channelopathy is likely to contribute to the 

pathophysiology of several other neurological diseases, including spinal cord injury, multiple 

sclerosis, inflammatory and neuropathic pain, and neuropsychiatric disorders (Table 1). 

Significant challenges, however, exist for developing Kv channel-directed therapeutic agents. Kv 

channels are widely expressed in most organs, including the brain, heart, liver, lungs, pancreas, 

and kidney (Gutman et al. 2005, Wulff et al. 2009). As such, drugs targeting these channels in 

neuronal diseases may cause potentially harmful effects. Additionally, the precise molecular 

composition of Kv channels mediating specific K+ currents in different neuronal cell types is 

often difficult to pinpoint, given the diversity of α-subunit heteromerization patterns and the 

presence of modulatory binding partners. However, as evidenced by the successful clinical use of 

retigabine to activate Kv7 channels in treating epilepsy, targeting Kv channels is likely to be a 

viable therapeutic strategy for a wide range of neurological diseases in the near future. To this 

end, the studies in Chapter 2 of this thesis explore mechanisms of Kv2.1 channel regulation that 

may promote neuroprotection in stroke. 
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Table 1 – Kv channels implicated in neuronal pathology and neurological disease 

 

 

 

 

 

Subtype K+ current type Associated pathology 
 
 
 
 

Kv1 

 
 

Delayed rectifying 
(Kv1.1-1.3, Kv1.5-1.8) 

 
A-type (Kv1.4) 

 
 

Episodic ataxia, epilepsy (Kv1.1, Kv1.2, 
Kv1.4) 

 
Neuronal apoptosis (Kv1.1, Kv1.3) 

 
Ischemic cell death (Kv1.5) 

 
 
 

Kv2 

 
 

Delayed rectifying 

 
 

Neuronal apoptosis (Kv2.1) 
 

 
 

Kv3 

 
Delayed rectifying 

(Kv3.1, Kv3.2) 
 

A-type (Kv3.3, Kv3.4) 
 

 
Epilepsy (Kv3.2) 

 
 

Alzheimer’s disease (Kv3.4) 
 

 
 

Kv4 

 
 

A-type 

 
Alzheimer’s disease (Kv4.2) 

 
Epilepsy (Kv4.2, Kv4.3) 

 
 
 

Kv7 

 
 

Delayed rectifying, M-
type 

 
 

 
 

Epilepsy, tinnitus, pain, neuropsychiatric 
disorders (Kv7.1-7.5) 
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1.6 THESIS GOALS  

The goal of this dissertation was to explore calcineurin-mediated signaling pathways in ischemic 

preconditioning and neuronal cell death. Previous studies from our laboratory and other groups 

have shown the importance of calcineurin-triggered modifications in Kv2.1 channel 

phosphorylation and localization, and the effects of these changes on voltage-gated activation of 

the channel. However, the signaling pathways contributing to these channel alterations, as well 

as the role of these mechanisms in promoting neuronal tolerance in ischemia, are not well 

understood. In the first part of my study, I hypothesized that Kv2.1 channel declustering may be 

sufficient to confer neuronal resistance to excitotoxic injury. I found that two distinct 

mechanisms of channel declustering, cyclin E1 inhibition of Cdk5-mediated Kv2.1 

phosphorylation, or over-expression of the Kv2.2 C-terminus, were independently sufficient to 

reduce excitotoxic neuronal cell death. Furthermore, preconditioned neurons exhibit calcineurin 

activity-mediated up-regulation of cyclin E1 protein levels, suggesting that cyclin E1-triggered 

channel declustering may be an endogenous mechanism that promotes cell survival in response 

to an excitotoxic insult.  

 

Although calcineurin is required for normal cellular processes, calcineurin dysregulation 

and over-activation may be neurotoxic. In the second part of my thesis, I focused on this 

injurious aspect of calcineurin signaling. RCAN1, an endogenous regulator of calcineurin, has 

been implicated in conflicting cell survival promoting and cell death-inducing signaling 

pathways. Further, the isoform-specific functions of this protein remain unclear. The findings in 

Chapter 3 establish distinct neurotoxic and neuroprotective signaling pathways mediated by the 

two principal brain isoforms of this protein, RCAN1.1 and RCAN1.4, through both calcineurin 



 47 

regulation-dependent and potentially independent mechanisms. Together, the results presented in 

this dissertation further our understanding of Kv channel regulation in ischemia, and point to 

complex and critical roles for calcineurin signaling in ischemic preconditioning and in neuronal 

cell death. 
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2.0  CYCLIN E1 REGULATES KV2.1 CHANNEL PHOSPHORYLATION AND 

LOCALIZATION IN NEURONAL ISCHEMIA 

2.1 ABSTRACT 

Kv2.1 is a major delayed rectifying K+ channel, normally localized to highly phosphorylated 

somato-dendritic clusters in neurons. Excitatory stimuli induce calcineurin-dependent 

dephosphorylation and dispersal of Kv2.1 clusters, with a concomitant hyperpolarizing shift in 

the channel’s activation kinetics. We have previously shown that sub-lethal ischemia, which 

renders neurons transiently resistant to excitotoxic cell death, can also induce Zn2+-dependent 

changes in Kv2.1 localization and activation kinetics, suggesting that activity-dependent 

modifications of Kv2.1 may contribute to cellular adaptive responses to injury. Recently, cyclin-

dependent kinase 5 (Cdk5) was shown to phosphorylate Kv2.1, with pharmacological Cdk5 

inhibition being sufficient to decluster channels. In another study, cyclin E1 was found to restrict 

neuronal Cdk5 kinase activity. We show here that cyclin E1 regulates Kv2.1 cellular localization 

via inhibition of Cdk5 activity. Expression of cyclin E1 in human embryonic kidney cells 

prevents Cdk5-mediated phosphorylation of Kv2.1, and cyclin E1 over-expression in rat cortical 

neurons triggers dispersal of Kv2.1 channel clusters. Sub-lethal ischemia in neurons induces 

calcineurin-dependent up-regulation of cyclin E1 protein expression and cyclin E1-dependent 

Kv2.1 channel declustering. Importantly, over-expression of cyclin E1 in neurons is sufficient to 
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reduce excitotoxic cell death. These results support a novel role for neuronal cyclin E1 in 

regulating the phosphorylation status and localization of Kv2.1 channels, a likely component of 

signaling cascades leading to ischemic preconditioning. 

2.2 INTRODUCTION 

Voltage-gated Kv2.1 channels mediate a significant component of delayed rectifying K+ currents 

in neurons. As such, they critically regulate neuronal excitability, particularly during periods of 

high-frequency synaptic transmission (Murakoshi and Trimmer 1999, Du et al. 2000, Malin and 

Nerbonne 2002, Guan et al. 2013). Approximately half of the Kv2.1 channels present on cortical 

and hippocampal neuronal cell membranes are maintained in highly phosphorylated, somato-

dendritic clusters (Fox et al. 2013). Excitatory or injurious stimuli trigger calcineurin-dependent 

channel dephosphorylation at multiple C-terminal serine residues, which is accompanied by 

cluster dispersal and a hyperpolarizing shift in channel voltage-gated activation (Misonou et al. 

2004, Mulholland et al. 2008, Aras et al. 2009b, Baver and O’Connell 2012, Shepherd et al. 

2012, Shah and Aizenman 2013). Calcineurin-mediated dephosphorylation at several C-terminal 

residues is thought to mediate the hyperpolarizing activation shift (Park et al. 2006), which may 

mitigate neuronal damage and cell death within the context of excitotoxic injury by reducing 

neuronal excitability (Aras et al. 2009a, Aras et al. 2009b, Mohapatra et al. 2009, Shepherd et al. 

2012). 

 

The phosphorylation status of one Kv2.1 C-terminal serine residue in particular, Ser603, 

is highly sensitive to changes in neuronal activity. Glutamate stimulation triggers a precipitous 



 50 

decrease in Ser603 phosphorylation, while acute activity blockade results in Ser603 hyper-

phosphorylation (Misonou et al. 2006). Ser603 is phosphorylated by cyclin dependent kinase 5 

(Cdk5), a kinase highly expressed in post-mitotic neurons that regulates many critical 

physiological functions (Cheung et al. 2006, Cerda and Trimmer 2011). Pharmacologic 

inhibition of Cdk5 kinase activity causes Ser603 dephosphorylation and channel declustering, 

and prevents recovery of Ser603 phosphorylation and channel re-clustering following washout of 

glutamate treatment (Cerda and Trimmer 2011). 

 

Here, we identify cyclin E1 as a novel regulator of Kv2.1 localization via inhibition of 

Cdk5 kinase-mediated phosphorylation of the channel. Our studies suggest that cyclin E1 

facilitates Kv2.1 channel dephosphorylation and declustering in neurons subjected to sub-lethal 

ischemia, and may be critical for cell survival mechanisms following excitotoxic injury.  

2.3 MATERIALS AND METHODS 

Cell culture, transfection, and ischemic preconditioning: Cortical neuronal cultures 

were prepared from embryonic day 16-17 rat embryos of either sex (Aras et al. 2009b) and 

transfected at 21-25 DIV using Lipofectamine 2000 (Invitrogen; Aras et al. 2009a). Cultures 

were preconditioned with 3 mM potassium cyanide (KCN) in a glucose-free balanced salt 

solution (in mM: 150 NaCl; 2.8 KCl; 1 CaCl2; and 10 HEPES; pH 7.2) for 90 minutes at 37°C 

(McLaughlin et al. 2003). For viability assays in transfected neurons, 24h after transfection or 

preconditioning, neurons were treated with 10 µM glycine (vehicle) ± 75 µM NMDA for 30 

minutes, and assayed for viability after 24h as reported previously (Aras et al. 2009a).  
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Confocal imaging: 24h following transfection with GFP-tagged Kv2.1, cyclin E1, Cdk5-

DN, Kv2.2 C-terminus (Kv2.2-CT), or corresponding vector (pCDNA3 for cyclin E1 and Cdk5 

DN, pBK for Kv2.2-CT), live imaging of transfected neurons was performed on a Nikon A1+ 

confocal microscope at 60x. Five–ten optical sections (0.5 µm) were acquired to generate a 

maximum intensity projection image that was analyzed using NIH image processing software 

(ImageJ). Following background subtraction, a plot displaying a three-dimensional graph of 

pixel intensity over the neuronal soma was used to show Kv2.1 localization (Figure 3B). Channel 

clusters appearing as orange–red peaks in pixel intensity were counted. In several control cells, 

there were large-density peaks that likely represented multiple channel clusters; these peaks were 

counted as one cluster to preclude any possibility of over-counting for these cells. Therefore, we 

may have underestimated the cluster number under control conditions. Nikon Instruments 

Software (NIS)-Elements Advanced Research was employed to measure cluster surface area, and 

to confirm channel cluster counts. 

 

Immunoblotting: Protein samples harvested from transfected human embryonic kidney 

(HEK) 293T cells or neuronal cultures were incubated with mouse monoclonal anti-Kv2.1 

antibody (1:1000; NeuroMab), rabbit polyclonal anti-phosphorylated Ser603 Kv2.1 antibody 

(1:500; gift from Dr. James Trimmer, University of California Davis), rabbit polyclonal anti-

cyclin E1 antibody (1:500; Santa Cruz Biotechnology), or mouse monoclonal anti-GAPDH 

antibody (1:1000; Novus Biologicals) as a loading control. Blots were quantified by infrared 

fluorimetry (Li-Cor). 
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Immunofluorescence: 48h following transfection, neurons were washed three times in 

PBS and fixed with 4% paraformaldehyde for 18 min. Neurons were washed three times with 

PBS, and permeabilized for 5 min in PBS containing 0.3% Triton X-100. Following three 

washes in PBS, neurons were incubated in PBS containing 1% bovine serum albumin (BSA) for 

5 min. Neurons were incubated overnight at 4 °C with anti-Kv2.1 rabbit polyclonal antibody 

(1:500; Alomone Labs), and then with AlexaFluor555 donkey anti-rabbit IgG (1:1000; Life 

Technologies) at room temperature for 1 h. Coverslips containing neurons were then mounted 

onto glass slides and allowed to air-dry before imaging. 

 

Electrophysiology: Whole-cell recordings from cortical neurons were obtained with 2–3 

MΩ electrodes (Aras et al. 2009b). The extracellular solution contained (in mM): 115 NaCl, 2.5 

KCl, 2.0 MgCl2, 1.0 CaCl2, 10 HEPES, 10 D-glucose, 0.25 µM tetrodotoxin; pH 7.2. The 

electrode contained (in mM): 100 K-gluconate, 10 KCl, 1 MgCl2, 1 CaCl2, 2.2 Mg2·ATP, 0.33 

GTP, 11 EGTA, 10 HEPES; pH 7.2. Measurements were obtained under voltage clamp with an 

Axopatch 200B amplifier and pClamp software (Molecular Devices). 80% compensation for 

series resistance was provided. Currents were filtered at 2 kHz and digitized at 10 kHz. K+ 

currents were evoked with a series of 200 ms voltage steps from a holding potential of -80 mV to 

+80 mV in 10 mV increments. Before depolarization, a single 30 ms prepulse to +10 mV was 

used to inactivate A-type K+ currents. Peak conductance (G) was calculated from peak steady-

state current amplitudes (I) using the equation G = I ⁄ (V-EK) (EK = Nerst K+ equilibrium 

potential), and plotted against the potential (V) and fitted to a single Boltzmann function G = 

Gmax ⁄ (1 + exp[-(V –V1 ⁄ 2) ⁄ k]): Gmax = maximum conductance, V1 ⁄ 2 = potential at half-

maximal conductance, k = slope of activation curve.  
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2.4 RESULTS 

2.4.1 Cyclin E1 inhibits Cdk5-mediated phosphorylation and clustering of Kv2.1 channels 

Cyclin E1 was recently shown to influence dendritic spine density and synaptic function by 

regulating the kinase activity of Cdk5 (Odajima et al. 2011). We first determined whether cyclin 

E1 expression could inhibit Cdk5-facilitated Kv2.1 Ser603 phosphorylation. HEK293T cells 

were transfected with Kv2.1 and Cdk5, together with Cdk5 kinase co-activator p35, which 

yielded an increase in Ser603 phosphorylation that was significantly reduced by cyclin E1 co-

expression (Figure 3A). Similarly, as shown previously (Cerda and Trimmer 2011), the Cdk5 

inhibitor roscovitine (30 µM, 3h) blocked Cdk5-mediated Kv2.1 Ser603 phosphorylation. 

 

Previous studies have demonstrated that injury-induced Kv2.1 dephosphorylation is 

accompanied by dispersal of channel clusters (Misonou et al. 2004, Misonou et al. 2006, 

Mulholland et al. 2008, Aras et al. 2009b, Shepherd et al. 2012, Shepherd et al. 2013). We 

hypothesized that cyclin E1 over-expression, by blocking Cdk5-mediated Kv2.1 Ser603 

phosphorylation, would be sufficient to induce channel declustering in cortical neurons. We 

transfected rat cortical neurons with a GFP-tagged Kv2.1 construct, which exhibits somato-

dendritic clustering similar to endogenous Kv2.1 channels (O'Connell et al. 2006; Figure 3B), 

along with cyclin E1 or empty vector. Neurons over-expressing cyclin E1 displayed a 

significantly reduced number of channel clusters (Figure 3B and C), which we verified using 

Nikon image analysis software. We also observed reduced cluster surface area in cyclin E1-

expressing cells (vector: 4.0 ± 1.2 µm2, n = 23; cyclin E1: 1.6 ± 0.5 µm2, n = 30; p < 0.05, two-

tailed unpaired t-test). To confirm that Cdk5 kinase activity inhibition promotes channel 



 54 

declustering, we determined that over-expression of Cdk5-DN, a kinase-inactive, dominant 

negative Cdk5 mutant (Nikolic et al. 1996), declustered Kv2.1 channels, and verified that 

roscovitine treatment triggered dispersal of channel clusters (Figure 3C; Cerda and Trimmer 

2011). 
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Figure 3 – Cyclin E1 over-expression blocks Cdk5/p35-mediated Kv2.1 phosphorylation, and induces channel 

declustering 
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Figure 3. A, HEK293T cells were co-transfected with Kv2.1, Cdk5/p35 or vector, and cyclin E1 

or vector. 21h after transfection, cells were treated with vehicle (DMSO) or roscovitine (rosc) for 

3h, and proteins were harvested immediately following exposure. Top, Representative 

immunoblot; duplicate membranes were probed with phosphorylated Ser603 Kv2.1 antibody 

(PS603) or Kv2.1 antibody. Numbers to the right indicate mobility of molecular mass standard 

(kDa). Bottom, Summary of 6 independent experiments; values represent Cdk5/p35-mediated 

increase in PS603 normalized to total Kv2.1, expressed as ratio of PS603/total Kv2.1 

(+Cdk5/p35) to corresponding PS603/total Kv2.1 (no Cdk5/p35), e.g. column 1 in bar graph is 

PS603/total Kv2.1 (lane 2): PS603/total Kv2.1 (lane 1) (mean ± SEM, * p < 0.05, ** p < 0.01, 

ANOVA/Dunnett versus vehicle). B, Neuronal cultures were transfected with GFP-Kv2.1 and 

cyclin E1, dominant negative Cdk5 (Cdk5-DN), or vector, or transfected with GFP-Kv2.1 and 

treated with DMSO or roscovitine 23h after transfection. Neurons were imaged 24h after 

transfection. Shown are representative neurons and their associated background-subtracted 

surface maps, which show relative Kv2.1 staining intensity values plotted along the cell body 

area. Scale bar, 10 µM. C, Clusters that appeared as orange–red peaks in pixel intensity were 

counted for 24-42 cells per group from 4-7 independent experiments. Data points represent 

average number of clusters per cell (mean ± SEM; * p < 0.05, *** p < 0.001, two-tailed unpaired 

t-test versus vector or vehicle). Vec = vector, CycE1 = Cyclin E1, Veh = Vehicle, Rosc = 

Roscovitine. 
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Stimuli that activate Kv2.1 dephosphorylation and declustering induce a concomitant 

hyperpolarizing shift in the channel’s voltage-gated activation. Co-treatment with calcineurin 

inhibitors in neurons (Misonou et al. 2004, Mohapatra and Trimmer 2006, Aras et al. 2009b, 

Mohapatra et al. 2009, Shepherd et al. 2012, Shepherd et al. 2013), and mutational analysis of 

calcineurin dephosphorylation-dependent residues in HEK cells (Park et al. 2006) strongly 

suggest that channel dephosphorylation is closely associated with the activation shift. Therefore, 

we explored whether cyclin E1 over-expression or roscovitine exposure would promote a 

hyperpolarizing channel activation shift. We measured whole-cell K+ currents in neurons over-

expressing cyclin E1 or exposed to roscovitine (30 µM, 1h, followed by removal from 

roscovitine-containing media as it has been shown to directly block Kv2.1 channels; Buraei et al. 

2007). We found, however, that neither condition shifted Kv2.1 channel voltage-gated activation 

(V1/2: 13.7 ± 1.1 mV, vector; 10.5 ± 2.3 mV, cyclin E1; 14.2 ± 1.5 mV, vehicle; 18.5 ± 1.5 mV, 

roscovitine; n = 9, 10, 5, 7 cells, respectively). We also noted no changes in current density; 

current densities at +10 mV in pA/pF: 284.5 ± 22.9 (vector); 228.4 ± 37.0 (cyclin E1); 181.3 ± 

19.0 (vehicle); 145.2 ± 27.3 (roscovitine); n = 6, 7, 3, 6 cells, respectively. These results suggest 

that, as previously noted (Aras et al. 2009b, Baver and O’Connell 2012), Kv2.1 

dephosphorylation and declustering may not be unequivocally linked to changes in channel 

activation kinetics in all cases.   

2.4.2 Neuronal ischemic preconditioning in vitro induces calcineurin-dependent up-

regulation of cyclin E1 expression 

We have previously shown that chemical ischemic preconditioning, which mitigates subsequent 

excitotoxic neuronal injury, induces Kv2.1 channel dephosphorylation and declustering in 
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cortical neurons (Aras et al. 2009a, Aras et al. 2009b). Rapid Ser603 dephosphorylation is 

observed following ischemic or epileptic injury in vivo, and after glutamate treatment in cultured 

hippocampal neurons (Misonou et al. 2006, Cerda and Trimmer 2011). We found that ischemic 

preconditioning in cortical neurons also reduced Ser603 phosphorylation in native Kv2.1 

channels by 82% (Figure 4A; phosphorylated Ser603 Kv2.1 normalized to total Kv2.1 

expression is 0.18 ± 0.03 relative units (r.u.) in vehicle-exposed neurons, compared to 0.03 ± 

0.02 r.u. in KCN-treated neurons; n = 3; p < 0.05, two-tailed paired t-test). We thus hypothesized 

that preconditioning-stimulated signaling pathways may lead to up-regulation of cyclin E1 

protein expression, which would contribute to Ser603 dephosphorylation and channel 

declustering by reducing Cdk5 kinase activity. Therefore, we measured cyclin E1 protein 

expression immediately following, and 24 hours after preconditioning, at which point Kv2.1 

channels revert to the phosphorylated and clustered state (Aras et al. 2009b). Ischemic 

preconditioning triggered an increase in cyclin E1 protein expression immediately following 

treatment (Figure 4B). Importantly, we also observed a return to control cyclin E1 levels 24 

hours after preconditioning. Thus, ischemia induced-changes in cyclin E1 coincide temporally 

with the modifications in phosphorylation and localization of Kv2.1 channels in neurons.  

 

Kv2.1 channel dephosphorylation and declustering following ischemic or epileptic 

stimuli are dependent on the Ca2+-activated phosphatase calcineurin, which has been suggested 

to directly dephosphorylate Kv2.1 channels (Misonou et al. 2004, Park et al. 2006, Shepherd et 

al. 2012; although, see Mulholland et al. 2008, Aras et al. 2009b). We explored the possibility 

that calcineurin may also be required for the preconditioning-mediated rise in cyclin E1 

expression, as restricting calcineurin activity blocks growth factor-stimulated up-regulation of 



 59 

cyclin E in fibroblasts (Tomono et al. 1998). Accordingly, we found that co-treatment with the 

calcineurin inhibitor FK520 (5 µM) blocked the increase in cyclin E1 protein expression in 

preconditioned neurons (Figure 4B). We confirmed that calcineurin activation occurs upstream 

of cyclin E1 up-regulation by measuring cyclin E1 expression in neurons exposed to the Ca2+ 

ionophore A23187 (1 µM, 10 minutes) with or without FK520: cyclin E1 expression normalized 

to loading control increases 1.5 ± 0.18-fold with A23187 treatment, compared to 0.78 ± 0.15-

fold in A23187-exposed cells co-treated with FK520 (n = 3, p < 0.01, two-tailed paired t-test). 
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Figure 4 – Chemical ischemia induces calcineurin activity-dependent transient increase in neuronal cyclin E1 

expression 

 

Figure 4. Neurons were exposed to 3 mM KCN with vehicle (Veh) or FK520 (FK; 5 µM) for 90 

minutes. Cell lysates were harvested immediately (0’) or 24h following exposure. A, Membranes 

were probed with anti-PS603 Kv2.1 or anti-Kv2.1 antibody. Representative blot from one of 

three independent experiments is shown; phosphorylated Ser603 Kv2.1 normalized to total 

Kv2.1 expression is 0.18 ± 0.03 r.u. (vehicle), compared to 0.03 ± 0.02 r.u. (KCN); n = 3; p < 

0.05, two-tailed paired t-test. B, Membranes were probed with anti-cyclin E1 or anti-GAPDH 

antibody. Top, representative immunoblots are shown. Bottom, summary of 4 (left) or 5 (right) 

independent experiments; cyclin E1 values are normalized to loading control GAPDH; (mean ± 

SEM, * p < 0.05 versus KCN, ** p < 0.01 versus vehicle at 0’ post treatment, *** p < 0.001 

versus KCN at 0’ post treatment; ANOVA/Bonferroni). 
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2.4.3 p35 over-expression blocks ischemic preconditioning-mediated Kv2.1 channel 

declustering 

Cyclin E1 restricts Cdk5 kinase activity by out-competing binding of Cdk5 to p35, and forming a 

catalytically inactive complex with Cdk5 (Odajima et al. 2011). If ischemic preconditioning-

triggered Kv2.1 declustering is dependent on cyclin E1-mediated inhibition of Cdk5 kinase 

activity, then over-expressing p35 should restore channel clustering in preconditioned neurons. 

Indeed, we found that p35-over-expressing preconditioned neurons retain Kv2.1 channel clusters 

(Figure 5), strongly suggesting that increased cyclin E1 expression and consequent inhibition of 

Cdk5 kinase activity contribute significantly to preconditioning-induced cluster dispersal. 
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Figure 5 – Over-expression of Cdk5 co-activator p35 blocks KCN-induced Kv2.1 channel declustering in 

cortical neurons 
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Figure 5. Top, Neurons were transfected with GFP-Kv2.1 and p35 or vector, preconditioned 24h 

after transfection, and imaged immediately following preconditioning. Scale bar, 10 μM. 

Bottom, Number of clusters per cell was counted and averaged for 15-39 cells per group from 

six independent experiments (mean ± SEM; * p < 0.05, ANOVA/Bonferroni versus vehicle). 
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2.4.4 Cyclin E1 over-expression reduces excitotoxic cell death 

We next investigated whether cyclin E1 over-expression, which produces similar changes in 

Kv2.1 channel phosphorylation status and clustering as ischemic preconditioning (Figure 3 and 

4; Aras et al. 2009b), could alone promote neuronal tolerance to excitotoxic cell death. As shown 

in Figure 6, over-expressing cyclin E1 in cortical neurons mitigates excitotoxicity in NMDA-

treated neurons at levels highly comparable to the neuronal tolerance elicited by ischemic 

preconditioning. Moreover, we confirmed that limiting Cdk5 kinase activity with the Cdk5-DN 

construct similarly reduces excitotoxic injury. 
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Figure 6 – Cyclin E1 over-expression decreases NMDA receptor-mediated excitotoxicity 

 

Figure 6. Neurons were transfected with cyclin E1 or vector (1st two columns), or Cdk5-DN or 

vector (last two columns), and a luciferase reporter gene (PUHC 13-3), or transfected with 

vector and luciferase reporter gene and treated with KCN 24h following transfection (2nd two 

columns). 24h after transfection or preconditioning treatment, neurons were exposed to 10 μM 

glycine ± 75 μM NMDA (30 min), 24h prior to viability assay. Mean (± SEM) values expressed 

as % toxicity of NMDA-treated relative to vehicle-treated neurons is shown. (* p < 0.05, ** p = 

0.01, versus corresponding vector or vehicle, two-tailed paired t test, n = 5, 6, 4 for vector/cyclin 

E1, vehicle/preconditioning, vector/Cdk5-DN, respectively). Note slight differences in NMDA 

toxicity between vectors for cyclin E1 and for Cdk5-DN are due to differences in inherent 

toxicity of transfected vectors. Precond = preconditioning 
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2.4.5 The Kv2.2 C-terminus declusters Kv2.1 channels and reduces excitotoxicity 

Cyclin E1 over-expression induced dispersal of Kv2.1 channel clusters (Figure 3), but did not 

modify Kv2.1 voltage-gated activation. We also found that it reduced excitotoxic cell death in 

neurons (Figure 6). We suggest that this neuroprotection is achieved at least partially through 

declustering of Kv2.1 channels. However, we cannot rule out the possibility that cyclin E1 

reduces toxicity independently of Kv2.1 cluster dispersal. For example, neuroprotection may 

occur through inhibition of Cdk5-mediated phosphorylation of other targets, such as NMDA 

receptors (Rashidian et al. 2009). Therefore, to further validate our hypothesis, we investigated 

whether declustering of Kv2.1 channels through a different mechanism could also confer 

excitotoxic neuronal tolerance. O’Connell and colleagues have demonstrated that the C-terminus 

of Kv2.2 channels (Kv2.2-CT) displaces Kv2.1 from clusters, but does not alter surface 

expression or electrophysiological properties of the channel (Baver and O’Connell 2012). 

Importantly, Kv2.2-CT expression does not eliminate the glutamate-induced hyper-polarizing 

shift in the channel’s voltage-gated activation. We confirmed that Kv2.2-CT induced cluster 

dispersal of both exogenously expressed and native Kv2.1 channels in neurons (Figure 7, A and 

B). We then tested whether Kv2.2-CT expression would reduce NMDA receptor-mediated 

neurotoxicity. We found that cell death is, in fact, reduced in Kv2.2-CT-expressing neurons 

exposed to NMDA (Figure 7C).  
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Figure 7 – The C-terminus of Kv2.2 declusters Kv2.1 channels and is neuroprotective 
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Figure 7. A, Neurons were transfected with GFP-Kv2.1, and Kv2.2-CT or vector, and imaged 

48h after transfection. Scale bar, 10 μM. B, Number of clusters per cell was counted and 

averaged for 6-12 cells per group from 1-2 independent experiments. The 1st two columns 

represent values from neurons transfected with Kv2.2-CT or vector, and tomato (Addgene 

plasmid 22799), immunostained for Kv2.1, and imaged; 2nd two columns are values from 

neurons transfected with GFP-Kv2.1 and Kv2.2-CT or vector and imaged live 48h after 

transfection; (mean ± SEM; * p < 0.05, unpaired t-test vs vector). C, Neurons were transfected 

with Kv2.2-CT or vector, and a luciferase reporter gene. 24h after transfection, neurons were 

exposed to 10 μM glycine ± 50 μM NMDA (1h), 24h prior to viability assay. Mean (± SEM) 

values expressed as % toxicity of NMDA-treated relative to vehicle-treated neurons is shown (* 

p < 0.05 versus vector, two-tailed paired t test, n = 4).  
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2.5 DISCUSSION 

Modulation of Kv2.1 channel phosphorylation, localization, and function, elicited by a range of 

injurious stimuli, may be a critical component of endogenous neuroprotective signaling pathways 

that reduce neuronal damage and cell death (Aras et al. 2009b, Mohapatra et al. 2009, Shepherd 

et al. 2013). We have identified cyclin E1 as a key regulator of Kv2.1 channel phosphorylation 

and localization in neuronal ischemia. Cyclin E1 blocks Cdk5-mediated Kv2.1 Ser603 

phosphorylation, and promotes the dispersal of Kv2.1 channel clusters in cortical neurons. 

 

Interestingly, neither cyclin E1 over-expression nor exposure to roscovitine produced 

hyperpolarizing changes in Kv2.1 channel voltage-gated activation. In contrast, a previous study 

showed that Kv2.1 voltage-gated activation was closely linked to the phosphorylation status of 

Ser603 (Park et al. 2006). However, Park et al. (2006) utilized recombinant expression of a 

single population of channel mutants, which may not be completely representative of native 

Kv2.1 channels with varying degrees of phosphorylation in each of the four subunits that 

assemble to form functional ion channels in neurons. In fact, in neurons, injury-induced Kv2.1 

channel activation shifts span a wide range of half-maximal activation voltages, from near 9 mV 

to 30 mV, depending on the stimulus and neuronal cell type under study (Misonou et al. 2004, 

Misonou et al. 2008, Mulholland et al. 2008, Aras et al. 2009b, Shepherd et al. 2013). 

Additionally, neuronal signaling pathways that are activated by excitatory or ischemic stimuli, 

but not associated with reducing Cdk5 kinase activity alone, may be required to alter the 
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channel’s function, including Zn2+-activated processes (Aras et al. 2009b), calcineurin activity-

independent channel dephosphorylation (Mulholland et al. 2008), or post-translational 

modifications at channel regions other than the C-terminus (Baver and O’Connell 2012). 

 

We demonstrate here that ischemic preconditioning induces calcineurin activity-

dependent up-regulation of cyclin E1 protein expression in cortical neurons. This increase in 

cyclin E1 expression may occur through calcineurin-mediated dephosphorylation of cyclin E1 at 

ubiquitin ligase-binding sites, preventing its degradation (Hwang and Clurman 2005), but this 

potential signaling pathway remains to be characterized.  

 

Our results point to a calcineurin activity-driven mechanism that ensures Kv2.1 

dephosphorylation in preconditioned neurons, both by dephosphorylating the channel (Misonou 

et al. 2004, Park et al. 2006, Aras et al. 2009b, Shepherd et al. 2012, Shepherd et al. 2013), and 

by promoting cyclin E1-mediated inhibition of Cdk5 kinase activity, as we have demonstrated in 

this study. We postulate that neuroprotection through increased cyclin E1 levels, as reported 

here, occurs at least in part through Kv2.1 dephosphorylation and declustering in preconditioned 

neurons, phenomena that have been closely tied to cell survival in a wide range of injury models 

(Aras et al. 2009a, Aras et al. 2009b, Mohapatra et al. 2009, Shepherd et al. 2012, Shepherd et al. 

2013). Naturally, other mechanisms in addition to Kv2.1 channel modifications may aid in this 

process, such as modulation of NMDA receptors by Cdk5 (Wang et al. 2003a, Rashidian et al. 

2009). However, we showed that Kv2.1 declustering by Kv2.2-CT over-expression also reduces 

NMDA neurotoxicity. Thus, two different stimuli that trigger dispersal of Kv2.1 channel clusters 
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by different mechanisms both activate excitotoxic neuroprotection. These findings strongly 

support a role for channel declustering in ischemic preconditioning. 

 

The specific contribution of Kv2.1 declustering to limiting neuronal hyperactivity in 

ischemia is unknown. Channel cluster localization adjacent to astrocytic processes (Du et al. 

1998) may enable them to sense ischemic glial dysfunction due to compromised glutamatergic 

uptake, leading to excessive neuronal glutamate signaling and Ca2+ influx, which would facilitate 

calcineurin-dependent dephosphorylation and the hyperpolarizing shift in channel activation 

(Misonou et al. 2008, Mulholland et al. 2008, Mohapatra et al. 2009). Subsequent channel 

declustering would remove the channels from the site of Ca2+ release, initiating recovery. 

Alternatively, it was recently reported that the majority of clustered Kv2.1 channels are non-

conducting (O'Connell et al. 2010, Fox et al. 2013), and may play roles in depolarization-driven 

vesicle trafficking (Feinshreiber et al., 2009). In fact, Kv2.1 channel clusters may serve as 

insertion platforms for targeting of new channels to the cell surface (Deutsch et al. 2012). In 

cortical neurons, an oxidative injury-triggered K+ current surge, mediated by newly inserted 

Kv2.1 channels at the plasma membrane, leads to apoptotic cell death (Pal et al. 2003, Pal et al. 

2006, McCord and Aizenman 2013). This cell death mechanism may also be critical in 

promoting NMDA receptor-mediated excitotoxicity (Yao et al. 2009). Cyclin E1-mediated 

dispersal of channel clusters may thus prevent pro-apoptotic insertion of new Kv2.1 channels at 

the cell surface, reducing neuronal damage and cell death in excitotoxic injury.  
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3.0  ISOFORM-SPECIFIC DIVERGENT ROLES FOR RCAN1.1 AND RCAN1.4 IN 

REGULATING NEURONAL VIABILITY  

3.1 ABSTRACT 

Alternate promoter usage and splicing of the RCAN1 gene yields two major brain isoforms, 

RCAN1.1 and RCAN1.4. Previous studies have reported conflicting RCAN1 isoform-dependent 

roles in modulating cell viability. RCAN1.4 protects against astrocytic ischemic injury, as well 

as Zn2+ neurotoxicity, but may be cytotoxic within certain contexts. Increased RCAN1.1 levels 

are implicated in promoting Alzheimer’s disease and Down syndrome-related 

neurodegeneration, whereas the same protein may be protective against oxidative stress, 

ischemia, and Huntington’s disease-associated neurotoxicity. The roles of RCAN1.1 and 

RCAN1.4 in regulating cell survival, particularly in neurons, are therefore not well defined. 

Here, we identify RCAN1 divergent, isoform-specific neuroprotective and neurotoxic processes 

in a well-characterized neuronal preparation. We demonstrate that cortical neurons up-regulate 

RCAN1.4 protein, relative to RCAN1.1, in response to a neuroprotective sub-lethal ischemic 

stimulus. Moreover, RCAN1.4 over-expression in neurons is protective against NMDA 

excitotoxicity and microglia-induced neurotoxicity, two forms of injury that are closely 

associated with ischemic cell death. In contrast, neuronal RCAN1.1 over-expression induces a 

cell death signaling pathway that is partially mediated by calcineurin as well as Zn2+, two 
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components that have been previously linked to ischemic neuronal damage. Our studies suggest 

that RCAN1.1 and RCAN1.4 critically regulate neuronal cell viability within the context of 

ischemia.  

3.2 INTRODUCTION 

Calcineurin is a Ca2+/calmodulin-dependent phosphatase that regulates important physiological 

processes in neurons, including synaptic plasticity and cytoskeletal stability (Winder and Sweatt 

2001). However, calcineurin can be over-activated in neuronal injury, and dysregulation of this 

phosphatase is implicated in neuronal cell death (Asai et al. 1999, Wang et al. 1999a, Shioda et 

al. 2006). Importantly, blocking calcineurin hyper-activation may be a potential early strategy in 

slowing or preventing neuronal ischemic damage (Sharkey and Butcher 1994, Uchino et al. 

2002, Shioda et al. 2006).  

 

RCAN1 is an endogenous regulator of calcineurin that is widely expressed in the cerebral 

cortex, hippocampus, and striatum (Mitchell et al. 2007, Porta et al. 2007). Alternate promoter 

usage and splicing of RCAN1 mRNA produces two major brain isoforms, RCAN1.1 and 

RCAN1.4, which differ in the first exon, and share the last three exons (Fuentes et al. 1997). 

Reports regarding RCAN1 isoform-specific effects on cell viability have been contradictory. 

Although RCAN1.4 may be cytotoxic under certain conditions (Lee et al. 2008), a primarily 

protective role has been suggested for this isoform (Lee et al. 2007, Cho et al. 2008, Sobrado et 

al. 2012). Following in vitro and in vivo ischemia, RCAN1.4 protein and mRNA expression is 

up-regulated in astrocytes, which may limit inflammatory injury (Sobrado et al. 2012). In 
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neurons, RCAN1.4 protects against Zn2+-induced toxicity (Lee et al. 2007), an important 

observation as this metal plays a critical role in neuronal ischemic injury (Koh et al. 1996, Aras 

et al. 2009a, Medvedeva et al. 2009, Shuttleworth and Weiss 2011). In contrast, RCAN1.1 

expression is increased in Alzheimer’s disease and Down syndrome brain tissue, and may 

contribute to neurodegeneration associated with these diseases (Ermak et al. 2001, Sun et al. 

2011). RCAN1.1 also has been reported to promote caspase activation, mitochondrial autophagy, 

and apoptotic cell death under certain conditions (Sun et al. 2011, Ermak et al. 2012, Wu and 

Song 2013), whereas it may be protective in post-ischemic neuronal injury (Brait et al. 2012) and 

Huntington’s disease-associated neurotoxicity (Ermak et al. 2009).  

 

Whether RCAN1 regulates neuronal cell survival by modulating calcineurin activation is 

not well understood (Ermak et al. 2009, Brait et al. 2012). Depending on the isoform, expression 

levels, and phosphorylation status of RCAN1, and on cell type and cytoplasmic environment, 

RCAN1 regulation of calcineurin activity may be inhibitory (Fuentes et al. 2000, Kingsbury and 

Cunningham 2000, Rothermel et al. 2000, Vega et al. 2002, Rothermel et al. 2003, Kishi et al. 

2007, Liu et al. 2009, Martínez-Martínez et al. 2009, Mehta et al. 2009, Mulero et al. 2009, Shin 

et al. 2011), or facilitative (Hilioti et al. 2004, Fox and Heitman 2005, Abbasi et al. 2006, Sanna 

et al. 2006, Liu et al. 2009, Mehta et al. 2009). Additionally, potential calcineurin regulation-

independent roles for RCAN1 have been described (Strippoli et al. 2000, Chang and Min 2005, 

Keating et al. 2008). 

 

In this study, we show that neurons alter the relative levels of the two RCAN1 isoforms 

in response to a neuroprotective, sub-lethal ischemic stimulus. In light of this discovery, we 
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explored the hypothesis that RCAN1 mediates isoform-specific, distinct cell death and survival 

signaling mechanisms in primary cortical neurons, by modulating calcineurin activation or Zn2+-

triggered injurious processes, two cellular signaling components that promote neuronal injury 

following ischemia.  

3.3 MATERIALS AND METHODS 

Cell culture and transfection: Cortical neuronal cultures were prepared from embryonic 

day 16-17 rat embryos of either sex, and transfected with RCAN1.1, RCAN1.4, or corresponding 

control vector, and a luciferase reporter gene, at 21-25 DIV using Lipofectamine 2000 

(Invitrogen; Aras et al. 2009a).  

 

Ischemic preconditioning and toxicity assays: Cultures were preconditioned with 90 

minutes of oxygen-glucose deprivation (OGD) by placing them in an ischemia chamber (Billups-

Rothenberg, Inc.; 95% N2, 5% CO2) in a glucose-free balanced salt solution (composition, in 

mM: 116 NaCl, 5.4 KCl, 0.8 MgSO4, 1 NaH2PO4, 1.8 CaCl2, 26 NaHCO3, 10 HEPES). For 

microglia toxicity assays, transfected neurons were exposed to activated microglia (0.25 x 106 

cells/well with 10 U/ml Interferon-γ and 1 μg/mL lipopolysaccharide) for 24h as described 

previously (Knoch et al. 2008). For NMDA excitotoxicity, 24h after transfection or 32h after 

preconditioning, neurons were treated with glycine (vehicle) ± NMDA. Transfected cells were 

assayed for viability 24h following NMDA/glycine treatment or activated microglia exposure 

using luciferase reporter activity as a marker for cell viability as reported previously (Aras et al. 
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2009a). For non-transfected neurons, lactate dehydrogenase (LDH) release was measured as an 

index of cell death.  

 

Immunoblotting: Protein samples were obtained from neuronal cultures harvested 

immediately or 24h following preconditioning. Cells were washed three times with PBS and 

incubated with lysis buffer (Cell Extraction Buffer, Invitrogen) supplemented with protease 

inhibitor mixture (Roche Diagnostics) and 1 mM phenylmethylsulphonyl fluoride, for 5 min on 

ice. Cell lysates were separated on a 12% SDS-PAGE gel and transferred onto nitrocellulose 

membranes. Membranes were blocked with 1% BSA in PBS with 0.05% Tween 20, and 

incubated with rabbit polyclonal anti-RCAN1 antibody (Sigma Aldrich; 1:1000) or mouse 

monoclonal anti-Tuj1 antibody (Covance; 1:1000) as a loading control. RCAN1 signals were 

quantified by infrared fluorimetry (Li-Cor).  

 

Statistical procedures: All data was quantified from 3-7 independent experiments, 

expressed as mean ± SEM, and analyzed with pair-wise comparisons.  
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3.4 RESULTS 

3.4.1 Neuronal ischemic preconditioning in vitro induces a change in the ratio of 

RCAN1.4 to RCAN1.1 protein 

We have previously demonstrated that chemically-induced ischemic preconditioning (as 

described in Chapter 2), which promotes neuronal resistance against excitotoxic injury, induces 

calcineurin-mediated cellular processes that may limit neuronal damage (Aras et al. 2009a, Aras 

et al. 2009b, Shah et al. 2014). We hypothesized that preconditioned neurons may alter 

endogenous RCAN1.1 and RCAN1.4 protein levels in association with cell survival-promoting 

processes. To test this hypothesis, we first characterized the conditions necessary for oxygen-

glucose deprivation (OGD)-mediated preconditioning in our system. We chose OGD as a more 

physiologically relevant ischemic stimulus compared to the chemical ischemic preconditioning 

used previously in our work (Chapter 2; McLaughlin et al. 2003, Aras et al. 2009). We exposed 

cortical neurons to increasing durations of OGD, and found that a 90 minute exposure to OGD 

was the most extensive sub-lethal stimulus tolerated by the cells. We then tested whether this 

stimulus would be neuroprotective against NMDA receptor-mediated excitotoxicity, and found 

that 90 minutes OGD preconditioning significantly reduces NMDA neurotoxicity (Figure 8A). 

 

We then measured RCAN1.1 and RCAN1.4 protein levels in neurons immediately after, 

and twenty-four hours following preconditioning in sister cultures to identify possible changes in 

levels of the RCAN1 isoforms. As shown in Figure 8B, we found an up-regulation of RCAN1.4 

protein levels relative to RCAN1.1 twenty-four hours following 90 minutes of OGD, which 
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suggested to us that relative changes in RCAN1 isoform levels may be involved in cell signaling 

events that promote neuronal tolerance.   

3.4.2 RCAN1.4 over-expression reduces neuronal ischemic injury  

The endogenous change in the RCAN1.4/RCAN1.1 protein ratio in preconditioned neurons led 

us to test the effects of changes in RCAN1 isoform levels on cell survival in excitotoxicity. First, 

we investigated whether neuronal transfection of an RCAN1.4-expressing plasmid alone would 

be sufficient to decrease neurotoxicity in response to exogenous injury. As ischemic 

preconditioning reduces NMDA-mediated excitotoxic cell death (Figure 8A), we exposed 

RCAN1.4-over-expressing neurons to NMDA-induced injury and found that, indeed, RCAN1.4 

over-expression significantly reduced excitotoxic neuronal cell death (Figure 8C).  

 

We then tested whether RCAN1.4 could confer neuroprotection in other models of 

neuronal injury. We and others have previously established intracellular Zn2+ dysregulation as an 

important trigger of ischemic neuronal injury (Koh et al. 1996, Aras et al. 2009a, Medvedeva et 

al. 2009, Shuttleworth and Weiss 2011). Furthermore, a previous study demonstrated that 

RCAN1.4 over-expression mitigates exogenous Zn2+-induced neuronal cell death (Lee et al. 

2007). We therefore explored whether RCAN1.4 could render neurons resistant to a Zn2+-

mediated neuronal injury cascade instigated by activated microglia (Knoch et al. 2008). In fact, 

activated microglia have been suggested to be an important contributor to neurotoxic signaling 

pathways in the ischemic brain (Wang et al. 2007). We found a robust decrease in neuronal cell 

death in RCAN1.4-over-expressing neurons exposed to activated microglia, when compared to 

vector-expressing cells (Figure 8C). Thus, in addition to reducing NMDA excitotoxicity, 
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RCAN1.4 is also significantly neuroprotective against an injurious stimulus that has been closely 

associated with Zn2+-mediated toxicity (Knoch et al. 2008). 
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Figure 8 – RCAN1.4 is up-regulated relative to RCAN1.1 in preconditioned neurons, and reduces NMDA 

excitotoxicity and activated microglial toxicity 
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Figure 8. A, Top: 24h post OGD, cell toxicity is assayed in cortical neurons via quantifying 

lactate dehydrogenase release (LDH). *** p < 0.001 compared to control and 90 minutes, * p < 

0.05 compared to 180 minutes, ANOVA, n = 5, 3, 3, 5 for control, 90, 135, 180 min, 

respectively. Bottom: Cells were incubated in OGD (preconditioning) or control for 90 minutes, 

treated 32h later with 10 μM glycine (vehicle) ± 30 μM NMDA for 30 minutes, and assayed for 

toxicity 24h later. Shown is mean (± SEM) toxicity in non-preconditioned or preconditioned 

neurons exposed to NMDA, relative to vehicle-treated cells; * p < 0.05, two-tailed paired t-test, n 

= 4. B, Inset: lysates from preconditioned neurons were probed with anti-RCAN1 (green) or 

Tuj1 (loading control, red) antibody. At each time point, RCAN1.1 or RCAN1.4 of OGD was 

normalized to RCAN1.1 or RCAN1.4, respectively, of control. Results of 4 such experiments, 

each indicated by a line, as well as mean (± SEM), are shown; * p < 0.05; two-tailed paired t-

test. D, Neurons transfected with RCAN1.4 or empty vector, and luciferase reporter gene are 

exposed to 10 μM glycine ± 50 μM NMDA (1st 2 columns) for 1h, or activated microglia (2nd 

two columns), 24h following transfection and 24h prior to viability assay. Shown is mean (± 

SEM) viability, expressed as % of vehicle-treated cells, in neurons treated with NMDA or 

exposed to activated microglia (AMG); ** p < 0.01, n = 6; * p < 0.05, n = 7, respectively; two-

tailed paired t-test. 
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3.4.3 Over-expressing RCAN1.1 is neurotoxic via a calcineurin- and Zn2+-dependent cell 

death mechanism 

We next tested the effects of over-expressing RCAN1.1 in primary neurons. We found that over-

expressing RCAN1.1 alone caused significant neuronal cell death (~50% toxicity), whereas 

RCAN1.4, as expected, did not alter neuron viability (Figure 9A). We then designed studies to 

examine the mechanism of RCAN1.1-mediated cell death.  

 

Dysregulated calcineurin activity has been implicated in neuronal cell death (Asai et al. 

1999, Wang et al. 1999a). Studies have demonstrated both inhibition and activation of 

calcineurin activity by RCAN1 (Fuentes et al. 2000, Kingsbury and Cunningham 2000, 

Rothermel et al. 2000, Sanna et al. 2006, Liu et al. 2009, Shin et al. 2011). Although several 

studies demonstrate that either RCAN1 isoform can act as a potent inhibitor of calcineurin 

phosphatase activity, a study comparing the role of these two isoforms in angiogenesis has 

suggested that in this context, RCAN1.4 inhibits calcineurin, whereas RCAN1.1 potentiates 

calcineurin-dependent responses (Qin et al. 2006). Our studies likewise suggest opposing roles 

for RCAN1.4 and RCAN1.1 (Figure 8, Fig 9A). Therefore, we investigated whether RCAN1.1 

induces neurotoxicity via a calcineurin-dependent process. We treated neurons over-expressing 

RCAN1.1 with deltamethrin, a calcineurin inhibitor (Enan et al. 1992, Misonou et al. 2004, 

Hayashi et al. 2009, although see Swingle et al. 2007). As shown in Figure 9B, deltamethrin 

treatment of RCAN1.1 over-expressing neurons significantly improved cell survival, suggesting 

that RCAN1.1 over-expression may act to stimulate calcineurin activity, and as such, promote 

cell death. Although deltamethrin is a less commonly used calcineurin inhibitor, we chose to use 

this drug in this experiment after finding that two more commonly used inhibitors, FK506 and 
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cyclosporine A (CsA), were neurotoxic following an overnight incubation (data not shown). In 

contrast, deltamethrin exposure was not neurotoxic, and has been previously used in primary 

neuronal cultures to block calcineurin activation (Misonou et al. 2004, Hayashi et al. 2009). 

 

Dysregulation of Zn2+ homeostasis has also been shown to contribute to neuronal cell 

death, particularly in ischemia (Koh et al. 1996, Aras et al. 2009a, Medvedeva et al. 2009, 

Shuttleworth and Weiss 2011). RCAN1.4 over-expression protects against exogenous Zn2+-

induced cell death (Lee et al. 2007), and Zn2+-mediated microglial injury (Knoch et al. 2008; 

Figure 8D), in primary neurons. The contrasting effects of the two isoforms (Figure 8; Figure 

9A) led us to test whether RCAN1.1 neurotoxicity acts via a Zn2+-dependent mechanism. 

Accordingly, RCAN1.1-over-expressing neurons exposed to TPEN, a high-affinity, cell-

permeable Zn2+ chelator that is neuroprotective against ischemic injury (Aras et al. 2009a), 

exhibit significantly increased cell survival compared to vehicle-treated, RCAN1.1-expressing 

neurons (Figure 9B). Thus, RCAN1.1-mediated neuronal cell death occurs via a calcineurin- and 

Zn2+-activated injurious signaling pathway. Given the previously described roles of calcineurin 

dysregulation and increased intracellular Zn2+ in promoting ischemic injury, RCAN1.1 may be a 

component of neuronal ischemic cell death signaling cascades. 
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Figure 9 – RCAN1.1 toxicity is partially dependent on calcineurin and zinc signaling 
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Figure 9. A, Cortical neurons were transfected with RCAN1.1, RCAN1.4, or corresponding 

empty vector and assayed for viability 24-48h later. Shown are mean ± SD luciferase values 

(counts per second, CPS) of a representative experiment, performed in quadruplicate; ** p < 

0.01, two-tailed unpaired t-test. Inset, Summary of experiments; mean ± SEM is expressed as % 

viability of corresponding vector; ** p < 0.01, two-tailed unpaired t-test, n = 19 for RCAN1.4, n 

= 13 for RCAN1.1. B, Neurons over-expressing RCAN1.1 or empty vector were treated with 

vehicle, 5 μM deltamethrin, or 3 μM TPEN 5h post transfection and assayed for viability 19h 

later. Mean ± SEM is expressed as % viability of corresponding vehicle-treated cells; * p < 0.05, 

*** p < 0.01, two-tailed paired t-test, n = 4. 
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3.5 DISCUSSION 

We found that neurons increase the abundance of the endogenous calcineurin-regulatory protein 

RCAN1.4, relative to RCAN1.1, in response to a sub-lethal ischemic stimulus that induces 

excitotoxic neuronal tolerance. Importantly, in agreement with this change in RCAN1 isoform 

levels, RCAN1.4 over-expression was sufficient to significantly limit NMDA-induced, as well 

as, activated microglia-mediated neurotoxicity.   

 

Although blocking calcineurin activity has been shown to limit ischemic brain damage 

(Uchino et al. 2002, Shioda et al. 2006), we postulate that RCAN1.4 is not acting solely via its 

ability to inhibit calcineurin. We have ascertained that pharmacologic inhibition of calcineurin is 

not sufficient to reduce excitotoxic cell death in our preparation (data not shown). Therefore, 

whereas calcineurin dysregulation may contribute significantly to ischemic neuronal cell death, 

our findings, in agreement with a previous report (Butcher et al. 1997), indicate that additional 

injurious signaling mechanisms may promote the excitotoxic injury component of ischemia. 

Indeed, RCAN1 may affect several cellular processes independently of its calcineurin-regulatory 

function, such as post-transcriptional events (Strippoli et al. 2000), vesicle exocytosis (Keating et 

al. 2008), and mitochondrial metabolism and morphology (Chang and Min 2005). Whether 

RCAN1.4-mediated changes in these processes are important for neuronal excitotoxic tolerance 

remains to be investigated. 
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Our results showing RCAN1.1 over-expression-induced neurotoxicity are consistent with 

those showing that primary neurons transiently over-expressing RCAN1.1 exhibit enhanced 

sensitivity to caspase-dependent apoptotic cell death (Sun et al. 2011). However, a recent study 

demonstrated that mice globally over-expressing RCAN1.1 exhibit increased resistance, 

compared to wild-type animals, in an in vivo model of stroke. Neurons from RCAN1.1 

transgenic mice are also less susceptible to OGD-induced apoptotic cell death (Brait et al. 2012). 

Whether this discrepancy is due to differences in the experimental models, the duration of 

RCAN1.1 over-expression, or activation of compensatory mechanisms in the transgenic animals 

will require further study. 

 

The sole difference between the RCAN1.1 and RCAN1.4 proteins lies in the N-termini, 

as a result of distinctive first exons (Fuentes et al. 1997), and in fact, both RCAN1 isoforms 

contain the same C-terminal calcineurin-binding and inhibition domains. There are few studies 

examining possible functional differences of the divergent N-termini. One study demonstrated 

that a site within the RCAN1.4 N-terminus undergoes calpain-mediated cleavage, which 

modulates its interaction with calcineurin and with Raf-1 kinase (Cho et al. 2005), although the 

potential significance of this mechanism is unknown. Alternatively, a specific component of the 

RCAN1.1 N-terminus may trigger cell death signaling pathways that over-ride RCAN1-mediated 

protection under conditions of RCAN1.1 over-expression, but that are out-competed by 

RCAN1.4 over-expression. It is also possible that there are N- and C-terminal interactions within 

the RCAN1.1 protein that are necessary for the neurodestructive actions of this isoform.  
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We have identified important functional distinctions between the neuronal RCAN1 

isoforms. Our findings suggest that RCAN1 isoform-specific signaling pathways, via calcineurin 

regulation-independent and dependent mechanisms, as well as through Zn2+-triggered processes, 

contribute significantly to neuronal cell death and survival within the context of ischemic injury. 
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4.0  GENERAL DISCUSSION 

The goal of this dissertation was to explore calcineurin-mediated signaling in neuronal 

ischemic preconditioning and cell death. Calcineurin activity-induced Kv2.1 channel regulation 

in ischemia had been previously described, but the cell signaling mechanisms had not been fully 

understood. Our work has uncovered a novel role for a calcineurin-dependent increase in cyclin 

E1 protein levels in neuronal ischemic preconditioning. Cyclin E1 promotes Kv2.1 channel 

dephosphorylation and declustering by blocking Cdk5 kinase-dependent phosphorylation of 

Kv2.1 channels. Importantly, cyclin E1 over-expression is sufficient to promote excitotoxic 

neuronal tolerance, suggesting that channel declustering may be an adaptive mechanism in cells 

undergoing excitotoxic injury.  

 

While calcineurin-mediated cellular processes may be important in neuroprotection, 

dysregulated calcineurin activity can be neurotoxic. Conflicting evidence exists on the role of 

calcineurin dysregulation, as well as the calcineurin regulatory protein RCAN1, in mediating 

neuronal viability. We found that the two brain RCAN1 isoforms mediate divergent effects on 

neuronal viability through calcineurin-dependent as well as through potentially calcineurin-

independent cellular signaling cascades. In this discussion, I will describe the role of neuronal 

calcineurin activity in physiological and pathological contexts, and in ischemic preconditioning. 

Further, I will highlight the evidence supporting calcineurin inhibition as a therapeutic target for 
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stroke, and discuss the important caveats that exist in moving forward with this therapeutic 

strategy. 

4.1 CALCINEURIN REGULATES PHYSIOLOGICAL FUNCTIONS IN NEURONS 

Physiological calcineurin signaling, mediated by dephosphorylation of numerous molecular 

targets, is crucially important for a wide range of normal neuronal processes. These functions of 

calcineurin are discussed in the sections below, including a few illustrative examples of 

molecular targets that regulate each function.  

4.1.1 Neuronal structure 

Calcineurin dephosphorylates and consequently regulates several proteins that constitute the 

neuronal cytoskeleton. Calcineurin-mediated dephosphorylation of MAP2 and tau increases the 

affinity of these proteins for microtubules, thus contributing to stabilization of microtubule 

length. Additionally, calcineurin dephosphorylates tubulin, increasing its ability to assemble into 

microtubules (Goto et al. 1985, Mandelkow et al. 1995, Groth et al. 2003).  

4.1.2 Neuro-transmission and synaptic plasticity 

Generally, calcineurin negatively regulates synaptic transmission. As such, calcineurin activity is 

thought to oppose long-term potentiation (LTP) and promote long-term depression (LTD) by 

dephosphorylating and thus modifying the activity and/or localization of a number of proteins 
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that mediate these mechanisms. However, calcineurin has a wide range of molecular targets at 

both excitatory and inhibitory synapses. Therefore, the effects of the phosphatase on synaptic 

plasticity, and consequently, on learning and memory, can be complex and depend on factors 

such as cell type, post-synaptic receptor, and the nature of the synaptic stimulus (Groth et al. 

2003, Baumgärtel and Mansuy 2012). 

 

Calcineurin indirectly regulates synaptic function by dephosphorylating Inhibitor-1, 

releasing its inhibition of protein phosphatase-1. Activated protein phosphatase-1, in turn, 

dephosphorylates numerous proteins that influence synaptic plasticity as well as other cellular 

processes (Baumgärtel and Mansuy 2012). Calcineurin also directly modifies synaptic function 

by dephosphorylating several pre-and post-synaptic proteins. Post-synaptic AMPA receptors 

(AMPA-R), for example, are important targets of calcineurin-mediated dephosphorylation. 

AMPA-R internalization is a key regulatory mechanism that promotes an NMDA receptor-

dependent form of LTD. Phosphorylation of serine residue 845 (Ser845) of the AMPA-R GluR1 

subunit increases channel open time and promotes receptor trafficking to the membrane, whereas 

dephosphorylation activates AMPA-R internalization and weakens synaptic transmission. 

Through restricting synaptic AMPA-R localization both by direct dephosphorylation of GluR1 

Ser845, and by aiding in NMDA receptor-activated redistribution of protein kinase A, a GluR1-

phosphorylating kinase, calcineurin signaling is an important mechanism for LTD induction and 

expression (Morishita et al. 2005, Baumgärtel and Mansuy 2012, Sanderson et al. 2012).  

 

A-type GABA receptors are another group of post-synaptic receptors that are 

dephosphorylated by calcineurin in an activity-dependent LTD signaling pathway in CA1 
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interneurons (Wang et al. 2003b). Other targets of calcineurin dephosphorylation that regulate 

synaptic function include Kv4.2 channels, the metabotropic glutamate receptor mGluR5, the 

NR2A subunit of NMDA receptors, and the tyrosine phosphatase STEP (Baumgärtel and 

Mansuy 2012).  

4.1.3 Neuronal system development 

Studies across different species strongly suggest a critical role for calcineurin in maintaining 

normal development of the nervous system. Calcineurin-mediated NFAT dephosphorylation 

significantly influences axonal outgrowth, dendritic morphogenesis, and synapse maturation in 

developing neurons (Graef et al. 2003, Schwartz et al. 2009). Recent reports have also uncovered 

an interesting role for calcineurin/NFAT-mediated transcriptional repression of specific 

developmental genes in order to ensure proper neuronal outgrowth within the correct 

developmental time window (Nguyen et al. 2009, Ding et al. 2013). Calcineurin/NFAT-driven 

gene transcription additionally participates in an NMDA receptor/BDNF-signaling pathway that 

promotes neuronal cell survival in the developing rat cortex (Vashishta et al. 2009). Finally, in 

addition to NFAT, several other molecular targets are dephosphorylated by calcineurin in the 

developing nervous system. Calcineurin-dephosphorylated SMAD1/5 proteins, for example, are 

crucial in promoting neural induction in human and murine embryonic stem cells (Cho et al. 

2014). MEF2, dephosphorylated and activated by calcineurin, regulates activity-dependent 

synaptic differentiation in rat hippocampal and cerebellar granule neurons (Flavell et al. 2006, 

Shalizi et al. 2006).  
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4.2 CALCINEURIN SIGNALING IN ISCHEMIC NEUROPROTECTION  

In addition to regulating normal cellular processes, calcineurin also mediates adaptive, cell 

survival-promoting signaling pathways in response to injury. It has been demonstrated that 

excitatory stimuli or a sub-lethal ischemic insult induces calcineurin-mediated Kv2.1 channel 

dephosphorylation, dispersal of somatodendritic channel clusters, and a concomitant hyper-

polarizing shift in the channel’s voltage-gated activation. These changes are thought to promote 

cell survival within the context of ischemic or excitotoxic injury (Misonou et al. 2006, Aras et al. 

2009b, Mohapatra et al. 2009, Shepherd et al. 2013). In this section, I will discuss calcineurin-

dependent and independent signaling pathways that regulate Kv2.1 localization and function, as 

well as the contribution of these mechanisms towards establishing ischemic neuronal tolerance.  

 

All three Kv2.1 channel modifications – dephosphorylation, declustering, and the hyper-

polarizing shift – occur in response to a wide range of stimuli in neurons: in cultured rat 

hippocampal neurons exposed to glutamate (Misonou et al. 2004), NMDA (Mulholland et al. 

2008), carbachol (Mohapatra and Trimmer 2006), chemical ischemia (Misonou et al. 2005), 

SDF-1α (Shepherd et al. 2012), or HIV glycoprotein-120 (Shepherd et al. 2013); in cultured rat 

cortical neurons treated with an ischemic preconditioning stimulus (Aras et al. 2009a, Aras et al. 

2009b); and in ischemic rat cortical slices (Misonou et al. 2008). All three changes can also be 

induced in HEK cells in response to cholinergic stimulation or Ca2+ influx (Mohapatra and 

Trimmer 2006). In vivo, Kv2.1 dephosphorylation and dispersal of channel clusters in the rat 

brain are triggered following CO2 inhalation or seizure-inducing kainate injections (Misonou et 

al. 2004, Misonou et al. 2005). 
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Park et al showed that the phosphorylation status of at least seven, calcineurin 

dephosphorylation-sensitive, C-terminal residues critically regulates the voltage-gated activation 

of recombinant Kv2.1 channels expressed in HEK cells (Park et al. 2006). However, the findings 

presented in our study indicate that Kv2.1 channel dephosphorylation and declustering can occur 

without a concomitant hyperpolarizing shift in voltage-gated activation under certain conditions. 

Over-expression of cyclin E1 or exposure to roscovitine, both of which trigger channel 

declustering by blocking Cdk5-mediated Kv2.1 Ser603 phosphorylation (Figure 3; Cerda and 

Trimmer 2011, Odajima et al. 2011), did not modify the channel’s voltage-gated activation. In 

light of these findings, we suspect that the Kv2.1 hyper-polarizing activation shift may require 

multiple converging signaling pathways that are activated following excitatory or ischemic 

stimuli (Misonou et al. 2004, Aras et al. 2009b), but not by Cdk5 inhibition alone. Additionally, 

these pathways may not, in all cases, involve calcineurin-dependent dephosphorylation of the 

channel’s C-terminal residues (Park et al. 2006). In fact, recent studies have identified several 

such potential signaling pathways: 

 

Sub-lethal intracellular Zn2+ release: Previous investigations in our laboratory have 

demonstrated a requirement for sub-lethal intracellular Zn2+ release for preconditioning-induced 

Kv2.1 channel declustering and hyper-polarized voltage-gated activation, but not for Kv2.1 

dephosphorylation (Aras et al. 2009b). In other words, in preconditioned neurons exposed to 

TPEN, dephosphorylation of the channel still occurs, whereas channel declustering and the 

hyperpolarizing shift in voltage-gated channel activation are blocked. Possibly, in cyclin E1-

over-expressing neurons, Cdk5 inhibition may be sufficient to mediate Kv2.1 dephosphorylation 

and declustering, but without intracellular Zn2+ release, the channel’s voltage-gated activation 
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remains unchanged. Interestingly, in vitro assays demonstrated that addition of Zn2+ or TPEN did 

not affect calcineurin phosphatase activity, while calcineurin activity inhibition did not modify 

levels of preconditioning-induced Zn2+ release in neurons (Aras et al. 2009b). We are currently 

conducting studies to better understand the role of Zn2+ in modulating Kv2.1 localization and 

function, and to define the possible convergence of Zn2+- and Ca2+/calcineurin-activated 

signaling pathways in neuronal ischemia.  

 

Kv2.1 channel SUMOylation: SUMOylation is a post-translational modification that involves 

the covalent linkage of the small ubiquitin-like modifier (SUMO) peptide to a lysine residue that 

lies within a consensus target motif. This modification may affect the stability, activity or 

intracellular localization of the SUMOylated protein (Silveirinha et al. 2013). A recent study 

demonstrated that native Kv2.1 channels interact with SUMO proteins in neurons, and are 

reversibly modulated by SUMOylation and deSUMOylation (Plant et al. 2011). Exogenous 

expression of SUMO proteins depolarizes neuronal Kv2.1 voltage-gated activation and decreases 

peak currents. De-SUMOylation has the opposite effect, causing a hyperpolarizing shift in Kv2.1 

activation and increasing peak currents. Importantly, expression of a de-SUMOylating enzyme 

decreases neuronal excitability, suggesting that SUMOylation and de-SUMOylation of Kv2.1 

channels could play a role in mediating neuronal excitability (Plant et al. 2011). Although the 

role of SUMOylation in ischemia is not fully understood, increased SUMOylation is observed in 

several experimental models of ischemia, and SUMOylation is generally thought to promote 

neuronal tolerance (Silveirinha et al. 2013). However, specific SUMOylation and de-

SUMOylation of Kv2.1 channels in ischemia remain largely unexplored. As such, de-

SUMOylation represents a possible mechanism of hyper-polarizing the channel’s voltage-gated 
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activation that is entirely independent of calcineurin-mediated channel dephosphorylation. This 

mechanism may be activated in neurons exposed to excitatory stimuli or ischemic 

preconditioning.  

 

Calcineurin-independent Kv2.1 channel dephosphorylation: Glutamate exposure and 

consequent NMDA receptor-mediated dephosphorylation and declustering of Kv2.1 channels has 

been demonstrated to require calcineurin phosphatase activity in cultured hippocampal neurons 

(Misonou et al. 2004). In contrast, treating organotypic rat hippocampal slices with NMDA 

induces calcineurin-independent dephosphorylation of Kv2.1 channels, along with dispersal of 

channel clusters and a hyper-polarizing shift in the channel’s voltage-gated activation 

(Mulholland et al. 2008). These channel modifications are thought to proceed via activation of 

extrasynaptic, rather than synaptic, NMDA receptors (Misonou et al. 2008, Mulholland et al. 

2008. Whether the Kv2.1 hyperpolarizing shift is dependent on calcineurin activation was not 

examined in this study. Nonetheless, this study illustrates that possibly different populations of 

Kv2.1 channels may be modified via distinct dephosphorylation-dependent signaling pathways, 

and that the hyperpolarizing shift in the channel’s voltage-gated activation may require 

calcineurin-independent dephosphorylation in certain circumstances. Neuronal cyclin E1 over-

expression blocks the phosphorylation of Ser603, a calcineurin dephosphorylation-sensitive 

residue that critically regulates channel function (Fig 3; Misonou et al. 2006, Park et al. 2006, 

Cerda and Trimmer 2011). However, it is possible that other, unknown channel residues subject 

to calcineurin-independent dephosphorylation remain phosphorylated, and thus the channel’s 

activation kinetics are unchanged.    
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Several additional channel phosphorylation and dephosphorylation mechanisms exist that 

instigate changes in Kv2.1-mediated K+ currents without altering voltage-gated activation. As 

described earlier, phosphorylation at Ser800 and Tyr124 promotes an oxidant-induced, Kv2.1-

mediated K+ current surge and consequent apoptotic cell death in neurons (Pal et al. 2003, 

Redman et al. 2009). Another study has shown that serum deprivation triggers an NMDA 

receptor-mediated enhancement of Kv2.1 channel K+ currents that promotes apoptotic cell death. 

Interestingly, increased surface expression of Kv2.1 channels in this pro-apoptotic environment 

requires calcineurin-independent, PP1/PP2A-dependent channel dephosphorylation (Yao et al. 

2009). The relationship between pro-apoptotic functions of Kv2.1 and neuroprotective channel 

modulations has not yet been well characterized. In this regard, Shepherd et al have 

demonstrated that both mechanisms may occur in response to different exposure durations of the 

same type of injury (Shepherd et al. 2012). 

 

Somewhat to our surprise, we found that despite having no effect on Kv2.1 channel 

voltage-gated activation, cyclin E1 over-expression reduced neuronal excitotoxicity to a similar 

extent as ischemic preconditioning (Figure 6). Furthermore, over-expression of the Kv2.2 C-

terminus, which displaces Kv2.1 from clusters (Figure 7) without changing the channel’s 

voltage-gated activation (Baver and O’Connell 2012), also reduces NMDA-mediated 

neurotoxicity. These findings indicate channel declustering may be sufficient to promote 

excitotoxic neuroprotection in some instances. In light of these findings, we suggest that Kv2.1 

declustering and the activation shift may represent two related, but not unequivocally linked, 

mechanisms of channel regulation that reduce neuronal cell damage after ischemic injury. For 

example, Kv2.1 declustering may promote cell survival in excitotoxicity independently of the 
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channel’s ion conducting properties, by precluding pro-apoptotic insertion of new Kv2.1 

channels at the membrane (Deutsch et al. 2012). In fact, a K+ current surge mediated by Kv2.1 

channels may play a critical role in serum deprivation-induced, NMDA receptor-mediated, 

apoptotic cell death in neurons (Yao et al. 2009). The hyper-polarizing activation shift may occur 

in an entirely different population of non-clustered, conducting channels (O'Connell et al. 2010), 

thus reducing membrane excitability and limiting excitotoxic neuronal cell damage. A stimulus 

such as ischemic preconditioning would trigger both changes, presumably by increasing direct 

calcineurin-mediated channel dephosphorylation and the consequent hyper-polarizing activation 

shift (Aras et al. 2009b), and by promoting cyclin E1-dependent Kv2.1 channel declustering 

(Figure 3), thus significantly reducing neurotoxicity. In fact, although cyclin E1 over-expression 

reduced NMDA-mediated neurotoxicity to the same extent as ischemic preconditioning in our 

experiments (Figure 6), we found that cyclin E1 was not effective against higher concentrations 

of NMDA. In contrast, chemical ischemic preconditioning promotes cell survival against higher 

concentrations and duration of NMDA exposure (McLaughlin et al. 2003, Aras et al. 2009a), 

suggesting that at increased levels of excitotoxic injury, channel declustering may not be 

sufficient for neuroprotection, and additional mechanisms that reduce hyper-excitability, such as 

shifting Kv2.1 channel voltage-gated activation, may be required.  

 

A number of studies support the concept that dephosphorylation, declustering, and the 

change in biophysical properties of Kv2.1 channels may represent distinct modes of regulation. 

Although injury-induced channel declustering is blocked by calcineurin inhibitors (Misonou et 

al. 2004, Misonou et al. 2005, Aras et al. 2009b, Shepherd et al. 2013), dispersal of Kv2.1 

clusters can be triggered independently by a range of stimuli. Importantly, these declustering 
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mechanisms may not require channel dephosphorylation by calcineurin. Actin depolymerization, 

for example, declusters Kv2.1 channels in HEK cells without modifying the channel’s 

biophysical properties (Tamkun et al. 2007, O'Connell et al. 2010). Cholesterol depletion causes 

the formation of larger channel clusters compared to the Kv2.1 clusters in un-treated cells, but 

the effect of this manipulation on channel function has not been tested (O'Connell and Tamkun 

2005). Indeed, it would be interesting to uncover a stimulus that activates Kv2.1 

dephosphorylation and modulates the channel’s electrophysiological properties without 

disrupting the channel clusters.  

 

As alluded to earlier, studies are also needed to identify different populations of Kv2.1 

channels, and to determine exactly which subset is modified in response to different stimuli. In 

this regard, Sarmiere and colleagues have recently investigated a population of Kv2.1 channels at 

the axon initial segment (AIS) in cortical and hippocampal mammalian neurons (Sarmiere et al. 

2008). Kv2.1 channels may traffic to the AIS through a mechanism that is distinct from delivery 

of channels to the cell body and proximal dendrites. Ser586Ala, a channel mutant that does not 

cluster in neurons (Lim et al. 2000), traffics differently than wild-type channels to dendrites, 

displaying modified vesicle velocity and abnormal, distal dendritic localization. Trafficking of 

the mutant to the AIS, by comparison, is unhindered and identical to delivery of the wild-type 

channel to the AIS (Jensen et al. 2014). Remarkably, channel clusters in the AIS remain intact 

following in vivo injury that triggers both dephosphorylation of channels in the AIS, as well as 

dephosphorylation and declustering of Kv2.1 channels in the soma and dendrites (King et al. 

2014). This result again strongly indicates that channel dephosphorylation does not 

unequivocally lead to channel declustering. Given the critical role of Kv2.1 channels in 
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restraining neuronal excitability, particularly by modulating activity-dependent action potential 

frequency (Du et al. 2000, Mohapatra et al. 2009, Guan et al. 2013), localization-specific 

modifications of the channel are likely to be highly relevant in modulating excitotoxic cell 

signaling cascades.  

4.3 CALCINEURIN DYSREGULATION AND NEUROTOXICITY 

The results presented in this thesis demonstrate that ischemic preconditioning triggers an 

increase in the protein levels of RCAN1.4, relative to RCAN1.1, in cortical cultures (Figure 8). 

Further, neuronal over-expression of RCAN1.4 reduces NMDA excitotoxicity and activated 

microglia-induced neuronal cell death, two types of neuronal injury that are closely associated 

with ischemia. Although calcineurin signaling is required for important physiological processes 

in neurons, dysregulated calcineurin phosphatase activity may be detrimental to cell survival. As 

an endogenous regulator of calcineurin, RCAN1.4 may promote neuronal tolerance in injury 

models by inhibition of calcineurin over-activation. This section will focus on calcineurin 

dysregulation in neuronal cell death, and highlight the potential roles of RCAN1.1 and RCAN1.4 

in regulating calcineurin activity.  

4.3.1 Calcineurin dysregulation is a potential therapeutic target in stroke 

Dysregulated calcineurin activation promotes neurotoxic signaling pathways, particularly 

processes involved in apoptotic cell death. Exogenous expression of a constitutively active 

calcineurin mutant enhances cellular caspase-3 activity and LDH release, and renders neurons 
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and non-neuronal cells more susceptible to apoptotic cell death triggered by normally sub-lethal 

injurious stimuli (Shibasaki and McKeon 1995, Asai et al. 1999). Further, forced high expression 

of constitutively active calcineurin is sufficient to activate apoptosis in rat cortical neurons (Asai 

et al. 1999).  

 

The best-characterized mechanism of calcineurin-dependent apoptotic cell death involves 

injury-induced, calcineurin-mediated dephosphorylation of Bcl-2-associated death promoter 

(BAD). Dephosphorylated BAD dissociates from 14-3-3 proteins in the cytosol, and translocates 

to the mitochondria, where it dimerizes with Bcl-xl. This dimerization promotes apoptotic cell 

death by sequestering Bcl-xl and preventing its anti-apoptotic functions (Wang et al. 1999a). 

Various components of this apoptotic signaling cascade have been validated in several different 

neuronal injury models: (i) in rat hippocampal neurons exposed to glutamate (Wang et al. 

1999a), ammonia (Yang et al. 2004), or homocysteine (Wang et al. 2012); (ii) in mouse motor 

neurons following spinal cord injury (Springer et al. 2000); (iii) in retinal ganglionic neurons of 

mice subjected to elevated intraocular pressure (Huang et al. 2005); and (iv) in the mouse brain 

following prion protein injection (Mukherjee et al. 2010). In addition to BAD dephosphorylation, 

calcineurin over-activation may promote the expression of pro-apoptotic genes in neurons by 

directly dephosphorylating or indirectly altering the phosphorylated levels of the transcription 

factors NFAT (Terada et al. 2003, Jayanthi et al. 2005, Lee et al. 2005), CREB (Sée and Loeffler 

2001, Lee et al. 2005, Mukherjee et al. 2010), or FKHR (Shioda et al. 2007). Other potential 

targets of calcineurin-mediated dephosphorylation in neuronal cell death include death-

associated protein kinase (Shamloo et al. 2005), neuronal nitric oxide synthase (Rameau et al. 

2003), and Akt kinase (Uchino et al. 2002, Park et al. 2008; although see Shioda et al. 2007).  
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What is the specific contribution of calcineurin over-activation to excitotoxic cell death in 

neurons? An important study by Wu and colleagues demonstrated that in primary rat cortical and 

hippocampal neurons, glutamate induces calpain-dependent cleavage of calcineurin, producing a 

constitutively active calcineurin protein product with a concomitant increase in Ca2+-independent 

calcineurin phosphatase activity. Neuronal caspase-3 activity and apoptotic cell death, activated 

by glutamate exposure or by transfection of the calcineurin mutant, are diminished by treatment 

with FK506, a pharmacological inhibitor of calcineurin (Wu et al. 2004). Other studies in 

cortical and hippocampal neurons, and in CGNs, have similarly demonstrated that inhibiting 

calcineurin phosphatase activity with CsA, FK506, deltamethrin, or a calcineurin auto-inhibitory 

peptide (Terada et al. 2003), blocks the pro-apoptotic BAD dephosphorylation signaling cascade 

described above (Wang et al. 1999a), and reduces NMDA receptor-mediated cell death 

(Ankarcrona et al. 1996, Wang et al. 1999a, Marshall et al. 2003, Rameau et al. 2003, Terada et 

al. 2003).  

 

In vivo studies have also demonstrated the role of calcineurin dysregulation in promoting 

ischemic neuronal damage. Middle cerebral artery occlusion (MCAO) in mice and increased 

intraocular pressure in the rat retina, both causing neuronal ischemic injury, lead to the 

generation of constitutively active calcineurin (Huang et al. 2005, Shioda et al. 2006, Shioda et 

al. 2007, Park et al. 2008, Brait et al. 2012). FK506 administration blocks cell death-inducing 

signaling processes, such as NFAT nuclear translocation-dependent FasL expression, BAD 

dephosphorylation, and caspase-3 activation, as well as reducing ischemic neuronal cell death 

and brain infarct volume in these ischemic injury models (Sharkey and Butcher 1994, Uchino et 

al. 2002, Huang et al. 2005, Shioda et al. 2006, Shioda et al. 2007, Park et al. 2008). Indeed, both 
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in vivo and in vitro studies point to calcineurin activity inhibition as a potential therapeutic target 

for reducing excitotoxic cell death and ischemic neuronal damage.  

 

We found that RCAN1.4 over-expression in neurons reduced excitotoxic cell death, and 

considering the aforementioned studies, the protection may ensue through inhibition of 

calcineurin over-activation. RCAN1.4 increases in neurons and astrocytes following ischemic 

injury, and has been previously implicated in down-regulating injurious processes that occur in 

ischemia (Cho et al. 2008, Sobrado et al. 2012). The role of RCAN1.1 in ischemic toxicity, 

however, is not well-explored. In contrast to RCAN1.4, RCAN1.1 over-expression in cortical 

neurons provoked neurotoxicity that was partially blocked by pharmacological inhibition of 

calcineurin activation (Figure 9). Our RCAN1.1 findings are inconsistent with a recent study in 

which RCAN1.1 exhibits ischemic neuroprotection. RCAN1.1-over-expressing mice 

demonstrate resilience to post-ischemic neuronal injury, and cultured neurons from these mice 

are less vulnerable to oxygen-glucose deprivation-activated cell death compared to wild-type 

mice (Brait et al. 2012). No increase in RCAN1.4 protein expression is observed following 

ischemia, in contrast to previously published studies (Cho et al. 2008, Sobrado et al. 2012). 

Interestingly, calcineurin activity is increased following ischemic injury in this study, but does 

not differ between wild-type and RCAN1-transgenic mice, suggesting that neuroprotection in 

RCAN1.1-over-expressing mice occurs through a mechanism that is independent of calcineurin 

activity regulation. However, the authors measured calcineurin activity solely by quantifying 

levels of the constitutively active calcineurin isoform, and therefore cannot be absolutely certain 

that calcineurin phosphatase activity is unchanged in RCAN1.1-over-expressing mice relative to 

wild-type animals. Potential compensatory mechanisms and duration of RCAN1.1 over-
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expression could also explain the calcineurin-independent, neuroprotective effect of RCAN1.1, 

in contrast to calcineurin activation-dependent neurotoxicity induced by transient RCAN1.1 

over-expression, as demonstrated in our study.  

 

How might RCAN1.1 and RCAN1.4 mediate distinct mechanisms of neurotoxicity and 

cell survival? Possibly, RCAN1.1 over-activates calcineurin (Figure 9), whereas RCAN1.4 

blocks calcineurin over-activation in excitotoxicity. Qin et al have similarly shown opposing 

actions of RCAN1.1 and RCAN1.4 on calcineurin activity in angiogenesis (Qin et al. 2006). 

RCAN1.4 may concurrently activate additional cell survival-supporting processes in response to 

injury. For example, RCAN1.4 interacts with Raf-1 kinase (Cho et al. 2005), a protein associated 

with promoting cell survival that opposes the calcineurin-mediated, pro-apoptotic BAD 

dephosphorylation signaling cascade described earlier (Wang et al. 1999a). Although the 

potential significance of this interaction is not known, RCAN1.1 does not contain an N-terminal 

binding site for Raf-1 kinase. Thus, this putative mechanism could further explain the divergent 

effects of the two RCAN1 isoforms on neuronal viability: without counteracting cell survival-

promoting events, over-activation of calcineurin and dysregulation of Zn2+ homeostasis together 

may lead to RCAN1.1-mediated cell death, in contrast to the effects of the RCAN1.4 isoform. 

4.3.2 Critical caveats to the therapeutic potential of calcineurin inhibition in stroke 

Although the studies discussed above indicate a critical role for calcineurin over-activation in 

promoting ischemic cell death, the therapeutic potential for calcineurin inhibition to reduce 

excitotoxic neuronal damage in stroke has several limitations. The calcineurin inhibitors FK506 

and CsA have been shown to influence cellular processes distinct from their regulation of 
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calcineurin activity, which may contribute significantly to their neuroprotective efficacy. CsA, 

for example, forms a complex with the mitochondrial matrix protein cyclophilin D. This 

complex, in addition to inhibiting calcineurin activity, blocks the mitochondrial permeability 

transition pore, a putative key contributor to Ca2+-dependent ischemic neuronal injury (Klettner 

and Herdegen 2003). Several studies indicate that this mechanism contributes significantly to 

CsA-mediated neuroprotection in ischemia and other types of neuronal injury, particularly in 

cases where FK506 is ineffective (Friberg et al. 1998, Pavlov et al. 2010). Similarly, Uchino et al 

(2002) have demonstrated that while both inhibitors block calcineurin phosphatase activity with 

equal efficacy, CsA is much more potent than FK506 as a neuroprotective agent when 

administered before inducing transient forebrain ischemia in rats. The increased potency of CsA 

is likely due to its preservation of mitochondrial function (Uchino et al. 2002). Finally, a 

derivative of CsA, which inhibits the mitochondrial permeability transition but does not inhibit 

calcineurin, is neuroprotective in transient focal cerebral ischemia (Korde et al. 2007). 

 

The mechanism of FK506 neuroprotection in excitotoxicity may also involve calcineurin 

inhibition-independent processes, although these mechanisms are less well characterized. FK506 

is thought to mediate nerve regeneration following injury, for example, via a mechanism that is 

completely distinct from inhibition of calcineurin activity (Toll et al. 2011). Studies in cultured 

neurons suggest that FK506 reduces NMDA receptor-mediated toxicity by blocking calcineurin-

dependent neuronal nitric oxide synthase activation and nitric oxide production (Dawson et al. 

1993, Rameau et al. 2003). In vivo, FK506 affords robust neuroprotection in focal cerebral 

ischemia, but does not affect nitric oxide production, arguing against this mechanism of 

excitotoxic protection (Toung et al. 1999). Further, Butcher and colleagues have demonstrated 
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that while FK506 protects against ischemic damage in the rat forebrain, it is not effective against 

excitotoxic lesions (Butcher et al. 1997).  

 

Another interesting mechanism by which FK506 may mediate neuroprotection is through 

inhibition of outward delayed rectifying K+ currents, which has been demonstrated in rat CA1 

hippocampal neurons, as well as in several other experimental systems (DuBell et al. 1997, Ahn 

et al. 2007, Yu et al. 2007). In fact, increased K+ currents mediated by Kv channels, as discussed 

earlier, contribute to several cell death pathways in neurons, potentially including excitotoxicity 

in stroke (Pal et al. 2003, Wei et al. 2003, Yao et al. 2009). FK506-mediated Kv channel 

inhibition may proceed through direct inhibition of the channel rather than through the drug’s 

actions on calcineurin phosphatase activity (Ahn et al. 2007, Yu et al. 2007), although this 

mechanism remains to be thoroughly characterized. 

 

Thus, calcineurin inhibition may not, in all cases, be sufficient for blocking excitotoxic 

neuronal damage in ischemia. In fact, we did not observe neuroprotection against excitotoxicity 

in our neuronal system with any of three different calcineurin inhibitors (CsA, FK506, or 

deltamethrin). Thus, the RCAN1.4-mediated neuroprotection we have demonstrated may 

proceed by a calcineurin activity-independent mechanism. Given that overexpression of 

RCAN1.4 is protective against exogenous Zn2+-induced neurotoxicity (Lee et al. 2007), and that 

intracellular Zn2+ release is implicated both in inflammation-triggered neuronal injury (Knoch et 

al. 2008) and excitotoxic neuronal cell death (Aras et al. 2009a, Medvedeva et al. 2009), the 

mechanism of RCAN1.4 protection in our studies may involve blocking toxic Zn2+ release or 

downstream effectors of the metal.  
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Finally, when used clinically for immunosuppressive therapy, the calcineurin inhibitors 

FK506 and CsA can have pronounced toxic side effects in patients (Paul 2001). Thus, there is a 

crucial need to identify calcineurin inhibitors that possess minimal non-specific mechanisms of 

action, to improve current immunosuppressive therapy, and for potential future treatment of 

neurodegenerative diseases. In this regard, a recent study identified an RCAN1 peptide that 

specifically blocks calcineurin-NFAT signaling without affecting general calcineurin 

phosphatase activity (Mulero et al. 2009). The authors used the RCAN1 peptide-calcineurin 

interaction to identify dipyridamole, which is currently used to prevent thrombus formation in 

heart valve patients, as an agent that similarly blocked calcineurin-NFAT pathways with no 

effect on general phosphatase activity. Our studies show that RCAN1.4 over-expression is 

relatively non-toxic to neurons, and is neuroprotective against excitotoxicity (Figure 8). Thus, 

characterizing the mechanisms of RCAN1.4-mediated protection in ischemic cell death, as we 

and others have begun to do, may enable development of therapeutic agents that block 

calcineurin dysregulation-mediated injurious signaling pathways with few non-specific effects, 

in stroke and other non-neurological diseases. 

4.3.3 Calcineurin dysregulation contributes to Alzheimer’s disease-associated 

neurotoxicity  

In addition to its role in enabling neuronal injury in stroke, disruption of normal calcineurin 

signaling may be a key step that triggers neuronal damage in Alzheimer’s disease (AD). While 

this discussion will focus on calcineurin-mediated signaling pathways specifically triggering 

AD-related neuronal cell death, calcineurin over-activation is also strongly implicated in 

promoting AD-associated synaptic dysfunction.  
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Increased calpain-mediated truncation of calcineurin, resulting in calcineurin proteins that 

exhibit heightened phosphatase activity, is observed in human AD brains (Liu et al. 2005), and in 

the hippocampi of subjects with mild cognitive impairment (Mohmmad Abdul et al. 2011). 

Importantly, the levels of truncated calcineurin correlate with severity of neurofibrillary tangle 

pathology (Liu et al. 2005). Similarly, enhanced calcineurin/NFAT signaling correlates 

positively with Aβ load and cognitive impairment in AD patients (Abdul et al. 2009). Other 

studies have also shown increased calcineurin expression and activity in human AD and AD 

model mice brains, respectively (Norris et al. 2005, Kuchibhotla et al. 2008, D'Amelio et al. 

2011). In vitro experiments accordingly suggest a critical role for calcineurin activation in Aβ-

mediated neurotoxicity. In primary rat hippocampal cultures, exposure to toxic Aβ oligomers 

produces calpain-mediated calcineurin cleavage, enhanced calcineurin activity, and neuronal 

atrophy that is abrogated by FK506 (Mohmmad Abdul et al. 2011). In rat brain slices, Aβ 

oligomers provoke calcineurin activity, and a calcineurin activity-dependent decrease in levels of 

phosphorylated BAD, indicating that calcineurin-mediated apoptosis may contribute to AD 

pathogenesis (Reese et al. 2008).  

 

The RCAN1.1 isoform is implicated in an injurious role particularly in AD-related 

neuronal cell damage. Protein and mRNA levels of the RCAN1.1 isoform are markedly 

increased in the brains of AD patients (Fuentes et al. 2000, Ermak et al. 2001, Sun et al. 2011). 

Increased concentrations of Aβ1-42 peptide, a major component of amyloid plaques, induce 

higher RCAN1.1 mRNA levels in vitro (Ermak et al. 2001). Transient over-expression of 

RCAN1.1 induces caspase-dependent apoptosis in neurons (Sun et al. 2011, Ermak et al. 2012), 

and renders neurons more susceptible to Aβ-induced apoptotic cell death (Sun et al. 2011). Our 
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results showing increased cell death in RCAN1.1-over-expressing neurons (Figure 9) are in 

agreement with these findings. Further, we demonstrated that RCAN1.1-induced neurotoxicity 

could be partially attenuated by inhibition of calcineurin activity, suggesting that calcineurin 

over-activation is a key component of RCAN1.1-mediated cell death (Figure 9). A previous 

study, showing that in angiogenesis, RCAN1.1 facilitates calcineurin activation in contrast to 

RCAN1.4 (Qin et al. 2006), supports our proposed mechanism. Based on these results and the 

likely role of calcineurin dysregulation in AD, we suggest that chronically increased levels of 

RCAN1.1 may facilitate AD-related neurodegeneration via over-activation of calcineurin.  

 

Despite these investigations, additional studies will be required to further clarify the role 

of RCAN1.1 in AD neuronal cell death. In contrast to our findings and the published studies 

described above, Ermak and colleagues have explored the hypothesis that RCAN1.1 promotes 

AD-related neurodegeneration via either inhibition of calcineurin activity, activation of glycogen 

synthase kinase-3β (GSK-3β), or both, resulting in hyper-phosphorylation of tau. In support of 

this hypothesis, RCAN1.1 over-expression stimulates GSK-3β expression. Furthermore, aged 

mice that over-express RCAN1.1 exhibit enhanced levels of phosphorylated tau in their 

hippocampi (Ermak et al. 2006, Ermak et al. 2011). Whether RCAN1.1 increases kinase activity 

of GSK-3β, and whether RCAN1.1 inhibition of calcineurin activity specifically contributes to 

generation of hyper-phosphorylated tau and its associated neuropathology, require further 

investigation.  

 

Reports in non-neuronal cells also demonstrate conflicting conclusions on the role of 

RCAN1.1 in modulating cell viability. In glucocorticoid-treated, cultured human leukemic cells 
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undergoing apoptosis, RCAN1.1 mRNA and protein expression are up-regulated. In agreement 

with our results, RCAN1.1 is thought to promote the cell death-signaling pathway, but via 

inhibition of calcineurin activity (Hirakawa et al. 2009) rather than over-activation (Figure 9). 

Another study that explored RCAN1 function in the heart of RCAN1-lacking mice demonstrated 

a calcineurin-facilitative role for RCAN1, similar to our findings. However, immune cells from 

RCAN1 knockout mice undergo apoptotic cell death that is worsened by loss of calcineurin 

expression, indicating that reduced calcineurin activity promotes a cell injurious pathway in 

these cells (Sanna et al. 2006). Because these mice were lacking both RCAN1.1 and RCAN1.4 

protein expression, it is difficult to compare this result to our study. Future isoform-specific 

investigations, as we have done, will elucidate the specific role of RCAN1.1 and RCAN1.4 in 

regulating cell viability in neuronal and non-neuronal systems.  

4.3.4 Additional mechanisms of RCAN1.1-mediated neuronal damage 

Although we focused on the effects of RCAN1 over-expression on neuronal cell viability, 

RCAN1.1 may also contribute to neuronal damage by disrupting mitochondrial processes and 

synaptic function through cell signaling pathways that may be dependent or independent of 

calcineurin activity regulation. Chronic over-expression of RCAN1.1 in a neural cell line reduces 

mitochondrial mass and triggers mitochondrial membrane depolarization, leading to autophagy 

(Ermak et al. 2012). Whether these effects are mediated by regulation of calcineurin phosphatase 

activity is unknown. Adrenal chromaffin cells from RCAN1.1-over-expressing cells display 

compromised vesicle recycling via a mechanism that may be at least partially dependent on 

inhibition of calcineurin activity (Keating et al. 2008, Zanin et al. 2013). In agreement with an 

effect of increased RCAN1.1 protein levels on synaptic function, transgenic mice over-
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expressing RCAN1.1 exhibit reduced hippocampal volume and decreased spine density, along 

with impaired LTP and deficits in short and long-term memory. Interestingly, hippocampal 

calcineurin activity is comparable in wild-type and RCAN1.1-transgenic mice. In contrast, 

RCAN1.1-over-expressing mice exhibit lowered levels of activated CAMKII and ERK, two 

proteins that promote LTP and signaling pathways associated with memory (Martin et al. 2012). 

These findings suggest a calcineurin-independent mechanism of impaired synaptic transmission 

in these animals.  

4.4 CONCLUDING REMARKS 

Our understanding of excitotoxic neuronal cell death in stroke has certainly progressed 

significantly over the past few decades. Almost sixty years have passed since a link between 

glutamate and stroke was first proposed. Landmark studies that established the role of 

glutamate/NMDA receptor signaling in promoting ischemic cell death were published over three 

decades ago. Indeed, the elucidation of cell signaling pathways in neuronal ischemia has led to 

the identification of numerous potential molecular targets for neuroprotection. Despite these 

advances, an effective therapy for stroke remains elusive. Drugs that demonstrate considerable 

neuroprotective efficacy in vitro and in animal stroke models have largely failed in human 

clinical trials. Thus, thoroughly characterizing specific neuronal cell death and cell adaptive-

signaling pathways in ischemia is crucially important. The findings presented in this dissertation 

further our understanding of Kv2.1 channel regulation in ischemic preconditioning, and establish 

distinct roles of calcineurin activation in both excitotoxic neuroprotection and neuronal cell 

death. These studies may provide new direction for therapeutic approaches in stroke. 
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